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1. INTRODUCTION:
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Traumatic brain injury (TBI) currently afflicts 357,000 enlisted military men and women in the US 
Armed Services. For the most common form of TBI, Mild Traumatic Brain Injury (mTBI) most patients 
recover within a year following the incident, but 10-20% of mild cases result in a long-term disability 
including seizures and emotional and behavioral issues. Although much has been learned about 
molecular changes in the brain following injury, access to these biomarkers following mTBI is lacking. 
The accurate diagnosis and precise individual clinical management of traumatic brain injury (TBI) is 
limited by the lack of accessible molecular biomarkers that are informative regarding the unique 
mixture of injury mechanisms in each TBI patient. 

We hypothesize that we can address this challenge by developing a microchip-based diagnostic to 
characterize TBI recovery and history using the RNA cargo found in brain-derived extracellular 
vesicles (EVs). Unlike prior work that has mainly focused on single biomarkers, our approach 
measures a panel of circulating EV miRNA markers processed with machine learning algorithms to 
more comprehensively capture the state of the injured and recovering brain. We piloted this 
approach and successfully classified the severity, time elapsed since initial injury, and history of 
multiple injuries of TBI in an animal model and with clinical samples. Our proposed chip combines 
two technologies, developed in my lab, to create an ultrasensitive, automated exosome diagnostic: 1. 
Magnetic nanopore isolation of EV subpopulations from the injured and recovering brain, and 2. 
Time-domain encoded optofluidics for rapid highly multiplexed digital droplet exosomal RNA 
detection. Our approach can measure the state of injury and recovery in TBI in a minimally invasive 
fashion, opening new opportunities to improve molecular diagnosis, prognosis, and precision 
medicine for TBI injury. 



What were the major goals of the project? 
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Traumatic brain injury (TBI) currently afflicts 357,000 enlisted military men and women in the US 
Armed Services. For the most common form of TBI, Mild Traumatic Brain Injury (mTBI) most 
patients recover within a year following the incident, but 10-20% of mild cases result in a long-term 
disability including seizures and emotional and behavioral issues. Although much has been learned 
about molecular changes in the brain following injury, access to these biomarkers following mTBI is 
lacking. The accurate diagnosis and precise individual clinical management of traumatic brain injury 
(TBI) is limited by the lack of accessible molecular biomarkers that are informative regarding the 
unique mixture of injury mechanisms in each TBI patient. 

Phase 1 
Major Task 1: Next Generation Technology Development 

Subtask 1: Finite element design optimization of next generation TENPO. 
Intended completion date 6/1/2020. Status: 100% complete. 
Subtask 2: Next generation TENPO characterization. 
Intended completion date 6/1/2020. Status: 100% complete. 
Subtask 3: Develop, test modular magnetic nanoparticle labeling for capturing 
specific subsets of extracellular vesicles (EVs). 
Intended completion date 6/1/2020. Status: 100% complete. 
Subtask 4: Validation of EV isolation.  
Intended completion date 6/1/2020. Status: 100% complete. 
Subtask 5: Isolation of RNA cargo from EVs. 
Intended completion date 6/1/2020. Status: 100% complete. 
Subtask 6: Develop a droplet detection technology to measure at least three colors 
allowing ratiometric, calibration free use and expanded multiplexing. 
Intended completion date 6/1/2020. Status: 100% complete.

2. KEYWORDS:

Mild Traumatic Brain Injury, Diagnostics, Exosomes, Extracellular Vesicles

3. ACCOMPLISHMENTS:
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Milestone: Next generation TENPO will be benchmarked for throughput (100 mL/
hr), biomarker-selectivity, background insensitivity, and limit of detection (1000 
EVs / mL in plasma). 
Intended completion date 6/1/2020. Status: 100% complete. 
Milestone achieved: Droplet detection platform will be benchmarked for 
throughput (106 droplets / sec), accuracy AUC > 0.995, and for number of colors 
(n > 3). 
Intended completion date 6/1/2020. Status: 100% complete. Indeed, we have 
exceeded our original goal and have demonstrated a working 6-plex device. 

Major Task 2: In Vitro Biomarker Selection 
Subtask 1: To screen for surface marker candidates we will use multiple cell-
culture based stretch models of injury including models using nearly pure 
cultures of neurons, astrocytes, and blood-brain-barrier. We will identify surface 
markers unique to each cell type, and RNA markers with high differential 
expression between injured and control (sham) state. 
Intended completion date 6/1/2020. Status: 100% complete. 
Milestone Achieved: A set of EV surface markers to isolate subpopulations to 
profile the injured and recovering brain. 
Intended completion date 6/1/2020. Status: 100% complete. 

Major Task 3: Pilot Clinical / Porcine Evaluation 

Subtask 1: We will isolate multiple extracellular vesicle (EV) subpopulations 
from injured patients and healthy controls using the TENPO from N = 20 injured 
subjects and N = 20 controls.  
Intended completion date 6/1/2020. Status: 100% complete. 
Subtask 2: We will sequence EV isolated from N = 40 banked serum samples 
from a porcine injury model 
Intended completion date 6/1/2020. Status: 100% complete. This work was 
delayed by COVID-19 shutdown. Samples have been processed and 
sequencing results were just recently obtained. 
Milestones Achieved: We will have sequencing data of the µRNA isolated, from 
each EV subpopulation, for every patient. 
Intended completion date 6/1/2020. Status: 100% complete. 
Milestones Achieved: We will have comparisons of this sequencing data to 
known biological models of injury/recovery. 
Intended completion date 6/1/2020. Status: 80% complete. This work was 
delayed by COVID-19 shutdown. Sequencing data was only recently obtained 
and this analysis is near completed. 
Milestones Achieved: Data accumulated from each subject will be annotated 
with the sequencing data and analyzed. 
Intended completion date 6/1/2020. Status: 100% complete. 
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Milestones Achieved: We will have sequencing data, from each EV sub-
population, isolated from N = 40 banked serum samples from a porcine injury 
model. 
Intended completion date 6/1/2020. Status: 100% complete. This work was 
delayed by COVID-19 shutdown. Sequencing data was only recently 
obtained. 
Milestones Achieved: We will have compared this porcine model to our 
clinical data, validating it it for further use in our study. 
Intended completion date 6/1/2020. Status: 80% complete. This work was 
delayed by COVID-19 shutdown. Sequencing data was only recently 
obtained and this analysis is now underway.. 
Milestone Achieved: HRPO/ACURO Approval  
Intended completion date 6/1/2020. Status: 100% complete. 
Milestone Achieved: Meeting with the FDA for guidance 
Intended completion date 6/1/2020. Status: 100% complete. We have 
reached out to the FDA, and I was invited down to give a seminar. In light of 
conversations with potential commercialization partners, we have 
strategically chosen to obtain our next set of clinical data (later this year) 
before re-initiating our conversation with the FDA. 

Phase 2 
Major Task 1: Porcine Model Study. 

Subtask 1: We have planned and have been carrying out the injury 
experiments on (N = 32 injured, N = 8 healthy) animals. 
Intended completion date 5/1/2021. Status: 70% complete. These injury 
experiments will likely be complete by the next quarterly report. We have run 
pilot samples for Immunochemistry to validate this component of the study, 
and are currently working our way through the animal injuries and sample 
collection. 
Milestone Achieved: We will use open field and T-maze tests to evaluate 
cognitive recovery. 
Intended completion date 5/1/2021. Status: 0% complete. We have pivoted 
away from behavioral measurements due to feedback from our collaborators. 
Milestone Achieved: We will measure the pig’s sensitivity to light and sound. 
Auditory event-related potentials (ERPs) will be obtained from animals prior to 
injury, and again 1, 3 and 7 days post-TBI.  
Intended completion date 5/1/2021. Status: 0% complete. We have pivoted 
away from behavioral measurements due to feedback from our collaborators. 
Milestone Achieved: Immunochemistry will be performed on the porcine 
injured animals, as described in the table on the following page.  
Intended completion date 5/1/2021. Status: 60% complete. We are currently 
working our way through the animal injuries and sample collection. 
Milestone Achieved: T1-weighted and diffusion tensor imaging (DTI) 
sequences will be collected  
Intended completion date 5/1/2021. Status: 20% complete. We are currently 
working our way through the animal injuries and sample collection.
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Milestone Achieved: The EV RNA signatures from each of these injury types will 
be collected and compared to those from humans in Phase 1 and our 
behavioral, histology, and imaging. 
Intended completion date 5/1/2021. Status: 60% complete. We are currently 
working our way through the animal injuries and sample collection. 

Major Task 2: Next Generation Technology Development 
Subtask 1: Work incorporating the TENPO EV isolation with cell-phone based 
droplet PCR has progressed nicely.  
All individual components, including droplet production, thermal cycling, and 
droplet readout platforms have been developed and validated. We now have an 
integrated system and are working on optimization and validation of the 
platform. 
Subtask 2: We will benchmark our chip against a commercial BioRad digital 
PCR system. 
Intended completion date 5/1/2021. Status: 50% complete. We have just in the 
last month begun to benchmark our chip against a commercial BioRad digital 
PCR system. 
Milestone achieved: We benchmark RNA detection using known quantities of 
RNA template, and compare results of µDFD to conventional qPCR. 
Intended completion date 5/1/2021. Status: 50% complete. We have just in the 
last month begun to benchmark our chip against a commercial BioRad digital 
PCR system. 
Milestone achieved: We will test samples spiked with known quantities of 
culture derived EVs, and compare to off-chip conventional qPCR. 
Intended completion date 5/1/2021. Status: 50% complete. We have just in the 
last month begun to benchmark our chip against a commercial BioRad digital 
PCR system. 
Sensitivity and specificity for RNA detection will be characterized, with a goal of 
sixteen parallel channels, resulting in > 106 droplets per minute total, with an 
AUC > 0.995. 
Intended completion date 5/1/2021. Status: 50% complete. We have just in the 
last month begun to benchmark our chip against a commercial BioRad digital 
PCR system. 



What was accomplished under these goals? 
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-Extracellular vesicles as distinct biomarker reservoirs relative to conventional serum-
based biomarkers for mild traumatic brain injury diagnosis.

Although most individuals who experience a mild traumatic brain injury (mTBI) recover within
weeks after the injury, a significant number of patients suffer from persistent symptoms that 
include headaches, cognitive changes, and mood disturbances for months afterward.1-3

Conventional approaches to evaluate mTBI have focused on the currently known hallmarks of 
moderate-to-severe brain damage, such as clinical assessment using the Glasgow Coma
Scale, macroscale lesions visualized with CT imaging, and circulating neurodegenerative 
markers.4 Unfortunately, these methods lack the sensitivity and specificity needed to clinically 
characterize milder injuries, to identify patients who are likely to have persistent symptoms in
the time following mTBI, and to guide each patient to a personalized, effective therapy.5
Because adequate biomarkers are lacking, the identification of mTBI patients in need of
intervention remains mainly limited to monitoring for and treating post-concussive symptoms
as they arise rather than treating the underlying pathology much earlier in the course of the 
disease, when therapies are more likely to be effective.

Biomarker discovery to accurately diagnose and classify an individual’s TBI into categories for
improving individual patient outcomes and developing new treatments has generated great 
interest in recent years. However, identifying sufficiently sensitive and specific biomarkers has 
been confounded by the particularly dynamic and heterogeneous nature of TBI. Each TBI 
results in a unique combination of initial tissue damage and secondary pathology including
vascular dysfunction,6,7 axonal injury,8,9 and inflammation10 that evolve following the injury.11-13

These distinct aspects of an individual’s TBI – each of which maps to multiple potential
biomarkers in the blood – is considered key to a patient’s possible recovery or progression to 
behavioral and cognitive deficits.14,15 Moreover, the profiles of biomarkers in the blood are
dynamic, originating from both the initial tissue damage and the multiple secondary 
pathologies that develop over time after the injury.14,16-17 The complexity of biomarker 
expression following an injury results in diagnostics measurements that can be challenging to 
interpret.

To gain a more comprehensive assessment of mTBI, many researchers have shifted their
attention away from measurements of single biomarkers to measurements of biomarker
panels, where each constituent biomarker can be chosen to assess a different aspect of the
patient's TBI.18 For example, the combined analysis of circulating glial fibrillary acidic protein 
(GFAP), an astrocyte derived intermediate filament protein, and ubiquitin C-terminal hydrolase 
L1 (UCHL1), a neuronal cytosolic protein, accurately identifies injury severity and CT scan
lesions in clinical TBI. While this assay – the Banyan Brain trauma indicator test – has
demonstrated promise as a TBI diagnostic for more severe injuries, such biomarkers have not 
yet been identified that can reliably classify underlying TBI endophenotypes or predict patient
outcomes after mTBI.19 Other proposed TBI biomarkers have potential to directly assess 
specific underlying TBI pathologies. These include neurofilaments,20,21 a major cytoskeletal 
component of neuronal axons, and Tau, a cytoskeletal protein whose phosphorylation and
aggregation are hallmarks of neurodegenerative conditions.22,23 Dysregulated central and
peripheral immune cell function following TBI results in the release of cytokines, chemokines,
and complement components that may provide an assessment of inflammation, a key driver 
of neurologic deficit post-TBI.24,25
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Extracellular vesicles (EVs) have generated particular interest for multiplexed TBI 
diagnostics. EVs are nanoscale vesicles ranging from 100-1000nm26 generated through a
variety of mechanisms including plasma membrane budding or the fusion of multivesicular 
bodies (MVBs) to the cellular membrane to be released into the extracellular space.27 EVs
possess surface proteins derived from the parent cell, and cargo (proteins, mRNA, miRNAs) 
within the vesicle lumen that reflect the status of their cells of origin and that, when
transferred to recipient cells, can act as agents of cell-cell communication.28-30 EVs are 
emerging as a promising complement to plasma derived biomarkers, as they contain cargo 
that may play direct roles in TBI pathology, and contain surface proteins that allow brain
derived EVs to be isolated from the blood. EVs and their cargo also provide a work-around to 
the impracticality of brain tissue biopsy by crossing the blood brain barrier31 into CSF,
peripheral circulation,32 and other bodily fluids making them easily accessible CNS
biomarkers for monitoring TBI progression.33,34 Moreover, EVs are shed by both healthy and 
degenerating cells, providing a broader view into the molecular processes that occur within a 
tissue or organ. In the optimal form, the combination of information extracted from EVs of
injured, but not necessarily degenerating, neurons with neuronal biomarkers and
inflammatory mediators could lead to accurate classifications and prognoses of patients with 
mTBI.

On their own, the diagnostic potential of EVs has been shown in military personnel, where
circulating exosome-packaged Tau and IL10 levels are elevated with mTBI and correlate with
post-concussive and post-traumatic stress disorder symptoms.35 Other studies have found
variations in EV microRNA concentration after TBI.36 In previous work we showed that by 
enriching brain associated EVs, which expressed the glutamate ionotropic receptor AMPA 
type subunit 2 (GluR2) surface marker, from plasma using a nanomagnetic chip, and
analyzing RNA cargo we could identify RNA signatures that accurately classified the injury,
including its presence, severity, history of previous injuries, and timing.37-39 However, this 
work was limited to the RNA cargo of EVs, and did not incorporate known biomarkers of 
neuronal and glial cell damage or inflammation packaged in EVs.35

In this study, we combined conventional assessment of TBI-associated biomarkers in plasma 
with our approach of acquiring molecular information from brain derived EVs. Our main
purpose was twofold: to determine if EVs and plasma biomarker proteins represented
independent information for mTBI diagnostic use, and to evaluate the relative effectiveness oft
applying this approach on a set of mTBI patients. We used our TENPO technology to enrich 
for brain derived EVs and leveraged an existing ultrasensitive digital ELISA technique, single 
molecule array (SIMOA), to accurately determine common protein biomarker levels in these
two compartments. We demonstrate that the independence of the molecular information
stored in the GluR2+ EVs and in plasma allows for the development of a multianalyte
approach to mTBI diagnosis. In this work we use a machine learning algorithm developed 
using biomarkers from both compartments as a proof-of-concept of this approach, and
illustrate its ability to successfully discriminate mTBI patients from control subjects. 
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Due to the subtle nature of the physical injury in mTBI, we hypothesized that algorithmically 
combining biomarkers from both brain derived EVs and plasma could result in more sensitive
and specific discrimination of mTBI patients from controls than that of any individual biomarker, 
or any one biomarker compartment. To test this hypothesis, we obtained human plasma samples
from TBI subjects admitted to an urban, academic Level 1 trauma center (University of
Pennsylvania’s Penn Presbyterian Medical Center) following a head impact – representing the 
diversity of injury types encountered in the clinic including assault, road traffic incidents, and falls
– as well as healthy control and orthopedically injured participants yielding a study size
consistent with previous experiments (Fig. 1A).38 Our blood-based assessment of mTBI included 
a panel of neuronal and glial cell damage biomarkers (UCHL1, NFL, Tau, and GFAP) and key
drivers of inflammation (IL6, IL10, TNF⍺) quantified in both plasma and within brain derived EVs 
expressing GluR2. (Fig. 1B). We then used this data to investigate protein distribution across the 
two compartments and to evaluate mTBI-associated changes in biomarker concentration and
signatures (Fig. 1C).

Figure 1: Project Workflow. 1) Samples were obtained from subjects sustaining TBIs through a
variety of mechanisms and from a combination of orthopedic injured and healthy controls. One
500 μL aliquot of plasma from each subject was used to isolate brain derived EVs based on their
expression of GluR2 using our nanofluidic platform, TENPO. Lysate from GluR2+EVs and a
second 500 μL aliquot of plasma were subjected to digital ELISA assessment. 2) Biomarkers 
were selected based on known or emerging role in neuronal (UCHL1, NFL, Tau) or astrocyte
(GFAP) pathology, or on their roles in the spectrum of inflammatory function (TNF⍺, IL6, IL10). 3)
Analyses served two purposes: comparison of biomarker distribution in plasma and in GluR2+
EVs, and the discrimination of TBI and control subjects. A machine learning approach was used 
to combine the multiplexed data into biomarker panels for comparison with the performance of
individual biomarker ROC curves and panels of biomarkers from each compartment alone. 
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Participant demographics
To test our hypothesis that algorithmic combination of biomarker data yields a more accurate
mTBI diagnostic, we collected plasma and EV samples from GCS mild (13-15) clinical TBI
patients (n=47; Fig. 1). The study design also included a control group (n =46) consisting of both 
healthy age-matched and orthopedic injured controls to assess the specificity of blood and EV-
packaged biomarkers to mTBI. Although controls and mTBI subjects were of similar ages (mean
= 36 years +/- 16 TBI, +/- 14 controls), there were 20% more males in the mTBI than in the 
control group (Table 1).  

Plasma and brain derived GluR2+ vesicles display variable biomarker distribution across 
individuals To visualize the spread of the data across individuals, we first plotted log values of
each biomarker across TBI and control subjects (Fig. 2A). For the mTBI group, coefficient of 
variance (CV) values for plasma biomarker levels ranged from 31% for GFAP, to 120% for TNF⍺. 
In the control subjects, CV values for plasma biomarkers ranged from 27% for IL10, and 140%
for GFAP. Levels of plasma biomarkers for mTBI subjects were not significantly affected by injury
type (ANOVA; p>0.65 across all biomarkers), and only plasma TNF⍺ levels significantly
correlated with age (p<0.05; R2=0.091). Since this correlation was small, we collapsed all injury 
types into a single mTBI group for our subsequent analysis of plasma biomarker measures. In 
the control group, orthopedic controls exhibited significantly higher levels of plasma GFAP
compared to the control mean (ANOVA; p<0.05; Dunett correction for multiple comparisons), and
there were small correlations between age and plasma GFAP and UCHL1 levels (p<0.05; 
R2=0.22 and 0.27 respectively). There were no other additional effects of control type or age on
plasma biomarker levels. We thus consolidated control subjects into a single group for plasma
biomarker analyses.

Our analysis and visualization of the data also revealed, similar to plasma biomarkers, that
proteins packaged in GluR2+ EVs are also expressed heterogeneously across individual 
subjects (Fig. 2A). For the mTBI group, CV for GluR2+EV-packaged biomarkers ranged from 
45% for IL6 to 140% for Tau. We found that neither injury/ control type nor age has an effect on
the expression of EV-packaged biomarkers (p>0.38 (injury type, across all biomarkers); p>0.24
(control type, across all biomarkers)). Nor were there any significant correlations between age
and GluR2+EV biomarker levels for either group (p>0.05 across all biomarkers for both groups)
Therefore, we consolidated all injury types to a single injury group, and the two control types into
a second group (supplemental tables 5-8). Furthermore, demonstrated that there is no significant 
difference in the number of EVs across TBI and controls (p>0.05), eliminating the need to
normalize across EV count (Fig. 2B).
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Figure 2: Expression of brain-derived proteins and cytokines is heterogeneous across TBI
and controls in both plasma and GluR2+EV compartments. A) Log transformed biomarker 
levels plotted in heat map. Columns represent subjects, each arranged within respective TBI or
control types by increasing age. B) Number of GluR2+ EVs isolated from 05.mL plasma from N=5NN
TBI and N=5 control subjectsNN .

Once we consolidated our dataset, we hypothesized – based on other studies of mTBI biomarkers,
and on the 57% rate of CT scan abnormality of our mTBI subjects (Table 1) – that mTBI subjects
would exhibit significant elevations in conventionally-studied plasma biomarkers relative to
controls.19 To test this hypothesis, and to investigate whether mTBI was also associated with 
significant changes to biomarker levels in the GluR2+EV compartment, we compared mean levels
of individual biomarkers in both compartments (Fig. 3).

Figure 3: Mild TBI is associated with elevations in both brain-derived proteins and cytokines
in plasma and GluR2+ EVs. Scatter plots of mean log biomarker values and standard deviation as 
error bars. Calculation of p values using student’s T Test were done using log-transformed data. 
AUCs were generated using raw values.
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Brain derived EVs and plasma possess distinct protein compositions
Until this point, we analyzed the performance of single proteins, regardless of its originating in 
plasma or GluR2+ EVs, to best discriminate between mTBI and control samples. However,
simply combining the best individually high performing biomarkers would potentially overlook
combinations of biomarkers that would better predict the presence/absence of mTBI. To evaluate
distinctions in biomarker information across plasma and GluR2+EV compartments, we first 
assessed the distribution of biomarkers in each group. In the mTBI group, plasma and
GluR2+EVs displayed significantly different proportions of all measured cytokines (p<0.001
across all cytokines; Fig. 4A). Specifically, the relative abundance of IL6 was significantly
elevated in plasma compared to GluR2+EVs. Conversely, GluR2+EVs contain significantly
higher proportions of both IL10 and TNF⍺ than plasma. The distribution of cytokines is also more 
balanced in GluR2+EVs, with IL10 and TNF⍺ making up similar proportions, while in plasma,
cytokine distribution is skewed with the relative abundance of IL6 dwarfing that of IL10 and TNF⍺
by 11- and 5-fold respectively. In contrast to the mTBI group, the control group displayed no 
significant differences in proportions of IL6 or IL10 across the two compartments (p>0.05). In this
group, only TNF⍺ abundance differed in plasma and GluR2+EVs, showing a significant increase
in the latter (p<0.0001). Lastly, in this group, distribution of the three cytokines exhibits more
balance in both compartments, each having similar proportions of IL6 and TNF⍺.

Like the cytokines, our analysis also revealed differences in plasma and GluR2+EV distributions 
of the four brain derived proteins (Fig 4B). For both mTBI and control subjects, abundance of 
three of the four (GFAP, NFL, and UCHL1) display significant differences in plasma compared to
GluR2+EVs, and Tau abundance is significantly elevated in GluR2+EVs in the mTBI group 
(p<0.05 across all brain derived proteins; Fig. 4B). In both groups, the distributions of these
proteins are uniquely skewed in each compartment; in plasma, GFAP abounds (fold increases of 
31, 136, and 15 relative to NFL, Tau, and UCHL1 respectively for mTBI group; fold increases of
10, 24, and 3 relative to NFL, Tau, and UCHL1 respectively for controls) while GluR2+EVs are
dominated by UCHL1 (fold increases of 6, 15, and 17 compared to GFAP, NFL, and Tau
respectively for mTBI group;  fold increases of 8, 16, and 22 relative to GFAP, NFL, and Tau
respectively for controls). 

Table 1. Descriptive characteristics of traumatic brain injury patient and control subjects; mean +/-
SD or N (%)

Characteristics Training set TBI patients Training set controls Test set TBI patients Test set controls

N 30 31 17 15

Demographics

Age, mean +/- SD (years) 35 +/- 14 36 +/-16 44 +/-18 28 +/- 8

Male gender- (%) 83% 55% 61% 60%

Clinical characteristic

GCS, mean 14.4 N/A 14.5 N/A

Positive CT- n (%) 57% N/A 72% N/A

GCS, Glasgow Coma Scale;  CT, Computed Tomography.
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Figure 4: Plasma and brain derived EVs possess distinct protein composition that are
each altered by TBI. Mean levels of each biomarker were totaled across individuals to
determine the relative percentage of each A) cytokine and B) brain derived protein in plasma and
GluR2+ EVs. Error bars represent SD calculated by propagation of uncertainty. T tests were
performed to assess statistically significant differences in biomarker levels across compartments.

Biomarker levels correlate more within than across plasma and brain derived EV
compartments
To develop a combinatorial method for discriminating TBI from control subjects, each biomarker
should hold the potential to contribute unique information about each patient’s TBI. To assess
this, we calculated three sets of correlation values for each biomarker category (cytokines or
brain derived proteins): correlations within plasma, within the GluR2+EVs, and across these two 
compartments (Fig. 5A).

We found levels of cytokines (IL6, IL10, and TNF⍺) and brain derived proteins (GFAP, NFL, Tau, 
UCHL1) correlated more with each other within the same compartment than between the plasma
and EVs compartments (Fig. 5B). For mTBI subjects, cytokine levels are most correlated within 
the plasma (avg. Pearson’s R= 0.61). In comparison, cytokine correlations within the EV
compartment (avg Pearson’s R = 0.38) and across plasma and EVs (avg Pearson’s R = 0.41) 
were similar. Levels of brain derived biomarkers are more correlated within plasma (avg
Pearson’s R= 0.50) and within GluR2+ EVs (avg Pearson’s R = 0.35) than across plasma and 
GluR2+EV compartments (avg Pearson’s R= 0.0065). As with the mTBI group, cytokine levels 
are most correlated within plasma (avg Pearson’s R = 0.80) in the control group. In contrast to
the mTBI group, cytokine levels are also more correlated within EVs (avg. Pearson’s R = 0.57)
than across plasma and EVs (0.20). Like the mTBI group, pools of brain derived biomarkers are
more distinct: levels of these proteins are most correlated in EVs and within the plasma
compartment, and least correlated across compartments (avg. Pearson’s R = 0.55, 0.42, 0.0065
respectively). Our results showed that different groups of biomarkers had very little correlation 
across compartments though levels correlated within each group, demonstrating the 
orthogonality of information within each.  
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Figure 5: Biomarker levels are uncorrelated across plasma and brain derived EV
compartments. Pearson’s correlation coefficients calculated for all possible combination of
biomarkers. A) Average R for each biomarker type (cytokines or brain derived markers) and for
each compartment (plasma or GluR2+ EVs) were plotted in a heat map matrix for TBI patients
and controls. Solid boxes indicate average R for each biomarker type-compartment combination. 
B) R for each biomarker comparison was plotted into heat map matrices for both TBI patients 
and controls. Solid boxes indicate R for individual biomarkers of the same type (cytokines or
brain derived proteins) within each compartment. Dashed boxes indicate R values for biomarkers
of the same type, but of different compartments.

Machine learning utilizes distinct biomarker information across compartments to classify
mTBI.
Given the independence of information collected from plasma and plasma derived EVs, we next 
assessed whether we could develop a machine learning-based classifier of TBI using the
complimentary biomarker information contained within each. To achieve this goal, we first applied
Least Absolute Shrinkage and Selection Operator (LASSO) on our training set of data (n=61) and
determined the best performing panel for discriminating TBI from controls (AUC=0.913,
Accuracy=0.825, Fig.6A). The panel consisted of five biomarkers: plasma NFL, GFAP, IL-6 and
TNF⍺ and GluR2+ EV Tau. To further evaluate the performance of our panel, we applied it on an
independent, blinded test set of 26 subjects. The panel resulted in AUC=0.92 and accuracy of 
88.5% (Fig.6B). To demonstrate the benefit of using multi-analyte panel, we compared its
performance with that of each individual biomarker (assessed using ROC analysis) and with
panels comprised of biomarkers of a single compartment. Our machine learning panel led to a
significant improvement in discriminating mTBI patients from controls (AUC) compared to the
individual biomarkers from both plasma and GluR2+ EVs (z > 1.96; p<0.05 Fig.6C), except for
plasma GFAP (z = 0.71; p=0.47) and plasma IL6 (z=1.4; p=0.16) when tested on the
consolidated dataset (training + test). Though our panel had the highest AUC, the added benefit 
did not reach significance compared with the best-performing single compartment panels (z =
1.11; p=0.27 for plasma brain derived proteins; z = 1.1; p=0.26 for plasma cytokines; Fig.6D). 
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However, the panel of five biomarkers did outperform the best performing panels with fewer 
biomarkers, i.e. a panel of plasma NFL and GFAP (p<0.001) and a panel of plasma NFL, GFAP, 
and GluR2+ EV Tau (p<0.01), derived from the original panel when tested across the combined 
training and test set. To address the question of whether we had included enough subjects to
properly train our model, we generated a learning curve on our entire subject population, including 
both the training and test set. We found that the model's performance plateaued beyond 58 
subjects, indicating that our training set sample of 61 subjects was sufficient for the patient 
population in this study. Lastly, we observed a significant decline in the model’s performance upon
removing GluR2+ EV Tau from the panel (Fig.6F; p<0.001). Neither the plasma brain derived 
markers (GFAP and NFL) nor cytokines (IL6 and TNF⍺) affected the panel’s performance when 
removed.

Figure 6: Machine learning combination of biomarkers from both plasma and GluR2+ EVs
outperforms single biomarkers and panels consisting of a single biomarker compartment
in classifying TBI. A) Performance of machine learning ensemble classifier using biomarkers 
from both GluR2+ EV and plasma compartments. B) Machine learning panel performance on user
blind test subjects. C) Comparison of machine learning panel performance with single biomarker
performance. *indicates z score >1.96; p<0.05 relative to machine learning (ML) panel using 
paired t Test while considering AUCs correlation induced by the nature of data. Error bars for
single biomarker AUCs represent standard deviation of biomarker performance across 10 trials of
random subsets of the dataset (90% of the total sample size) with replacement using 
bootstrapping.  D) Performance of panels consisting of biomarkers from plasma (plasma
Neuro4Plex, plasma Cytokine3Plex) or GluR2+ EVs (GluR2+ Neuro4Plex, GluR2+ Cytokine3Plex)
alone, and panels of 2,3,4, or all 5 of the biomarkers of the machine learning panel compared to
the performance of the full multi-compartment machine learning panel. * indicates z score >1.96 
relative to ML panel using paired t Test while considering AUCs correlation. E) AUC of panels
consisting of biomarkers from plasma (plasma Neuro4Plex, plasma Cytokine3Plex) or GluR2+ 
EVs (GluR2+ Neuro4Plex, GluR2+ Cytokine3Plex) alone, and panels of 2,3,4, or all 5 of the
biomarkers of the machine learning panel compared to the performance of the full multi-
compartment machine learning panel. F) Change in machine learning model AUC following 
removal of markers from the panel. White boxes indicate the marker(s) removed. Error bars
indicate standard error after 50 trials.
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DISCUSSION
Our study demonstrates that circulating brain derived EVs and plasma represent two distinct 
reservoirs of molecular information, the composition of each differentially altered by mTBI. By
using both compartments to algorithmically identify a biomarker signature that persisted across
individuals, we mitigated the effects of person-to-person variability in biomarker expression and
accurately classified mTBI (AUC=0.92; accuracy = 88.5%). To achieve this, we combined two
technologies – TENPO that can specifically enrich for GluR2+ EVs from plasma, and digital
ELISA that can measure multiple protein biomarkers with 100-1000x better sensitivity than
conventional ELISA – to address the challenges of accurately detecting levels of biomarkers that
often circulate at levels too low to detect with conventional technologies. The combined use of
biomarkers of specific TBI pathologies analyzed in the context of distinct biofluid environments 
from separate cellular pools is a promising approach for developing a more comprehensive
assessment of the state of the injured and recovering brain.

We began our analysis with measuring circulating levels of brain derived proteins GFAP, NFL, 
Tau and UCHL1, which demonstrated predictive power as individual biomarkers similar to past
studies of these biomarkers in mTBI.19,47 Since a sizable proportion of mTBI subjects in this
study (57%) sustained brain pathology observable through CT scan, the significant elevations in 
plasma levels of UCHL1 and NFL (p<0.0001 for each) were expected.19 As mTBI results in few 
degenerating neurons,48 it is not surprising that we did not detect significant elevations in Tau
after mTBI. In contrast, reactive gliosis can be observed throughout the brain even after mild
injury,49 and as expected we found plasma GFAP as the most robust single biomarker to 
discriminate mTBI subjects from controls (AUC=0.89). However, we observed plasma GFAP 
levels were significantly elevated in orthopedic-injured controls and controls over 51 years
(ANOVA; p<0.046 and p<0.0001 respectively) compared to the total control plasma GFAP mean.
This finding, combined with observations that GFAP is released from other cell types of the 
body,50 may complicate GFAP’s specificity to brain injury, especially if it is used in isolation in 
polytrauma cases. We also observed significant elevations in plasma levels of IL6, IL10, and 
TNF⍺ (p<0.001 across all cytokines), and indeed, plasma IL6 followed directly behind plasma
GFAP in discriminating mTBI (AUC=0.86). But the broad role that cytokines play in mediating
systemic trauma,51 immune challenges,52,53 and other neurological disorders54 may limit the 
specificity of these biomarkers in plasma.

In our assessment of mTBI, we also included brain derived EVs expressing GluR2, an appealing
alternative to co-opting the circulating neurodegenerative markers typically associated with
moderate-to-severe TBI for mTBI diagnostics. On their own, the proteins in brain derived EVs 
performed no better than those in plasma as individual biomarkers, despite the IL6 and GFAP
elevations observed in this compartment relative to controls (p<0.01 and p<0.001 respectively). 
However, it was intriguing to see that protein concentration of the same biomarkers across the
two compartments did not correlate with each other. One potential explanation for this result is 
that plasma levels of some biomarkers appeared from active degeneration processes in a small 
population of cells, while the exosome derived measurements originate from a large population
of largely intact neurons and glia responding to the mild mechanical trauma. Other studies of EV-
based biomarkers of TBI have similarly observed differences in EV-contained and plasma
molecular cargo. In a study measuring time-dependent changes in protein biomarkers within the
total circulating EV population and plasma, investigators found no correlation between the two 
compartments out to 5 days after injury.55



21

Although studies on EVs and their contents is only emerging, the broader sampling of EV
signatures from cells that do not later degenerate provides a new opportunity for understanding the 
consequences and recovery processes of mild trauma to the brain. With the broad disruption in
blood-brain barrier integrity that occurs after mTBI,56 it is possible that plasma activates pathologic
cascades in neurons and glia that do not later degenerate, resulting in a cellular population that 
largely outnumbers actively dying or degenerating ones in mTBI that are not assessed with
traditional plasma biomarkers. In experimental models of concussion and in clinical studies,
degenerative changes can occur days to months following the initial mild injury, and can be further 
complicated by repeated, periodic opening of the blood-brain barrier.57-60 These primed or activated 
neurons and glia undergo subtler forms of cellular damage or distress as they constitutively secrete
exosomes, potentially as a mechanism for clearing cellular debris as they recover. We observed 
that GluR2+ EVs contain the same inflammatory cytokines and markers of cell damage expressed 
by lesioned cells.61 Interestingly, we found UCHL1 – a deubiquitinating enzyme – dominated the
EV pool of brain derived proteins (Fig. 4). As UCHL1 plays a neuroprotective role in brain injury by 
degrading reactive lipids and misfolded proteins,62,63 the high relative abundance of this protein in 
GluR2+ EVs in relation to the other measured brain derived proteins suggests GluR2+EVs may 
serve as a protein clearing system for the damaged or distressed cells of the brain, a role for EVs 
that has already been demonstrated for other EV populations in other contexts and cell types.64

Thus, our machine learning approach combines molecular information from three different
categories: markers from a small number of severely damaged, degenerating cells (plasma brain 
derived markers), markers of broad-scale inflammation, and markers originating from a potentially 
less-damaged population of brain cells (brain derived EVs). By investigating what downstream
molecular targets GluR2+EV-packaged UCHL1 interacts with, such as other components of the 
ubiquitin ligase system and potential degradation targets, we can broaden our understanding of the
role the GluR2+ EV population plays in TBI pathology, and our potential pool of EV-associated
biomarkers.

Our analysis of brain derived EVs was limited to those expressing GluR2+, and by expanding our
approach to mTBI biomarker development – from broadening the EV subtypes that we isolate to
surveil a more comprehensive set of cells affected by TBI, to advancing the technologies with
which we measure and analyze this complex information – we can improve our ability to monitor 
mTBI outcome and identify accurate treatment strategies. Since this work we have extensively 
optimized the TENPO protocol, incorporating sequential wash steps following vesicle capture
which greatly reduce background relative to relying on the chip’s small dead volume to promote 
removal of unbound material.39 Additionally, while 0.1% SDS was the lowest possible concentration
allowing us to detect protein in both assays, we also aim to improve lysis buffer conditions to 
maximize protein yield and the efficacy of biomarker detection. We now use phosphatase/protease
inhibitor cocktail and are investigating the use of non-denaturing reagents, both of which have 
been used in other SIMOA studies of exosome protein expression.35,55 We are also exploring
capturing circulating EVs derived from multiple brain cell types (neurons, astrocytes, microglia, 
endothelial cells etc), which, when combined with advancements in downstream EV cargo 
analysis, maximizes the molecular information at our disposal for these goals. Multianalyte
approaches to disease diagnosis have already shown promise in other fields, resulting in higher 
accuracy in early detection and staging of cancer.65-67 For mTBI, as the technology for isolating
EVs from different populations of distressed-but-not-dying brain cells evolves, we may improve our
ability to identify pathologies like gliosis and brain endothelial cell dysfunction as they occur across
individual patients to better “grade” the TBI. Though we used digital ELISA in this study, a platform 
incompatible with point-of-care diagnostic technologies, widespread efforts to scale down these 
assays into portable platforms makes accessibility and clinical use of molecular diagnostic more 
achievable (Yelleswarapu et al., 2019).68
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Our previous work also points to the promise of miRNA cargo for a more open-ended TBI
assessment than is provided by known protein biomarkers, but combining EV protein cargo 
information with amplifiable EV-associated miRNA results in a wealth of potential opportunities 
to develop more accurate and sensitive mTBI characterization. Advanced approaches to data 
analysis such as machine learning coupled with improved understanding of the pathologic 
roles brain derived EVs play in mTBI progression broadens our potential to combine this
wealth of information into meaningful molecular signatures used to monitor and intervene in 
this insidious neurologic condition.

ExoTENPO assay development for multiple cell types
Building on this previous work, we have now expanded our ExoTENPO pulldown to isolate 
two distinct EV subsets, one subset enriching for EVs that originate from neurons and a 
second subset of EVs that originate from astrocytes. We hypothesized that i. sets of EV
surface markers exist to distinctly enrich for EVs originating from neurons and EVs originating
from astrocytes, ii. the RNA cargo contained in both the neuron and the astrocyte EVs would 
have predictive power for diagnosing and prognosing TBI, iii. the RNA cargo contained within
the neuron and astrocyte derived EVs would be distinct from one another, representing
independent reservoirs of information, iv. by combining the RNA cargo from the neuron and
astrocyte derived EVs, more acurate classifications can be made than is possible with the 
neuron or astrocyte derived EVs on their own.

To this end, we use efficient two-step bio-orthogonal magnetic labeling, to enables the use of
generic nanoparticles, the efficient use of affinity ligands, and amplified magnetic labeling. The
minimal magnetic signature of biological material enables us to use magnetic fields and 
capture exosomes bound to these magnetic particles efficiently and quickly (~10 minutes),
avoiding sample loss and simplifying clinical use. We apply this strategy by labeling 
biomarkers with affinity ligands modified with trans-cyclooctene (TCO) and then MNPs 
modified with 1,2,4,5-tetrazine (Tz). We use super-paramagnetic (d ~ 15 nm) cross-linked iron 
oxide nanoparticle (CLIO). The superparamagnetic iron oxide core is coated with dextran and 
cross-linked and functionalized with primary amine. We have explored targeting using CD63, 
CD81, and CD 9 (pan-exosome), neuronal surface markers including GluR2, L1CAM, NCAM 
and astrocytic markers including GLAST, ASCA-2, and GFAP. We first evaluate these surface 
markers using two distinct cell culture models, one including astrocytes only and the other a
mix of neurons and astrocytes. Using a whole EV ELISA, we quantify the relative binding of 
these antibodies to the EV surfaces. (Fig. 7A,B)

Figure 7: Characterization of GLAST pulldown. A) Enzyme Linked Immunoassay (ELISA)
evaluation of GLAST pulldown surface markers for neuron and astrocyte mixed media and
astrocyte media. GLAST showed the greatest specificity for astrocyte media. B) Scanning 
Electron Microscopy (SEM) micrograph showing EVs from cell culture media
immunomagnetically captured using GLAST+ antibodies on our TENPO chip. Scale: 600 nm.
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To discriminate TBI from control subjects, or to discriminate clinically relevant states of TBI from one 
another, each biomarker should hold the potential to contribute unique information about each
patient’s TBI. To determine if unique biomarkers could be identified in EVs isolated using ExoTENPO
isolated GluR2+ EVs versus ExoTENPO isolated GLAST+ EVs, we performed a sequencing
experiment on N =. 20 patients that experienced mild TBI (CGS mean = 13.7, Positive CT-n =10%) N
and N =. 20 control patients. The average age of the TBI patients was 42 ±18 years old and the N
control group was 29 ± 7 years old. The TBI patients were 50% male and 50% female, and the control 
patients were 71% male and 29% female. The cohorts currently being processed will address the
issue of differences in age and sex between the cohorts. QIAseq miRNA Library Kit (Qiagen) was
used to make the library from the isolated EV miRNA. We used a BioAnalyzer to quantify the RNA 
quantity and quality prior to sequencing. The library was sequenced using a HiSeq 2500 Kit (Illumina,
Next-Generation Sequencing Core, University of Pennsylvania, Philadelphia, PA). A modified version 
of the UPenn SCAP-T RNA-Seq expression pipeline (Fisher, S A., “Safisher/ Ngs.” GitHub, 2017) was 
used for expression quantification by aligning to the hg38 genomes. The minimum fragment length
allowed past the TRIM module was adjusted to 16 bases for miRNA analysis. The number of allowed 
mismatches was capped at one and unannotated splices were prohibited. Expression counts were
normalized by DESeq2 (24) and quantified using VERSE (25), using Gencode 25 and UCSD mm10
gene annotations, combined with MirBase v21 annotations for 3p and 5p miRNA. To generate a 
predictive panel of biomarkers,
each biomarker needs predictive
p o w e r a n d t h e c o n s t i t u e n t
biomarkers should not correlate 
with one another, such that each
biomarker carries a degree of
unique information on the state of
the patient. Pairwise correlation
c o e f fi c i e n t s ( R ) b e t w e e n
biomarkers were calculated and
revealed that individual biomarkers
were generally not well correlated
with one another, and in particular
markers in the GluR2+ EVs were 
less correlated with one another
than with miRNA within the 
GLAST+ group (Fig. 8A). In the 
pilot set of data, several promising 
biomarkers were revealed in both
the GluR2+ EVs and in the
G L A S T + E V s ( F i g . 8 B ) . A n
additional N ~ 50 patients and TBI
samples are still being processed,
and once they are, an EV miRNA
biomarker panel will be selected
and validated using qPCR for phase III 
of this work. For each of these patients 
we also mesure the protein biomarkers
described above. The protein and
miRNA biomarkers will be studied and  
combined together algorithmically in
phase III.

Figure 8: Sequencing analysis of EV RNA cargo using
ExoTENPO multiple cell type pulldown assay. A. A cross
correlogram of miRNA expression in GluR2+ and GLAST+
TENPO isolated EVs . B. A volcano plot for EVs isolated
using GluR2+ TENPO and for EVs isolated using GLAST+
TENPO, plotting p-value for injured vs. uninjured control and
fold change TBI/control for each EV miRNA. Biomarkers with
a fold change > 1 are shown in yellow.
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What opportunities for training and professional development has the project provided?    
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This funding has facilitated the training of several PhD students. Kryshawna Beard, a PhD
student at University of Pennsylvania in Pharmacology, has been trained in microfluidic device 
design, micro/nano fabrication, assay development, cell culture, and in DNA/RNA sequencing. 
Zijian Yang, a PhD student at University of Pennsylvania in Mechanical Engineering, has been
trained in microfluidic device design, micro/nano fabrication, optics, and exosome biology.
Yasemin Atiyas, a PhD student at University of Pennsylvania in Bioengineering, has been
trained in microfluidic device design, micro/nano fabrication, optics, and exosome biology. All
students and post-docs in this study have encouraged to share their work at national and
international meetings, including Neurotrauma, Gordon Conferences, Keystone, BMES, Pitt 
Con, and the International Society of Extracellular Vesicles.



How were the results disseminated to communities of interest?    
 

Describe briefly what you plan to do during the next reporting period to accomplish the goals and 
objectives.   
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All students and post-docs in this study have been encouraged to share their work at national and 
international meetings, and have done so at Neurotrauma, Gordon Conference on Extracellular 
Vesicles, Keystone on exosomes, BMES, Pitt Con, and at meetings of the International Society of 
Extracellular Vesicles.

Kryshawna Beard, David Issadore, and Dave Meaney annually attend Mind Your Brain, an event to 
share research in brain injury with survivors of traumatic brain injury, held annually at UPenn. 

In the next reporting period we will complete the final unfinished tasks in Phase 2, and begin work on 
Phase 3, namely transitioning to work on our pig model for brain injury. 



4. IMPACT: 

What was the impact on the development of the principal discipline(s) of the project?    

What was the impact on other disciplines?    

What was the impact on technology transfer?    
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The accurate diagnosis and clinical management of traumatic brain injury (TBI) is currently limited by the 
lack of accessible molecular biomarkers that reflect the complex pathology of the brain following an injury. 
To address this challenge, we are developing a microchip diagnostic that can characterize TBI more 
comprehensively using the RNA found in brain-derived extracellular vesicles (EVs). Our approach 
measures a panel of EV RNA found in brain derived EVs, processed with machine learning algorithms to 
capture the state of the injured and recovering brain. Our diagnostic combines surface marker-specific 
nanomagnetic isolation of brain-derived EVs, biomarker discovery using RNA sequencing, and machine 
learning processing of the EV miRNA cargo to minimally invasively measure the state of TBI. This 
approach, which can detect signatures of injury that persist across a variety of injury types and individual 
responses to injury, more accurately reflects the heterogeneity of human TBI injury and recovery than 
conventional diagnostics, opening new opportunities to improve treatment of traumatic brain injuries.

In addition to its intended use in traumatic brain injury, the technology and approaches that we are 
developing can have applications in a broad range of medical and biological applications. Because EVs are 
emitted by almost all cells, this approach can be applied to the early diagnosis of cancer, treatment guidance 
for a wide range of diseases and disorders, and for the diagnosis of infectious diseases, for example.



 

What was the impact on society beyond science and technology? 

 

5. CHANGES/PROBLEMS:  

Changes in approach and reasons for change  
Describe any changes in approach during the reporting period and reasons for these changes.  
Remember that significant changes in objectives and scope require prior approval of the agency. 
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The research associated with this grant has lead to the formation of a spin-out company from our lab, Chip 
Diagnostics. This company has secured venture capital funding and has licensed intellectual property from 
University of Pennsylvania.

This research is poised to fundamentally change the way that traumatic brain injuries are clinically 
managed. For the millions of individuals, and their loved ones, who are afflicted annually by TBI and its 
longterm consequences, this research has the potential to provide clarity to them and their healthcare 
providers on their injury, their recovery, and potential pathways towards recovery.

There were ongoing delays in our research associated with the COVID related shutdown of our lab in the 
Spring of 2020. Our lab is now operational and we have been able to somewhat get back onto schedule, 
having finished the sequencing experiments of phase 1 and having made significant progress in 
accomplishing the aims of phase 2. However, in addition to the delays from our lab's shutdown and the 
delays in core facilities processing our samples, we have also had issues with hiring. Due to the pandemic, 
we have not been able to hire a post-doctoral fellow onto this project, as planned, and instead the work has 
been taken on by a team of research fellows. We are actively hiring, but because of this delay the work is 
almost a full year behind schedule. We believe that it is likely that we will apply for a no cost extension next 
year so that we can build on our promising initial results and complete this important work.



Actual or anticipated problems or delays and actions or plans to resolve them 

 

Changes that had a significant impact on expenditures 

 

Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or 
select agents 

Significant changes in use or care of human subjects 

 

Significant changes in use or care of vertebrate animals 
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One of the students working on this project (Yasemin Atiyas) received a Department of Defense NDSEG 
fellowship, which covers her stipend and her tuition. We have been continually delayed in hiring a postdoc 
and have had several promising candidates fall through, in some cases related to COVID. We are actively 
hiring to account for these changes to our budgeted spending.

There were ongoing delays in our research associated with the COVID related shutdown of our lab in the 
Spring of 2020. In addition to the delays from our lab's shutdown and the delays in core facilities processing 
our samples, we have also had issues with hiring. Due to COVID, we have been delayed in hiring a post-
doctoral fellow onto this project, as planned, and instead the work has been taken on by a team of research 
fellows. We are still attempting to hire a postdoc, but because of this delay the work is almost a full year 
behind schedule. We believe that it is likely that we will apply for a no cost extension next year so that we can 
build on our promising initial results and complete this important work.

Nothing to report.



Significant changes in use of biohazards and/or select agents 

6. PRODUCTS:  

• Publications, conference papers, and presentations

Journal publications.  
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Nothing to report.

J. Wu, S. Yadavali, D. Lee#, D. Issadore#, Scaling up the throughput of microfluidic
droplet-based materials synthesis: A review of recent progress and outlook, In Press,
2021, federal support acknowledged.

K. Beard , Z. Yang  , M. Haber, M. Flamholz , R. Diaz-Arrastia, D. Sandsmark, D. F.
Meaney, D. Issadore, Extracellular vesicles as distinct biomarker reservoirs for mild
traumatic brain injury diagnosis, In Press, 2021, federal support acknowledged.

N. Shah, V. Iyer, Z. Gao, Z. Zhang, V. Yelleswarapu, F. Aflatouni, A.T.C. Johnson, and D.
Issadore, Graphene micro-Hall sensors for the In-flow detection of rare cells, Submitted,
2021, federal support acknowledged.

D. Issadore, V. Iyer, Z. Yang, J. Ko, R. Weissleder, Advancing Microfluidic Diagnostic
Chips for Clinical Use, Submitted, 2021, federal support acknowledged.

J. Y., Kim , J. Eberwine , R. C. Anafi , S. Brem, M. Bucan, S. A. Fisher, M. S. Grady, A.
E. Herr, D. Issadore, D. Lee, S. S. Rubakhin , J. Y. Sul , J. V. Sweedler, J. Wolf, K. Zaret,
J. Zou, Beyond Single Cells: Subcellular ‘Omics Toward a Theory of Cell Type, In Press,
2021, federal support acknowledged.

S. J. Shepherd, C. C. Warzecha, R. El-Mayta, S. Yadavali , L. Wang , J. M. Wilson, D. 
Issadore#, Michael J. Mitchell#, Microfluidic platform for precise throughput-invariant 
RNA lipid nanoparticle formulations, In Review, 2020, federal support acknowledged. 

S.J. Shepherd, D. Issadore#, M. J. Mitchell#, Microfluidic formulation of nanoparticles 
for biomedical applications, Biomaterials, https://doi.org/10.1016/
j.biomaterials.2021.120826, 2021, federal support acknowledged.

M.J. Siedlik, Z. Yang, P. S. Kadam, J. Eberwine, and D. Issadore, Micro and nano devices
for studying subcellular biology, Small,  doi: 10.1002/smll.202005793, 2021, federal
support acknowledged.
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Y. Lan, A. Wu, S. Han, S. Yadavali, D. Issadore, K.J. Stebe, D. Lee, Scalable Synthesis of
Janus Particles with High Naturality,  ACS Sustainable Chemistry & Engineering, https://
doi.org/10.1021/acssuschemeng.0c04929, 2020, federal support acknowledged.

S. Muraoka, A. M. DeLeo, H. Tatebe, Z. Yang, Y. K. Wang, K. Yukawa-Takamatsu, Y.
You , S. Ikezu , T. Tokuda , D. Issadore , R. A. Stern, T. Ikezu, Proteomic Profiling of
Extracellular Vesicles Separated from Plasma of Former National Football League
Players at Risk for Chronic Traumatic Encephalopathy, Aging and Disease, doi.org/
10.14336/AD.2020.0908, 2020, federal support acknowledged.

K. Beard, D. F. Meaney, D. Issadore, Clinical applications of extracellular vesicles in the
diagnosis and treatment of traumatic brain injury, Journal of Neurotrauma, doi: 10.1089/
neu.2020.6990, 2020, federal support acknowledged.
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Hogan, Z. Ruan,Y. You, Y. K.Wang, M. Medalla, S. Ikezu, W. Xia1, S. Gorantla, H. E.
Gendelman, D. Issadore, J. Zaia, T. Ikezu, Proteomic Profiling and Biological
Characterization of Extracellular Vesicles Isolated from Human Alzheimer’s Disease
Brain Tissues, Alzheimer's & Dementia: The Journal of the Alzheimer's Association,
doi.org/10.1002/alz.12089, 2020, federal support acknowledged.

H. Shen, T. Liu, J. Cui, P. Borole, A. Benjamin, K. Kording, D. Issadore, A Web-based
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https://doi.org/10.1039/D0LC00096E, 2020, federal support acknowledged.

Z. Yang, M. J. LaRiviere, J. Ko, J. Till, T. Christensen, S. Yee, T. Black, K. Tien, N.
Bhagwat, A. Lin, A. Adallah, M. H. O’Hara, C. M. Vollmer, B. W. Katona, B. Z. Stanger,
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Books or other non-periodical, one-time publications.  

 

Other publications, conference papers and presentations. 

• Website(s) or other Internet site(s)
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Nothing to report

Nothing to report.

Issadore Lab Website: http://issadore.seas.upenn.edu/



• Technologies or techniques
 

 

• Inventions, patent applications, and/or licenses
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The Track Etched Magnetic Nanopopre (TENPO) technology developed as part of this grant 
has been patented, and is now being commercialized by a venture backed spin-out company 
from our lab Chip Diagnostics.

D. Issadore, M. Muluneh, Magnetic Apparatus and Methods for Analyzing the Output of
Microfluidic Devices, US Patent Issued - 10,473,590, 2019. Licensed to Chip Diagnostics.

D. Issadore, M. Muluneh, Magnetic Separation Filters and Microfluidic Devices, US Patent
Issued - 10,335, 789, 2019. Licensed to Chip Diagnostics.

D. Issadore, M. Muluneh, Magnetic Apparatus and Method for Manufacturing a Microfluidic
Device Filters and Microfluidic Devices, US Patent Issued - 10,632,462, 2020. Licensed to
Chip Diagnostics.

E. Carpenter, D. Issadore, B. Stanger, Z. Yang, A Blood Based Multi-Analye Liquid Biopsy
Approach for Diagnosis of Pancreatic Adenocarcinoma and Detection of Occult Meastases,
Patent Filed - 62/982,254, 2020. Licensed to Chip Diagnostics.

D. Issadore, D. Lee, S. Yadavali, Silicon Chip Having Multi-Zone Through Silicon Vias and
Method of Manufacturing The Same, Provisional Patent Filed - PCT/US2020/015684, 2020.

D. Issadore, D. Lee, S. Yadavali, Large Scale Microdroplet Generation Apparatus and Methods
of Manufacturing Thereof, Patent Filed - 16/062,724, 2020.



• Other Products
 

7. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS

What individuals have worked on the project? 
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Nothing to report.
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Name:  David Issadore 
Project Role: PI 
Researcher Identifier (e.g. ORCID ID): 0000-0002-5461-8653 
Nearest person month worked:   2.5 
Contribution to Project: Prof. Issadore has contributed to overseeing all aspects of 

the proposal, but has particularly focused on the 
technology development aspects.. 

Name:      Dave Meaney 
Project Role:      Co-PI 
Researcher Identifier (e.g. ORCID ID): 0000-0002-0954-4122 
Nearest person month worked:   1 
Contribution to Project: Prof. Meaney has contributed to overseeing all aspects of 

the proposal, but has particularly focused on the biomarker 
discovery and porcine model development aspects. 

Name:      Ramon Diaz-Arrastia 
Project Role:      Co-PI 
Researcher Identifier (e.g. ORCID ID): 0000-0001-6051-3594 
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Contribution to Project: Prof. Diaz-Arrastia has contributed to overseeing all 
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the biomarker discovery and the clinical translation 
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Name:      Danielle Sandsmark 
Project Role:      Co-I 
Researcher Identifier (e.g. ORCID ID): 0000-0002-1586-6961 
Nearest person month worked:   1.8 
Contribution to Project: Prof. Sandsmark has contributed to overseeing all aspects 

of the proposal, but has particularly focused on n the 
biomarker discovery and the clinical translation aspects. 
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Contribution to Project: Yasemin has contributed mainly to the fluorescence 

droplet detection aspects of this work. 
Funding Support: Yasemin is now supported by an NDSEG fellowship 

Name:  Hanfei Shen 
Project Role:  Graduate Student 
Researcher Identifier (e.g. ORCID ID): NA 
Nearest person month worked:   6 
Contribution to Project: Hanfei has contributed mainly to the extracellular 

vesicle isolation aspects of this project. 

Name:      Stephanie Yang 
Project Role:      Graduate Student 
Researcher Identifier (e.g. ORCID ID): NA 
Nearest person month worked:   12 
Contribution to Project: Stephanie has contributed mainly to the fluorescence 

droplet detection and droplet PCR aspects of this work. 

Name:      Zijian Yang 
Project Role:      Graduate Student 
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