

Firmware Management Best Practices

Guide for Energy Infrastructure

Embedded Control Devices

< Ken Masica, Systems Engineer, MSEE >

Written July 2018, Updated August 2020

Sponsored by the Department of Defense ESTCP Installation

Energy and Water Program Area, Cybersecure Connectivity

for Energy System Components and Military Installation

Energy Infrastructure Topic #2, Project EW-201608

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government

nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use

would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or

Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United

States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear

Security Administration under Contract DE-AC52-07NA27344.

REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

2. REPORT TYPE

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

8. PERFORMING ORGANIZATION

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

13. SUPPLEMENTARY NOTES

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

12. DISTRIBUTION/AVAILABILITY STATEMENT

19b. TELEPHONE NUMBER (Include area code)

5d. PROJECT NUMBER
EW-201608

REPORT NUMBER

EW-201608

EW-201608

10. SPONSOR/MONITOR'S ACRONYM(S)
ESTCP

UNCLASS
UNCLASS UNCLASS UNCLASS

19a. NAME OF RESPONSIBLE PERSON
Daniel Quinlan

6. AUTHOR(S)
Ken Masica
Daniel Quinlan

5a. CONTRACT NUMBER

3. DATES COVERED (From - To)

925-423-2668

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Lawrence Livermore National Laboratory
7000 East Ave L-495
Livermore, CA 94550

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

1. REPORT DATE (DD-MM-YYYY)
31/08/2020 ESTCP Best Practices Guide

4. TITLE AND SUBTITLE

Firmware Management Best Practices Guide for Energy Infrastructure Embedded Control
Devices

21

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Environmental Security Technology Certification Program
4800 Mark Center Drive, Suite 16F16
Alexandria, VA 22350-3605

14. ABSTRACT
components of an energy infrastructure system. Such systems are considered an aspect of Utility Monitoring and Control Systems (UMCS) in the DOD community, but the
practices presented in this report are equally applicable to the civilian sector as well as the national critical infrastructure systems identified by the Department of Homeland
Security that utilize embedded devices for control and monitoring purposes. The intended audience are vendors of embedded devices and firmware as well as the military bases
that receive and apply updates of the firmware to their infrastructure. The importance of secure firmware management practices by both vendors and customers as well as the
definition and operation of firmware within an embedded control device are provided initially for context and background. Secure development and distribution methods of vendor
firmware is then addressed. The report next provides best practices for customer storage and organization of firmware in addition to the performance of security checks for
verification purposes. Application of updates to embedded devices and retention practices of firmware are discussed as well. Finally, a section on how DOD detects and responds
to malicious firmware is included as an example of how best practices can be integrated with critical infrastructure monitoring. References and an Appendix describing an
example best practices firmware update process of for an electrical power distribution relay conclude the paper.
15. SUBJECT TERMS
Firmware Management, Energy Infrastructure, Embedded Control Devices, Cyber-Security Integrity, Electric Grid Facilities Management

 This paper identifies a set of best practices regarding firmware management and security for embedded control devices that are critical

Abstract

This paper identifies a set of best practices regarding firmware management and security for

embedded control devices that are critical components of an energy infrastructure system. Such

systems are considered an aspect of Utility Monitoring and Control Systems (UMCS) in the DOD

community, but the practices presented in this report are equally applicable to the civilian sector as

well as the national critical infrastructure systems identified by the Department of Homeland

Security that utilize embedded devices for control and monitoring purposes. The intended audience

are vendors of embedded devices and firmware as well as the military bases that receive and apply

updates of the firmware to their infrastructure. The importance of secure firmware management

practices by both vendors and customers as well as the definition and operation of firmware within

an embedded control device are provided initially for context and background. Secure development

and distribution methods of vendor firmware is then addressed. The report next provides best

practices for customer storage and organization of firmware in addition to the performance of

security checks for verification purposes. Application of updates to embedded devices and retention

practices of firmware are discussed as well. Finally, a section on how DOD detects and responds to

malicious firmware is included as an example of how best practices can be integrated with critical

infrastructure monitoring. References and an Appendix describing an example best practices

firmware update process of for an electrical power distribution relay conclude the paper.

Author

Ken Masica, MSEE, is an Electrical Engineer in the Systems Engineering Group at Lawrence Livermore

National Laboratory (LLNL) specializing in the areas of secure network and communication system

design, control system security analysis and hardening, defensible system architecture development,

and vulnerability & risk assessment of U.S. critical infrastructure. He has thirty years of experience as

a systems engineer, project manager, and principal investigator analyzing, implementing, and

managing solutions for a wide range of systems and technologies including secure remote access and

monitoring systems, smart metering infrastructures, building automation systems, SCADA control

systems, counter terrorism response systems, secure wireless applications, high assurance

communications, and national & international wide-area networks to support numerous enterprise,

industrial, scientific, and defense related missions. He has led cyber security vulnerability

assessments and system hardening of electrical power systems, nuclear reactors, dams and hydro-

electric facilities, air traffic control systems, information systems, government facilities, and U.S.

nuclear weapon material access control and protection systems. Ken also supported numerous

programs that upgraded nuclear material security systems in the Russian Federation and served as a

U.S.-Russian Nuclear Reduction Treaty Inspector. He actively publishes in trade magazines and

journals in multiple industry sectors and presently serves on International Society of Automation

(ISA) committees developing security standards for industrial control systems (ICS) and supervisory

control systems (SCADA). Ken can be reached at Masica@LLNL.gov

Table of Contents

I. Introduction .. 1

II. Supply Chain Attacks and the Need for Firmware Best Practices .. 2

III. Embedded Device Operation and Firmware Overview .. 3

IV. Firmware Development Best Practices ... 4

V. Firmware Distribution Best Practices ... 6

VI. Firmware Storage and Organization Best Practices ... 7

VII. Firmware Security Checking Best Practices .. 9

VIII. Firmware Update Application Best Practices ... 12

IX. Firmware Retention Best Practices ... 13

X. DOD Firmware Monitoring ... 14

XI. Conclusion ... 14

XII. References .. 15

XIII. Appendix: Example Best Practice Firmware Update for an Electrical Power Relay 16

Ken Masica Page 1 of 17 LLNL-TR-764326

I. Introduction

This paper identifies a set of best practices regarding firmware management and security for

Department of Defense (DOD) energy infrastructure systems and the embedded control devices

that are critical components of those systems. The intended audience are the vendors that

develop and distribute the firmware as well as the military bases that receive, verify, apply, and

retain firmware updates. Elements of the best practice recommendations also include use of the

firmware cyber assessment tools developed by Lawrence Livermore National Laboratory (LLNL)

and funded by the DOD Environmental Security Technology Certification Program (ESTCP).

Although this paper addresses the DOD environment, the recommended practices are also

applicable to energy infrastructure systems operating in the civilian sector such as those at

electric utilities, industrial plants, and commercial facilities.

Firmware management and security best practices should be included in the existing Cyber

Security Management System (CSMS) for the base as well as incorporated into the control system

specific Security Plans that should exist for the energy infrastructure systems. There are

numerous systems that can comprise an energy infrastructure at a military base, and they are

generally considered to be part of a more general-purpose Utility Monitoring and Control System

(UMCS). Energy related components of a base UMCS, for example, can include Power Generation

Systems (PGS), Power Distribution Systems (PDS), Building Automation Systems (BAS) and

Advanced Metering Infrastructures (AMI). Some bases may also have traditional generator-based

auxiliary power systems for emergency reserve during utility outages for critical loads while

others may be rolling out micro-grids and implementing islanding practices for more self-

sufficient operation during power outages and cyber-attacks. This report, therefore, will provide

general guidance that is intended to be applicable to all types of energy infrastructure firmware

while recognizing the wide variety of embedded devices that exist as well as the wide variety of

security practices employed by vendors during firmware development and distribution to

customers.

This paper begins by addressing the need for firmware security and management best practices

to reduce risk associated with potential cyber-attack of embedded devices. A foundational

section then provides a definition of firmware and how it operates within the context of an

embedded control device. Following sections then address best practices for development and

distribution of firmware by vendors. Vendors of commercial firmware vary widely in the number

and type of security features they use during development as well as how they provide the

firmware to their customers. Some vendors, for example, make their firmware updates available

openly on the Internet for download by any user while others require registered customer

product purchases or web accounts that are vetted for users to access their firmware. Therefore,

Ken Masica Page 2 of 17 LLNL-TR-764326

a representative set of best practices by vendors will be included in this report and thus provide a

list of security features to consider when choosing a vendor or discussing the topic of firmware

security with current or future vendors. Additional sections of the paper then identify best

practices for bases regarding the storage, verification, installation, and retention of firmware

updates received by vendors. An overview of how DOD detects and responds to malicious

firmware is included as an example of how best practices can be integrated with critical

infrastructure monitoring. The final sections include a summary conclusion, technical references,

and an appendix that provides a best practices example of how an electrical relay embedded

device is updated with new firmware.

II. Supply Chain Attacks and the Need for Firmware Best Practices

Adopting and incorporating best practices for management of embedded device firmware is

important given the potential devastation that a firmware supply chain cyber-attack could entail.

Because firmware is distributed as machine code, it is a form of a binary program that is in the

format of a loadable and executable file on the microprocessor that is embedded in the energy

infrastructure control device. Because it is assembled into the instruction set of the embedded

microprocessor in the form of machine code, detecting a potentially devasting firmware update

tainted with a targeted malware payload is difficult and inexact. Stuxnet is perhaps the most

notorious and publicly known supply chain malware attack to date. According to open source

studies, one of the Stuxnet malware payloads appears to have been an example of a man-in-the-

middle form of attack uniquely applied to the firmware running on the Programmable Logic

Controller (PLC) embedded control device for the Uranium enrichment cascade protection

system at the target plant.

More generally, firmware security best practices are important for military base energy

infrastructure systems for continuity of operation and assurance of mission execution. For

electrical power distribution systems, applying best practices for managing firmware running

on critical equipment such as protective relays are essential to include in a comprehensive

base CSMS given their vital function of circuit breaker operation and the consequences of

potential unauthorized/unintended open breaker activity and disruption of power availability.

Likewise, Direct Digital Control (DDC) building automation systems now include application

specific embedded microprocessor-based controllers which execute the logic that monitors

and controls HVAC (Heating, Ventilation, Air Conditioning) equipment such as boilers, chillers,

pumps, and air handling units to control temperature, humidity, and pressure within defined

spaces inside both general and specialized facilities which may have critical requirements for

essential personnel activity, material and weapons storage, and warfighting equipment/asset

support, operations, & maintenance. For specialized energy infrastructure systems such as

Ken Masica Page 3 of 17 LLNL-TR-764326

these, the embedded control devices that are elements of the power distribution and support

facility operation provide critical system functionality and therefore the practice of firmware

security management at military bases becomes an essential element of mission assurance.

III. Embedded Device Operation and Firmware Overview

This section of the paper will provide an overview of embedded device operation and

describe the types and role of firmware found on such devices (for example a controller for a

BAS found in a mechanical room, a protective relay found in an electrical substation, or a PLC

found in the burner management system of a boiler in a central utility plant). It will therefore

provide a conceptual foundation for the content presented in the remainder of this paper. For

simplicity, the term controller will be used in this paper to represent the vast array of devices

that have an embedded microprocessor that executes programmable logic for control and

monitoring of energy and other critical infrastructure systems.

In general, a controller will consist of hardware, firmware, and software (i.e. control logic).

Controller hardware will consist of one or more circuit boards that contain the processor,

memory, I/O channels, communication ports, and an assortment of other discrete and

integrated circuit components that are generally in a sealed enclosure with a fixed

configuration of components.

Controller firmware for embedded devices provides the low-level management of the device

specific hardware. Because of the wide variety and complexity of controllers, it can either

provide a complete and standardized Real-Time Operating System (RTOS) environment for

processor and process management of more complex microprocessor-based devices that

performing multiple functions and services or for less complex devices it can act as a more

simplified but complete management environment that performs all control, monitoring and

data manipulation functions written specifically for the device. Note that in this paper, we are

considering controllers with that are powerful and complex enough to warrant an RTOS.

The two primary types of firmware found on controllers are:

1) Boot Loader Firmware: A small piece of machine code that executes on the embedded

microprocessor after the POST (Power-On-Self-Test) of the hardware and loads the main

image RTOS firmware.

2) Main Image Firmware: The larger machine code image that is loaded into the controller

RAM memory by the boot loader are the device drivers and RTOS that perform the primary

management functions of the controller including the low-level hardware input/output

(I/O) processing as well as the higher-level system functions such as embedded processor

management, task scheduling, file system management, etc.

Ken Masica Page 4 of 17 LLNL-TR-764326

Controller software are control programs (often referred to as control logic) that are

scheduled and loaded by the RTOS firmware and executed on the embedded microprocessor

hardware to perform a specific set of monitoring and control actions such as determining

when a protective relay should trip a circuit breaker or when a building automation controller

should modulate control valve positions or vary fan motor speed to ensure critical

temperature, pressure, and ventilation space requirements. The RTOS firmware will schedule

and the processor will execute the control logic that is developed in an external IDE

(Integrated Development Environment) and downloaded to the controller hardware for

storage and execution. Controller software is the equivalent of a high- level language in the

computer world but in the control systems world the type of logic programming that is

developed takes the form of interconnected micro-blocks, ladder diagrams, structured text,

and instruction lists. (These are the four types defined by the IEC-61131 Open PLC controller

standard.) Although once downloaded to the controller, the control logic is stored in non-

volatile memory but is not generally considered firmware. During firmware updates, for

example, control code will not change but the main and/or boot image will be upgraded.

A typical start-up and execution of a controller would therefore consist of the following steps:

1) The Controller hardware performs POST (Power-On-Self-Test) upon start-up.

2) The Boot Loader firmware is loaded onto the embedded processor for execution.

3) The Boot Loader loads the RTOS onto the embedded processor to manage the controller.

4) The RTOS schedules, loads, and executes the control logic on the embedded

microprocessor to perform energy infrastructure monitoring and process control

functions.

There are many traditional operating system functions that an RTOS will perform to manage

the controller hardware, from processor and memory management to providing a network

protocol stack and a file system structure. However, a key distinguishing feature of an RTOS is

a micro-kernel structure that can prioritize, process, and react to external I/O and as it comes

in, typically without buffer delay, and schedule real-time control software execution using a

strict time-bound approach which has well-defined, fixed time constraints.

IV. Firmware Development Best Practices

Although the development of secure firmware and software for embedded control devices is

beyond the scope of this paper, some basic best practice resources and basic principles will

be identified so that customers of firmware updates have a conceptual understanding and

awareness of the importance of secure code development and what potential questions to

ask or what resources to consult to mitigate potential firmware coding flaws and bugs that

Ken Masica Page 5 of 17 LLNL-TR-764326

can pose security threats. Additionally, customers can ask their supplier(s) what secure coding

best practices, tools, and guidelines they employ. They can also inquire if their product is

certified by an independent, third-party security testing organization.

Although more numerous in the IT world, organizations that provide operational technology

(OT) secure coding guidance are more limited currently. The trend will hopefully change with

the emergence of the Internet of Things (IOT), but presently the category of secure coding,

development, and production of embedded control devices has not penetrated the large-

scale production electrical power, building automation, or industrial control system

industries. IOT systems in fact are presently notorious for their existing vulnerabilities and

lack of the most basic security features. By contrast, it is imperative that production control

system software for embedded devices undergo a rigorous validation and verification process

to achieve functional, secure, reliable, and deterministic execution.

One example of a reference for embedded control system secure software and device

development and certification is the ISA Security Compliance Institute organization

(isasecure.org). They provide a lifecycle reference model as well as certify products that meet

their criteria for secure control system device development based on the ISA99/IEC62443 set

of industrial automation and control system standards. Below is a screen shot from the ISA

Secure site explaining the certification services they provide:

Ken Masica Page 6 of 17 LLNL-TR-764326

Below are some best practices regarding control system software and device development for

control system design that asset owners and customers should be aware of and can inquire

with their supplier regarding adoption:

1) Identify third-party standards organizations that provide standards, best practice

guidance, tools, and certification services for secure control system development.

2) Adopt a Security Lifecycle Assurance Approach.

3) Utilize open source RTOS, library, IDE, and tools for development.

4) Limit use of third-party binaries.

5) Keep complexity to a minimum.

6) Reduce remote/distributed code execution as much as possible to limit resulting system

traffic flows that increase monitoring and security requirements and resources.

Vendors that follow the above general principles as well as the more specific guidance for

secure control system software and device development and certification at sites such as the

ISA Security Compliance Institute organization can provide a more comprehensive, secure,

and least complexity approach to firmware development and implementation of embedded

control system devices.

V. Firmware Distribution Best Practices

Vendors provide firmware updates to their customers using a wide variety of methods

ranging from simply placing them on the Internet for download to shipping them on CD to

registered product customers with current contact information based on confirmation

requests from the customer. This section is not intended to cover all the possible ways in

which controller firmware can be distributed but rather identify some current best practices

for delivery and verification.

Below is an example secure firmware distribution and verification process that represents an

ideal approach:

1) Availability to current, registered customers only that own the corresponding control

devices for which the firmware update is available

2) Positive acknowledgement from current customer to verify contact information and

interest in receiving the firmware update

3) Shipment via Out-of-Band (OOB) delivery on CD to the current customer contact

information delivery address

Ken Masica Page 7 of 17 LLNL-TR-764326

4) Availability of a hash of the firmware should be provided to the customer so they can

verify independently the integrity of the firmware update

5) Digitally signed firmware that is verified for integrity by the controller during the update

process

6) Encrypted firmware that provides maximum security during the distribution, storage, and

retention periods before and after the firmware is loaded on the controller

Note that if an online delivery model is used instead, the download process should still

include all the other best practices outlined above in addition to the following security

measures:

1) Customer registration code should be issued for firmware distribution website access

2) Vendor web site should be password protected using strong password policies (i.e.

complexity and aging requirements enforced) to authenticate the customer

3) Connection to the web site should be encrypted (e.g. TLS 1.2 or greater)

4) Customer access based on being a current, validated product customer

5) Customer can only download firmware for products they have purchased

6) Provide a hash to verify the integrity of the downloaded firmware

Although an adversary can always purchase the product and obtain the firmware, the

infrastructure provider can attempt to vet the request before issuing the registration code and

login credential (e.g. via sales representative or channel partner). Whether the firmware vendor

uses the OOB delivery on CD method or an online delivery method, the firmware should ideally

be digitally signed for integrity during the update process and protected via encryption during

the storage and retention phases at the customer site. DOD customers, at a minimum, should

only use firmware from vendors that require user authentication and provide a hash. (See the

References section for links to sites that explain hashing as well as provide a free hash checking

tool.) DHS is developing an Acquisition Guide with these requirements and NIST SP 800-

161 Supply Chain also requires this.

VI. Firmware Storage and Organization Best Practices

After a firmware update is obtained, the customer should ideally employ a set of best

practices to ensure the secure, synchronized storage of the updates. Doing so will allow the

required version of updates to be available if a roll-back or system restoration is required and

prevent multiple versions of the firmware from becoming distributed across multiple

desktops of engineers and laptops of technicians in a decentralized and unsynchronized

manner.

Ken Masica Page 8 of 17 LLNL-TR-764326

Ideally, all firmware updates should be stored in a centralized and secure location. This will

provide a single repository to allow version control to be implemented and the firmware to

be stored securely in single location. The single location can be a set of folders on a file server,

a formal repository on network server, or a formal database server if the vendor or third-

party tools available support these features.

For firmware updates of electrical relays, Schweitzer Engineering Laboratories (SEL) provides

a software tool called AcSELerator that can be used to manage and apply firmware updates

and centrally store the associated device configuration settings and parameters associated

with the embedded device in a centralized location. When the firmware is stored in the same

location as the settings, a single repository then exists for the production embedded device

management including firmware and device parameters for the electrical relays. Shown

below are two example screens for the AcSELerator Database Manager that indicates how a

centralized Master file location can be specified. Although the example shows the Master

repository location as a local filename on a Windows computer hard drive, the filename

specification can use a server hostname in the file name instead to make the repository

available over the network. It could also specify a database server name along with a

database port number, in which case the central repository can be implemented as a client-

server database system on the production network in order to make embedded device

configuration files such as those for an electrical relay available in a database storage and

distribution format. Likewise, the firmware stored on the same client-server system can be

shared securely across the enterprise along with the settings for access by Engineers

performing firmware updates on electrical relays to form a single location approach.

The Engineers and/or Technicians that require access to the firmware for performing security

testing or performing an update can then download a copy of the firmware from the server to

work with and then delete the local, temporary copy when the testing or updating process is

complete since the master copy resides on the server filesystem. There may also be a team of

Ken Masica Page 9 of 17 LLNL-TR-764326

Cyber Analysts that work with the Engineering Team to the perform cyber security checks on

the target firmware that may also wish to access temporary copies of the firmware using such

procedures. As will be described in the next section of this paper, such Cyber Analysts may

also want to analyze the embedded device firmware updates using the suite of Binary

Analysis Tools (BAT) being developed by LLNL as part of the DOD funded ESTCP Project.

An alternative, general approach is to use a general, third-party or public domain Binary

Repository Manager tool that can be purchased or downloaded to implement a structured,

centralized approach to firmware update organization and synchronization for all types of

firmware. An example third-party binary repository is Artifactory which gives engineers and

technicians the ability to manage a matrix of binaries such as firmware updates.

Lastly, note that if there are separate test and/or development networks they should have a

separate firmware management database from the production network or alternatively have

an internal security zone designated for the protection a single database using the ISA/IEC

Zone and Conduit model for defining the minimum required traffic flows to support access to

the dedicated firmware management database security zone from other security zones

defined within the Operational Technology (OT) network infrastructure.

VII. Firmware Security Checking Best Practices

As noted in the previous section on the importance of firmware security, it is difficult to

analyze firmware for security vulnerabilities because it is provided in the form of a binary file

that is assembled into the machine code specific to the instruction set of the microprocessor

of the control device. For example, a PowerPC microprocessor could be embedded in the

most powerful controller in a BAS controller product line. The term “powerful” in this context

is defined by support for a large number of digital & analog physical I/O channels, a large

number of control programs that can execute simultaneously, support for all the industry

standard BACnet fieldbus protocols, and a large capacity for equipment and process trend

data sampling and storage. Other embedded processors such as the Intel Atom and ARM

Cortex can serve as microprocessors for high-end controllers as well.

A basic security check that can be performed by end users applying a firmware update is to

perform a file hash. Hashing is cryptographic method of performing file verification by

transforming the file into a shorter fixed length string of characters. The vendor of the

firmware update file must first perform and then make available the hash string of the file.

Then the customer can also perform a hash of the file using freely available or built-in

operating system hash checking tools to verify the vendor hash. The two independent file

hashes should match for the security check to be successful. Although the hash string of a file

Ken Masica Page 10 of 17 LLNL-TR-764326

does not uniquely identify it, it is a form of cryptographic integrity that makes it very unlikely

that two different files will have the same hash value.

Hash checking is a fast and easy process provided that the vendor publishes their firmware

file hash values. The Windows Operating System itself provides a built-in hashing tool

accessible from the PowerShell for users comfortable working at the command line. Simply

press the Windows Key or click on the Windows Start icon, then type PowerShell into the run

command box. After the PowerShell screen opens, type “get-file hash FILEPATH” at the

command prompt. By default, the SHA256 result will be shown, but other hashing algorithms

can be specified.

An example of a free and easy to use graphical hash checking application is Hash Generator. It

is a comprehensive tool that displays numerous hashing algorithm results and can check files

as well as text. See the Reference section of this paper for the download location. Shown

below is an example screenshot.

Ken Masica Page 11 of 17 LLNL-TR-764326

A more sophisticated and complementary set of security tools were developed during the

DOD funded ESTCP Project. LLNL developed a suite of BAT software tools specifically for

automated cyber-risk analysis of firmware binaries. These tools are freely available and can

be used in an off-line manner to perform security checking of the firmware updates received

from embedded control device suppliers. Below are capsule descriptions of the BAT tools.

1) BAT1: This tool is used to detect the presence of anti-disassembly technologies, often

correlated to advanced forms of malware.

2) BAT2: This tool is used to analyze differences between two firmware releases to examine

changes that could include malicious code.

3) BAT3: This tool analyses firmware for the presence of unused code, often a mechanism to

obscure the behavior and complicate the analysis of both source code and binaries.

4) BAT4: This tool analyses firmware for “backdoor” exploits and the inputs required to exploit

them.

5) BAT5: This tool evaluates specific paths to protected resources in the firmware, which aids

reverse-engineering analysts find paths needed protection.

Shown below is an example screen from the BAT #1 tool.

Ken Masica Page 12 of 17 LLNL-TR-764326

For a more complete description of the development, evaluation, and usage of the BAT tools, see

Section XII for references to the study completed by the Boeing Research & Technology (BR&T)

group as well as the user guide created by members of the ESTCP Project Team.

VIII. Firmware Update Application Best Practices

The firmware update process will vary widely depending on the type of embedded controller, the

vendor or reseller that supplies the controller, and the tools and corresponding procedures used

to download the update into the controller. Therefore, this section will provide some general

guidelines, with emphasis on integrating the best practices outlined previously regarding

integrating security and reliability steps into the process such as verification of the firmware files,

hashing of the file, security checking with the BAT tools, and using vendor supplied or third-party

tools for a central repository for storing and organizing the firmware update files.

It is important to realize that the embedded device normally performs a restart operation to

load and use the new firmware. Therefore, personnel must prepare for connected equipment

to temporarily lose their I/O control and/or monitoring signal. Mitigations include putting

equipment “in-hand” to temporarily use internal manual setpoint control such as a chiller in a

building automation system or a PLC in Run vs Remote mode or switching to a redundant

feeder and associated protection equipment when updating a relay if available.

In general, it is ideal to integrate embedded control equipment firmware updates with a

formal Preventative Maintenance (PM) program for the control or electrical power system. A

PM program entails regular, periodic, planned, and scheduled equipment maintenance

procedures such as replacing bearings on motors or breaker maintenance in a substation. By

integrating firmware updates and other control system related operational technology (OT)

updates such as HMI software and operator workstation hardware, automation system

software, automation and operating system patches, and vendor tools it ensures the

supporting OT technologies that provide access to the control system and embedded control

devices for development, configuration, updating, operation, and system monitoring are also

kept current in addition to the control system equipment such as motors, chillers, boilers, air

handling units, transformers, switches, circuit breakers, etc. being maintained during

regularly scheduled and performed PM’s .

Some best practices to keep in mind during the firmware update process:

1) Perform the firmware update in a test/development environment first if possible before

applying the update on the production control or power system. (See the References

section for a link to the ESTCP Test and Development Environment.)

Ken Masica Page 13 of 17 LLNL-TR-764326

2) Use a role-based approach to planning and executing the firmware update process. (For

example, Protection Engineer, Power System Technician, and Cyber Analyst.)

3) Develop a Firmware Update Implementation and Test Plan that includes all steps of the

update from security checking to application to post installation testing and

documentation of the results, version, and date applied.

4) Perform a backup of the current configuration if a roll-back or recovery is required.

5) Plan the update during a preventative maintenance period if possible when equipment is

expected to be temporarily out of service. Doing so will address the reboot issue and

ensure that firmware is kept up to date along with other aspects of equipment

maintenance. This will avoid having the controller not being updated at all or being so

outdated that multiple intermediate releases must be applied before the most current

update can be performed.

6) Integrate security pre-checks such as hashing of the firmware file and use of the BAT tools.

If the hash does not match or the BAT tools produce a flag, have a Cyber Analyst

investigate the firmware before proceeding with the update.

7) Work with a temporary copy of the firmware file checked out of the firmware binary file

repository or the vendor supplied firmware management tool. The permanent copy should

reside in the repository or centralized vendor system management tool. This avoids the

poor practice of having multiple copies of firmware, configuration, and logic programs files

spread out across multiple desktops of Protection Engineers and laptops of Power System

Technicians within the organization in a desynchronized and disorganized manner.

8) Create a post-update backup of the system configuration to save for future system

recovery if needed.

IX. Firmware Retention Best Practices

As noted in the section on firmware management tools, it is ideal to retain previous versions

of firmware updates applied to all devices currently in service or serving as spares. Having the

firmware (along with the control programs and logic, configuration settings, etc.) will allow an

embedded control device to be restored if necessary to a previous build. Also, retaining a

version history will permit regressive security testing and checking if desired by the

organization utility group or a more specialized cyber security group of the firmware updates

planned or previously implemented using the tools described in this paper or other available

binary analysis tools. A vendor supplied device management tool or a third-party binary

repository manager tool can be used to retain all the controller firmware in a single location

that can maintain the desired version history and be secured to prevent unauthorized access.

Ken Masica Page 14 of 17 LLNL-TR-764326

X. DOD Firmware Monitoring

An initiative by the United State Cyber Command (USCYBERCOM) referred to as the Advanced

Cyber Industrial Control System (ACI) Tactics, Techniques, and Procedures (TPP) has the goal

to better defend DOD critical infrastructure and embedded systems and serves as an example

for how firmware best practices can be integrated with a monitoring and management

model. For the full report issued by DOD see the references section.

The ACI TTP uses a detection, mitigation, and recovery model to defend critical infrastructure.

Regarding firmware best practices, the detection phase uses a set of integrity checks when an

anomalous event occurs that include:

1) Identifying valid firmware versions

2) Verifying firmware against a baseline

3) Detecting unexpected firmware changes

4) Calculating the hash value of the firmware

5) Roll-back to a previous version if incident recovery is required

A full workflow process is then defined that use the firmware integrity checks in addition to a

complete set of integrity checks for the entire critical infrastructure system and used by ACI

operators to detect deviation from baseline operation while performing Routine Monitoring.

These checks provide actions which assists the operator in determining whether a cyber

event regarding firmware is in progress. A segmentation strategy is used in Mitigation to

isolate a compromised embedded system that has failed an integrity check regarding

firmware. After the system is stabilized, the operator proceeds to Recovery. For compromised

embedded device firmware, recovery can include re-imaging the compromised firmware from

a known and trusted source, verifying the latest updates are applied, and saving the new hash

value for the firmware.

The DOD model represents how best practices can be integrated with a tactical management

model for critical infrastructure protection regarding firmware. Having a set of robust

procedures for monitoring an embedded system and then mitigating and recovering from

compromised firmware using a set of best practices is an ideal approach.

XI. Conclusion

This paper has focused on the concept of firmware that runs on embedded microprocessor

controllers such as those used to monitor and control energy infrastructure systems on

Ken Masica Page 15 of 17 LLNL-TR-764326

military bases such as electrical power distribution and building automation systems. The

applicability of the best practices and tools used to implement them are more broadly

applicable, however, to numerous other embedded control device applications and the wide

variety of critical infrastructure systems they monitor and control from dam spillway gates to

passive train control braking to nuclear material protection systems. The need to address

firmware security from a supply chain management threat perspective as well as the role that

firmware has in the operation of an embedded control device was provided as a foundation

for the subsequent content of the paper. Sections on best practices for the customers and

end users of controller firmware updates in terms of supplier development practices,

distribution, storage and organization, security checking, updating, and retention have been

described with the intention of providing awareness and general guidance regarding the

subject of firmware security. The purpose of this paper was to make customers aware that

firmware updates are a potential supply chain management threat issue, understand the

critical role of firmware in the operation of embedded controllers used in energy

infrastructure monitoring and control, and know the set of best practices and tools available

that can help mitigate potential firmware security threats. The DOD ACI TTP model was also

introduced to demonstrate how best practices can be integrated with a tactical model for

detecting and responding to compromised firmware on embedded systems.

Following this concluding section are a list of references cited in this paper and provided for

further background and reading. An example firmware update process for an electrical relay

type of embedded device is also provided as an appendix to pull together the concepts

presented and demonstrate an integrated security approach using some of the best practices

and tools identified in this paper.

XII. References

1) Stuxnet: “To Kill a Centrifuge”; Langner; March 2017; https://www.langner.com/wp-
content/uploads/2017/03/to-kill-a-centrifuge.pdf

2) Hash Checking Explained: https://www.howtogeek.com/67241/htg-explains-what-are-
md5-sha-1-hashes-and-how-do-i-check-them/

3) Free Hash Checking Tool: https://securityxploded.com/getsoftware_direct.php?id=2211

4) Schweitzer Compass Tool: https://selinc.com/products/compass/

5) Schweitzer SEL acSELrator Tool: https://selinc.com/products/5030/

6) Binary Repository Tools: https://en.wikipedia.org/wiki/Binary_repository_manager

7) Artifactory: https://jfrog.com/artifactory/

Ken Masica Page 16 of 17 LLNL-TR-764326

8) Binary Analysis Tools Evaluation: “ESTCP Operational Usage Report”; Joshua Cazalas &
Adam Brown; The Boeing Company.

9) Binary Analysis Tools User Guide: “ROSE Binary Analysis Tools User Guide”, E. Banks, K.
Masica, R. Matzke, D. Quinlan, & W. Hutton

10) The ESTCP Test and Development Environment: https://serdp-estcp.org/Tools-and-
Training/Installation-Energy-and-Water/Cybersecurity/Test-and-Development-Environment

11) The DOD ACI TTP:
www.acq.osd.mil/eie/Downloads/IE/ACI%20TTP%20for%20DoD%20ICS.pdf

XIII. Appendix: Example Best Practice Firmware Update for an Electrical Power Relay

Below is an example process for performing a firmware update on an electrical power distribution

relay device that incorporates the best practices outlined in this paper in the workflow process. A

step-by-step description is provided first followed by a flowchart representation.

1) Obtain the new firmware update file from the vendor for the target relay.

2) Perform a hash security check on the firmware file to verify integrity.

3) Perform BAT tool checks on the firmware file for cyber security assurance.

4) Place the firmware update file in a central server location, binary repository, or vendor tool.

5) Develop a Firmware Update Implementation and Test Plan for the target relay.

6) Ensure that the Firmware Update Implementation and Test Plan has been reviewed and

approved, all required permissions to proceed have been obtained, and that safety procedures

such as Lockout-Tagout (LOTO) have been authorized and implemented.

7) Copy the current/active firmware version file (if available) and new firmware update file from

the central storage location or binary repository to a Laptop and use as local temporary copies.

8) Backup the current target relay settings.

9) Take the active feeder and target relay out of service via scheduled outage or switching the

active feeder to a redundant feeder if available.

10) Confirm target relay is out of service and the redundant feeder (if available) is operating

properly with no alarms present.

11) Confirm no other process or physically connected devices are active on the target relay.

12) If necessary, try downloading currently active firmware from the target relay to the

connected laptop if it is not already available per Step #4 (for potential rollback).

Ken Masica Page 17 of 17 LLNL-TR-764326

13) Complete firmware upgrade process using the vendor firmware upgrade software or procedures.

14) After the firmware upgrade has completed, perform a settings comparison to the earlier

saved settings if supported by the vendor configuration management software.

a) If settings are a 100% match to earlier settings, proceed to the next step.

b) If settings are not a 100% match, rollback to load settings saved earlier during backup.

c) If settings comparison is not possible, load settings saved earlier during backup.

15) Confirm all data connections to/from the relay are active and working as expected.

16) Place target relay back into service by closing open switchgear to restore power or switching

the backup feeder (if available) to the previously active feeder.

17) Confirm the target relay is in service and confirm the backup feeder (if available) is out of service.

18) Check active feeder relay logs for new records and unusual events.

19) Perform a backup of the current relay configuration, settings, and logic programming.

20) Remove the temporary copies of the firmware from the Laptop. (Permanent copies retained

in the central server location, binary repository, or vendor tool if applicable.)

