
IMPROVING TEXT CLASSIFICATION WITH
SEMANTIC INFORMATION

THESIS

Joshua H. White, Capt, USAF

AFIT-ENG-MS-21-M-092

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-21-M-092

IMPROVING TEXT CLASSIFICATION WITH SEMANTIC INFORMATION

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

Joshua H. White, B.S.C.S.

Capt, USAF

March 26, 2021

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-21-M-092

IMPROVING TEXT CLASSIFICATION WITH SEMANTIC INFORMATION

THESIS

Joshua H. White, B.S.C.S.
Capt, USAF

Committee Membership:

Lt Col George E. Noel, Ph.D
Chair

Gilbert L. Peterson, Ph.D
Member

Lt Col David W. King, Ph.D
Member

AFIT-ENG-MS-21-M-092

Abstract

The Air Force contracts a variety of positions, from Information Technology to

maintenance services. There is currently no automated way to verify that quotes for

services are reasonably priced. Small training data sets and word sense ambiguity

are challenges that such a tool would encounter, and additional semantic information

could help. This thesis hypothesizes that leveraging a semantic network could improve

text-based classification. This thesis uses information from ConceptNet to augment

a Naive Bayes Classifier. The leveraged semantic information would add relevant

words from the category domain to the model that did not appear in the training

data. The experiment compares variations of a Naive Bayes Classifier leveraging

semantic information, including an Ensemble Model, against classifiers that do not.

Results show a significant performance increase in a smaller data set but not a larger

one. Out of all models tested, an Ensemble Based Classifier performs the best on both

data sets. The results show that ConceptNet does not add enough new or relevant

information to affect classifier performance on large data sets.

iv

Table of Contents

Page

Abstract . iv

List of Figures . vii

List of Tables . ix

I. Introduction . 1

1.1 Problem Statement . 1
1.2 Hypothesis . 2
1.3 Approach . 3
1.4 Thesis Overview. 3

II. Background and Related Work . 5

2.1 Overview . 5
2.2 Previous Resume and Job Description Research . 5
2.3 Salary Prediction Research . 7
2.4 Knowledge Graphs and Semantic Networks . 8
2.5 Naive Bayes Classifiers . 8

III. Methodology . 9

3.1 Objective . 9
3.2 Naive Bayes Classifier . 10

3.2.1 Categorical Distribution Creation . 11
3.2.2 Final Class Selection . 18

3.3 Data Sets . 19
3.3.1 Preprocessing . 21
3.3.2 Keyword Extraction . 22

3.4 Comparison of Classification Models . 23
3.4.1 K-Nearest Neighbor Classification . 24
3.4.2 Random Forest Classification . 24
3.4.3 Neural Network Classification . 25
3.4.4 Ensemble Model Classifier . 26

IV. Results . 27

4.1 Introduction . 27
4.2 NYC Data Set Results . 27

4.2.1 NYC Data Set Results - Models With No
Semantic Information . 27

v

Page

4.2.2 NYC Data Set Results - Models that Leverage
Semantic Information . 32

4.2.3 NYC Data Set Results Summary . 35
4.3 Kaggle Data Set Results . 36

4.3.1 Kaggle Data Set Results - Models With No
Semantic Information . 36

4.3.2 Kaggle Data Set Results - Models that Leverage
Semantic Information . 40

4.3.3 Kaggle Data Set Results Summary . 42
4.4 Data Set Comparison . 43

V. Conclusion . 48

5.1 Summary . 48
5.2 Research Findings . 48
5.3 Significance of Research . 49
5.4 Future Work . 49

Appendix A. Code used in Thesis . 50

Appendix B. Confusion Matrices . 51

2.1 NYC Data Set Confusion Matrices . 51
2.2 Kaggle Data Set Confusion Matrices . 58

Bibliography . 65

vi

List of Figures

Figure Page

1 ConceptNet Node Edges Example . 12

2 Visual Example of ConceptNet . 13

3 Visual Example of ConceptNet with Keywords 13

4 Visual Example of ConceptNet with Keywords
and Tails . 14

5 Visual Example of Node Probability . 17

6 Processed NYC Data Set Example . 19

7 Processed Kaggle Data Set Example . 21

8 NYC Data Set No Semantic Information
F1-Score Box and Whisker Plot . 29

9 NYC Data Set Semantic Information F1-Score
Box and Whisker Plot . 33

10 Kaggle Data Set No Semantic Information
F1-Score Box and Whisker Plot . 37

11 Kaggle Data Set Models with Semantic
Information Box and Whisker Plot . 41

12 Confusion Matrix for the NYC Data Set
K-Nearest Neighbor Model . 51

13 Confusion Matrix for the NYC Data Set
Random Forest Classifier . 52

14 Confusion Matrix for the NYC Data Set
Feed-Forward Neural Network Classifier . 53

15 Confusion Matrix for the NYC Data Set Naive
Bayes Classifier without Semantic Information 54

16 Confusion Matrix for the NYC Data Set Naive
Bayes Classifier with Semantic Information 55

vii

Figure Page

17 Confusion Matrix for the NYC Data Set
Dynamic Naive Bayes Classifier . 56

18 Confusion Matrix for the NYC Data Set
Ensemble Model . 57

19 Confusion Matrix for the Kaggle Data Set
K-Nearest Neighbor Model . 58

20 Confusion Matrix for the Kaggle Data Set
Random Forest Classifier . 59

21 Confusion Matrix for the Kaggle Data Set
Feed-Forward Neural Network Classifier . 60

22 Confusion Matrix for the Kaggle Data Set Naive
Bayes Classifier without Semantic Information 61

23 Confusion Matrix for the Kaggle Data Set Naive
Bayes Classifier with Semantic Information 62

24 Confusion Matrix for the Kaggle Data Set
Dynamic Naive Bayes Classifier . 63

25 Confusion Matrix for the Kaggle Data Set
Ensemble Model . 64

viii

List of Tables

Table Page

1 Parameter Values used for the Naive Bayes Classifier. 19

2 NYC Data Set Category Sizes . 20

3 Kaggle Data Set Total Category Sizes . 21

4 Overview of the Tunable Parameters for the Random
Forest Classifier. 25

5 Parameter Values used for the Random Forest Classifier. 25

6 NYC Data Set No Semantic Information F1-Score Table 28

7 NYC Data Set Test Set Category Sizes . 30

8 Data Set 1 No Semantic Information Recall Table 31

9 NYC Data Set F1-Scores of Models with Semantic
Information . 32

10 NYC Data Set Models with Semantic Information
F1-Score Table . 34

11 NYC Data Set All Models F1-Score Table . 35

12 Kaggle Data Set No Semantic Information F1-Score
Table . 36

13 Kaggle Data SEt Total Category Sizes . 38

14 Kaggle Data Set No Semantic Information F1-Score
Table . 39

15 Kaggle Data Set Models with Semantic Information
Accuracy Score Table . 40

16 Kaggle Data Set Models with Semantic Information
F1-Score Table . 42

17 Kaggle Data Set All Models F1-Score Table . 43

18 NYC Data Set Naive Bayes Classifier Added Words Per
Class . 45

ix

Table Page

19 Kaggle Data Set Naive Bayes Classifier Added Words
Per Class . 46

20 Kaggle Data Set Added Semantic Information Actually
Used . 47

x

IMPROVING TEXT CLASSIFICATION WITH SEMANTIC INFORMATION

I. Introduction

1.1 Problem Statement

The Air Force contracts various services ranging from Information Technology

(IT) services to groundskeepers when it needs new services. Contractor proposals

are compared against each other, but the Air Force also wants individual manpower

quotes comparable to market salaries for equivalent positions. There is currently no

automatic way for an organization to verify that the quotes are reasonably priced. A

tool to automatically verify quoted prices would be useful to Air Force contracting

personnel, but currently none exist. This tool could ingest commercially available or

historical service data to produce accurate results.

There are several challenges with building an automated tool to predict salaries.

The first is obtaining a data set for training the tool that reflects the area the Air

Force is looking to hire in and encompasses the different job categories the tool is

trying to predict. This tool needs a large enough training data set to make correct

predictions. If a large enough training data set for the required professions is not

available, then a method to add relevant words to the available training data set

would be valuable.

The second challenge is words can have different meanings in the context of dif-

ferent professions. The difference of meaning could lead to a word being more critical

for predicting a job belonging to one job versus another. For example, the word “set”

in a Computer Science context could be referring to a Python data structure. But the

1

word “set” can mean just a pair of things in another context, like a “set of tools” for

a mechanic. The word “set” is just one example of a typical word having a different

meaning between professions.

This thesis examines the classification step of creating a machine learning-based

automated tool. The classification step takes the raw text for a job description and

the job title and outputs the job category. This initial classification step is crucial

because there is a one-to-one mapping of job categories to salary ranges. This mapping

of job position to salary range can be found from historical data or directly from

a contracting company. The next steps of the automated tool would examine the

words in the category’s context to predict the job posting’s final salary. An example

of the whole process would be the tool ingests the text data for a senior engineering

position. The tool would first classify the job as an engineering job. Then the tool

would determine the specific engineering job and output its salary. This thesis does

not delve into the final salary prediction, only the model’s initial classification aspect

of a job posting.

1.2 Hypothesis

This research hypothesizes that leveraging information from a semantic network

will improve text-based classification for job postings. Specifically, this thesis will

attempt to prove the hypothesis by leveraging information from a semantic network

called ConceptNet to improve a Naive Bayes Classifier’s (NBC) predictions. Con-

ceptNet is a graph where each node is a word, and relationships between words are

the edges. The example “an apple is a fruit” is a pair of nodes and an edge, where

“apple” and “fruit” are the nodes and “is a” is the edge.

The concept behind using ConceptNet to improve an NBC stems from how it

makes predictions. The NBC maintains a multinomial distribution for each category

2

in the data set. Think of the multinomial distribution as overlaying the words from

the training set onto ConceptNet. The words for a training set would create a cluster

on the graph that represents that category. Using the edges in ConceptNet, we can

then expand the cluster one edge at a time and try to create a more extensive cluster.

Using the new words in this larger cluster from ConceptNet, we can expand the words

in a multinomial distribution for each category in the NBC. These additional words

from ConceptNet are the additional semantic information we are leveraging in our

model.

1.3 Approach

This thesis’s approach is first, create the NBC that leverages semantic information.

This thesis’s classification models are all created in python and use the same two data

sets for training and generating results. ConceptNet is a semantic network leveraged

to create the categorical distributions for every category in the data sets. The NBC

then utilizes these categorical distributions to make predictions.

The next step of this thesis’s experiment is to create the comparative models using

the same data sets as the NBC. The comparative models are a Random Forest Clas-

sifier, K-Nearest Neighbor based classifier, an NBC without semantic information,

an ensemble model, and a Neural Network based classifier. The K-Nearest Neighbor

and Random Forest Classifiers were both created with the Scikit-Learn python pack-

age. Keras and Tensorflow are the packages used to create the Neural Network based

classifier.

1.4 Thesis Overview

This thesis document is arranged into five chapters. Chapter two presents a sum-

mary of relevant research dealing with resumes and job postings, classification meth-

3

ods, and semantic networks. Chapter three introduces the design and methodology

of the various classification models used in the experimentation. The results are

presented and analyzed in chapter four. Finally, chapter five concludes this thesis

document and discusses future work opportunities in this domain.

4

II. Background and Related Work

2.1 Overview

There has been much research done involving resumes and job postings, from

finding the best job for a given resume [1] or trying to predict the salary range given

the text of a job advertisement [2]. This chapter will provide some background and

knowledge, starting with previous research dealing with resumes and job postings.

The following subsections will then cover other technical parts of the hypothesis,

such as classification methods, statistical models, and knowledge graphs/semantic

networks.

2.2 Previous Resume and Job Description Research

Resumes are required for job applications, and due to the sheer number of ap-

plicants, resumes are written in a range of formats. This diversity can adversely

affect the information retrieval (IR) processes in data mining on resumes, but multi-

ple studies have been conducted to improve the parsing and extraction process. One

proposed system [3] uses a set of language processing techniques, part heuristic-based,

and part pattern matching, for automatic resume management. The system is based

on the fact that a company’s HR Department will look for specific information, and

the extraction process is tailored to that information. After processing, the resumes

are placed into a database with a web-base front end for a company’s HR to search

through. Another resume IR algorithm was proposed that used a two-step process,

called Text Block Classification and Resume Facts Identification, specifically designed

to handle resumes of any hierarchical structure for later manipulation [4]. The first

step takes the raw text and parses it into different blocks, or categories, of information

designated by the researchers. The second step uses multiple classifiers to identify

5

different attributes of information in the resumes.

Parsing resumes correctly is just the first step for systems wanting to match re-

sumes to potential jobs for job-seeking candidates. One approach to resume matching

was performed using a Deep Siamese Network, which is a pair of identical Convolu-

tional Neural Networks (CNN), to match resumes to job descriptions over various

domains [5]. The network was trained using document embeddings, generated with

an algorithm called Doc2Vec, of resumes and job descriptions as input. Another job

recommender system [6] approached the problem by first clustering users based on

their website’s activity. This activity consisted of click frequency, what they clicked

on, job search frequency, and comment frequency to group users using clustering into

one of three categories: proactive, passive, and moderate. Based on the category the

user was classified as, the system used a different technique to recommend jobs. An-

other set of researchers created an algorithm that uses K-means++ to cluster users

based on job title, then uses a mixture of Term Frequency-Inverse Document Fre-

quency (TF-IDF) and part of speech weight to evaluate how the resumes will match

up to a given job description [7]. Also, a graph-based approach [8] was created where,

initially to create the graph, the job postings are the nodes and edges representing

a content similarity score between pairs of job descriptions through a Deep Learning

Matcher, a type of neural network. Then the systems create a vector out of a new

user’s resume and extract a subgraph based on the vector. Finally, PageRank, a

ranking algorithm used by Google search, is used on the subgraph to return a ranked

list of job recommendations to the user.

Researchers have also done work on techniques that ranks a pool of resumes of

potential hires for organizations. One method of resume ranking [9] creates multiple

ontology weighted graphs for a specific industry field, extracts the skill requirements

from a job posting and job seekers skill items via pattern matching, and compares the

6

graph weights to rank resumes. In this case, a specific field is divided into multiple

sub-ontology graphs, and the researchers create the edge weights. A content-based

method [10] in which the company creates a set of item features, or preferences, for a

specific position, and then a score for those features are extracted from each resume.

Then an algorithm designed around Minkowski distance ranks the resumes to their

specific position.

2.3 Salary Prediction Research

While finding the right candidate for a job position is important, the ability to

forecast the salary for a position has been a long researched problem. In the past,

salary projections have been important for projecting employees’ pension and was

done with a function on inflation and merit [11]. More recently, the salary prediction

has been studied for different reasons. Some companies have even gone so far as

to make a business model of predicting a customer’s potential salary based off their

resume [12].

A machine learning and data science website called Kaggle held a competition to

predict salaries given job advertisements from the United Kingdom. One research

team published their findings [2]. The team used an assortment of supervised re-

gression methods, including maximum-likelihood estimation, lasso regression, feed-

forward neural networks, and random forests. After cross-validation and performance

comparison, the research team found that the random forest model performed the best

at predicting salaries. Another set of researchers continued this work from Jackman

and Reid for predicting salaries. This group improved the preprocessing steps and

then compared the random forest classification against decision tree classification to

determine that the random forest classification more accurately predicted salaries

[13].

7

2.4 Knowledge Graphs and Semantic Networks

ConceptNet is a semantic network designed to represent common sense knowl-

edge of words, the concept of a word, and assertions of how words can relate to each

other. The knowledge represented in ConceptNet comes from a variety of sources.

Initially, the information came from The Open Mind Common Sense project, but later

sources were added to include games with a purpose, information from Wiktionary

(en.wiktionary.org) to support multiple languages, a lexical database called WordNet,

semantic connections via DBPedia, and relational statements from Wikipedia’s free

text using ReVerb. Past versions of ConceptNet have been used in previous appli-

cations and projects such as analyzing the emotional content of a text, creating a

dialog system for improving software specifications, and creating public information

displays. ConceptNet Numberbatch is also a part of the project, and is a set of word

embeddings created from ConceptNet, and can be used as input for many machine

learning techniques including neural networks [14].

2.5 Naive Bayes Classifiers

The NBC is a common choice for text-based classification problems. A NBC has

shown that it can outperform several text-based classifiers (such as decision tree, neu-

ral network, and support vector machine) in multiclass problems [15]. This research

used an algorithm called Cfs Subset Evaluator and rank search to improve the feature

selection when creating the NBC. Research on improving the classification of news

articles by enriching the training set with data from Wikitology also shows perfor-

mance increases [16]. This research used related titles of the news articles and related

Wikipedia article title information to augment the training set. Trying to improve on

the NBC for multiclass data sets is also an area of research. [17] shows that document

length normalization is effective for text classification.

8

III. Methodology

This chapter provides a detailed description of the data sets, techniques, models,

and evaluation employed in this experiment. The chapter presents both of the data

sets involved in the research, discusses the comparative models of the experiment,

and explores the model produced as part of this thesis. Finally, the model checking

and comparison tests employed in this research are covered.

3.1 Objective

Most text classification models attempt to classify job descriptions by leveraging

only words found in their training sets. There are semantic networks, like ConceptNet,

that diagram the relationships between most known English words. This research

aims to demonstrate that a model generated leveraging semantic information will

more accurately predict a job posting category.

There are a few different reasons leveraging information from a semantic network

may improve the results of a text-based classifier. Providing a classifier with synonyms

and related words to those in the training set could give the classifier more information

to make its prediction. Words can also have different meanings, or senses, in different

professions. For example, the word shift can refer to a gear shift to a mechanic, a

bit shift operation to a computer scientist, or a nurse’s work shift. Another example

is a plumber working with a pipe and a pastry chef piping icing. A word possessing

different senses could change how a classifier treats it. If the classifier encounters the

work more times in the training set’s specific category, it could assign more importance

to that word for that category.

This research will use an NBC and supplement the words in the training set with

words from ConceptNet. This thesis uses the NBC as the model to supplement be-

9

cause of how it makes its predictions. For each category in the NBC, there is a

multinomial distribution that contains each word’s chance of belonging to that cate-

gory. The NBC then uses these multinomial distributions to estimate the category for

a job description. Words selected from ConceptNet will supplement each categorical

distribution in one of two different ways. First, the word added from ConceptNet

could be a word that was not previously in the categorical distribution. The second

way ConceptNet supplements the NBC is by increasing the probabilities of words

belonging to specific categories in the multinomial distributions. Finally, for each job

description in the test set, Maximum Log-Likelihood is used to determine the job

description’s likely category. The NBC’s performance is compared to several other

models generated without semantic information. The comparison models are a K-

Nearest Neighbor (KNN), Random Forest (RFC), and feed-forward Neural Network

(NN) based classifiers.

3.2 Naive Bayes Classifier

The model used in this experiment to demonstrate the effect of leveraging semantic

information is the NBC. NBCs are based on Bayes Theorem and assume that features

are independent within a class. In this experiment, the NBC model’s features are the

number of times a word occurs in a category. The equation for a NBC is shown

in eq. (1). Here the ŷ is the predicted class, argmax is a function that returns the

maximum value of a set of numbers, Ck represents a class in the data set, xi is a

feature from an entry in the data set, n is the number of features in a new feature

vector to be classified, and k is a class in the data set.

ŷ = argmax p(Ck)
n∏

i=1

p(xi|Ck), k ∈ {1, ..., K} (1)

The p(xi|Ck) of the classifier is calculated for each word, or feature, in the training

10

set. Not every word of the English language will have a probability for every class in

the model. The true model parameters are latent variables. To estimate p(xi|Ck) in

this thesis, we use word count. The fact that the data sets are labeled makes tallying

the number of words straightforward for each class. The p(xi|Ck) for all words, x,

are stored in a multinomial distribution. There is one multinomial distribution per

class, henceforth referred to as a categorical. The NBC generates the categorical

distributions leveraging both the training set keywords and semantic links defined in

ConceptNet.

The following subsections will explain how the model leverages the semantic in-

formation and how the predicted class is selected.

3.2.1 Categorical Distribution Creation

As previously mentioned, the number of times each keyword appears in each class

is known. The NBC requires a probability for each feature. To estimate each word’s

latent probabilities in every category, the model uses kernel density estimation (see

equation 2). The kernel, K, used for this model is a Gaussian kernel, n is the number

of features in the class, x is a feature, and h is a tunable smoothing parameter. This

thesis uses a Gaussian kernel because it has demonstrated good performance in several

other applications. The smoothing parameter, also known as the bandwidth, helps

minimize spurious data artifacts. Undersmoothing results in a jagged distribution,

while oversmoothing obscures the underlying distribution structure.

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
(2)

The additional semantic information extracted from ConceptNet will supplement

the training set keywords. The added information will give a more extensive feature

space to the categorical distributions for each class. Consider ConceptNet as a graph,

11

where almost every word in the English language is a node. The edges of this graph

are relations between words. Figure 1 shows an example of a few nodes and different

edge types surrounding the node for ”job.”

Figure 1: Example of Nodes and Edges from ConceptNet.

The additional semantic information added to the categorical distributions are

words that share edges with the keywords from the training set. The idea is that

creating a larger cluster of words related to each category will increase the NBC’s

performance. Figure 2 is a representation of a subset of ConceptNet. Note that the

next three figures is a fictional example of a subset of ConceptNet, and the number

of keywords used is not to scale; the actual number of words in each distribution is

in the results section.

12

Figure 2: Visual Example of ConceptNet.

The categorical distribution starts with the keywords of each job description. The

yellow nodes represent keywords in Figure 3.

Figure 3: Visual Example of ConceptNet with Keywords.

The added semantic information are the nodes connected to the keywords in a

13

categorical distribution. The green nodes in Figure 4 represent the nodes added to

the categorical distribution of a job description extended by one edge. This extension

happens multiple times for each job description in the training set.

Figure 4: Visual Example of ConceptNet with Keywords and Tails.

ConceptNet also has an edge weight associated with each of the edges. Factors that

affect the edge weight in ConceptNet are the edge’s source and the number of sources.

Per the ConceptNet documentation, “A typical weight is 1, but weights can be higher

or lower. All weights are positive.” This edge weight can be used as a criterion to

filter out less useful edges to use in the model. A set number of edges, and the nodes

connected to them, is extended out and added to the categorical distributions. This

process repeats for every keyword in each category for every document in the training

set. The algorithm that extends the nodes to create the categorical distribution will

stop if it encounters a cycle.

Algorithm 1 shows how the generation of the categorical distribution for each

category. The input is a list of the keywords for each job description in the training set.

14

The output is a data structure that contains each word in the category. Additionally,

this data structure contains the number of times each word was a keyword, one edge

out, two edges out, etc. This algorithm includes cycle checking for each keyword it

extends.

Algorithm 1 Categorical Distribution Creation for one Category.

1: function GenCatDist(Category,NumEdges,MinEdgeWeight)
2: Distribution← {} . Create empty return dictionary
3: for Keywords in Category do
4: for Word in Keywords do
5: CycleCheck ← [] . Create empty list for cycle checking
6: append Word to CycleCheck
7: CurrentEdgePosition← 0
8: update Distribution with w and CurrentEdgePosition
9: ExtendWord(Word, CurrentEdgePosition+ 1)

10: end for
11: end for
12: return Distribution
13: end function
14:

15: function ExtendWord(Word, CurrentEdgePosition)
16: EdgeList← retrieve all edges over MinEdgeWeight from ConceptNet
17: for Edge in EdgeList do
18: EdgeWeight← Edge.EdgeWeight
19: ConnectedWord← Edge.ConnectedWord
20: NextLayer ← [] . Empty list to hold next layer of words
21: if EdgeWeight > MinEdgeWeight then
22: if ConnectedWord not in CycleCheck then
23: append ConnectedWord to CycleCheck
24: append ConnectedWord to NextLayer
25: end if
26: end if
27: for w in NextLayer do
28: update Distribution with w and CurrentEdgePosition
29: if CurrentEdgePosition+ 1 > NumEdges then
30: ExtendWord(w,CurrentEdgePosition+ 1)
31: end if
32: end for
33: end for
34: return
35: end function

15

The NBC uses the output of Algorithm 1 to create the multinomial distribution

for each category. The next step is to generate the input value for each word to the

Kernel Density Estimator. Each word has a value that starts at zero. Every time a

word is a keyword, the area of one standard deviation under a normal curve centered

at zero is added to that word’s value. The yellow node in 5 represents a keyword and

shows the area under the curve that is added. Every time a word is one edge out

from a keyword, the area under the curve from .5 to 1.5, or one standard deviation, is

added to that word’s value. The green node in 5 represents a word one edge out from

a keyword. The value added to each word is a static value for the NBC model, and

is tunable. The process repeats for the number of edges extended, which is a tunable

parameter in the model. The input to the Kernel Density Estimator is the value for

each word to create each word’s probabilities in the multinomial distribution. The

probabilities are normalized for each class.

16

Figure 5: Visual Example of Node Probability.

A Dynamic Naive Bayes Classifier was made for this experiment to examine how a

dynamic value instead of a static value would affect model performance. The dynamic

value is affected by the edge weight that connects the two words. A higher edge weight

will assign a higher value to the connected node’s value. The parameters for the rest

of the Dynamic Naive Bayes Classifier are the same as the standard NBC. This model

also leverages semantic information from ConceptNet. The code for this model can

be found in appendix A.

17

3.2.2 Final Class Selection

Once the model generates the categorical distributions using the training data,

the model can predict an unknown job description’s category. At this point, the

latent probabilities for each word in the categorical distributions are tiny. To get the

joint probability density of a job description requires calculating the product of small

probabilities. The issue with this approach is computers lack the precision to handle

such small numbers adequately. To avoid this problem, we use the Maximum Log-

Likelihood, equation 3, instead. The category with the largest value from equation 3

is the NBC model’s output class.

ŷ = argmax
n∑

i=1

log(p(xi|Ck)), k ∈ {1, ..., K} (3)

The whole point of leveraging ConceptNet was to ensure the categorical distribu-

tions contain as many words as possible that pertain to its category. However, there

will be instances of a word in the test set not existing in a categorical distribution for

a class. When calculating the Maximum Log-Likelihood, the model needs a value for

p(xi|Ck) when a word in the test set is not in a categorical distribution. A technique

called Laplace Smoothing, or additive smoothing, is used to solve the lack of p(xi|Ck),

as shown in eq. (4). Laplace Smoothing provides the model a value to use for p(xi|Ck)

when it encounters a word in the test set that is not in a categorical distribution. In

this equation x is the word, α is the smoothing parameter, N is the number of trials

in the distribution, and d is the number of features in the distribution.

θ̂i =
xi + α

N + αd
, (i = 1, ..., d) (4)

At this point, all possible parameters for the NBC models have been explained.

Table 1 shows the values actually used for all parameters used in each of the NBC

18

models for both data sets.

Table 1: Parameter Values used for the Naive Bayes Classifier.

Parameter NYC Data Set Kaggle Data Set

keywords 23 20

min edge weight 3 4

KDE bandwidth 1.8 0.7

standard deviation width 1 2.5

Laplace Lambda 0.001 0.0578

3.3 Data Sets

The experiment in this thesis uses two different data sets. The first is a government

job posting data set gathered in New York City on 22 December 2019 [18]. This data

set was obtained as a comma-separated value file and manipulated via Python. The

data has 1613 entries with 28 unique features, though the model only uses the job

category, business title, and job description features. There are a total of 12 classes

of job postings available in this dataset, shown in Table 2. The un-processed data set

allows entry to be a combination of the available categories. Entries can have more

than one category because the input allowed for multiple inputs for the category field.

During the experiment, we selected the first category listed as the truth category for

that entry.

Figure 6: Processed NYC Data Set.

19

Table 2: NYC Data Set: Total Category Sizes.

Category Name Total Category Size

0. Administration & Human Resources 178

1. Building Operations & Maintenance 113

2. Clerical & Administrative Support 15

3. Communications & Intergovernmental Affairs 31

4. Constituent Services & Community Programs 113

5. Engineering, Architecture, & Planning 348

6. Finance, Accounting, & Procurement 152

7. Health 152

8. Information Technology & Telecommunications 229

9. Legal Affairs 142

10. Policy, Research & Analysis 83

11. Public Safety, Inspections, & Enforcement 103

The second data set comes from a Kaggle contest held in 2013. The raw data set

consists of job postings provided by a job search engine company called Adzuna. All

job postings in this data set originate from the United Kingdom. Figure 7 is a snippet

of the Kaggle Data Set after processing. The Kaggle Data Set used in this thesis is

a subset of the entire data set. This thesis uses a subset to ensure the categories

were unique enough, to remove a catch-all category the data set had, and ensure the

categories were similar in size. Table 13 shows the categories and number of entries

in each category. This thesis’s models only use the job title, text description, and

20

category features from this data set.

Figure 7: Processed Kaggle Data Set Example.

Table 3: Kaggle Data Set: Total Category Sizes.

Category Name Total Category Size

0. Scientific & QA 2489

1. PR, Advertising & Marketing 8854

2. Legal 3939

3. HR & Recruitment 7713

4. Charity & Voluntary 2332

5. Social Work 3455

6. Creative & Design 1605

7. Energy, Oil, & Gas 2255

8. Travel 3126

9. Manufacturing 3765

Total Entries 39533

3.3.1 Preprocessing

The text for each job posting is preprocessed before being used in the models for

this experiment. Both of the data sets used in this experiment received the same

21

preprocessing steps, and each model used in the experiment uses these steps. The

preprocessing for this thesis is different than the preprocessing done in the related

works. First, the preprocessing script merges each entry title and full description text.

These feature names are different between the data sets, but the contents are the same.

The following steps occur on this combined text: HTML tag removal, punctuation

removal, tokenization, stop word removal, lemmatization, removing duplicate entries,

and removing non-English words. The preprocessing also removes any words not

contained in the NLTK English word dictionary. The processed text is then output

to a new comma-separated value file for further manipulation.

The experiment is a multiclass classification problem that does not contain any

way to produce new data entries for validation. Additionally, the number of entries

in the classes of both data sets is imbalanced. Stratified K-Fold cross-validation is

employed to overcome those two issues. There will be five folds for each trial of the

experiment. Python scripts will create these K-Fold subsets of the data sets before

use in any of the models. A random state parameter is also provided in the python

script to ensure the experiment results are reproducible.

3.3.2 Keyword Extraction

The raw input for both data sets incorporates a description of the job and the job

title. The description of the job is an unstructured block of text. The preprocessing

cleans up this text, but there is still an unequal amount of words for each job descrip-

tion. For the NBC model in this experiment, the number of input words needs to be

uniform. The uniformity ensures each document in the training set affects the model

the same amount. The model employs a term frequency-inverse document frequency

(TF-IDF) technique to extract the n-most significant words from a document. In this

thesis, a document is one job posting.

22

Given a word w, a corpus D, and a document contained in the corpus d ∈ D, we

can generate the TF-IDF value,

wd = fw,d ∗ log(|D|/fw,D) (5)

for all words in a document. The fw,d is the number of occurrences in which w appears

in the document d, and fw,D is the number of occurrences in which w appears in the

corpus D.

The model in this experiment uses a TF-IDF implementation from the Scikit-

learn python package. A TF-IDF value is created for every word in a document. The

words are then ranked in descending order. The top n words (where n is a tunable

parameter) are then selected as keywords for that document. This process is done

to the training and test sets separately, so the test set keywords are not influenced

by the training set. This keyword extraction is repeated for every fold in both the

training and validation sets.

3.4 Comparison of Classification Models

Three different classification models were created to use as comparisons for the

model in this experiment. The comparison classification models are a KNN, RFC, and

a Feed Forward Neural Network classification model. The same preprocessing steps

performed on the raw text for the data sets was used for these models. Additionally,

stratified cross validation was also used. None of the semantic information from

ConceptNet that was used in the Bayes Classifier was used in the training of any of

these comparison models.

23

3.4.1 K-Nearest Neighbor Classification

The K-Nearest Neighbor model used in this experiment is the Scikit-Learn im-

plementation called KNeighborsClassifier [19]. The model takes in TF-IDF vectors

of each of the job postings. There is only one parameter in this experiment that is

tuned: n neighbors, which is the number of neighbors to use to generate the output of

the model. The parameter tuning is done with two of Scikit-Learns cross validation

optimizers, RandomizedSearchCV and GridSearchCV. The final k value used in the

experiment for the NYC data set is 11 and 12 for the Kaggle data set.

3.4.2 Random Forest Classification

Random forest [20] based models have been shown to perform well in regression

tasks for job postings [2]. The Scikit-Learn implementation of an RFC, the Random-

ForestClassifier object, was used in this experiment [19]. All words in the job posting,

after preprocessing, were used as possible features in the decision trees of the model.

There are multiple ways to represent the data set text as input for our model.

For this experiment TF-IDF vectors are used. Table 4 shows the model parameters

that were tuned for this experiment. Table 5 shows the values used to generate the

results for each of the data sets. Parameter tuning for this model was performed

with two different Scikit-Learn tuners, RandomizedSearchCV and GridSearchCV.

The randomized search is used first followed by the grid search. All code used to

generate this model, to include parameter tuning, can be found in appendix A.

24

Table 4: Overview of the Tunable Parameters for the Random Forest
Classifier.

Parameter Name Description

n estimators Number of trees in the forest.

max depth Maximum depth of the tree.

min samples split Minimum number of samples required to split an internal

node.

min samples leaf Minimum number of samples required to be at a leaf node.

bootstrap Whether bootstrap samples are used when building trees.

If False, the whole dataset is used to build each tree.

Table 5: Parameter Values used for the Random Forest Classifier.

Parameter NYC Data Set Kaggle Data Set

n estimators 800 800

max depth 50 100

min samples split 5 5

min samples leaf 1 1

bootstrap False False

3.4.3 Neural Network Classification

Neural network based classifiers have been used in various publications using dif-

ferent types of layers [2] [5]. The networks for this experiment were implented in Keras

[21] with TensorFlow [22]. Multiple configurations of neural networks were tested for

25

this experiment: feed forward networks with one hidden layer, multiple hidden lay-

ers, and a convolutional layer were tested. Additionally, three different types of input

were tested: pretrained word embeddings, generating word embeddings, and a sparse

matrix input. The final configuration for this experiment is a sparse matrix input

with one hidden layer of 48 nodes. All code used to generate this model can be found

in appendix A.

3.4.4 Ensemble Model Classifier

An Ensemble Model is the final comparison model. This model is a simple majority

vote model made up of the NBC, Random Forest Classifier, and Feed Forward Neural

Network. Each of the three models receives the same input, they each make their

predictions, and the final prediction is the majority vote of the individual outputs.

The NBC does leverage semantic information. All code used to generate this model

can be found in appendix A.

26

IV. Results

4.1 Introduction

Model performance metrics will be presented as micro-average scores or F1-scores

due to the class imbalance in the data sets. In this thesis, getting the correct results

of all job postings and classes are equally important. There is no type of job positions

that the Air Force wants to prioritize over the other. Macro-averaging would treat

smaller classes’ accuracy the same as larger classes, unfairly biasing the resulting

score.

The following subsections present the results of both data sets with various model

configurations. In each subsection, the results of the comparative models generated

without semantic information will be given first, followed by the results of the models

generated using semantic information. Section 4.2 has the data set 1, the NYC data

set, results for all models. Section 4.3 has the second data set, the Kaggle data set,

results for all models. Section 4.4 provides a comparison of results from the different

data sets generated for this thesis.

4.2 NYC Data Set Results

This section presents the results for data set 1, the New York City job postings.

The model results are split into two subsections: those that do not contain semantic

information and those that do. Then the results of the two will be compared and

discussed in a final subsection.

4.2.1 NYC Data Set Results - Models With No Semantic Information

First, this subsection discusses the F1-scores of the models with no semantic in-

formation. The models that do no include semantic information are the comparison

27

models described in Chapter 3. Additionally, the results of an NBC created with the

same steps outlined in Chapter 3 but without semantic information added is included

for both data sets. The tables of F1-scores will also contain 95% confidence intervals

of those scores.

Table 6: NYC Data Set: Model’s Without Semantic Information F1-Scores
& Confidence Intervals.

Model Name F1-Score 95% CI

K-Nearest Neighbor 66.9 [66.4, 67.5]

Random Forest Classifier 74.5 [73.9, 75.1]

Feed-Forward Neural Network 75.5 [75.0, 75.9]

Naive Bayes Classifier 52.6 [52.0, 53.3]

As seen in Table 6 the FFNN and RFC classifiers perform the best with F1-scores

of 75.5 and 74.5. The NBC not leveraging semantic information in its categorical

distributions performed significantly worse with an F1-score of 52.6.

28

Figure 8: NYC Data Set: No Semantic Information F1-Score Box and
Whisker Plot.

Figure 8 shows the F1-scores for each of the models in a box and whisker plot. The

tight spread of F1-scores shows that the results for all of the models are consistent

over the different test sets.

29

Table 7: NYC Data Set: Test Set Category Sizes.

Category Name Category Test Size

0. Administration & Human Resources 38

1. Building Operations & Maintenance 25

2. Clerical & Administrative Support 3

3. Communications & Intergovernmental Affairs 7

4. Constituent Services & Community Programs 25

5. Engineering, Architecture, & Planning 72

6. Finance, Accounting, & Procurement 32

7. Health 32

8. Information Technology & Telecommunications 49

9. Legal Affairs 30

10. Policy, Research & Analysis 19

11. Public Safety, Inspections, & Enforcement 23

Table 7 shows each category in the NYC Data Set and the size of its test sets.

30

Table 8: Data Set 1: F1-Score by Category for Models without Semantic
Information.

Class Support KNN RFC FFNN NBC

0 38 51.2 59.3 61.8 36.5

1 25 67.4 79.8 75.9 45.0

2 3 0 0 1.7 0

3 7 14.4 19.4 26.4 6.1

4 25 52.1 59.4 64.8 38.0

5 72 78.7 83.2 86.8 72.1

6 32 65.9 75.0 77.2 59.4

7 32 74.2 79.4 75.7 64.7

8 49 76.6 83.1 87.4 64.7

9 30 69.0 79.9 81.1 58.6

10 19 38.1 49.7 52.1 34.9

11 23 53.3 67.5 66.4 54.5

Note: KNN: K-Nearest Neighbor ; RFC: Random Forest Classifier ; FFNN:

Feed-Forward Neural Network ; NBC: Naive Bayes Classifier

Table 8 shows the average F1-score by category for the models with no semantic

information. One thing to note is that the number of job postings for the classes’

training and test sets are proportional. For example, the smallest class in the training

set is also the smallest class in the test set. The NBC model produces lower F1-scores

across the categories, aligning with its lower overall F1-score.

The smaller categories tend to have lower F1-scores. The lower score happens be-

31

cause the training set has fewer words to build the models. The RFC model performs

better because it uses the same word multiple times in multiple decision trees. Even

if one decision tree makes an incorrect prediction for a category, hundreds of other

trees in the model could still lead to a correct prediction. The NBC model only has

the words from the training set to build its categorical distributions. This smaller

data set leads to a worse performance from the NBC.

4.2.2 NYC Data Set Results - Models that Leverage Semantic Infor-

mation

This subsection presents the results of the models that leverage semantic infor-

mation. Table 9 shows the F1-scores and 95% confidence intervals for the models

leveraging semantic information. Figure 9 is a box and whisker plot of the F1-scores

for these models.

Table 9: NYC Data Set: F1-Scores & Confidence Intervals for Models
Leveraging Semantic Information.

Model Name F1-Score 95% CI

Naive Bayes Classifier 69.1 [68.2, 70.1]

Dynamic Naive Bayes Classifier 68.4 [67.4, 69.5]

Ensemble Model Classifier 75.5 [74.9, 76.2]

32

Figure 9: NYC Data Set: F1-Score Box and Whisker Plot for Models with
Semantic Information.

Table 9 shows that the EM performs significantly better than the two NBC models.

Figure 9 again shows a small F1-score range for each model, showing that these models

are consistent over the different training/test folds for this data set.

33

Table 10: NYC Data Set: F1-Scores by Class for Models Leveraging Se-
mantic Information.

Class Support NBC DNBC EM

0 38 48.9 47.5 60.3

1 25 73.1 71.2 78.6

2 3 0.0 7.8 0.0

3 7 33.6 29.8 27.2

4 25 54.7 55.8 65.7

5 72 84.1 83.4 84.2

6 32 68.5 67.2 76.3

7 32 74.0 72.0 78.9

8 49 82.2 82.1 86.3

9 30 73.9 73.9 80.0

10 19 47.3 44.4 49.2

11 23 65.1 69.3 69.3

Note: NBC: Naive Bayes Classifier ; DNBC: Dynamic Naive Bayes Classifier ;

EMF1: Ensemble Model

Table 10 shows the average F1-score by category for the models leveraging seman-

tic information. The F1-scores for each category are similar for each of the models.

The largest difference is in category 0 with a spread of 11.4%. The F1-scores in this

data set do not follow a uniform ratio of class size and larger F1-scores. The smallest

category has the worst F1-score due to its size. The remainder of the categories do

not display a linear relationship between class size and the F1-score. This non-linear

34

relationship could be due to the small size of this data set. There are not enough

words in the models, and some words are better at determining a job description’s

class than others, leading to the relationship seen in this table. Appendix B contains

all of the confusion matrices for these models.

4.2.3 NYC Data Set Results Summary

This subsection will provide an overview of the F1-scores for each model, then an

analysis of the results. As seen in Table 11 the EM, FFNN, and RFC are the top-

performing models for the first data set. The EM does leverage semantic information

but does not perform significantly better than the models that do not. The NBC

that leverages semantic information does outperform the KNN model. There is also

a significant difference between the NBC model leveraging semantic information and

those that do not. The only difference in these models is that one supplements its

categorical distribution with words from ConceptNet, and the other does not.

Table 11: NYC Data Set: All Models F1-Scores & 95% Confidence Inter-
vals.

Model Name F1-Score 95% CI

Ensemble Model Classifier 75.5 [74.9, 76.2]

Feed-Forward Neural Network 75.5 [75.0, 75.9]

Random Forest Classifier 74.5 [73.9, 75.1]

Naive Bayes Classifier with Semantic Information 69.1 [68.2, 70.1]

Dynamic Naive Bayes Classifier 68.4 [67.4, 69.5]

K-Nearest Neighbor 66.9 [66.4, 67.5]

Naive Bayes Classifier without Semantic Information 52.6 [52.0, 53.3]

35

4.3 Kaggle Data Set Results

This section presents results using a subset of the United Kingdom job posting

drawn from the Kaggle data set. First, the model results are divided into two cate-

gories: those that do not contain semantic information and those that do. Next the

results of the two are compared and discussed in the last subsection.

4.3.1 Kaggle Data Set Results - Models With No Semantic Informa-

tion

This subsection discusses the F1-scores of the models with no semantic infor-

mation. The tables of F1-scores will also contain 95% confidence intervals of those

scores.

Table 12: Kaggle Data Set: Models With No Semantic Information F1-
Scores & Confidence Intervals.

Model Name F1-Score 95% CI

K-Nearest Neighbor 81.7 [81.6, 81.8]

Random Forest Classifier 83.3 [83.2, 83.4]

Feed-Forward Neural Network 83.1 [83.1, 83.2]

Naive Bayes Classifier 79.3 [79.2, 79.4]

As seen in Table 12 the RFC and FFNN models perform the best with F1-scores

of 83.3 and 83.1, which are not statistically different. The NBC performed the worst

out of the models with no semantic information with an F1-score of 79.3.

36

Figure 10: Kaggle Data Set: No Semantic Information F1-Score Box and
Whisker Plot.

Figure 10 shows the F1-scores for each of the models in a box and whisker plot.

Only the F1-scores of the RFC have a spread of more than 1%, and its’ spread is less

than 1.5%. The tight spread of F1-scores shows that the results for all of the models

are consistent over the different test sets. Table 13 shows a listing of each category’s

names and sizes in the Kaggle Data set.

37

Table 13: Kaggle Data Set: Category Test Size.

Category Name Category Test Size

0. Scientific & QA 501

1. PR, Advertising & Marketing 1774

2. Legal 791

3. HR & Recruitment 1545

4. Charity & Voluntary 468

5. Social Work 691

6. Creative & Design 321

7. Energy, Oil, & Gas 451

8. Travel 626

9. Manufacturing 753

38

Table 14: Kaggle Data Set: No Semantic Information F1-Score Table.

Class Support KNN RFC FFNN NBC

0 501 72.5 75.1 74.7 72.0

1 1774 86.0 86.4 86.9 82.6

2 791 92.8 94.2 93.4 92.1

3 1545 86.8 87.0 88.3 83.9

4 468 66.0 68.8 68.2 66.1

5 691 83.4 85.5 84.3 83.1

6 321 34.7 29.3 45.0 40.4

7 451 73.1 78.4 76.9 73.0

8 626 88.4 90.0 89.1 86.8

9 753 75.9 79.5 79.5 76.4

Note: KNNR: K-Nearest Neighbor ; RFC: Random Forest Classifier ; FFNN:

Feed-Forward Neural Network ; NBC: Naive Bayes Classifier

Table 14 shows each class’s average F1-score for the models with no semantic

information. One thing to note is that the number of job postings for the classes’

training and test sets are proportional. For example, the smallest class in the training

set is also the smallest class in the test set. Table 14 shows the smallest class, ’Creative

Design,’ has the worst F1-score for all four models. The larger classes all have higher

F1-scores, specifically ’PR, Advertising, Marketing,’ ’HR Recruitment,’ and ’Legal.’

The larger classes have a higher recall because the models benefit from having more

words in the training set. This also explains why the ’Creative Design’ class has the

lowest F1-score.

39

Appendix B contains all of the confusion matrices for each of these trials. The

order of the figures will be the same as presented in the table: KNN, RFC, FFNN,

and finally NBC.

4.3.2 Kaggle Data Set Results - Models that Leverage Semantic In-

formation

This subsection presents results of the models leveraging semantic information.

Table 15 contains the F1-scores and the 95% confidence intervals for those scores.

Figure 11 is a box and whisker plot of the F1-scores.

Table 15: Kaggle Data Set: Models Leveraging Semantic Information F1-
Scores.

Model Name F1-Score 95% CI

Naive Bayes Classifier 79.5 [79.5, 79.6]

Dynamic Naive Bayes Classifier 79.5 [79.4, 79.6]

Ensemble Model Classifier 84.7 [84.6, 84.8]

40

Figure 11: Kaggle Data Set: Box and Whisker Plot of Models leveraging
Semantic Information.

As seen in Table 15 the EM outperforms the other models with an accuracy score

of 84.7 by a statistically significant amount. The box and whisker plot in Figure

11 also demonstrates that each of these models’ accuracy scores is very close to the

mean. Again, this demonstrates that the models are consistent over different test sets

for this data set.

41

Table 16: Kaggle Data Set: Models Leveraging Semantic Information F1-
Scores.

Class Support NBC DNBC EM

0 501 72.1 72.3 77.2

1 1774 82.8 82.8 87.5

2 791 92.1 92.1 94.9

3 1545 84.0 84.0 88.3

4 468 66.5 66.6 71.8

5 691 83.2 83.3 86.3

6 321 40.3 40.5 42.4

7 451 73.1 73.0 80.7

8 626 87.0 86.9 90.9

9 753 76.3 76.3 81.4

Note: NBC: Naive Bayes Classifier ; DNBC: Dynamic Naive Bayes Classifier ; EM:

Ensemble Model

Table 16 lists the F1-scores by category for the models leveraging semantic infor-

mation. These results show the continuation of smaller classes having a lower F1-score

compared to higher classes. Again, this trend is due to the larger classes having more

words in the training set, leading to a higher F1-score. Appendix B contains all of

the confusion matrices for these models.

4.3.3 Kaggle Data Set Results Summary

This subsection will provide an overview of the F1-scores for each model, then

an analysis of the results. As seen in Table 17 the EM has the highest F1-score of

42

84.7, which is a model generated with semantic information. However, the models

generated with no semantic information are close in accuracy score behind this model:

specifically the RFC, FFNN, and KNN models. Finally, all variations of the NBC

models performed the worst.

Table 17: Kaggle Data Set: All Models F1-Scores & 95% Confidence
Intervals.

Model Name F1-Score 95% CI

Ensemble Model Classifier 84.7 [84.6, 84.8]

Random Forest Classifier 83.3 [83.2, 83.4]

Feed-Forward Neural Network 83.1 [83.1, 83.2]

K-Nearest Neighbor 81.7 [81.6, 81.8]

Naive Bayes Classifier with Semantic Information 79.5 [79.5, 79.6]

Dynamic Naive Bayes Classifier 79.5 [79.4, 79.6]

Naive Bayes Classifier without Semantic Information 79.3 [79.2, 79.4]

The NBC models leveraging semantic information did not perform significantly

better than the NBC model that did not. This result goes against the hypothesis

that models generated leveraging semantic information will predict a job posting

class more accurately than a model that does not. The following subsection analyzes

the semantic information added to the NBC model.

4.4 Data Set Comparison

The best performing models in both data sets were the EM, FFNN, and RFCs.

While the EM does leverage semantic information, there is no significant difference

in these models’ performance. This lack of difference in the best performing models

43

provides evidence against the hypothesis of this thesis. The performance of the NBC

models varies between the two data sets. The size of the data sets affects how much

the semantic information affected the NBC models. The NBC leveraged more words

when the training set was smaller, significantly improving the NBC’s performance in

data set 1. The training set in data set 2 was much more extensive, and leveraging

ConceptNet did not significantly improve the performance results.

Table 18 shows each category’s word statistics in the NYC Data Set. The table

lists the number of words used in each category. It then lists the number of words

leveraged from ConceptNet that were not keywords–i.e., words that do not appear

in the training data. The next column expresses this statistic as a percent of total

words. Finally, the number of keywords in each category is listed. Table 18 shows that

semantic information makes up a significant amount of each category. The addition

of semantic information to the NBC improves the model’s F1-score by 16.5% for this

data set. This performance improvement does support the hypothesis of this paper.

However, the NBC model does not outperform other models not leveraging semantic

information.

44

Table 18: NYC Data Set: Semantic Information Leveraged in NBC Mod-
els.

Class Total Words Added Non-Keywords Added% Keywords

0 2901 1416 48.8 1485

1 2119 1168 55.1 951

2 463 258 55.7 205

3 871 497 57.1 374

4 2234 1194 53.4 1040

5 2908 1186 40.8 1722

6 2332 1157 49.6 1175

7 2586 1371 53.0 1215

8 2929 1402 47.9 1527

9 2127 1063 50.0 1064

10 1766 980 55.5 786

11 1836 1004 54.7 832

We will then analyze the number of words added to the categorical distributions

that are not keywords in the Kaggle Data Set. Table 19 provides a breakdown of the

number of words in each class’s categorical distribution. The table contains the total

number of words in each class, the number of words added from ConceptNet that are

not keywords, and the percentage of the added non-keywords over the total number

of words. The last column contains the number of times a keyword was added to its

categorical distribution.

45

Table 19: Kaggle Data Set: Semantic Information in NBC Model.

Class Total Words Added Non-Keywords Added% Keywords

0 6065 77 1.27 5988

1 7453 61 0.82 7392

2 4982 68 1.36 4914

3 6809 58 0.85 6751

4 4782 80 1.67 4702

5 4291 88 2.05 4203

6 5105 74 1.45 5031

7 4914 68 1.38 4846

8 5428 66 1.22 5362

9 5861 66 1.13 5795

Table 19 shows that the number of non-keywords added to each categorical distri-

bution is a small fraction of the total number of words in the distribution. Keywords

are reinforced in the categorical distributions each time they are encountered in a job

description and during edge extension. This reinforces the values of keywords more

instead of breaking out of the cluster of keywords and adding new non-keywords to

the categorical distribution. Imagine the categorical distribution as a cluster of nodes

on ConceptNet. When stepping multiple edges out from keywords, we are just travel-

ing back into the cluster instead of expanding it. The NYC Data Set has much fewer

keywords, so instead of traveling back into the cluster, it expands.

Table 20 contains the number of non-keywords used in any prediction in the test

set. The table also includes the percentage of correctly predicted job postings that

46

contain an added non-keyword.

Table 20: Kaggle Data Set: Added Semantic Information Actually Used.

Class Added Non-Keywords Used Non-Keywords Predicted%

0 77 31 85.9

1 61 19 85.9

2 68 38 81.8

3 58 20 85.5

4 80 38 87.2

5 88 50 82.5

6 74 33 89.7

7 68 38 85.1

8 66 25 77.9

9 66 32 84.3

The goal of leveraging ConceptNet was to add enough new words to the cat-

egorical distributions to improve the model’s F1-score. Rather than adding more

non-keywords to the categorical distribution, current keywords are getting a more

significant presence. This data set is more extensive and contains more keywords

than data set 1 did before semantic information is added to the categorical distri-

butions. Then ConceptNet does not augment the categorical distributions enough

to see a performance increase in the NBC models. ConceptNet is too generalized to

add enough words to affect performance when extending the tails of the categorical

distributions for this larger data set.

47

V. Conclusion

5.1 Summary

This thesis aims to test the hypothesis that leveraging a semantic network can

improve text-based classification. The experiment tested the hypothesis by creating

a NBC leveraging the semantic information from ConceptNet to improve its perfor-

mance. To test the NBC’s performance, the model was compared to models that did

not supplement their training set with any words from ConceptNet. The comparison

models, implemented in Python, are a Random Forest classifier, K-Nearest Neighbor

classifier, Neural Network classifier, and a NBC without semantic information. The

results section compares the average F1-score of each model and average F1-score by

category for each model and then takes an in-depth look at the value-added from the

semantic network.

5.2 Research Findings

Among the top-performing text-based classifiers, this thesis found no statistically

significant difference between a text-based classifier that leverages semantic infor-

mation and one that does not. This evidence goes against the hypothesis that a

text-based classifier leveraging semantic information will perform better than those

that do not. Leveraging semantic information does improve the results of a NBC for

smaller data sets. The NBC leveraged more words when the training set was smaller,

significantly improving the NBC’s performance in the NYC Data Set. The training

set in the Kaggle Data Set was much more extensive, and leveraging ConceptNet

did not significantly improve the performance results. The Ensemble Model, Neural

Network-based classifiers, and Random Forest classifiers performed the best of the

models tested.

48

5.3 Significance of Research

With limited data in the training set, leveraging semantic information did im-

prove the NBC’s results. However, when working with larger training sets, leveraging

semantic information did not improve the NBC’s performance. Further research ex-

ploring an Ensemble Model Classifier, Random Forest Classifier, or a Neural Network

based classifier leveraging semantic information could produce performance improve-

ments.

5.4 Future Work

There are several directions to take in predicting salaries given a job posting or

resume. The results of this thesis only apply to text-based classification. The results

do support future research in the following areas:

1. Extend the models to predict a salary range for a job posting. Future studies

could implement a two-step ensemble model utilizing this research. The first

step of the model would decide the category of the input job posting or resume.

The second step would be a linear regression model specifically for that type of

job that outputs a salary range.

2. Use a NBC leveraging semantic information to rank a pool of resumes given

specific requirements or keywords. Instead of outputting the category of a

document, modify the Naive Bayes model to give a score based on a categorical

distribution. The pool of resumes would then be ranked, given their scores.

3. Explore leveraging semantic information in other types of models not covered

in this thesis. For example, using the added words from a semantic network in

a long short-term memory recurrent neural network (LSTM) [23].

49

Appendix A. Code used in Thesis

To obtain access to the source code for this thesis please contact the author at

joshua.h.white.51@gmail.com.

50

Appendix B. Confusion Matrices

Below are the confusion matrices for the models in this thesis. The matrices for

the NYC Data Set are presented first followed by the matrices for the Kaggle Data

Set.

2.1 NYC Data Set Confusion Matrices

Figure 12: Confusion Matrix for the NYC Data Set K-Nearest Neighbor
Classifier

51

Figure 13: Confusion Matrix for the NYC Data Set Random Forest Clas-
sifier

52

Figure 14: Confusion Matrix for the NYC Data Set Feed-Forward Neural
Network Classifier

53

Figure 15: Confusion Matrix for the NYC Data Set Naive Bayes Classifier
without Semantic Information

54

Figure 16: Confusion Matrix for the NYC Data Set Naive Bayes Classifier
with Semantic Information

55

Figure 17: Confusion Matrix for the NYC Data Set Dynamic Naive Bayes
Classifier

56

Figure 18: Confusion Matrix for the NYC Data Set Ensemble MOdel

57

2.2 Kaggle Data Set Confusion Matrices

Figure 19: Confusion Matrix for the Kaggle Data Set K-Nearest Neighbor
Classifier

58

Figure 20: Confusion Matrix for the Kaggle Data Set Random Forest
Classifier

59

Figure 21: Confusion Matrix for the Kaggle Data Set Feed-Forward Neural
Network Classifier

60

Figure 22: Confusion Matrix for the Kaggle Data Set Naive Bayes Classi-
fier without Semantic Information

61

Figure 23: Confusion Matrix for the Kaggle Data Set Naive Bayes Classi-
fier with Semantic Information

62

Figure 24: Confusion Matrix for the Kaggle Data Set Dynamic Naive
Bayes Classifier

63

Figure 25: Confusion Matrix for the Kaggle Data Set Ensemble MOdel

64

Bibliography

1. Shaha T. Al-Otaibi. A survey of job recommender systems. International Journal

of the Physical Sciences, 7(29), jul 2012.

2. Shaun Jackman and Graham Reid. Predicting Job Salaries from Text Descrip-

tions. PhD thesis, University of British Columbia, 2013.

3. Sunil Kumar Kopparapu. Automatic extraction of usable information from un-

structured resumes to aid search. Proceedings of the 2010 IEEE International

Conference on Progress in Informatics and Computing, PIC 2010, 1:99–103, 2010.

4. Jie Chen, Chunxia Zhang, and Zhendong Niu. A Two-Step Resume Information

Extraction Algorithm. Mathematical Problems in Engineering, 2018, 2018.

5. Saket Maheshwary and Hemant Misra. Matching Resumes to Jobs via Deep

Siamese Network. pages 87–88. Association for Computing Machinery (ACM),

2018.

6. Ying Hong Wang and Whai En Chen. A Job Recommender System Based on

User Clustering. Journal of Computers, 8(8):1960–1967, 2013.

7. Liting Duan, Xiaolin Gui, Mingan Wei, and You Wu. A resume recommendation

algorithm based on k-means++ and part-of-speech TF-IDF. In ACM Interna-

tional Conference Proceeding Series. Association for Computing Machinery, oct

2019.

8. Walid Shalaby, Bahaa Eddin Alaila, Mohammed Korayem, Layla Pournajaf,

Khalifeh Aljadda, Shannon Quinn, and Wlodek Zadrozny. Help me find a job: A

graph-based approach for job recommendation at scale. Proceedings - 2017 IEEE

65

International Conference on Big Data, Big Data 2017, 2018-Janua:1544–1553,

2017.

9. Lv Hexin and Zhu Bin. Skill ontology-based semantic model and its matching

algorithm. 2006 7th International Conference on Computer-Aided Industrial De-

sign and Conceptual Design, CAIDC, pages 12–15, 2006.

10. Nikolaos D. Almalis, George A. Tsihrintzis, and Nikolaos Karagiannis. A content

based approach for recommending personnel for job positions. IISA 2014 - 5th

International Conference on Information, Intelligence, Systems and Applications,

pages 45–49, 2014.

11. Jacques F. Carriere and Kevin J. Shand. New Salary Functions for Pension

Valuations. North American Actuarial Journal, 2(3):18–26, 1998.

12. Adzuna. Value My Resume, 2020.

13. Sananda Dutta, Airiddha Halder, and Kousik Dasgupta. Design of a novel pre-

diction engine for predicting suitable salary for a job. Proceedings - 2018 4th

IEEE International Conference on Research in Computational Intelligence and

Communication Networks, ICRCICN 2018, pages 275–279, 2018.

14. Catherine Havasi Robert Speer. Representing General Relational Knowledge in

ConceptNet5. Technical report, 2012.

15. S. L. Ting, W. H. Ip, and Albert H.C. Tsang. Is Näıve bayes a good classifier for

document classification? International Journal of Software Engineering and its

Applications, 5(3):37–46, 2011.

16. Sundus Hassan, Muhammad Rafi, and Muhammad Shahid Shaikh. Compar-

ing SVM and Näıve Bayes classifiers for text categorization with Wikitology as

66

knowledge enrichment. Proceedings of the 14th IEEE International Multitopic

Conference 2011, INMIC 2011, pages 31–34, 2011.

17. Sang Bum Kim, Hae Chang Rim, Dong Suk Yook, and Heui Seok Lim. Effective

methods for improving naive Bayes text classifiers. PRICAI 2002: Trends in

Artificial Intelligence, 2417:414–423, 2002.

18. Kaggle. Kaggle: New York City Current Job Postings, 2019.

19. Fabian Pedregosa, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel,

M Blondel, P Prettenhofer, R Weiss, V Dubourg, J Vanderplas, A Passos, and

D Cournapeau. Scikit-learn: Machine Learning in Python. Journal of Machine

Learning Research, 12:2825–2830, 2011.

20. Leo Breiman. Random forests. Machine Learning, 45:5–32, 2001.

21. François Chollet and Others. Keras. \url{https://keras.io}, 2015.

22. M Abadi, A Agarwal, Paul˜Barham, Eugene˜Brevdo, Zhifeng˜Chen,

Craig˜Citro, Greg˜S.˜Corrado, Andy˜Davis, Jeffrey˜Dean, Matthieu˜Devin,

Sanjay˜Ghemawat, Ian˜Goodfellow, Andrew˜Harp, Geoffrey˜Irving,

Michael˜Isard, Yangqing Jia, Rafal˜Jozefowicz, Lukasz˜Kaiser, Manju-

nath˜Kudlur, Josh˜Levenberg, Dandelion˜Mané, Rajat˜Monga, Sherry˜Moore,

Derek˜Murray, Chris˜Olah, Mike˜Schuster, Jonathon˜Shlens, Benoit˜Steiner,

Ilya˜Sutskever, Kunal˜Talwar, Paul˜Tucker, Vincent˜Vanhoucke, Vi-

jay˜Vasudevan, Fernanda˜Viégas, Oriol˜Vinyals, Pete˜Warden, Mar-

tin˜Wattenberg, Martin˜Wicke, Yuan˜Yu, and Xiaoqiang˜Zheng. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems, 2015.

23. Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Francis C. M. Lau. A C-LSTM

Neural Network for Text Classification. 2015.

67

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

25–03–2021 Master’s Thesis Sept 2019 — Mar 2021

Improving Text Classification with Semantic Information

Joshua H. White, Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-21-M-092

711 HPW/RH
2610 Seventh Street, Bldg. 441
WPAFB OH 45433-7765
POC: Aashae Eberle

711 HPW/RH

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

The Air Force contracts a variety of positions, from Information Technology to maintenance services. There is currently
no automated way to verify that quotes for services are reasonably priced. Small training data sets and word sense
ambiguity are challenges that such a tool would encounter, and additional semantic information could help. This thesis
hypothesizes that leveraging a semantic network could improve text-based classification. The leveraged semantic
information would add relevant words from the category domain to the model that did not appear in the training data.
This thesis uses information from ConceptNet to augment a Naive Bayes Classifier. The experiment compares variations
of a Naive Bayes Classifier leveraging semantic information, including an Ensemble Model, against classifiers that do not.
Results show a significant performance increase in a smaller data set but not a larger one. The results show that
ConceptNet does not add enough new or relevant information to affect classifier performance on large data sets. Out of
all models tested, an Ensemble Based Classifier performs the best on both data sets.

Text-Based Classification, Job Description, Document Classification, ConceptNet, Naive Bayes Classifier, Semantic
Network

U U U UU 79

Lt Col George E. Noel, AFIT/ENG

(937) 255-3636, ext 4613; george.noel@afit.edu

	Abstract
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Hypothesis
	Approach
	Thesis Overview

	Background and Related Work
	Overview
	Previous Resume and Job Description Research
	Salary Prediction Research
	Knowledge Graphs and Semantic Networks
	Naive Bayes Classifiers

	Methodology
	Objective
	Naive Bayes Classifier
	Categorical Distribution Creation
	Final Class Selection

	Data Sets
	Preprocessing
	Keyword Extraction

	Comparison of Classification Models
	K-Nearest Neighbor Classification
	Random Forest Classification
	Neural Network Classification
	Ensemble Model Classifier

	Results
	Introduction
	NYC Data Set Results
	NYC Data Set Results - Models With No Semantic Information
	NYC Data Set Results - Models that Leverage Semantic Information
	NYC Data Set Results Summary

	Kaggle Data Set Results
	Kaggle Data Set Results - Models With No Semantic Information
	Kaggle Data Set Results - Models that Leverage Semantic Information
	Kaggle Data Set Results Summary

	Data Set Comparison

	Conclusion
	Summary
	Research Findings
	Significance of Research
	Future Work

	Code used in Thesis
	Confusion Matrices
	NYC Data Set Confusion Matrices
	Kaggle Data Set Confusion Matrices

	Bibliography

