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PARTICLE FLOW SOLUTIONS AVOIDING STIFF INTEGRATION

1. INTRODUCTION

ORIGINALLY introduced in [1], particle flow filters (PFFs), also known as homotopy particle filters or
the Daum-Huang filter, are an alternative to traditional Markov-chain Monte Carlo particle filters for

nonlinear Bayesian estimation. Unlike traditional particle filters, PFFs are not subject to particle collapse and
are thus more appealing. Rather than resampling particles, PFFs move particles according to a deterministic
or a stochastic differential equation (the “flow”). The specific differential equation used determines the type
of PFF. A key step in a PFF is the numeric integration of these differential equations.

The flow integration in PFFs can be difficult. The differential equations can be stiff, which has led to
the development of a number of heuristic step-size selection algorithms, such as those in [2–6]. In can be
difficult to determine whether poor performance in a PFF is due to inaccuracies in integrating the flow, or
whether it is due to theoretical limitations in the flow used. An analytic solution to a flow called the “exact
flow,” first introduced in [7], is given in [8]. Note that two versions of the “exact flow” exist. The one of
[8] utilizes a linearization around the prior distribution’s mean, whereas a variant with derivations in [5, 6]
utilizes a linearization about each particle. Appendix A provides both flows and demonstrates a bias present
when linearizing around each particle. However, there are many more flows in existence than just the exact
flow of [8], for which an analytic solution exists. For example, broad categories of flows are described in
[9]. This paper seeks to find explicit solutions to more flows.

The key to obtaining the explicit flow solutions of this paper is the use of specific coordinate systems.
Consequently, the assumed structure of the PFF and the assumed coordinate systems needed are described in
Section 2. Two flows are chosen for explicit solution. Both are specific forms of “nonzero diffusion” filters
from [10–12], which have a simple explicit form when some terms are approximated under an assumption
of a Gaussian prior. In [5, 6], the unbiasedness of one such flow, the “geodesic flow,” which is defined by a
deterministic differential equation, is considered. In this report, an explicit solution to the geodesic flow is
provided in Section 4. The second flow considered, under similar assumptions, is the Gromov flow, which
is defined by a stochastic differential equation. In Section 4, it is shown that the Gromov flow reduces to a
deterministic term and three integrals over a scalar Wiener process.

A simulation example considering the exact flow, the geodesic flow, and the Gromov flow is given in
Section 5. The results are summarized in Section 6.

2. THE PARTICLE FLOW FILTER WITH UPDATES IN LOCAL COORDINATES

A PFF approximates a probability density function (PDF) as a set of particles that are usually unweighted. 
The density of the particles in a particular region is rightly representative of the uncertainty of the likelihood 
of a target in that region. Often, an estimate for display is obtained using the sample mean and the covariance 
matrix of the particles.

Manuscript approved May 25, 2021.
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2 David Frederic Crouse

During a measurement update, an individual particle x is moved according to a stochastic differential
equation of the form

𝑑x𝜆 = f𝜆𝑑𝜆 + B𝜆𝑑𝜷𝜆, (1)

where 𝜆 is a parameter that is integrated from 0 to 1, and 𝑑𝜷𝜆 is a differential Wiener process. The flow
is defined by the drift f𝜆 and the diffusion B𝜆, which depend on x𝜆. Deterministic flows have the matrix
B𝜆 = 0.

Measurements of the form

z = h(x) + w (2)

are considered, where h is a nonlinear function and w is a Gaussian random variable with covariance matrix
R. This and the sample moments of the particles suffices to define the flows considered in this paper.

Even if one wishes to perform estimation in Cartesian coordinates, the PFF need not be run in Cartesian
coordinatures during measurement updates. Indeed, it was observed in [5, 6] that the filter performed better
when the update is performed in a coordinate system such that the measurement is linear. For example, if
one is tracking using directional measurements consisting of azimuth and elevation components, the target
state could be in spherical coordinates (including range, which is not part of the measurement). The flow
solutions in this paper are derived assuming that the particles have been converted to local coordinates. Thus,
a measurement update step might have the following form:

1. Particles are given in Cartesian coordinates.

2. Convert the particles into a coordinate system in which the measurement is a linear function of the
state. Specifically, the local measurement equation of the transformed state x̃ is of the form

z = Hx̃ + w, (3)

where H consists only of 0s and 1s with a single 1 per row.

3. Perform the measurement update by integrating Eq. (1) with a chosen particle flow.

4. Convert the particles back to Cartesian coordinates.

Note that when dealing with directional measurements, it was observed that additional heuristics in Step
4 can improve the performance of the filter significantly. For example, when using spherical coordinates
locally, performance often can be often improved significantly by taking the absolute value of the range
component of the particles, because the flows sometimes can move particles to negative ranges.

In the following sections, it is assumed that all measurements are scalars. For vector measurements,
this means that if the measurement covariance matrix R is diagonal, then each component of the vector
measurement is treated as a separate independent measurement and a separate measurement update is
performed for each component. Thus, if z is 𝑑𝑧-dimensional, and R is a diagonal matrix, the measurement
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update is performed as 𝑑𝑧 1-dimensional measurement updates, with the 𝑖th measurement being 𝑧𝑖 with
variance 𝑅𝑘,𝑘 that is the 𝑖th diagonal of R.

If R is not diagonal, the measurement is transformed to diagonalize R and then the update is performed.
That is, z̃ is used as the measurement where

z̃ = Vz (4)

and V is the eigenvectors of R. This means that the covariance matrix associated with z̃ is VRV′ = D, the
diagonal matrix of eigenvalues. Note, however, that transforming the measurement in this manner affects
the coordinate transformation applied to the target state in Step 1 above. Specifically, the components of the
transformed state that are linear in the measurement domain also must be multiplied by V and, similarly, the
components involved in the inverse transformation are multiplied by V′.

For simplicity of notation, the first component of a particle in local coordinates is assumed to correspond to
the component observed by the measurement during the update. When updating with a vector measurement,
the indexation for additional components during the update will have to be adjusted.

3. THE GAUSSIAN GEODESIC FLOW

Originating as a nonzero diffusion flow [3, 11, 13], the geodesic flow is essentially the Gromov flow
without the stochastic term. Approximating the prior distribution as a Gaussian with covariance matrix P
(in practice, the sample covariance of the prior particles is used), the geodesic flow under the Gaussian prior
approximation is given by

f𝜆 = −
(
P−1 + 𝜆H𝑇R−1H

)−1
H𝑇R−1 (h(x𝜆) − z) (5)

with
𝑑x𝜆
𝑑𝜆

= f𝜆, (6)

where, for nonlinear problems, the matrix H is taken to be

H𝑇 = ∇x (h(x))𝑇 , (7)

where ∇x is the gradient operator.

In the explicit solutions that follow, it is assumed that the particles have been transformed into a local
coordinate system as described in Section 2 and that multivariate measurements have been transformed so
that updates can be performed as sequential 1D updates.

3.1 One-Dimensional Linear Geodesic Case

In the case where the particles are one-dimensional, x = 𝑥, the measurement function h(x) = 𝑥, and
H = 1. Assuming a Gaussian prior, the problem is just an issue of fusing two Gaussians, one with a variance
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of 𝑃 and another with a variance of 𝑅. In such an instance, the flow of Eq. (5) becomes

𝑑𝑥𝜆

𝑑𝜆
=
𝑅−1(𝑧 − 𝑥𝜆)
𝑃−1 + 𝜆𝑅−1 (8)

=
𝑃(𝑧 − 𝑥𝜆)
𝑅 + 𝜆𝑃

. (9)

The solution to this differential equation, taking into account the initial value of a particle 𝑥 at 𝜆 = 0 as 𝑥0, is

𝑥𝜆 =
𝑅𝑥0 + 𝜆𝑃𝑧

𝑅 + 𝑃𝜆
. (10)

Thus, the posterior value is

𝑥1 =
𝑅𝑥0 + 𝑃𝑧

𝑅 + 𝑃
. (11)

In the limit as 𝑅 → 0, 𝑥1 → 𝑧, and as 𝑅 → ∞, 𝑥1 → 𝑥0, as one would expect.

3.2 Two-Dimensional Linear Geodesic Case

In this instance, the state x is a 2 × 1 vector, and the scalar measurement in the coordinate system of
Section 2 is taken to be the first element of x. That is

P =

[
𝑝11 𝑝12

𝑝12 𝑝22

]
(12)

H =
[
1 0

]
(13)

x =

[
𝑥1

𝑥2

]
. (14)

In this instance, the differential equation for the flow becomes

𝑑x𝜆
𝑑𝜆

=


𝑝11(𝑧 − 𝑥1,𝜆)
𝑅 + 𝑝11𝜆

𝑝12(𝑧 − 𝑥1,𝜆)
𝑅 + 𝑝11𝜆

 . (15)

It can be seen that the differential equation for 𝑥1 can be solved independently of that for 𝑥2. That is,

𝑑𝑥1

𝑑𝜆
=

𝑝11(𝑧 − 𝑥1)
𝑅 + 𝑝11𝜆

. (16)
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Comparing to Eq. (9) in Section 3.1, the solution for 𝑥1, taking the initial condition into account, is

𝑥1,𝜆 =
𝑅𝑥1,0 + 𝜆𝑝11𝑧

𝑅 + 𝑝11𝜆
. (17)

Substituting Eq. (17) into the differential equation for 𝑥2,𝜆 in Eq. (15) results in the differential equation

𝑑𝑥2,𝜆

𝑑𝜆
=

𝑝12

(
𝑧 − 𝑅𝑥1,0+𝜆𝑝11𝑧

𝑅+𝑝11𝜆

)
𝑅 + 𝑝11𝜆

(18)

=
𝑝12𝑅 (𝑧 − 𝑥10)
(𝑅 + 𝑝11𝜆)2

. (19)

The differential equation for 𝑥𝑥,𝜆 can just be integrated to get

𝑥2,𝜆 = 𝑥2,0 +
𝜆𝑝12 (𝑧 − 𝑥10)

𝑅 + 𝑝11𝜆
. (20)

Thus, an explicit solution to the entire integration over the flow is

x1 =


𝑅𝑥1,0 + 𝑝11𝑧

𝑅 + 𝑝11

𝑥2,0 +
𝑝12 (𝑧 − 𝑥10)

𝑅 + 𝑝11

 . (21)

3.3 Higher-Dimensional Linear Geodesic Cases

When the state x is a 2 × 1 vector and the measurement is again the first component, the parameters
become

P =


𝑝11 𝑝12 𝑝13

𝑝12 𝑝22 𝑝23

𝑝13 𝑝23 𝑝33

 (22)

H =
[
1 0 0

]
(23)

x =


𝑥1

𝑥2

𝑥3

 . (24)
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The differential equation for the flow is thus

𝑑x𝜆 =



𝑝11(𝑧 − 𝑥1,𝜆)
𝑅 + 𝑝11𝜆

𝑝12(𝑧 − 𝑥1,𝜆)
𝑅 + 𝑝11𝜆

𝑝13(𝑧 − 𝑥1,𝜆)
𝑅 + 𝑝11𝜆


𝑑𝜆. (25)

The similarity to Eq. (15) in the 2D case can be seen. Again, one can solve for 𝑥1,𝜆 and then solve for the
other components. The pattern continues for higher-dimensional problems. Thus, the solution in the general
𝑑𝑥-dimensional case is

x1 =



𝑅𝑥1,0 + 𝑝11𝑧

𝑅 + 𝑝11

𝑥2,0 +
𝑝12 (𝑧 − 𝑥10)

𝑅 + 𝑝11

𝑥3,0 +
𝑝13 (𝑧 − 𝑥10)

𝑅 + 𝑝11
...

𝑥𝑑𝑥 ,0 +
𝑝1𝑑𝑥

(𝑧 − 𝑥10)
𝑅 + 𝑝11


. (26)

4. THE GAUSSIAN GROMOV FLOW

Whereas the geodesic flow was derived assuming a stochastic differential equation of the form in Eq.
(1), it omitted the diffusion term. The Gromov flow includes the diffusion term. Specifically, the explicit
solution of [10] under the approximation of a scalar distribution in local coordinates is used. A summary of
the literature and a full derivation is given in [6].

The Gromov flow used here is

f𝜆 = −
(
P−1 + 𝜆H𝑇R−1H

)−1
H𝑇R−1 (h − z) (27)

Q𝜆 =

(
P−1+𝜆H𝑇R−1H

)−1
H𝑇R−1H

(
P−1+𝜆H𝑇R−1H

)−1
, (28)

where Q𝜆 is the square of the diffusion matrix in Eq. (1)

Q𝜆 = B𝜆B
𝑇
𝜆 . (29)
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The diffusion matrixB𝜆 can be obtained analytically. If S𝑅 is a matrix, such as a Cholesky decomposition
of R, that satisfies

R = S𝑅S
𝑇
𝑅 , (30)

then

B𝜆 =

(
P−1+𝜆H𝑇R−1H

)−1
H𝑇

(
S𝑇𝑅

)−1
. (31)

When the measurement z is a scalar, the Wiener process 𝜷𝜆 in Eq. (1) is scalar.

In the explicit solutions that follow, it is assumed that the particles have been transformed into a local
coordinate system as described in Section 2 and that multivariate measurements have been transformed so
that updates can be performed as sequential 1D updates.

4.1 One-Dimensional Linear Gromov Case

A scalar state x = 𝑥 in the coordinate system of Section 2 initially is used with a measurement function
h(x) = 𝑥, so that H = 1. The standard deviation of the measurement is 𝑆 =

√
𝑅. In such an instance, the

stochastic differential equation Eq. (1) takes the form

𝑑𝑥𝑡 = (𝑎(𝑡)𝑥𝑡 + 𝑏(𝑡)) 𝑑𝑡 + 𝑐(𝑡)𝑑𝛽𝑡 , (32)

where

𝑎(𝑡) = − 𝑃

𝑆2 + 𝑃𝑡
(33)

𝑏(𝑡) = 𝑃𝑧

𝑆2 + 𝑃𝑡
(34)

𝑐(𝑡) = 𝑃𝑆

𝑆2 + 𝑃𝑡
. (35)

An explicit solution for an Ito integral of such a stochastic differential equation from time 𝑡 = 0 to 𝑡 = 𝜆 is
given in [14, Ch. 4.4] as

𝑥𝜆 =Φ𝜆

(
𝑥0 +

∫ 𝜆

0
Φ−1

𝑡 𝑏(𝑡)𝑑𝑡 +
∫ 𝜆

0
Φ−1

𝑡 𝑐(𝑡)𝑑𝛽𝑡
)

(36)

Φ𝜆 = exp

(∫ 𝜆

0
𝑎(𝑡)𝑑𝑡

)
. (37)
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In this instance,

Φ𝜆 = exp

(
−

∫ 𝜆

0

𝑃

𝑆2 + 𝑃𝑡
𝑑𝑡

)
(38)

= exp
(
log

(
𝑆2

)
− log

(
𝑆2 + 𝑃𝜆

))
(39)

=
𝑆2

𝑆2 + 𝑃𝜆
(40)

and

Φ−1
𝑡 𝑏(𝑡) =𝑃𝑧

𝑆2
(41)

Φ−1
𝑡 𝑐(𝑡) =𝑃

𝑆
, (42)

so Eq. (36) becomes

𝑥𝜆 =
𝑆2𝑥0 + 𝑃𝑧𝜆

𝑆2 + 𝑃𝜆
+ 𝑃𝑆

𝑆2 + 𝑃𝜆

∫ 𝜆

0
𝑑𝛽𝑡 (43)

with ∫ 𝜆

0
𝑑𝛽𝑡 ∼ N {0, 𝜆} . (44)

Consequently, at 𝜆 = 1,

𝑥1 ∼ N
{
𝑅𝑥0 + 𝑃𝑧

𝑅 + 𝑃
,

𝑃2𝑅

(𝑅 + 𝑃)2

}
. (45)

Note that each particle being propagated should be drawn independently. As 𝑅 → 0, the mean goes to 𝑧 and
the variance goes to 0, as might be expected. Similarly, as 𝑅 → ∞, the mean goes to 𝑥0, and the variance
also goes to 0, as would also be expected.
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4.2 Two-Dimensional Linear Gromov Case

In this instance, the state x is a 2 × 1 vector, and the measurement observed is the first element of the
state, so

P =

[
𝑝11 𝑝12

𝑝12 𝑝22

]
(46)

H =
[
1 0

]
(47)

x =

[
𝑥1

𝑥2

]
, (48)

with h(x) = 𝑥1. This leads to Eq. (27) and Eq. (31) becoming

f𝜆 = −


𝑝11𝑥1,𝜆

𝑆2 + 𝑝11𝜆
𝑝12𝑥1,𝜆

𝑆2 + 𝑝11𝜆

 +


𝑝11𝑧

𝑆2 + 𝑝11𝜆
𝑝12𝑧

𝑆2 + 𝑝11𝜆

 (49)

B𝜆 =


𝑝11𝑆

𝑆2 + 𝑝11𝜆

𝑝12𝑆

𝑆2 + 𝑝11𝜆

 (50)

𝑑x𝜆 =f𝜆𝑑𝜆 + B𝜆𝑑𝛽𝜆. (51)

It can be seen that the solution for 𝑥1,𝜆 is independent of that of 𝑥2,𝜆. Thus, from Eq. (43),

𝑥1,𝜆 =
𝑆2𝑥1,0 + 𝑝11𝑧𝜆

𝑆2 + 𝑝11𝜆
+ 𝑝11𝑆

𝑆2 + 𝑝11𝜆

∫ 𝜆

0
𝑑𝛽𝑡 . (52)

Substituting the above into the equation for the 𝑑𝑥2,𝜆 component of Eq. (51) results in

𝑑𝑥2,𝜆 =

(
−𝑝12

(
𝑆2𝑥1,0 + 𝑝11𝑧𝜆(
𝑆2 + 𝑝11𝜆

)2 + 𝑝11𝑆(
𝑆2 + 𝑝11𝜆

)2 ∫ 𝜆

0
𝑑𝛽𝑡

)
+ 𝑝12𝑧

𝑆2 + 𝑝11𝜆

)
𝑑𝜆 + 𝑝12𝑆

𝑆2 + 𝑝11𝜆
𝑑𝛽𝜆 (53)

=

(
𝑝12𝑧

𝑆2 + 𝑝11𝜆
−

𝑝12
(
𝑆2𝑥1,0 + 𝑝11𝑧𝜆

)(
𝑆2 + 𝑝11𝜆

)2 − 𝑝12𝑝11𝑆(
𝑆2 + 𝑝11𝜆

)2 ∫ 𝜆

0
𝑑𝛽𝑡

)
𝑑𝜆 + 𝑝12𝑆

𝑆2 + 𝑝11𝜆
𝑑𝛽𝜆. (54)

Since no 𝑥2,𝜆 terms appear in the above, the individual terms can just be integrated to get

𝑥2,𝜆 = 𝑥2,0 +
𝑝12(𝑧 − 𝑥10)𝜆
𝑆2 + 𝑝11𝜆

− 𝑝12𝑝11𝑆

∫ 𝜆

0

1(
𝑆2 + 𝑝11𝑠

)2 ∫ 𝑠

0
𝑑𝛽𝑡𝑑𝑠 + 𝑝12𝑆

∫ 𝜆

0

1

𝑆2 + 𝑝11𝑡
𝑑𝛽𝑡 . (55)
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The second stochastic integral evaluates to∫ 𝜆

0

1

𝑆2 + 𝑝11𝑡
𝑑𝛽𝑡 ∼ N

{
0,

1

𝑆2 + 𝑝11𝜆

}
. (56)

However, the solution to the first integral is not found as easily. Moreover, because all integrals are integrating
over the same Wiener process, the integral values are correlated and must be found jointly. Thus, two possible
approximation methods are suggested:

1. Discard the integral terms in Eq. (55) and simulate the Wiener integral in Eq. (52), by sampling the
N{0, 𝜆} distribution.

2. Generate all of the integral values by simulating a scalar Wiener process and summing the discretized
results to approximate the integrals. It was observed that typically, a large number of discretized
steps are needed, perhaps on the order of 105, to model these integrals accurately without introducing
instability that can affect the particles adversely compared to the above method.

The discrete approximation of stochastic integrals is discussed in [14]. All integrals are to be evaluated
using 𝑁 discretized steps. This will require a realization of the Wiener process 𝛽 at 𝑁 +1 times. Specifically,
𝑡0 = 0, 𝑡𝑁 = 𝜆, and in between 𝑡𝑘 = (𝑘/𝑁)𝜆. Let 𝛽𝑘 denote the realization of 𝛽 at the discrete time 𝑘 , which
corresponds to time 𝑡𝑘 . Define

Δ = (1/𝑁)𝜆. (57)

A simulated realization of 𝛽𝑘 values is obtained recursively as

𝛽0 = 0 (58)
𝛽𝑘 = 𝛽𝑘−1 + N {0,Δ} . (59)

The value 𝛽𝑁 is the solution to the integral in Eq. (52).

For a function 𝑓 , a discretization of an Ito integral over the function is

∫ 𝜆

0
𝑓 (𝑡)𝑑𝛽𝑡 ≈

𝑁−1∑︁
𝑘=0

𝑓 (𝑡𝑘) (𝛽𝑘+1 − 𝛽𝑘) . (60)

Similarly, when given a non-random measure, an integral can be approximated with a Riemann sum as

∫ 𝜆

0
𝑓 (𝑡)𝑑𝑡 ≈

𝑁−1∑︁
𝑘=0

𝑓 (𝑡𝑘)Δ. (61)
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Combining Eq. (60) and Eq. (61) leads to the joint discretization

∫ 𝜆

0
𝑓 (𝑡)

∫ 𝑡

0
𝑑𝛽𝑠𝑑𝑡 ≈

𝑁−1∑︁
𝑘=0

𝑓 (𝑡𝑘)
∫ 𝑡𝑘

0
𝑑𝛽𝑠Δ (62)

≈
𝑁−1∑︁
𝑘=0

Δ 𝑓 (𝑡𝑘)
𝑘−1∑︁
𝑗=0

(
𝛽 𝑗+1 − 𝛽 𝑗

)
(63)

=

𝑁−1∑︁
𝑘=0

Δ 𝑓 (𝑡𝑘) (𝛽𝑘 − 𝛽0) . (64)

4.3 Arbitrary-Dimensional Linear Gromov Case

As was the case for the geodesic flow, when considering the Gromov flow, in higher dimensions,
all subsequent dimensions are only coupled to the first dimension. Thus, the solution from Section 4.2
generalizes to an arbitrary number of dimensions as

x1 =



𝑆2𝑥1,0 + 𝑝11𝑧

𝑆2 + 𝑝11
+ 𝑝11𝑆

𝑆2 + 𝑝11

∫ 1

0
𝑑𝛽𝑡

𝑥2,0 +
𝑝12(𝑧 − 𝑥10)
𝑆2 + 𝑝11

− 𝑝12𝑝11𝑆

∫ 1

0

1(
𝑆2 + 𝑝11𝑠

)2 ∫ 𝑠

0
𝑑𝛽𝑡𝑑𝑠 + 𝑝12𝑆

∫ 1

0

1

𝑆2 + 𝑝11𝑡
𝑑𝛽𝑡

...

𝑥𝑑𝑥 ,0 +
𝑝1𝑑𝑥

(𝑧 − 𝑥10)
𝑆2 + 𝑝11

− 𝑝1𝑑𝑥
𝑝11𝑆

∫ 1

0

1(
𝑆2 + 𝑝11𝑠

)2 ∫ 𝑠

0
𝑑𝛽𝑡𝑑𝑠 + 𝑝1𝑑𝑥

𝑆

∫ 1

0

1

𝑆2 + 𝑝11𝑡
𝑑𝛽𝑡


. (65)

The same stochastic integrals are present in all dimensions after the first one, so the computational complexity
of the integration does not increase as the dimensionality of the problem increases.

5. SIMULATION EXAMPLE

As an example, the fusion of a single time-difference-of-arrival (TDOA) measurement with a Gaussian
prior distribution in two dimensions is considered. The PDF of the TDOA measurement is extremely
nonlinear in Cartesian coordinates. In order to use the algorithm developed in this paper, one must determine
an invertible transformation between Cartesian coordinates and a coordinate system where the TDOA
measurement is a component of the state. Ideally, the coordinate system will be fully bijective. However,
without having an obvious systematic approach to generate such a transformation, a coordinate system of a
TDOA measurement and a polar angle is chosen.

A conversion from such TDOA-polar coordinate systems into Cartesian coordinates is needed. This can
be derived in a similar manner to the bistatic conversions utilizing direction cosines that are in [15]. The
geometry of the problem is illustrated in Fig. 1. Assuming a constant index of refraction, the measured
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𝛼
lRx lref

𝑟 1

𝑟
2



lRx − lref



t

Fig. 1—The geometry used in the coordinate systems with TDOA measurements. The target and emitter
are at t. The reference receiver lref determines the reference time of arrival of the signal that the time
at receiver lRx is differenced with. The arrow is the direction of a unit-vector u from the non-reference
receiver to the target.

TDOA is expressed as

TDOA =
1

𝑐
(‖t − lRx‖ − ‖t − lref‖) (66)

where 𝑐 is the speed of signal propagation. For simplicity, it is assumed that 𝑐 has been multiplied out and
there is a range difference of

𝑟diff = ‖t − lRx‖ − ‖t − lref‖ (67)
=𝑟1 − 𝑟2. (68)

Let u be a unit vector pointing from the receiver at lRx to the target. The location of the target is given by

t = lRx + 𝑟1u. (69)

To solve for 𝑟1 given 𝑟diff and u, note that the dot product of the target location and the vector between the
receivers is

𝑟1u
𝑇 (lref − lRx) = 𝑟1‖lref − lRx‖ cos(𝛼) (70)

where the angle 𝛼 is the angle between the u and lref − lRx vectors. Using the law of cosines on the triangle
in Fig. 1 and then substituting Eq. (70) leads to the relation

𝑟22 =𝑟21 + ‖lref − lRx‖2 − 2𝑟1‖lref − lRx‖ cos(𝛼) (71)
=𝑟21 + ‖lref − lRx‖2 − 2𝑟1u

𝑇 (lref − lRx) . (72)

Using Eq. (68), the range 𝑟2 is expressed as

𝑟2 = 𝑟1 − 𝑟diff. (73)
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Substituting into Eq. (72), results in

𝑟1 =
𝑟2diff − ‖lref − lRx‖2

2
(
𝑟diff − u𝑇 (lref − lRx)

) . (74)

Substituting into Eq. (69), the conversion from 𝑟diff and u to Cartesian coordinates is

t = lRx +
𝑟2diff − ‖lref − lRx‖2

2
(
𝑟diff − u𝑇 (lref − lRx)

) u. (75)

To complete the definition of the TDOA-polar coordinate system, the unit vector u is defined as

u =

[
cos(𝜃)
sin(𝜃)

]
. (76)

In the inverse direction, this means that

𝜃 = arctan 2 (𝑦, 𝑥) . (77)

Note that the transformation from Cartesian to TDOA-polar as defined thus far is one-to-one. However, it is
not mathematically “onto.” Points that are not included in the forward conversion are those such that 𝑟1 in
Eq. (74) is negative. The PFF can possibly move points to a region where 𝑟1 is negative. In such an instance,
it was found that for 𝑟1 < 0, changing Eq. (69) to the heuristic

t = lref − 𝑟1u (78)

works well.

In the scenario considered, a reference sensor is placed at lref = [−3 km, 0 km]𝑇 and the other sensor
at lRx = [3 km, 0 km]𝑇 . The target is located at x = [4 km, 4 km]𝑇 . The measurement is taken as a range
difference (already divided by 𝑐 for the TDOAs). The measurement standard deviation is 200m. The prior
distribution is Gaussian with a mean of xprior = [5 km, 3 km]𝑇 and a diagonal covariance matrix with values
of 10 km2 on the diagonal in 𝑥 and 𝑦.

The PFF was initialized by drawing 300 random samples from the prior distribution. The mean and
covariance of the prior used in the filter was set to the sample mean and covariance of the particles, not the
true values. The exact flow was implemented using the expressions of [8], which are repeated in Appendix
A.1. The results of running each of the filters in this paper are shown in Fig. 2. The “Heuristic Gromov
Flow” omits simulating the stochastic integrals in the cross terms (i.e. Eq. (55)) and it simulates the
stochastic integral in Eq. (52) by drawing from a Gaussian distribution with zero mean and unit variance.
The “Gromov Flow” simulates all integrals by generating a Wiener process with 105 steps. In all instances,
the measurement was taken to be at the true position.
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(a) Exact flow (b) Geodesic flow

(c) Gromov flow (d) Heuristic Gromov flow

Fig. 2—The true posterior PDF is illustrated in color below each image for the first scenario. The prior
points are in black. The posterior points are in red.

It can be seen that the exact flow cannot model any of the curvature of the PDF. The geodesic flow
captures the curvature, but not the spread, and each of the Gromov flows captures the curvature and spread
of the PDF. However, the Gromov flows have a number of points that are rather far off, which correspond to
distance points along the measurement PDF. It was observed that this significantly biases the posterior mean.

Not illustrated is the fact that the output of the flows, except for the exact flow, had a few very distant
outlying points that are outside of the plotted region. These are most likely explained by the fact that the
measurement PDF itself has infinitely long tails. The extent to which any of those arise in the posterior
depends on how fast the prior PDF decreases. Examining Eq. (75), it can be seen that if 𝑟diff = ‖lref − lRx‖,
there will exist a u such that the denominator goes to zero and t diverges. The presence of outliers implies that
evaluation of the mean and covariance matrix would be performed best using a robust estimation algorithm,
such as the blocked adaptive computationally efficient outlier nominators (BACON) algorithm of [16].
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Though the exact flow is not particularly bad in Fig. 2, it can produce very bad results when the
mean of the prior is not near a high-probability region of the measurements. Moving the prior mean to
xprior = [−5 km,−3 km]𝑇 , provides the results in Fig. 3, where the particles in the exact flow are not
representative of the uncertainty in the posterior PDF.

(a) Exact flow (b) Gromov flow

Fig. 3—The true posterior PDF is illustrated in color below each image for the second scenario, for which
the mean of the prior distribution is rather far from the target location. The prior points are in black. The
posterior points are in red.

Finally, the Gromov and geodesic flows are limited when the prior distribution is not Gaussian. Taking
the first example with xprior = [5 km, 3 km]𝑇 , a second measurement where the receiver is placed at
lRx = [3 km, 0 km]𝑇 is fused. The fusion of multiple TDOA measurements has been considered for cell
phone localization to satisfy regulations imposed for the E911 standard [17]. The outputs of the Gromov
and Geodesic flows are shown in Figs. 4a and 4c. Both have long tails that are not representative of the
true distribution. However, it was noticed in simulations that given enough measurements, the Gromov flow
generally will converge to a useful estimate. Thus, simply repeatedly updating the Gromov and geodesic
flows over the same set of measurements was considered to see if they would tend to converge to the
maximum-likelihood estimate. As seen in Figs. 4b and 4d, this appears to be the case. A direction of future
research could be to determine the convergence criteria and stability to determine whether iterated particle
filtering could be a useful tool for global maximum-likelihood optimization.
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(a) Gromov flow (b) Gromov flow 10 iterations

(c) Geodesic flow (d) Geodesic flow 10 iterations

Fig. 4—In 4a and 4c, the true posterior PDF is shown below the prior particles (black) and posterior
particles (red) after updating with two measurements. In 4b and 4d, the posterior PDF given a diffuse
prior is shown with the particles after iterating the updates.

6. CONCLUSION

This paper provided an explicit solution to the geodesic flow, a solution to the Gromov flow that is
expressed in terms of three stochastic integrals, and a much simpler and faster approximation to the Gromov
flow that requires the simulation of a Wiener process to evaluate. By eliminating the need to evaluate stiff
differential equations, the performance of the flows now can be analyzed without ambiguity whether poor
performance might be due to the flow, itself, or due to an inability to integrate stiff differential equations.

The performance of both Gromov flow variants was very similar. The geodesic flow lacked the spread
of the Gromov flow. All three of those flows outperformed the exact flow, which can produce very bad
results when given a poor prior distribution. When the prior distribution is not Gaussian, the Gromov
flow can produce poor results. However, when fusing measurements in a TDOA localization scenario, as
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might be representative of what cell phone providers perform for the E911 service, it was observed that
when iterating the Gromov flow over the same set of measurements, the particles tend to converge near the
maximum-likelihood estimates (when given an uninformative prior).

A challenge is choosing a good coordinate system for the flow. Ideally, one should have a fully bijective
coordinate system. However, in the coordinate system chosen for TDOA measurement processing, a heuristic
for handling the conversion when particles move into an invalid region worked well.
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Appendix A

THE ANALYTIC SOLUTION OF THE “EXACT” FLOW

A.1 The Solution Linearized Around the Prior Mean

The explicit solution to the “exact” flow as given in [8] is

x1 =
(
P+P

−1
) 1
2 (x0 − x̂) + x̂ +K (z −Hx̂) (A1)

P+ =P −KHP (A2)

K =PH′ (HPH′ +R)−1 (A3)

where x̂ and P are the mean and the covariance matrix of the prior distribution, x0 is the original position of
a particle, and x1 is the position of the particle after the update.

To examine possible biases in this flow, the case of a scalar state with H = 1 is considered again. The
flow expression above simplifies to

𝑥1 =

√︂
𝑅

𝑃 + 𝑅
(𝑥0 − 𝑥) + 𝑥 + 𝑃(𝑧 − 𝑥)

𝑃 + 𝑅
. (A4)

For the asymptotic values of 𝑅 → 0 and 𝑅 → ∞, 𝑥1 → 𝑧 and 𝑥1 → 𝑥0, respectively, as would be expected.

A.2 The Solution Linearized Around Each Particle

In the literature, it is also common to derive the exact flow linearized around each particle rather than
around the mean on the prior distribution. Derivations of the flow, itself, are given in [6] and [18]. However,
it does not appear that anyone has derived an explicit form of the exact flow as linearized around each particle.
That shall be done here for the scalar case and the bias in this version of the flow shall be revealed.

The differential equation for the exact flow derived as linearized around each particle is

𝑑x𝜆
𝑑𝜆

=A𝜆x𝜆 + b𝜆 (A5)

A𝜆 = − 1

2
PH𝑇

(
𝜆HPH𝑇 +R

)−1
H (A6)

b = (I + 2𝜆A)
(
Ax̂pred −

(
PH𝑇R−1 + 𝜆APH𝑇R−1

)
(h(x) − z)

)
. (A7)

Considering the 1D linear case as before, H = 1 and h(x) = 𝑥, so the above differential equation becomes

𝑑𝑥𝜆

𝑑𝜆
=

𝑃(𝑃(𝑧 − 2𝑥)𝜆 − 𝑅(3𝑥 + 𝑥pred − 2𝑧))
2(𝑅 + 𝑃𝜆)2 . (A8)

19



20 David Frederic Crouse

The solution to this differential equation, taking into account an initial value of 𝑥0, is

𝑥𝜆 =
𝑧

2
+ 𝑅

4(𝑅 + 𝑃𝜆)

(
exp

(
𝑅

2(𝑅 + 𝑃𝜆)

) (
4𝑥0 − 2𝑧

√
𝑒

+
(
−2𝑥pred + 𝑧

)
Ei

(
−1
2

)
+

(
2𝑥pred − 𝑧

)
Ei

(
− 𝑅

2(𝑅 + 𝑃𝜆)

)))
,

(A9)

where Ei is the exponential integral function

Ei (𝑧) ,
∫ ∞

−𝑧

𝑒−𝑡

𝑡
𝑑𝑡. (A10)

When 𝜆 = 1, the limit at 𝑅 → 0 is 𝑥1 = 𝑧/2, and the limit as 𝑅 → ∞ is 𝑥1 = 𝑥0. Consequently, the flow
is biased toward zero. It does not converge to the true solution when given a noise-free measurement, and
thus, this is not a good flow to use.
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