
LONG-DISTANCE BLUETOOTH LOW
ENERGY EXPLOITATION ON A WIRELESS

ATTACK PLATFORM

THESIS

Stephanie L. Long, Captain, USAF

AFIT-ENG-MS-21-M-058

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-21-M-058

LONG-DISTANCE BLUETOOTH LOW ENERGY EXPLOITATION ON A

WIRELESS ATTACK PLATFORM

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Stephanie L. Long, B.S. Chemistry

Captain, USAF

March 25, 2021

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-21-M-058

LONG-DISTANCE BLUETOOTH LOW ENERGY EXPLOITATION ON A

WIRELESS ATTACK PLATFORM

THESIS

Stephanie L. Long, B.S. Chemistry
Captain, USAF

Committee Membership:

Barry E. Mullins, Ph.D., P.E.
Chair

Timothy H. Lacey, Ph.D., CISSP
Member

Robert F. Mills, Ph.D.
Member

Stephen J. Dunlap, M.S., CISSP
Member

AFIT-ENG-MS-21-M-058

Abstract

In the past decade, embedded technology, known as the Internet of Things (IoT),

has expanded for many uses. The smart home infrastructure has drastically grown to

include networked refrigerators, lighting systems, speakers, televisions, watches, and

more. The medical industry has developed IoT devices to monitor patient health,

transmitting data wirelessly to phone applications that can be forwarded to a health

professional. Networked sensors with wireless protocols are being used for military

applications on the battlefield and to do triage in contested environments.

This increase in the use of wireless protocols provides a larger attack surface for

cyber actors than ever before. Due to the nature of this wireless IoT communication,

the data is susceptible to sniffing if the attacker is within physical proximity. While

getting close and remaining undetected may be difficult for an attacker to do, direc-

tional antennas increase the range at which an attacker can sniff the data. Combined

with the ability of medium-to-large sized drones to carry small, lightweight items,

cyber attackers now have an option to simulate physical proximity by mounting an

attack payload on a drone. Not only can the attacker collect data from a remote

location, but she can also attack the networks and/or devices discreetly.

This research builds upon an attack sensor known as skypie, which was de-

veloped in previous research to do target geolocation, Wi-Fi beacon collection, and

network attack [1, 2]. This study extends the cyber attack methodology for discreet

wireless attack given these advances in technology. This prototype is designed using

commercially available products, utilizes a directional antenna, and is lightweight and

low-cost in order to be drone mountable and to emulate what a poorly funded, yet

motivated threat-actor could produce. A new version of the skypie is developed

iv

with Bluetooth Low Energy (BLE) collection capabilities for pattern-of-life analy-

sis and attack capabilities to enumerate a device’s characteristics and attempt to

overwrite those with values of the attacker’s choice. A distance of 600 meters is

hypothesized to be the maximum distance at which the new package developed in

this research, BluBarry, will be successful. To test the hypothesis, experiments

where the skypie is conducting BLE focused Cyber Network Attacks (CNAs) are

conducted at two prototype elevations. The goal is to determine the distances at

which pattern-of-life data can be collected and at what distances the device can be

interacted with by the attacker.

It is determined that the skypie v3 with the BluBarry package is able to pas-

sively collect BLE beacons at a Received Signal Strength Indicator (RSSI) sensitivity

between -53 and -82 decibel-milliwatts (dBm) at an elevation of 3.05 meters (simu-

lating drone height) from over a quarter mile away. One of the three BLE devices

evaluated is able to be interacted with by the prototype up to a distance of 350

meters. Experiments are also conducted at a height of 1 meter to determine the effec-

tiveness of the prototype on a drone at traditional street-level, conducive to attacks

on ground-based platforms such as a rover, in a car, or simply sitting on a table. At

this height, the skypie is able to collect BLE data from 350 meters and is able to

connect to the device from 200 meters.

v

Acknowledgements

My first and most emphatic thank you goes to my Lord and Savior Jesus Christ,

without Whom I could do nothing.

Thank you to my dedicated and knowledgeable advisor, Dr. Mullins. You have been

patient and encouraging whilst advising me, and it is much appreciated.

Thank you to my committee members Dr. Lacey, Dr. Mills, and Mr. Dunlap for

providing expertise, guidance, and advice on this wonderful thesis adventure.

I am grateful to my wonderful mother for encouraging me to pursue my degree and

inspiring me to work hard, for providing snacks, and for being the all-around best

mom.

Thank you to Clint Bramlette for all your kindness and advice.

Shout out to Arvin Bada for being helpful and somewhat funny.

Lastly, thank you to my dogs. They provided support by being the cutest, fluffiest

pups.

Stephanie L. Long

vi

Table of Contents

Page

Abstract . iv

Acknowledgements . vi

List of Figures . x

List of Tables . xii

List of Acronyms . xiii

I. Introduction . 1

1.1 Overview and Background . 1
1.2 Problem Statement . 2
1.3 Research Goals . 3
1.4 Hypothesis . 4
1.5 Approach . 4
1.6 Assumptions and Limitations . 5
1.7 Contributions . 6
1.8 Thesis Overview. 6

II. Background and Literature Review . 8

2.1 Overview . 8
2.2 Bluetooth Low Energy . 8

2.2.1 BLE Controller . 9
2.2.2 Host/Controller Interface . 17
2.2.3 Host . 18

2.3 Related Research . 23
2.3.1 Academic Interest in IoT . 23
2.3.2 BLE Research. 26
2.3.3 BLE Vulnerabilities and Attack Vectors . 29
2.3.4 BLE Vulnerability Mitigation . 31

2.4 Cyber Attack Chain . 33
2.5 Signal Propagation . 34
2.6 Background Summary . 37

III. Prototype Design . 38

3.1 Overview . 38
3.2 System Summary . 38
3.3 Design Goals . 41
3.4 skypie Hardware Design . 42

vii

Page

3.5 skypie Software . 46
3.5.1 Design Model . 46
3.5.2 skypie package . 48
3.5.3 BluBarry package . 51
3.5.4 skyport Package . 53

3.6 Design Summary . 59

IV. Methodology . 60

4.1 Overview and Objectives . 60
4.2 System Under Test . 60
4.3 Factors . 61
4.4 Metrics . 63
4.5 Constant Parameters . 64
4.6 Uncontrolled Variables . 67
4.7 Experiment Design . 68

4.7.1 Experiment One: skypie Elevation 1 Meter 68
4.7.2 Experiment 2: skypie Elevation 3.05 Meters 70

4.8 Summary . 71

V. Results and Analysis . 73

5.1 Overview . 73
5.2 Device Orientation . 74
5.3 Range . 75

5.3.1 Experiment One: Beacon Collection . 76
5.3.2 Experiment One: Device Connection . 79
5.3.3 Experiment Two: Beacon Collection . 80
5.3.4 Experiment Two: Device Connection . 84
5.3.5 Range Beacons and Connections Summarized 84

5.4 Expected RSSIs . 85

VI. Conclusions . 94

6.1 Overview . 94
6.2 Research Conclusions . 95
6.3 Research Contributions/Significance . 96
6.4 Future Work . 98
6.5 Summary . 100

Appendix A. skypie v3 Default Configuration File . 101

Appendix B. skypie v3 blescan.py File . 106

Appendix C. skypie v3 bleconnectquery.py File . 114

viii

Page

Bibliography . 116

ix

List of Figures

Figure Page

1 The BLE Protocol Stack (Adapted from [15]) . 9

2 BLE Frequency Channels [16] . 10

3 Link Layer States [17] . 11

4 Scatternet Consisting of Two Piconets . 12

5 BLE Packet Structure (Adapted from [15]) . 13

6 Link Layer Advertising Channel Payload (Adapted from
[15]) . 15

7 Attribute Example [15] . 21

8 Cyber Attack Chain . 33

9 Visualization of (1) . 35

10 skypie v3 Prototype with the Sena UD-100 Bluetooth
Adapter . 39

11 skypie v3 Prototype Hardware Components . 39

12 Summary of skypie v3 and skyport System Design
(Adapted from [1]) . 40

13 skypie Payload Hardware Diagram . 43

14 3D Printed skypie Structure [1] . 46

15 Software Control Flow Diagram . 50

16 skyport Control Settings Tabs . 54

17 skyport Tabs to Display Data and Send Commands
to Console . 55

18 skyport BLE Tab to Display Database Results . 55

19 skyport Interface for Console Commands to skypie 56

20 skyport Interface for BLE Write Attack Parameters
to skypie . 57

x

Figure Page

21 skyport Console Tab for Attack Output . 59

22 System Under Test Diagram . 62

23 Experiment Location . 65

24 Target Medical IoT Devices . 66

25 Attack Platform at 1 Meter Elevation. 69

26 Attack Platform on Pole at 3.05 Meters for Experiment
Two. 71

27 Pole Compared to a 1.22 Meter Ruler. 71

28 Orientations for Target Devices . 75

29 RSSIs for the Masimo Device for Experiment One 76

30 RSSIs for the Nonin Device for Experiment One . 77

31 RSSIs for the S340 Device for Experiment One . 78

32 Average RSSIs for Experiment One . 79

33 RSSIs for the Masimo Device for Experiment Two 81

34 RSSIs for the Nonin Device for Experiment Two . 82

35 RSSIs for the S340 Device for Experiment Two . 82

36 Average RSSIs for Experiment Two . 83

37 Expected versus Actual RSSIs for Nonin using (2) and (3) 86

38 Expected versus Actual RSSIs for S340 using (2) and (3) 86

39 Nonin RSSI Data from Experiments One and Two 89

40 S340 RSSI Data from Experiments One and Two 90

xi

List of Tables

Table Page

1 skypie v3 Prototype Hardware Overview Adapted
From Barker’s Table [2] . 44

2 skypie v3 Dependencies . 49

3 Experiment Factors . 63

4 Experiment Metrics . 64

5 Constant Parameters . 65

6 Beacon Success for Experiment One . 79

7 Connection Success for Experiment One . 80

8 Beacon Success for Experiment Two. 83

9 Connection Success for Experiment Two . 84

10 Beacon Success for Experiments One and Two . 84

11 Connection Success for Experiments One and Two 85

12 Link Budget Fresnel Zone Calculations . 87

13 Wilcoxon Test for Nonin . 88

14 Wilcoxon Test for S340 . 90

15 Nonin Expected RSSIs for Experiment Two . 92

16 S340 Expected RSSIs for Experiment Two . 93

xii

List of Acronyms

Abbreviation Page

AA Access Address . 15

ACK Acknowledgements . 16

AES Advanced Encryption Standard . 19

AFH Adaptive Frequency Hopping . 11

ATM Automatic Teller Machine . 26

ATT Attribute protocol . 12

BLE Bluetooth Low Energy . v, 3

BR Basic Rate. 8

BTC Bluetooth Classic . 8

C2 Command and Control . 24

ChM Channel Map . 15

CNA Cyber Network Attack . 4

CNAs Cyber Network Attacks . v

CRC Cyclic Redundancy Check . 13

CSRK Connection Signature Resolving Key. 20

CVE Common Vulnerabilities and Exposures . 28

dBm decibel-milliwatts . v

xiii

Abbreviation Page

DoS Denial of Service . 25

ECDH Elliptic Curve Diffie-Hellman . 19

EDIV Encrypted Diversifier . 20

EDR Enhanced Data Rate . 8

FSPL Free Space Path Loss . 35

GAP Generic Access Profile . 18

GATT Generic Attribute profile. 12

GFSK Gaussian Frequency Shift Keying . 10

GPL Ground Path Loss . 36

GPS Global Positioning System . 38

GUI Graphical User Interface . 40

HCI Host/Controller Interface . 17

ICD Implantable Cardioverter Defibrillator . 25

ICS Industrial Control Systems . 24

IoT Internet of Things . iv

IRK Identity Resolving Key . 20

xiv

Abbreviation Page

ISM Industrial, Scientific, and Medical . 10

ISR Intelligence, Surveillance, and Reconnaissance. 24

L2CAP Logical Link Control and Adaptation Protocol . 18

LFSR Linear-Feedback Shift Register. 31

LOS Line of Sight . 36

LTK Long-Term Key . 19

MAC Media Access Control. 22

MD More Data . 16

MIC Message Integrity Check . 16

MIoT Military Internet of Things . 23

MIoTL Mitigation of IoT Leakage . 32

MITM Man-in-the-Middle . 19

NACK No Acknowledgements . 16

NESN Next Expected Sequence Number . 16

NFC Near Field Communications . 19

OOB Out of Band. 19

xv

Abbreviation Page

PCs Personal Computers . 8

PDU Protocol Data Unit . 13

PHY Physical . 10

PINs Personal Identification Numbers . 26

RAND Random Number . 20

RSSI Received Signal Strength Indicator. v

SCA Sleep Clock Accuracy. 15

SFTP Secure File Transfer Protocol . 39

SIG Special Interest Group . 8

SM Security Manager . 18

SN Sequence Number . 16

STK Short-Term Key . 19

SUT System Under Test . 60

TK Temporary Key. 19

UTC Universal Time Code . 52

UUID Universally Unique Identifier. 21

xvi

LONG-DISTANCE BLUETOOTH LOW ENERGY EXPLOITATION ON A

WIRELESS ATTACK PLATFORM

I. Introduction

1.1 Overview and Background

The 1999 Disney movie Smart House was a fantasy movie that filled the minds

of children with the possibilities of home automation fulfilling every snack desire

and home activity [3]. The teenage boy in the family entered a contest and won a

fully automated smart home where he could simply speak a request and his favourite

milkshake would pop out of drawer in the kitchen, or he could request a channel change

and the television would display his show of choice. Every gadget in the house was

automated and connected to a hub (which turned out to be an evil computer) that

controlled the house.

Even as far back as the 1950’s, Westinghouse offered 16 different floor plans for

what would be a home entirely controlled by electric power and automation [4]. Light

sensors, automated laundry machines, sensors to display outdoor weather data on an

indoor hub, and entertainment centers were all advertised features of these homes.

While the electrified 1950’s Westinghouse version of home automation faded into

unrealized retrofuturism, even half a century later when Smart House was released,

the ‘smart home’ was still firmly out of the grasp of the consumer. However, the year

is now 2021, and home automation has quickly become a billion-dollar industry [5].

If manufacturers can connect a home appliance to the Internet, it seems like they

will. In this haste, while society may enjoy the benefits of these products, it is vital

1

to consider, evaluate, and remediate the risks associated.

The expanse of Internet connected devices has greatly impacted everyday life in

the 21st century. The technological advances in sensors and actuators have changed

the landscape of how industries, hospitals, companies, and even homes operate. This

ever-connected growing pile of embedded devices from appliances to wearables to

literally the kitchen sink is known as the Internet of Things (IoT).

The idea of the Internet of Things began in 1982, when a group of programmers at

Carnegie Melon University connected a drink machine to the ARPANET to monitor

the supply and temperature of the machine [6]. This concept was initially known as an

embedded Internet system. In 1994, an article published by the Echelon Corp posited

the idea that data networks and control networks could work together to integrate

embedded microprocessors in distributed networks [7]. This developed further in 1998

when a researcher from Stanford University discussed developments in embedded

Internet technology where systems from handheld devices to factory automation and

machine controllers could be networked [8]. Over the past two decades, IoT devices

have been integrated into many different facets of life. Security Today reported 26.7

billion IoT devices currently in use, with an estimated 35 billion to be expected by

2021 and 75 billion by 2025 [9]. While the Internet of Things name may hint that the

devices are solely based on TCP/IP protocols, there are several wireless protocols also

intertwined under this definition to include: IEEE 802.11 (Wi-Fi), 802.15.4 (Zigbee),

802.15.1 (Bluetooth and Bluetooth Low Energy), and G.9959 (Z-Wave).

1.2 Problem Statement

Networked embedded devices are gaining in popularity for everyday use in homes

around the world. Additionally, these systems are being used in hospitals, at the

enterprise level, on the battlefield, and elsewhere. However, the lack of security,

2

particularly in devices utilizing the Bluetooth Low Energy (BLE) protocol, leaves

users susceptible to data leakage and attacks. This research seeks to address the

distance at which attacks can be made on BLE devices, using a lightweight, low-cost

attack platform. Previous work on this platform has focused on use on a drone, and

while this work does not preclude such usage, it continues without drone analysis.

Work done by previous researchers such as Rose [10] and Beyer [11] have shown that

important information can be gleaned passively on IoT and BLE devices, and can

even be exploited from a long distance. This work furthers those bodies of research

and that done by previous skypie researchers Bramlette [1] and Barker [2] to add

BLE capabilities to an attack platform that can be controlled remotely and does not

require the attacker in close proximity to the target.

1.3 Research Goals

The goal of this work is to further develop the skypie attack platform and

skyport attacker interface to incorporate BLE capabilities. The previous prototype

includes geolocation capabilities and Wi-Fi network exploitation. This work is rele-

vant to the development of lightweight, low-cost attack platforms that are portable

and drone mountable. However, with the proliferation of IoT devices, this research

finds it especially advisable and beneficial to integrate pattern-of-life BLE collection

into the skypie framework for furthering understanding of the risks presented by

the growing footprint of the wireless IoT realm. The research seeks to answer the

following questions:

• How close does an attacker need to be to collect BLE data from a target using

lightweight, low-cost equipment?

• Can pattern-of-life data be collected at 600 meters?

3

• At what distance does pattern-of-life collection become infeasible?

• Can the attacker also interact with the target from that distance?

• How is the range of the skypie affected at a height of 1 meter versus 3.05

meters?

1.4 Hypothesis

This research hypothesizes that BLE pattern-of-life collection can be collected

out to 600 meters using a cyber attack platform. This work aims to incorporate BLE

collection capabilities into the skypie attack platform and determine the maximum

distance at which an attacker could feasibly enumerate BLE version 4.0-4.2 devices.

BLE beacons are collected from medical IoT devices at increasing distances, and

connection to the device and an enumeration of current characteristics and values

is attempted. The attacker is allowed remote control of the attack platform, with

capabilities to attempt to overwrite characteristics on the BLE device. 600 meters is

chosen as the theorized maximum distance due to the geolocation capabilities proven

in the skypie’s first iteration by Bramlette. 600 meters is also roughly 6 times

standard outdoor usages for Wi-Fi devices. While skypie v2 was proven to have

Wi-Fi attack capabilities out of 2200 meters, BLE is a different technology than Wi-

Fi, as BLE is known for its low energy, low powered, short-range capabilities, and

thus 600 meters is still a lofty, but realistic goal.

1.5 Approach

A new skypie version is created to upgrade the attack platform to include BLE

Cyber Network Attack (CNA) capabilities. The prototype consists of commercially

available products with a Raspberry Pi 4 as the main brain. It utilizes a directional

4

antenna, and is supported by a Wi-Fi adapter, Bluetooth adapter, and microcontroller

unit and GPS module for geolocation. This research maintains the original design

goals to be lightweight in order to be drone mountable and low-cost to be achieved

by a poorly funded threat-actor [1]. Furthermore, the skyport attacker interface is

upgraded.

Medical IoT pulse oximeter devices utilizing BLE versions 4.0-4.2 are the focus

of this research, but the platform can be used to exploit any version of BLE. While

the goal was to collect up to 600 meters, the maximum range is found to be 450

meters. Data is acquired at collection points starting at 50 meters, increasing in 50

meter intervals to 450 meters for a total of nine points where beacons were collected.

The experiments are run in an open field where BLE beacons are collected from each

device, then connection and device enumeration are attempted. The attacker then

attempts to overwrite values set on the device, depending on how the device has been

configured by the manufacturer.

1.6 Assumptions and Limitations

This research and the experiments herein are bounded by the following assump-

tions and limitations:

1. All experimentation is conducted in an open, grassy, flat field. This choice

minimizes the effects of buildings, trees, and other materials. However, as the

experiments are run at different elevations, ground interference is a possibility.

2. The advertised distance for BLE v4.0 is up to 100 meters outdoors (assuming a

powerful radio), and as this research utilizes a directional antenna and external

Bluetooth adapter, experimentation begins at 50 meters for half the maximum

distance, then gathers data in increments of 50 meters.

5

3. The location (optimal bearing) of the targets is assumed known.

4. BLE operates in the 2.4 GHz frequency, but as this experimentation is run

in an open field, the interference of other devices in that 2.4 GHz range is

considered negligible at least and indicative of what might be present in an

urban environment at most.

1.7 Contributions

This research contributes to the body of knowledge on airborne wireless attack

research, particularly in relation to BLE. It also analyzes the effectiveness of the

attack platform at different heights to contribute to its use on different mediums or if

the drone is flown at a lower elevation than normal. It also contributes to research on

medical IoT BLE devices from both a pattern-of-life and enumeration/modification

perspective.

It empirically proves that BLE pattern-of-life data can be collected at a distance

of over a quarter a mile (450 meters), given a prototype height of 3.05 meters, and

collection at approximately a fifth a mile (350 meters) with a height of 1 meter. This

is up to 3.5-4.5 times the best-case scenario maximum BLE outdoor range of the

devices [12].

1.8 Thesis Overview

The thesis is organized into six chapters. Chapter II gives an overview on the

Internet of Things, then goes into what the BLE protocol is and how it works. The

chapter continues on to discuss current research on BLE, vulnerabilities, attack vec-

tors, and mitigation, then concludes with a description of the cyber attack chain.

Chapter III describes the design of the skypie prototype developed in this research

and the skyport interface. Chapter IV details the System Under Test (SUT) and

6

methodology used for the experiments. Chapter V discusses and analyzes the results

of the experiments. Finally, Chapter VI summarizes the research and proposes future

work for the research area.

7

II. Background and Literature Review

2.1 Overview

This chapter provides background understanding in Section 2.2 of what the Blue-

tooth Low Energy protocol is, how it is designed, and how it works. Section 2.3

continues with a description of related research in IoT, then on BLE and the vulner-

abilities, attacks, and possible vulnerability mitigation techniques. The cyber attack

chain is introduced in Section 2.4, followed by a discussion on signal propagation

in Section 2.5. The chapter concludes with Section 2.6 where the remainder of this

thesis is framed.

2.2 Bluetooth Low Energy

Bluetooth is a wireless medium that allows data exchange over short distances to

build Personal Area Networks (PAN). The idea for Bluetooth originated in Sweden

in 1989 when a researcher wanted to design wireless headsets [13]. It became a reality

when the Bluetooth Special Interest Group (SIG) was launched in 1998, and in 1999

when the first Bluetooth Basic Rate (BR) mobile headset won the “Best of Show

Technology Award” [14]. Bluetooth was integrated into Personal Computers (PCs)

and mobile phones for the first time in 2000 [13]. The first computer it was integrated

into was the IBM ThinkPad A30. Bluetooth v2.1 Enhanced Data Rate (EDR) was

released in 2007 and incorporated Secure Simple Pairing. In 2009, Bluetooth v3.0

High Speed came out, and Bluetooth Low Energy (BLE) v4.0 followed a year later,

with BLE v5.0 released in 2016. Once BLE was introduced, Bluetooth often was

known as Bluetooth Classic (BTC), and BLE sometimes as Bluetooth Smart. While

BLE bears the brand of Bluetooth, it was born out of the v4.0 specification, and the

purpose and design goal are different from BTC.

8

Bluetooth was originally developed for short-range, constant transmission of au-

dio, file transfers, or the use of a wireless keyboard. Such activities are typically

time-intensive and thus require a sustainable power source. Conversely, BLE was

designed to minimize power consumption, cost, and the data rate. In particular, it

was intended for devices that only require periodic interaction with small data packet

sizes. BLE v4.0 has a maximum range of 100 meters outdoors, with a more realistic

indoor range of 10 meters [12]. For example, Bluetooth is the obvious choice for con-

tinuous streaming of music. A non power-intensive task, like interacting with home

automation systems to turn a lightbulb on or off or get a temperature update, can

be accomplished with BLE. The BLE protocol stack is divided into a controller, host

controller interface, and host with the application layer on top (Figure 1) [15].

Figure 1: The BLE Protocol Stack (Adapted from [15])

2.2.1 BLE Controller

The controller is responsible for transmitting and receiving radio signals, and then

interpreting the signals into data packets. The component consists of analog and

9

digital parts for the radio frequency and the hardware necessary to send and receive

packets. The Physical (PHY) and Industrial, Scientific, and Medical (ISM) band

operate over 40 radio frequency channels, each 2 MHz apart. Gaussian Frequency

Shift Keying (GFSK) is used as the modulation scheme with a modulation index

between 0.45 and 0.55, which allows reduced power consumption. BLE v4.0 has an

advertised range maximum of up to 100 meters indoor/outdoor and BLE v5.0 has an

advertised maximum range of 400 meters indoor/1,000 meters outdoor [12].

2.2.1.1 Link Layer

The LL is responsible for advertising, scanning, and establishing connections. As

shown in Figure 2, there are 40 channels split into two types to accomplish this:

advertising and data channels. Three channels, indexed as 37, 38, and 39, are used

as advertising channels, and the other 37 are used as data channels [16].

Figure 2: BLE Frequency Channels [16]

Since BLE uses the 2.4 GHz range, interference from other wireless mediums at

the same frequency can be an issue. Wi-Fi, BTC, Zigbee, and other protocols also use

this band, as well as commercial items such as microwave ovens and cordless phones.

For this reason, the BLE system incorporated channel hopping, where the devices

10

only stay on a particular channel long enough to transmit and receive a single packet.

Channel hopping uses Adaptive Frequency Hopping (AFH) to sense interference from

other devices and hop across the channels accordingly to minimize such interference.

Additionally, a unique access address is assigned to each connection as a correlation

code for interacting devices. Figure 3 shows the five states that the LL can be in:

standby, advertising, scanning, initiating, and connection.

Figure 3: Link Layer States [17]

1. Standby: No packets are sent or received in the standby state. It can be entered

from any previous state, and it is the default LL state.

2. Advertising: The advertising state, where the device is known as an advertiser,

is responsible for transmitting advertising channel packets and responding to

responses from the advertising channel packets.

3. Scanning: A scanner in the scanning state listens for advertisements.

4. Initiating: An initiator in the initiating state is responsible for responding to

advertisement packets to initiate a connection.

11

5. Connection: The connection state is used to establish a connection between the

two devices.

Once a connection is established, there are two roles for the devices. These roles

have been referred to as master and slave, as well as central and peripheral. This re-

search will use the central and peripheral terminology. The central, which is typically

a phone, desktop/laptop, or tablet, determines the timing scheme for transmissions,

and the peripheral, communicates information back to the central. As shown in Fig-

ure 4, a central device (c) can have up to seven active peripherals (p) in a piconet,

which is an ad hoc wireless Bluetooth network that links two or more devices on the

same physical channel. A scatternet is an ad hoc Bluetooth network consisting of

two or more piconets. This allows for a device to act as a central to one device while

simultaneously acting as the peripheral to another device in a separate piconet.

Figure 4: Scatternet Consisting of Two Piconets

A device in a connection at the link layer acts in one of two roles, either the central

or the peripheral. At the Generic Attribute profile (GATT)/Attribute protocol (ATT)

level, a device is either the central device (often a phone, laptop, PC, or another user

12

device) or the peripheral (embedded device). BLE terminology also refers to a server

and client relationship. Generally, the user interactive device is the client, while the

IoT device acts as the server and sends information as requested to the client. In this

research, the terms central and client are used interchangeably to refer to a phone,

laptop, or another device the user is interacting with. Similarly, the terms peripheral

and server correlate to the sensor device.

2.2.1.2 Packet Types

Both the advertising channel packets and data channel packets have the same

overall packet structure, but the payload differs, shown in Figure 5. The preamble

is 1 byte long and has predefined values based upon whether it is an advertising

or data channel packet. The next 4 bytes consist of the access address, which is

always 0x8E89BED6 for advertising channel packets with a unique 4 byte value for a

connection for data channel packets. The next field in the packet structure for BLE

is called the Protocol Data Unit (PDU) and is variable in length from 2-39 bytes

for an advertising PDU or 2-261 bytes for a data channel PDU. The packet is then

appended by a 3 byte Cyclic Redundancy Check (CRC) to perform an integrity check

for packet transmission.

Figure 5: BLE Packet Structure (Adapted from [15])

The advertising channel PDU consists of a 2 byte header and a variable length

payload. Within the header exists a 4 bit PDU type which is summarized in the Core

13

Specification for Bluetooth v4.2 [18]. The PDUs discussed in this research are:

• ADV IND: Advertising indications, used by a peripheral device to advertise to

any central device

• ADV DIRECT IND: Advertising direct indication, similar to the ADV IND but

targeting a specific central device

• ADV NONCONN IND: Advertising non-connectable indication, used to broad-

cast information to any listening device

• ADV SCAN IND: Advertising scan indication (ADV SCAN IND), which allows

additional information to be requested by the central device

• SCAN REQ: Request from the central requesting additional information from

a peripheral

• SCAN RSP: Response from the peripheral to the central following a SCAN REQ

• CONN REQ: Sent from the central to the peripheral to establish connection

parameters [19]

• LL TERMINATE IND: Error code field sent to the peripheral from the central

for why the connection will be terminated

The payload for the CONN REQ contains vital data sent from the central (ini-

tiator) device to the peripheral (advertiser) to follow the connection [15]. When the

connection is established between the central and peripheral, the central communi-

cates the necessary data to sync the connection over various channels for the frequency

hopping algorithm in the PDU. This allows for reduced power consumption by the

peripheral as it can enter a sleeping period and wake up as specified by the central

14

to check for packets. Each packet transmitted during the connection between the

central and peripheral is called a Connection Event (CE).

Figure 6 shows the fields encapsulated in the payload for the advertising PDU [15].

The Access Address (AA) connection value, which is unique to each BLE connection

and is used as the source and destination address for the devices for the remainder

of the connection, is the first field. The next slot is the random value used for the

CRC Initialization calculation (CRC Init). The transmit Window Size (WinSize) and

Offset (WinOffset) are used to determine the transmit window for the first CE between

the devices. The subsequent CE timing schemes are determined by the connection

Interval. The allowable peripheral Latency is next, then the connection supervision

Timeout field, which is calculated based upon the connection interval and peripheral

latency and is used to ensure that a connection is still ongoing. Connections can be

dropped due to increased distance between the devices beyond the capable range,

interference on the channels, or loss of power.

Figure 6: Link Layer Advertising Channel Payload (Adapted from [15])

The Timeout monitors the connection state, and if inactivity is experienced greater

than the agreed upon time, the connection state is exited and the peripheral returns

to the standby state with a notification to the central, shown in Figure 3. The

Channel Map (ChM) field indicates which channel index sequence the connection will

use along with the Hop field to specify the hop pattern. The last field is the central’s

Sleep Clock Accuracy (SCA), setting the threshold for drift in clock synchronization

between the devices [15].

The data channel PDU also consists of a 2 byte header, but is followed by a

15

variable length payload and an optional Message Integrity Check (MIC). The MIC is

included only for encrypted LL traffic with a payload larger than zero. The header

consists of an LL ID for whether the packet is a data or control PDU, the Next

Expected Sequence Number (NESN), Sequence Number (SN), the More Data (MD)

field, and the length of the payload and MIC to follow. The packet structure of an LL

Control PDU includes a control field that sends requests, indicators, and responses to

ensure the connection is still valid and to correspond with the central if the peripheral

is getting data it does not understand or recognize.

The SN and NESN exchange is done in a manner as to ensure that data is not

missed, working as Acknowledgements (ACK) and No Acknowledgements (NACK)

[20]. For example, a central device sends an SN of 0 in the first packet and a NESN

of 0. In order to convey an ACK on the part of the peripheral, the response packet

should have an SN set to 0, with a NESN set to 1 to ACK the previous packet. If the

NESN is set to 0, the central will retransmit the original packet until the peripheral

replies with a SN of 0 and NESN of 1.

2.2.1.3 Lifecycle of a BLE Connection at the Link Layer

The lifecycle of a BLE connection can be tracked from the advertisement packet

to the LL TERMINATE IND packet to end the connection [18]. Each connection

spends a specified amount of time determined by the central device on a channel for

each CE before hopping to the next channel. The Bluetooth SIG specifies that this

connection interval be between 7.5 milliseconds and 4.0 seconds. If a peripheral has

no information to send to the central, the specified time is still filled before hopping

to the next channel. The following list details the interaction:

1. BLE device, such as a medical IoT device, advertises itself on one of the indexed

channels 37, 38, and 39 at a time.

16

2. User device, such as a smart phone application, sends a CONN REQ to the

advertising device, specifying parameters for a synced connection.

3. Devices establish a connection; user device is the central and BLE device is the

peripheral.

4. Devices hop to the next channel as specified by the CONN REQ.

5. CE begins. The central sends a packet, known as the anchor, to the peripheral

on the current frequency in order to confirm synchronization.

6. Peripheral responds if it has necessary data to transmit or its peripheral latency

period is over. If no response necessary from the peripheral, the CE ends.

7. If the peripheral does transmit data, the CE continues as long as the central

and peripheral have information to transmit within the specified data packet

lengths and allowable time segment per hop. The incrementing sequence number

embedded in the packet exchange serves as an acknowledgement. CE ends once

either the packet length or time segment parameters are satisfied.

8. The connection remains active until the LL TERMINATE IND packet is sent

by either the central or the peripheral [21].

2.2.2 Host/Controller Interface

The Host/Controller Interface (HCI) straddles the controller and host and allows

the two components to communicate. Commands and data sent at the host level

are translated by the HCI into relevant data to the controller and similarly translate

events and data from the controller to the host.

17

2.2.3 Host

The BLE host consists of the Logical Link Control and Adaptation Protocol

(L2CAP), Security Manager (SM), the Attribute protocol (ATT), the Generic At-

tribute profile (GATT), and the Generic Access Profile (GAP) [15].

2.2.3.1 Logical Link Control and Adaptation Protocol and Security

Manager

The primary objective of the L2CAP is to multiplex data for up to three logical

channels. It is also responsible for segmentation and reassembly of packets that may

exceed the single packet length allowable. An L2CAP channel is a single bidirectional

data channel used by a particular protocol. Channels in this circumstance are not the

RF channels previously discussed, but rather “channel” refers to “a single sequence of

packets, from and to a single pair of services on a single device” [15]. BLE uses three

fixed channels with channel IDs of: 0x004 for ATT, 0x005 for the LE signaling

channel, and 0x006 for SM. The SM is responsible for low-level security via pairing,

bonding, key distribution, encryption, and signing.

2.2.3.2 Pairing and Bonding

In general, the pairing process at the host level happens in three phases. The first

phase begins after the connection request has been sent with the necessary information

for the two devices to stay synced and the LL connection has been established. The

devices share capabilities and requirements for authentication and bonding. The

central device sends a pairing request and receives a pairing response. The devices

now enter phase two where pairing is completed over the SM with legacy or secure

connections pairing. However, not all devices initiate secure pairings, as this is an

option within the BLE specifications [18]. A peripheral device may be connectable

18

by the central without proceeding to pairing or bonding [22]. In legacy pairing, the

Temporary Key (TK) is used along with a random number from both the central and

peripheral to generate an Advanced Encryption Standard (AES) 128 bit encrypted

key known as the Short-Term Key (STK). There are three different methods that

devices could agree upon to complete the initial exchange to the TK: Just Works,

Out of Band (OOB), and a passkey.

1. In Just Works, the TK is predefined as zero

2. The OOB method requires the TK to be exchanged over a medium other than

BLE, such as Near Field Communications (NFC)

3. A passkey is a six digit number set by a user and transferred between the devices

After the TK and random numbers are used to generate the STK, the STK encrypts

the communication using AES.

For BLE devices using v4.2 and on, devices may choose secure connections pairing.

Secure connections pairing does not use a temporary or short-term key, but rather

uses Elliptic Curve Diffie-Hellman (ECDH) public and private key pair infrastructure

to compute a Diffie-Hellman key, which is then used to authenticate the connection

and enter into phase three where the Long-Term Key (LTK) is generated, and the

connection is encrypted. There are four pairing methods with secure connections:

1. Just Works: In the Just Works technique, both systems exchange public keys

and then generate a nonce for each device to calculate a confirmation value. A

matching confirmation value allows the connection to continue.

2. Numeric Comparison: Numeric comparison is accomplished similar to Just

Works, except a step is added to combat Man-in-the-Middle (MITM) attacks.

After key exchanges, each device generates a six digit value using a nonce, and

the user manually checks the values to ensure they match.

19

3. Out Of Band: OOB pairing requires the public keys, nonces, and confirmation

values for each device to be sent over another technology such as NFC.

4. Passkey: The passkey pairing method utilizes a six digit number input by a

user, the public keys for the central and peripheral devices, and a 128 bit nonce.

Once the values have been verified, the connection can proceed to phase three.

Although no communications up to the connection authentication at the end

of the pairing methods have been encrypted, the complexity of these values

better protects against MITM and other sniffing attacks than the legacy pairing

methods.

Bonding is optional and occurs in phase three where the LTK is created. This

key is stored in a security database on both devices and maintained so the pairing

process does not have to be repeated with each connection. Other keys and values

are also generated and distributed in phase three. The Encrypted Diversifier (EDIV)

and Random Number (RAND) values are used to generate and identify the LTK, the

Connection Signature Resolving Key (CSRK) is used to sign and verify transmitted

data for authentication, and the Identity Resolving Key (IRK) is responsible for

resolving private addressing so peer devices can reveal identities of the other.

2.2.3.3 Attribute Profiles

The ATT exists on top of the L2CAP layer and sets the parameters for how data

is accessed on the server by the client. Data is stored on the attribute server in

collections of “attributes” that are available for read and write by the client and is

managed by the GATT. Attributes are the data entities that consist of necessary user

data that are organized by the GATT server. An attribute, as seen in Figure 7, an

attribute consists of a handle, a type, permissions, and a value:

1. Handle: a 16 bit identifier unique to and addressable for each attribute

20

2. Type: a Universally Unique Identifier (UUID) that identifies the type of data

present in an attribute, whether that be a characteristic, service, or another

type such as a heart rate measurement, temperature, or another vendor-specific

UUID

3. Permissions: specifies whether an attribute can be read or written to, the secu-

rity levels, and if it can be notified or indicated

4. Value: the actual data of the attribute

Figure 7: Attribute Example [15]

The GATT dictates how profile and user data are transferred over a BLE con-

nection. It defines the format of services, characteristics, and descriptors, and the

procedures to access the attributes between a server and a client. A service consists

of one or more attributes that holds characteristics. A characteristic holds a partic-

ular value such as a current heart rate, how bright a lightbulb might be, the current

battery life of a device, etc. A characteristic consists of three parts:

1. Declaration: assigned a value for the start of a characteristic and can be used

to group the attributes for a particular characteristic

2. Value: actual value for the characteristic

3. Descriptor: additional data or configuration for the characteristic such as the

characteristic extended properties, user description, presentation format, ag-

21

gregation format, client characteristic configuration, and server characteristic

configuration

2.2.3.4 Generic Access Profile

GAP defines device discovery and device connections [15]. There are two pairs of

roles available:

1. Broadcaster and Observer: these roles are where one device is broadcasting

information about itself, such as name, Media Access Control (MAC) address,

TxPower, flags, etc., and the other device observes that information for data

collection. The devices are not connected in these roles.

2. Central and Peripheral: these roles have been previously discussed in Sec-

tion 2.2.1.1 and are involved in a connection.

GAP defines the discoverability of a device to be:

• Non-discoverable: this is the default mode for a device and must be changed by

the host. A device with this set means scanning devices should ignore it [15].

• Limited-discoverable: when configured to be limited-discoverable, a device will

advertise its information at a rate between 250 - 500 milliseconds, and will

appear at the top of a list during a scan. Typically, a device will be in limited-

discovery mode for the first 30 seconds after being turned on, then defaults to

general-discoverable if no connection is made. This is to allow other limited-

discoverable devices to be found.

• General-discoverable: a device in general-discoverable is discoverable but has

not been interacted with recently. It advertises every 1.28 - 2.56 seconds, and

will appear on a scan after the limited-discoverable devices.

22

Devices are also filtered by TxPower, which is the transmitted power of the packet

in decibel-milliwatts (dBm), to determine which devices are likely are closer in prox-

imity. The devices are also filtered by types of services offered to determine which

devices are typically interacted with more based on the services a device supports.

Once a connection is made between the central (i.e., a user phone application) and

peripheral (BLE device), the central may perform an enumeration of all services and

characteristics of a device, or it may only read a particular service that it is more

interested in at that time. Additionally, GAP defines connection modes, bonding,

and the security modes used during pairing.

2.3 Related Research

2.3.1 Academic Interest in IoT

The Internet of Things has been a hot topic for academia due to its many applica-

tions. Research spans embedded devices, technological advancements, cyber attack,

vulnerability mitigations, and risk frameworks. Within these areas exist military

edge advancement, industrial uses, home automation systems, agricultural applica-

tions, and medical devices.

Recent research has been published about integrating IoT technology on the bat-

tlefield to help gain a strategic advantage over the enemy and to keep situational

awareness on an unfamiliar terrain. Yushi et al. studied the application of the Mili-

tary Internet of Things (MIoT) in 2012, examining the uses of IoT in the battlefield as

information sensing, information transmission, and information serving [23]. The au-

thors discussed the advantage that IoT can bring to shorten decision making times,

increase information sharing, and enhance the capabilities of a system to include

multiple connected systems. The research presented a model for a MIoT architecture

consisting of a base sensing layer where all nodes collect data on the battlefield, which

23

is then sent to the access layer to collect and coordinate the data from the various wire-

less IoT protocols used. From there, the model proposes a network layer to transmit

to the LAN, then to a service layer for data storage, and finally an application layer

for Command and Control (C2), Intelligence, Surveillance, and Reconnaissance (ISR),

and decision making. The devices in a MIoT environment would have three modes:

the first for physical sensing and data collection, the second for network transmission

to combine the data, and the third for information serving for human interaction.

This research was provided a proposed architecture and application modes for the

MIoT.

The BATDOK project is developed by the military as a trauma kit for the bat-

tlefield [24]. The application has the ability to triage patients and collect patient

trends, all with the use of medical IoT devices. Research by Johnsen et al. provided

a perspective on the benefits IoT could bring in military operations during a disaster

[25]. The paper demonstrated how networked devices can be used to bring situational

awareness in real-time that otherwise may not be possible. The employment of IoT

devices in this scenario allowed for enhanced planning, monitoring of health and ca-

pabilities, and better augmentation of military forces for information collection and

processing.

Sadeghi et al. researched the security and privacy challenges associated with the

IoT in an industrial setting [26]. Industrial Control Systems (ICS) are networked

to provide for flexible and more efficient organization and management of industrial

systems. With the increased capabilities that IoT offers to ICS comes increased se-

curity risk for cyber attack. The paper discussed various cyber attacks on ICS, to

include Stuxnet, which provided a dangerous example of how exploitation of ICS can

result in physical consequences. The difficulties in securing industrial IoT devices is

also discussed as many of these systems have physical limitations such as constrained

24

computational, memory, and energy resources, and are not afforded restarts or down-

time that updates and patches may require. The importance of integrity verification

of the software on the systems is highlighted.

The IoT has been incorporated into everyday life in homes from lighting to the

kitchen to security cameras for property surveillance, babies, and pets, to speakers

and watches, and more. Geneiatakis et al. shared the security and privacy issues

associated with an IoT smart home [27]. The authors discussed different types of

IoT-related attacks: a potential for pattern-of-life analysis through eavesdropping,

active impersonation of devices in the environment, software exploitation, or even a

Denial of Service (DoS) attack.

The ability to transmit the data back to a doctor to allow better response for

patients has gleaned much interest in the academic community, with more than 2,400

IEEE articles published with the keywords “medical IoT” since 2015. As early as

2008, Halperin et al. analyzed an Implantable Cardioverter Defibrillator (ICD) that

communicated patient health data wirelessly [28]. The team determined that the

medical information, such as the patient’s name, date of birth and cardiac values,

was sent unencrypted and could be intercepted by a malicious actor. Furthermore,

the researchers were able to exploit a testing interface to replay communication to

the ICD in order to induce a shock to the patient’s heart. This attack could result

in death to a victim of the man-in-the-middle attack, and the device had no security

measures in place to stop such an attack. Rahman et al. analyzed the poor security

design utilized in the Fitbit (version unspecified) that allowed an attacker to reverse

engineer the protocol and inject false fitness data to the online tracker [29]. One of

the security flaws the researchers discovered was that the network traffic showed user

credentials were passed across the network in cleartext upon authenticating with the

software. Furthermore, the data for the log files were also sent unencrypted, giving

25

access to the actual health data. The researchers then analyzed the possible attacks

on the system and developed an attack framework against the device.

Wang et al. discovered wrist-wearable BLE IoT devices, such as fitness monitors,

could be used to extrapolate banking Personal Identification Numbers (PINs) [30].

The researchers were able to determine the PINs based on two methods: sniffing

attacks and an internal attack by putting malware on the user’s app device. Data

collected from the accelerometer was directly mapped to the key pushed on an Au-

tomatic Teller Machine (ATM) machine or a door entry keypad. The data pulled

from the devices and the development of a distance-estimation algorithm allowed the

attackers to determine the user’s PIN with an 80% accuracy upon a one-time key

entry and 90% upon a three-time key entry.

2.3.2 BLE Research

Current research on BLE shows several successful attack vectors. One of the most

well-known BLE hacking landmark papers was published by Mike Ryan on hacking

BLE v4.0 [31]. He demonstrated how packet transfer at the link layer could be

passively collected using a Bluetooth sniffer such as the Ubertooth One. His research

determines the four values unique to connection–hop interval, hop increment, access

address, and CRC Init. Ryan highlights the cleartext information that can be found,

such as the actual passkey and privilege escalation passwords. If the devices are

utilizing legacy encryption methods, a tool presented in the research called Crackle

can be used to brute force the temporary key based on a six digit pin and extract

the LTK. The creators of BLE attempted to protect the protocol from cyber attacks

such as sniffing or MITM attacks by requiring the nonce exchanged at the beginning

of a session and the need to only exchange the LTK once between devices to ensure

subsequent connections are re-established and remain encrypted without sending the

26

key again [18]. Ryan’s research determined attacks that can be used to force these

values to be resent. The session nonce is set at the beginning of a connection, so

the attacker only needs to jam the current connection to force a reconnect to capture

the session key. To ensure the LTK is exchanged, the eavesdropper can force a key

renegotiation by injecting an LL REJECT IND at the proper time, resulting in a new

connection.

Gutierrez del Arroyo’s 2016 DEFCON presentation outlined a process for hacking

BLE using a sniffer to gather cleartext data from a thermostat [32]. The thermostat

the researcher cracked is the same model that an art museum boasted of using to

secure the environment for a painting. Using the data collected, he was able to

gather the password used for the device, the firmware binary for updates, and replay

crafted packets to the device to change these characteristics. He was also able to

impersonate the app interacting with the device and even force a reset for the entire

system.

Rose et al. highlighted the absence of a pre-existing tool to accurately determine

Bluetooth and BLE device distance [33]. While the Blue Hydra tool may be able

to locate devices at a short range, the BlueFinder tool established in this work

showed improved accuracy at long-range distances over 50 meters, adapting the long-

distance path loss model utilized in a Zigbee range tool, zbdfind. The development

of this tool allowed the researchers to hack a BLE lock from over a quarter mile away.

Rose [10] and Beyer [11] determined that pattern-of-life behavior can be gleaned

from passively sniffing BLE connections and acting as a MITM. Even if the attacker

does not pursue stealing the communication, she can determine what time someone is

present, who might be in the house based upon the devices used, and correlate other

data to determine a person’s route and routines. This could be used by a malicious

actor to determine the best time for a cyber attack, may enable a burglary, or even

27

could be used to locate a particular target.

A new Common Vulnerabilities and Exposures (CVE) was published in 2018 un-

der the ID CVE-2018-5283 that disclosed that both BTC and BLE devices utilizing

ECDH key pairs were still susceptible to MITM attacks [34]. The Israel Institute of

Technology discovered an Invalid Curve Attack on the ECDH algorithm to recover the

session key of an encrypted connection [35]. While BLE secure connections featured

public key authentication, its use was not required. This oversight in its functionality

allowed manufacturers to choose not to use it, whether on purpose or by ignorance.

Without public key authentication, the pairing mechanism is once again susceptible

to passive sniffing and a MITM. The BLE SIG has since updated BLE specifications

in v4.2 to require key validation [18]. Devices are susceptible to this attack until

device manufacturers develop and make available an update, which may require in-

teraction from the user. It should be noted that it is unlikely for a user to seek out an

update as IoT devices are typically meant for one purpose and researching a security

update for the device is probably not a priority for the user.

In 2019, the BLE-enabled Xiaomi M365 Electric Scooter, used in many ride shar-

ing apps, was proven to be hackable by a Dallas company called Zimperium [36]. The

scooter had a companion app that allowed users to use features such as an anti-theft

system, cruise control, eco mode, and an option to update the firmware. The com-

pany determined that although this app required a password, authentication had not

been properly set up to verify on both the app and the device itself. This allowed

the attackers to sniff the data upon initial connection to the scooter, determine what

payload looked like and sequence numbers, and were able to craft their own payload

for malicious purposes up to 100 meters away. The commands leveraged by the com-

pany showed the ability to commit a DoS where the scooter enters a locked state and

the user is unable to override via the scooter. There is also the ability to cause a rider

28

to accelerate or break suddenly, putting their life in potential danger. Zimperium

also demonstrated that new firmware could be flashed to the scooter to take it over

completely or to destroy its intended purpose.

Booth et al. were able to replicate Zimperium’s results and detail the process

[37]. The researchers used the bettercap tool for recon to enumerate the device of

interest. They wanted to determine the results that each characteristic and service

had on the scooter, and noted that this could have been completed by sniffing the

traffic between the app and the device, by analyzing the binary for the app software, or

by analyzing the firmware on the scooter. Since they had procured their own scooter,

they checked the firmware and discovered it was unencrypted. They analyzed the BLE

characteristics by using the gattacker tool as a MITM to trigger various demands and

determine the characteristic values each action mapped to.

Long et al. examined the Masimo pulse oximeter used as one of the targets in

this research to show how the attack surface for malicious actors has increased as

IoT gains in popularity, putting users’ privacy at risk [38]. The researchers utilize

an Ubertooth sniffer [39] to passively sniff the data being transferred between the

user phone application and Masimo device in cleartext. The manufacturers of the

Masimo device attempted to obfuscate the data in the packets, but through the

use of the Ubertooth, the hci snoop log from the phone, and by doing static and

dynamic analysis of the phone application, the researchers were able to determine

what portions of the packets contained the health data.

2.3.3 BLE Vulnerabilities and Attack Vectors

BLE has some security measures built into its design, such as the use of connection-

specific access addresses, channel hopping, the use of data whitening, CRCs at the

end of each packet, communication encryption with 128 bit AES, varying pairing

29

methods, and the use of ECDH algorithms for v4.2 and later key generation. A unique

access address is assigned to the connection between two devices, and the interactions

between the devices is obscured and hard to track if the initial assignment of the access

address is not captured. Channel hopping provides security for BLE connections since

the hopping sequence is unique to each connection. However, this information can be

sniffed in the initial CONN REQ or calculated based upon the time it takes to return

to a channel, then dividing the time across the 37 channels [31]. Data whitening is

the practice of scrambling data based on the last six digits of the device clocks in

order to make the data difficult to follow. Nevertheless, this value can be known, and

the whitening sequence can be found by simply XORing the data with that value.

Another security measure within BLE is the use of the CRC checksum. The

CRC must be verified at the end of every packet, and the calculation necessary to

do so is dependent on the CRC Init value, which is sent in the initial CONN REQ.

A connection is encrypted following the pairing process, of which there are different

kinds, and optional ECDH algorithms are used depending on pairing scheme, as

detailed previously.

BLE is susceptible to several different types of attacks. The most prevalent are

passive eavesdropping and a MITM attack. Passive eavesdropping can be accom-

plished by a third-party entity monitoring the traffic transmissions between devices.

If this information is sent in cleartext, credentials and command text can be easily

gleaned. Even if the data is encrypted, a clever attacker can use clues present in

the packets to crack the key, dependent on the encryption scheme. A MITM attack

occurs when passive eavesdropping is taken a step further and the attacker intercepts

the data between the devices and acts as a proxy, making herself a middle-man and

posing as the peripheral device to the central and vice versa. The attacker can inject

malicious code instead of forwarding the intended data from the peer device.

30

It is important to note that some devices connect but do not require any pairing,

such as the PlayBulb lightbulb manufactured by MiPow. Since no pairing is involved,

all communications are sent in cleartext and can be sniffed, and data can be collected,

analyzed, and even duplicated to send commands by an attacker. While BLE con-

nections are difficult to interrupt once established, the initial pairing of the devices

is vulnerable. Because there is no encryption at the link layer before a connection is

made, a malicious actor or curious bystander could use a third device to sniff the data

being exchanged between two devices. This vulnerability is particularly dangerous

when the connection request and subsequent pairing happen for the first time or after

one of the devices have forgotten the agreed upon parameters.

According to Mike Ryan’s research in 2013, BLE v4.0 could be cracked once four

main values are sniffed: the access address, the hop interval, hop increment, and CRC

Init [31]. All of these values can be observed and decoded. The connection-unique

access address is available in the link layer data of the CONN REQ. The hop interval

can also be found there, and it can be discerned by observing how long of a distance

between two consecutive packets. The hop increment can be found by determining

when the time packets arrive from one channel to the next. CRC Init requires the

Linear-Feedback Shift Register (LFSR) with the CRC which can be pulled from a

packet and reversed. The CRC Init value will then be the value left in the LFSR.

2.3.4 BLE Vulnerability Mitigation

BLE attacks center around either the lack of connection encryption or the vul-

nerabilities present in the initial key exchange to provide communication encryption.

The devices are susceptible to passive sniffing, device spoofing, and MITM attacks.

The research summarized above on legacy pairing demonstrated a need for a secure

pairing methodology between devices, as well as the need for stronger authentication,

31

especially in firmware update mechanisms. These discovered vulnerabilities resulted

in the secure connections pairing methodology in later versions which utilized ECDH

key pairing. However, it is the responsibility of IoT system manufacturers to ensure

they are implementing the most recent versions of BLE and enabling the security

features on their devices.

Other research to mitigate intrusions include anomaly detection tools to determine

when an intruder is interrupting the connection or posing as another device. Sniffers

can be used to collect data on connections for audit purposes. Although current

BLE sniffers can only follow one connection at a time, the BLE-Multi tool can

simultaneously capture multiple active connections which can be used for auditing

[40].

Another tool is BlueID, which was developed as a mitigation against Bluetooth

device-spoofing attacks. An attacker can spoof many things for a device such as the

MAC address and name, and can even craft packets to display certain time frames and

sequence numbers. Research on the use of BlueID demonstrated that fingerprinting

a device based on the timestamp of the temporal feature of frequency hopping cannot

be spoofed [41]. While this tool was initially targeted for BTC, it has been recently

updated to include BLE. Lastly, another mitigation is needed for the pattern-of-life

vulnerabilities presented with passive sniffing. Even if traffic encryption is used, a

device still broadcasts its MAC which can be used to infer what type of device is in the

environment and even correlate who the user is, or whether someone is home. Beyer

developed the Mitigation of IoT Leakage (MIoTL) tool in his research to

provide spoofed IoT device traffic to make it difficult for an attacker to determine

any sort of pattern-of-life analysis [11]. While the benefit from such a tool would be

tremendous, the interaction and setup required on the behalf of the user makes this

current solution less feasible for the typical home.

32

2.4 Cyber Attack Chain

Cyber attack is generally done in a specific, methodical order to maximize effects

and reduce detection. While the naming conventions may differ across sources for

the methodology, the overall approach is the same. Figure 8 shows these steps:

reconnaissance, scanning, access and escalation, exfiltration, sustainment, assault,

and obfuscation [42].

Figure 8: Cyber Attack Chain

To begin the cyber attack process, the first step is reconnaissance. This step is

done before any attacks, as the available targets must be identified. At this point, all

work by the attacker is passive, and the attacker does not interact specifically with a

target. Examples of recon include phishing, social engineering, dumpster diving, etc.

The goal of this step is to identify what targets may be of interest to attack. The

next step in the chain is scanning, or active reconnaissance. Here is where an attacker

may interact with a victim to determine where there may be vulnerabilities, and how

they will be able to interact with or exploit a target. Examples of this include nmap

scans [43] with Wi-Fi or scan requests with BLE. This allows the attacker to identify

specific details about a network or device. In some methodologies, steps one and two

are combined [44]. Step three is to gain access and escalate privileges. This step

requires an attacker to develop the most appropriate exploit for a particular system

of interest using the results of reconnaissance and scanning to increase the probability

of success. Password attacks, relay attacks, or MITM attacks are some methods that

may result in access. Once on a host, privilege escalation allows for the attacker to

33

have the highest level of authorization of the device. Traditionally, on computers

running Windows this is “system” access, and on Linux, the famed “root” access. On

embedded systems, this typically refers to having unrestricted access to all data and

controls. Any of these system environments could be equipped with BLE technology.

Step four is to exfiltrate any pertinent data on the target device, such as passwords,

banking information, proprietary data, etc. Ensuring that access is maintained by

installing a listener, beacon, backdoor, or rootkit that allows the attacker to revisit

the victim unobstructed is the fifth step. The sixth step, assault, is optional and not

used in every attack, because the goal is to destroy some functionality of the victim

device, such as “bricking” the device so it is destroyed for the user, such as with

Silex [45]. The final step in the cyber attack chain is obfuscation to cover tracks. The

attacker typically desires to be able to return to the victim system later, which usually

involves removing evidence of intrusion so that the owner is unaware the target has

been compromised. To ensure this, she may alter or delete logs, remove command

history, or remove added software, for example.

2.5 Signal Propagation

The BLE technology travels wirelessly in the 2.4 GHz range. The signals propagate

through space from a transmitter to a receiver. The TxPower, briefly discussed in

2.2.3.4, is advertised from the transmitter to the receiver to allow for a Received

Signal Strength Indicator (RSSI), an estimate of the radio strength, to be calculated.

The exact RSSI value may have variation, even at a fixed distance due to the chipset

manufacturing and interference from outside systems [46]. However, the trend of

average RSSIs collected is useful information for distance estimation - the height the

RSSI value, the closer the object is estimated to be in the absence of obstacles. The

LE specification requires that TxPower be no weaker than -20 dBm and no stronger

34

than 10 dBm, corresponding to a minimum of 10 µW and a maxmimum of 10 mW,

respectively [18]. A general expression to determine the expected RSSI is

Prx = Ptx +Gtx +Grx − Lp (1)

where Prx is the expected RSSI, Ptx is the transmit power of the BLE device, Gtx

is the dBi gain of the same, Grx is the receiving antenna dBi gain, and Lp is the

path loss measured in dB. Figure 9 provides a visual for this equation. Path loss is

defined as “a measure of how much the radio signal has reduced in power between

the antenna in the transmitter and the antenna in the receiver” [15].

Figure 9: Visualization of (1)

The ideal situation to determine path loss is one where the signal can travel freely

through space without ground, tree, building, or other object interference. This is

modeled by the Free Space Path Loss (FSPL) equation

FSPL = 10 ∗ log10((
4πd

λ
)2) (2)

where d is the distance and λ is the speed of light divided by the 2.4 GHz frequency.

Using a drone, given a certain height, allows for the optimal scenario as the drone

can exist in free skies high enough from the ground and not around trees, buildings,

35

or other obstacles.

However, free space may not always be a valid assumption or a possible condition.

As BLE devices are normally used in households or as human wearable devices and

connecting to a device such as a phone at a similar height, ground interference will

likely contribute to the path loss. Heydon [15] realizes this condition and provides a

formula to estimate the distance BLE communication should travel assuming ground

interference, known as the Ground Path Loss (GPL) formula

GPL = 40 + 25 log10(d) (3)

where d is the distance in meters. Both (2) and (3) are valid equations to use to

determine the path loss to input into (1). However, the conditions in the scenario

should be considered to choose which is more correct. The link budget equation

r = 8.657
√
d/f (4)

where r is the radius for the greatest point in the ellipsis, d is the distance in meters,

and f is the frequency of 2.4 GHz, uses the fresnel zone, a cone of radio frequency

from one antenna to another [47, 48]. The fresnel zone is an ellipsis from a transmitter

to a receiver where a clear Line of Sight (LOS) is necessary to exchange radio signals.

While there are many fresnel zones for two communicating antennas, (4) models the

radius for the fresnel zone where phase cancellation may be a factor due to obstruction.

Additionally, a single fresnel pattern best models, in simplistic forms, the beam of a

highly directional antenna, such as the one used in this experiment. If the two devices

have an object within that radius, the signal may bounce on the object (such as the

ground) to attenuate the signal or to cancel it completely.

36

2.6 Background Summary

This chapter provides a summary of the BLE technology and the technical spec-

ifications for how it works. IoT research and BLE exploitation research are then

discussed to show the interest and vulnerability of the field, followed by some vulner-

ability mitigation tools for BLE. The cyber attack chain is presented, and the chapter

is concluded with signal propagation theory.

37

III. Prototype Design

3.1 Overview

This chapter presents the prototype design for the next iteration of the skypie

attack platform, skypie v3. Section 3.2 provides a summary of the skypie v3

overall functions and components. The design goals are then discussed in Section 3.3

followed by hardware in Section 3.4. Section 3.5 covers the software architecture,

detailing the design model in Section 3.5.1, skypie package in Section 3.5.2, then

the BluBarry and skyport packages in Section 3.5.3 and Section 3.5.4.

3.2 System Summary

The skypie is a lightweight, directional Wi-Fi collection and access point ex-

ploitation device developed in previous works [1, 2]. The Cyber Network Attack

(CNA) payload was equipped with Wi-Fi beacon collection and Global Positioning

System (GPS) and geolocation capabilities in skypie v1, and was expanded to have

Wi-Fi network attack and enumeration capabilities in v2. The previous iterations

were designed to be connected atop a drone in order to create an incognito, remote

attack platform. This allows the skypie operations to function independent of

method of locomotion. The sensor can be controlled remotely through a cellular net-

work. The skypie v3 sensor prototype is depicted in Figure 10, and now equips

the sensor with a long-range Bluetooth adapter and the BluBarry package, written

in Python 3.7, which allows for BLE device data collection and analysis. Figure 11

shows the hardware components labeled.

38

Figure 10: skypie v3 Prototype with the Sena UD-100 Bluetooth Adapter

Figure 11: skypie v3 Prototype Hardware Components

The skypie v3 is a CNA platform with Wi-Fi and BLE collection and attack

capabilities that is equipped with its own GPS unit for geolocation. The high-level

summary can be seen in Figure 12. The sensor is designed to communicate over a

cellular network to drop collection files to a Secure File Transfer Protocol (SFTP)

server where the attacker front end, the skyport, retrieves the data and displays

39

it for the attacker. The SFTP server acts as a “dead drop” location so skypie

and skyport do not directly interact with one another. This design is intended to

minimize attribution if a component were compromised. skyport is a Graphical

User Interface (GUI), Python-based web server to host the collected information for

the attacker and allow her to send commands to the skypie. The sensor can also

be controlled using command-line via modifying configuration files.

Internet

Cellular
Network

Wi-Fi & BLE Targets

skypie Sensor Payload

skyport Analysis & WebApp

Directional 2.4 GHz Antenna

S
e
n
s
o
r
s

GPS module

Compass/Magnometer

Auxiliary Sensors

C
2 3G/4G USB Modem

A
n
a
l
y
s
i
s

C
2

Geolocation Prediction

Deployed skypie medium

Attacker Workstation

D
a
t
a

PCAP files

Telemetry files

D
a
t
a
b
a
s
e Sensor1 Data

Sensor2 Data

Bearing Prediction

Auxiliary Analysis

Remote Sensor Config

Remote Sensor Commands

Sensor2 Data

Sensor1 Data

Internet-Routable SFTP Server

…

Config/Commands

U
I

Web App

Satellite Imagery Overlay

…
BLE Scan Results

Figure 12: Summary of skypie v3 and skyport System Design (Adapted from [1])

The skypie sensor is designed to capture GPS data (location, speed, angle,

etc.) to pinpoint its location. The sensor can then operate in either Wi-Fi mode or

utilize the newly developed BluBarry package and act in BLE mode. Wi-Fi mode

is where skypie collects PCAP files with Wi-Fi traffic in it, sends the data back

to skyport via the SFTP server, then the attacker is presented with the collected

information. The attacker can choose a network of interest and begin a series of

Wi-Fi attacks where a target device is deauthenticated from the target network and

forced to reauthenticate. The malicious actor collects the WPA handshake as the

40

device reconnects, and through analysis, the attacker can find the key to the network

and attach herself to it. Once she is part of the network, she can ping and run an

nmap scan on the rest of the network to enumerate it for potential attacks. It was

established in Barker’s work using skypie v2 that these CNAs could be conducted

from a distance of 2200 meters away [2].

The BLE mode on this framework scans the surrounding network to provide MAC

addresses and device names. An advanced passive scan is then run to determine the

RSSIs. The devices which are enumerated in the previous scans are then actively

interacted with to determine characteristics and their values based upon the col-

lected MAC addresses. The skypie transfers this data to the SFTP server, and

the skyport downloads it. The attacker can analyze the data and choose to pursue

attacks on her newly acquired targets. The command.py module allows the attacker

to have full, non-interactive control over the skypie and either enact predetermined

attacks against a device, or construct a custom attack.

3.3 Design Goals

This research seeks to maintain the integrity of the original design goals [1]. While

the attack platform is not being implemented on a drone in this research, the design

goals outlined in previous works applies to the focus of this work. The lightweight na-

ture of the skypie’s design allows for easy transportation and the ability to remotely

deploy the structure on whatever platform (drone, rover, in a car, etc.) necessary.

The low-cost constraints allow this work to mirror what a poorly funded but highly

motivated actor would be able to develop for attacks, particularly in a contested

environment when monetary affluence may be lacking.

• Low Cost: The components that make up the skypie prototype should be

available to the general market and be inexpensive. Any software not developed

41

by the attacker must be open source and freely accessible.

• Realistic Utility and Robustness: In order to develop an operational attack

platform for realistic CNA, the skypie sensor payload must be able to do the

following:

– Operate autonomously or be able to be controlled remotely over a se-

cure wireless channel. If an interruption occurs between the attacker and

skypie, communication should resume when available.

– Be capable of near real-time data feedback and control.

– Collect data and execute relevant attacks for multiple hours. This capabil-

ity requires adequate storage on the skypie sensor and a battery source

with sufficient power.

• Portable and Lightweight: As the intent for the skypie is that it be movable to

the drone or other platform of the attacker’s choosing, it must be easily portable.

The initial skypie v1 design was constructed with a drone architecture in

mind; the goal was to allow the skypie to be self-sufficient so it could be

strapped to any drone that could support the low-weight and not rely on the

drone capabilities. This goal is still incorporated in this skypie v3 design to

allow for the original goal, but also allows the transport of the platform easily

to discover new targets. This could be on a drone, on a remote controlled rover,

or in a car, and utilized in a plethora of other scenarios.

3.4 skypie Hardware Design

The hardware, whose diagram can be seen in Figure 13, is chosen to meet the

goals presented in Section 3.3. The architecture remains the same as in previous

works, except for the addition of an external long-range Bluetooth adapter and the

42

upgrade to an 8 GB Raspberry Pi 4 with a 32 GB microSD in order to allow for

future capabilities to be integrated. Table 1 lists the hardware used.

Adafruit Metro
328

Microcontroller

Raspberry Pi 4
Model B (8 GB RAM)

Adafruit
Ultimate

GPS
Breakout

LSM303
(Accelerometer)

Danets USB-Yagi TurboTenna

USB Wi-Fi
Interface -
DNX10NH-HP

USBUSB

USB USB
2

VIN

GND

VIN

GND

SDA

SCL

VIN

GND

TX

RX

3

A5

A4

Key

copper wire

USB (2.0)

SubMiniature version A (SMA) coaxial

Cellular
Modem Dongle

Opt 1

USB Bluetooth
Adapter –
Sena UD100

Opt 2

Figure 13: skypie Payload Hardware Diagram

The components of the skypie payload consist of:

• Directional Antenna: The directional antenna used in this work operates on the

2.4 GHz frequency. Previous works have utilized this device for Wi-Fi collection

and attacks. As BLE also operates on this frequency band, the antenna is used

to extend the receive and transmit range of a Bluetooth adapter. The gain

is approximately 18 dB [49]. This antenna was chosen for its small size, low

weight, inexpensive price, and commercial availability.

• Bluetooth Class 1 Receiver: A long-range Bluetooth adapter is being added to

the hardware. The Sena UD100 allows for 300 meters with the default stub

1 dBi antenna [50]. This research determines if this adapter can be used at a

greater distance for BLE when paired with the directional antenna.

• Wi-Fi Signal Receiver: This receiver came with the Yagi directional antenna,

works with the Raspian OS, and is comparable to the Alfa AWUS036H USB

43

Table 1: skypie v3 Prototype Hardware Overview Adapted From Barker’s Table [2]

Part Model / Version Weight (g) Price

Directional Antenna Danets USB-Yagi TurboTenna 137 $110

Bluetooth Class 1 Receiver USB Bluetooth Interface - Sena UD100 20 $39

Wi-Fi Signal Receiver USB WiFi Interface - DNX10NH-HP 35 N/A

Computer Raspberry Pi 4 Model B (8 GB RAM) 46 $75

Digital Storage 32 GB SanDisk Ultra microDSCH UHS-1 1.7 $10

Microcontroller Adafruit Metro 328 16.5 $18

GPS External Passive GPS Antenna uFL - 15mm x 15mm

Antenna 1 dBi gain 5.5 $4

Adafruit Ultimate GPS Breakout - 66

GPS channel w/10 Hz updates - V3 8.5 $40

Adafruit Triple-axis

Accelerometer+Magnetometer (Compass)

Accelerometer Board - LSM303 2 $15

Charmast 10400 mAh 3 A External

Power Supply Battery Model: W1056 228 $23

4G LTE Unlocked Modem Huawei

USB Dongle E3372-510 18 $30

Optional Sensors Raspberry Pi Sense HAT 20.4 $38

Structure 3D Printed Casing 52 $2

Structure Mini-breadboard 13 $2

Miscellaneous Screws, Bolts, Wiring, Headers, USB Cables,

Components Solder 36 $16

Total 636.6 g $489

wireless adapter.

• Computer: The computer system is upgraded to the Raspberry Pi 4 with 4 GB

additional RAM for a total of 8 GB. This choice does not add significant price

increase, but does allow expansion to add more capabilities on the skypie.

• Digital Storage: Digital storage for the system has been upgraded to a 32 GB

microSD.

44

• Microcontroller: The Adafruit Metro 328 is chosen due to its ability to do real-

time support for hardware modules, which the Raspian operating system (OS)

cannot offer. This real-time analysis is required in order to collect accurate GPS

data.

• GPS: The Adafruit Ultimate GPS Breakout v3 was chosen to provide real-

time GPS data to the system. It has a signal sensitivity up to -165 dBm, 66

channels, and provides jammer detection and reduction. It is equipped with a

1 dBi external antenna [51].

• Accelerometer: The Adafruit Triple-axes Accelerometer+Magnetometer (Com-

pass) Board uses the LSM303 chip and was chosen for its small size, user-friendly

interactions, pre-built libraries, and calibration settings.

• Power Supply: The Charmast W1056 battery was chosen to provide 5V/3A to

the Raspberry Pi 4.

• 4G LTE USB Dongle: The Unlocked Modem Huawei E3372-510 was chosen in

previous work due to its compatibility with the Raspian OS.

• Optical Sensors: The optical sensors with the Pi Sense Hardware Attached on

Top (HAT) allow the attacker to visually know what state the skypie is in

during its operations without requiring a screen.

• Structure: The encasing on the skypie is custom 3D printed to allow for the

microcontroller with GPS unit, the Raspberry Pi, and the top of the antenna to

be secured together, and for the directional antenna with the Bluetooth adapter

to have unobstructed access. The structure can be seen in Figure 14.

45

Figure 14: 3D Printed skypie Structure [1]

3.5 skypie Software

The skypie prototype software is written in Python 3.7, with the exception

of the microntroller code and geodesic intersection algorithm, which are written in

C++. The C++ code is not altered in this research and remains in the repository.

The system repository is divided into three packages: the skypie, the skyport,

and shared, which are modules used by both skypie and skyport.

3.5.1 Design Model

The design model for the skypie software in its initial iteration and v2 are

upheld while developing BluBarry for skypie v3 and integrating it into the existing

46

system.

• The skypie is controlled via a configuration file that includes the necessary

instructions to tell the sensor what data to collect, any additional commands

to execute, etc. The default config file, along with options, can be found in

Appendix A.

• The payload operates through a control loop, where the most current version

of the config file is checked and machine state is altered during each iteration.

• The latest config file includes specifications for what state alterations are to be

run. Subtask examples are what Wireshark filters to use, MAC addresses for

Wi-Fi or BLE targets, timeouts, nmap search parameters, and intervals.

– Any changes to the config file are only implemented once the current

threads have expired to bolster the stability of the system in accordance

with Python programming best practices.

– The attacker has the ability to modify this file to adapt to new environ-

ments or focus on new targets using the skyport web GUI.

• Each task acts as its own asynchronous thread in order to allow multiple oper-

ations to be completed individually.

• The skypie collects the requested data, such as for Wi-Fi or BLE, in its own

file, which is named with the thread start time, and whose size is dictated by

the collection interval or number of iterations chosen.

• In order to lessen the opportunity for data corruption, and to maximize code

readability and a simpler implementation with better coding principles, the

timespan of the threads is specified. While this may result in lost data be-

47

tween the termination of one thread and the start of a new thread, the benefits

presented outweigh the potential loss.

• The SFTP server acts as “dead drop” point in order to minimize attribution

between the skypie and skyport, and as both end points are unlikely to

have static Internet-facing IP addresses.

• The analysis of GPS positioning, and Wi-Fi and BLE data, as well as Wi-Fi

network cracking, is performed on attacker’s workstation. skyport is managed

through its own control loop responsible for retrieving files, sending updates to

the config file for commands meant for the skypie, sorting data from the files,

and performing Wi-Fi cracking.

• To maintain stability with the skypie payload, a cron job is designed to reini-

tiate after 60 seconds of inactivity. If the attacker wants to stop the sensor from

collecting, she could choose the “off” mode option in the skyport, in which

case the sensor would still check every 60 seconds for an update, and if still in

“off” mode, sleeps until the next 60 second increment.

• The skyport user interface should be user-friendly in order to show capacity

for operational use for cyber attacks.

3.5.2 skypie package

Table 2 shows the required dependencies and descriptions for the new iteration of

skypie–skypie v3.

Figure 15 demonstrates the skypie code design and the restructuring due to

skypie v3 upgrades. The primary files integral to the system and to the BluBarry

package integration are described in the following sections. The modules not described

48

Table 2: skypie v3 Dependencies

Package Function

aireplay-ng Injecting generated packets (i.e., deauthentication packets)

airodump-ng Targeted WPA handshake capture

btmgmt Python wrapper to interact with BlueZ stack,

used to detect BLE devices and determine RSSIs

dumpcap Capture packets from Wi-Fi interface

gatttool Attempt to connect to BLE device, query for current settings,

request to write

hciconfig Get Bluetooth adapter settings, set interface of interest

hcitool Use the HCI layer of the adapter to scan for BLE devices

iwconfig Get Wi-Fi adapter settings, set monitor mode/channel

ifconfig Prepare wireless network interface controller for monitor mode

iwlist Get Wi-Fi interface current channel

nmap Conduct network scans

tshark Makes packet captures available to Python for analysis

in this thesis can be read in detail in [1] and [2]. Other threads have been modified to

allow for the enhanced capabilities presented with skypie v3, but are not discussed.

49

collection.py

telemetry.py

interface.py

command.py

manager.py
Wi-Fi Collection

Thread

Telemetry Thread

Channel-Hopping Thread

Command Thread

Upload/Download Thread transfer.py

Check config file

Manager buffers

Start applicable threads

Occasionally manage other functions

Write state file

main.py

co
n

tr
o

l l
o

o
p

Initialization/Setup

Legend

Skypie v1

Skypie v2

Skypie v3 - BluBarry

BLEscan.pyBLE Scan Thread

handshake.py
Handshake Capture

Thread

deauth.pyDeauth Thread

handshake.pyConnect Thread

ping.pyPing Thread

nmap.pynmap Thread

scan.pyAP Scan Thread

BLEconnectquery.py
BLE Connect/Query

Thread

Figure 15: Software Control Flow Diagram

3.5.2.1 main.py

Main is the startup program that begins upon initialization of the skypie, or

manually by the attacker. The file constructs the requirements for manager.py based

upon the startup parameters. The main control loop can be run with the following

options:

• -a to activate the main loop, requiring GPS

• -n can be run in conjunction with -a to negate the GPS satellite fix requirement

• -d shows debugging options and can be run with the previous two commands

• -x initiates self-destruct mode; in the case that the skypie is compromised,

the attacker can send a self-destruct mode to destroy the data on the pi

50

3.5.2.2 manager.py

This module runs the control loop for the program. The manager specifies in what

order the threads are run. It acts according to the parameters set forth in the default

configuration file. Manager creates a dictionary of threads for each independent

function. The manager checks the config file at the beginning of each loop. If the

attacker updates the file, the new parameters are applied for the next iteration. Each

thread is run for a specified amount of time, and once that thread has completed, the

manager spawns a new thread unless the config file stipulates otherwise. The option

chosen by the attacker to focus on Wi-Fi or BLE is set in the config file, and the

manager initializes or disables the corresponding adapters.

3.5.3 BluBarry package

The BluBarry package lives within the skypie package and is the option to

allow the attacker to focus her attention on Bluetooth Low Energy.

3.5.3.1 BLEscan.py

This module, a copy of which can be found in Appendix B, is responsible for

scanning and collecting BLE advertisement data. This is done passively through

received data only, and does not require interaction with the targets on the part of the

skypie. The Sena UD100 Bluetooth adapter, connected to the directional antenna,

allows for long-distance, passive collection of this data. The adapter is programmed

natively to hop the three advertisement channels discussed in Section 2.2.1.1, channels

37, 38, and 39. The adapter then collects the advertisement packets and parses them

for the requested data. The command

hcitool lescan

51

is run in order to do a light scan to gather the advertisement packets of detected

devices. This command outputs the MAC and name of the device, which is displayed

on skyport for the attacker to see what devices are nearby. If an output error is

detected, the commands

hciconfig hci0 down

hciconfig hci0 up

are run to take down the Bluetooth interface and bring it back up. A more intense

(but still passive) scan is then run using the command

btmgmt find

Among the advertised information is the MAC, whether the device is LE or BTC,

RSSI, flags set, and device name. The RSSI value can be used for approximate

distance estimation and to prioritize which devices may be closer than others. The

attacker has the option to choose how many iterations this btmgmt command is run.

The RSSIs are averaged over the collected values, giving the attacker both the raw

data collected and the overall average. The number of times a device advertises itself

is dependent on manufacturer settings and how recently the device has been turned on

or used, so this research has no control over how many beacons are collected. However,

iterating the commands more times increases the likelihood that more beacons are

detected, allowing for more RSSIs to be averaged. The results of the command are

parsed and organized into a database object. Once a particular MAC is detected,

the MAC, type, flags, and device name are stored in the database. The RSSIs are

collected each iteration and appended to that MAC along with the time in Universal

Time Code (UTC) that a particular RSSI was collected. This database is unpackaged

for attacker view on skyport.

52

3.5.3.2 BLEconnectquery.py

Once blescan.py collects device data advertised passively, the skypie transmits

back to devices collected in the previous scan. The database assembled in blescan.py

is passed into this module, and the gatttool command line tool is used to attempt

to connect and query devices from the database for device characteristics. Whether

or not a device is connectable in this manner is dependent on how the manufacturer

has configured the BLE device. If connection is possible, the command

gatttool -b [MAC] --characteristics

is run to list all handles, char properties, char value handles, and uuids. This infor-

mation is stored in the database, then each characteristic is read by handle with the

command

gatttool -b [MAC] --char-read -a [handle]

These handles hold descriptors that contain information such as device name, man-

ufacturer, serial number, current battery levels, brightness, sound level, etc. For

example, the MiPow Playbulb handle 0x0016 holds the device name, and 0x0010

holds the current brightness of the lightbulb. All characteristics are read on the device

as it is not predictable what handle will hold what information. This is determined

by the manufacturer during setup and is device dependent. This data is stored in the

database and sent to the SFTP server to be gathered by the skyport for attacker

analysis. The code for BLEconnectquery.py is listed in Appendix C.

3.5.4 skyport Package

The skyport interface allows an attacker to specify the type of information she

would like to collect with the skypie. She must choose the BLE option in order to

collect the relevant data and analyze it for further actions.

53

3.5.4.1 sensor app.py

The sensor app module dictates the attacker interface design. The original version

developed in [1] included settings to control the skypie (known as the sensor), a Wi-

Fi tab for overall Wi-Fi collection, and a telemetry collection tab. The next iteration

in [2] added a Wi-Fi attack tab in the control settings. skypie v3 comes with an

upgrade to the skyport where a BLE tab is created to update the configuration file

used by the skypie. The settings tab options can be seen in Figure 16. Additionally,

the attacker can send a predefined attack, further explained in Section 3.5.4.2.

Figure 16: skyport Control Settings Tabs

The data collected by the skypie displays on the skyport under the specific

sensor name (in this research, the starchy sensor is used). The tab options are

displayed in Figure 17. The telemetry and calibrate tabs are used for the skypie’s

geolocation capabilities. The targets tab displays the Wi-Fi networks collected by

the sensor in a table for attacker view. The console tab allows an attacker to send

commands to be run on the skypie and are discussed in Section 3.5.4.2. The log

tab presents the output log as the skypie is running.

54

Figure 17: skyport Tabs to Display Data and Send Commands to Console

The skypie uploads the database collected by the BluBarry modules to the

SFTP server, where the skyport downloads it and displays it in the BLE tab.

Figure 18 shows that the attacker can see the name of the device, the MAC, the

averaged RSSIs, as well as the characteristics for the device if it is connectable. The

attacker can choose what device and characteristic to pursue and attempt to overwrite

the characteristics at the user’s choosing. Depending on the security of the device

programmed by its manufacturer, such attacks may or may not be successful.

Figure 18: skyport BLE Tab to Display Database Results

3.5.4.2 command.txt

The skyport offers an interface for the attacker to enter commands to be ex-

ecuted on the skypie. Figure 19 shows the output of an ifconfig command.

55

Once a command is entered on skyport, it is put into the command.txt file and up-

loaded to the SFTP server. The skypie pulls down the command file at the interval

specified by the attacker in the config file. Once downloaded on the skypie, the

commands are run and the output put into the consoleLog.txt and sent back to the

SFTP server. The skyport downloads the console file, and the results are displayed

for the attacker in the console tab. This particular feature allows the attacker to run

any command desired on the skypie.

Figure 19: skyport Interface for Console Commands to skypie

The BLE control settings tab, shown in Figure 20 allows the attacker to craft

a specific attack to attempt to overwrite characteristics on a target device with the

command

gatttool -b [MAC] --char-write-req -a [handle] -n

[newcharacteristicvalue]

56

Characteristic value for handle 0x0010 on the lightbulb before and after
char-write-req attack sent from the skypie

Figure 20: skyport Interface for BLE Write Attack Parameters to skypie

The command is executed once the command file arrives on the skypie. The

response is sent back to the attacker to notify if the characteristic value was written

successfully or if there was a failure. Errors may be experienced if the attacker is

57

attempting command values that are not expected for the characteristics or that are

not the correct length. If successful, the attacker can view the new value in the BLE

tab as the BluBarry package is continually running the scans and queries unless

told otherwise. The attacker can also choose the command

gatttool -b [MAC] --char-read -a [handle]

from the BLE interface option to read a specific value associated with the handle of

interest. Changing the values can have a physical effect, such as in the example of the

Playbulb mentioned in Section 3.5.3.2, an example of which is shown in the skyport

in Figure 21. In this case, the brightness of the lightbulb was at 13 13, which means

it was almost at its full brightness. The attacker was able to send the value 0000 to

this characteristic, which dimmed the lightbulb to 12 12, just slightly darker than

previously. This effect of changing the brightness could be visually confirmed while

watching the lightbulb. If the value changed is the name of the BLE device, the

user may be required to manually re-pair with that device, so it could result in a

temporary DoS to the IoT device. The attacker can utilize this time to change more

characteristics on the device to wreak more havoc before the user has time to react.

58

Characteristic value for handle 0x0010 on the lightbulb before and after
char-write-req attack sent from the skypie

Figure 21: skyport Console Tab for Attack Output

3.6 Design Summary

This chapter has discussed the skypie v3 prototype components and design.

Section 3.2 summarized the SUT, followed by design goals and hardware design in

Section 3.3 and Section 3.4. The skypie’s software is discussed in Section 3.5 which

dives into the design model for the software, then the skypie, BluBarry, and

skyport packages.

59

IV. Methodology

4.1 Overview and Objectives

This research extends the work previously done by Bramlette [1] and Barker [2] to

integrate BLE attack capabilities into the skypie attack platform, and by focusing

on the following questions:

• How close does an attacker need to be to collect Bluetooth Low Energy (BLE)

data from a target using lightweight, low-cost equipment?

• Can pattern-of-life data be collected at 600 meters?

• At what distance does pattern-of-life collection become infeasible?

• Can the attacker also interact with the target from that distance?

• How is the range of the skypie affected at a height of 1 meter versus 3.05

meters?

The System Under Test is explained in Section 4.2, followed by the experiment fac-

tors in Section 4.3, metrics in Section 4.4, constant parameters in Section 4.5, and

uncontrolled variables in Section 4.6. Experimental design in Section 4.7 concludes

the chapter.

4.2 System Under Test

The System Under Test (SUT), as described in Chapter III, is designed to update

an attack platform, the skypie, that is made with low-monetary investment and

with lightweight equipment. Additionally, the platform allows for remote control so an

attacker does not necessarily need to be at the same location as the skypie and can

60

control it from an undisclosed location. The platform has incorporated geolocation

via radiolocation up to 600 meters [1] and Wi-Fi collection and exploitation up to

2200 meters [2]. Figure 22 summarizes the overall SUT.

4.3 Factors

This experiment focuses on the factors listed in Table 3. These are the parameters

that are varied throughout the experiment.

• Distance: The distance, measured in meters, is evaluated from 50-600 meters

at 50 meter increments. This allows for a total of 12 measurements throughout

the experiment. However, if no beacons are collected from any of the devices,

that data point is dropped.

• Antenna Mode: The antenna functions first as receive (RX) only. This is mod-

eled through passive beacon collection to determine if the attack platform can

sniff data from a certain distance. RX and transmit (TX) is the other mode,

used to interact with the target device and attempt connection and character-

istic enumeration.

• Elevation: The skypie is evaluated at elevations of 1 and 3.05 meters. The

1 meter height is to determine the effectiveness of the platform for potential

uses other than drone flight. The 3.05 meter height simulates the height of a

drone flying to test the skypie v3 effectiveness by the means evaluated in the

previous iterations.

61

S
y
s
t
e
m

P
a
r
a
m
e
t
e
r
s

M
e
t
r
i
c
s

F
a
c
t
o
r
s

R
e
c
e
i
v
e
d

S
i
g
n
a
l

S
t
r
e
n
g
t
h

I
n
d
i
c
a
t
i
o
n

D
i
s
t
a
n
c
e

s
k
y
p
i
e

f
r
a
m
e
w
o
r
k

s
k
y
p
i
e
C
o
m
p
o
n
e
n
t
s

U
n
d
e
r

T
e
s
t

•
A
t
t
a
c
k

c
a
p
a
b
i
l
i
t
i
e
s

•
C
2

f
u
n
c
t
i
o
n
a
l
i
t
y

C
o
m
p
u
t
i
n
g

P
a
r
a
m
e
t
e
r
s

OS: Raspbian
Languages: Python 3.7
Hardware: Raspberry Pi 4 B
RAM: 8 GB LPDDR4-3200 SDRAM
Wi-Fi: 802.11.b/g/n/ac WLAN
Bluetooth: 802.15.1 v4.0

skypieDefault Configuration
Prototype Hardware Components

C
o
n
s
t
a
n
t

P
a
r
a
m
e
t
e
r
s

U
n
c
o
n
t
r
o
l
l
a
b
l
e

P
a
r
a
m
e
t
e
r
s

Field Location
Target Device Models
Target Configuration
Scan Iterations
Antenna Orientation
Device Orientation
Command Parameters

Inference on the 2.4 GHz band

A
n
t
e
n
n
a

M
o
d
e

1

s
k
y
p
o
r
t
C
o
m
p
o
n
e
n
t
s

U
n
d
e
r

T
e
s
t

•
R
S
S
I

c
a
l
c
u
l
a
t
i
o
n

Sy
st

e
m

 U
n

d
er

 T
e

st

C
o

m
p

u
ti

n
g

P
ar

am
e

te
rs

U
n

co
n

tr
o

lla
b

le
P

ar
am

e
te

rs
C

o
n

st
an

t
P

ar
am

e
te

rs

skypieDefault Configuration
Prototype Hardware Components

E
l
e
v
a
t
i
o
n

D
i
s
t
a
n
c
e

D
e
v
i
c
e
s

D
i
s
c
o
v
e
r
e
d

(
R
X
)

D
i
s
t
a
n
c
e

D
e
v
i
c
e
s

C
o
n
n
e
c
t
e
d

(
T
X
)

F
ig

u
re

22
:

S
y
st

em
U

n
d
er

T
es

t
D

ia
gr

am

62

Table 3: Experiment Factors

Factor Levels Description

Distance 50-600 meters The distance from the attack platform

(50 meter increments) to the target devices

Antenna Mode Receive (RX) only, The manner in which the

RX & Transmit (TX) antenna is utilized

Elevation 1 meter The effectiveness of BluBarry

3.05 meters at different heights

4.4 Metrics

The metrics to determine experiment success, described in Table 4, are Received

Signal Strength Indicator (RSSI), distance devices discovered for RX only, and dis-

tance devices connected for RX and TX.

• Received Signal Strength Indicator (RSSI): useful in measuring the approximate

distance between the two devices (skypie and the target device). The value is

determined based upon the power level received by the skypie antenna. RSSI

is unitless, but can be converted to dBm representing milliwatts (mW) [46].

The logarithmic relationship between dBm and mW is

mW = 10
dBm
10 (5)

The Bluetooth SIG recommends using multiple RSSI’s averaged at a distance

to determine the true RSSI value, as a single RSSI reading could be influenced

by interference. Section 2.5 details how RSSI can be estimated to determine

accuracy against theorized RSSI and actual RSSI.

• Distance Devices Discovered: the distance at which the target devices beacons

can be collected passively, utilizing the antenna mode to receive only. A col-

63

lected BLE beacon includes the name of the device, the MAC, and the RSSI.

This information is used to determine pattern-of-life data, and thus beacons

and pattern-of-life collection are used interchangeably.

• Distance Devices Connect: the distance that a target device can be transmitted

to and receive data from. If the skypie is able to detect the target at the

distance, it will attempt to interact with it through a connection.

Table 4: Experiment Metrics

Metric Units Expected Range

Received Signal Strength Indicator (RSSI) dBm −82 dBm ≤ RSSI ≤ −50 dBm

Distance Devices Discovered meters 50− 600

Distance Devices Connected meters 50− 600

4.5 Constant Parameters

The following are parameters that remain constant as the experiments are con-

ducted. This is done in order to reliably determine the success of the experiment and

not to wrongly attribute any effects due to environment or equipment changes that

are not measured. The constant parameters are summarized in Table 5.

• Location: The location chosen, seen in Figure 23, allows for a 800 meter range on

a flat, open area. The field is located between the Air Force Museum and Loop

Road. This location is optimal in order to minimize 2.4 GHz range interference

in the immediate area and allow for continuity of experiment runs. This location

was also chosen for proof-of-concept for skypie v1 experiments [1].

64

Table 5: Constant Parameters

Parameters Proposed Values Controlled By

Location Open Field (800 meters) Experiment Design

Number of Targets 3 Experiment Design

Target Devices Masimo MightySat Rx, Experiment Design

Nonin 3230, & SensoSCAN S340

Device Orientation x orientation Experiment Design

Antenna Direct LOS to targets Experiment Design

Orientation

BLE Scan Iterations 30 iterations per collection Device Configuration

BLE Scan hcitool lescan Device Configuration

Command Parameters btmgmt find

Connection & gatttool -b [MAC] Device Configuration

Enumeration Command --characteristics

Characteristic Probe gatttool -b [MAC] Device Configuration

--char-read -a [handle]

Figure 23: Experiment Location

65

• Number of Targets: Three targets are chosen for the two experiments to deter-

mine the effectiveness of the skypie against three similar types of devices.

• Target Devices: The target devices for these are the medical IoT devices -

the Masimo MightySat Rx, Nonin 3230, and SensoSCAN S340 seen in Figure

24 with quarters for reference to show size. The target devices are fingertip

pulse oximeters using BLE versions 4.0-4.2. For the purpose of making this

research applicable to battlefield research, the Masimo device was chosen as

one of the targets for this research. This device is one of the devices utilized by

the BATDOK project according to the official website [24].

Masimo MightySat Rx SensoSCAN S340

Nonin 3230

Figure 24: Target Medical IoT Devices

• Device Orientation: Per pilot studies discussed in Section 5.2, the devices are

fixed along the x axis during all data collection.

• Antenna Orientation: The Yagi antenna on the skypie is pointed with LOS

to the target devices and remains in that position throughout the experiments.

66

• BLE Scan Iterations: Each collection point in both experiments are run at 30

iterations. This can vary in time based upon the number of devices detected,

but was around 7 minutes for this research. As the BluBarry functionality of

the skypie interacts with the device without the user’s knowledge, detection

is not a large concern. However, if an attacker were to remain in one location for

too long, it increases the chances of being identified. Therefore, 30 iterations

was determined to be an acceptable amount of time. The attacker has the

ability to change this and do a shorter or longer scan.

• BLE Scan Command Parameters: The passive light and intense scan parameters

remain the same throughout the experiments as discussed in Section 3.5.3.1.

• Connection & Enumeration Command: The gatttool command is used to

attempt to connect to and list out the characteristics on the device.

• Characteristic Probe: The characteristic probe command is repeated for each

data collection and attempts to read the handle of each characteristic found by

the previous command, as detailed in Section 3.5.3.2.

4.6 Uncontrolled Variables

The 2.4 GHz frequency band is used by numerous wireless protocols such as Wi-

Fi, Bluetooth, Bluetooth Low Energy, Zigbee, garage doors, radio toys, and more.

This means that the open ISM band is subject to interference. Though the location

to conduct the experiments was chosen to minimize this, any traffic on this band

simulates an operational environment.

67

4.7 Experiment Design

The following sections describe the two experiments conducted in this thesis. The

experiments address the following research questions:

• How close does an attacker need to be to collect Bluetooth Low Energy (BLE)

data from a target using lightweight, low-cost equipment?

• Can pattern-of-life data be collected at 600 meters?

• At what distance does pattern-of-life collection become infeasible?

• Can the attacker also interact with the target from that distance?

• How is the range of the skypie affected at a height of 1 meter versus 3.05

meters?

4.7.1 Experiment One: skypie Elevation 1 Meter

1. The same location is utilized for all experiments.

2. Target devices are placed at the 50 meter distance at a height of about 1 me-

ter. The devices are at the same elevation and same orientation during data

collection.

3. The attack platform is placed on a plastic table at an elevation of 1 meter,

shown in Figure 25. The antenna is placed with a direct LOS to the target IoT

medical devices.

68

Figure 25: Attack Platform at 1 Meter Elevation.

4. The attacker logs in to the skyport to begin interacting with the attack plat-

form, when necessary. If not already configured, the attacker chooses the BLE

Attack option in the skyport.

5. The skypie prototype is turned on, with the long-range Bluetooth adapter in

position. The skypie software begins automatically and runs according to the

latest version of the config file. Any updates to the config file requires a cellular

connection for the skypie to receive commands from the skyport and also

to send data back to the SFTP server. However, as the experiment is run in

proximity to the skypie, a hotspot is used to interact with the skypie from

the skyport. The software is initialized as described in Chapter 4, and the

69

BLE data collection and attack begins.

6. The BluBarry package on the prototype is set to iterate 30 times through the

intense scan to populate the database for nearby BLE devices.

7. The skypie then begins the BLEconnectquery thread and attempts to connect

to the target devices and enumerate current characteristics settings.

8. Target devices are moved to the next 50 meter checkpoint and the experiment

is repeated until the 600 meter distance is met and evaluated.

4.7.2 Experiment 2: skypie Elevation 3.05 Meters

Experiment two is run in the same sequence of events as experiment one. The

skypie is now mounted on a pole and elevated to 3.05 meters to simulate realistic

drone flight, as seen in Figure 26. The pole compared to a 1.22 Meter Ruler can be

seen to show the relative height. The prototype is vectored at the target devices with

a direct LOS and its orientation not changed throughout the experiment.

70

Figure 26: Attack Platform on Pole at 3.05 Meters for Experiment Two.

Figure 27: Pole Compared to a 1.22 Meter Ruler.

4.8 Summary

This chapter describes the System Under Test (SUT) used including factors, met-

rics, and parameters for the experiments, as well as the steps for how the experiments

71

are conducted. The experiments depicted here are done in order to determine the dis-

tance of BLE attacks on a lightweight, low-cost attack platform. The data collected

is analyzed to determine statistical significance and to judge the effectiveness of the

experiments against the metrics in Chapter 5.

72

V. Results and Analysis

5.1 Overview

This chapter discusses the results obtained from the experiment outlined in Chap-

ter 4. Section 5.2 discusses the orientation of the devices for the experiments. Sec-

tion 5.3 details the results of the beacon collection and connection attempts and

discusses the overall RSSI trends. Section 5.4 concludes the chapter by calculating

the expected RSSIs using (2) and (3) for path loss analysis. Section 5.4 also in-

cludes a statistical analysis of the Nonin and S340 device RSSIs in each experiment

to determine if height had a significant effect on the RSSIs collected.

As was determined by previous skypie experiments [1, 2], the skypie attack

framework was able to geolocate at 600 meters and perform Wi-Fi network focused

attacks up to 2200 meters. This research sought to expand the capabilities of the

skypie attack platform and skyport attacker controller interface by integrating the

BluBarry package, allowing BLE device detection, enumeration, and modification.

The results of the experiment are directly responsible for answering the research

questions in Section 4.1 to determine the capabilities of this package.

The results discussed in this chapter compare two experiments: one run at a

height of about 1 meter and the other repeated at 3.05 meters. The 1 meter height

represents an attacker using the skypie where it could be mounted on a rover, put

on a table, or be sitting out the window of a car. The 3.05 meter height represents

drone flight, but could also estimate a second story of a building or use of any elevated

platform. At both heights, the BluBarry package on the skypie is used to evalu-

ate BLE attack capabilities at different distances. The research questions posit how

far from a target the attacker can be using this lightweight, low-cost equipment and

the skyport attacker web platform. BluBarry first evaluates the RX capability

73

to collect BLE advertisement packets which consist of information such as MAC ad-

dresses, device name, flags, and RSSI data. BluBarry then tests the TX capabilities

by attempting to connect to the device, and, if successful (which is dependent on how

the device manufacturer setup the device) enumerates the characteristics and their

values. These characteristics contain information such as device name, specific model

of that device, manufacturer, and current settings (such as in pilot studies where a

Playbulb’s characteristics were read and the current light level was shown). This

information found in the advertisement packet (or referred to as a beacon) is vital

for pattern-of-life analysis. An attacker can collect how many devices are active at a

location, what the device is, and track when its no longer in use, etc. This gives the

attacker opportunity to estimate the number of people at a location or hypothesize

who might be in the building based on the devices present.

5.2 Device Orientation

Pilot studies were run to determine if the orientation of the target devices affected

the RSSI. Beacons containing the RSSI were collected for each device for a 1 minute

scan in each orientation. Figure 28 shows the device orientations in the x, y, and z

axes, with the Nonin device as the example. It was found that the S340 and Nonin

devices have the strongest RSSIs in the x orientation with an average difference of at

least 5 RSSIs weaker in the other axes. The Masimo device was found to have the

strongest RSSI in the z axis, but as the difference in averages was less than 3 RSSI,

for continuity sake, the experiments were run in the x axis.

74

Figure 28: Orientations for Target Devices

5.3 Range

While the research hypothesized BLE collection out to 600 meters, in reality,

the maximum range was 450 meters. At distances beyond 450 meters, no beacons

were collected from any of the devices. Therefore, only nine collection points will

be referenced, and the experiments will be compared up to 450 meters, though data

may only be shown to the maximum range for that device. At each of the nine

collection points from 50 meters to 450 meters, the BluBarry package iterated 30

times to collect advertisement packets, which resulted in about seven minutes for

a BluBarry thread to run. This collects the minimum information necessary for

pattern-of-life analysis, and collects as many RSSIs as possible in order to attempt a

more accurate measure of approximate distance from the target. If the device allows

such a connection, the skypie automatically attempts to connect and enumerate the

characteristics and values. This probe is executed against each BLE device discovered

in the scan.

75

5.3.1 Experiment One: Beacon Collection

Figures 29, 30, and 31 show the expected general trend for the RSSI values is

downward, showing that the signal is weaker as the distance increases. The data is

shown in box-and-whisker plots, where the minimum and maximum are shown as the

whiskers and the box represents the 1st and 3rd quartiles. The median can be seen as

the line inside the box, with the x denoting the average. Outliers are represented as

dots outside the box. While the signal weakens as the distance between the target and

attack platform increases, this strength, as long as the device is able to be detected,

is not relevant in order to collect pattern-of-life data.

Figure 29: RSSIs for the Masimo Device for Experiment One

The data collected for the Masimo device (Figure 29) for the first experiment

shows the weakest trend downwards. It is possible that the downward trend is subtle

from 50 to 100 to 200 and that the 150 meter data collection is a product of ground

reflection off the fresnel zone (Section 2.5), which may attenuate the signal. It is

76

feasible that the Masimo RSSI collection may have been more accurate in the z axis

where its RSSI was the strongest. However, in a realistic environment, the attacker

would have no control over the orientation of the device, and this research proves

BLE beacons can be collected for the Masimo device up to 200 meters at an elevation

of 1 meter. Figures 30 and 31 show the collected RSSI data for the Nonin and

S340 devices, respectively, and have a stronger trend downwards to show that as the

distance increases, the RSSIs decrease.

Figure 30: RSSIs for the Nonin Device for Experiment One

77

Figure 31: RSSIs for the S340 Device for Experiment One

Table 6 summarizes what the maximum distance to collect beacons was for each

device, where the success means that at least one beacon was collected at a loca-

tion. Failure means that no beacons were collected. While 600 meters was the goal,

450 meters was the maximum distance for collected data over the two experiments.

Therefore, only nine reference points will be referenced, where the 1st represents 50

meters and the 9th represents 450 meters. The Nonin device did not collect beacons

at 300 meters, but did at 350 meters. It is intuitive that the beacons should have

also been collected at 300 meters, and that there was some sort of interference or par-

ticularities of the environment at the time of the 300 meter collection for the Nonin

device.

Figure 32 shows the overall downward trend of the three devices as the distance

increases, correlating to the RSSI becoming weaker as distance increases. Expected

RSSIs for the two experiments are calculated in Section 5.4.

78

Table 6: Beacon Success for Experiment One

Beacons Collected

Experiment One

Masimo Nonin S340

Success 4 6 6

Failure 5 3 3

Max Success

Distance (meters)
200 350 300

Figure 32: Average RSSIs for Experiment One

5.3.2 Experiment One: Device Connection

It was found that for the Masimo and S340 devices, connection was not possible,

regardless of the distance. This is due to how the manufacture has set up connections

to the device, and may require a certain type of device, such as a phone application,

to secure a connection. The Nonin, however, did allow for connections using the

79

BluBarry package. Characteristics and their respective values were read at the

distances of 50, 100, 150, and 200 meters, which is summarized in Table 7. At 250

meters, BluBarry was no longer able to obtain this data. This is conjectured to be

because the distance was too far to maintain a reliable connection.

Table 7: Connection Success for Experiment One

Characteristics & Values Read

Experiment One

Masimo Nonin S340

Success 0 4 0

Failure 9 5 9

Max Success

Distance (meters)
N/A 200 N/A

5.3.3 Experiment Two: Beacon Collection

The experiment was rerun with the skypie at a height of 3.05 meters to simulate

being mounted on a drone. Nine locations were again used for experiment two from

50 meters to 450 meters to scan and attempt connection to the targets. The same

nine devices were also evaluated up to 600 meters, but as no signals for any of the

three devices were detected, the data evaluated stops at 450 meters. Figures 33, 34,

and 35 again show the overall downward trend for the devices, demonstrating that

the received signal is weaker as the distance increases between the attack platform

and medical IoT targets.

80

Figure 33: RSSIs for the Masimo Device for Experiment Two

The data collected for the Masimo device (Figure 33) for the second experiment

shows a steeper downward trend than in the first. However, the 50 meter collection

point shows a weaker RSSI average than the other distances up to 300 meters. While

the cause of this is unknown, it is possible that the 50 meter collection point beacons

are as readily detected at the 3.05 meter elevation due to the ellipsis associated with

the fresnel zone. The Nonin RSSI connection data shown in Figure 34 shows a lower

50 meter value, similar to the Masimo device. There is also not a linear decline in

RSSIs as the distance increases, but the trend is downward. Figure 35 shows a subtle,

but steady decline in RSSIs from the 50 meter collection point to 450 meters for the

S340.

81

Figure 34: RSSIs for the Nonin Device for Experiment Two

Figure 35: RSSIs for the S340 Device for Experiment Two

82

Table 8 summarizes whether or not a beacon was detected for the device at the

specified distance. The detection distance for beacons for the Masimo was increased

from 200 meters for the Masimo device to 350 meters from experiment one to exper-

iment two, for the Nonin from 350 to 450 meters, and from 300 to 450 meters for

the S340. Overall, Figure 36 shows the average RSSIs for the IoT devices over the

collected distances for experiment two.

Table 8: Beacon Success for Experiment Two

Beacons Collected

Experiment Two

Masimo Nonin S340

Success 7 9 9

Failure 2 0 0

Max Success

Distance (meters)
350 450 450

Figure 36: Average RSSIs for Experiment Two

83

5.3.4 Experiment Two: Device Connection

At the 3.05 meters collection height, it was found that the distance of connection

had increased from 200 meters to 350 meters for the Nonin device, shown in Table 9.

An analysis of the effect of height is discussed in Section 5.4.

Table 9: Connection Success for Experiment Two

Characteristics & Values Read

Experiment Two

Masimo Nonin S340

Success 0 7 0

Failure 9 2 9

Max Success

Distance (meters)
N/A 350 N/A

5.3.5 Range Beacons and Connections Summarized

Table 10 shows the number of collection points at which beacons were able to be

collected for the device, and Table 11 shows whether or not a device was connectable,

and the max distance at which the connection and enumeration were successful. If

the device is connected, the attacker can attempt to write over characteristic values

using the skyport web interface.

Table 10: Beacon Success for Experiments One and Two

Beacons Collected

Experiment One Experiment Two

Masimo Nonin S340 Masimo Nonin S340

Success 4 6 6 7 9 9

Failure 5 3 3 2 0 0

Max Success

Distance (meters)
200 350 300 350 450 450

84

Table 11: Connection Success for Experiments One and Two

Characteristics & Values Read

Experiment One Experiment Two

Masimo Nonin S340 Masimo Nonin S340

Success 0 4 0 0 7 0

Failure 9 5 9 9 2 9

Max Success

Distance (meters)
N/A 200 N/A N/A 350 N/A

5.4 Expected RSSIs

The RSSIs collected for these experiments can be compared against theoretical

RSSIs to determine the accuracy of the actual versus expected. While it is known that

RSSI is not overly accurate [46], it is still useful for distance estimation. Section 2.5

discusses signal propagation theory and the associated equations that will be used for

calculations. (1) is an expression to calculate the expected RSSI. It involves a path

loss variable which is computed by either (2) or (3). (2) assumes Free Space Path Loss

(FSPL) and (3) incorporates Ground Path Loss (GPL). Both equations are used to

calculate the expected RSSIs for the experiments and compared to the actual RSSIs

to determine which is a valid assumption given the experiment elevation.

Figures 37 and 38 plot the expected RSSI using the FSPL formula, the expected

RSSI using the GPL formula, and the actual data for the devices in both experi-

ments. The TxPower (Ptx) for the S340 and Nonin devices were found both via a

bluetoothctl scan and confirmed using an Ubertooth. The S340 advertised a

TxPower of 0 dB and Nonin of 3 dB. The dBi gain of the antenna (Gtx) was esti-

mated to be 3 dBi, and the receiver antenna advertises a gain of 18 dBi. The Masimo

device had the value as private, so the TxPower is unknown, and is thus omitted

from the remaining analysis. However, given that this device has a shorter range in

both experiments one and two, it is reasonable to assume it is below 0 dB as per the

85

TxPower ranges allowed by the BLE specification discussed in Section 2.5.

Figure 37: Expected versus Actual RSSIs for Nonin using (2) and (3)

Figure 38: Expected versus Actual RSSIs for S340 using (2) and (3)

86

It can be seen that the values of the actual data for experiment one at 1 meter

resemble the GPL formula (3). This can be explained by the Link Budget Formula

(4) discussed in Section 2.5. This formula is used to determine the height at which

an object must be to avoid ground interference in its cone of radio frequency. Using

(1), it can be seen in Table 12 that at a distance (d) of 50 meters and a frequency

(f) of 2.4 GHz, the radius (r) of the cone is 1.25 meters. This shows that experiment

one at an elevation of only 1 meter already has potential ground interference, so it

is reasonable that the actual data would align with (3) which incorporates ground

contribution versus the FSPL formula (2). At a height of 1 meter, the skypie could

obtain data without attenuation due to the ground only at 30 meters from the target.

Table 12 shows the radius needed to avoid interference given a certain distance.

Table 12: Link Budget Fresnel Zone Calculations

Distance (meters) 50 100 150 200 250 300 350 400 450 500

Radius (meters) 1.25 1.77 2.16 2.50 2.79 3.06 3.31 3.53 3.75 3.95

Figures 37 and 38 also show that for experiment two which was run with the

skypie at a 3.05 meter elevation, the data for each device corresponds more closely

with the FSPL formula. The max range for beacon collection is extended from 350

meters in experiment one to 450 meters in experiment two. The connection, reading of

characteristics, and potential for characteristic alteration by the attacker is extended

from 200 meters to 350 meters. This information is summarized in Table 11.

The S340 and Nonin devices are evaluated against themselves at each distance for

the 1 meter and 3.05 meter elevations in order to determine if there is a significant dif-

ference for a device at the two elevations. A null hypothesis (H0) is formed that there

is no difference between the device RSSIs at 1 meter and at 3.05 meters in height, with

an alternate hypothesis (HA) that there is a difference. The Wilcoxon/Kruskal-Wallis

Rank Sums Test (referred to as Wilcoxon) is used in the JMP statistical software [52].

87

This test is useful for determining if there is a statistical difference between two data

sets when normality cannot be assumed (therefore a nonparametric test) and when

the sample numbers available are not the same.

The results of this test are displayed in Table 13 for the Nonin device. A box plot

of the RSSI data being compared is shown in Figure 39. The p value is the probability

of finding the results attached to the H0 postulated [53], and is evaluated at a 95%

confidence rate as signified by the α of 0.05 in the table. At a distance of 50 meters,

the H0 cannot be rejected, and the RSSIs are evaluated to be the same between the

two experiments. A reason for why this might be has been discussed in Section 5.3.

The remainder of the distances where beacons were collected in both experiments for

the Nonin are able to reject the H0 according to the results of the Wilcoxon test. The

RSSI values collected in the second experiment with the skypie at an elevation of

3.05 meters are stronger RSSI values. The statistical analysis performed shows that

at 100 meters or greater, the elevation of 3.05 meters results in better RSSI values.

Table 13: Wilcoxon Test for Nonin

Distance (meters) Sample Size* p value α Reject Ho

50 18, 23 0.1922 0.05 No

100 20, 21 <0.0001 0.05 Yes

150 7, 16 <0.0001 0.05 Yes

200 24, 18 0.0339 0.05 Yes

250 5, 7 0.0025 0.05 Yes

350 3, 4 0.0238 0.05 Yes

*sample size for experiment one is listed first, then for experiment two

88

Figure 39: Nonin RSSI Data from Experiments One and Two

Table 14 displays the results from the Wilcoxon for the S340 device, and a box

plot of the S340 RSSI data collected in experiments one and two can be seen in Figure

40. It is determined that, with a 95% acceptance rate, the H0 can be rejected and

that there is a difference in the RSSI values collected at 100-250 meters. At 50 meters

and 300 meters, H0 cannot be rejected. It is conjectured that the 50 meter rejection

is due to the fresnel zone as discussed for the Nonin device. The 300 meter evaluation

is only operating on two sample sizes for experiment one, and thus a longer collection

setting may result in more collection points to show this distance also can reject H0.

89

Table 14: Wilcoxon Test for S340

Distance (meters) Sample Size* p value α Reject Ho

50 81, 16 0.0864 0.05 No

100 12, 62 <0.0001 0.05 Yes

150 19, 39 <0.0001 0.05 Yes

200 34, 23 <0.0001 0.05 Yes

250 2, 24 0.0154 0.05 Yes

300 2, 14 0.9083 0.05 No

*sample size for experiment one is listed first, then for experiment two

Figure 40: S340 RSSI Data from Experiments One and Two

Similarly, Figure 38 shows how close the RSSI averages are at 50 and 300 meters,

and thus these results seen visually are confirmed statistically. It can be concluded

that, in both of the experiments ran on the Nonin and S340, the RSSIs collected at

an elevation of 3.05 are statistically different than those at 1 meter. These higher

RSSI values correspond to stronger signal strength, and the elevation at 3.05 meters

affords at least an extra 100 meters in beacon collection distance.

90

The expected RSSIs using the FSPL formula for the Nonin and S340 devices is

summarized in Table 15 and 16, respectively. For experiment two, it can be seen

that there is wide variance among the samples collected at each location for the

collected RSSIs, with an average mean error of -6.7988 for the Nonin and -9.7136 for

the S340. While the RSSI could be used for distance estimation to the target, this

high error results in inaccurate predictions and would be usable only in unobstructed

environments. The skypie platform already incorporates a more accurate measure

of distance estimation in the geolocation predictions established by Bramlette in

previous works [1]. This mechanism would need to be modified to collect BLE beacons

instead of Wi-Fi beacons when using the BluBarry package, but would result in

geolocation results proven in Bramlette’s research.

Experiments one and two demonstrate the potential for collection and alteration

on a BLE target. While the skypie being elevated to 3.05 meters allows for a

further range, 1 meter still allows for 350 meters. Elevation at 3.05 meters causes a

100 meter increase in distance for collection. There may be different circumstances

in which the attacker may want to avoid drone use (or perhaps use the drone at a

low height) and use a rover or car, for example, and this experiment demonstrates

the maximum ranges they can expect to intercept signals or cause effects. It also

demonstrate the range at which these and similar devices are vulnerable to potential

adversarial collection and injection.

91

T
ab

le
15

:
N

on
in

E
x
p

ec
te

d
R

S
S
Is

fo
r

E
x
p

er
im

en
t

T
w

o

T
x
P

o
w

e
r

D
e
v
ic

e
D

is
ta

n
ce

(m
e
te

rs
)

M
e
a
su

re
d

M
e
a
n

(d
B

m
)

M
e
a
su

re
d

M
e
d
ia

n

(d
B

m
)

E
x
p

e
ct

e
d

(d
B

m
)

M
e
a
n

E
rr

o
r

M
e
d
ia

n

E
rr

o
r

S
ta

n
d

a
rd

D
e
v
ia

ti
o
n

V
a
ri

a
n

ce

3
N

on
in

50
-6

7.
3

-6
8.

0
-5

0.
03

1
-1

7.
26

9
-1

7.
96

9
4.

10
8

16
.8

74

3
N

on
in

10
0

-6
5.

0
-5

9.
0

-5
6.

05
2

-8
.9

48
-2

.9
48

3.
82

0
14

.5
90

3
N

on
in

15
0

-6
2.

7
-6

1.
5

-5
9.

57
4

-3
.1

26
-1

.9
26

4.
12

7
17

.0
29

3
N

on
in

20
0

-6
8.

2
-6

8.
0

-6
2.

07
3

-6
.0

94
-5

.9
27

3.
24

0
10

.5
00

3
N

on
in

25
0

-6
9.

7
-6

8.
0

-6
4.

01
1

-5
.6

89
-3

.9
89

3.
86

1
14

.9
05

3
N

on
in

30
0

-6
7.

6
-6

6.
0

-6
5.

59
4

-2
.0

06
-0

.4
06

4.
03

7
16

.3
00

3
N

on
in

35
0

-6
7.

0
-6

7.
5

-6
6.

93
3

-0
.0

67
-0

.5
67

3.
34

7
11

.2
00

3
N

on
in

40
0

-7
5.

2
-7

5.
0

-6
8.

09
3

-7
.1

07
-6

.9
07

1.
09

5
1.

20
0

3
N

on
in

45
0

-8
0.

0
-8

0.
0

-6
9.

11
6

-1
0.

88
4

-1
0.

88
4

N
/A

N
/A

A
v
e
ra

g
e
s

-6
.8

-5
.7

2
4
7

3
.4

5
4
3

1
2
.8

2
4
7

92

T
ab

le
16

:
S
34

0
E

x
p

ec
te

d
R

S
S
Is

fo
r

E
x
p

er
im

en
t

T
w

o

T
x
P

o
w

e
r

D
e
v
ic

e
D

is
ta

n
ce

(m
e
te

rs
)

M
e
a
su

re
d

M
e
a
n

(d
B

m
)

M
e
a
su

re
d

M
e
d
ia

n

(d
B

m
)

E
x
p

e
ct

e
d

(d
B

m
)

M
e
a
n

E
rr

o
r

M
e
d
ia

n

E
rr

o
r

S
ta

n
d

a
rd

D
e
v
ia

ti
o
n

V
a
ri

a
n

ce

0
S
34

0
50

-7
2.

4
-7

3.
0

-5
3.

03
1

-1
9.

36
9

-1
9.

96
9

3.
20

4
10

.2
68

0
S
34

0
10

0
-7

2.
0

-7
2.

0
-5

9.
05

2
-1

2.
94

8
-1

2.
94

8
3.

36
0

11
.2

88

0
S
34

0
15

0
-7

3.
1

-7
4.

0
-6

2.
57

4
-1

0.
52

6
-1

1.
42

6
4.

08
4

16
.6

77

0
S
34

0
20

0
-7

3.
5

-7
3.

0
-6

5.
07

3
-8

.4
27

-7
.9

27
3.

31
7

11
.0

00

0
S
34

0
25

0
-7

6.
1

-7
5.

0
-6

7.
01

1
-9

.0
89

-7
.9

89
2.

37
6

5.
64

5

0
S
34

0
30

0
-7

7.
3

-7
8.

0
-6

8.
59

4
-8

.7
06

-9
.4

06
2.

87
8

8.
28

6

0
S
34

0
35

0
-7

5.
2

-7
6.

0
-6

9.
93

3
-5

.2
67

-6
.0

67
2.

60
3

6.
77

3

0
S
34

0
40

0
-7

6.
7

-7
7.

0
-7

1.
09

3
-5

.6
07

-5
.9

07
1.

67
3

2.
79

9

0
S
34

0
45

0
-7

9.
6

-8
0.

0
-7

2.
11

6
-7

.4
84

-7
.8

84
1.

66
7

2.
77

8

A
v
e
ra

g
e
s

-9
.7

1
4

-9
.9

4
7

2
.7

9
6

7
.3

9
0

93

VI. Conclusions

6.1 Overview

This chapter summarizes the research and results throughout development and

experimental runs. Section 6.2 concludes the findings of this research. The contri-

butions and significance are discussed in Section 6.3. Potential future work is then

posited in Section 6.4, and a summary is provided in Section 6.5.

The skypie v3 is proven to be successful in beacon collection vital for pattern-

of-life detection out to 350 meters at 1 meter elevation. A second experiment is run

to determine the success of the skypie at an elevation of 3.05 meters, where the

BluBarry collection is successful out to over a quarter of a mile (450 meters). This

work is successful in maintaining the design goals set forth in the original skypie

blueprint [1] for the prototype to be lightweight, under 1 kg, and low-cost, under $500.

This allows for the skypie v3 to be light enough to mount on most drones, and also

portable enough to use at the attacker’s leisure on other potential mediums such as on

a rover, in a car, or on a table. This research demonstrates what a motivated threat

actor could do with low monetary resources and commercially available products.

The research goal of upgrading to the skypie v3 with BLE CNA abilities is met.

This study was successful in answering the following research questions:

1. How close does an attacker need to be to collect BLE data from a target using

lightweight, low-cost equipment?

2. Can pattern-of-life data be collected at 600 meters?

3. At what distance does pattern-of-life collection become infeasible?

4. Can the attacker also interact with the target from that distance?

94

5. How is the range of the skypie affected at a height of 1 meter versus 3.05

meters?

6.2 Research Conclusions

The first research question of how close an attacker must be to collect BLE data

is answerable in conjunction with questions two, three, and five. The hypothesis

that BLE collection can be done out to 600 meters was proven to be unattainable

given the current hardware and methodology used. However, it is determined that

pattern-of-life collection is possible out to 450 meters at a 3.05 meter elevation and

350 meters at a 1 meter elevation. This demonstrates that the elevation does have

an effect on the distance at which BLE signals can be collected, which is explained in

Section 2.5 and analyzed in Chapter V. To answer research question four, the results

show that the attacker can interact with the devices at a distance of 100-150 meters

from the maximum for pattern-of-life collection, up to the distances of 200 meters

for an elevation of 1 meter and 1.75 times that distance at 3.05 meters for a range

of 350 meters, where the attacker can connect to and enumerate the current device

settings. The attacker is then able to attempt to overwrite the current characteristics

for a CNA.

In conducting experiments with varied elevations for the skypie, it is determined

that the Free Space Path Loss formula (2) is a better model for path loss for distance

estimation using RSSIs at an elevation of just over 3 meters, versus the Ground Path

Loss equation (3) for a height of 1 meter. Additionally, it is determined that, using

the Wilcoxon/Kruskal-Wallis Rank Sums Test, there is a statistical difference in the

RSSIs collected at 3.05 meters versus 1 meter for distances 100-350 meters for the

Nonin device, with an exception of 50 meters, and 100-250 meters, with an exception

at 50 meters and 300 meters for the S340 device. The results of this analysis lead to

95

the conclusion that the 3.05 meter elevation is better for both stronger RSSI signals

and longer distances for BLE pattern-of-life data and device interaction. The average

mean error for the Nonin device RSSIs is -6.7988 and -9.7136 for the S340, further

supporting the conclusion that RSSI is useful for general distance estimations in

unobstructed environments, but not accurate enough to pinpoint the target location.

Though the three devices chosen for the experiments are all BLE fingertip pulse

oximeters, this research shows the variance that comes from manufacturer program-

ming. While they have different distances for detection and only one allows full

enumeration, this point illustrates the data leakage that a device that is designed for

close use can have effects even out to a quarter of a mile. It indicates that an attacker

could sniff this pattern-of-life data, undetected, and determine what devices are in

use at the time and posit who might be home. The skypie was also able to fully

enumerate the characteristics on one of the devices. Long et al. shows that one of

the devices can have its active connection sniffed using an Ubertooth, seeing the data

passed from the Masimo device to the phone application in cleartext [38].

6.3 Research Contributions/Significance

As discussed in Section 1.7, this research has several contributions to research

on airborne wireless attack, medical IoT devices, and BLE pattern-of-life collection.

The skypie’s hardware is upgraded and the software is modified to feature BLE

attack capabilities. BLE C2 capabilities are added to the skyport attacker interface,

and the data is collected, sorted, and displayed for the attacker. The prototype is

evaluated at different distances and elevations with receive only and transmit and

receive toolsets.

With the increasing focus on IoT integration into the medical field, military op-

erations, home use, and more, it is important to realize the data leakage that comes

96

with these IoT protocols. skypie v3 is now capable of:

• Geolocation of targets

• Wi-Fi beacon collection

• Wi-Fi network attack and enumeration

• BLE beacon collection to catalog BLE devices

• Probing of BLE devices for characteristics and values

• BLE device attack - writing arbitrary values to BLE characteristics on remote

devices

The collection of beacons allows for an attacker to infer pattern-of-life data, such

as what devices are in use and at what location. This information can be used to

determine who is home, how many people are home, when the particular device is no

longer in use, and what type of devices the consumer uses. In the case of the Masimo

device, the data was sent in cleartext, meaning that with an Ubertooth adapter, the

attacker could sniff the data. Health data such as heart rate and pulse reading could

be read by an attacker, compromising a user’s private information. The data leakage,

particularly in a contested environment or emergency environment that BATDOK

was intended for [24], could prove more detrimental to its users. An enemy could

use the pattern-of-life data to estimate how many people are in a building and might

be injured by how many medical devices are in use; she could go further as to sniff

the actual health data for the soldiers transmitting across the devices and attempt

to send malicious packets. This would provide a major military advantage for the

attacker.

The Nonin device allowed the attacker to connect to and fully probe the device to

get current characteristics and values. Though the characteristics were not writable

97

per manufacturer setting, it is possible for other devices with less diligent manufac-

turers to be modified. This research briefly discussed the MiPow Playbulb used in

pilot studies, whose characteristics were able to be modified using BluBarry to turn

dim and brighten the lightbulb or turn it off, and to change the name of the device.

In the context of a smart home, the attacker could enumerate beyond pattern-of-life

collection and have physical effects such as this.

6.4 Future Work

The skypie v3 has added in BLE pattern-of-life collection and showed proof-of-

concept for connecting to and modifying device characteristics. However, there are

multiple areas where the platform could be further developed.

1. The skypie has been developed using a Sena UD-100 adapter. As the distance

out to 450 meters has been proven in this work, sniffing the traffic with an

Ubertooth is also plausible. Work done in [38] shows that the user information

for the Masimo device is sent in cleartext and can be sniffed passively. The

researcher could outfit the skypie with an Ubertooth once the target is known

and then gather more than just pattern-of-life data and current characteristics.

This research avenue could also include more involved CNAs on the BLE devices

such as those discussed in Section 2.3.2, like the ones demonstrated by Rose [10]

to hack smartlocks. Injection attacks could also be developed where the attacker

could act as a MITM.

2. The skyport hub has the capability for the attacker to control several skypie

sensors remotely. Research could be conducted while utilizing multiple sensors

to see how they interact and the realistic CNAs that can be performed utilizing

the Wi-Fi and BLE capabilities.

98

3. The experiments were conducted against BLE v4.0-4.2 devices. As BLE v5.0

has a longer range advertised, follow-on researchers could test the distance for

collection for a BLE v5.0 device.

4. The skypie platform could be expanded to include additional wireless proto-

cols such as Zigbee and Z-wave. The Sena UD-100 Bluetooth adapter already

includes BTC capabilities, so future work could involve developing the collection

and attack options with BTC. Additionally, the skypie v3 used in this research

focused on the BLE capabilities, but research could be done to simultaneously

collect and attack BLE and Wi-Fi targets. This would require the researcher to

find another lightweight antenna and Wi-Fi adapter to use in conjunction with

the Yagi being used for BLE. As [2] proved, the Wi-Fi adapter with the Yagi

antenna was capable of CNA out to 2200 meters, and thus it is reasonable to

conclude that an adapter with a smaller antenna could still feasibly reach the

450 meter distance demonstrated in this work.

5. As mentioned at the conclusion of Section 5.4, the skypie framework for ge-

olocation could be modified to incorporate BLE beacon collection. The work

done in [1] has proven geolocation capabilities out to 600 meters, and as this

research determines a maximum of 450 meters, the feature should work with

little modification. This feature is particularly important since the findings in

this research affirm that while RSSI is useful for distance estimation, it is not

accurate enough to pinpoint a target. The RSSI values collected could be used

for approximate navigation using the skypie towards the target, with the GPS

coordinates to locate the destination of the proposed target.

99

6.5 Summary

This research demonstrated the capabilities of a poorly funded, yet highly moti-

vated cyber attacker. A new iteration of the skypie attack platform was developed

and the skyport web interface updated. The skypie consists of readily available,

COTS components, totaling under $500. BLE beacon collection and characteris-

tic write attack abilities were integrated into the attack platform as the BluBarry

package, proving the the data leakage from BLE devices and attack capabilities. This

research successfully demonstrates the collection capabilities out to 350 meters and

450 meters for a height of 1 meter and 3.05 meters, respectively. Additionally, the

research shows the BluBarry package is capable of connecting to and interacting

with BLE devices out to 200 meters at an elevation of 1 meter and 350 meters at

a 3.05 meter elevation, which allows characteristic modification capabilities. These

BLE beacons, gathered passively, can be used for pattern-of-life analysis to determine

what devices are in use and how many devices are available, and allow the attacker

to infer who is at the location and when.

100

Appendix A. skypie v3 Default Configuration File

1 ## Skypie Config F i l e . Modifying t h i s f i l e (skypie−c o n f i g) a l t e r s the

behavior o f the program .

2

3 # SFTP Server

4 [f i l e s e r v e r]

5 # Sensor ’ s name , c r e a t e s unique s to rage l o c a t i o n on skyport . Use fu l f o r

mu l t ip l e s e n s o r s .

6 name=starchy

7 # Creden t i a l s f o r the SFTP account o f the sensor ’ s name

8 v e r i f i e r=catsLuv2WearSweaters !

9 # Port to connect over SFTP f o r uploading / downloading senso r data

10 s f t p p o r t =2222

11 # IP/hostname to connect over SFTP f o r uploading / downloading senso r data

12 s f t p s e r v e r=f tp . b a l l l a b o r a t o r i e s . org

13 # Weather f i l e s w i l l be de l e t ed or kept a f t e r uploading to the remote

s e r v e r

14 remove a f t e r up load=False

15

16 # Logging S e t t i n g s

17 [l og]

18 # F i l e l ogg ing l e v e l . You may want to s e t t h i s to ’ none ’ i f you are

worr ied about the senso r being d i s cove r ed . [debug , in fo , warning ,

c r i t i c a l , none]

19 l o g g i n g l e v e l=debug

20 # Debug f i l e s i z e . How big (kB) each f i l e w i l l be be f o r e s p l i t .

Smal ler s i z e s g ive feedback f a s t e r , but b igge r s i z e s are e a s i e r to

manage .

21 l o g g i n g s i z e =50

22

23 # Bluetooth C o l l e c t i o n (not implemented)

101

24 [b luetooth]

25 # MAC of Bluetooth antenna used f o r c o l l e c t i o n . Bluetooth i s not

supported . Used as a p l a c eho lde r .

26 bluetooth mac=XX:XX:XX:XX:XX:XX

27

28 # Bluetooth Low Energy C o l l e c t i o n S e t t i n g s

29 [b l e]

30 # mode f o r BLE − on or o f f

31 mode = on

32 # The MAC address o f the BLE dev i ce o f i n t e r e s t

33 b le at tack mac = BB:AA:DD:AA:AA:AA

34 # The number o f i t e r a t i o n s that the heavy scan with in b l e s can runs −

i n fo rmat ion used to populate the b l e database

35 b l e i t e r a t i o n s = 30

36 # The d e f a u l t at tack parameters − the a t tacke r needs to f i l l in the

in fo rmat ion in brackets , which i s d i sp layed in the BLE tab o f

database in fo rmat ion

37 blewr iteparams = sudo g a t t t o o l −b [MAC] −−char−write−req −a [handle] −n

[n e w c h a r a c t e r i s t i c v a l u e]

38

39 # WiFi C o l l e c t i o n

40 [w i f i]

41 # Mode the w i f i w i l l be in . This a f f e c t s the mirror and c o l l e c t i o n

threads [o f f , c o l l e c t , mirror]

42 mode=c o l l e c t

43 # MAC of WiFi antenna used f o r c o l l e c t i o n . Current ly supports only 1 .

Can use only f i r s t h a l f to denote j u s t manufacturerer (example : aa :

bb : cc)

44 antenna mac =00:25:22

45 # C o l l e c t i o n i n t e r v a l in seconds

46 i n t e r v a l =30

102

47 # S i z e in mB of b u f f e r f o r p r e f e r r e d packets (s e e bookmarks f i l e) .

Oldest f i l e s w i l l be removed when f u l l .

48 s ize bookmarks =500

49 # S i z e in mB of b u f f e r f o r enve lope data (geo , compass , and packet

summary data)

50 s i z e e n v e l o p e s =500

51 # S i z e in mB of a l l packets captured

52 s i z e r a w =500

53 # Turn o f f c o l l e c t i o n o f a l l packets , used to save space [on , o f f]

54 r a w c o l l e c t=on

55 # Max s i z e in mB of c o l l e c t e d f i l e s

56 f i l e s i z e i n t e r v a l =10

57 # Raw f i l t e r (l i b c a p format) , the f i l t e r the antenna w i l l use as the

b a s i s f o r c o l l e c t i o n . Only packets in t h i s f i l t e r w i l l be c o l l e c t e d

58 r a w f i l t e r= wlan [0] == 0x80

59 # Bookmark f i l t e r s (l i b c a p format) . Bookmarks are the only packets that

are sent d i r e c t l y to skyport . They are a subse s t o f the raw packets

c o l l e c t e d .

60 # Mult ip l e f i l t e r s are a l lowed . Seperate by a new l i n e , be sure to

indent each l i n e with at l e a s t one space . Each one r e q u i r e s

p r o c e s s i n g time , so i t ’ s not recommended to do more than 4 .

61 b o o k m a r k s f i l t e r s=wlan . f c . type subtype == 4

62 wlan mgt . s s i d==”DonutsRUs”

63 wlan f c . type == 2

64 wlan . f c . type subtype == 8

65

66 # MirrorMode

67 [mirror]

68 # The MAC of the attack plat form . This dev i c e must be with in range o f

the WiFi i n t e r f a c e o f the C2 machine

69 attack mac=AA:AA:BB:BB:CC:CC

70 # The MAC of the v ic t im .

103

71 target mac=AA:AA:BB:BB:CC:CC

72 # ’ All ’ w i l l forward any t r a f f i c de s t ined f o r the target ’ s MAC address ,

a l l ow ing the a t tacke r to send spoofed MAC frames . [a l l , a t t a ck on ly]

73 f o r w a r d a t t a c k s i d e=a l l

74 # [a l l , t a r g e t o n l y]

75 f o r w a r d t a r g e t s i d e=t a r g e t o n l y

76

77 # Telemetry

78 [t e l emetry]

79 # [on , o f f] Store geo data

80 mode=on

81 # Max s i z e in mB of te l emetry data

82 s i z e =80

83 # Length o f time be f o r e data i s wr i t t en to a f i l e in seconds

84 i n t e r v a l =42

85 # Ca l ib ra t i on f o r the acce l e romete r /magnometer . Adjust so that the

bear ing read ings are c l o s e to 0 when the s enso r i s f a c i n g north .

Min= −360, Max= 360

86 b e a r i n g o f f s e t = −75

87

88 # Update/ Trans fe r Management

89 [update]

90 # How o f t en c o n f i g changes are downloaded (in seconds) from the SFTP

s e r v e r . 0 = Constant download attempts

91 download wait= 30

92 # Time to wait (in seconds) a f t e r a data upload completes be f o r e

i n i t i a t i n g another . 0 = Constant upload attempts

93 upload wait= 999

94 # Changing to ’ shutdown ’ n o t i f i e s a l l opera t ing threads they need to

shutdown . A g e n t l e way to shut down . Off i s maintained when a l l

the threads are done . S e l f d e s t r u c t w i l l f i l l the hard dr iv e with 0 ’ s

u n t i l the system cra she s . [on , shutdown , o f f , s e l f d e s t r u c t]

104

95 s k y p i e o p e r a t i o n=on

96

97 # Attack Parameters

98 [at tack]

99 # capture = s t a r t deauth and handshake thread to capture 4way handshake

100 # connect = connect to attack mac AP with given password

101 # nmap = nmap connected network

102 mode = capture

103 # number o f deauth packets to send

104 packets = 1

105 # MAC address o f the t a r g e t AP

106 attack mac = AA:AA:BB:BB:CC:CC

107 # password to be used to connect to attack mac AP

108 password =

109 # nmap parameters to be used

110 nmap params = −sn −T3 192.168.43.1 −254

111 # ping IP

112 p i n g i p = 1 9 2 . 1 6 8 . 4 3 . 3 2

113 # how o f t en to san f o r a v a i l a b l e APs and switch channe l s i f needed

114 s c a n i n t e r v a l = 30

115 # attack thread timeout msgs

116 message =

117 # Attack thread timeout v a r i a b l e s in seconds

118 capture t imeout = 30

119 connect t imeout = 30

120 nmap timeout = 30

105

Appendix B. skypie v3 blescan.py File

1 # This f i l e i s part o f the BluBarry package and runs the BLE scan

c a p a b i l i t i e s f o r the skyp ie .

2

3 from subproces s import PIPE , Popen

4 import time

5 import os

6 import s i g n a l

7 import j son

8 import skyp ie . b leconnectquery

9 from thread ing import Timer

10 import sys

11

12 BLE DATABASE = ” data / synch/ log / b l e database . txt ”

13

14 ”””

15 Light Scan example

16 p i@raspberryp i : ˜ $ sudo h c i t o o l l e s c a n

17 Set scan parameters f a i l e d : Input / output e r r o r

18 p i@raspberryp i : ˜ $ sudo h c i c o n f i g hc i0 down

19 pi@raspberryp i : ˜ $ sudo h c i c o n f i g hc i0 up

20 pi@raspberryp i : ˜ $ sudo h c i t o o l l e s c a n

21 LE Scan . . .

22 2 8 : 1 1 :A5 : 8C: F3 : A4 (unknown)

23 2 8 : 1 1 :A5 : 8C: F3 : A4 LE−Bose Color I I SoundLink

24 DF: 1 4 : 4B: 8F : 3 0 : 8A FitBark

25 DF: 1 4 : 4B: 8F : 3 0 : 8A (unknown)

26 7A:FF:FD: 7 5 : 6F: 9E (unknown)

27 1 5 : 1 7 : 0 2 : 2 8 : 3B: 8C (unknown)

28 2 8 : 1 1 :A5 : 8C: F3 : A4 (unknown)

29 ”””

106

30

31 # make an ob j e c t to hold the data

32 c l a s s BLE Device () :

33

34 # Constructor

35 de f i n i t (s e l f , mac , name=’ ’ , type=’ ’ , j s onDic t=None) :

36 i f j s onDic t i s None :

37 # Create a new empty dev i ce

38 s e l f . mac = mac

39 s e l f . name = name

40 s e l f . type = type

41 s e l f . a d f l a g s = ’ ’

42 s e l f . r s s i = [] # s t o r e as a l i s t o f t u p l e s (RSSI) (timestamp

)

43 s e l f . c h a r a c t e r i s t i c s = {} # s t o r e as a d i c t i o n a r y o f

d i c t i o n a r i e s (one per handle)

44 e l s e :

45 # Create / import from json

46 s e l f . mac = j sonDic t [’mac ’]

47 s e l f . name = jsonDic t [’name ’]

48 s e l f . type = j sonDic t [’ type ’]

49 s e l f . a d f l a g s = j sonDic t [’ a d f l a g s ’]

50 s e l f . r s s i = j sonDic t [’ r s s i ’] # s t o r e as a l i s t o f t u p l e s (

RSSI) (timestamp)

51 s e l f . c h a r a c t e r i s t i c s = j sonDic t [’ c h a r a c t e r i s t i c s ’] # s t o r e

as a d i c t i o n a r y o f d i c t i o n a r i e s (one per handle)

52

53 de f g e t r s s i a v g (s e l f) :

54 r s s i s = [i n t (x [1]) f o r x in s e l f . r s s i]

55 i f l en (r s s i s) i s 0 :

56 re turn 0

57 return sum(r s s i s) / l en (r s s i s)

107

58

59 de f g e t r s s i num (s e l f) :

60 r s s i s = [i n t (x [1]) f o r x in s e l f . r s s i]

61 i f l en (r s s i s) i s 0 :

62 re turn 0

63 return l en (r s s i s)

64

65 de f e x p o r t s t r i n g (s e l f) :

66 re turn j son . dumps(s e l f , d e f a u l t=lambda obj : obj . d i c t)

67

68 de f s t r (s e l f) : #go back and f i x t h i s so i t p r i n t s the value o f

each th ing

69 r e s u l t = ”MAC: ” + s e l f . mac + ”\tName : ” + s e l f . name + ”\n”

70 r e s u l t += ”Type : ” + s e l f . type + ”\tAvg RSSI : ” + s t r (s e l f .

g e t r s s i a v g ()) + ”\ tRSSIs taken : ” + s t r (s e l f . g e t r s s i num ()) + ”\n

\n”

71 f o r handle in s e l f . c h a r a c t e r i s t i c s . keys () :

72 r e s u l t += ”Handle : ” + handle + ”\ tDe s c r i p to r : ” + s e l f .

c h a r a c t e r i s t i c s [handle] [’ h a n d l e v a l u e d e s c r i p t o r ’]

73 t ry :

74 r e s u l t += ”\nCVH: ” + s t r (s e l f . c h a r a c t e r i s t i c s [handle] [’

va l hand l e ’])

75 r e s u l t += ”\tCVHD: ” + s e l f . c h a r a c t e r i s t i c s [handle] [’

c h a r v a l u e d e s c r i p t o r ’] + ”\n”

76 except KeyError :

77 r e s u l t += ”\n”

78 return r e s u l t

79

80 de f importBLEDatabase (i n p u t F i l e) :

81 with open (i n p u t F i l e) as f :

82 data = f . r e a d l i n e s ()

83 db = {}

108

84 f o r l i n e in data :

85 j d e v i c e = j son . l oads (l i n e)

86 dev i ce = BLE Device (’ ’ , j s onDic t=j son . l oads (l i n e))

87 db [dev i c e . mac] = dev i ce

88 module logger . i n f o (” Importing e x i s t i n g b l e da tabase ”)

89

90

91

92

93 ”””

94 Intense Scan example

95 p i@raspberryp i : ˜ $ sudo btmgmt f i n d

96 Discovery s t a r t e d

97 hc i0 type 7 d i s c o v e r i n g on

98 hc i0 dev found : DF: 1 4 : 4B: 8F : 3 0 : 8A type LE Random r s s i −69 f l a g s 0x0000

99 AD f l a g s 0x05

100 name FitBark

101 hc i0 dev found : 56 :FF: 0B: D4 : 6 8 : 0 9 type LE Random r s s i −75 f l a g s 0x0004

102 AD f l a g s 0x00

103 e i r l e n 28

104 hc i0 type 7 d i s c o v e r i n g o f f

105 ”””

106 # number o f i t e r a t i o n s the heavy scan runs

107 HEAVY SCAN ITERATIONS = 30

108 de f heavy scan (b le database , i t e r a t i o n s=HEAVY SCAN ITERATIONS) :

109 ”””

110 Desc r ip t i on

111 : param b le database : A d i c t i o n a r y o f BLE Device o b j e c t s

112 : param i t e r a t i o n s : Number o f t imes btmgmt w i l l be run

113 : re turn :

114 ”””

115 btmgmt1 = [’ sudo ’ , ’btmgmt ’ , ’ f i n d ’] # heavy scan command

109

116 f o r i in range (i t e r a t i o n s) :

117 time . s l e e p (1)

118 p r i n t (” [] I t e r a t i o n ” , i)

119 proc = Popen (btmgmt1 , stdout=PIPE , s t d e r r=PIPE)

120 r e s u l t s = proc . s tdout . r e a d l i n e s ()

121 # f i l l i n g the database with the d e v i c e s and t h e i r in fo rmat ion

122 f o r i , l i n e in enumerate (r e s u l t s) : # ’ i ’ w i l l r e f e r e n c e the

index o f the l i n e

123 i f ’ dev found ’ in l i n e [: 2 0] . decode () : # only look in f i r s t

20 chars

124 # t h i s i s a l i n e d e s c r i b i n g a found dev i ce

125 tokens = l i n e . decode () . s p l i t ()

126 mac = tokens [2]

127 i f mac not in b l e da tabase . keys () : # key i s MAC, value

i s BLE Device ob j e c t

128 b lue too th type = tokens [4]

129 i f b lue tooth type == ’LE ’ : # only con s id e r Low

Energy d e v i c e s

130 module logger . i n f o (”Found new BLE MAC: ” . format (

mac))

131 b l e database [mac] = BLE Device (mac) # i f mac i s

not a l r eady in the database , c r e a t e a new dev i c e to the database

132 b l e database [mac] . type = b lue too th type

133 b l e database [mac] . r s s i . append ((round (time . time ()

, 1) , tokens [7])) # r s s i i s a l i s t o f t u p l e s

134 f o r j in range (1 , 3) :

135 n e x t l i n e = r e s u l t s [i + j] . decode ()

136 tokens = n e x t l i n e . s p l i t ()

137 i f ’name ’ in n e x t l i n e [: 5] :

138 b l e database [mac] . name = tokens [1]

139 i f ’AD f l a g s ’ in n e x t l i n e [: 8] :

140 b l e database [mac] . a d f l a g s = tokens [2]

110

141 e l i f mac in b l e database . keys () :

142 b l e database [mac] . r s s i . append ((round (time . time () , 1)

, tokens [7])) # r s s i i s a l i s t o f t u p l e s

143 p r i n t (” [+] Scan Completed ”)

144 re turn b l e database

145

146 import logg ing , thread ing

147 module logger = logg ing . getLogger (name)

148

149 c l a s s BLEScanThread (thread ing . Thread) :

150 ””” This i s a thread f o r an in s t anc e o f c o l l e c t i o n that w i l l

terminate only upon an update o f the c o n f i g f i l e . ”””

151

152 de f i n i t (s e l f , b l e d e v i c e s) :

153 super () . i n i t ()

154 # s e t up thread

155 s e l f . daemon = True

156 s e l f . b l e d e v i c e s = b l e d e v i c e s

157 module logger . i n f o (” [] S t a r t i ng b l e scan thread in s t anc e . ”)

158

159 de f run (s e l f) :

160 # beg ins the scans

161 module logger . i n f o (” I n i t i a t i n g l i g h t scan ”)

162 l i g h t s c a n ()

163 module logger . i n f o (” [] Executing b l e s can ; b l e database w i l l

populate with r e s u l t s . ”)

164 s t a r t t i m e = time . time ()

165 heavy scan (s e l f . b l e d e v i c e s)

166 # Probe each dev i ce in b leconnectquery

167 f o r dev i ce in s e l f . b l e d e v i c e s . va lue s () :

168 module logger . i n f o (” Probing : ” + dev i ce . mac)

169 skyp ie . b l econnectquery . b l e d e v i c e p r o b e (dev i ce)

111

170 # Export database r e s u l t s

171 with open (BLE DATABASE, ’w ’) as f i l e :

172 f o r dev i ce in s e l f . b l e d e v i c e s . va lue s () :

173 f i l e . wr i t e (”” . j o i n ([dev i c e . e x p o r t s t r i n g () , ”\n”]))

174 # output to the a t tacke r on the skyport

175 p r i n t (”==============Database===================”)

176 f o r dev i ce in s e l f . b l e d e v i c e s . va lue s () :

177 p r i n t (dev i c e)

178 p r i n t (”==============RSSI===================”)

179 f o r dev i ce in s e l f . b l e d e v i c e s . va lue s () :

180 p r i n t (s t r (dev i c e . mac) + ” : ” + s t r (dev i c e . g e t r s s i a v g ()) +

” dB”)

181 end time = time . time ()

182 p r i n t (” Total time was : ” , ((end time − s t a r t t i m e) / 60) , end =

’ minutes ’)

183

184 # number o f i t e r a t i o n s that the l i g h t scan runs

185 LIGHT SCAN ITERATIONS = 1 ;

186 de f l i g h t s c a n (i t e r a t i o n s=LIGHT SCAN ITERATIONS) :

187 ”””

188 Desc r ip t i on

189 : param b le database : A d i c t i o n a r y o f BLE Device o b j e c t s

190 : param i t e r a t i o n s : Number o f t imes l e s c a n w i l l be run

191 : re turn :

192 ”””

193 h c i l e s c a n = [’ sudo ’ , ’ t imeout ’ , ’ 5 s ’ , ’ s tdbuf ’ , ’−oL ’ , ’ h c i t o o l ’ , ’

l e s c a n ’] # l i g h t scan command , runs f o r 5 seconds

194 down = [’ sudo ’ , ’ h c i c o n f i g ’ , ’ hc i0 ’ , ’down ’]

195 up = [’ sudo ’ , ’ h c i c o n f i g ’ , ’ hc i0 ’ , ’ up ’]

196 f o r i in range (i t e r a t i o n s) :

197 # take the hc i down then up to ensure i t s working proper ly

198 proc = Popen (down , stdout=PIPE , s t d e r r=PIPE)

112

199 time . s l e e p (1)

200 proc = Popen (up , stdout=PIPE , s t d e r r=PIPE)

201 time . s l e e p (1)

202 # send l i g h t scan in fo rmat ion to l e s c a n

203 l o g f i l e = open (’ data / synch/ log / l e s c a n . txt ’ , ’w ’)

204 proce s s = Popen (hc i l e s can , stdout=PIPE , s t d e r r=PIPE)

205 f o r l i n e in p roce s s . s tdout :

206 sys . s tdout . wr i t e (l i n e . decode (’ ut f −8 ’))

207 l o g f i l e . wr i t e (l i n e . decode (’ ut f −8 ’))

208 re turn l o g f i l e

113

Appendix C. skypie v3 bleconnectquery.py File

1 # This module i s part o f the BluBarry package . I t attempts to connect

to the BLE dev i ce d i s cove r ed in b l e s can . py − i f a l lowed , i t q u e r i e s

a l l the cur rent c h a r a c t e r i s t i c s then probes f o r the cur rent va lue s

o f the a s s o c i a t e d handles

2

3 from subproces s import PIPE , Popen

4 import time

5 import re

6

7 from skyp ie . b l e s can import BLE Device

8

9 de f b l e d e v i c e p r o b e (b l e d e v i c e) :

10 ”””

11 : param b l e d e v i c e : BLE Device ob j e c t

12 : re turn :

13 ”””

14 # command to attempt to connect and to query the c h a r a c t e r i s t i c s i f

connect ion i s a l lowed

15 ge tchar s = [’ sudo ’ , ’ g a t t t o o l ’ , ’−b ’ , b l e d e v i c e . mac , ’−−

c h a r a c t e r i s t i c s ’]

16 proc = Popen (getchars , s tdout=PIPE , s t d e r r=PIPE)

17 r e s u l t s = proc . s tdout . r e a d l i n e s ()

18 # p u l l s the r e s u l t s and populates the BLE database with the

c h a r a c t e r i s t i c s and t h e i r a s s o c i a t e d handles

19 f o r l i n e in r e s u l t s :

20 tokens = l i n e . decode () . s p l i t ()

21 handle = tokens [2] . t r a n s l a t e ({ ord (’ , ’) : None})

22 b l e d e v i c e . c h a r a c t e r i s t i c s [handle] = {}

23 b l e d e v i c e . c h a r a c t e r i s t i c s [handle] [’ char prop ’] = tokens [6]

24 va l hand l e = tokens [1 1] . t r a n s l a t e ({ ord (’ , ’) : None})

114

25 b l e d e v i c e . c h a r a c t e r i s t i c s [handle] [’ va l hand l e ’] = va l hand l e

26

27 # takes the c h a r a c t e r i s t i c s and handles d i s cove r ed above and probes

them f o r cur rent va lue s

28 f o r handle in b l e d e v i c e . c h a r a c t e r i s t i c s . keys () :

29 readchars = [’ sudo ’ , ’ g a t t t o o l ’ , ’−b ’ , b l e d e v i c e . mac , ’−−char−

read ’ , ’−a ’ , handle]

30 proc = Popen (readchars , s tdout=PIPE , s t d e r r=PIPE)

31 r e s u l t s = proc . s tdout . r e a d l i n e s ()

32 # grab the r i g h t s i d e o f the r e s u l t s , which conta in s the data . Ex :

” C h a r a c t e r i s t i c va lue / d e s c r i p t o r : 14 14” would j u s t p u l l ’14 14 ’

33 try :

34 value = r e s u l t s [0] . decode () . s t r i p () . s p l i t (’ : ’) [1]

35 b l e d e v i c e . c h a r a c t e r i s t i c s [handle] [’ h a n d l e v a l u e d e s c r i p t o r ’

] = value

36 except IndexError :

37 pass

38

39 # command to probe each handle

40 readchars = [’ sudo ’ , ’ g a t t t o o l ’ , ’−b ’ , b l e d e v i c e . mac , ’−−char−

read ’ , ’−a ’ , b l e d e v i c e . c h a r a c t e r i s t i c s [handle] [’ va l hand l e ’]]

41 proc = Popen (readchars , s tdout=PIPE , s t d e r r=PIPE)

42 r e s u l t s = proc . s tdout . r e a d l i n e s ()

43 # grab the r i g h t s i d e again which conta in s the data o f i n t e r e s t

44 try :

45 value = r e s u l t s [0] . decode () . s t r i p () . s p l i t (’ : ’) [1]

46 b l e d e v i c e . c h a r a c t e r i s t i c s [handle] [’ c h a r v a l u e d e s c r i p t o r ’]

= value

47 except IndexError :

48 pass

115

Bibliography

1. C. Bramlette. Cyber-Attack Drone Payload Development and Geolocation via
Directional Antenna. Master’s thesis, Air Force Institute of Technology, 2019.
Accessed: 04 Mar 20 [Online]. Available: https://scholar.afit.edu/etd/2247/.

2. N. Barker. Development of a Drone-Mounted Wireless Attack Platform.
Master’s thesis, Air Force Institute of Technology, 2020. Accessed: 04 Mar 20
[Online]. Available: https://scholar.afit.edu/etd/3224/.

3. IMDB. Smart House. Accessed: 03 Jan 21 [Online]. Available: https://www.
imdb.com/title/tt0192618/.

4. Westinghouse All Electric Home, Accessed: 04 Jan 21 [Online]. Available:
https://www.techeblog.com/westinghouse-all-electric-home/.

5. A. Holst. Forecast End-User Spending on IoT Solutions Worldwide from 2017
to 2025, Accessed: 03 Jan 21 [Online]. Available: https://www.statista.com/
statistics/976313/global-iot-market-size/.

6. K. Foote. A Brief History of the Internet of Things, Accessed: 04 Sep 20
[Online]. Available: https://www.dataversity.net/brief-history-internet-things/.

7. R. Raji. Smart Networks for Control. IEEE Spectrum, 31(6):49–55, 1994.

8. B. Lee. Embedded Internet Systems: Poised for Takeoff. IEEE Internet
Computing, 2(3):24, 1998.

9. G. Maayan. The IoT Rundown For 2020: Stats, Risks, and Solutions, Accessed:
04 Sep 20 [Online]. Available: https://securitytoday.com/articles/2020/01/13/
the-iot-rundown-for-2020.aspx.

10. A. Rose. Security Evaluation and Exploitation of Bluetooth Low Energy
Devices. Master’s thesis, Air Force Institute of Technology, 2017. Accessed: 04
Mar 20 [Online]. Available: https://apps.dtic.mil/dtic/tr/fulltext/u2/1054747
.pdf.

11. S. Beyer. Pattern-of-Life Modeling Using Data Leakage in Smart Homes.
Master’s thesis, Air Force Institute of Technology, 2018. Accessed: 04 Mar 20
[Online]. Available: https://scholar.afit.edu/etd/1793/.

12. J. Sponas. Things You Should Know About Bluetooth Range, Accessed: 04 Sep
20 [Online]. Available: https://blog.nordicsemi.com/getconnected/things-you-
should-know-about-bluetooth-range.

13. Our History, Accessed: 04 Apr 20 [Online]. Available: https://www.bluetooth.
com/about-us/our-history/.

116

14. R. Triggs. A Quick History of Bluetooth, Accessed: 04 Sep 20 [Online].
Available: https://www.androidauthority.com/history-bluetooth-explained-84
6345/.

15. R. Heydon. Bluetooth Low Energy: The Developer’s Handbook. Pearson,
Accessed: 04 Sep 20.

16. BLE Advertising Channels and Data Channels List, Accessed: 15 Jun 20
[Online]. Available: https://www.rfwireless-world.com/Terminology/BLE-
Advertising-channels-and-Data-channels-list.html.

17. How Bluetooth LE Works - Link Layer, Accessed: 15 Jun 20 [Online]. Available:
https://medium.com/@zpcat/how-bluetooth-le-works-link-layer-b18475250259/.

18. SIG. Bluetooth Core Specification Version 4.2. Specification of the Bluetooth
System, 2014.

19. One Minute to Understand BLE Advertising Data Package, Accessed: 15 Jun
20 [Online]. Available: https://github.com/greatscottgadgets/ubertooth/wiki
/One-minute-to-understand-BLE-advertising-data-package/.

20. M. Afaneh. Understanding SN and NESN in a BLE Link Layer Packet,
Accessed: 30 Oct 21 [Online]. Available: https://www.novelbits.io/
understanding-sn-nesn-ble-link-layer-packet/.

21. J. Gutierrez Del Arroyo. Enhancing Critical Infrastructure Security Using
Bluetooth Low Energy Traffic Sniffers. Master’s thesis, Air Force Institute of
Technology, 2017. Accessed: 04 Mar 20 [Online]. Available: https://apps.dtic.
mil/sti/citations/AD1054652.

22. E. Simpson. Getting Started with BLE Tessel, Accessed: 15 Jun 20 [Online].
Available: https://tessel.io/blog/94736742342/getting-started-with-ble-tessel/.

23. L. Yushi, J. Fei, and Y. Hui. Study on Application Modes of Military Internet of
Things (MIOT). In 2012 IEEE International Conference on Computer Science
and Automation Engineering (CSAE), volume 3, pages 630–634. IEEE, 2012.

24. Introducing BATDOK, Accessed: Jan 06, 2021 [Online]. Available: https://
rhsusa.com/batdok.

25. F. Johnsen, Z. Zieliski, K. Wrona, N. Suri, C. Fuchs, M. Pradhan, J. Furtak,
B. Vasilache, V. Pellegrini, M. Dyk, et al. Application of IoT in Military
Operations in a Smart City. In 2018 International Conference on Military
Communications and Information Systems (ICMCIS), pages 1–8. IEEE, 2018.

26. A. Sadeghi, C. Wachsmann, and M. Waidner. Security and Privacy Challenges
in Industrial Internet of Things. In 2015 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC), pages 1–6. IEEE, 2015.

117

27. D. Geneiatakis, I. Kounelis, R. Neisse, I. Nai-Fovino, G. Steri, and G. Baldini.
Security and Privacy Issues for an IoT Based Smart Home. In 2017 40th
International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), pages 1292–1297. IEEE, 2017.

28. D. Halperin, T. Heydt-Benjamin, B. Ransford, S. Clark, B. Defend, W. Morgan,
K. Fu, T. Kohno, and W. Maisel. Pacemakers and implantable cardiac
defibrillators: Software radio attacks and zero-power defenses. In 2008 IEEE
Symposium on Security and Privacy (sp 2008), pages 129–142. IEEE, 2008.

29. M. Rahman, B. Carbunar, and M. Banik. Fit and Vulnerable: Attacks and
Defenses for a Health Monitoring Device. arXiv:1304.5672, 2013.

30. C. Wang, X. Guo, Y. Wang, Y. Chen, and B. Liu. Friend or Foe? Your
Wearable Devices Reveal Your Personal Pin. In Proceedings of the 11th ACM
on Asia Conference on Computer and Communications Security, pages 189–200,
2016.

31. M. Ryan. Bluetooth: With Low Energy Comes Low Security. In 7th {USENIX}
Workshop on Offensive Technologies ({WOOT} 13), 2013.

32. J. Gutierrez del Arroyo. How Do I BLE Hacking, Accessed: 15 Jun 20 [Online].
Available: https://www.youtube. com/watch?v=oP6sx2cObrY.

33. A. Rose, J. Del Arroyo, J. Bindewald, and B. Ramsey. BlueFinder: A
Range-Finding Tool for Bluetooth Classic and Low Energy. In Acad. Conf.
Publ. Limited, pages 303–312, 2017.

34. NIST. CVE-2018-5383 Detail, Accessed: 15 Jun 20 [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2018-5383.

35. E. Biham and L. Neumann. Breaking the Bluetooth Pairing–The Fixed
Coordinate Invalid Curve Attack. In International Conference on Selected Areas
in Cryptography, pages 250–273. Springer, 2019.

36. Zimperium. Don’t Give Me a Brake – Xiaomi Scooter Hack Enables Dangerous
Accelerations and Stops for Unsuspecting Riders, Accessed: 15 Jun 20 [Online].
Available: https://blog.zimperium.com/dont- give-me-a-brake-xiaomi-scooter-
hack-enables-dangerous-accelerations-and-stops-for-unsuspecting-riders.

37. Booth, Louis, and Mayrany. IoT Penetration Testing: Hacking an Electric
Scooter, Accessed: 15 Jun 20 [Online]. Available: http://www.diva-portal.org/
smash/record.jsf?pid=diva2%3A1334205dswid=9293.

38. S. Long, R. Dill, and B. Mullins. Security Analysis of the Masimo MightySat:
Data Leakage to a Nosy Neighbor. In Proceedings of the 54th Hawaii
International Conference on System Sciences, page 6893.

118

39. Ubertooth, Accessed: 29 Dec 20 [Online]. Available: https://github.com/great
scottgadgets/ubertooth/.

40. J. Gutierrez del Arroyo, J. Bindewald, S. Graham, and M. Rice. Enabling
Bluetooth Low Energy Auditing Through Synchronized Tracking of Multiple
Connections. International Journal of Critical Infrastructure Protection,
18:58–70, 2017.

41. J. Huang, W. Albazrqaoe, and G. Xing. BlueID: A Practical System for
Bluetooth Device Identification. In IEEE INFOCOM 2014-IEEE Conference on
Computer Communications, pages 2849–2857. IEEE, 2014.

42. C. Stoneff. The Seven Steps of a Successful Cyber Attack, Accessed: 15 Jun 20
[Online]. Available: https://resources.infosecinstitute.com/the-seven-steps-of-a-
successful-cyber-attack/gref.

43. NMAP, Accessed: 03 Jan 21 [Online]. Available: https://nmap.org/.

44. The Hacker Methodology, Accessed: 22 May 20 [Online]. Available: https://null-
byte.wonderhowto.com/how-to/hack-like-pro-hacker-methodology-0155167/.

45. C. Cimpanu. New Silex Malware is Bricking IoT Devices, Has Scary Plans,
Accessed: 15 Jun 20 [Online]. Available: https://www.zdnet.com/article/new-
silex-malware-is-bricking-iot-devices-has-scary-plans/.

46. V. Gao. Proximity and RSSI, Accessed: 15 Jun 20 [Online]. Available:
https://www.bluetooth.com/blog/proximity-and-rssi/.

47. K. Frolic. What is a Fresnel Zone?, Accessed: 03 Jan 21 [Online]. Available:
https://www.pagerpower.com/news/fresnel-zone/.

48. E. Goksel. What is Fresnel Zone - Wireless Communication, Accessed: 03 Jan
21 [Online]. Available: https://www.youtube.com/watch?v=u36zs0u3Xzg&ab
channel=EmrahG%C3%B6ksel.

49. Danets. USB-Yagi TurboTenna Plug & Play 2.4 GHz Antenna, Accessed: 03
Jan 21 [Online]. Available: http://www.danets.com/turbotenna/UsbYagi.php.

50. Parani. Parani-UD100 Bluetooth 4.0 Class1 USB Adapter, Accessed: 03 Jan 21
[Online]. Available: http://www.senanetworks.com/ud100-g03.html.

51. Adafruit. Adafruit Ultimate GPS Breakout, Accessed: 03 Jan 21 [Online].
Available: https://www.adafruit.com/product/746.

52. Nonparametric Wilcoxon Test, Accessed: 06 Jan 21 [Online]. Available:
https://www.jmp.com/support/help/en/15.2/index.shtmlpage/jmp/example-of-
the-nonparametric-wilcoxon-test.shtml.

119

53. P Values, Accessed: 06 Jan 21 [Online]. Available: https://www.statsdirect.com
/help/ basics/p values.htm.

120

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

25–03–2021 Master’s Thesis Sep 2019 — Mar 2021

LONG-DISTANCE BLUETOOTH LOW ENERGY EXPLOITATION
ON A WIRELESS ATTACK PLATFORM

21G532A

Long, Stephanie L., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-21-M-058

AFRL/RYAA
2241 Avionic Cir
WPAFB OH 45433-7765
COMM 937-713-8573
Email: Eric.Lam.3@us.af.mil

AFRL/RYAA

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

In the past decade, embedded technology, known as the Internet of Things, has expanded for many uses. The smart
home infrastructure has drastically grown to include networked refrigerators, lighting systems, speakers, watches, and
more. This increase in the use of wireless protocols provides a larger attack surface for cyber actors than ever before.
Wireless IoT traffic is susceptible for sniffing by an attacker. The attack platform skypie is upgraded to incorporate
Bluetooth Low Energy (BLE) beacon collection for pattern-of-life data, as well as device characteristic enumeration and
potential characteristic modification. This platform allows an attacker to mount the skypie to a medium of her
choice, such as a drone, and collect BLE beacons within proximity whilst the attacker controls the prototype remotely. It
is determined that the attacker can collect BLE beacons from over a quarter of a mile away at an elevation of 3.05 meters
and interact with the device for characteristic enumeration up to 350 meters at the same elevation, and collect BLE
beacons just under a quarter of a mile at an elevation of 1 meter, and interact up to 200 meters.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

U U U UU 138

Dr. Barry E. Mullins, AFIT/ENG

(937) 255-3636, ext 7979; barry.mullins@afit.edu

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Overview and Background
	Problem Statement
	Research Goals
	Hypothesis
	Approach
	Assumptions and Limitations
	Contributions
	Thesis Overview

	Background and Literature Review
	Overview
	Bluetooth Low Energy
	BLE Controller
	Host/Controller Interface
	Host

	Related Research
	Academic Interest in IoT
	BLE Research
	BLE Vulnerabilities and Attack Vectors
	BLE Vulnerability Mitigation

	Cyber Attack Chain
	Signal Propagation
	Background Summary

	Prototype Design
	Overview
	System Summary
	Design Goals
	skypie Hardware Design
	skypie Software
	Design Model
	skypie package
	BluBarry package
	skyport Package

	Design Summary

	Methodology
	Overview and Objectives
	System Under Test
	Factors
	Metrics
	Constant Parameters
	Uncontrolled Variables
	Experiment Design
	Experiment One: skypie Elevation 1 Meter
	Experiment 2: skypie Elevation 3.05 Meters

	Summary

	Results and Analysis
	Overview
	Device Orientation
	Range
	Experiment One: Beacon Collection
	Experiment One: Device Connection
	Experiment Two: Beacon Collection
	Experiment Two: Device Connection
	Range Beacons and Connections Summarized

	Expected RSSIs

	Conclusions
	Overview
	Research Conclusions
	Research Contributions/Significance
	Future Work
	Summary

	skypie v3 Default Configuration File
	skypie v3 blescan.py File
	skypie v3 bleconnectquery.py File
	Bibliography

