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1.0 SUMMARY 

Fully automated decoding of human actions and intentions through neural signals is a tantalizing 
challenge in human-computer interactions. The current success of brain-computer interfaces 
(BCI)—controlling robotic prostheses and computer software via brain signals—has hinged on 
availability of labeled training data collected in carefully controlled laboratory conditions. To 
deploy BCIs in practical, real-life applications, one must develop robust strategies and 
algorithms that can handle naturalistic disturbances and self-adapt to context. 

This research focused on developing supervised, unsupervised, and semi-supervised approaches 
to decode neural states from long-term brain recordings acquired in a naturalistic setting. The 
multi-modal dataset comprises large-scale human intracranial brain recordings, video, audio, and 
depth recordings, all continuously and simultaneous acquired over at least one week. 
Importantly, unlike the majority of previous data sets used to train neural decoders, here the 
subjects being monitored are not instructed to perform specific tasks but are simply behaving as 
they wish, as shown in Figure 1.  

To summarize the results from this 3-year seedling effort, this project has enabled, through direct 
funding as well as research opportunities leveraged through synergistic projects, the training of 2 
postdoctoral researchers, 4 Ph.D. students, 1 master’s student, and 5 undergraduate students. 
Research results have been described in 4 papers and 2 published conference proceedings; 1 
paper has appeared as a publication in the Journal of Neural Engineering, and the other 3 papers 
are in various stages of peer-review (available as preprints). In addition, the research team has 
co-authored a review paper on the subject of data-driven modeling in human neuro-engineering. 
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2.0 INTRODUCTION 
 
Brain-computer interfaces that interpret neural activity to control robotic or virtual devices have 
shown tremendous potential for assisting patients with neurological disabilities, including motor 
impairments, sensory deficits, and mood disorders. At the same time, brain-computer interfaces 
offer new insights about the function of neural circuits, including how sensorimotor information 
is represented in the brain.  
 
Advances in brain-computer interfaces have been driven in part by improved neural decoding 
algorithms. Even so, these impressive demonstrations have relied on finely tuned models trained 
on experimentally derived labeled data acquired in well-controlled laboratory conditions. Thus, 
the remarkable feats of neural decoding to mobilize patients who have lost use of their limbs 
remain untested outside the laboratory. 
 
One key challenge is how neural decoding may be approached “in the wild,” where sources of 
behavioral and recording variability are significantly larger than what is found in the lab. Further, 
neural responses are known to differ between experimental and freely behaving conditions. 
However, it can be difficult to collect enough data to train decoders, especially given the non-
stationary nature of the recorded signals, leading to decoders that generalize poorly to new data 
and require frequent re-calibrations. 
 
This project, leveraged continuous clinical recording data from humans undergoing clinical 
epilepsy to develop supervised, unsupervised, and semi-supervised methods to understand and 
decode behavior from neural recordings. The research took advantage of recent innovations in 
computer vision, machine learning, and data-driven dynamic modeling to tackle the challenge of 
understanding this large and unstructured data. In addition to the research publications and 
presentations, all of the code developed during this project is available as GitHub repositories 
(links in each paper), and the curated datasets (minus personally identifying information) have 
been published as datasets to facilitate future developments of BCI’s on naturalistic behaviors. 
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1 Dataset collection and curation 

Over the course of this project opportunistic clinical recordings were collected from >60 
participants during their clinical epilepsy monitoring (conducted at Harborview Medical Center 
in Seattle, WA). Of these, 12 participants (8 males, 4 females) were chosen for detailed analysis 
and modeling, due to the positions of their electrodes, their general activity level, and the 
cumulative duration of their monitoring. Participants were 29.4±7.9 years old at the time of 
recording (mean±standard deviation (SD)). The study was approved by the University of 
Washington Institutional Review Board for the protection of human participants. All participants 
provided written informed consent.  

Participants for the study were selected who had Electrocorticography (ECoG) electrode 
coverage near primary motor cortex, with either one 8×8 or two 4×8 electrode grids placed 
subdurally on the cortical surface. Additional electrodes were implanted on the cortical surface 
for some participants, resulting in 87.0±12.9 total surface electrodes per participant (mean±SD). 
In addition, five participants had 23.2±12.1 intracortical depth electrodes (mean±SD). Electrodes 
were implanted primarily within one hemisphere for each participant (5 right hemi-sphere, 7 left 
hemisphere). 

Participants underwent 24-hour clinical monitoring, involving semi-continuous ECoG and 
audio/video recordings over 7.4±2.2 days per participant (mean±SD). Some breaks occurred 
throughout monitoring (on average, 8.3±3.2 total breaks per participant, each lasting 1.9±2.4 
hours [mean±SD]). For all participants, analysis was restricted to days 3–7 following the 
electrode implantation surgery, in order to exclude potentially anomalous neural and behavioral 
activity immediately following electrode implantation surgery. For several participants, some 
days were excluded due to corrupted or missing data files. During clinical monitoring, 
participants were observed during a variety of typical everyday activities, such as eating, 
sleeping, watching television, and socializing while confined to a hospital bed. ECoG and video 
were initially sampled at 1000 Hz and 30 frames per second, respectively. 

The curated dataset has been made publicly available. The pre-processed ECoG, time-synced 
upper-limb joint tracking, and metadata on movement events extracted can be downloaded at 
https://figshare.com/s/ef4ea24d67d16233f73d . 

3.2 Investigating naturalistic hand movements by behavior mining in long-term video 
and neural recordings 

The project developed and validated a pipeline to extract temporally precise, interpretable 
movement events, by processing the video data through pose-estimation, pose time-series 
segmentation, event detection and finally, event metadata extraction [1]. To extract a 
participant’s pose from raw video, a state-of-the-art markerless pose estimation tool was trained 
using manual annotations of 9 keypoints on each participant’s body (nose, both wrists, elbows, 
shoulders, and ears). Next, the pose time-series was segmented into discrete, interpretable states, 
by applying a first-order auto-regressive hidden semi-Markov model (ARHSMM) with two 

https://figshare.com/s/ef4ea24d67d16233f73d
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latent states. Then string pattern matching was performed to identify movement initiation (0.5 
seconds of rest followed by 0.5 seconds of movement) and rest events (3 continuous seconds of 
rest). 
 
For each detected movement event, several metadata features were extracted from the continuous 
pose-dynamics associated with the movement. These include movement-associated metadata like 
the (x, y) coordinates of the keypoint at the start and end of the event, duration of the entire 
movement (up to next rest state), and rest duration before and after movement. Since people 
often move both hands at the same time (i.e. “bimanually”), each movement event was 
augmented with metadata about the opposing wrist’s movement, if any. 
 
To examine the neural correlates of naturalistic movement initiation, a time-frequency analysis 
was performed of the neural recordings by averaging event-locked spectrograms for each 
participant, using hundreds of movement initiation events chosen to match movement statistics 
(reach magnitude, onset velocity, and shape) of a previous controlled experimental study. Using 
the aforementioned metadata to guide the search, up to 200 events per day over 5 days for each 
of 12 participants was selected, and then further inspection of the video for each event occurred 
to remove any false positives. 
 
The pipeline was also leveraged as a source of training data for a BCI decoder that detects wrist 
movement initiation events. Separate classifiers were trained, tailored to each participant, to 
discriminate between movement initiation events and no-movement events for each wrist using 
only features derived from the ECoG neural recordings of the 12 participants. The decoder used 
the Random Forest algorithm on time-frequency spectrograms of the neural data. The decoder 
was applied to 3 consecutive recording days for each participant, withholding the last day for 
testing. 
 
3.3 Behavioral and neural variability of naturalistic arm movements 
 
The raw ECoG data was processed using custom minimum norm estimates (MNE) Python 
scripts, performing high-amplitude artifact removal, band-pass filtering, notch filtering of 60 Hz 
line noise, and common median re-referencing, as shown in Figure 1 [2]. Electrode positions 
were localized by co-registering preoperative magnetic resonance imaging (MRI) and 
postoperative computerized tomography (CT) scans, which were then warped into Montreal 
Neurological Institute (MNI) space. Markerless pose estimation was performed on the raw video 
footage separately for each participant to determine wrist positions. Movement states were 
identified using a first-order autoregressive hidden semi-Markov model to each wrist trajectory. 
Next, timestamps accompanying clinical recordings were used to synchronize movement 
initiation events with ECoG recordings, generated 10-second ECoG segments centered around 
each event, computed spectral power using Morlet wavelets, and projected the spectral power at 
every electrode into common regions of interest defined by the automated anatomical labeling 
(AAL) atlas. 
 
Multiple behavioral and environmental metadata features that quantified variations in movement 
parameters and environmental contexts were extracted. Using the 10 extracted behavioral 
features as independent variables, a separate linear regression model was fit to the spectral power 
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at every electrode. For the dependent variable, spectral power was averaged over the first half 
second of movement onset for low-frequency (8–32 Hz) and high-frequency (76–100 Hz) bands. 
After training each regression model, model validation was performed by computing the R2 on 
withheld data and also assessed against the contribution of each behavioral feature. To minimize 
bias in the selection of training and testing data, 200 random, independent train/test splits for 
every regression model was performed. 

Figure 1: Schematic overview of data processing, analysis, and modeling framework. (a)–(b) Based on 
continuous video monitoring of each subject, trajectories of the left and right wrists (WristL and WristR in (b)) 
were estimated using neural networks and automatically segmented into move (gray) and rest (white) states as 
shown in (b). (c)–(d) Raw multi-electrode electrocorticography (ECoG) was filtered and re-referenced; bad 
electrodes (e.g., ones with artifacts) were removed from further analysis. (e) Movement onset events detected 
from video as shown in (b) were aligned with ECoG data using timestamps. (f) For each move event at each 
electrode, spectral power was computed and visualized as a log-scaled spectrogram. (g) Summarizing across 
events and electrodes, the spectral power was projected from electrodes onto 8 cortical regions based on 
anatomical registration and computed the median power across movement events. (h) The data included 12 
subjects; their electrode placements are shown in MNI coordinates. Five of the subjects had electrodes implanted 
in their right hemispheres (denoted by asterisks). For consistency of later analyses, these electrode locations 
were mirrored as shown. (i) To partially explain the event-by-event neural variability in low-frequency (LFB: 
8–32 Hz) and high-frequency (HFB: 76–100 Hz) spectral power, multiple linear regression models were fit at 
each electrode using behavioral features extracted from the videos. 
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3.4 Generalized neural decoders for transfer learning across participants and recordings 
modalities 

 
The HTNet model builds upon EEGNet, a compact convolutional neural network for 
electroencephalogram (EEG) data. EEGNet has three convolution layers: (1) a one-dimensional 
convolution analogous to temporal band-pass filtering, (2) a depth-wise convolution to perform 
spatial filtering, and (3) a separable convolution to identify temporal patterns across the previous 
filters. HTNet, adds a Hilbert transform layer after the initial temporal convolution to compute 
relevant spectral power features using a data-driven filter-Hilbert analog [3]. Then a matrix 
multiplication layer was added to project electrode-level spectral power onto common brain 
regions of interest, using the pre-computed weight matrices. 
 
HTNet decoding performance was compared against EEGNet, random forest, and minimum 
distance decoders, tested on the ECoG dataset and a publicly available EEG dataset. The 
decoding task for both datasets was to classify upper-limb “move” and “rest” events. For the 
ECoG dataset, the median DC drift and high-amplitude discontinuities were removed, band-pass 
filtered (1–200 Hz), notch filtered, re-referenced to the common median across electrodes, noisy 
electrodes removed, and generated as 2-second segments centered around each event. For the 
EEG dataset, the data was pre-processed by average referencing, 1 Hz high-pass filtering, 
resampling to 250 Hz, and generating 2-second segments centered around each event. 
 
The decoder performance was assessed during three scenarios: (1) testing on an untrained 
recording day for the same ECoG participant (tailored decoder), (2) testing on an untrained 
ECoG participant (same modality), and (3) testing on participants from the EEG dataset after 
training only on the ECoG dataset (unseen modality), as shown in Figure. 2. Hyperparameter 
tuning was performed to identify optimal values for each decoder. In addition to testing 
generalizability, how much a generalized HTNet decoder improves when re-trained using data 
from the test participant, a process known as fine-tuning, was assessed. Lastly, the 
interpretability of HTNet’s trained weights as well as the effects of electrode overlap and number 
of training participants on cross-participant performance was assessed. 
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Figure. 2: Overview of HTNet architecture, experimental design, and electrode locations. (A) HTNet is a 
convolutional neural network architecture that extends EEGNet by handling cross-participant variations in 
electrode placement and frequency content. (B) Using electrocorticography data, both tailored within-participant 
and generalized multi-participant models were trained to decode arm movement vs. rest. Multi-participant 
decoders were tested separately on held-out data from unseen participants recorded with either the same modality 
as the train set (ECoG) or an unseen modality (EEG). These pre-trained decoders were fine-tuned using data 
from the test participant. (C) Electrode placement varies widely among the 12 ECoG participants. Asterisks 
denote five participants whose electrodes were mirrored from the right hemisphere. 

3.5 Time-varying autoregression with low rank tensors 

A windowed technique was developed to learn parsimonious time-varying autoregressive models 
from multivariate timeseries [4]. This unsupervised method uncovers interpretable 
spatiotemporal structure in data via non-smooth and non-convex optimization. In each time 
window, it was assumed the data followed a linear model parameterized by a system matrix, and 
this stack of potentially different system matrices was modeled as a low rank tensor. Because of 
its structure, the model is scalable to high-dimensional data and can easily incorporate priors 
such as smoothness over time. The components of the tensor were found by using alternating 
minimization and proved that any stationary point of this algorithm is a local minimum. 
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4.0 RESULTS AND DISCUSSION 
 
4.1 Investigating naturalistic hand movements by behavior mining in long-term video 

and neural recordings 
 
The automated, data-driven annotation pipeline was applied to the behavioral data collected for 
12 human participants over 7–9 days for each participant [1]. The pipeline discovered and 
annotated over 40,000 instances of naturalistic human upper-limb movement events in the 
behavioral videos. Analysis of the simultaneously recorded brain data revealed neural signatures 
of movement in the high-frequency (76-100 Hz) and low-frequency (8-32 Hz) bands that 
corroborate prior findings from traditional controlled experiments. A decoder was prototyped for 
a movement initiation detection task to demonstrate the efficacy of the pipeline as a source of 
training data for brain-computer interfacing applications. Individual classifier performance 
varied widely among participants, ranging from around chance levels to 80% on test accuracy. It 
was found that the most important electrodes for good decoding performance were located in the 
sensorimotor cortex. Additionally, low-frequencies (<35 Hz) and high-frequency (~100 Hz) 
bands were the most important frequency features for decoding. This research addressed the 
unique data analysis challenges in studying naturalistic human behaviors, and contributes 
methods that may generalize to other neural recording modalities beyond ECoG. 
 
4.2 Behavioral and neural variability of naturalistic arm movements 
 
This project characterized the variability of both naturalistic upper-limb reaching movements and 
the corresponding changes in cortical spectral power [2]. Based on findings from controlled 
experiments, it was hypothesized that naturalistic reaches would be associated with transient 
decreases in low-frequency power and increases in high-frequency power, localized to 
frontoparietal sensorimotor cortices. The results support this hypothesis on average, see Figure. 
3; however, it is shown that there is considerable variability in spectral power both within and 
across participants. Multiple-variable linear regression modelling partially explains this single-
event neural variability using reach angle and day of recording features, but much of the neural 
variability remains unexplained by behavioral and environmental features. In general, it is found 
that results from controlled upper-limb reaching tasks do generalize to naturalistic movements on 
average, but naturalistic movements involve considerable event-by-event neural variability that 
cannot be fully explained by simple behavioral and environmental measures. 
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Figure. 3: Group-level cortical spectral power changes are consistently localized to sensorimotor 
regions. Spectrograms show movement event-triggered spectral power patterns for 8 cortical regions 
(highlighted in lower right) summarized across all 12 subjects. Spectral power was projected based on anatomical 
registration from electrodes onto 8 regions of interest: middle frontal (blue), precentral (red), postcentral (green), 
inferior parietal (magenta), supramarginal (cyan), superior temporal (yellow), middle temporal (orange), and 
inferior temporal (purple). The baseline power of 1.5–1 seconds was subtracted before movement initiation. 
Non-significant differences from baseline power were set to 0 (p > 0.05). 

4.3 Generalized neural decoders for transfer learning across participants and recordings 
modalities 

The results show that this approach to movement decoding, HTNet, is generalizable and tunable, 
capable of learning common patterns from the training data that transfer to unseen participants 
and recording modalities [3]. HTNet consistently outperformed state-of-the-art decoders when 
tested on unseen participants (Figure. 4), even when a different recording modality was used. By 
fine-tuning these generalized HTNet decoders, the research achieved performance approaching 
the best tailored decoders with as few as 50 ECoG or 20 EEG events. The project was also able 
to interpret HTNet’s trained weights and demonstrate its ability to extract physiologically-
relevant features. By generalizing to new participants and recording modalities, robustly 
handling variations in electrode placement and allowing participant-specific fine-tuning with 
minimal data, HTNet is applicable across a broader range of neural decoding applications 
compared to current state-of-the-art decoders. 
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Figure. 4: HTNet generalizes better than EEGNet and other decoders. HTNet achieves significantly higher 
test accuracy than EEGNet, random forest, and minimum distance decoders across all three scenarios: (A) 
tailored (p<0.05), (B) same modality (p<0.05), and (C) unseen modality (p≤0.001). Note that the trained models 
for same and unseen modality conditions are identical; only the test set differs. (D–F) Bottom row displays 
decoder performance grouped by test participant for each fold.  

 
4.4 Time-varying autoregression with low rank tensors 
 
This project illustrated the model’s utility and superior scalability over extant methods when 
applied to several synthetic and real-world examples including: two types of time-varying linear 
systems, worm behavior, sea surface temperature, and monkey brain datasets. With synthetic 
data generated by a switching or smoothly varying linear dynamical system, it was shown that 
time-varying autoregressive models with low rank tensors (TVART) can recover the true 
dynamics and is competitive with other state-of-the-art techniques [4]. In real-world data 
examples, it was found that the recovered modes are interpretable and can correspond to 
important dynamical regimes. 
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5.0 CONCLUSIONS 

This project has supported the collection and publication of a naturalistic human ECoG dataset. 
The research has focused on automatic extraction of interpretable features from long-term video 
monitoring, evaluation of multimodal features with deep learning, and decoding intent to move. 
Importantly, both supervised and unsupervised approaches to examining dynamic features of the 
ECoG data were described. Based on what has been learned, the latest paper [3] published 
highlights HTNet, a new neural network architecture that outperforms state-of-the-art decoders 
when generalizing to entirely unseen, new participants. The publications and the datasets 
published as part of this research project are significant advances on the path to BCIs that are 
deployable in practical, real-life applications. 



 

Approved for Public Release; Distribution Unlimited. 
12 

 

6.0 REFERENCES 
 
[1]  S. H. Singh, S. M. Peterson, R. P. N. Rao and B. W. Brunton, "Investigating naturalistic 

hand movements by behavior mining in long-term video and neural recordings," arXiv, 
2020.  

[2]  S. M. Peterson, S. H. Singh, N. X. R. Wang, R. P. N. Rao and B. W. Brunton, "Behavioral 
and neural variability of naturalistic arm movements," bioRxiv, 2020.  

[3]  S. M. Peterson, Z. Steine-Hanson, N. Davis, R. P. N. Rao and B. W. Brunton, "Generalized 
neural decoders for transfer learning across participants and recording modalities," Journal 
of Neural Engineering, 2021.  

[4]  K. D. Harris, A. Aravkin, R. Rao and B. W. Brunton, "Time-varying autoregression with 
low rank tensors," arXiv, 2019.  

 
 
  



Approved for Public Release; Distribution Unlimited. 
13 

APPENDIX – List of Publications Supported by This Award (chronological order) 

Brunton, B. W. & Beyeler, M. 
Data-driven models for human neuroscience and neuroengineering. Current Opin Neurobiol 
(2019), 58, 21-29.  

Singh, S. H., Peterson, S. M., Rao, R. P. N. & Brunton, B. W. 
Enabling naturalistic neuroscience through behavior mining: Analysis of long-term human brain 
and video recordings 
2019 Conference on Cognitive Computational Neuroscience (2019).  

Singh, S. H., Peterson, S. M., Rao, R. P. N. & Brunton, B. W. 
Towards naturalistic human neuroscience and neuroengineering: behavior mining in long-term 
video and neural recordings. arXiv:2001.08349.  

Peterson, S. M.†, Singh, S. H.†, Wang, N. X. R., Rao, R. P. N. & Brunton, B. W. Behavioral
and neural variability of naturalistic arm movements. 
bioRxiv doi: https://doi.org/10.1101/2020.04.17.047357.  

Azadian, E., Velchuru, G., Wang, N. X. R., Peterson, S. M., Staneva, V. & Brunton, B. W. 
Decoding happiness from neural and video recordings. 
NeurIPS 2020, workshop on Learning Meaningful Representations of Life.  

Peterson, S. M., Steine-Hanson, Z., Davis, N., Rao, R. P. N. & Brunton, B. W. 
Generalized neural decoders for transfer learning across participants and recording modalities. 
to appear in Journal of Neural Engineering (2021), bioRxiv doi: 
https://doi.org/10.1101/2020.10.30.362558.  



Approved for Public Release; Distribution Unlimited. 
14 

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

AAL automated anatomical labeling 
ARHSMM auto-regressive hidden semi-Markov model 
BCI brain-computer interface 
CT computerized tomography 
ECoG electrocorticography 
EEG electroencephalogram 
MNE minimum norm estimates 
MNI Montreal Neurological Institute 
MRI magnetic resonance imaging 
R2 not acronym, coefficient of determination 
SD standard deviation 
TVART time-varying autoregressive models with low rank tensors 
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