
The Impact of Threat Levels at the Casualty
Collection Point on Military Medical Evacuation

System Performance

THESIS

Nathaniel C. Dennie, 1st Lt, USAF

AFIT-ENS-MS-21-M-154

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.



AFIT-ENS-MS-21-M-154

THE IMPACT OF THREAT LEVELS AT THE CASUALTY COLLECTION

POINT ON MILITARY MEDICAL EVACUATION SYSTEM PERFORMANCE

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Nathaniel C. Dennie, BS

1st Lt, USAF

March 25, 2021

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT-ENS-MS-21-M-154

THE IMPACT OF THREAT LEVELS AT THE CASUALTY COLLECTION

POINT ON MILITARY MEDICAL EVACUATION SYSTEM PERFORMANCE

THESIS

Nathaniel C. Dennie, BS
1st Lt, USAF

Committee Membership:

Capt Phillip R. Jenkins, PhD
Chair

Dr. Matthew J. Robbins
Member



AFIT-ENS-MS-21-M-154

Abstract

One of the primary duties of the Military Health System is to provide effective

and efficient medical evacuation (MEDEVAC) to injured battlefield personnel. To

accomplish this, military medical planners seek to develop high-quality dispatching

policies that dictate how deployed MEDEVAC assets are utilized throughout combat

operations. This thesis seeks to determine dispatching policies that improve the per-

formance of the MEDEVAC system. A discounted, infinite-horizon continuous-time

Markov decision process (MDP) model is developed to examine the MEDEVAC dis-

patching problem. The model incorporates problem features that are not considered

under the current dispatching policy (e.g., myopic policy), which tasks the closest-

available MEDEVAC unit to service an incoming request. More specifically, the MDP

model explicitly accounts for admission control, precedence level of calls, different

asset types (e.g., Army versus Air Force helicopters), and threat level at casualty col-

lection points. An approximate dynamic programming (ADP) algorithm is developed

within an approximate policy iteration algorithmic framework that leverages kernel

regression to approximate the state value function. The ADP algorithm is used to

develop high-quality solutions for large scale problems that cannot be solved to opti-

mality due to the curse of dimensionality. We develop a notional scenario based on

combat operations in southern Afghanistan to investigate model performance, which

is measured in terms of casualty survivability. The results indicate that significant

improvement in MEDEVAC system performance can be obtained by utilizing either

the MDP or ADP generated policies. These results inform the development and im-

plementation of tactics, techniques and procedures for the military medical planning

community.
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This research is dedicated to the men and women, past, present and future, who have

or will dedicate their lives in support of our country. May this research help lay the

ground work needed to provide the best medical evacuation system possible for those

who risk their lives in the defense of our country.

v



Acknowledgements

I would like to express my deep gratitude to Dr. Jenkins for his leadership and

support. His mentorship and guidance over this past year has helped to shape me as a

better analyst andofficer. I am extremely grateful that I was afforded the opportunity

to work with him on this topic.

I also want to acknowledge my committee member, Dr. Matthew Robbins. His

guidance and encouragement provided me the confidence to pursue this area of re-

search. Without him none of this would be possible.

Finally I would like to thank family. Their on-going encouragement and support

has given me the drive and motivation to conquer all tasks that are before me. My

mother has always encouraged me to be persistent, and this lesson has served me well

throughout this entire process. I would especially like to thank my cousin, who would

take time away from his own Ph.D. studies to read and edit my drafts. My family is

the reason I am here, and I would not be where I am without them.

Nathaniel C. Dennie

vi



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

II. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 EMS Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Civilian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Military . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

III. Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 The MEDEVAC Dispatching Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

IV. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 MDP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.1 Decision Epochs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.3 Action Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.4 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.5 Transition Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.6 Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.7 Optimality Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 ADP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.1 Kernel Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vii



Page

V. Testing, Results, & Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 Representative Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Representative Scenario Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.1 Algorithmic Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.2 Policy Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Excursions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.1 Excursion 1 - Request Arrival Rate . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.2 Excursion 2 - MEDEVAC Asset Types . . . . . . . . . . . . . . . . . . . . . . 51
5.3.3 Excursion 3 - Threat Level Proportion . . . . . . . . . . . . . . . . . . . . . . 52

5.4 12-zone Scenario Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5 34-zone Scenario Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5.1 Algorithm Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5.2 34-zone Problem Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

VI. Conclusions & Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Recommendations for Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

viii



List of Figures

Figure Page

1 MEDEVAC Mission Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Representative Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 6-zone Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 ADP Algorithm Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 MEDEVAC Busy Rates by Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Arrival Rate Impact on MEDEVAC System . . . . . . . . . . . . . . . . . . . . . . . . 50

7 High Threat Proportion Impact on MEDEVAC System
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8 12-zone Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9 MEDEVAC Busy Rates by Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

10 34-zone Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

ix



List of Tables

Table Page

1 Evacuation Precedence Categories (Department of the
Army, 2019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Threat Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Threat level 1 (low threat) proportion of arrivals . . . . . . . . . . . . . . . . . . . . 40

4 Threat level 2 (high threat) proportion of arrival . . . . . . . . . . . . . . . . . . . . 40

5 MEDEVAC Response Times with low Threats . . . . . . . . . . . . . . . . . . . . . . 40

6 MEDEVAC Service Times with low Threats . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Baseline parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8 Policy Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9 Experimental Design Factor Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

10 Experimental Design Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

11 Value Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

12 Scenario Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

13 Optimal Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

14 MEDEVAC Busy Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

15 Arrival Rate Impact on V π(S0) for the MEDEVAC
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

16 Percent Increase over Myopic policy with Asset
Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

17 Percent Increase over Myopic policy with respect to
High Threat Proportion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

18 12-zone parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

19 12-zone Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

20 12-zone Optimal Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

x



Table Page

21 MEDEVAC Busy Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

22 34-zone parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

23 34-zone Algorithm Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

24 34-zone Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xi



THE IMPACT OF THREAT LEVELS AT THE CASUALTY COLLECTION

POINT ON MILITARY MEDICAL EVACUATION SYSTEM PERFORMANCE

I. Introduction

1.1 Motivation

One of the primary objectives of the military’s emergency medical service (EMS)

response system is to evacuate injured personnel from the battlefield as quickly as

possible. There are two options available to accomplish this task: (1) medical evac-

uation (MEDEVAC) and (2) casualty evacuation (CASEVAC). The first and most

preferred option utilizes dedicated platforms (e.g., HH-60M Black Hawk helicopters)

staffed with trained medical personnel that can effectively tend to patients while in

transit to a medical treatment facility (MTF). The latter option is primarily utilized

as a contingency and typically does not have medical personnel on board to provide

the critical care needed while en route to an MTF (Department of the Army, 2019).

Sequential resource allocation decision-making within the military MEDEVAC

system consists of determining which MEDEVAC unit (if any) to dispatch in response

to a casualty event; this is commonly referred to as the MEDEVAC dispatching

problem (Robbins et al., 2018). These decisions are complicated due to the inherent

uncertainties found within a MEDEVAC system (e.g., response time, service times,

and request arrival rate). This thesis seeks to solve the MEDEVAC dispatching

problem (i.e., determine an optimal MEDEVAC dispatching policy) via a Markov

decision process (MDP) model.

The effectiveness of the MEDEVAC system enables the execution of combat op-
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erations in a deployed environment. For this reason, improvements are constantly

being made. This thesis further develops the MEDEVAC dispatching literature by

explicitly modeling casualty collection point (CCP) threat levels. Moreover, this re-

search is the first to model a joint environment wherein both Air Force and Army

MEDEVAC units are available to respond to requests for service. The results provide

insights to the military medical planning community and inform the development of

tactics, techniques and procedures for MEDEVAC operations.

1.2 Background

The concept of removing casualties from the battlefield was introduced during the

American Civil War, and the practice of evacuating battlefield casualties has contin-

ually improved throughout each major United States (U.S.) conflict. Such evolution

consists of using horse-drawn wagons for CASEVAC in the Spanish American War

in 1898, motorized ground-vehicles for CASEVAC in World War I, helicopters for

CASEVAC in World War II and the Korean War, and helicopters for MEDEVAC

during the Vietnam War. The use of dedicated aeromedical helicopters for MEDE-

VAC continues to be the primary evacuation method for the U.S. military (Jenkins

et al., 2021a). Due to these ongoing improvements, the casualty survival rate has

increased over the decades from 84% in Vietnam to 90% during the decade of conflict

from 2001 to 2011 (Eastridge et al., 2012).

MEDEVAC and CASEVAC operations utilize a plethora of vehicle types (e.g.,

trucks, ships, and helicopters). This thesis focuses on the aerial aspects of MEDEVAC

operations (i.e., aeromedical helicopter operations), which are accomplished through

the use of helicopter ambulances. Helicopters have the ability to fly directly to a

point-of-injury (POI) or CCP that other platforms (e.g., ground vehicles or fixed-

winged aircraft) may not be able to access or get to quickly. This aspect greatly

2



increases a casualty’s chances of survival, making helicopters the MEDEVAC vehicle

of choice. The HH-60M Black Hawk helicopter in particular is specifically designed

to support the MEDEVAC mission. These helicopters come equipped with the neces-

sary resources (e.g., oxygen generator, integrated electrocardiogram (EKG) machine,

electronically controlled litters, built-in external hoist, and an infrared system that

can locate patients by their body heat) to give medical personnel the ability to simul-

taneously treat and transport casualties from a POI (or CCP) to an appropriate MTF

(Jenkins, 2017). The HH-60G Pave Hawk, on the other hand, is designed to conduct

personnel recovery missions under hostile conditions but can be used to support the

MEDEVAC mission if needed.

There are three main aspects to consider when developing a MEDEVAC sys-

tem: location, dispatching, and redeployment. The location of MEDEVAC units are

usually determined while considering two objectives: maximizing coverage and mini-

mizing response time subject to logistical, resource, and force protection constraints

(Jenkins et al., 2020c). Military dispatching authorities typically task MEDEVAC

units to respond to incoming requests for service according to a closest-available dis-

patching policy, which, as the name suggests, automates the decision making process

by simply dispatching the closest-available unit when requests are submitted to the

system regardless of the precedence level of the casualties at the CCP or other system

characteristics. Redeployment, while possible, poses challenges due to communica-

tion, resource, and availability issues. For this reason, redeployments are not typically

performed and are not considered in this research.

1.3 Thesis Overview

This thesis focuses on a MEDEVAC dispatching problem in which a decision maker

(i.e., dispatching authority) must decide which MEDEVAC unit (if any) to dispatch

3



in response to a particular request for service. Redeployment is not considered, and

the location of MTFs and MEDEVAC units are known.

An infinite-horizon, continuous-time Markov decision process (CTMDP) model

is developed and transformed into an equivalent discrete-time MDP model via uni-

formization to determine the optimal dispatching policy that maximizes the expected

total discounted reward earned by the system. A computational example is devel-

oped and applied to a MEDEVAC system forward deployed in Afghanistan in support

of combat operations. Comparisons are made between the myopic policy (i.e., the

closest-available dispatching policy) and the optimal policy generated by the MDP

model.

This thesis contributes to the existing military EMS literature (e.g., Keneally

et al. (2016); Rettke et al. (2016); Jenkins et al. (2018); Robbins et al. (2018); Jenkins

et al. (2021b,a)), by explicitly modeling and accounting for threat levels at CCPs and

different MEDEVAC asset types. These additions create a more realistic scenario in

which the dispatching authority must not only take into account the precedence levels

of incoming requests, availability of MEDEVAC units, future demand locations, and

arrival rates, but also the potential of enemy threats into the dispatching decision as

well as which asset type should be utilized to maximize the system’s performance.

The remainder of this thesis is structured as follows: Chapter II provides a detailed

review of relevant research pertaining to civilian and military emergency medical

service (EMS) systems. Chapter III describes the MEDEVAC dispatching problem.

Chapter IV presents the MDP formulation. Chapter V covers an application of the

developed MDP model based on a representative scenario in southern Afghanistan.

Chapter VI provides conclusions and areas for future research.
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II. Literature Review

This chapter discusses research pertaining to EMS systems in both the civilian

and military communities. In particular, this literature review focuses on research

concerning the dispatching of civilian and military EMS vehicles upon receipt of

service requests.

2.1 EMS Systems

The research pertaining to EMS operations can be traced back to the late 1960’s.

Within the EMS literature, the primary areas of focus include characteristics such

as optimal location (e.g., Jarvis (1975); Daskin & Stern (1981); Bianchi & Church

(1988)), allocation (e.g., Hall (1972); Berlin & Liebman (1974); Baker et al. (1989)),

dispatch (e.g., Ignall et al. (1982); Swersey (1982); Green & Kolesar (1984)) and

relocation of emergency vehicles (e.g., Kolesar & Walker (1974); Chaiken & Larson

(1972); Berman (1981); Jenkins (2019)) to enhance the performance of the EMS

system (Jenkins, 2017).

To analyze EMS systems, applied operations research techniques (e.g., stochastic

modeling, queueing, discrete optimization, and simulation modeling) tend to be the

tools of choice due to their ability to provide rigorous, defensible, and quantitative

insights (Green & Kolesar, 2004). The goal of utilizing operations research techniques

is to provide decision makers the ability to make data-driven decisions via the ap-

plication of published models, but unfortunately this is not always the case due to

limiting and, at times, unrealistic assumptions. However, Green & Kolesar (2004)

reveal how research has positively influenced changes to EMS response systems. The

research in this thesis intends to do the same for the military MEDEVAC community.

An optimality criterion (i.e., performance measure) must be established to opti-
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mize the performance of an EMS system. This is vital because it governs employ-

ment of EMS system resources and ultimately dictates patient survivability (McLay

& Mayorga, 2010). EMS system performance is normally measured in terms of a re-

sponse time threshold (RTT), which indicates the proportion of calls serviced within

a given timeframe. RTTs are generally easy to evaluate, but there has been concerns

about their ability to fully capture patient survivability. Due to this criticism, Erkut

et al. (2008) recommend explicitly incorporating patient survivability. Estimating

patient survivability has proven to be quite difficult; however, Erkut et al. (2008)

propose the use of a monotonically decreasing function over time better describes the

probability of patient survivability. This approach has been adopted and utilized in

subsequent work (e.g., Bandara et al. (2012); Mayorga et al. (2013); Bandara et al.

(2014); Grannan et al. (2015); Rettke et al. (2016); Jenkins et al. (2018); Robbins

et al. (2018); Jenkins et al. (2021b,a)). Following suite, this thesis incorporates a

survivability function to best represent patient survivability.

As it stands, most EMS response systems utilize a closest-available dispatching

policy (i.e, a myopic policy). Although this policy simplifies the decision-making

process, it is not always optimal and can be improved upon by taking into account

important system characteristics such as patient precedence levels (Bandara et al.,

2012). The EMS dispatching literature focuses on developing feasible dispatching

rules that render the highest utility based on the established optimality criterion.

Decisions concerning which EMS unit to dispatch upon a request for service must

be made sequentially over time and under uncertainty. For this reason, many re-

searchers utilize a dynamic programming approach to model this problem (Jenkins

et al., 2020b, 2021c). The following sections provide an extensive review of both

civilian and military EMS response system research that leverage this approach.
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2.1.1 Civilian

McLay & Mayorga (2013b) develop an MDP model to determine an optimal am-

bulance dispatching policy that incorporates the precedence levels of requests and the

possibility of classification errors. The authors reveal alternative optimal solutions are

possible based on the likelihood of classification errors. Moreover, the results indicate

that relaxing the assumption of exponentially distributed service times has little im-

pact on the MDP-generated optimal policy. McLay & Mayorga (2013a) expand upon

the aforementioned MDP model to consider the problem feature of balancing equal-

ity and equity. More specifically, the authors examine tradeoffs between adopting a

dispatching policy that decreases performance in rural, low-populated areas in favor

of increased performance in higher populated areas. The authors formulate a con-

strained MDP model as a linear programming model to identify optimal dispatching

policies and use it to analyze four different measures of equity.

Both McLay & Mayorga (2013b) and McLay & Mayorga (2013a) provide mean-

ingful insights with regard to the ambulance dispatching problem. However, their

research only allows for smaller scale problem instances to be evaluated due to the

curse of dimensionality. The results garnered from these solutions are still of value,

but larger problem instances should be evaluated to provide more realistic and mean-

ingful insights. To accomplish this, researchers are utilizing approximate dynamic

programming (ADP) approaches to generate high-quality results for practical-sized

problems within a reasonable amount of computational time.

Maxwell et al. (2010) adopt an ADP solution approach, utilizing an approximate

policy iteration (API) algorithm that seeks to determine a high-quality ambulance

redeployment policy (i.e., the movement of ambulances that have just completed ser-

vice at a hospital to service another request). The value function is approximated

through an affine combination of deliberately designed, problem-specific basis func-
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tions. A least-squares policy evaluation (LSPE) technique is used within their API

algorithm to update the basis function coefficients. Relocation and dispatching deci-

sions are not considered, but the queueing of requests is allowed. The authors apply

their solution methodology to two metropolitan EMS response scenarios and are able

to achieve improved performance when compared to the benchmark policies.

Schmid (2012) models and solves an ambulance dispatching problem that accounts

for both redeployment decisions and the queueing of requests. The author adopts

an ADP solution approach with an approximate value iteration (AVI) algorithmic

structure. The value function is approximated via a spatial and temporal aggregation

scheme. Schmid (2012) demonstrates the efficacy of the solution approach by applying

it to an EMS response scenario based in Vienna, Austria. The obtained results

indicate improved performance when compared to a benchmark policy.

Nasrollahzadeh et al. (2018) investigate a modification of the ambulance dispatch-

ing problem, considering redeployment decisions and relocation decisions, and allow-

ing for the queueing of requests. The authors develop an MDP model and apply it

to an EMS response scenario set in Mecklenburg County, North Carolina. To obtain

results with a computationally efficient manner, the authors adopt an ADP solution

approach utilizing an API framework. The value function is approximated through

an affine combination of deliberately designed, problem-specific basis functions and

are approximated via a LSPE technique. The authors are able to obtain improved

performance results when compared to multiple benchmark policies.

Park & Lee (2019) evaluate another variant of the ambulance dispatching prob-

lem. Their research builds upon previous work in the ambulance dispatching and

redeployment literature by additionally considering a two-tiered ambulance system

and patient classification errors. In a two-tiered ambulance system, different ambu-

lances are specially equipped to handle different types of patient requests (e.g., basic
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life support (BLS) vehicles for non-emergency patient transport and advanced life

support (ALS) for emergency-patient transport). The authors argue that incorpora-

tion of this system, consisting of both advanced and basic life support for emergency

and non-emergency patient care, respectively, can provide a cost efficient medical

service. However, a system like this requires accurate medical classifications to avoid

serious complications. Within this system, the authors seek to determine how the

optimal policy changes according to classification errors, and what type of classifi-

cation decisions need to be made for ambiguous patients to minimize patient risk.

An MDP model is developed and a mini-batch monotone-ADP approach is proposed

to solve the problem. Computational experiments using realistic system dynamics

based on historical data from Seoul, South Korea are developed and reveal that the

ADP-generated optimal policy can reduce a patient’s risk level index by an average

of 11.2% when compared to a myopic policy.

Military and civilian EMS systems are similar in nature, as both are designed to

address the transportation needs of time-sensitive patients to higher level MTFs. For

this reason, the advancement in the civilian EMS dispatching literature has helped

pave the foundation upon which the military MEDEVAC dispatching literature is

able to evolve. Despite their similarities, several substantive differences remain that

must be considered when examining the performance of a military EMS system (e.g.,

longer travel times, longer loading and unloading times, more complicated evacuation

process) (Jenkins et al., 2021a). To account for these differences, independent research

has been dedicated to focus on the military MEDEVAC dispatching problem.

2.1.2 Military

Whereas many research papers have been written in relation to the improvement

of military MEDEVAC system efficiency, very few investigate the decision of which
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MEDEVAC unit to launch to a given prioritized request for service (Robbins et al.,

2018). The first of this kind appears to be Keneally et al. (2016).

Keneally et al. (2016) develop an MDP model that examines the military MEDE-

VAC dispatching policy in a combat environment. The proposed model indicates how

to optimally dispatch MEDEVAC helicopters to casualty events to maximize system

utility during steady-state combat operations. The utility gained from servicing a

specific request depends on the number of casualties being evacuated, the precedence

of the casualties, and the location of both the servicing vehicle and CCP. The authors

apply their model to a notional scenario set in Afghanistan, wherein the MEDEVAC

system is supporting counter-insurgency operations. The results indicate that the

myopic policy is not always the best method for dispatching MEDEVAC helicopters.

Jenkins et al. (2018) expand upon the work conducted by Keneally et al. (2016)

by incorporating admission control. This provides the dispatching authority with the

ability to reject incoming requests for service, thereby reserving MEDEVAC units

for higher precedence requests. A queueing system is also incorporated, allowing

the dispatching authority to accept incoming requests regardless of the status of the

MEDEVAC units and place them in a queue to be serviced later. Moreover, the au-

thors utilize a survivability function based on response time instead of a RTT to model

the MDP reward function. Similar to Keneally et al. (2016), Jenkins et al. (2018)

conduct a computational experiment with their model based on counter-insurgency

operations in Afghanistan. The authors conclude that the dispatching of MEDEVAC

units with the consideration of precedence levels and locations of MEDEVAC units

increases system performance.

Both Keneally et al. (2016) and Jenkins et al. (2018) develop an MDP model to

determine an optimal dispatching policy for MEDEVAC units. Each effort performs

small-scale computational experiments, wherein their respective MDP models are able
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to determine optimal solutions in a tractable amount of time. The results garnered

provide valuable insights concerning MEDEVAC dispatching policies. However, de-

spite these accomplishments, practical (i.e., large-scale) problem instances should be

analyzed to obtain more realistic insights.

The MEDEVAC dispatching problem in practice has a high-dimensional state

space. This renders exact solution methodologies (e.g., dynamic programming and

linear programming) ineffective (Robbins et al., 2018) due to the curse of dimension-

ality. Given this challenge, several researchers (e.g., Rettke et al. (2016), Robbins

et al. (2018), Jenkins et al. (2021b), Jenkins et al. (2021a)) employ ADP approaches

to obtain high quality dispatch policies relative to current practices (i.e., dispatching

the closest-available unit).

Rettke et al. (2016) develop an approximate policy iteration (API) algorithm that

utilizes least-squares temporal difference (LSTD) learning for policy evaluation to

solve their MDP model of the MEDEVAC dispatching problem. The authors demon-

strate the applicability of their model via a notional scenario representative of con-

temporary military operations in northern Syria. The authors obtain a solution that

outperforms the myopic policy by over 30% with regards to a life saving performance

metric.

Robbins et al. (2018) add to the MEDEVAC dispatching literature by examining

a realistic large-scale combat scenario set in Afghanistan. The authors utilize a zone

tessellation scheme within their model, similar to that used by U.S. military MEDE-

VAC practitioners. Utilizing a hierarchical aggregation value function approximation

scheme within an API algorithmic framework, the authors obtain high quality solu-

tions that substantially outperform the myopic policy and are within 1% of optimality.

In Jenkins et al. (2021a), the authors contribute to the MEDEVAC dispatching

literature by formulating and utilizing an MDP model that incorporates previously
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examined problem features (i.e., admission control and queueing) as well as redeploy-

ment. The authors develop, test, and compare two distinct ADP solution approaches,

both of which utilize an API algorithmic framework. The first approach uses LSTD

learning for policy evaluation, whereas the second uses neural network (NN) based

learning. The authors generate 30 different problem instances and are able to signifi-

cantly outperform the closest-available benchmark policies, 90% and 80% of the time

with their NN and LSTD techniques, respectively.

The research conducted in Jenkins et al. (2021b) defines and examines the MEDE-

VAC dispatching, preemption-rerouting and redeployment (DPR) problem. This ef-

fort formulates an MDP model and solves it via an ADP approach within an API

framework that utilizes a support vector regression (SVR) value function approxima-

tion scheme. The DPR problem is a variation of the MEDEVAC dispatching problem

that not only seeks to determine which MEDEVAC unit to dispatch upon receipt of

a request, but also incorporates how a unit should redeploy upon finishing a ser-

vice request. In this research, the authors apply their model to a notional scenario

based on high-intensity combat operations to defend Azerbaijan against a notional

aggressor. The ADP-generated policies obtained from the computational experiments

significantly outperform two benchmark policies.

2.2 Thesis Contribution

The research in this thesis adds to the MEDEVAC dispatching literature by utiliz-

ing an MDP model that explicitly incorporates the threat level at CCPs and different

MEDEVAC asset types, problem aspects that have yet to be considered, as well as

previously examined problem features (e.g., admission control). Whereas previous re-

search has accounted for the precedence level of MEDEVAC requests, none take into

account the environment in which requests need to be serviced. Moreover, previous
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research has primarily focused on utilizing one MEDEVAC asset type, the HH-60M.

The HH-60Ms (Black Hawk) are a variant of the U.S. Army’s HH-60 helicopter

series and are specifically utilized for MEDEVAC operations. The HH-60Gs (Pave

Hawk) are a gunship variant of the Black Hawk operated by the U.S. Air Force. The

Pave Hawk primarily serves as the Air Force’s premier combat search and rescue vehi-

cle; however, there are times when it can be used to support MEDEVAC operations.

Unlike the Black Hawk, the Pave Hawk comes equipped with two .50 caliber mini

guns that enable it to enter hostile areas unaccompanied, regardless of threat level.

Despite being owned by a different service, this thesis will directly model Pave Hawks

to determine how its incorporation will affect dispatching policies. This addition en-

ables more complexity to enter the model. Similar to Keneally et al. (2016), Jenkins

et al. (2018), and Robbins et al. (2018), a computational experiment set in Afghan-

istan is examined to demonstrate the efficacy of the rendered solutions. Following

from Rettke et al. (2016), Robbins et al. (2018), Jenkins et al. (2020c), Jenkins et al.

(2021a), and Jenkins et al. (2021b), this research also develops and employs an ADP

solution technique.
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III. Problem Description

This chapter provides a detailed description of the military MEDEVAC dispatch-

ing process.

3.1 The MEDEVAC Dispatching Process

The Army Health System (AHS) is the Army component of the Department of

Defense Military Health System (Department of the Army, 2019). One of the pri-

mary missions of the AHS is to provide MEDEVAC services across a range of military

operations. To accomplish this, the Army’s MEDEVAC system is comprised of ded-

icated air and ground evacuation platforms that have been designed, manned, and

equipped to provide en route medical care to patients being evacuated (Department

of the Army, 2019). Dedicated rotary-wing air ambulances are utilized for MEDE-

VAC missions and are commanded by the general support aviation battalion (GSAB)

(Jenkins, 2017). The GSAB manages all activities related to the execution of aerial

MEDEVAC operations (Department of the Army, 2019).

Within the GSAB, an Army aeromedical evacuation officer (AEO) acts as the

MEDEVAC dispatching authority in a deployed military EMS system (Fish, 2014).

AEOs direct the use of medical aircraft, personnel, and equipment in support of oper-

ational and strategic MEDEVAC procedures within a theater of operations. Upon the

receipt of a MEDEVAC request, the AEO must decide which unit, if any, to dispatch.

Delays in the decision-making process substantially decrease the patient’s probability

of survival. As such, it is imperative that the GSAB implements a dispatching policy

resulting in high-quality and rapid evacuation of combat casualties from CCPs to

appropriate MTFs.

When conducting an operation, if a unit sustains casualties that need to be evac-
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uated, they will initiate medical evacuation operations by calling in a 9-line MEDE-

VAC request (Jenkins et al., 2020a). A 9-line MEDEVAC request is transmitted in

a standardized message format with a prescribed amount of information to aide in

the process of transporting casualties. During wartime conditions, the information

required in a 9-line MEDEVAC request is reported in the following order: the loca-

tion of the pickup site (i.e., POI or CCP), radio frequency and call sign, number of

casualties by precedence, special equipment required, number of casualties by type,

security (i.e., threat level) at pickup site, method of marking pickup site, casualty

nationality and status, and chemical, biological, radiological, and nuclear (CBRN)

contamination (Jenkins, 2017). It is the responsibility of either the senior military

member or medical person, if available, at the scene to identify the evacuation prece-

dence category of each casualty and determine whether a 9-line MEDEVAC request

is necessary (Jenkins, 2017). The overall precedence of a 9-line MEDEVAC request

is based on the most time sensitive precedence of the casualties. Table 1 describes

the different precedence levels that the U.S. military utilize in order to categorize

MEDEVAC requests. Due to the low quantity and high demand of aerial MEDEVAC

units, accurate precedence level assignment is essential due to the burden it can place

on the system. Table 2 describes the different threat levels that can be reported

in a 9-line MEDEVAC request. Once a request is submitted, it is then transmitted

to a dispatching authority that is responsible for the execution of all MEDEVAC

operations (i.e., GSAB).

In a combat scenario, requests for MEDEVAC units are typically made at the

POI, once enemy fire has been suppressed (Jenkins, 2017). The requests are then

transmitted through several layers of command before reaching an AEO working

within the GSAB. The exact flow of information depends on the infrastructure within

the command, the communication equipment available, and the command and control
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Table 1. Evacuation Precedence Categories (Department of the Army, 2019)

Priority I - Urgent Assigned to emergency cases that should be evacuated
as soon as possible and within a maximum of one hour
in order to save life, limb or eyesight and to prevent
complications of serious illness and to avoid permanent
disability.

Priority II - Priority Assigned to sick and wounded personnel requiring
prompt medical care. This precedence is used when the
individual should be evacuated within four hours or if
his medical condition could deteriorate to such a degree
that he will become an Urgent precedence, or whose
requirements for special treatment are not available lo-
cally, or who will suffer unnecessary pain or disability.

Priority III - Routine Assigned to sick and wounded personnel requiring evac-
uation, but whose condition is not expected to deterio-
rate significantly. The sick and wounded in this category
should be evacuated within 24 hours.

Table 2. Threat Levels

N No enemy troops in the area

P Possible enemy troops in the area (approach w/ caution)

E Enemy troops in the area (approach w/ caution)

X Enemy troops in the area (armed escort required)

organization of the MEDEVAC system (Rettke et al., 2016). The procedures outlined

in Department of the Army (2019) and the graphical representations developed by

previous researchers (e.g., Keneally et al. (2016); Rettke et al. (2016); Jenkins et al.

(2018)) were used as a basis for the MEDEVAC mission timeline depicted in Figure

1.
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Figure 1. MEDEVAC Mission Timeline

Once a request has been submitted, as indicated by T1, the casualty is taken to a

pre-designated pick-up location established prior to conducting operations (i.e., CCP).

Previous papers that evaluate the military MEDEVAC dispatching problem typically

assume that CCPs are located in areas that are more secure and viable for helicopter

landing, thus reducing the need for extra requirements prior to dispatching (e.g.,

armed-escorts, rescue hoists). This assumption, while reasonable, is not always the

case. Indeed, line six of the 9-line MEDEVAC request message indicates the security

(i.e., threat level) at the designated pick-up site, informing the dispatching authority

of the needed security requirements prior to making a decision. This research relaxes

the assumption that CCPs are always secure.

The time between T1 and T2 represents the AEO’s decision time until they are able

to task a helicopter. This period accounts for the time required to determine which

MEDEVAC unit to dispatch; whether an armed escort is required; which armed escort

team to assign, if required; and the time required to transmit the request information

to the assigned MEDEVAC assets (Jenkins, 2017).

When a MEDEVAC unit is assigned, indicated by T2, it will begin mission prepa-
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ration (e.g., preparing medical equipment and personnel). Once the unit is ready, it

dispatches and begins traveling towards the designated CCP, indicated by T3. If an

armed escort is required, it is typically dispatched with the appropriate MEDEVAC

unit from the staging area. However, there are situations where the MEDEVAC unit

may need to meet an armed escort en route to the CCP. Waiting for an armed escort

may substantially increase travel time; however, an unarmed MEDEVAC unit (e.g.,

HH-60M Black Hawk) cannot enter a high threat level area without an armed escort.

T4 denotes the time at which the MEDEVAC unit arrives at the designated CCP.

Upon arrival, the MEDEVAC unit immediately begins initial treatment and loads

casualties (Jenkins, 2017). Once all casualties are loaded, the MEDEVAC unit evac-

uates the patients to the closest MTF, indicated by T5. It is important to note that

in high conflict areas, the successful extraction of patients is not always guaranteed.

Imposing threats can severely impact the helicopters ability to land and properly

treat their intended patients. In certain circumstances a MEDEVAC unit may need

to abort the mission due to intense hostility in the area and the potential risk of being

shot down.

Upon successfully evacuating the patient, the MEDEVAC unit arrives at the MTF

at time T6. The unit then begins to unload casualties and transfer the responsibility

of subsequent care over to the appropriate medical staff. Once all casualties are

unloaded, the MEDEVAC unit departs the MTF and returns to its original staging

area, indicated by T7 and T8 respectively. Once the MEDEVAC unit arrives back to its

staging area the mission is complete. Upon completion of the mission, the MEDEVAC

unit begins refueling and re-equipping and is ready to be dispatched again at time

T9. Although difficult, it is possible for the GSAB to task the MEDEVAC unit upon

its arrival back to its staging facility at time T7; however, this aspect of redeployment

will not be considered in this thesis.
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When considering dispatching policies, military medical planners must consider

the measurement of the MEDEVAC system performance. McLay & Mayorga (2010)

report that the most common method for evaluating civilian EMS systems focuses on

response times (i.e., how long it takes an ambulance to reach a patient after receiving

a call). Due to the fact that civilian EMS systems are evaluated on response time,

they primarily focus on their ability to rapidly respond to cardiac arrest situations.

These cases are emphasized due to the time-sensitive nature upon which they need

to be serviced. It is also believed that if an EMS system is able to quickly respond

to cardiac arrest patients, then it is more likely to be able to service similar life-

threatening situations; thus, cementing response time as the main evaluation criteria

for civilian EMS systems. However, because of the nature of military operations, the

MEDEVAC system should not be measured using the same criteria.

Several different factors complicate the evacuation of casualties from a battlefield

(e.g., enemy threat as well as longer travel, load, and unload times). Furthermore,

the primary cause of death for battlefield casualties is blood loss, not cardiac arrest

(Shackelford et al., 2017). In an attempt to alleviate this issue, some MEDEVAC units

have been outfitted with in-flight blood transfusion capabilities, but the majority have

not. Although it is intuitive that early transfusion should help to diminish this issue,

published data on pre-hospital transfusions do not demonstrate a survival advantage

(Shackelford et al., 2017). Smith et al. (2016) provide a systematic review that details

limitations in pre-hospital transfusion trauma care research. Nonetheless, due to

the high costs of implementation and assessment as well as the lack of supporting

data, there has not been a change to the MEDEVAC system’s evaluation measure.

Therefore, it is vital for the MEDEVAC unit to not only arrive to the casualty, but

also to stabilize and evacuate the casualty to an appropriate MTF.

Whereas civilian EMS systems measure response time as the time it takes to
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reach a patient after obtaining a call for service, response times for the military

EMS system need to account for the time it takes the MEDEVAC unit to arrive and

evacuate patients to an MTF. Therefore, it is appropriate to define the response time

for a MEDEVAC unit as the time between T2 and T7 in Figure 1. Since a MEDEVAC

unit must return to its home station after being dispatched, service time is defined

as T8 − T2.

The objective of this thesis is to determine a policy that dispatches MEDEVAC

units such that the expected total discounted reward earned by the system is max-

imized. Dispatching decisions are difficult due to the fact that subsequent casualty

events and ensuing requests are not known beforehand. The stochasticity in this

sequential decision-making problem stems from casualty demand and casualty event

locations, as well as dispatch, travel, and services times (Robbins et al., 2018). For

this reason, the decision making authority (i.e., AEO) must have an established dis-

patching policy prior to the commencement of an operation. This research seeks to

provide this policy via an MDP model.

To provide an accurate representation of the system, this thesis leverages infor-

mation related to MEDEVAC dispatch, travel, and service times to parameterize the

model. Moreover, the research conducted in this thesis uses stochastic simulation

methods (i.e., Monte-Carlo) to model 9-line MEDEVAC request submissions. These

features are incorporated into the MDP model, which is subsequently examined via a

notional scenario based on combat operations in southern Afghanistan to demonstrate

the efficacy of the rendered solutions.
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IV. Methodology

This chapter provides the formulation for the Markov decision process (MDP)

model of the military MEDEVAC dispatching problem under evaluation in this thesis.

4.1 MDP Formulation

A discounted, infinite-horizon continuous time MDP (CTMDP) model is formu-

lated to determine the optimal dispatching policy for a deployed MEDEVAC system.

The objective of the model is to develop a dispatching policy for the MEDEVAC

system that maximizes the expected total discounted reward earned by the system.

The model in this thesis assumes that 9-line MEDEVAC requests arrive sequen-

tially over time according to a Poisson process with parameter λ, PP (λ). It is impor-

tant to note that a PP (λ) has independent and stationary increments. These assump-

tions are reasonable due to the nature of the environment in which the MEDEVAC

system operates. During combat operations, there can potentially be a large number

of violent interactions that take place resulting in different casualty events, thereby

generating unrelated requests for service; thus, the number of arrivals that occur in

disjoint time intervals are independent. The assumption of stationary increments

is also valid due to that the implicit sizes, locations, and dispositions of forces are

generally fixed with respect to time.

A MEDEVAC request that enters the system is characterized by the location of

the casualty event (i.e., zone), its precedence level (i.e., urgent, priority, routine),

and the threat level in which the casualty request arrived. The arrival of these

requests are modeled using a splitting technique. Splitting refers to the generation

of two or more counting processes from a single Poisson process (Kulkarni, 2017).

Let the original counting process {N(t′) : t′ ≥ 0} denote the PP (λ) that counts
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the number of 9-line MEDEVAC requests that enter the system within the time

interval (0, t′]. The original counting process can be segmented into different counting

processes that are categorized by the zone z ∈ Z = {1, 2, . . . , |Z|}, the precedence

level k ∈ K = {1, 2, . . . , |K|}, and the threat level l ∈ ζ = {1, 2, . . . , |ζ|}. We let

R = {(z, k, l) : (z, k, l) ∈ Z×K× ζ} denote our set of request categories. There are a

total of |R| = |Z||K||ζ| possible request categories. The original process is now split

into |R| independent processes {Nzkl(t
′) : t′ ≥ 0},∀(z, k, l) ∈ R. Since each request

belongs to one and only one category, we obtain the following result:

N(t′) =
∑

(z,k,l)∈R

Nzkl(t
′). (1)

The nature of the split processes {Nzkl(t
′) : t′ ≥ 0},∀(z, k, l) ∈ R depends on how the

requests are categorized, which is conducted using a Bernoulli splitting mechanism.

The Bernoulli splitting mechanism generates the splitting processes {Nzkl(t
′) : t′ ≥

0},∀(z, k, l) ∈ R given parameters pzkl > 0,∀(z, k, l) ∈ R such that
∑

(z,k,l)∈R
pzkl = 1.

Each request is independently categorized by its zone, precedence and threat level

combination with probability pzkl. Due to the splitting mechanism, each split process

is characterized as a Poisson process with parameter λpzkl, denoted as PP (λpzkl).

The MEDEVAC unit’s service time comprises the time from initial assignment

notification to the unit’s return back to its original staging area. This thesis assumes

that the service times for MEDEVAC units are exponentially distributed. Although

some may argue that this assumption is unrealistic, McLay & Mayorga (2013b) con-

ducted simulation-based EMS system analyses utilizing different types of service time

distributions, determining that this assumption does not significantly impact the gen-

eration of optimal policies. This result suggests that despite the assumption of expo-

nentially distributed service times, the solutions generated from our MDP model will

still provide useful insights.
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Now that the characteristics of the arrival process and service times have been

introduced, we can proceed with the formulation of the MDP model. The MDP

model components (i.e., decision epoch, state space, action space, transition prob-

abilities, rewards, objective and optimality equation) are described in detail below.

The following formulation is leveraged and adapted from Jenkins et al. (2018).

4.1.1 Decision Epochs

In an MDP model, the decision epochs are the points in time in which the decision

maker (e.g., AEO) needs to make a decision. We define the set of decision epochs as

T = {1, 2, . . .}. Events take place when the status of the MEDEVAC system changes.

This occurs either due to the completion of a service request or the arrival of a 9-line

MEDEVAC request.

The MDP model of the MEDEVAC system follows the properties of semi-Markov

decision processes (SMDPs). SMDPs generalize MDPs by allowing, or requiring,

the decision maker to choose actions whenever the status of the system changes;

modeling the system evolution in continuous time; and by allowing the time spent in

a particular state to follow an arbitrary probability distribution (Puterman, 2005).

The MEDEVAC system MDP model is viewed as a CTMDP, a special case of an

SMDP wherein the inter-transition times are exponentially distributed and decisions

are made at each transition. In order to analyze a CTMDP, complex techniques are

typically required. However, through the process of uniformization, we are able to

obtain an equivalent discrete-time discounted model with constant transition rates

(Puterman, 2005). This transformation allows the use and interpretation of discrete-

time algorithms to be applied directly.

The model in this thesis is formulated as a CTMDP and transformed through the

process of uniformization. The policy iteration algorithm is then applied to determine
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an optimal dispatching policy.

4.1.2 State Space

The state St ∈ S describes the status of the MEDEVAC system at epoch t ∈ T .

The MEDEVAC system state is represented by the tuple St =
(
Mt, R̂t

)
wherein Mt

represents the status of each MEDEVAC unit, and R̂t represents the status of the

arrival request at each epoch t.

The tuple Mt can be written as:

Mt = (Mtm)m∈M, (2)

where M = {1, 2, . . . , |M|} is the set of MEDEVAC units in the system. The state

variable Mtm ∈ {0}∪Z contains information in relation to a MEDEVAC unit m ∈M

at each epoch t. Each MEDEVAC unit can either be idle (i.e., Mt = 0) or servicing

a particular zone, Z (i.e., Mt = z).

The request arrival status tuple R̂t indicates whether or not there is a request

waiting to be admitted into the system or denied. This tuple also provides the zone

from which the request has originated, the precedence level of the request, and its

threat level. Let R̂t = (0, 0, 0) indicate that no requests are in the system at epoch t,

otherwise:

R̂t =
(
Ẑt, K̂t, L̂t

)
Ẑt∈Z,K̂t∈K,L̂t∈ζ

. (3)

The random variables, Ẑt, K̂t, and L̂t, correspond to the zone, precedence level, and

threat level of the request arrival at epoch t, respectively. The information contained

in Ẑt, K̂t, and L̂t, only become known when a request occurs at epoch t. Until then,

the information contained in these variables is uncertain.
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The size of the state space S depends on |M|, |Z|, |K|, and |ζ|. The following

expression provides the cardinality of the state space for the MEDEVAC system:

|S| =
(
1 + |Z|

)|M|(
1 + |Z||K||ζ|

)
. (4)

Unfortunately, as more state variables are added, the size of the state space grows

exponentially. When the state space is too large, exact dynamic programming algo-

rithms become intractable. This is commonly referred to as the curse of dimension-

ality. As depicted in Chapter II of this thesis, approximation techniques exist and

have been utilized to work around these issues.

4.1.3 Action Space

When a 9-line MEDEVAC request is transmitted, the dispatching authority needs

to determine whether or not to reject the request (i.e., admission control decision), or

which MEDEVAC unit to dispatch upon the request’s acceptance (i.e., dispatching

decision). In this thesis, there are two possible outcomes: the request is rejected from

the system, or the request is accepted and a MEDEVAC unit is tasked to service it.

Let xAt ∈ {∆, 0, 1} denote the admission control decision at epoch t. When an

arrival request is not present at epoch t the system will continue to transition without

any impact from xAt , indicated by xAt = ∆. We let xAt = 0 denote an arrival request

being admitted into the system and xAt = 1 denote an arrival request being rejected.

If a 9-line MEDEVAC request is admitted into the system, the AEO must deter-

mine which idle MEDEVAC unit to dispatch to service it. Let I(St) = {m : m ∈

M,Mtm = 0} denote the set of all idle MEDEVAC units when the system is in state

St at epoch t. If I(St) = ∅ there are no idle MEDEVACs at epoch t, and the 9-line

MEDEVAC request must be rejected (i.e., xAt = 1). The dispatching decision tuple
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to describe the AEO’s decision can be written as

xDt = (xDtm)m∈I(St). (5)

The decision variable xDtm = 1 if MEDEVAC unit m ∈ I(St) is dispatched to service

the accepted arrival request at epoch t, xDtm = 0 otherwise.

Let xt =
(
xAt , x

D
t

)
denote a compact representation of the decision variables at

epoch t. The following constraint is used to bound the decisions being made at each

epoch t,

1− xAt =
∑

m∈I(St)

xDtm. (6)

This constraint indicates that if an arrival request is accepted into the system at

epoch t, then a MEDEVAC unit must be dispatched to service it. The set of all

possible actions when a decision is required is defined as follows

X (St) =



(∆, {0}|I(St)|) if R̂t = (0, 0, 0), I(St) 6= ∅

(1, {0}|I(St)|) if R̂t 6= (0, 0, 0), I(St) = ∅

({0, 1}, {0, 1}|I(St)|) if R̂t 6= (0, 0, 0), I(St) 6= ∅

. (7)

The first case in Equation (7) represents the set of actions available to the AEO,

when a MEDEVAC unit returns from servicing a request. The last two correspond

to the set of all feasible actions the AEO can take, when a decision epoch occurs due

to 9-line MEDEVAC request submission.
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4.1.4 Transitions

Before introducing the transition probabilities, the notion of post decision states

need to be introduced. Let µmzl denote the service rate of MEDEVAC unit m ∈ M

when servicing a 9-line MEDEVAC request in zone z ∈ Z under threat level l ∈ ζ,

and B(St) = {m : m ∈ M,Mtm 6= 0} denote the set of busy MEDEVAC units when

the system is in state St at epoch t.

If the MEDEVAC system is in a pre-decision state St (i.e, the state of the system

directly before a decision has been made) and action xt is taken, the system will

immediately transition to a post-decision state Sxt (i.e., the state of the system directly

after a decision has been made). The amount of time the system remains in post-

decision state Sxt before transitioning to pre-decision state St+1 follows an exponential

distribution with parameter β(St, xt); this is known as the sojourn time and can be

written as

β(St, xt) = λ+
∑

m∈B(St)

µm,Mtm +
∑

m∈I(St)

µmzlx
D
tm. (8)

The probabilistic nature of the process is summarized in terms of an infinitesimal

|S| × |S| generator matrix with components

G(St+1|St, xt) =


−[1− p(Sxt |St, xt)]β(St, xt), if St+1 = Sxt

p(St+1|St, xt)β(St, xt), if St+1 6= Sxt

, (9)

wherein p(St+1|St, xt) denotes the probability of the system transitioning to state St+1

given that it was in state St and action xt was taken (Jenkins et al., 2018).
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4.1.5 Transition Probabilities

To properly develop the transition probabilities and rewards associated with the

model, uniformization is applied to obtain constant transition rates. This allows us

to apply algorithms for discrete-time models directly. To uniformize the system, we

calculate the maximum rate of transition as given by

ν = λ+
∑
m∈M

τm, (10)

wherein

τm = max
z∈Z,l∈ζ

µmzl, ∀ m ∈M,∀ l ∈ ζ. (11)

Applying the above uniformization principles render, the following transition proba-

bilities:

p̂(St+1|St, xt) =



1− [1−p(Sx
t |St,xt)]β(St,xt)

ν
if St+1 = Sxt

p(St+1|St,xt)β(St,xt)
ν

if St+1 6= Sxt

0 Otherwise

. (12)

4.1.6 Rewards

The contribution function c(St, xt) captures the expected immediate reward (i.e.,

contribution) attained by the dispatching authority for making decision xt when the

system is in state St. Utilizing the framework provided in Jenkins et al. (2018), let

c(St, xt) = Φmzkl denote the immediate reward earned when the AEO dispatches

MEDEVAC unit m ∈ M to service a request originating in zone z ∈ Z with prece-

dence level k ∈ K and threat level l ∈ ζ. The system receives rewards upon a unit
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being tasked. The recommended time requirements for each precedence level are

outlined in Table 1. The continuous-time contribution function can be written as

Φmzkl =



ηe
−Ψmzl

60 , if k = 1 (i.e., urgent)

e
−Ψmzl

240 , if k = 2 (i.e., priority)

0, Otherwise,

(13)

wherein, Ψmzl is the expected response time for a particular MEDEVAC unit m ∈M

servicing a request in zone z ∈ Z with a threat level of l ∈ ζ, and η ≥ 1 is the incentive

parameter used to vary the urgent-to-priority immediate expected reward ratio. Note

that the system receives no reward for servicing routine requests. Due to the high

operational tempo that is simulated in this thesis, we assume that routine requests

will be of lesser concern to commanders who will prioritize servicing life threatening

requests. For this reason the AEO will choose to let routine requests be serviced by

other agencies (i.e., CASEVAC) instead of utilizing a MEDEVAC unit.

After applying uniformization, we obtain the following reward function,

c̃(St, xt) = c(St, xt)
α + β(St, xt)

α + ν
, (14)

wherein α > 0 denotes the continuous-time discounting rate, which indicates that

the present value of one unit received t time units in the future equals e−αt. The

discrete-time discount rate γ is obtained by setting γ = ν
ν+α

.

4.1.7 Optimality Equation

Let Xπ(St) be a decision function based on policy π ∈ Π that prescribes dispatch-

ing decisions for each state St ∈ S. The objective of our MDP model is to determine

the optimal policy, π∗, from the class of policies π ∈ Π that maximizes the expected

29



total discounted reward earned by the MEDEVAC system. Our objective is expressed

as follows

max
π∈

∏ Eπ
[
∞∑
t=1

γt−1c̃.(St, X
π(St))

]
, (15)

The optimal policy, π∗, is found by solving the following optimality equation

V (St) = max
xt∈X (st)

(
c̃(St, xt) + γE

[
V (St+1)|St, xt

])
. (16)

The policy iteration algorithm is implemented in MATLAB 2020A to solve Equation

(16).

4.2 ADP Formulation

The MDP model provides an appropriate mathematical framework for solving the

MEDEVAC dispatching problem, but determining an optimal policy utilizing Equa-

tion 16 becomes computationally intractable when the cardinality of the state space

(i.e., |S|) is too large due to what is commonly referred to as the curse of dimen-

sionality. However, as previously mentioned, large-scale problem instances allow for

the incorporation of more realistic problem features into the model. To overcome the

curse of dimensionality, this thesis leverages an ADP solution strategy to approximate

the value function around the post-decision state variable.

Similar to Rettke et al. (2016), Robbins et al. (2018), and Jenkins et al. (2021b,a),

a post-decision state convention is adopted to help alleviate the problems associated

with the curse of dimensionality. The post-decision state refers to the status of the

MEDEVAC system directly after the system is in pre-decision state St and action

xt is taken. This information enables the modification of the optimality equation to

incorporate the post-decision state convention. Let
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V x(Sxt ) = E
[
V (St+1)|Sxt

]
(17)

denote the value of being in post-decision state Sxt ∈ Sx, where Sx is the post-decision

state space. By substituting Equation 17 into Equation 16 we obtain the following

approximate Bellman equation

V (St) = max
xt∈X (St)

(
c̃(St, xt) + γV x(Sxt )

)
. (18)

Noting that the value of being in post-decision state Sxt−1 is given by

V x(Sxt−1) = E
[
V (St)|Sxt−1

]
, (19)

and substituting Equation 18 into Equation 19 renders the following optimality equa-

tion around the post-decision state

V x(Sxt−1) = E
[

max
xt∈X (St)

c̃(St, xt) + γV x(Sxt )|Sxt−1

]
. (20)

Despite the computational advantages attained from utilizing the post-decision

state convention, due to the size and dimensionality of the state space, solving Equa-

tion 19 remains computationally intractable. As such, an ADP technique is selected

utilizing a value function approximation scheme that involves replacing the true value

function with a statistical approximation. More specifically, we approximate the value

function by leveraging kernel regression within an API algorithmic framework.
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4.2.1 Kernel Regression

Kernel regression is an extension of the k-nearest neighbor approximation tech-

nique that forms an estimate of the state value function estimate by using a weighted

sum of prior observations, which is generally written as

V̄ x(S̃xt |θ) =

∑|Sx|
j=1 Kh(S̃

x
t , S

x
t,j)θj∑|Sx|

j=1 Kh(S̃xt , S
x
t,j)

, (21)

where Kh(S̃
x
t , S

x
t,j) is a kernel function with bandwidth parameter h that determines

the similarity between states S̃xt and Sxt,j where S̃xt corresponds to a specific state of

interest and Sxt,j corresponds to a particular state within the post-decision state space.

The parameter θ is a |Sx| by 1 column vector of weights (Powell, 2011). There are

many possible choices for the kernel function Kh(S̃
x
t , S

x
t,j). The most popular being

the Gaussian kernel (i.e, radial basis function), which is given by

Kh(S̃
x
t , S

x
t,j) = e−

( ||S̃x
t −Sx

t,j ||
h

)2

,

where ||·|| is the Euclidean norm. The Gaussian kernel provides a smooth, continuous

estimate of V̄ x(S̃xt |θ).

The Gaussian kernel is primarily used on continuous data to provide a measure-

ment of similarity. Due to the nominal nature of the post-decision state variable

explored herein, the Aitchison and Aitken (AA) kernel is more appropriate. Aitchi-

son & Aitken (1976) extend the kernel method of density estimation from continuous

to multivariate binary space. More specifically the AA kernel is given by

Kh(S̃
x
t , S

x
t,j) =


1− h (Sxt,j = S̃xt )

(h)
|Z| (Sxt,j 6= S̃xt )

. (22)
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Incorporating the kernel regression approximation into Equation 20 renders the fol-

lowing post-decision state value function approximation

V̄ (Sxt−1|θ) = E
[
c̃(St, X

π(St|θ)) + γV̄ x(Sxt |θ)|Sxt−1

]
, (23)

wherein action xt is determined via the decision function

Xπ(St|θ) = argmax
xt∈X (st)

{
c̃(St, xt) + γV̄ x(Sxt |θ)

}
. (24)

4.2.2 API

After defining the decision function and the value function approximation setup,

the process on how the value function approximation is updated is now presented.

As previously stated, this thesis utilizes an API algorithmic strategy, the general

structure of which is derived from exact policy iteration, wherein a sequence of value

function approximations and policies are generated from two repeated and alternat-

ing phases: policy evaluation and policy improvement (Jenkins et al., 2021b). Within

the policy evaluation phase, the value of a fixed policy is approximated via simula-

tion. Within the policy improvement phase, a new policy is generated by leveraging

the information collected by the previous policy evaluation phase. The API algo-

rithm herein is adapted from Rettke et al. (2016) and Jenkins et al. (2021a,b) and is

displayed in Algorithm 1.

The API-KR algorithm starts by initializing θ, which is a vector corresponding

to the weights associated with being in each post-decision state. The policy evalu-

ation phase is then initiated, for each iteration n = 1, 2, . . . , N , the following steps

commence. A post-decision state, Sxt−1,j, is randomly selected via a Latin hypercube

sampling scheme. We then simulate the system evolving from post-decision state

Sxt−1,j to a pre-decision state St,i.
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Algorithm 1 Approximate Policy Iteration Kernel Regression (API-KR) Algorithm

1: Initialize θ
2: for n = 1 to N do
3: for j = 1 to J do
4: Generate a random post-decision state, Sxt−1,j

5: Determine set of possible pre-decision states S̄ ⊆ S by utilizing the state
transition function SM,W (Sxt−1,Wj)

6: For each pre-decision state St,i ∈ S̄, i = 1, 2, . . . , |S̄|, solve the approximate
optimality equation using Equation (25) and record the estimated value v̂j,i of
being in post-decision state Sxt−1,j given the system evolves to pre-decision state
St,i

7: Determine and record the estimated value v̂j of being in post decision state
Sxt−1,j by computing the probability weighted sum of all v̂j,i values using Equation
(26)

8: end for
9: Update θ utilizing Equations (27)-(29)

10: end for
11: Return the approximate value function V̄ x(·|θ)

The set of possible pre-decision states S̄ ⊆ S is determined by leveraging the

random variable Wj, which indicates the timing and type of the next system event.

In conjunction with the system model SM,W (Sxt−1,Wj) (i.e., the post-decision state to

pre-decision state transition function), this information is used to identify the set of

the next possible pre-decision states. The distribution governing Wj is conditioned

on the post-decision state and is described by the transition probability function

p̂(·). Moreover, it is important to note that the conditional distribution governing

Wj given the system is in pre-decision state St,j and decision xt is taken, is the same

as the conditional distribution governing Wj given the post-decision state Sxt,j. This

equivalence enables us to utilize the post-decision state convention.

For each pre-decision state St,i ⊆ S̄ we solve the approximate optimality equation

v̂j,i = c̃(St,i, X
π(St,i|θ)) + γV̄ x(Sxt,i|θ), (25)

and record its value, the estimated value of transitioning to post decision state Sxt,j
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given that the system was previously in pre-decision state St,i. Using this value, we are

able to calculate the value v̂j of being in post-decision state Sxt−1,j. To obtain a more

accurate value of v̂j, the algorithm computes and records the estimated values of being

in all possible pre-decision states that the system could evolve to from post-decision

state Sxt−1,j. Utilizing this information the value for v̂j is computed as follows:

v̂j =

|S̄|∑
i=1

p̂(St,i|Sxt−1,j)v̂j,i. (26)

When a policy evaluation phase is complete, we then move into a policy improve-

ment phase wherein, for each iteration n = 1, 2, . . . , N , the following steps occur. The

sample estimate of θ is calculated via kernel regression using

θ̂i =

∑J
j=1 Kh(S

x
t,i, S

x
t,j)v̂j∑J

j=1Kh(Sxt,i, S
x
t,j)

for i = 1, 2, . . . , |Sx| (27)

A polynomial stepsize rule is then used to smooth in θ̂ = [θ̂]j∈Sx with the previous

estimate. The stepsize rule is given by

δn =
1

nκ
, (28)

wherein κ ∈ (0, 1]. The polynomial stepsize rule δn is an extension of the harmonic

sequence and greatly impacts the algorithm’s rate of convergence and attendant solu-

tions. The rate at which δn declines as the policy improvement loop iterates depends

on the value of κ. The smaller the value of κ, the slower the rate at which δn declines;

however, the best value of κ depends on the given problem, making it a parameter

that needs to be tuned (Powell, 2011).
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Next, θ is updated using the following equation:

θ ← δnθ̂ + (1− δn)θ, (29)

wherein the θ on the right hand side is the previous estimate based on the previous

policy improvement iterations, and θ̂ is the new estimate from the current iteration.

As the number of iterations n increases, we place less emphasis on the sample esti-

mates (i.e., θ̂) and rely more on the estimate based on the first n− 1 iterations (i.e.,

θ).

Once θ is updated via Equation 29, we have completed one policy improvement

iteration of the API-KR algorithm. If n < N then the algorithm continues by starting

another policy evaluation phase. The parameters, N, J, κ, and h are tunable, where

N is the number of iterations of the policy improvement phase, J is the number of

iterations of the policy evaluation phase, κ is the polynomial stepsize parameter, and

h is the bandwidth parameter. Concluding after N policy improvement phases, the

algorithm provides the recommended policy and approximate value function V̄ x(·|θ).
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V. Testing, Results, & Analysis

This chapter presents a representative MEDEVAC planning scenario set in South-

ern Afghanistan to demonstrate the applicability of the policies generated by the for-

mulated MDP model and ADP algorithm. This thesis utilizes an Intel Xeon Silver

4114 CPU workstation that has 64 GB of RAM and MATLAB’s Parallel Comput-

ing Toolbox to conduct the computational experiments and analyses outlined in this

chapter.

5.1 Representative Scenario

This thesis considers a notional planning scenario in which the U.S. is performing

combat operations in support of the government of Afghanistan. The computational

examples in Robbins et al. (2018) are closely followed and leveraged as a basis for the

representative scenario examined herein. The location of the main coalition bases (i.e.,

larger bases that are able to host both a MEDEVAC helicopter landing zone (HLZ)

and MTF) and forward operating bases (i.e., smaller bases that are only able to host

a MEDEVAC HLZ) are established at likely military tactical sites. Figure 2 shows

the location of the two main coalition bases that contain an MTF and MEDEVAC

HLZ; the two forward operating bases that only have a MEDEVAC HLZ; and the

56 casualty cluster centers that depict the likely locations of violent confrontations

between friendly and enemy forces.
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Figure 2. Representative Scenario

The notional scenario utilized in this thesis assumes a MEDEVAC system with

four MEDEVAC HLZs (e.g., location of MEDEVAC units) and six demand zones

(i.e., zones in which a 9-line MEDEVAC request can originate from) with two MTFs

collocated at the main operating bases. The 6-zone problem instance utilizes the

information in Figure 2 and tessellates the map into six different zones as depicted in

Figure 3. Incorporating this tesselation scheme, along with the four MEDEVAC units

and precedence and threat levels, result in the size of the state space being 60,025,

which is calculated using Equation 4.
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Figure 3. 6-zone Scenario

Each 9-line MEDEVAC request is independently categorized by its zone z, prece-

dence level k (e.g., urgent and priority) and threat level (e.g., high and low). It

is assumed that an urgent or priority casualty event is equally likely to take place.

For simplicity, this thesis only models two threat levels (i.e., high and low). High

threat levels result in scenarios wherein the MEDEVAC unit must be armed or have

an armed escort before it arrives at the CCP. Low threat levels result in scenarios

wherein armed escorts are not required. Tables 3 and 4 display the proportion of ar-

rivals for both low threat and high threat scenarios, respectively, based on the priority

level of the call.

Due to operational security, this thesis avoids using actual data from Afghanistan

operations, but instead leverages a Monte Carlo simulation to obtain realistic response
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Table 3. Threat level 1 (low threat) proportion of arrivals

Priority, k

Zone, z 1 (Urgent) 2 (Priority)

1 0.056 0.056

2 0.038 0.038

3 0.116 0.116

4 0.095 0.095

5 0.028 0.028

6 0.009 0.009

Table 4. Threat level 2 (high threat) proportion of arrival

Priority, k

Zone, z 1 (Urgent) 2 (Priority)

1 0.025 0.025

2 0.017 0.017

3 0.052 0.052

4 0.043 0.042

5 0.013 0.012

6 0.004 0.004

and service time data. The means of the response and service times for each zone are

displayed in Tables 5 and 6, respectively.

Table 5. MEDEVAC Response Times with low Threats

MEDEVAC, m

Zone, z 1 2 3 4

1 62.212 71.726 67.733 86.353

2 83.995 84.797 63.804 72.799

3 52.217 52.513 58.804 77.184

4 79.055 71.555 49.855 51.608

5 104.701 75.499 99.167 123.201

6 94.267 77.125 65.879 71.172

The system receives a reward when a MEDEVAC unit is dispatched to service a

9-line request. These rewards are monotonically decreasing over time and are based
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Table 6. MEDEVAC Service Times with low Threats

MEDEVAC, m

Zone, z 1 2 3 4

1 62.212 89.529 90.484 126.480

2 113.140 114.765 77.784 83.7808

3 52.245 70.328 81.546 117.282

4 118.815 105.954 60.640 51.9744

5 104.720 93.310 121.91 163.309

6 134.394 111.677 76.554 71.1707

upon the response times listed in Table 5 when the enemy threat is considered low.

MEDEVACs 1 and 4 are both Pave Hawk units while MEDEVACs 2 and 3 are Black

Hawk units. This distinction becomes especially important when high threat levels

are considered. As previously mentioned, Pave Hawks are equipped with machine

guns that allow them to enter hostile environments without an armed escort. This

weapons load out, however, weighs them down, forcing them to move slower than

their Black Hawk counterpart (Grannan et al., 2015). This trade-off is seen when

higher threat level calls occur. To account for higher threat levels, it is assumed that

when an armed escort is required the Black Hawk units are delayed by approximately

30 minutes. This number is based off of real world accounts and is taken to be a

realistic estimate. For simplicity this is directly added to the MEDEVAC units that

correspond to Black Hawks (i.e., Units 2 and 3). Higher threat levels do not impact

the Pave Hawk units since they are able to enter areas regardless of threat levels.

5.2 Representative Scenario Results

The notional scenario examined in this thesis assumes a high operational tempo

(OPSTEMPO), where casualties and subsequent 9-line MEDEVAC requests arrive

with a base line request arrival rate of λ = 1
30

to represent a 9-line MEDEVAC arrival

request of 1 every 30 minutes. Due to the high OPSTEMPO of the scenario, it is also
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assumed that high threat level cases are more likely to occur than low threat level

cases, rendering a proportion of 0.6 for high threat level cases and 0.4 for low threat

level cases. Table 7 depicts the list of parameters associated with this scenario along

with their description and settings.

Table 7. Baseline parameter settings

Parameter Description Setting

λ 9-line MEDEVAC request arrival rate 1
30

|M| # of MEDEVAC units 4

|Z| # of zones 6

|K| # of precedence categories 2

|ζ| # of threat level categories 2

γ Uniformized time discount rate 0.99

η Weight for urgent requests 10

For comparison purposes a baseline myopic policy is developed that focuses on

minimizing the response time that the MEDEVAC unit has to reach a 9-line casualty

request. This policy may appear optimal upon first glance; however, without consid-

ering the implications of future requests we show that significant improvements can

be made.

Table 8 compares the expected total discounted reward (ETDR) obtained by

both the optimal and myopic policies when the system is in an idle state (i.e.,

S0 =
(
(0, 0, 0, 0), (0, 0, 0)

)
). In general, the optimal policy prioritizes urgent level

requests (i.e., K̂t = 1) by reserving Pave Hawk assets to only dispatch when the re-

quest is urgent and the threat level is high (i.e., L̂t = 2). In scenarios where all but

one MEDEVAC asset is busy, the optimal policy will choose to reject priority level

calls rather than service them like the myopic policy. There are some exceptions to

this, however this is the general structure.

As shown in Table 8, the optimal policy significantly outperforms the myopic

for the 6-zone problem instance with respect to the ETDR at the idle state (i.e.,
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Table 8. Policy Comparison

Policy,π V π(S0) Optimality Gap

Optimal 40.954 N/A

Myopic 38.915 4.97%

V π(S0)). However, as the state space grows, the MEDEVAC dispatching problem

becomes computationally intractable to solve to optimality. To alleviate this issue,

we leverage the ADP algorithm developed in Chapter IV and compare it to the

optimal and myopic policies to demonstrate its efficacy.

5.2.1 Algorithmic Experimental Design

Before this comparison can commence, as stated in Chapter IV, the ADP algo-

rithm has several parameters that need to be properly tuned to render high-quality

performance. To accomplish this, we conduct a full factorial 44 experiment. Table 9

shows the set of parameters along with the range in which they were examined. The

Table 9. Experimental Design Factor Levels

Algorithm Parameters Description Levels

N Policy Improvements {10, 20, 30, 40}
J Policy Evaluations {481, 962, 1441, 1921}
κ Step-size {0.3, 0.5, 0.7, 0.9}
h Kernel Bandwidth {0.01, 0.03, 0.1, 0.3}

chosen parameter test ranges are based upon previous research and the knowledge of

how the kernel regression algorithm performs. In particular, the parameter J , number

of policy evaluation iterations, was chosen based upon the size of the post-decision

state space, |Sx|. The selected values corresponds to 20-80% of |Sx|. This was chosen

in order to provide enough policy evaluation iterations to render the best policy, while

simultaneously balancing computational run time.

The experiment is ranked based on the best value rendered when the system is
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in the idle state. In total there were 256 different parameter pairings evaluated, the

top 20 are displayed in Table 10. Looking at Table 10 we see that the top 20 results

are all high quality policies that render results that are at least 98% optimal. Based

on the values rendered by this experiment, it appears that the algorithm performs

best with the following settings: κ = 0.3, h = 0.01, J = 1921, and N = 20. It

is important to note that with multiple replications, the rankings have potential to

change. However, due to time constraints only one replication is conducted. Despite

being less than ideal, this result provides a good outline of which parameter settings

allow the algorithm to perform the best. In particular it can be assumed that higher

N values, policy improvement iterations, will yield better results. However, looking

at Figure 4a we see that as N increases the percent improvement over the myopic

policy begins to level out. Figure 4b shows the trade off between having higher N

iterations substantially increases the computational run time.

(a) % Improvement (b) Computation Time

Figure 4. ADP Algorithm Performance

Once the experiment is complete, the best value parameter settings are selected

along with their corresponding value. Table 11 compares the obtained ADP value to

the optimal and myopic policy values. Despite being sub optimal the ADP algorithm

is able to generate a policy that is over 99% optimal and outperforms the myopic by
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Table 10. Experimental Design Results

κ h J N V π(S0) % Optimal

0.3 0.01 1921 20 40.637 99.225

0.3 0.01 1921 30 40.593 99.118

0.5 0.01 1921 20 40.583 99.094

0.5 0.01 1921 30 40.571 99.064

0.5 0.01 1921 40 40.568 99.056

0.3 0.01 1921 40 40.555 99.023

0.7 0.01 1921 40 40.536 98.978

0.7 0.01 1921 30 40.528 98.959

0.3 0.03 1921 20 40.523 98.946

0.7 0.01 1921 20 40.521 98.942

0.3 0.03 1921 30 40.499 98.887

0.5 0.03 1921 20 40.488 98.861

0.5 0.03 1921 30 40.486 98.857

0.9 0.01 1921 40 40.480 98.840

0.3 0.01 1441 30 40.464 98.802

0.3 0.03 1921 40 40.458 98.788

0.9 0.01 1921 30 40.456 98.782

0.3 0.01 1441 20 40.455 98.779

0.5 0.03 1921 40 40.453 98.776

0.5 0.01 1441 30 40.447 98.760

4.47%.

Table 11. Value Comparison

Policy,π V π(S0) Optimality Gap

Optimal 40.954 N/A

ADP 40.637 0.77%

Myopic 38.915 4.97%

5.2.2 Policy Comparison

Four scenarios are examined in detail to provide a better understanding of the

differences between the decisions generated by the optimal, ADP, and myopic policies.
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The chosen scenarios were picked to represent each possible MEDEVAC status (i.e.,

all MEDEVAC units are idle, 3 MEDEVAC units are idle, 2 MEDEVAC units are

idle, or only 1 MEDEVAC unit is idle). Table 12 provides a description of each of

Table 12. Scenario Description

Scenario Description States

A All MEDEVACs are idle St ∈
{

(0, 0, 0, 0), (Ẑt, K̂t, L̂t)
}

B MEDEVAC 1 is serving zone 1 St ∈
{

(1, 0, 0, 0), (Ẑt, K̂t, L̂t)
}

C MEDEVACs 1 and 2 are servicing zone 1 St ∈
{

(1, 1, 0, 0), (Ẑt, K̂t, L̂t)
}

D MEDEVACs 1, 2, and 3 are servicing zone 1 St ∈
{

(1, 1, 1, 0), (Ẑt, K̂t, L̂t)
}

the chosen scenarios. Table 13 displays the optimal decisions for each scenario based

upon the corresponding request status tuple. One asterisk (i.e., *) indicates that the

particular decision differs from the myopic policy, two asterisks (i.e., **) indicate that

the decision differs from the ADP policy, and three asterisks indicates a difference in

all three policies (i.e., ***).

The results from Table 13 show that while the optimal and myopic policies have

significant overlap, there are particular requests for which where the optimal policy

deviates from acting myopically, rendering higher performance. As previously stated,

the optimal policy chooses to prioritize urgent level requests in order to maximize the

reward obtained by the system. For example, if the request is urgent, the optimal

policy will choose to send the MEDEVAC with the lowest response time. If the

request for service is priority, pending on how many MEDEVAC units are available

and which zone the call arrived from, it most likely will choose to send a Black Hawk

or reject the call. Another interesting result occurs when the only idle MEDEVAC is

MEDEVAC 4 and a request comes from Zone 5 (i.e., St ∈ {(1, 1, 1, 0), (5, K̂t, R̂t)}).

Due to the very high response time MEDEVAC 4 has when servicing Zone 5, as shown

in Table 5, the optimal policy chooses to ignore (i.e., reject) these calls regardless of

the precedence level of the request. Despite there being some distinct differences, the
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Table 13. Optimal Decisions

Scenario

Request Status, R̂t A B C D

(1,1,1) 1 3** 3 4

(1,1,2) 1 3*** 3* 4

(1,2,1) 2*** 3** 3 ∆*

(1,2,2) 2*** 3** 3* ∆*

(2,1,1) 3 3 3 4

(2,1,2) 4 4 4 4

(2,2,1) 3 3 3 ∆*

(2,2,2) 3* 3* 3* ∆*

(3,1,1) 1 2 3 4

(3,1,2) 1 2 3*** 4

(3,2,1) 2* 2 3 ∆*

(3,2,2) 2* 2 3 ∆*

(4,1,1) 3** 3* 4 4

(4,1,2) 4 4 4 4

(4,2,1) 3* 3* 4 4

(4,2,2) 4 4 4 4

(5,1,1) 2 2 3 ∆***

(5,1,2) 2 2 3*** ∆***

(5,2,1) 2 2 ∆* ∆*

(5,2,2) 2 2 ∆* ∆*

(6,1,1) 3 3 3 4

(6,1,2) 4 4 4 4

(6,2,1) 3 3 3 ∆*

(6,2,2) 3* 3* 4** ∆*

ADP policy follows a structure that is very similar to that of the optimal policy.

The workload of each MEDEVAC unit is another interesting measurement of

performance that varies among each of the policies. Figure 5 and Table 14 display

the long run busy probabilities for each of the MEDEVAC units under the different

policies. Examination of Figure 5, indicates that the optimal policy prefers to dispatch

MEDEVACs 2 and 3 (i.e., Black Hawks) more than MEDEVACs 1 and 4 (i.e., Pave
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Hawks). As previously stated, the optimal policy prefers to hold onto the Pave Hawk

assets and only dispatch them when the threat level is high and the precedence level

is urgent. If the precedence level is priority the optimal policy will generally choose to

either dispatch a Black Hawk or reject the call. However, the myopic policy chooses

to dispatch regardless of the precedence of level. Due to the high threat combat

environment, the myopic policy will choose to dispatch the Pave Hawks more often

since they can move faster under high threat levels.

Figure 5. MEDEVAC Busy Rates by Policy

Table 14. MEDEVAC Busy Rates

Policies

MEDEVAC Myopic ADP Optimal

1 0.50 0.40 0.38

2 0.43 0.49 0.49

3 0.43 0.44 0.43

4 0.50 0.39 0.35
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Examination of Figure 5 and Table 14 indicates that the busy rates generated

by the ADP policy are similar in structure to that of the optimal policy, which

corresponds to our previous results. Similar to the optimal policy, the ADP policy

reduces the busy rates of MEDEVACs 1 and 4 by choosing to save them for high

threat and urgent precedence calls. As such, the optimal and ADP policies reduce

the amount that each of the MEDEVAC units are used, decreasing the overall burden

to the system.

5.3 Excursions

This section explores how the optimal, ADP, and myopic policies change as key

problem features of the representative scenario are varied. Unless otherwise stated,

the following excursions utilize the same baseline problem features that are listed in

Table 7.

5.3.1 Excursion 1 - Request Arrival Rate

The casualty arrival rate, λ, is an important problem feature that severely impacts

the MEDEVAC system. To examine the impact of this problem feature, this section

explores the values obtained by all three policies when the MEDEVAC is in the idle

state. The same parameter settings displayed in Table 7 are used in this excursion,

with exception of the arrival rate, λ. Table 15 displays the different λ values that are

examined along with the corresponding idle state values for the optimal, myopic, and

ADP policies.

The results demonstrate that when the casualty arrival rate begins to decrease,

the optimal and ADP policies render values that are very similar to the myopic

policy. However, when the casualty arrival rate is high, the optimal and ADP policies

vastly outperform the myopic. Figure 6 provides a visual representation of this effect.
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Table 15. Arrival Rate Impact on V π(S0) for the MEDEVAC System

Policies
1
λ

Optimal ADP Myopic

10 62.38 58.37 43.47

20 51.20 50.20 45.09

30 40.95 40.63 38.91

40 32.84 32.67 32.05

50 26.73 26.61 26.33

60 22.17 22.07 21.92

Overall, it appears that the optimal and ADP policies provide little value over the

myopic policy when the operations tempo is low (i.e., λ = 1
60

). However, when the

operations tempo is high (i.e., λ = 1
10

) a significant improvement can be demonstrated.

Figure 6. Arrival Rate Impact on MEDEVAC System
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5.3.2 Excursion 2 - MEDEVAC Asset Types

The U.S. Army and Air Force currently employ Black Hawk and Pave Hawks,

respectively, to conduct MEDEVAC and personnel recovery missions. However, the

replacements for these aircraft are currently in development and are beginning to

be implemented. The assets currently competing to replace the Army’s Black Hawk

units are the Sikorsky-Boeing 1 (SB-1) Defiant and the Bell V-280 Valor. Jenkins

et al. (2021a) demonstrate that the V-280 Valor renders higher performance than the

SB1-Defiant. Following this, the V-280 Valor will be the main focus of analysis for this

excursion. For the Air Force, the HH-60W’s (i.e., Whiskeys) are designed to replace

their current fleet of Pave Hawks rendering increased flight time and speed. Using

the information collected from Jenkins et al. (2021a) and Grannan et al. (2015), the

speeds for these new assets are approximated and simulated to determine their impact

on the system. We conduct two experiments to determine how the implementation

of these new assets impact the MEDEVAC system.

The first experiment examines how the system performs when all four assets are

replaced. Although ideal, the replacement of all four assets may not be feasible due

to either time or monetary constraints. The second experiment takes this into con-

sideration and only looks at the replacement of one asset for each service branch. For

this experiment, Assets 1 and 2 are replaced for the Air Force and Army respectively.

These assets were selected due to their high utilization rates depicted in Figure 5 and

Table 14. The percent increase over the myopic policy for both experiments, with

regards to ETDR are displayed in Table 16.

With the improved flight speeds, the MEDEVAC assets are able to service requests

and become idle again at a faster rate. This improves the myopic policy’s performance

and decreases the percent improvement gained from the ADP and optimal policies.

With that said, significant improvement can still be gained from implementing either
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Table 16. Percent Increase over Myopic policy with Asset Replacement

Policies

Category Optimal ADP

Full Replacement 4.15% 3.30%

Half Replacement 4.97% 4.13%

No Replacement 5.24% 4.47%

the optimal or ADP policies.

5.3.3 Excursion 3 - Threat Level Proportion

The proportion of high threat level calls (i.e., l = 2) that enter the system can

vastly change how each of the policies perform. If this proportion is increased, then

the Pave Hawk units have a more significant role due to their decreased response

times. However, if this proportion is decreased, the Black Hawks will most likely

be burdened with the majority of the work load. To explore this, the parameters

settings displayed in Table 7 are held constant with the exception of the proportion

threat level (i.e., pzk1 and pzk2). Keeping everything else constant, as the proportion

of high threat level calls increased, the more the optimal and ADP policies began to

outperform the myopic. Table 17 and Figure 7 depict the upward trend corresponding

to an increase in high threat level calls.

Table 17. Percent Increase over Myopic policy with respect to High Threat Proportion

Policies

pzk2 Optimal ADP

0.3 3.88% 2.91%

0.4 4.28% 3.36%

0.5 4.63% 3.88%

0.6 5.24% 4.42%

0.7 6.01% 4.78%

0.8 6.90% 5.82%

0.9 7.88% 6.54%
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Figure 7. High Threat Proportion Impact on MEDEVAC System Performance

The proportion of high threat arrivals significantly impacts the MEDEVAC sys-

tem. As the proportion of high threat level requests increases, the adoption of the

optimal or ADP policies can render significant improvement over the myopic policy.

5.4 12-zone Scenario Results

This scenario expands the original 6-zone case by expanding the original zone

tessellation scheme to incorporate 6 additional zones. The MTFs and MEDEVAC

stations are located in the same positions as in the original problem instance. Figure

8 provides a visual representation of the new 12-zone tessellation scheme.
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Figure 8. 12-zone Scenario

Similar to the 6-zone case, a Monte Carlo simulation is utilized to determine

the service rates, response times, and casualty arrival probabilities by zone. Utilizing

Equation 4, the cardinality of the state space |S| is determined to be 1,399,489. While

significantly larger than the original 6-zone case, this problem instance is still small

enough to be solved to optimality, but large enough to provide convincing results. The

list of parameters associated with this new problem instance is displayed in Table 18.

Due to time constraints, the best performing ADP parameter settings used for

the 6-zone case are used again for this problem instance. Moreover, if granted more

time, a proper experiment could be conducted to properly tune this algorithm for

the new problem instance. However, these parameter settings provide a baseline for

the algorithm’s performance. Table 19 compares the values obtained by the optimal,

54



Table 18. 12-zone parameter settings

Parameter Description Setting

λ 9-line MEDEVAC request arrival rate 1
30

|M| # of MEDEVAC units 4

|Z| # of zones 12

|K| # of precedence categories 2

|ζ| # of threat level categories 2

γ Uniformized time discount rate 0.99

η Weight for urgent requests 10

ADP, and myopic policies for this problem instance when the system is in the idle

state. The optimal policy is able to obtain a 5.38% improvement over the myopic

Table 19. 12-zone Results

Policy,π V π(S0) Optimality Gap

Optimal 38.687 N/A

ADP 38.323 0.059%

Myopic 36.709 5.113%

policy and the ADP policy is able to obtain a 4.39% improvement. These results

indicate that the optimal and ADP algorithms scale well to the increased problem

size.

Similar to the 6-zone case, we compare the decisions generated by all three policies

to gain insight into how they each differ from one another. The scenarios outlined

in Table 12 are used for comparison for this problem instance. Table 20 displays

the optimal decisions for each scenario based upon the corresponding request status

tuple. The asterisk notation defined prior is utilized again to differentiate between

the different policies. Despite being a larger problem instance the optimal policy

generated in the 12-zone case follows a similar pattern as the one in the 6-zone case.

The optimal policy chooses to reserve Pave Hawk units to save them for high-threat

level and urgent requests. If a priority request arrives from the same zone in which a
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Pave Hawk asset is located, the system will choose to dispatch the Pave Hawk unit

due to how fast it can service the request and return to being idle. There are some

exceptions to this rule, but this is the general structure of the policy.
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Table 20. 12-zone Optimal Decisions

Scenario

Request Status, R̂t A B C D

(1,1,1) 1 2 3 4

(1,1,2) 1 2 3*** 4

(1,2,1) 1 2** 3 ∆*

(1,2,2) 1 2** 3 ∆*

(2,1,1) 1** 3 3 4

(2,1,2) 1 3*** 3* 4

(2,2,1) 2*** 3** 3 ∆*

(2,2,2) 2*** 3*** 3* ∆*

(3,1,1) 3 3 3 4

(3,1,2) 4 4 4 4

(3,2,1) 3 3 3 ∆*

(3,2,2) 3* 3* 3* ∆*

(4,1,1) 3 3** 3 4

(4,1,2) 4 4 4 4

(4,2,1) 3* 3*** 3*** ∆***

(4,2,2) 3*** 3*** 4 ∆***

(5,1,1) 1 2 3 4

(5,1,2) 1 2 3* 4

(5,2,1) 2*** 2 3 ∆*

(5,2,2) 1 2 3 ∆*

(6,1,1) 1 2 3 4

(6,1,2) 1 2* 3*** 4

(6,2,1) 2*** 2 3 ∆*

(6,2,2) 2*** 2 3 ∆*

(7,1,1) 3 3 3 4

(7,1,2) 4 4 4 4

(7,2,1) 3* 3*** 4** 4

(7,2,2) 3*** 4 4** 4

(8,1,1) 4 4 4 4

(8,1,2) 4 4 4 4

(8,2,1) 4 4** 4 4

(8,2,2) 4 4** 4 4

(9,1,1) 2 2 3 ∆*

(9,1,2) 2 2 ∆*** ∆*

(9,2,1) 2 2 ∆*** ∆*

(9,2,2) 2 2 ∆* ∆*

(10,1,1) 2 2 3 ∆***

(10,1,2) 2* 2 3* ∆***

(10,2,1) 2 2 3 ∆*

(10,2,2) 2 2 ∆*** ∆*

(11,1,1) 3 3 3 4

(11,1,2) 4 4 4 4

(11,2,1) 3 3 3 ∆*

(11,2,2) 3*** 3* 3*** ∆*

(12,1,1) 4 4 4 4

(12,1,2) 4 4 4 4

(12,2,1) 3* 3* 4 ∆***

(12,2,2) 4** 4** 4 ∆***
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We next examine the workload for each MEDEVAC unit under the different poli-

cies to determine how the workload for the MEDEVAC units scale with a larger

problem instance. Figure 9 and Table 21 display the long run busy probabilities for

each of the MEDEVAC units under the three different policies. The utilization rates

for each of the MEDEVAC units in the 12-zone case are similar to those displayed in

Figure 5 and Table 14 for the 6-zone case.

Figure 9. MEDEVAC Busy Rates by Policy

Table 21. MEDEVAC Busy Rates

Policies

MEDEVAC Myopic ADP Optimal

1 0.50 0.40 0.37

2 0.44 0.46 0.48

3 0.42 0.45 0.43

4 0.50 0.39 0.35
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For both scenarios, the optimal and ADP policies are able to reduce the overall

workload of the MEDEVAC system. Overall the structure of the policies generated

by the 12-zone case appears very consistent with the policies generated by the 6-zone

case.

5.5 34-zone Scenario Results

To demonstrate the scalability of our solution approach, this section develops and

examines the 34-zone problem instance by altering the zone tessellation scheme to

expand the original problem instance from 6 zones to 34. Figure 10 provides a visual

representation of the 34-zone tessalation scheme. The location of the MTFs and

MEDEVAC stations are the same.

Figure 10. 34-zone Scenario
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Similar to the 6-zone and 12-zone cases, a Monte Carlo simulation is used to

determine the service rates, response times, and zone probabilities associated with

a 9-line request. Table 22 displays a list of parameter settings used to develop the

34-zone case.

Table 22. 34-zone parameter settings

Parameter Description Setting

λ 9-line MEDEVAC request arrival rate 1
30

|M| # of MEDEVAC units 4

|Z| # of zones 34

|K| # of precedence categories 2

|ζ| # of threat level categories 2

γ Uniformized time discount rate 0.99

η Weight for urgent requests 10

Applying Equation 4 reveals that the cardinality of the state space, |S|, for this

problem instance is 205,585,625. Whereas this problem expands the baseline problem

instance into a more realistic scenario, it is now too large to be solved to optimality.

To overcome this issue, we utilize the ADP algorithm displayed in Algorithm 1 along

with the best parameter settings depicted in Table 9 to generate a policy. Under

normal circumstances, this solution approach would be enough to generate results that

outperform the myopic policy. However, due to the size of the problem, modifications

are made to the algorithm to render results within a reasonable computation time.

5.5.1 Algorithm Modification

Due to the large problem size, the original parameter settings used are modified

to render results in a computationally reasonable time. This new problem instance

is too large to be solved using the original formulation displayed in Algorithm 1. In

particular, the cardinality of the new post-decision state space, |Sx|, is 1,500,625. Due

to this large size, it is computationally expensive for the kernel regression algorithm
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to approximate θ using the entire range of post-decision states. To alleviate this

issue, a dictionary that contains a specific range of reference points, D, is used to

approximate the desired theta values. We also utilize a trajectory sampling scheme

that focuses on the idle state. For this reason, the dictionary primarily contains

a set of reference points corresponding to the states that the system is most likely

to transition to from the idle state, substantially reducing the size of the vector

θ. Moreover, we also utilize a substantially smaller amount of policy evaluation

iterations, J . It is important to note that better results may be garnered with proper

tuning and experimentation. However, due to time constraints, our efforts are focused

on developing new results that outperform the myopic policy to demonstrate the

efficacy of our solution approach. The modified algorithm and new parameter settings

are displayed in Algorithm 2 and Table 23 respectively.

Algorithm 2 Trajectory Following KR-API Algorithm

1: Generate set of dictionary points D
2: Initialize θ
3: for n = 1 to N do
4: Set Sxt−1,j = S0

5: for j = 1 to J do
6: Determine set of possible pre-decision states S̄ ⊆ S by utilizing the state

transition function SM,W (Sxt−1,Wj)
7: For each pre-decision state St,i ∈ S̄, i = 1, 2, . . . , |S̄|, solve the approximate

optimality equation using Equation (25) and record the estimated value v̂j,i of
being in post-decision state Sxt−1,j given the system evolves to pre-decision state
St,i

8: Determine and record the estimated value v̂j of being in post decision state
Sxt−1,j by computing the probability weighted sum of all v̂j,i values using Equation
(26)

9: Simulate the transition to next pre-decision state St,j
10: Randomly select a feasible action and transition St,j to Sxt,j
11: Set Sxt−1,j = Sxt,j
12: end for
13: Update θ utilizing Equation 29
14: end for
15: Return the approximate value function V̄ (·|θ)
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Table 23. 34-zone Algorithm Settings

Algorithm Parameters Description Levels

N Policy Improvements 5

J Policy Evaluations 5000

|D| Dictionary size 7501

κ Step-size 0.3

h Kernel Bandwidth 0.01

5.5.2 34-zone Problem Results

A simulation is developed to evaluate and compare the ETDR generated by both

the myopic and ADP policies when in the idle state. We simulate a trajectory of

1, 500 events to produce a reasonable approximation. Moreover, because we are dis-

counting, the γ term in our objective function becomes so small that longer simulation

trajectories do not impact the measure of performance. The simulation is conducted

1, 000 times to reduce variation.

The value rendered by each simulation corresponds to the value of the system

when in the idle state (i.e., V̄ π(S0|θ)). The average value across each of the 1, 000

runs for both the myopic and ADP policies are generated and displayed in Table 24.

Table 24. 34-zone Results

Policy V̄ π(S0|θ) % Improvement

Myopic 29.856

ADP 30.198 1.144 ±0.792

As shown in Table 24 the ADP algorithm is able to generate a 1.144% improve-

ment across the 1,000 runs. A confidence interval for the comparison of two means

is conducted and renders the bounds of (0.0108, 0.6725), indicating that there is a

statistical difference between the average values generated by both policies. While

there is statistical significance, after considering all of the modifications and train-

ing needed to be done, a 1% improvement may not be of practical significance to a
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decision maker. With that said, this improvement demonstrates that our modified

algorithm can still render results that outperform the myopic policy. Given more

time, a proper experiment can be conducted to properly tune the parameter settings

of the algorithm to render improved performance.
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VI. Conclusions & Recommendations

This thesis examines the MEDEVAC dispatching problem. The objective of this

research is to develop policies that improve the performance of the MEDEVAC sys-

tem, ultimately increasing the survivability of battlefield casualties. The research

conducted herein extends the work performed by prior researchers by incorporating

two different problem features that have yet to be explored.

6.1 Conclusions

The research in this thesis adds to the MEDEVAC dispatching literature by de-

veloping an MDP model that explicitly incorporates the threat level at the CCP and

different MEDEVAC asset types, problem aspects that have yet to be considered, as

well as previously examined problem features (e.g., admission control).

As demonstrated by previous research, solving large scale problem instances are

important to demonstrate the efficacy of the developed solution techniques. To ac-

complish this an API algorithm that utilizes a kernel regression approximation scheme

to approximate the post-decision state value function is developed and utilized herein.

To demonstrate the applicability of our MDP model and ADP algorithm, a notional

scenario is constructed based upon combat operations in southern Afghanistan. Three

different problem instance sizes of this scenario were examined, the 6-, 12- and 34-zone

cases. Our modeling and solution approach identified high-quality MEDEVAC dis-

patching policies in a computationally efficient manner that scaled well with increased

problem size.

The results demonstrate that the optimal and ADP policies are able to obtain

a 5.24% and 4.42% improvement over the myopic policy respectively in regards to

the ETDR of the idle state in the 6-zone problem instance. For the 12-zone problem
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instance, a 5.388% and 4.211% improvement with respect to the ETDR of the idle

state are obtained for the optimal and ADP policies respectively. The evaluation of

these problem instances demonstrate the scalability of our solution approach, which

in turn encouraged the development and evaluation of the 34-zone case, a problem

instance that that is too large to be solved to optimality. To accomplish this task,

algorithmic modifications are conducted to solve the problem in a computationally

tractable amount of time. With these modifications, we were able to obtain a 1.144%

improvement over the myopic policy. Whereas this may not be of practical signifi-

cance, it encourages the development of a experimental design to properly tune the

algorithmic parameters and render better results.

A series of sensitivity analyses and computational excursions were also conducted

to identify how the generated policies change with respect to different problem param-

eter settings. The results from these experiments indicate that, in a high OPSTEMPO

environment where the rate of casualties and proportion of high threat level calls are

high, the ADP and optimal policies are able to vastly outperform the myopic policy.

With improved MEDEVAC assets that have faster flight speeds, the gap between

the optimal and myopic policy decreases; however, significant improvements can still

be made. The research presented herein is of particular interest to the military and

civilian medical planners and dispatch authorities and should in turn influence the

development of future tactics, techniques, and procedures.

6.2 Recommendations for Future Research

An immediate extension to this work includes the proper evaluation of the 34-zone

problem instance and proper algorithmic parameter tuning for the modified algorithm.

Further extensions include relaxing the zone tessellation scheme and allowing for

casualties to occur at any location within a region of interest. This aspect incorporates
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another layer of realism into the problem, which in turn can render insightful results.

Due to the size of the problem, a queue was not examined; however, moving forward

this would be another interesting incorporation that should improve the analysis of the

MEDEVAC dispatching problem. Also, the examination of different ADP strategies

and parameter tuning approaches may render results that outperform the strategies

presented in this research. Lastly, as it stands the MEDEVAC dispatching problem

has primarily been modeled using an off-line model based approach. However, these

approaches are only as good as the model in which they are based off of. Future

research should consider the development of a model-free on-line algorithm, which is

able to adapt as different problem features change.
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