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ERROR ANALYSIS OF HEAT TRANSFER MEASUREMENTS MADE
ABOUT A CYLINDER IN CROSSFLOW

1. INTRODUCTION

It is desired to estimate the uncertainty in the non-dimensional heat transfer coefficient, the
Nusselt number, Nu, given by

Nu =—, (1-1)
where h is the convective heat transfer coefficient, D is the characteristic dimension taken as the

outside diameter of the cylinder, and k is the thermal conductivity of the free stream fluid (air in
this case). The uncertainty in Nu is

6w)? = (Svu) 7+ (SNu) )2 + (LNu) ()7, (1

The partial derivatives are

(o’ o= 2 " (3
(om0 = (3 607 = (3"
(% Nu)2 (6p)% = (_ ’;_12))2 (6,)% = Nu? (%)2 . (1-5)
Therefore,

S\ 2 S\ 2 5p\ 2 Y
() = (3 + ()" ()
Nu h D k
The convective heat transfer coefficient is found from the measured heat flux and
temperature difference between the heated surface and the free stream by

_ Qconv

= ATy (1-7)

where Qo is the heat transfer rate from the surface, A is the area over which the heat transfer is
being considered, T is the surface temperature, and T, is the free stream temperature. The
surface area is given by



A =wlyni (1-8)

where w is the width of the ribbon and [,,,,;; is a unit length of ribbon.

Qconv
h=——"—"—, 1-9
Wlynit (T—Tp) ( )

The uncertainty in h is given by

’ 2 d \*
(6n)* =< h) (66,,.,) + <%h> (6,,)? (1-10)

dQconv

) )"+ () 00+ G )"

dlynit

The partial derivatives are

2

(=) G’ = (o) (o)’ =12 (22) . o1
(n) @7 = (- gls) 607 = n2 (%), (1-12)
(G h)z (Buni)” = (- m)z (i)’ = h? (%)2 , (1-13)
(£h) 602 = (- ﬁ)z COE e G (1-14)
(h) (50" = (s (62,)° =02 (22 w1s)
Therefore

(B = (65—)2 +(2) + (%)2 +(2) (T‘S_T;O)2 . (1-16)

The values for measured temperatures T and T, are between 70°F and 130°F with an
uncertainty of 0.5°F. The values Q.ony, 4, and their uncertainty are discussed in the following
sections.



2. HEAT TRANSFER RATE FROM THE RIBBON

This section examines the value and uncertainty in the heat transfer rate from the ribbon.
The heat transfer surface is made of a ribbon of NiChrome 1-inch wide, 0.002-inches thick, and
wrapped around the outside of the cylinder 22 times, forming a helix. The heat is supplied by the
Joule heating of the ribbon. The heat generated can be conducted into the cylinder along the
ribbon, convected into the free stream, and radiated into theenvironment. The following is an
attempt to quantify each of these values and to place an uncertainty on the estimated values.

The heat generated per unit area for the normal surface area of the ribbon, §,,p0n, 1S
given by

1 _ i’R 91

Qribbon = W ) (2-1)
where i the electrical current flowing through the ribbon, R is the end-to-end electrical resistance
of the ribbon, w is the width of the ribbon, and L., 15 the end-to-end length of the ribbon.
The heat generated by a segment of the ribbon of [,,,,;; length in the direction of the helical
wrapping is given by

Qribbon = Q;‘IibbonWlunit > (2-2)

Figure 2-1 shows an energy balance for a segment of ribbon of length, [,,,,;;. The heat
generated by the electrical current flowing through the ribbon, Q,ppon. plus the heat being
conducted into the segment due to the temperature gradient in the ribbon is balanced by the heat
being convected into the air plus the heat being radiated into the environment plus the heat being
conducted into the cylinder substrate plus the heat being conducted out of the segment due to the
temperature gradient in the ribbon, as follows,

Qribbon + Qin = Qconv + Qout + Qrad + Qcond > (2'3)

where Q,ippon is the heat being generated in the segment due to the electrical current (see
equation (2-2)), Q;, is the heat being conducted into the segment due to the temperature gradient
in the ribbon, Qopy is the heat being convected into the air, Q,, is the heat being conducted out
of the segment due to the temperature gradient in the ribbon, Q,,4 is the heat being radiated into
the environment, and Q,,,4 is the heat being conducted into the cylinder substrate.
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Figure 2-1. Heat Balance on a Unit Length of Ribbon

cond

Equation (2-3) can be rewritten as

Qconv = Qribbon + (Qin - Qout) - Qrad - Qcond . (2-4)
Therefore, the uncertainty in the convective heat flux is

2

2
2 d .
O =— Oy .
( Qconv) <eribbon QCO””) ( erbbon)

d ) 2
. . S0 ¢
’ <d(Qin - Qout) QCOnU) ( (Qm_Qout)) (2-5)

d .\ 2
+ m Qconv (SQ'md)
. 2 2
+ (m Qconv) (6Qcond) :

and, after evaluating the derivatives,

2 2 2 2 2
(SQconv) =(6Qribbon) +(6(Qin_Qout)) +(6Qrad) +(6Qcond) . (2-6)



3. JOULE HEATING OF THE RIBBON

When the electrical current flows through the ribbon, the ribbon generates heat due to
Joule heating. The amount of heat produced, Q,ippon, is given by equation (2-2). Substituting
equation (2-1) into equation (2-2) yields

Q' e Wl _ izR Wl _ ileunit (3 1)
ribbon = Yribbon unit — WLyibbon unit — Lribbon >
The uncertainty in the amount of heat produced is given by
2 2
2 d . d .
(SQribbon) = (_ Qribbon) (51')2 + <_ Qribbon) (5R)2
di dR 32
. 2 . 2 (3-2)
. 2 . 2
+ (m Qribbon) (dlunit) + (m Qribbon) (5Lribbon) ’
d 2iRlynit 2Q'ribbon
=0.. = = 3-3
di erbbon Lribbon i > ( )
d . izlunit Qribbon
—0..; = = 34
dR erbbon Lribbon R > ( )
d 0 i’R Qribbon
— 0. = = 3-5
dlunit erbbon Lyibbon lunit ’ ( )
d 0 ileunit Qribbon
— (/) = = . 3-6
dLyipbon anbon L?‘ibbon Lyibbon ( )
Substituting equations (3-4) through (3-6) into equation (3-2) yields
. 2 2 2
(S'Qr'ibbon) — (2)2 (ﬁ)z N (%)2 4 ((Slun'it) n (SLr'ibbon) ‘ (3-7)
Qribbon l R Lunit Lyibbon

3.1 HEAT CONDUCTION ALONG THE LENGTH OF THE RIBBON

The heat transfer rate along an infinitesimal length of the ribbon due to the temperature
gradient in the ribbon is given by

. daT
Q= kNiCerE ) (3-8)

where Kpicr is the thermal conductivity of the NiChrome ribbon, b is the ribbon thickness, w is



ar
the width of the ribbon and, Is is the temperature gradient in the ribbon. And for a finite

segment,

AQ = Qout — Qin - (3-9)

Writing a Taylor series for the heat transfer rate out of the segment in terms of the heat transfer
rate into the segment yields,

. 2
Qout Qm + AS— + A%Z_g > (3-10)

where As = [,,,;+ 1s the length of the segment.

The rate of change of the heat transfer is found by differentiation of equation (3-8),

dQ d?T

= kyicrbw (3-11)

Substituting equation (3-11) into equation (3-10) and neglecting the second order term
yields

. . dzt

Qout = Qin + kNiCerFAS ) (3-12)
or rearranged and letting AQ = Q;;, — Qo yields

AQ = Qin - Qout kNlCTbW AS (3-13)

The uncertainty in this heat flux is

N d 2 2
(OAQ) - ((U\?\%C' AQ) (Oknicn)

+ ((—ZA(2>2(05)2+ (iaq)z(a )2
db du "
PN , (3-14)
=+ 5 AQ) dg2p
(d% 3) (42)
4 ( d A(?)Q(K;Aq)2
dAs 7



Carrying out the differentiation

2 2 8q21 ’ 2
8w ds? SA
S () + @)

2

2
(SAQ) _ (8kNiCr) + (5_b
AQ knicr b

(3-15)

ds?

The second derivative of the temperature distribution along the ribbon was found by
using a Taylor’s series expansion about the point in question.

e T 4 A dl’ As® >T

- “ ds | 2! ds?| G-10)

i i ’
dT’ As”d“T

Tiy =T, — As— =+ 3-17

I " ds 21 ds? | G-17)

1
adding these equations and neglecting all terms higher than second order yields
A>T Tici+ 101 —27T; (3-18)
ds? | As?
i

The distance AS can be rewritten in terms of arc angle as
A-S‘ — I.AH — [u}lst . (3-19)

where 7 is the outside radius of the cylinder, and A0 is the angular displacement. For the

cylinder, the thermocouples were placed 10° £ 0.1° apart, which gave a position uncertainty of

05 = 0.01 inch.



The uncertainty in equation (3-18) is given as

) : Y 2 N 2 L
od2 - Ast [(()T’l) + (()TiJrl) +4((>T1)2:|

s

~

(3-20)

i‘:‘

9

(0as)”

T+ Ty — 2T\
+ 1 +:13
2As

3.2 HEATLOSS THROUGH THE CYLINDER

If the system were in steady state, the heat transfer rate into the cylinder is given by
Qcona = UA(T — Tipe) , (3-21)

where UA is the overall heat transfer coefficient, and T and Tj,,; are the temperatures of the ribbon
and the interior of the cylinder. The overall heat transfer coefficient is given by

UA = - (3-22)

b
Rinternal convectiont vac + Reontact

where Ripternal convection 15 the thermal resistance due to convective heat transfer to the interior
of the cylinder, Ry, is the thermal resistance of the PVC cylinder, and R;yntqc¢ 18 the thermal
resistance between the ribbon and the outside of the cylinder, and was neglected,

1
R on = T : ]
Internal Convection :_:)Wlunit Mg (3-23)
In(ro/7i)
Rye = 22—l 3-24
pve kpvec Wlunit ( )
Substituting equations (3-22), (3-23), and (3-24) into equation (3-21) yields
0O o (T" — Tine)
cond — o Toln (To/77) (3-25)
7 Wlynit Nint ;‘«‘-pvc W lunit .



This can be simplified to

h-z'-n,t kpvc zu-n;it r;w (T - Tz'-n,t)

L eond = 3-26
Qcond " ( kmm + h‘int r In (To /'rz')) . ( )
The uncertainty in this heat flux is
2
- 2 d . 2
(OQCond) - FQCOHQ{) (OT)
d 2
—( o, )
+ d.T;-jnt gcond) ( Tmt)
e (L) 6.7
d?"o cond To
(3-27)

d

(H unit

2
. - 2
Qcond) (Ofum'r.)
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Carrying out the differentiations

d Q o hmt kpvc Zufm'.t r;w o Qcond
T s eond — -
dT ‘ I'o (kpzvc + h-i?tt i hl (ro/ri)) T - :_me

d Q o hint kpz.'c lunit ryw o Qcond
g leond = — = =g
dﬂnt o To (kp'vc + hinf (] hl (ro/ri)) T - Tmt
LQ 4 = hint kprc lun’it i w (T - Tint) [k’pvc + h'int i (1 + In ("O/ri))]
dro o 7’3 [kpvc + h'i‘nt i In ("0/"’1’)]2

_ Qcond hz‘nt T
B T'o b kpvc + h'int Ti In (’vo/ri)
d Q o hint k-p-vc lumt w (T - Tz?-n.t) ['Ii'pvc + hint ri.]
T Weond — B
dr; To [Kppe 4+ Pine 7 10 (1o /7))
Qccmd k;pt‘(! =+ hi-m‘ Ti
i Kpve + Rine i In (1o /1)
d Q h-in.t kp*vc lum’.t r; (T - Ent) Qcond
-5 Yeond — —
dw Vo [kpoe + Nipg i In (r,/7;)] w

d Q o hmt kp‘uc W (T - E?l-t) . Qcond
7 <weond — —
dlu.m’t ‘ Ty [kptrc + hmt T In (ro/ri)] lum'.t

2 oy [ ‘

d Q k puc Zu-n.-.it T W (T — Tmt)
7 Yeond — 5
ANy To [kpve + Pint 73 10 (176 /7)]

- Qcon.d kp"vc
Nint Kpoe + Pine 1 10 (15 /77)

d 0 bl i w I (ro /1) (T — Thpy)
7. wcond T B
dkipye To [Fpoe + Pine 73 10 (10/75)]

1

1

Q cond
( kpvc

kpvc + hint i In (ro/ ri)

)

5

(3-28)

(3-29)

(3-30)

(3-31)

(3-32)

(3-33)

(3-34)

(3-35)



Substituting these partial derivatives into equation (3-27) yields the uncertainty in this
heat flux as

. 2 . 2
) . _ Qcond c \2 Qcond o 2
(Qcond) B (T - Tint ) (OT) N (T — Tz’nt ) (OTim )

2
Qcond hin.t Ur ¢ 2
1 + ] nr. /r (O"G)
plC =+ Yipe T 111 ]o/Tz'

2
Qcond 'llpu + hmt U N
(O?‘i)

i ch + hing 73 In g /fz

( 2
+ (Qcond) ( cond) (dlun.;t )2

(3-36)

Con(l pue (~ 2
Oh )
int
Pint (fxpw+hmfr lnr, /ri))

2
Cond - 2
1— O
pLC ( 1 + flrmt T hl r /H) ) ( J‘pl’c)

or

g . 2 . )
(OQ—DM) ( ) (&)
Qcond. T — mt T — .Tint
h”n T 2 6170 2
+ 1+
PLC_J'_htan@ Inr, /I’z ry
2 ,o0\2
1 Plt + Nint 7 O,
pr + f?mf T Inr, /Iz r;
g ; (3-37)
+ w unit
( ) ( umt )
2 /5 2
+ pLC thnt
ll\pLC —+ h'“If r; lIlf /I,L hint
2 S 2
1 + htnt ] hlf /71 6kpvc

5

11 (12 blank)






4. INTERNAL NATURAL CONVECTION

The heat transfer on the internal surface of the cylinder was assumed to be by natural
convection. The natural convection heat coefficient, h;,;, is given by

h . — N'U.intk
int 27}

; (4-1)

where Nu;,,; is the Nusselt number for the flow within the cylinder, k is the thermal conductivity

of the air within the cylinder, and 17 is the inside radius of the cylinder. The natural convection
Nusselt number for an external heated cylinder?

Nu;,; = 0.15Ra%?? (4-2)

where Ra is the Rayleigh number given by

Ra = 9B (Tsurface - Tint)(zri)3 (4-3)

2

va

where g is the acceleration due to gravity, § is the volumetric expansion coefficient of air and is

equal to the reciprocal of the absolute temperature, and UV and & are the kinematic viscosity and
the thermal diffusivity of air, respectively. Ty, fqce 1S the surface temperature of the inside of the

cylinder and was assumed to be uniform. Tj,; is the temperature of the air within the cylinder
and was also assumed to be uniform.

The uncertainty in the internal convective heat transfer coefficient is

- 9 d 2 - 2
(()hmt) — Whint (()Numt_)

Uint

2 2 (4-4)
e (L) 60 (Lh) 6,02
—7 in c - T
dk ’ dr; ! !
Carrying out the differentiations,
d _ L _ Rint
dNuint Pine = 2ri  Nuint’ (+3)
d _ Nuintk _ M
o ine = 7= =5 (4-6)

13



d

dr; int —

2
(i) =
hint

N 2
(Ox"\“vumt ) -

(Opa)”

Nuint _ hint

+

2r2  2ry
2
)+ () + (3
Nuint k i
The uncertainty in the Nusselt number is given by
4
dRa

and the uncertainty in the Rayleigh number is given by

]
l

2

2
AV'uint) (6R(L)2 - (0033 RG*UFS)Q (6Ra)2

d
([Tsu-r face

(

(i 5

(di;im R“) _. (67,,)°
( .

(

Carrying out the differentiations,

14

d
" Ra =
dg ‘

I5; (Tsurface —Tint ) (2 '7‘3]3

IV Q

2
R(l) (5Tsurface) !

b

(4-7)

(4-8)

(4-9)

(4-10)

(4-11)



4.1

d q (Tsu-rface_Tint) (2 "’i)g RG

ap T va 3
d P g8 (2r) Ra
——Ra = =
d‘Tsur Jace e (I‘S-ur Jace — Ti--n.t) ,
d gp (2r)° Ra
L Ra=-9212N) |
dT-inT- g (Tsu-rfa.ce - Tint) ,
iR(l _ 9 j (Tsu-rface - Tint) 24 rg_) _ 3 Ra
dr; U T
d o 98 (Laurgace = Tint) (2 ri)’  Ra
dv 12« v,
i 0 — _g 151 (Tsurface - Ti--nt) (273)3 _ _H(l
dov Vo2 o

Substituting back into equation (4-10) yields
Ra q o]
+ Tsurfa,ce + Tint
Tsurfac:e - Tmt :rsurface - :rint

- 2 c 2 N 2
\2 ()r'i Or/ ()o
cor() ) ()

HEAT LOSS DUE TO RADIATION TO THE AMBIENT

The heat being radiated into the environment is

Qrad =€Eow lunit(T4 - TC;L

(4-12)

(4-13)

(4-14)

(4-15)

(4-16)

(4-17)

(4-18)

(4-19)

15



The uncertainty in this heat flux is
Oa.)" = (ua) 0%+ () o7
rad de do
d - R d - : 2
(i) 6+ (=) G
d - R d - SR
(dTQra-d) (07)" + (dTngd) (073)

Carrying out the differentiation,

. 2 - ‘ - 2 - ) - :
(O.Qrad) _ (E)z (O_CT> ’ + (E) ? + (Ofu.uit)z
Q-md € a w l‘unit

+

+

+
N 474 \? dr 2+ AT\’ 31, 2
- T3 T T T3 L)

16

(4-20)

(4-21)



5. RESULTS

The uncertainty analysis was applied to the data described in reference 1 using the
parameters given intable 5-1. The results showed the uncertainty in the Nusselt number ranges
from a low of 15% to a high of 25%, as shown in table 5-2. For each wind tunnel speed, the table
presents the maximum and minimum values of the Nusselt number, the angle where it occurred,
and the uncertainty in those values. The minimum uncertainty occurs at the highest wind tunnel
speed, and the maximum occurs at the lowest speed. The low values of the Nusselt number have
slightly more uncertainty than the higher values.

17
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Table 5-1. Uncertainty Values

Symbol Minimum Maximum Mean Uncertainty Units
Cylinder Diameter D 32.192 32.580 32.385 0.191 cm
Cylinder Inside Radius T 15.065 15.258 15.161 0.097 cm
Cylinder Outside Radius 7, 16.096 16.290 16.193 0.097 cm
Ribbon Thickness b 0.005 0.006 0.005 0.0005 cm
Ribbon Width w 2.527 2.553 2.540 0.013 cm
Segment Length Lunit 2.814 2.840 2.827 0.013 cm
Segment Length As 2.814 2.840 2.827 0.013 cm
Ribbon Temperature T 25 54 40 0.5 °C
Ambient Temperature T, 17 24 20 0.5 °C
Cylinder Inside Surface Temperature Tsurrace 17 54 355 20.0 °C
cylinder Inside Air Temperature Tint 17 54 35.5 20.0 °C
Current i 5.00 6.55 6.00 0.01 Amperes
Ribbon Resistance R 20.50 20.55 20.53 0.025 Q
Air Thermal Conductivity k 0.027 0.0027 watt/m K
NiChrome Thermal Conductivity kyicr 11.3 2.1 watt/m K
PVC Thermal Conductivity kpvc 0.19 0.01 watt/m K
Stefan-Boltzmann Constant o - - 5.670400 x 10~8 - watt/m2K4
Emissivity of Ribbon E 0.2 0.4 -
Number of Wraps Nyraps 22 0.5 -
Coefficient of Thermal Expansion Air B 3.2 x 1073 3.2 x1074 %
Kinematic Viscosity Air v 1.68 x 1073 1.68 x 1076 m?/s
Thermal Diffusivity Air a 238 x 1079 238 x 1070 m?/s




Table 5-2. Nusselt Number Values and Uncertainty

Tunnel Speed Minimum Nu Maximum Nu
(m/s) Angle | Value | Uncertainty | % Uncertainty || Angle | Value | Uncertainty | % Uncertainty
10 =74 206 51 24.90% -20 463 93 20.13%
20 -100 | 301 66 21.91% —114 | 1404 287 20.48%
30 —-100 | 388 68 17.54% —110 | 1534 255 16.61%
40 =90 523 85 16.18% -102 | 1691 275 16.27%
50 -90 603 92 15.30% -100 | 1922 303 15.76%

Figures 5-1 through 5-5 show the Nusselt Number as a function of angle from the stagnation
point for each of the five wind tunnel speeds. The plots contain the error bars indicating the
uncertainty of each measurement.
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In order to understand the major contributors to uncertainty in the Nusselt number, it is
useful to examine the components of the energy balance given by equation (2-3). Figures 5-6
through 5-10 show the percentage of the heat transfer by external convection from the ribbon of
the heat generated by the ribbon. The figures show that depending on the angle, for 10 m/s the
heat transfer due to external convection ranged from 90% to 95.4% of the power generated by
the ribbon. At 50 m/s, the percentages increased to 96% to 99%.
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Figures 5-11 through 5-15 present the percentage of the heat generated by the ribbon that
is conducted into the cylinder. The maximum percentage of the heat conducted into the cylinder
is less than 3.2% and can be safely neglected.
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Figure 5-11. Percent Conduction Heat Transfer Rate through Cylinder 10 m/s
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Figure 5-13. Percent Conduction Heat Transfer Rate through Cylinder 30 m/s
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Figures 5-16 through 5-20 show the heat conducted along the ribbon as a percentage of
the heat generated. The heat conducted along the ribbon is less than 0.1% of that generated at
any wind tunnel speed.
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Figures 5-21 through 5-25 show the percentage of the generated heat transferred by
radiation to the environment. The peak percentage of heat transfer due to radiation occurs at
10 m/s and totals about 7% of the heat generated. Examining figure 5-6 shows almost all the
heat not going to external convection is lost through radiation. At 50 m/s, the peak percentage of
heat transfer due to radiation has dropped to about 2.5%. These plots show radiation is a small

factor in the heat transfer rate and only at the lowest speed and the lowest local convection heat
transfer.
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