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ABSTRACT 
 
 

THERMAL ENERGY TRANSFER THROUGH ALL CERAMIC RESTORATIONS 
SARAH E. TROISI 

M.S., COMPREHSIVE DENTISTRY, 2018 
 

 
Directed by: Ye, Ling, D.D.S., Ph.D. 
  CDR, DC, USN  
  Manuscript Supervisor, Dental Research Department 
  Naval Postgraduate Dental School 
 
 
INTRODUCTION: As all ceramic restorative materials for indirect dental restorations become 

more widely used, providers must be able to accurately diagnose the pulpal status of restored 

teeth.  It has been shown that thermal testing, specifically cold testing, can be conducted through 

metal ceramic restorations, all metal restorations, and all ceramic restorations using traditional 

ceramics.  However, no study to date has been performed to examine the feasibility of cold 

testing through novel, chairside milled ceramic materials. 

MATERIALS AND METHODS: Thirty extracted human premolars were mounted in acrylic 

and sectioned 5mm from the cementoenamel junction (CEJ), perpendicular to the long axis of 

the tooth.  Pulpal tissue was removed, a thermal conductive medium was placed, and a 

thermocouple probe was inserted into pulp chamber of each tooth.  Thermal testing was 

conducted on each tooth by placing a #2 cotton pellet saturated with 1,1,1,2-tetrafluoroethane 

(TFE) on the facial surface for 60 seconds.  The intrapulpal temperature change was measured at 

ten second intervals to establish the baseline for natural teeth.  Teeth were then reduced by 

1.5mm on the facial surface to simulate a preparation for an all-ceramic restoration.  Milled 

blocks of lithium disilicate, zirconia, and feldspathic porcelain 1.5mm in thickness were 

fabricated.  Then, ten milled blocks from each material were cemented to prepped teeth and 
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intrapulpal temperature change was measured.  A non-linear mixed effects model, specifically a 

three-parameter exponential decay model, was used to analyze data. 

RESULTS: Three test materials and natural teeth displayed similar rate of temperature change, 

although the feldspathic samples had a lower initial temperature compared to natural teeth, while 

both the feldspathic and zirconia samples had a higher asymptotic temperature compared to 

natural teeth.   

CONCLUSIONS: Thermal testing is a viable option for determining pulpal status through an all-

ceramic restoration.   
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CHAPTER I: INTRODUCTION 

In dentistry, the trend of full coverage restorations that are being delivered is rapidly 

changing.  Historically, metal ceramic restorations (MCR) have been the standard in fixed 

prosthodontics and have been the primary restorative choice for most dentists (Kelly, 2011).  In 

the past twenty years, MCRs have fallen from over 70% of all crowns delivered to about 30% 

(Christensen, 2011).  All ceramic restorations (ACR) now account for more than 50% of crowns 

placed (Christensen, 2012).  These novel, high-strength ceramics are esthetic and can be 

manufactured in the dental office with CAD/CAM technology (Lawson, 2016, Aldegheishem, 

2017).  Machined ACRs have better physical properties than conventional powder/liquid 

ceramics (Giordano, 2010), and have been accepted as alternatives to MCRs (Sailer, 2015).  Loss 

of tooth vitality is one of the predominant biologic complications for single crowns (Cheung, 

2005, Valderhaug, 1997), with a 5-year complication rate of 1.8% (Sailer, 2015).  It has been 

shown in the literature that pulp sensibility testing can be performed through MCRs, all metal 

restoration (AMR), and feldspathic porcelain ACRs (Miller, 2004).  With the advent of new 

ACRs, the need to be able to predictably evaluate the pulpal status of restored teeth is apparent.  

No information to date has been published to establish guidelines for thermal testing through 

chairside milled ACRs.  The purpose of this study is to determine the thermal conductivity of 

new chairside milled all ceramic materials. 

CHAPTER II: MATERIALS AND METHODS 

 The methods for this study were adapted and modified from the design used in Miller, et 

al., 2004.  Thirty caries-free, non-restored extracted human premolars were collected from the 

Walter Reed National Military Medical Center and stored in a 0.2% sodium azide solution.  



2 
 

Radiographs were used to verify adequate space in the pulp chamber for the placement of a 

thermocouple probe with a diameter of 0.5mm, and to verify that all teeth were caries- and 

restoration-free.  The teeth were then mounted in acrylic base using clear orthodontic resin with 

the lingual half of the tooth secured (Figure 1).  The roots were sectioned perpendicular to the 

long axis of the tooth at a point 5 mm apical to the cementoenamel junction (Figure 2).  All 

pulpal material was removed with barbed broaches.  A thermocouple probe (Type T, Omega 

Engineering) was placed in the pulp chamber of each tooth, and radiographs were taken to verify 

that the probes could be seated to the most coronal extent of the pulp-dentin surface opposite the 

facial testing surface up to the roof of the chamber.  The probes were then removed, and the teeth 

were filled with a thermal conductive medium (Omegatherm “201” High Temperature High 

Thermal Conductivity Paste, Omega Engineering, Stamford CT) using a stainless steel hand file.  

Then, the thermocouple probes were fully seated in the pulp chamber and secured with sticky 

wax.  Radiographs were taken to confirm the placement of the probes (Figure 3).    

Initial thermal tests were completed at room temperature.  Baseline temperature for each 

sample was established using a water bath set to 37 degrees Celsius, simulating the intraoral 

environment.  Tetrafluoroethane (TFE) was chosen as the cooling agent in this study (1,1,1,2-

tetrafluoroethane, Hygenic Endo-Ice Green, Coltène Whaledent, Cuyahoga Falls, OH).  A #2 

cotton pellet was saturated with TFE for three seconds while it was held with Kelly straight 

hemostats (Hu-Friedy, Chicago, IL) at a distance of 2 inches from the nozzle.  Testing was 

conducted on the middle third of the facial surface of each tooth for 60 seconds, and the 

intrapulpal temperature change was measured at 10 second intervals with a logging thermometer 

(HH2002AL, Omega Engineering).  Each of the 30 intact premolar crowns were tested three 

times before being prepared for testing with restorative material.    
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In order to prepare the experimental samples, the facial height of contour of each tooth 

was reduced by one and a half millimeters using a modified flat end cylinder bur (NeoDiamond 

#0614.8C, Microcopy, Kennesaw, GA) on a high-speed handpiece.  Ten samples measuring 

6.4mm (length) by 5.4mm (width) by 1.5mm (thickness) were designed and milled via 

CAD/CAM (InLab, Sirona Dental Systems, Long Island City, NY) for each of three different 

restorative materials, including  lithium disilicate (IPS e.max CAD, Ivoclar Vivadent, Amherst, 

NY), feldspathic ceramic (CEREC Bloc C, Sirona Dental Systems, Long Island City,NY), and 

monolithic zirconia (inCoris TZI C, Sirona Dental Systems, Long Island City,NY).     

 The thirty samples were randomly placed in one of three groups corresponding to each 

restorative material.  In group 1, lithium disilicate blocks were bonded to the prepared teeth 

using resin cement, per manufacturer’s instructions (Multilink Automix, Ivoclar Vivadent, 

Amherst, NY).  In group 2, feldspathic ceramic bocks were bonded to ten prepared teeth using 

resin cement.  In group 3, zirconia blocks were conventionally cemented to ten prepared teeth 

using a glass ionomer luting cement (Ketac Cem Maxicap, 3M ESPE, St. Paul, MN).  The same 

protocol was followed for testing experimental samples that was used for baseline samples. Sixty 

second thermal testing cycles were conducted on all 30 of the bonded samples, which were 

repeated 3 times per sample (Figure 4).   

A non-linear mixed effects model was used to analyze the data.  The data was fitted to a 

curve of exponential decay.  The function includes three parameters, which are initial 

temperature, rate of change, and asymptotic, or final temperature.  
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CHAPTER III: RESULTS 

 In this study, the temperature change over a course of a minute was examined for all 

samples, both control and experimental.  One hundred and eighty total tests were performed.  

Graph 1 is a visual representation of all of the data.  In graph 2, the mean of all data is shown.  In 

order to perform a statistical analysis, the data was fitted to a curve of exponential decay, which 

was a way in which to represent a cooling model.  The function used to model the data is shown 

in Graph 3. After the data for each sample were fitted to an exponential decay curve (Graph 4), 

three different parameters were examined, including initial temperature, asymptotic temperature, 

and rate of change. 

 The first parameter, initial temperature, was analyzed (Graph 5).  The feldspathic 

porcelain sample showed a statistically significant lower initial temperature by 1.83C (p = 

0.002, 95% CI).  The lithium disilicate and zirconia samples showed no difference compared to 

the control.  The second parameter analyzed was asymptotic temperature (Graph 6).  This is the 

temperature that the sample approaches, but never reaches.  Both feldspathic porcelain and 

zirconia samples were higher than the control by 2.92 (p = 0.001) and 1.80 (p = 0.04), 

respectively.    The analysis of the third parameter, the rate of change, yielded no differences 

between the experimental samples and the control samples (Graph 7). 

CHAPTER IV: DISCUSSION 

Lithium disilicate most closely resembled the properties of enamel, while feldspathic 

porcelain showed the most deviation from the control.  There was no significant difference in 

rate of change between the samples, even when differences in initial and asymptotic temperature 

were taken into account, which is strongly suggestive of no difference across materials.  

Although the feldspathic samples showed a statistically significant difference in both initial and 
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asymptotic temperature, it is not clinically relevant.  Since an overall net decrease in temperature 

was seen, it is reasonable to assume that cold testing is possible through feldspathic porcelain. 

A non-linear mixed effects model was used for the analysis in this study.  Because the 

model’s nested random effects, it is able to account for differences across teeth and materials, 

such as tooth anatomy.  Despite trying to achieve uniformity between samples by choosing only 

non-restored, non-carious extracted human premolars, each tooth had a different thickness of 

enamel, dentin, and size of pulp chamber.      

CHAPTER V: CONCLUSION 

 As trends are shifting in dentistry and patients are demanding highly esthetic, durable 

restorations, chairside milled ACRs are going to continue to prevail.  In order to provide patients 

with appropriate care and correctly treat disease processes, the pulpal health of teeth must be able 

to be determined through a variety of restorative materials.  The results from this experiment 

showed that using a commonly used method, cold testing, to evaluate pulpal health is feasible.  

In conclusion, thermal testing is a viable option for determining pulpal status through all ceramic 

restorations.  
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Graph 1: Graphic compilation of all data 
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Graph 2: Mean of all data, including control and experimental tests 

 

Graph 2: Mean of all data, including control and experimental samples 
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Graph 3: Exponential decay model  

Exponential Decay (Three Parameters): 
  Temp=(a‐c)*exp(b*Time)+c 
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Graph 4: Means of data for control and experimental groups 
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Graph 5: Analysis of parameter 1 (initial temperature) 
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Graph 6: Analysis of parameter 2 (asymptotic temperature)  
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Graph 7: Analysis of parameter 3 (rate of change) 
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Figure 1 

 

Figure 2 
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Figure 3  
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Figure 4 
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