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Abstract 

 Laser illuminated imaging systems deal with several physical challenges that must 

be overcome to achieve high-resolution images of the target. Noise sources like 

background noise, photon counting noise, and laser speckle noise will all greatly affect 

the ability to produce a high-resolution image. An even bigger 

challenge to laser illuminated imaging systems is atmospheric turbulence and the effect 

that it will have on the imaging system. The illuminating beam will experience tilt, 

causing the beam to wander off the center of the target during propagation. The light 

returning to the detector will similarly be affected by turbulence, and it too will wander 

off the center of the detector. The effects of tilt will be noticed in a multi-fame data set by 

the illuminating beam and the object shifting around the frame. This research effort uses 

expectation maximization to track the beam and scene motion from frame-to-frame along 

with a deconvolution algorithm to produce a high-resolution image of the target. 

Components of the expectation maximization beam and scene tracking algorithm will 

then be used with cross-correlation to create a hybrid algorithm to create exceptionally 

clear images of the target object. 
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LASER ILLUMINATED IMAGING: BEAM AND SCENE TRACKING 
DECONVOLUION ALGORITHM 

 
I.  Introduction 

This chapter introduces the thesis and its organization. This introduction describes 

the problem addressed in this thesis and its research goals. This chapter will address the 

assumptions taken in the research to clarify the scope of the problem. Finally, the 

organization structure of the thesis will be discussed. 

1.1 Problem Statement 

When using Laser Detection and Ranging (LADAR) systems, there are several 

physical challenges that must be overcome to achieve high resolution images. LADAR 

systems are subject to optical diffraction, atmosphere induced tilt, and laser beam speckle 

which all greatly impact image resolution. Tilt is found to be 87% of the imaging error 

[1]. The atmosphere induced tilt  influence will be realized in a multi-frame LADAR 

data set by causing both the beam and scene to shift around the axis of the frame. 

Turbulence will cause the tilt to change from frame to frame, meaning that the beam and 

scene will shift around the axis in each frame of a multi-frame LADAR data set.  

Beyond the challenge of a shifting beam and scene in a data set, LADAR systems 

are subject to several noise sources that must be considered. Background noise, thermal 

noise, photon counting noise, and laser speckle are all prevalent in LADAR systems [2]. 

Each of these noise sources must be mitigated to produce a high resolution image of the 

target object. 

This thesis proposes a post-processing algorithm that analyzes and mitigates these 

various challenges throughout each frame of the data set to produce a high-resolution 
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image of the target object. The algorithm will analyze each frame of the data set and 

estimate the beam and scene motion independently in each frame. With this knowledge, 

the algorithm will perform a deconvolution to provide a clear image of the target object. 

The algorithm will be robust enough to handle several noise sources and produce a high-

resolution image of the target object under extreme noise sources. 

1.2 Research Goals 

The ultimate goal of this research effort is to derive, and realize in simulation, a 

deconvolution algorithm to track beam and scene motion using Expectation 

Maximization (EM). This algorithm will estimate beam and scene shifts in each frame of 

a given data set and use these shift estimates to produce a high-resolution image of the 

target object. 

1.3 Assumptions 

Several assumptions were made in this research effort to limit the scope of the 

project: 

 The shape of the long exposure Point Spread Function (PSF) is known and 

consistent throughout the data set 

 The shape of the illuminating beam is known and consistent throughout the data 

set 

 The target object is stationary. It is not rotating or changing scale in each frame of 

the data set 

 The illuminating beam is small enough to limit the Field of View (FOV) of the 

target object 
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 The beam shifts and scene shifts are uncorrelated in time 

1.4 Thesis Organization 

Chapter 2 of this thesis will provide necessary background and theory to fully 

understand the concepts in this research effort. Chapter 3 moves into the derivation of the 

proposed algorithm using the EM algorithm and discusses the simulation setup to 

evaluate the abilities of the algorithm. Chapter 4 presents the results of the testing 

described earlier in Chapter 3 and analyzes these results. It compares the algorithm 

against the cross-correlation method and proceeds to test a hybrid algorithm with cross-

correlation and EM algorithm components. Chapter 5 summarizes the results of the 

research effort and discusses potential follow-on research opportunities. 

 

 



4 

II. Background and Theory 

This chapter touches on the background material relevant to this research effort. 

This section will introduce a typical LADAR system and discuss the physical challenges 

LADAR systems encounter. This chapter will then discuss the need for properly 

registered images and some commonly used image registration techniques used with 

LADAR systems. Finally, this section discusses deconvolution algorithms for image 

registration and briefly introduces the EM algorithm. 

2.1 LADAR System Overview 

This research will deal with a simple, generic LADAR system. The target object 

is illuminated with a coherent pulsed laser. This light will then reflect off the target object 

and return to the LADAR detector. The light will process through the LADAR optics 

system to produce an image of the target. This simple system is shown, below, in Figure 

1.  

 

 

 

 

Figure 1: Generic LADAR system model 
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 A mathematical model for the LADAR system can be written simply as a 

convolution of the beam and object with the PSF of the system [3]. This convolution is 

shown below in Equation 1.  is the intensity in the output image. The positional 

coordinates in the detector plane are represented by variables  and . The positional 

coordinates in the target plane are represented by variables  and . Both reference 

planes are considered square planes with  pixels in each direction.  represents the 

object,  represents the beam, and  represents the atmospheric PSF.  

 
1 

 
 

2.2 Atmospheric Turbulence 

As shown in the LADAR model in Figure 1, the LADAR system will be subject 

to effects of atmospheric interference. Turbulence is cause by random variations in air 

temperature and motion that result in small changes to the refractive index of the air [4]. 

As light passes through these pockets of air with varying refractive indices, the light will 

experience phase shifts. This turbulent effect is illustrated in Figure 2. 



6 

As mentioned earlier in Chapter 1, this research will assume that the FOV is 

smaller than the target; the image will show a beam limited FOV. An example of this 

beam limited FOV is shown below in Figure 3.  

(a)  

Figure 3: Original target image (a) and beam limited target (b) 

(b) 

Figure 2: Effect of Atmospheric Turbulence 
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 The light will experience phase shifts as it propagates through turbulence  this 

phase shift will induce tilt on the beam as it propagates to the target. In the target plane, 

this beam tilt will make the beam shift around the target. Figure 4, below, shows an 

example of beam shift independent of the background scene.  

 

These images show the beam shifting around the target while the target remains 

stationary in the frame. The same turbulent effect causing the beam to experience tilt will 

also affect the reflected light as it returns to the target; the entire scene of the image will 

shift around the frame. An example of a scene shift, while the beam stays fixed to the 

target, is simulated below in Figure 5. 

(a)  

Figure 4: Beam limited target with beam shifting from frame (a) to frame (b) 

(b) 
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These images show the beam remaining fixed to the target while the whole scene shifts 

around the frame. In every data set, atmospheric turbulence will cause the effects of both 

beam and scene shift from one frame to the next. 

 The tilt parameters to describe the shifts in each frame can be modeled as a zero-

mean Gaussian random variable with variance described in Equation 2 [2].  and  

represent the tilt variance in a horizontal and vertical directions, respectively.  is the 

diameter of the receiver aperture and  is Fried

a measure of atmospheric turbulence; high values indicate weak turbulence and low 

values indicate strong turbulence. 
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Equation 2 implies that h  representing weak 

turbulence  will result in lower tilt variance. Likewise, low values for F

will result in greater shift variance.   

(a)  

Figure 5: Beam limited target with scene shifting from frame (a) to frame (b) 
(b) 
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Returning to Equation 1 for the mathematical model for the LADAR system, the 

model can be updated to include atmosphere induced beam shifts or scene shifts [3]. This 

new equation is shown below in Equation 3. This equation now deals with a data set 

consisting of multiple image frames.  is the intensity image in the kth frame.  and  

are the beam shift parameters for the kth frame in the x and y directions, respectively.  

and  are the scene shift parameters for the kth frame in the x and y directions, 

respectively. 
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2.3 Noise Considerations 

LADAR systems deal with several significant noise sources: background noise, 

thermal noise, photon counting noise, and laser speckle [5]. These noise sources will 

decrease the Signal-to-Noise Ratio (SNR) and hurt overall performance of a LADAR 

system. 

ted 

laser light off the target [2]. Light sources that contribute to background noise could be 

sunlight, moonlight, light reflecting off other surfaces towards the detector, and any other 

number of sources. An effective way to estimate the background noise collected in a 

LADAR system is to take images with the illuminating source turned off. The 

background noise can then be estimated using the median value of the intensity collected 
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at the detector. Using this estimated level of background noise, this noise source can be 

counteracted.  

Thermal noise is present in the system because anything above 0 K will radiate 

photons. The room temperature CCD will radiate photons, and these photons will 

interfere with the detector creating noise [2]. These photons can induce current in the 

circuitry which will create read-out noise. The amount of thermal noise present can be 

practically measured by measuring the dark current in the system  the current running 

through the detector with the shutter closed.  

Photon counting noise is present in the LADAR system due to the fact that 

photons arrive at random times [2]. Photo-electrons counted in a CCD integration time is 

known to be a random variable with mean proportional to the expected value. The 

number of photons measured at the detector has been proven to be a Poisson random 

variable. Using this knowledge, the Poisson counting noise can also be measured to 

account for noise. Equation 4, below, gives the Probability Mass Function (PMF) for a 

Poisson random variable.  is the photons counted in a given pixel and  is the mean 

number of photons arriving in the time interval.  

 4 

 

The most impactful noise source that LADAR systems must address is laser 

speckle. Laser speckle is a product of a coherent light source reflecting off of a rough 

surface  6]. Figure 6 shows how this 

phenomenon occurs.  
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The red waves emanating from the laser hit the object and reflect back to the 

detector. The waves reflecting off the object returning to the CCD are shown in green and 

blue dashes. The waves travel different distances, meaning that they do not arrive at the 

CCD in phase. Some waves will arrive in phase and produce constructive interference, as 

shown in Pixel 1 in Figure 6. Some waves will arrive out of phase and produce 

deconstructive interference, as shown in Pixel 2 in Figure 6. These varying points of 

constructive and deconstructive interference will produce randomly dispersed bright and 

dark spots throughout the image [6]. This granular appearance in the image is known as 

laser speckle. Figure 7, below, shows a simulated beam limited image with and without 

laser speckle added.    

    

Figure 6: Laser speckle constructive (CCD pixel 1) and deconstructive interference (CCD pixel 2) 



12 

The intensity peaks in laser speckle are known to follow a gamma distribution [5]. 

When this gamma laser speckle effect is combined with the Poisson effect from photon 

counting, the resulting effect follows a negative binomial distribution. This can be 

simulated as a negative binomial random variable with mean of  and 

variance, , calculated in Equation 5, below.  is the coherency factor of the 

light. A coherency factor of one means the light is fully coherent, and a coherency factor 

of infinity means the light is fully incoherent. 

 5 

 

2.4 Image Registration 

Looking at Figure 7, it is clear that LADAR system images will need image 

registration to produce a clean output image. One successful method for dealing with a 

data set obscured by laser speckle is to collect multiple frames of data and average across 

Figure 7: Beam limited target with (b) and without (a) laser speckle 
(a)  (b) 
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the frames. If multiple frames can be aligned properly, averaging across these frames 

produces high resolution images. Figure 8, below, shows the result of averaging across 10 

and 100 perfectly aligned frames in in (a) and (b) respectively.   

 

Averaging across 10 frames shows some effects of the speckle but shows the target with 

some clarity. Averaging across 100 frames appears to completely remove the effect of 

noise. This figure illustrates that averaging across perfectly aligned frames produces high 

quality images and averaging across more frames will produce a higher resolution image.  

If the frames are not properly aligned, the grainy appearance from the speckle will 

reduce, but the resulting image will not result in a high-resolution image. Figure 9 shows 

the result of averaging across 10 perfectly aligned frames and 10 misaligned frames. The 

average across misaligned frames is very blurry in comparison to the average across 

perfectly aligned frames.  

(a)  

Figure 8: Averaging across 10 frames (a) and 100 frames (b) 

(b) 
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Figure 9 demonstrates that proper image registration with each frame of data is essential 

in producing a high-resolution output image. 

One established method used in image registration is cross-correlation [7]. Cross-

correlation is a method that takes the correlation between two images. The maximum 

point in the normalized correlation gives the estimated shifts in the x and y directions 

between the two images. Using this method, multiple frames can be aligned properly to 

average across. This technique will be used as a comparison point against the algorithm 

derived in this research.  

2.5 Expectation Maximization 

Expectation Maximization (EM) is an iterative method to compute the maximum 

likelihood estimate of a mathematical model [8]. This research will utilize the EM 

algorithm with the mathematical model shown in Equation 3 to estimate the likeliest 

Figure 9: Averaging 10 properly aligned frames (a) and 10 misaligned frames (b) 
(a)  (b) 
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shifts in the beam and scene. The EM algorithm is a seven-step process that leverages 

some statistical nature of the mathematical model to create a Bayesian estimator. This 

research will leverage the Poisson nature of light to create the estimator. Using this 

iterative EM algorithm, a deconvolution algorithm will be derived to increase resolution 

of the target object. The Ayers-Dainty blind deconvolution algorithm [9] and the multi-

frame blind deconvolution (MFBD) algorithm [10] are discussed in depth. In blind 

object needs estimated in this research. These algorithms, however, do not track beam 

motion which this research will do.  
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III.  Methodology 

This section provides the derivation of the beam and scene tracking deconvolution 

algorithm. This section will walk through the steps of the EM process to derive the 

update equations for the beam and scene tracking algorithm. Once the algorithm has been 

derived, this section will continue into testing methods to validate the approach. 

3.1 Algorithm Derivation 

The beam and scene tracking deconvolution algorithm relies on EM to derive the 

key components to build the algorithm. EM provides a seven-step method to create 

Bayesian Estimators to solve many-to-one mapping problems.  

3.1.1 EM Algorithm Step 1 

Obtain statistical model for your measured data (called incomplete data). The 

incomplete data, , is the measurable data collected by the detector. The expected value 

of the incomplete data, shown in Equation 6, can be represented mathematically as a 

convolution of the beam multiplied object and the PSF. The shift parameters are the same 

as previously defined in Equation 3. 
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3.1.2 EM Algorithm Step 2  

Invent a set of mythical data (called complete data) and a relationship between this data 

and the incomplete data. The expected value of the complete data, , is defined below 

in Equation 7. This is the invented data set that will be used later to solve for the estimate 

for the incomplete data. 
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3.1.3 EM Algorithm Step 3 

Select a statistical model for the complete data so that it produces the statistical model 

for the incomplete data through their pre-defined relationship. The incomplete data is 

now defined as the double sum over all z and w of the complete data, shown in Equation 

8. 
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3.1.4 EM Algorithm Step 4 

Formulate the complete data log-likelihood. Leveraging the Poisson nature of light, the 

log-likelihood is shown below as the natural log of the Poisson PMF of the complete 

data. The PMF of the complete data is shown below in Equation 9. The mean of the 

complete data was defined previously in Equation 7 and is used in the Poisson PMF. 
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Solving for all pixels, x and y, across all frames, k, gives the joint probability of all pixels 

and all frames to be used for the log-likelihood. Because each pixel and frame are 

statistically independent of each other, the joint probability can be written as the product 

of each individual PMF. Therefore, the joint probability is the product over k, x, y, z, and 

w of Equation 9. This joint PMF is shown in Equation 10. 
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Now, the natural logarithm of Equation 10 is taken, giving the complete data log-

likelihood, , defined below in Equation 11. 
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 The product operators in Equation 10 are now summation operators once the natural 

logarithm is taken, making the resulting equation much simpler to solve. 

3.1.5 EM Algorithm Step 5 

Compute the conditional expected value of the complete data log-likelihood given the 

incomplete data and old estimates of the parameters you are trying to estimate. Because 

the expectation operator is a linear operator, the conditional expectation of the log-

likelihood can be separated into three separate terms. This conditional expectation is 

expanded in Equation 12. 

 

 

 

12 
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Each separate conditional expectation term in Equation 12 will be simplified individually 

before being recombined to form the total conditional expectation.  

First Term: Because the natural logarithm of the object, beam, and PSF are constants, 

they can be pulled outside of the expectation operator. This results in Equation 13 below. 
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The derivation of the conditional expectation of the complete data is shown in Appendix 

A. The solution of this expectation is shown in Equation 14 below. 
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Substituting Equation 14 into Equation 13, the solution to the first term is shown below in 

Equation 15. 
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Second Term: The object, beam, and PSF are constants, so the expected value of the 

second term is simply the product of the object, the beam, and the PSF. This is shown in 

Equation 16. 
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Third Term: 
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 17 

 This term can be ignored in the expectation maximization because it will not vary with 

respect to the unknown parameters and will not have any effect on the maximization. 

Ignoring this third term saves unnecessary computations in the algorithm and speeds up 

the algorithm. The total conditional expectation, Equation 18, can now be written by 

summing Equation 15 and Equation 16. 

Total Conditional Expectation of the Complete Data Log-Likelihood: 
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3.1.6 EM Algorithm Step 6 

Maximize the conditional expected value of the complete data log-likelihood with respect 

to the parameters you are trying to estimate. The three parameters being estimated are 

the target object, the beam shifting parameters, and the scene shifting parameters. 

Maximize Target Object: To maximize the target, the derivative of Equation 18 is taken 

with respect to a single point of the object, . This step is shown in Equation 19. 
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 The Dirac functions were introduced because the derivative is being taken with respect 

to the single point, . The derivative will be zero anywhere where z does not equal 

 or w does not equal . The summations over z and w can be dropped due to the 

sifting property of the Dirac delta function. These simplifications result in Equation 20. 
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 Now, setting Equation 20 equal to zero and solving for , the maximized object 

can be found in Equations 21 - 23. 
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Finally, leveraging that the sum over x and y of the PSF is one, the PSF and summations 

can be dropped from the denominator. This gives the target object update equation below 

in Equation 24.  

 

24 

Maximize Beam Shift: Returning to the total conditional expectation in Equation 18, the 

logarithm of the product of the object, beam, and scene can be separated into the sum of 

three logarithms. This step is shown in Equation 25. 
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Any term that does not vary with respect to the beam shift parameters,  and , can be 

ignored.  Because they do not vary with our parameters of interest, they will have no 

impact on maximizing the equation. They will be constant across each realization of the 

equation as the shift parameters vary and can effectively be ignored. The logarithms of 
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the object and the PSF, highlighted in Equation 26, fill these requirements and will be 

removed from the equation. 
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Removing the two unneeded logarithms in Equation 26 and expanding the second term 

into a separate summation gives the proportional equation below, Equation 27. 
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And finally, leveraging again that the sum over x and y of the PSF is one, the PSF and 

summations can be dropped from the second term. This results in the beam shift 

maximization equation below, Equation 28.  is the conditional expectation of the beam 

shift equation. 
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The expectation is calculated over a range of and , and the combination of and 

that maximizes the expectation of the beam shift is chosen. 

Maximize Scene Shift: The derivation of the scene shift maximization equation is very 

similar to that of the beam shift maximization equation. This derivation will return again 

to Equation 25, shown again below. Any term that does not vary with respect to the scene 

shift parameters,  and  can be ignored. 
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Any term that does not vary with respect to the scene shift parameters,  and , can be 

ignored. The logarithms of the object and the beam fill these requirements and will be 

removed from the equation. This step in shown in Equation 29. 
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Removing the two unneeded terms and expanding the second term into a separate 

summation gives the proportional equation below, Equation 30.  
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Leveraging again that the sum over x and y of the PSF is one, the PSF and summations 

over x and y can be dropped from the second term. This leaves a summation over k, w, 

and z of the object and beam; however, this does not vary with the scene shift parameters 

and can be ignored completely, as highlighted in Equation 31. 

 

31 

The resulting equation, Equation 32, is the final scene shift maximization equation.  is 

the conditional expectation of the scene shift equation. 

   

 32 

Just like the beam shift update equation, the expectation is calculated over a range of   

and , and the combination of  and  that maximizes the expectation of the scene 

shift is chosen. 
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3.1.7 EM Algorithm Step 7 

Repeat steps 5 and 6, replacing old estimates with newly found estimates. Each of the 

three update equations, Equation 24, Equation 28, and Equation 32 are dealt with 

iteratively. They each contain old estimates of parameters that are updated with every 

iteration of the algorithm.  Once the new object is solved for, it is fed into the beam and 

scene update equations to gain shift estimates. Once these new estimates have been 

found, they are fed into the object update equation, and so on. This pattern of solving for 

new estimates of the object and shift parameters using the old estimates continues until 

the algorithm converges. 

3.2 Testing Methods 

Simulation 

 Algorithm testing began with experimentation in simulation. As shown in Step 1 

of the algorithm derivation, the simulated incomplete data was created by convolving a 

simulated beam limited object with a PSF that simulates the atmospheric PSF.  

 The simulated target object is an image of a bar chart with width and height of 

256 pixels. The original image is shown below in Figure 10.  

Figure 10: Original Image for Testing in Simulation 
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The simulated beam was given a two-dimensional Gaussian intensity profile with a 

standard deviation of 15 pixels. The beam was normalized, so the intensity at the center 

point is one. The beam is shown, below, in Figure 11 next to the beam limited FOV of 

the original image. 

 

The PSF was simulated by taking the autocorrelation of the pupil function, and then 

normalizing. With the PSF created, Equation 6 can be used to generate one frame of 

incomplete data by a convolution of the PSF with the beam limited image. This 

incomplete data, without any shifts or noise considerations, is shown in Figure 12.  

 

 

  Figure 11: Beam Shape and Beam Limited FOV Object 
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To finally complete the data set, noise considerations must be added to the 

incomplete data. Several noise sources must be considered: background noise, laser 

speckle, and photon counting noise. Testing was conducted using incomplete data 

without any noise added to see how the algorithm functions without any noise. Testing 

was also conducted with Poisson noise added; this simulates imaging an object with 

photon counting noise. Finally, testing was conducted with background noise and laser 

Figure 12: Incomplete Data with No Shifts or Noise Considerations 
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speckle added. The background noise was simulated by generating Poisson random 

numbers with a mean of 50 photons to add to the image. The laser speckle noise is added 

in simulation with the gamma distribution. As discussed in Chapter 2, the laser speckle 

relies on a coherency factor that simulates the level of coherency of the illuminating light 

source. This research effort uses a coherency factor of 10 for the laser speckle simulation. 

Figure 13 shows samples of incomplete data with Poisson noise and speckle noise. 

 

 

Figure 13: Incomplete Data with Poisson Noise and Speckle Noise 
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IV. Analysis and Results 

This section provides results gathered in the simulation testing described earlier in 

Chapter III and discusses its performance compared to a cross-correlation method.  

4.1 Simulated Data Results 

 This research effort began by testing each component of the algorithm 

independently. Once verifying that each component functions properly, each component 

was combined to form the EM algorithm. The EM algorithm was then tested and 

compared against the cross-correlation method. This section concludes by testing a 

hybrid algorithm which combines aspects of the EM algorithm and cross-correlation.  

4.1.1 Isolated Component Testing 

Simulated data testing began by testing each algorithm component individually. 

As discussed in the derivation in Chapter 3, The EM algorithm is composed of three 

components: beam shift update equation, scene shift update equation, and object 

optimization equation. To isolate each component, the truth data was given to algorithm 

for two components and the algorithm was left to estimate the final component 

individually. Once each component functions independently, they can be implemented 

together to formulate the complete EM algorithm. 

4.1.1.1 Beam Shift Tracking 

 The beam shift update equation, Equation 28 shown again below, was tested first.  
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A set of 1000 samples of incomplete data was created with randomly generated shifts in 

the beam and scene in x and y directions for each sample. The shift parameters were 

chosen to be a zero mean Gaussian random number with a standard deviation of 2 pixels. 

Each sample of incomplete data, , was fed into the beam shift update equation 

with the true object,  , and the true scene shifts,  and . The equation then 

estimates the beam shifts,  and , present in each samples of incomplete data. Figure 

14, below, shows the error in beam shift estimates from a set of incomplete data created 

without any noise considerations. 

Figure 14: Beam Shift Tracking with No Noise 
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In a noiseless system, the beam update equation perfectly estimated the input beam shifts 

over 1000 trials - 0.0 shift error in both X and Y directions.  This process was then 

repeated with Poisson noise added to the incomplete data in simulation. The results of 

this testing are shown below in Figure 16. 

The Poisson noise simulation also showed perfect beam tracking over 1000 trials. This 

process was finally repeated with speckle and background noise considerations added to 

the simulation. Results of this testing are shown below in Figure 15.  

Figure 15: Beam Shift Tracking with Speckle Noise 

Figure 16: Beam Shift Tracking with Poisson Noise 
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The beam shift update equation again showed perfect ability to track input beam 

shifts with background and laser speckle noise considerations added to the simulation.  

 Each of these tests have demonstrated that the beam shift update equation can 

function properly when given true data for scene shifts and target object. Under each 

noise condition, the beam shift update equation perfectly estimated the input beam shifts. 

The research effort next moved to isolated testing of the scene tracking update equation.  

4.1.1.2 Scene Shift Tracking 

The scene update equation, Equation 32 shown again below, was tested next. 
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The true object and true beam shifts were fed into the simulation. This left the 

scene update equation to estimate only the  and  for each sample of incomplete data. 

The equation was tested again with a set of 1000 samples of incomplete data with 

randomly generated beam and scene shifts. The shift parameters were again chosen to be 

a zero mean Gaussian random number with a standard deviation of 2 pixels. Figure 17, 

below, shows the input and output shifts of a set of incomplete data created without any 

noise considerations. 
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Given the true object and true beam shifts, the scene shift update equation was able to 

estimate the input shift with some success, but not perfectly. The mean absolute error in 

the x direction was 1.25 pixels and 0.29 pixels in the y direction. The mean absolute error 

was calculated according to Equation 33 , below.  is the frame of the incomplete data,  

is the total number of samples,  is the estimated shift parameter, and   is the 

true input shift parameter.  
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Next, testing continued with Poisson noise added to the simulation. The result of 

this testing is shown below in Figure 18.  

 

 

Figure 17: Scene Shift Tracking with No Noise 
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The scene shift update equation was again able to estimate the input shift with some 

success, but not perfectly. The mean absolute error in the x direction was 1.21 pixels and 

0.34 pixels in the y direction. Testing was repeated one final time with speckle noise and 

background noise added to the simulation. Results are shown below in Figure 19. 

Figure 18: Scene Shift Tracking with Poisson Noise 

Figure 19: Scene Shift Tracking with Speckle Noise 
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When dealing with speckle and background noise added to the simulation, the scene shift 

update equation was again able to estimate the input shift with noticeably less accuracy 

than the Poisson or noiseless simulations. The mean absolute error in the x direction was 

1.53 pixels and 0.54 pixels in the y direction. 

Unlike the beam shift update equation, the scene shift update equation was not 

able to perfectly track the input shift. Given the true object and true beam shifts, the 

update equation showed some ability to track the shifting scene but failed to consistently 

estimate the input shift. Table 1, below, shows the absolute error in X and Y direction 

under each noise condition. 

  

Table 1: Scene Shift Tracking Error 

 

 

 

 

 

 

 

Table 1 shows that the update equation performed comparably under no noise and 

Poisson noise, and it performed slightly worse with speckle noise added to the system. 

These results also show that the Y direction is clearly tracked better than the X direction - 

this is most likely due to prominent features in the original target image. The large 

Noise Condition 
 

X Absolute Error 

(pixels) 

Y Absolute Error 

(pixels) 

No Noise 1.25 0.29 

Poisson Noise 1.21 0.34 

Speckle Noise 1.53 0.54 
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horizontal bars in the original image must make the equation estimate the Y direction 

shifts more easily than the X direction shifts.  

The equation is likely unable to perfectly estimate the shifts due to computer 

limitations in the numerical calculations. The derivation of this scene shift update 

equation from the EM algorithm should converge on the correct input shifts, but these 

results show that in simulation the update equation does not converge on the true shift. 

4.1.1.3 Object Optimization 

The last update equation tested was the object optimization update equation, shown 

below in Equation 24. 
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Similar to the beam and scene equation testing, the equation was tested again with a set 

of thirty samples of incomplete data with randomly generated beam and scene shifts. The 

shift parameters were again chosen to be a zero mean Gaussian random number with a 

standard deviation of 2 pixels. The true beam and scene shifts were then fed into the 

simulation. This left the object update equation to estimate only the object, . 

Figure 20, below, shows one frame of the incomplete data input and the optimized object 

using the set of incomplete data created without any noise considerations. 
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Simple visual analysis shows that the optimized object produces a noticeably cleaner 

image. The details of each of the bars in the bar chart are much sharper in optimized 

object than the incomplete data. The deconvolution component in the EM algorithm also 

widens the FOV of the target. The algorithm accounts for the beam shape and widens the 

FOV of the object. This gives much more information about the true target object than 

the incomplete data, and provides a noticeably better representation of the target.  

Beyond simple visual analysis, Root Mean Squared Error (RMSE) was used to 

analyze the results of the output images. RMSE was calculated according to Equation 34, 

below.  
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Figure 20: Incomplete Data and Optimized Object with No Noise 
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The RMSE for the incomplete data is 156.17 compared to 15.73 for the optimized object. 

This drastic improvement in RMSE confirms the visual analysis that the object is 

optimized through this object optimization equation. This testing continued with Poisson 

noise added to the system. Figure 21, below, shows the results of object optimization in 

simulation under Poisson noise. 

 

Visual analysis again shows a vast improvement in clarity in the optimized image and 

again shows more information about the object with a wider field of view. RMSE 

analysis supports the visual analysis  RMSE was found to be 158.27 for the original 

incomplete data compared to 17.24 for the optimized image. This update equation was 

finally tested with speckle noise and background noise added to the simulation. These 

results are shown in Figure 22.  

 

Figure 21: Incomplete Data and Optimized Object with Poisson Noise 
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 The speckle noise simulation showed the biggest visual improvement in 

image clarity. The incomplete data, obscured with speckle noise, is almost 

indistinguishable. The optimized object shows a vastly improved image  the image still 

shows signs of noise, but the object is clearly visible in the output image. RMSE again 

supports the qualitative analysis that the object is significantly improved. The RMSE of 

the original incomplete data is 199.30 compared to 36.15 for the optimized object. Table 

2 summarizes the results of each test under varying noise conditions. Testing the object 

update equation under each noise condition shows that it functions properly when given 

the true beam and scene input shifts.  

 

 

Figure 22: Incomplete Data and Optimized Object with Speckle Noise 
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Table 2: Summary of Object Testing Under Multiple Noise Conditions 

Noise Condition EM RMSE 

Inc Data 

RMSE 

No Noise 15.73 156.17 

Poisson Noise 17.24 158.27 

Speckle Noise 36.15 199.3 

 

 

4.1.2 EM Algorithm 

 After confirming that each update equation worked properly individually, the 

whole EM beam and scene tracking deconvolution algorithm was built by incorporating 

each update equation together. A set of thirty samples of incomplete data with randomly 

generated beam and scene shifts was generated. The shift parameters were again chosen 

to be a zero mean Gaussian random number with a standard deviation of 2 pixels.  

The three update equations were integrated as shown in Figure 23. The 

incomplete data was fed into the object update equation, first. As opposed to feeding the 

true beam shift and true scene shifts, the algorithm was initialized by feeding in a zero 

shifted beam and zero shifted OTF. After one iteration of the object update equation, this 

newly estimated object is fed into the scene shift update equation with the zero shifted 

beam. The newly acquired scene shifts are then fed into the beam shift update equation 

with the newly estimated object. Once the beam shifts are estimated, these newly 

estimated scene shifts and beam shifts are then fed back into the object update equation, 

and the process continues iteratively until each equation converges on a single estimate 



42 

for the shifts or object estimate. After convergence, further iterations through each 

component equation provide no improvement.  

 

 As discussed in Chapter 2, this research effort will compare results against cross-

correlation method. Cross-correlation will provide estimates for the scene shifts in the X 

and Y directions but cannot estimate beam shifts. These estimated shifts can then be used 

to align samples of incomplete data to provide an estimate of the object. This research 

will compare estimates of scene shifts from the EM algorithm against estimates from the 

cross-correlation method. The research will then compare the optimized object from the 

EM algorithm and compare against the estimated object utilizing scene shift estimates 

from the cross-correlation method. 

 

 

 

Figure 23: EM Algorithm Flow Chart 
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4.1.2.1 Noiseless Simulation  

Initial testing of the whole algorithm began again with noiseless data. The 

algorithm converged on beam shifts, scene shifts, and an optimized object, and the results 

of each are shown below.  

 

Figure 24, above, shows the shift tracking in the beam. Unlike the isolated beam 

update equation testing, the beam shifts were not perfectly tracked using the whole 

algorithm. The mean absolute error in beam shift tracking was 1.00 pixels in the X 

direction and 0.27 pixels in the Y direction. The results of the scene tracking are shown 

below in Figure 25. 

Figure 24: Beam Shift Tracking with No Noise 
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Figure 25 shows the shift tracking in the scene from the EM algorithm and the 

cross-correlation method. The cross-correlation method tracked the scene shifts perfectly 

in both X and Y directions - resulting in an absolute mean error of 0.0 pixels in each 

direction. The EM algorithm did not perfectly track the input shifts. The EM algorithm 

produces a mean absolute error of 1.07 pixels in the X direction and 0.17 pixels in the Y 

direction. 

Figure 25: Scene Shift Tacking with No Noise 
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Figure 26 shows the final optimized image of the EM algorithm compared against 

the output image from the cross-correlation method. Visual analysis of both images show 

that the EM algorithm greatly widens the field of view of the estimated object. The cross-

correlation object shows sharp detail of the bars in the center of the bar chart, but the 

much larger FOV giving more information about the target object. Because the scene 

shifts were not tracked perfectly, the details of the bars are not as sharp as the cross-

correlation object. However, the EM object  wider FOV of the target object increases 

the information present in the image. The added information throughout the image 

decreases the error in the optimized object. The RMSE of the cross-correlation object was 

155.81 compared to 45.10 for the optimized object.  

 

 

Figure 26: Cross-Correlation Object and EM Object with No Noise 
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4.1.2.2 Poisson Noise Simulation 

Testing continued with Poisson noise added to the simulation, and the results 

were again compared against the cross-correlation method. The beam shift tracking 

results are shown, below, in Figure 27.  

 

Figure 27, above, shows the shift tracking in the beam. The beam shifts again 

tracked the beam effectively, but not perfectly, using the whole algorithm. The mean 

absolute error in beam shift tracking was 1.10 pixels in the X direction and 0.43 pixels in 

the Y direction. The results of the scene tracking are shown below in Figure 28. 

 

 

Figure 27: Beam Shift Tracking in X and Y Directions with Poisson Noise 
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Figure 28 shows the shift tracking in the scene from the EM algorithm and the 

cross-correlation method. The cross-correlation method tracked the scene shifts perfectly 

in both X and Y directions - resulting in an absolute mean error of 0.0 pixels in each 

direction. The EM algorithm did not perfectly track the input shifts. The EM algorithm 

produces a mean absolute error of 1.27 pixels in the X direction and 0.20 pixels in the Y 

direction. 

Figure 29 shows the final optimized image of the EM algorithm compared against 

the output image from the cross-correlation method. Visual analysis again shows that the 

EM algorithm greatly widens the FOV of the estimated object. Similar to the noiseless 

simulation, the cross-correlation object shows sharp detail of the bars in the center of the 

object provides a much larger FOV giving more information about the target object. Just 

like the noiseless simulation, the scene shifts were not tracked perfectly, so the details of 

the bars are not as sharp as the cross-correlation object. However, the wider FOV again 

increases the overall amount of information present in the image. This decreases the error 

Figure 28: Scene Shift Tracking in X and Y Directions with Poisson Noise 
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in the EM object. The RMSE of the cross-correlation object was 155.90 compared to 

47.73 for the optimized object.  

 

4.1.2.3 Laser Speckle and Background Noise Simulation 

Testing concluded with background and laser speckle noise sources added to the 

simulation. Results of the beam shift tracking are shown, below, in Figure 30.  

Figure 29: Cross-Correlation Object and EM Object with Poisson Noise 

Figure 30: Beam Shift Tracking with Speckle Noise 
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 The beam shifts were again tracked with some success but not perfectly. 

The mean absolute error in beam shift tracking was 1.10 pixels in the X direction and 

0.73 pixels in the Y direction. Next, the results of the scene tracking are shown, below, in 

Figure 31. 

 

 

With speckle and background noise added to the simulation, the cross-correlation 

method failed to track the scene shifts perfectly. The cross-correlation method gave an 

absolute mean error of 0.60 pixels in the X direction and 0.57 in the Y direction. The EM 

algorithm produced a mean absolute error of 1.20 pixels in the X direction and 0.23 

pixels in the Y direction. 

Figure 32 shows the final optimized image of the EM algorithm compared against 

the output image from the cross-correlation method. Visual analysis again shows that the 

EM algorithm greatly widens the FOV of the estimated object. The cross-correlation 

object is limited again by the FOV of the beam. Unlike the previous simulations, the 

cross-correlation object does not provide sharp detail of the bars, due to the noisy 

incomplete data. The EM optimized object provides a much larger FOV giving more 

Figure 31: Scene Shift Tracking in X and Y Directions with Speckle Noise 
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information about the target object. The wider FOV again increases the overall quality of 

the object image. Quantitative analysis again supports the visual analysis; the RMSE of 

the cross-correlation object was 151.17 compared to 65.24 for the optimized object.  

 

Table 3: EM Algorithm Summary of Results 

 

 

Noise 

Condition 

Beam 

Absolute 

Error - X 

(pixels) 

Beam 

Absolute 

Error - Y 

(pixels) 

Scene 

Absolute 

Error - X 

(pixels) 

Scene 

Absolute 

Error - Y 

(pixels) 

Cross-Corr 

Absolute 

Error - X 

(pixels) 

Cross-Corr 

Absolute 

Error - Y 

(pixels) 

EM 

RMSE 
CC RMSE 

No Noise 1.00 0.27 1.07 0.17 0.00 0.00 45.10 155.81 

Poisson Noise 1.10 0.43 1.27 0.20 0.00 0.00 47.73 155.90 

Speckle Noise 1.10 0.73 1.20 0.23 0.60 0.57 65.24 151.17 

Figure 32: Cross-Correlation Object and EM Object with Speckle Noise 
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4.1.3 Hybrid Algorithm 

After comparing the EM algorithm against the cross-correlation method, the EM 

algorithm clearly produces a cleaner output image than the cross-correlation method. The 

previous data also shows that the cross-correlation method tracks the scene shifts better 

than the EM algorithm due to computational limitations. Testing continued to see if a 

hybrid method could produce better results using cross-correlation shifts with the EM 

beam shift update equation and EM object update equation. The process flow for the 

hybrid algorithm is shown, below, in Figure 33. 

 

 The cross-correlation algorithm estimates the scene shifts in each frame of 

the data set. These estimated shifts are then fed into the object update equation. The new 

estimate of the object is then given to the beam shift update equation with the cross-

Figure 33: Hybrid Algorithm Flow Chart 
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correlation scene estimates. Next, the new beam shift estimates are given back to the 

object update equation. This process repeats until beam shift estimates and the object 

converge.  

4.1.3.1 Noiseless Simulation 

 This hybrid method was first tested using noiseless data. The beam tracking 

estimates are shown in Figure 34.  

 

The beam shifts estimates show a marked improvement from the EM algorithm, but still 

do not track input shifts perfectly. The mean absolute error in beam shift tracking was 

0.43 pixels in the X direction and 0.33 pixels in the Y direction. Next, the results of the 

cross-correlation shift tracking are shown, below, in Figure 35. 

 

Figure 34: Beam Shift Tracking with No Noise 
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The cross-correlation method tracked the scene shifts perfectly in both X and Y 

directions - resulting in an absolute mean error of 0.0 pixels in each direction. Using 

these cross-correlation estimates and the EM algorithm beam shift estimates, the hybrid 

algorithm produced the object shown in Figure 36.  

Figure 35: Scene Shift Tracking with No Noise 

Figure 36: Hybrid Optimized Object with No Noise 
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This hybrid approach produced a strikingly clear image of the optimized object. The bars 

in the object are shown in sharp detail, and the FOV of the target is widened just like the 

EM optimized object before. This results in a RMSE of 16.89. This low RMSE for the 

hybrid image supports the visual assessment of a strikingly clear image.  

4.1.3.2 Poisson Noise Simulation 

The hybrid method was next tested using a data set with simulated Poisson noise added. 

The beam tracking estimates are shown in Figure 37.  

 

 

The beam shift estimates, again, show a marked improvement from the EM algorithm, 

but still do not track input shifts perfectly. The mean absolute error in beam shift tracking 

was 0.47 pixels in the X direction and 0.27 pixels in the Y direction. Next, the results of 

the cross-correlation shift tracking are shown, below, in Figure 39. 

Figure 37: Beam Shift Tracking with Poisson Noise 
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The cross-correlation method tracked the scene shifts perfectly in both X and Y 

directions - resulting in an absolute mean error of 0.0 pixels in each direction. Using 

these cross-correlation estimates and the EM algorithm beam shift estimates, the hybrid 

algorithm produced the object shown in Figure 38.  

 

Figure 39: Scene Shift Tracking with Poisson Noise 

Figure 38: Hybrid Optimized Object with Poisson Noise 
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Even with Poisson noise added to the simulation, the hybrid approach produced another 

clean image of the optimized object. The bars in the object are again shown in sharp 

detail, and the FOV of the target is widened just like the EM optimized object before. 

Looking closely, there is some evidence of noise in the image towards the fringes of the 

object. However, the object is effectively optimized to show a clear object. This results in 

a RMSE of 21.77 for this image. This low RMSE for the hybrid image supports the visual 

assessment of another cleanly optimized image.  

4.1.3.2 Laser Speckle and Background Noise Simulation 

Finally, the hybrid method was tested using a data set with simulated laser speckle noise 

and background noise added. The beam tracking estimates are shown in Figure 40.  

 

Figure 40: Beam Shift Tracking with Speckle Noise 
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The hybrid approach beam shift estimates show comparable results to the EM algorithm. 

The mean absolute error in beam shift tracking was 1.03 pixels in the X direction and 

0.97 pixels in the Y direction. Next, the results of the cross-correlation shift tracking are 

shown, below, in Figure 41. 

 

Like the cross-correlation scene tracking results in the speckle noise simulation prior, the 

cross-correlation method tracked the scene shifts effectively, but not perfectly. This 

resulted in an absolute mean error of 0.90 pixels in the X direction and 0.60 pixels in the 

Y direction. Using these cross-correlation estimates and the EM algorithm beam shift 

estimates, the hybrid algorithm produced the object shown in Figure 42.  

Figure 41: Scene Shift Tracking with Speckle Noise 
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Because the scene and beam shift estimates are comparable to the EM algorithm, the 

hybrid approach, predictably, produced an output object comparable to the EM algorithm. 

The hybrid optimized object provides a large FOV, but the details are not as crisp as the 

previous hybrid results. There is clear noise throughout the image. However, the object is 

effectively optimized to show a clear object. This results in a RMSE of 61.92 for this 

image.  

 

 

 

Figure 42: Hybrid Optimized Object with Speckle Noise 



59 

Table 4: Hybrid Algorithm Summary of Results 

Noise 

Condition 

Beam 

Absolute Error 

- X (pixels) 

Beam Absolute 

Error - Y 

(pixels) 

Cross-Corr 

Absolute Error 

- X (pixels) 

Cross-Corr 

Absolute Error 

- Y (pixels) 

Hybrid 

RMSE 

No Noise 0.43 0.33 0.00 0.00 16.89 

Poisson 

Noise 0.47 0.27 0.00 0.00 21.77 

Speckle 

Noise 1.03 0.97 0.90 0.60 61.92 

 

4.2 Analysis of Results 

This thesis will first analyze the results of the EM algorithm before analyzing the hybrid 

method and the wholistic results of the research effort.  

4.2.1 EM Algorithm Analysis 

 Though the beam could not perfectly track the input shift, it did track beam 

shifting with some success. Beam tracking results are shown in Figure 43, below. When 

isolated with the true object and scene shifts, the beam update equation individually 

tracked the input shifts perfectly. Without the true scene shifts and object, it was unable 

to perfectly estimate the input shifts, but it did provide close estimates. Looking at each 

noise source, the beam shift tracking, as expected, performed best under no noise 

condition with 1.00 pixels and 0.27 pixels of absolute error in X and Y, respectively. 

Once Poisson noise was added, it performed worse - but not much worse. The absolute 
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error in X only grew to 1.10 pixels, and the absolute error in Y only grew to 0.43 pixels. 

These are certainly less accurate than the noiseless simulation, but not drastically worse.  

Once laser speckle noise and background noise sources were added, the performance 

decreased, but only slightly. The absolute error in X remained steady at 1.10 pixels, and 

the absolute error in Y only grew to 0.73 pixels. These results suggest that the beam 

tracking can handle various noise sources successfully, though not perfectly. 

 

The scene tracking showed similar results to the beam tracking. It showed some 

success, but it could not deliver perfect shift tracking. These results are shown again in 

Figure 44. These results could have been expected from the results of the isolated scene 

update equation testing. Even given the true object and beam shifts, the equation could 

not perfectly track the input scene shifts. The noiseless simulation performed the best of 

Figure 43: EM Algorithm Beam Shift Tracking  
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the noise conditions with 1.07 pixels and 0.17 pixels of absolute error in X and Y, 

respectively. With Poisson noise added, the scene tracking showed similar performance 

at 1.27 pixels and 0.20 pixels of absolute error in X and Y, respectively. And finally, after 

adding speckle and background noise, the scene tracking produced 1.20 pixels and 0.23 

pixels of absolute error in X and Y, respectively. Like the beam shift tracking, these 

results suggest that the scene tracking can handle various noise sources successfully, 

though not perfectly. 

Figure 44: EM vs Cross-Correlation Scene Shift Tracking 
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 The EM scene tracking has a direct comparison point of cross-correlation to see 

the success of the algorithm. Under each noise condition, the cross-correlator performed 

better at tracking the scene shift than the EM algorithm. It was perfect under no noise and 

Poisson noise conditions where the EM algorithm was not. Under speckle noise, 

however, the cross-correlator could not perfectly track the input shifts. The cross-

correlator produced 0.60 pixels and 0.57 pixels of absolute error in X and Y, respectively; 

the EM algorithm produced a better estimate in the Y direction under speckle noise. 

These cross-correlator results show better scene tracking ability than the EM algorithm 

but show a steep drop off as more noise was added to the simulation. 

 The final piece to analyze was the object produced from the EM algorithm and the 

cross-correlation method. These results are shown in Figure 45, below. These results 

show that the EM object, as expected, produced the least error with no noise and most 

error with speckle and background noise. More importantly, these results show that the 

EM optimized object is significantly lower than the cross-correlation object. The cross-

correlation object RMSE was 345% higher than the EM optimized object under no noise, 

327% higher under Poisson noise, and 232% higher under speckle noise. These numbers 

suggest that under each noise condition, the EM beam and scene tracking deconvolution 

algorithm produces a significantly cleaner object than the cross-correlation method.  
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4.2.2 Hybrid Algorithm Analysis 

Beam tracked showed a significant improvement using the hybrid method compared to 

the EM algorithm. Beam tracking results from both algorithms are shown in Figure 46, 

below. Looking at each noise source, the hybrid method beam shift tracking performed 

best under no noise or with Poisson noise. The hybrid approach gave 0.43 pixels and 0.33 

pixels of absolute error in X and Y, respectively with no noise present and 0.47 pixels 

and 0.27 pixels of absolute error in X and Y, respectively with Poisson noise. With each 

of these noise conditions, the hybrid method clearly outperformed the EM algorithm. 

Once laser speckle and background noise were added, the hybrid beam shift tracking 

performed worse. The absolute error in X grew to 1.03 pixels, and the absolute error in Y 

only grew to 0.97 pixels. These results are noticeably worse than the noiseless and 

Poisson noise simulations, and no longer exceed the beam tracking abilities of the EM 

Figure 45: EM vs Cross-Correlation Object Optimization 
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algorithm. Both the EM algorithm and the hybrid algorithm produced similar results. 

These results suggest that under high noise, the hybrid method is comparable to the EM 

algorithm at tracking the beam, but with low noise levels the hybrid algorithm is superior. 

 

Analysis shifted to the scene shift tracking next. Figure 47 shows the scene tracking 

absolute error from the EM algorithm compared to the hybrid method under each noise 

condition. Just like the previous simulations, the cross-correlator perfectly estimated the 

input shifts with no noise and Poisson noise added; these resulted in 0.00 absolute error in 

each direction. The perfect scene tracking under these noise sources explains the 

improved beam shift tracking previously reported. The hybrid method was given 

significantly better scene shift estimates, and that resulted in significantly better beam 

Figure 46: EM vs Hybrid Beam Shift Tracking 
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shift estimates. With speckle and background noise added, the cross-correlation method 

produced comparable results to the EM algorithm. This also explains why the beam shift 

tracking was comparable with the hybrid method. 

 

The final piece to analyze was the object produced from the hybrid algorithm and 

compare against the EM algorithm. These RMSE results are shown in Figure 48, below. 

The EM and hybrid objects are shown side by side for each noise condition in Figure 49. 

Qualitatively analyzing the images, the hybrid algorithm clearly produces the two 

cleanest images; the hybrid object under no noise and Poisson noise are both strikingly 

sharp images of the original target object. Looking at the quantifiable data for these two 

noise sources, the RMSE calculations confirm that the hybrid is a truly cleaner image 

with less error. 

Figure 47: EM vs Hybrid Scene Shift Tracking 
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Looking, next, to the speckle noise simulation, the two objects visually look nearly 

identical. Both images show a strong representation of the original target object, and both 

other. The RMSE calculations support this claim. The EM algorithm produced an object 

with 65.24 RMSE compared to 61.92 RMSE for the hybrid algorithm; both results have 

very comparable amounts of error. These results follow the trends established with the 

scene tracking and beam tracking. The cross-correlator produced similar scene tracking 

results to the EM algorithm at high noise levels, and this caused similar beam tracking 

results. Given similar beam and scene shift estimates, the hybrid algorithm, predicably, 

produced a similar quality of optimized object to the EM algorithm. 

 

Figure 48: EM vs Hybrid Object Optimization 
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EM Hybrid 

EM Hybrid 

EM Hybrid 

Figure 49: EM and Hybrid Optimized Objects 
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V.  Conclusions and Recommendations 

This chapter will discuss the conclusions gathered from the research and discuss 

recommendations for future research efforts. 

5.1 Conclusions 

 This research effort developed and tested the beam and scene tracking 

deconvolution algorithm using the EM algorithm and continued to add to the 

performance with the hybrid algorithm. Previous research efforts could not perform the 

beam and scene tracking with the EM derived update equations; these beam and scene 

shifts were estimated with a block matching approach. Computational advances now 

allow the beam and scene tracking equations to be implemented entirely with the EM 

derived update equations, though the scene update equation still cannot estimate the shifts 

perfectly. 

Each component of the beam and scene tracking deconvolution algorithm was 

isolated and tested individually. The beam shift tracking and object optimization both 

performed excellently when isolated. The beam shift update equation perfectly tracked 

each input shift under each noise condition, and the object optimization produced 

remarkably clean images. However, the scene shift algorithm could not perform perfectly 

when isolated. This is likely due to computational limitations. The EM algorithm dictates 

that the algorithm should converge on the true shift, but implementing in simulation 

found that the computer could not properly estimate the shifts. The EM algorithm shift 

tracking was outperformed by the cross-correlation algorithm under low noise and 

performed comparably under high noise. 
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When implementing the entire EM algorithm, the algorithm effectively estimated 

beam and scene input shifts under various noise conditions. Though the beam shift 

shifts could compare directly to the cross-correlation method. The cross-correlation was 

found to estimate the scene shifts better than the EM algorithm, although under high 

noise levels the two algorithms produced similar scene tracking abilities. The EM 

algorithm shined in its ability to produce a clear image of the optimized object. The EM 

optimized object was much cleaner, visually, than the cross-correlation object, and the 

RMSE calculations of each object confirmed that there was much less error in the EM 

algorithm optimized object.  

Using the knowledge that the scene shift tracking was performing worse than 

cross-correlation at estimating input shifts, the research investigated a hybrid algorithm 

that used cross-correlation and components from the EM algorithm. This hybrid 

algorithm performed exceptionally under low noise conditions. RMSE calculations show 

that the optimized objects from the hybrid algorithm had about one third the error of the 

EM algorithm optimized objects. With laser speckle noise added to the simulation, the 

cross-correlation only performed comparably to the EM algorithm scene tracking, and the 

hybrid algorithm performed comparably to the EM algorithm. RMSE calculations 

confirmed that the hybrid optimized object and EM optimized object had very similar 

amounts of error.  

This research effort has found that a beam and scene tracking deconvolution 

algorithm can successfully produce cleaner images than using cross-correlation to register 

and average frames of data under various noise conditions. The EM algorithm produced 
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higher quality objects than the cross-correlation object for each noise condition. 

affected the overall quality of the output object. The hybrid algorithm worked around the 

EM scene tracking issues by using cross-correlation estimates and provided exceptional 

output objects under low noise. Under higher noise, the hybrid algorithm runs into similar 

scene tracking limitations, and these limitations means the hybrid algorithm outputs 

similar optimized objects to the EM algorithm.  

5.2 Recommendations for Future Research 

 Though the EM algorithm has proven that it can provide clean images, there are 

several assumptions and limitations that could be researched further to strengthen the 

algorithm. This algorithm, as currently implemented, is too slow to provide real-time 

tracking and object optimization. A research effort to speed up the algorithm, to the point 

of near real-time object optimization, could prove invaluable and greatly strengthen the 

utility of the EM algorithm.  

 This research effort assumed that both the beam shifts and scene shifts are 

uncorrelated in time, and it simulated them as such. Atmospheric turbulence has been 

known to be correlated in time. This would result in shifts in the beam that are correlated 

and, likewise, shifts in the scene that are correlated. This knowledge could be used to 

improve the beam and scene tracking from frame-to-frame. A research effort moving 

forward could work to leverage this fact to improve shift tracking and result in a better 

optimized object.  
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collects true test range data and tests the EM and hybrid algorithms with real data could 

further prove the utility of either algorithm. True test range data could also introduce 

rotational or scaling differences between frames of the data set; the algorithm was not 

built to deal with these types of registration challenges. A research effort to deal with 

these types of registration challenges would also improve the practicality of the 

algorithm.  

This algorithm assumed a fixed and known PSF throughout the simulation testing. 

It can be difficult to properly gather the atmospheric PSF of laser illuminated imaging 

systems; a long exposure PSF may not be appropriate. This assumption could be 

eliminated with use of a blind deconvolution algorithm. This would allow the algorithm 

to estimate the object and PSF separately at each iteration. This would eliminate the 

reliance on the assumption of the PSF and would further strengthen the algorithm. 
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Appendix A 

To solve the conditional expectation shown in Equation 9, we define variables d1, d2, and 

d below. Equation 35, Equation 36, and Equation 40 show the relation of these variables 

to the complete data. 

 35 

 
36 

 37 

 38 

 39 

 

40 

d1 and d2 are defined as Poisson random numbers. Their joint probability of is shown 

below in Equation 41. 

 41 

Rearranging Equation 39 and substituting into Equation 41 gives the joint probability of 

d1 and d in Equation 43. 
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42 

 43 

Leveraging the fact that the sum of two Poisson random number is another Poisson 

random number with the mean being the sum of the means, the PMF of d is shown 

below. 

 44 

Using Equation 39 and Equation 40, Bayes theorem gives the conditional probability of 

d1 given d. After some rearranging, it is clear to see that the conditional probability is a 

binomial PMF, shown in Equation 42, parameterized as shown in the table below. The 

expected value of a binomial PMF is known to be the product of the number of trials, n, 

and the probability of success, p. 
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Table 5: Conditional Expected Value Definitions 

Number of 

Trials 

d  

Number of 

Successes 

d1  

Probability of 

Success 

  

Expected 

Value 
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