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EXECUTIVE SUMMARY

Mitigating Electro-Magnetic Interference (EMI) is a long-term engineering problem for shipboard
RF systems [15], [14]. Measuring the electric field is basic to EMI mitigation. This report analyses
electric-field measurements taken on the flight deck of a carrier. These electric field is sparsely sam-
pled at selected locations on the flight deck. Interpolation schemes “fill in” the electric field between
sample points. The quality of these interpolated electric fields is the “object of discussion™ of this re-
port.

Standard splines do not encode the physics of the problem—that the electric field in free space has
zero divergence. This report develops a class of splines with zero divergence. Comparisons between
these divergence-free splines and standard splines demonstrates enforcing zero divergence improves
the quality of the spline—fewer sample points are required to recover the electric field with greater
accuracy than the standard splines.

Applying a divergence-free spline to these flight-deck measurements requires a hybrid approach
because only the electric field magnitude was measured. The hybrid approach exploits knowledge of
the physical measurement to constrain the divergence-free splines to interpolate the amplitude at each
sample point while leaving the phases as free variables at each sample point. The phases are optimized
to approximate the splined electric-field magnitude. Consequently, the hybrid approach produces a
divergence-free spline that matches the measured amplitude at each sample point and is a best approxi-
mation to the standard spline.

Reducing the sampling density means these divergence-free splines support scanning electric fields
over physically large areas, including

* Regions above flight decks.
« Shipboard HF/VHF/UHF antenna patterns,
* VLF antenna patterns.

The approach for all these measurements employs a UAV to fly through a relevant part of the electric
field. The UAV produces a fast sampling of the 3-D electric field for interpolation by the divergence-
free splines. The final section of this report details these applications.
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1. SPLINES AND PHYSICS-BASED SPLINES

The standard splines, such as the cubic spline, are mathematical functions that interpolate sampled
data and “fill-in” the data between the sample points. Although standard splines are smooth functions
that match the measurements at each sample point, these splines do not model the “physics” implicit
in the measurements, such as the vanishing divergence of an electric field. This report develops one
class of physics-based spline with a vanishing divergence and demonstrates these splines are better
interpolants of electric fields than the standard splines.

Section 1.1 introduces the standard cubic spline. Section 1.2 introduces the electric field measure-
ments and applies the standard splines to these measurements. The differences between the splines
motivate the development of the divergence-free splines. Section 1.3 sets out the divergence constraint.
Section 1.4 outlines the report and sets the notation.

1.1 STANDARD SPLINES

Splines are interpolating functions subject to smoothness constraints. The standard cubic spline
had its origin in the wooden and plastic splines employed by ship and aircraft designers to make
smooth hulls, wings, and propellers. Figure 1 is an example of a wooden spline where both endpoints
are clamped and two interpolation “nodes’ bend the spline into the “S” shape.

\

=

Figure 1. A wooden spline (Courtesy of Pearson Scott Foresman [6]).

Physically, this spline interpolates the nodes with minimal energy. Mathematically, a cubic spline
¥ : [a,b] — R is the unique function that interpolates the given data [23, Theorem 2.4.1.5]:

V() =yp; a=zp <y 2N=0D>

o= [

over the class of functions on [a, b] with absolutely continuous second derivative. If the interpolation
points were determined by an ideal plastic spline, the cubic spline would recover the entire profile of
the plastic spline using only the interpolated points.

with minimal “curvature”

" () |2 dx




1.2 STANDARD SPLINES AND THE ELECTRIC FIELD

The following figures illustrate the canonical example of this report where an electric field is esti-
mated from sparse measurements. Figure 2 shows the measurement locations on the flight deck.
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Figure 2. Electric field measurement locations on the flight deck; locations are spaced 60 feet apart in
the z direction. Inner rows are 36 feet from from the center line; Outer rows are 72 feet from inner

rows except locations 52, 45, 44 that are 36 feet from the inner row [12].

Figure 3 plots the electric field magnitude at the specified locations on the flight deck. The bow of
the ship is located at x = () feet. The stern is located at slightly past x = 1000 feet.

Flight Deck: Antenna 001
Sampled amplitudes at 306.0794 MHz
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Figure 3. Electric field amplitudes at the measurement locations shown in Figure 2.

Given the scattered electric field measurements of Figure 3, the natural question asks:
What is the electric field over the flight deck between the samples?

Figures 4 illustrates this question by comparing 1-D interpolation of the electric field amplitudes
sampled along the inner row at locations (x,,, y,) for y, = —36 feet (See Figure 2). The cubic spline
smoothly interpolates these amplitudes and shows the natural overshoot characteristic of these splines
[23]. Making the spline “stiffer” reduces the overshooting. Stiffer splines behave more like a linear
interpolant with discontinuous first derivative.
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Figure 4. The linear and cubic spline interpolating measured amplitudes taken on the flight deck along
the slice y = —36 feet.

Although both splines interpolate the measured amplitudes, the splines differ between sample
points and raises the question:

Which spline best matches the actual electric field?

The question admits more consideration by observing the splines of Figures 4 employ only a 1-D slice
of the electric field. Using all the measurements requires splines that interpolate in two dimensions.
The cubic spline generalizes to interpolation over domains of two and three dimensions. Other splines
that also generalize to 2-D and 3-D domains are linear interpolation [23], the natural neighbor interpo-
lation [24] and the biharmonic spline [21]. Figures 5 and 6 apply these 2-D splines to to the flight-deck
measurements.

Figures 5 is a top view of the sample points (z,, ¥, ) on the flight deck. Figure 6 compares three
different splines interpolating the measured electric-field amplitudes at these 2-D sample points:

Un| = ‘P(lru yﬂ,)a

where the absolute value sign emphasizes that the voltages are amplitude only. All the interpolants
capture the gross “shape” of the electric field—more amplitude in the stern—the fields are different.
Under sufficient smoothness conditions, splines converge to their source function as the sampling be-
comes dense [23, Theorem 2.3.3.3]. Typical splines require four or more samples per wavelength to
follow a sinusoid. The measurement locations on the flight deck are approximately 20 meters apart. At
306 MHz, the wavelength is approximately A ~ 1 meter. Therefore, additional electric-field structure
must be exploited to overcome this sparse sampling.
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Figure 5. Measurement locations on the flight deck.
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Figure 6. Splines of the electric field amplitudes using the flight-deck measurements.



1.3 WHY DIVERGENCE-FREE SPLINES?

Electric fields E in free space
Ey(r)
E(r) = | Eyr)
E.(r)

have zero divergence |22, Eq. 3.4]:

dE, OF, OF,

0=div(E) =

O Ay dz

Although three cubic splines could separately interpolate each component of an electric field, the
splined components are not designed to exhibit zero divergence. This report develops a class of
divergence-free splines to enforce the divergence constraint and assesses the quality-of-fit on electric
fields. The conclusion is that these divergence-free splines outperform the standard splines when inter-
polating simulated and measured electric fields.

1.4 OUTLINE

Section 2 sets out the formalism for a class of divergence-free splines in two and three dimensions
using a Gaussian function.

Section 3 reviews electric fields and the associated plane-wave propagation in free space. These
plane-wave electric fields are divergence free. The divergence-free splines produce better interpola-
tions of these divergence-free fields than the linear, natural, or cubic splines.

Section 4 reviews the electric field generated by the Hertzian dipole in free space. This free-space
model approximates the electric field generated by a Hertzian dipole over a Perfect Electrical Conduc-
tor (PEC). The divergence-free splines produce better approximations to this electrical field than the
linear or cubic splines.

Section 5 applies the preceding developments to the magnitude-only electric-field measured on a
flight deck. The divergence-free splines assume an electric-field model of the form:

» cos( gy, ) sin(f,,)
E(r,) = |[v,|e?“" | cos(¢n) sin(0y,)
cos(fy)

where only the position 1, and the magnitude |v,,| are measured. The electric field azimuth {¢y, },
zenith {6, }, and voltage phase {Zuvy, } are free parameters in the model. If a divergence-free spline
¢(r) interpolates this synthetic electric field

(e, ) = E(ry),
the magnitude is interpolated at each sample point:
() (| = [[E(r)[| = [val

while free parameters are optimized to meet other modeling constraints. In this report, the electric field
model is optimized to minimize the distance between the divergence-free spline and the cubic spline.
That is, the resulting spline represents a divergence-free electric field that is also closest to a standard
spline.

Section 6 details how a UAV, carrying a three-axis antenna to measure the electric field, could
rapidly sample a relatively large electric field for interpolation by divergence-free splines. Tn particu-
lar, the electric field over a flight deck could be densely sampled in a volume over the deck to caputre
the 3-D view of the electric field rather than the horizontal slice.



1.5 NOTATION

The real numbers are denoted by R. The real vector space of dimension d is denoted by R, The
complex numbers are denoted by €. The complex vector space of dimension d is denoted by C?. A
spatial vector r € R? is typically written

The transpose of a vector is

The vector norm is
Irll = VrTr = a2 + 32 + 22,

An electric field vector at a location r € R? has complex-valued components denoted as

E,(r)
B() = | E,(r)
E.(r)

The “nabla” operator is [7]
0/0x
V= |9/dy
/0
and employed as a vector so that

Ly 0L, OF,
div(E):VTE:a_E" OB, | O

oz Ay Oz

The inner product of the nabla with itself is the Laplacian:

6)2 ()2 02
A=VIV=—m+-5+-7
dx? + oy? 022
The outer product of the nabla with itself is the second-derivative matrix

(5\2 82 62

33?27 B.rgy 697?2
T fek o 92
A dydx  ay? Iydz

&2 5? o

dzde  Hzdy 822
that acts on a scalar function > as

924 4 &%y
D2 dxdy  Ozdz

T, — 34 D24 D24
VV ) = dydw (‘)%(2 dydz
R 849 fe i)

Jz0x Ozdy 072

The Laplacian multiplies the 3 x 3 identity matrix I3 as

1 00
A-I3=A1|0 1 0
001
and acts on a scalar-valued function « as
Ay 0 0
A-Isp=A10 Ayp 0
0 0 Ay



2. DIVERGENCE-FREE SPLINES

The divergence-free interpolation problem seeks a vector field J that interpolates vector-valued
measurements vy, at spatial locations r,:
Vyp = ?;'“)(1'7,)
with vanishing divergence:
0=VT(r)

for all ¥ € R¥, where d denotes the spatial dimension (d = 2, 3).

In 1982, Grace Wahba produced one of the first papers on splines that obeyed physical laws [25].
This paper estimated divergence-free and curl-free splines on the sphere from discrete and noisy
measurements. By 1992, the mathematical community had generalized divergence-free splines to
divergence-free vector wavelets. By 1994, “wavelet electromagnetics” reached book form [13]. Mul-
tiple approaches are summarized by Lemarie-Rieusset’s 1992 paper [17]. The “top-down™ approach
constructs a wavelet basis of L?(R%, R) with projections P and a wavelet basis of L2(R%, RY) with
projections ﬁJ that commute with the divergence operator [11]:

VT Py = PV T,

The “bottom-up” approach converts a wavelet basis {«;  } into a divergence-free basis. This report
uses a bottom-up approach to develop a class of divergence-free splines when the wavelets are gener-
ated by Gaussian functions.

2.1 GAUSSIAN SPLINES

The 2011 paper by McNally uses Gaussian functions to parameterize a class ot divergence-free
splines. [18]. Let ¢/ denote the Gaussian function of the form

W(r) = eXp(—ﬁrTl‘): 8 >0 (1)

Define the matrix-valued function
U= {VVT — Afd} ¥, (2)

where 14 denotes the d x d identity matrix. This function has zero divergence because
vl {va _ ALI;} = Vv - VAl

= AV —AVT
0.

Sections 2.2 and 2.3 detail the interpolation conditions for d = 2 and 3, respectively.



2.2 GAUSSIAN SPLINES IN TWO DIMENSIONS

The Gaussian spline matrix ¥ of Equation 2 in two dimensions is

1 — 28y? 28y
3ir) == 238Y(x, o T , 3
where 4/ is the Gaussian function of Equation 1. The Gaussian spline
W (r) al
b = ¥ = B r—
interpolates electric field measurements {ry, v, } as
P (r-n)] AT
Vp = | o (n=1,...,1 N
=[] =t
if and only if the Vandermode matrix with the 2 x 2 blocks is invertible:
Vi 21y U(fB;r1 —12) -+ U(Anirr —ry)| [ W1
va | U(31iro —11) 2821y s W(Basre —rN)| | W @
Vi v ( ’81; ry — 1‘1) L\ (‘822‘ Ty — l‘g) s 28515 Wy

Figures 7 and 8 show the field and magnitude of the first column

R R
)
Likewise, Figures 9 and 10 show the field and magnitude of the second column

T(:,2) = r"’“] :

159

McNally [18] insightfully observes that the first column of ¥ “resembles a dipole field in the z direc-
tion” and that the second column of ¥ resembles “a dipole field in the y direction.” This interpolation
method is divergence free because “the field is built entirely from shitted and normalized versions of
the dipole compoenents.” Using these Gaussian splines requires an adroit selection of the 3,,’s. Rela-
tively large values of the 3,,’s produce divergence-free ficlds consisting of Gaussian “thumbtacks™ as
illustrated by Figures 8 and 10. More substantial problems arise when only the magnitude of the elec-
tric field is measured.
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Figure 9. Vector field of the second column of ¥(3, r).

8,025

[1®(:,2)

Figure 10. Magnitude of the second column of &(3,r).
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2.3 GAUSSIAN SPLINES IN THREE DIMENSIONS

The Gaussian spline matrix ¥ of Equation 2 is three dimensions is

1 - B(y% + 22) Baxy Bz
U(8;r) = 48¥(z,y, 2) By 1— B(x? + 2% Byz
Bxz Byz 1— B(2% +y?)

where ¢ is the Gaussian function of Equation 1. The Gaussian spline

’l_j")l (l‘) N
1,-'5(1‘) = WQ(I') = Z U(Bpir — rn)wn-
s (r) n=1
interpolates the electric field as
P1(rn)
Vo= |the(r,)|; (n=1,...,N)
3 (rn)

if and only if the Vandermode matrix with the 3 x 3 blocks is invertible:

Vi 4115 U(Basry —12) -0 YU(Bniri —rn)| [W
va| | ®(Bisra -1y 403213 s W(Bnsra—rN)| | We )
VN UGy —r) U(Bairy—re) - 48N 15 W

Figures 11, 12, 13 plot the vector fields generated by the three colmns of W. The plots show that each
column W(:, 1), U(:, 2), ¥(:, 3) is a dipole field pattern along the z, y, and z axis, respectively.

T(:,1): f=0.25

y (m) 4 4 x (m)

Figure 11. 3-D vector field of the first column of ¥(53, r).
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U(:,2): f=0.25

y (m)

4 -4 x (m)

Figure 12. 3-D vector field of the second column of ¥(3, ).

(:,3): 5=0.25

2
y (m) -4 4

x (m)

Figure 13. 3-D vector field of the third column of ¥(3,r)

12



3. SPLINES OF PLANE WAVES

This section splines the electric field produced by plane waves propagating in two- and three-
dimensional free space. In both cases, the divergence-free Gaussian splines are better interpolants of
the plane-wave electric fields than the cubic, natural, and linear splines. Section 3.1 sets out the plane-
wave models. Sections 3.2 and 3.3 compare the splines on 2-D and 3-D plane waves, respectively.

3.1 ELECTRIC-FIELD PLANE WAVES IN FREE SPACE
This section reviews electric field theory to set up analytic models of selected electric fields con-

sisting of a sum of plane waves. The analytic models are the baseline to compare the divergence-free
splines against the standard splines. Maxwell’s Equations in free space take the form [5]:

VxE = —jwueH
VxH = (04 jweE
VIE = 0
ViH = 0
where the free-space permeability is g = 4m - 1077 H/m, the free-space permittivity is ey —

8.85 - 1072 F/m, and the angular frequency w is in rad/sec. Gauss’ Law is the third equation where
the vanishing divergence has the physical meaning that the net electric flux though any closed surface
that surrounds no charge is zero.

Wave Equation: The electric field in free space satisfies the wave equation |22, Eq. 3.5]:
VE + wz,u.oeoE =0.
The wavenumber appears in the wave equation as [22, Eq. 3.7]
k= wzpmm

because [22, Eq. 3.9]

and the speed of propagation ¢ is

|m/sec].

cpy =
v W HOED

Wave Equation Solutions: Plane-wave solutions of the wave equation depend on only one spatial
direction and have the general form [3, page 218]:

E(r) := u(rjey [V/m],
where eg € C? and u(r) satisfies the scalar wave equation. Time-harmonic plane waves have the form
E(r) = exp(—jk ;& = [k

where k is called the wave vector. This electric field is divergence-free provided the electric field vec-
tor ey is orthogonal to the wave vector:

0=k'ey, — V'E=0.
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Parametrization: This report parameterizes plane wave electric fields as
cos{¢) sin(f)

E(r) = exp({—jk'rleq; k=1Fk |sin(¢)sin()|: k=

E
cos(8) A

using the azimuth angle ¢ and zenith angle 6 as shown in Figure 14.
A
u\
K:\r%

L

Figure 14. Spherical coordinates.

Power Flow: The Poynting vector determines the direction of power flow [22, Eq. 2.31]
S=ExH" [W/m?],

where H is the magnetic field. The magnetic field is the curl of the electric field [22, Eq. 3.1]:

—VxE=H [A/m].
— o

The curl of the plane-wave electric field determines the magnetic field as

1
H = exp(—jk'r)hy; hy:= —k x eg.

wty

Consequently, this magnetic field is also orthogonal to k and divergence-free:
0=k"'xhy < V'H=0.
Therefore, the Poynting vector is constant [22, Eq. 2.31]
S=¢gxhy [W-m?

and points along the wave vector k because e; and hg are both orthogonal to k.

14



Example 1 (Plane Wave Along the = Axis) If the wave vector Kk points along the x-axis

1 2%
k=k|0|; k== [rad/m]
0 A

and the electric field direction points along the y-axis

0
e = |1 [V/m],
0
the electric field is
0
E(¢;1) = exp(—jk'r)eg = 7% [ 1| [V/m)].
0
The magnetic field is
1 g ike 0
H=—VxE=- 0| [A/m]
—Jw o Cofio 1

so that the Poynting vector S has the same direction as the wave vector:

1

COMbO

1
COMO 0

0 0
S=EXH*= 1 X 0 =
1

e}
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3.2 SPLINES OF 2-D PLANE WAVES

This section compares several splines against the 2-D Gaussian splines on plane-wave electric
fields. For simplicity, these fields are constrained to have vanishing = component. The examples show
that the 2-D Gaussian splines recover the electric field using fewer samples than the standard splines.

Example 2 (Horizontal Plane Wave) [f the electric field has no = component, the wave vector Ky is
determined by the azimuth angle ¢ as

wos@] g
ky =k [sin(¢)|; k= ~ [rad/m].
0

For the plane-wave electric field to be divergence-free, e, must be orthogonal to wave vector Ky. Se-
lecting

sin(¢g)
ey = |—cos(p}| [V/m]
0
determines the electric field as
Ey(¢:r)
E(o;r) = cos(k(l‘Tf,l‘)edJ = | Es(¢;r1) [V/m].
0
For comparison with the shipboard measurements, the cenfer frequency is set to fo = 300 MHz or,

equivalently, the wavelength is A = 1 meter. Figure 15 plots the first two components of the electric
field over the rectangle 0 < x < 10 and —1 < y < 1 meters. Figure 16 shows the randomly scattered
sample points {r, } with an approximate sampling density of

79

= 5% 10 4 [samples/m?|

p
Figure 17 reports the 2-D Gaussian spline based on these scattered points. Both components of the
electric field are recovered with reasonable accuracy. Some distortion is visible where the randomly
scattered samples are less dense. Figures 18 and 19 show that the linear or the natural splines do not
recover the electric field at this sampling density.
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Ei(¢;1); ¢=15 deg

T : : : I
05 0.5
E of 0
05} 1 05
1k ; . ; . 3 1
0 2 4 6 8 10

y(m)

Y (m)

x (m)

Figure 15. 2-D electric field propagating at 15° azimuth at 300 MHz.
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e %0 ® " . e | ®
-] - . - . 1
9 |- 1
_3 1 1 1 1
0 2 4 6 8 10
x (m)

Figure 16. Randomly scattered sample points of the electric field.
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Gaussian Sphne ~ Ei(¢;r); p= 15 deg

1 B
0.5 | 05
0
-0.5 ‘ ;
-1 s

8 10

y (m)

=)
Vim

Gaussian Spline ~ Fs(¢;r); fc=300 MHz

Vim

y (m)

0 2 4 6 8 10
x (m): N =79 sample points; =1

Figure 17. 2-D Gaussian spline interpolating the random samples of the electric field.

Linear Spline ~ E(¢;r); ¢=15 deg

—
o

05 ] 05
E o o £
05

0 2 4 6 8
Linear Spline ~ Es(¢;r); fc=300 MHz

0.5

v (m)
<
Vim

-0.5

0 2 4 6 8 10
x (m): N.=79 sample points

Figure 18. 2-D linear spline separately interpolating each electric field component using the random
samples of the electric field.
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Natural Spline =~ E;(¢;r); =15 deg

0.5 1 0.5
E ] £
-0.5
B | i ; : p—
0 2 4 6 8

Vim

x (m): Ni:79 sample points

Figure 19. 2-D natural spline separately interpolating each electric field component using the random
samples of the electric field.

Example 2 employs 2-D splines interpolating the electric field components { £y (r,,)} and
{E2(ry)} at the randomly scattered sample points {r, }. For concreteness, the following Matlab code
fragment makes explicit the interpolation of the electric field using the scattered interpolating points:

% Linear spline of the scattered electric field

elSpline = scatteredInterpolant( xI(:), yI(:), V(1,:}', ’"linear’ );
ellLinear = elSpline(X,Y);

e2Spline = scatteredInterpolant( xI(:), yI(:), V(2,:)’, ’'linear’);
e2Llinear = e2Spline(X,Y);

% Natural spline

elSpline = scatteredInterpolant( xI(:), vI(:), V(1,:}’, ’'natural’ );
elNat = elSpline(X,Y);

e2Spline = scatteredInterpolant( xI(:), yI(:), V(2,:)’, ’"natural’);
e2Nat = e2Spline(X,Y);

Higher-order splines are more conveniently applied when the sample points lie on a grid. The next
example compares the 2-D Gaussian spline to the standard splines on a rectangular grid.
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Example 3 (Rectangular Sampling) Assume the electric field is the same as Example I and plotted
in Figure 15:

Er(¢:r)
E(¢;r) = c.os(kgr)e(;): Es(¢ix)|  [V/m]
0
cos(0) .
ky = k|sin(¢)|; k=— [radians/m]
4 U )\
sin(¢)
e = |—cos(¢)| [V/m].
0

Figure 20 shows the sample points {r,,} in a rectangular grid. Figure 21 reports the 2-D Gaussian
spline using samples from this rectangular grid. Both components of the electric field are recovered
with reasonable accuracy. Figure 22 and 23 report that both the linear and cubic spline show a curi-
ous distortion of the electric field.

_ Rectangular Sampling: 156 Points; 7.8 points/m”

2

0000 0O0OOPOGPOOIOGOPOOIONOOIOIOOIOOIOOO
- 000000000 0000000000000 000
=) 0!........'......'........
T 0000000000000 000000000000

0000000000000 0OCOCFSIGIOGIOGIOGIOGONODS

0000000600000 00600000000000

7 L

3

0 2 4 6 8 10

x (m)

Figure 20. Rectangular sample points.
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¢1 = Eycos((ky,r)); 0=15 deg

1 = 3 l
0.5} 0.5
E of £
0.5 -0.5
-1 E . : - - -1

0 2 4 6 8 10

02 ~ Eyscos((kg,r)); fe=300 MHz

y (m)

o=
V/m

0 2 4 6 8 10
x (m): N’,:156 sample points; =1

Figure 21. 2-D Gaussian spline interpolating the electric field sampled on a rectangular grid.

Linear Spline ~ Ej; cos((ke,r)); ¢=15 deg

I y 1
0.5 0.5
E o} E
0.5 F -0.5
_1 e L 1 4 4 4 _1
0 2 4 6 8 10

o
Vim

v (m)

x (m): N =156 sample points; =1

Figure 22. 2-D linear spline interpolating the electric field sampled on a rectangular grid exhibiting a
periodic distortion.
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Cubic Spline =~ Ej; cos((ky,r)); ¢=15 deg |

l F

0.5 0.5
B g
~ 0 E 7 0 -~
= -

0.5 -0.5

-l & . . : . -1
0 2 -+ 6 8 10

Cubic Spline ~ Ej 3 cos((kgy,r)); fc=300 MHz

=
Vim

0 2 4 6 8 10
x (m): Ni=156 sample points; =1

Figure 23. 2-D cubic spline interpolating the electric field sampled on a rectangular grid exhibiting a
periodic distortion.

Example 3 employs 2-D splines interpolating the electric field components { £y (r,,)} and
{E2(ry,)} on the rectangular grid of sample points {r, } in Figure 20. For concreteness, the follow-
ing Matlab code fragment makes explicit the linear and cubic splines of the electric field using these
grid points are separately applied to each component of the electric field.

% 3. Cubic spline
elCubicSpline = interp2( xI, yI, elI, X, Y, ’cubic’ };
e2CubicSpline = interp2( xI, yI, e2I, X, Y, ’'cubic’ };

% 4. Linear spline
elLinearSpline = interp2( xI, yI, elI, X, Y, ’linear’ );

e2LinearSpline = interp2( xI, yI, e2I, X, Y, ’linear’ );

The final example of this section shows that mixing multiple plane waves produces interesting
electric fields to further assess the 2-D Gaussian spline.
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Example 4 (Two Horizontal Plane Waves) Assume the electric field is the sum two electric fields
propagating in the x-y plane

N El ((:, Vi I')
E(¢,vir) = R[viu(d1;r) + vou(da;r)] =: | Ea(o, v;r)
0
parameterized by the voltages vi 2 = 1, 1/2 and the plane-wave functions
cos(¢) sin(¢)
u(¢;r) = exp(—jkiriug; ky =4k |sin(¢) |, uy= |—cos(®)
0 0

using azimuth angles ¢1 o = 15°, 40°. Figure 24 plots the summation of the two cosine fields at fc =
300 MHz. Figure 25 reports the 2-D Gaussian spline based on this rectangular grid of Figure 20. Both
components Ey and Ey of the electric field are recovered with reasonable accuracy. Figure 26 reports
distortions in the cubic spline

-

x (m):fC=3OO MHz

Figure 24. Summation of two plane-wave electric fields propagating at 15° and 40° azimuth at 300
MHz.
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Gaussian Spline ~ E1(¢ v; r) é= 15° 40°

0 2 4 6 8 10
X (m):fc=300 MHz; Ni:156 sample points; 3=

Figure 25. 2-D Gaussian spline of the two-component electric field

Cubic Spline ~ El(qﬁ,v r)

—

= 15°,40°

R

Cubic Spline = EQ((b,V r): v=1,05V
%

2

4 6 10
X (m):fC=3OO MHz; N[,=156 sample points

8

Figure 26. Cubic spline of the two-component electric field

24



Example 4 employs 2-D splines interpolating the electric field components { £ (r,,) } and
{E2(ry,)} on the rectangular grid of sample points {r; } in Figure 20. For concreteness, the follow-
ing Matlab code fragment makes explicit the linear and cubic splines of the electric field using these
grid points.

% Cubic spline
elSpline = interp2( xI, vI, elI, X, Y, "cubic" );
eZ28pline = interpZ( xI, yI, e2I, X, Y, "cubic’ );

Summary: These 2-D examples show that the Gaussian splines—enforcing the divergence
constraint—recover the 2-D electric fields using fewer samples than the linear, natural, or cubic splines
on both randomly scattered sample points and on a rectangular grid. The Matlab code that generates
Example 1 is listed in Appendix A.
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3.3 SPLINES OF 3-D PLANE WAVES

This section applies the 3-D Gaussian splines to plane-wave electric fields propagating in three
dimensions. This example shows that the 3-D Gaussian splines recover the electric field using fewer
samples that the standard splines. Figure 27 show the geometry for two plane-wave electric fields
Eq(r) and E, {r) propagating in the z-y-z coordinate system determined by their wave vectors kp and
k., respectively.

.

Figure 27. Propagaticn geometry for the sum of plane-wave electric fields Eq(r) and E;(r); kg
propagates Ey(r) in the horizontal plane, k; propagates E;(r) in the vertical y-z plane.

The electric field is the sum of the two plane waves:
E(r) = Eg(r) + Ei(r) [V/m].
The plane-wave electric field Eg propagating in the z-y plane is
Eo(r) = cos(klr)eq [V/imn]

with wave vector

cos(éo) .
ko = kg |sin(dp) | ; ko= —~— [rad/m]
0 A
and direction vector
sin(¢o)
eg = |—cos(da)| [V/m].
0

The plane-wave electric field B, propagating in the y-z plane is
Ei(r) = cos(k/r)e; [V/m]

with wave vector
0

ki =k [sin(6)|; k= 2;[
cos(f)
and direction vector
0
e = [—cos(fh)| [V/m].
sin(6q)
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The center frequency is set to fr = 300 MHz or, equivalently, the wavelength is A = 1 meter. Fig-
ure 28 plots the electric field components of

Ey(r)
E(r) = |E,(r)| [V/m]
E,(r)
on the horizontal slice at z = 0:
xr
r= |y [meters]
0
1 F T T T T g 1
- E
E o} 0 &
= "
-1 & L <]
0 2 4 6 8 10
|
" g
E 0: &
= ™
-1
| 1
- E
E o 0=
e ut!

0 2 4 6 8 10
x (m): E:EO+E1: @0:15 deg; 91:120 dcg;fCZBOO MHz

Figure 28. 3-D electric field Ey + E; at 300 MHz.

Figure 29 shows the location of randomly scattered sample points {r,, } for the Gaussian spline.
The 156 random samples imply a sampling density of

156 . 2
TR Tk 8 [samples/m~].

Figure 30 shows the electric field approximation produced by the 3-D Gaussian spline based on
these randomly scattered sample points. All three components of the electric field are recovered with
reasonable accuracy. Some distortion is visible where the randomly scattered samples are less dense.

Figures 31, 32, and 33 separately apply each spline to the three electric field components E.,, F,
and F, using the randomly scattered sample points of Figure 29. These splines do not force the di-
vergence constraint and these splines do not recover the electric field. The following fragment of the
Matlab code makes explicit that natural spline is applied separately to the sampled electric-field com-
ponents to produce Figure 32:

% 6. Natural spline

elSpline = scatteredInterpolant( xI(:), yI(:), V(1,:)", "natural’ );
elNat = elSpline(X,Y);

e2Spline = scatteredInterpolant ( xI(:), yI(:), V(2,:)’, ’'natural’);
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Sampling points in the horizontial slice z=0 meters

2_ -
1".0...;.. ..:o:o o.‘.:.%::i
_ 5 ..“.. . ‘o
Eoedes o--. o teatte 3o WFC %
= e @ ® L
* ept o 0; « ¢ ° ..o' st
Py . . ®e*e * * o * *
2 b "
“ ) s 6 g 10

x (m): Nl_:156 samples

Figure 29. Randomly scattered sample points in the horizontal plane.

eZNat = e28pline(X,Y);
e38pline = scatteredInterpolant( xI(:), vI(:), V(3,:})", 'natural’);
e3Nat = e38pline(X,Y);

Likewise, the following fragment of the Matlab code shows that the cubic spline separately inter-
polation the electric-field components to produce Figure 33:

% 5. Cubic spline

elCubic = griddata( xI{:), yI(:), V(1,:}", X, Y, 'cubic’ });
e2Cubic = griddata( xI{:), yI(:), V(2,:)’, X, ¥, ‘cubic’);
e3Cubic = griddata( =I{:), vI(:), V(3,:)’, X, ¥, 'cubic’);

Summary: This 3-D example shows that the Gaussian splines—enforcing the divergence constraint—
recovers this 3-D electric field using fewer samples than the linear, natural, or cubic splines.
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x (m): Gaussian Spline =1; 156 sample points
Figure 30. Gaussian spline of the 3-D electric field.
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x (m): Linear Spline; 156 sample points

Figure 31. Linear spline applied to each component of the 3-D electric field.



y (m)
=)
e (V/m)

0 2 R 6 8 10
x (m): Natural Spline; 156 sample points

Figure 32. Natural spline applied to each component of the 3-D electric field.

e (V/m)

e, (V/m)

0 2 4 6 8 10
x (m): Cubic Spline; 156 sample points

Figure 33. Cubic spline applied to each component of the 3-D electric field.
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4. SPLINES OF THE HERTZIAN DIPOLE

This section splines the electric field produced by the Hertzian dipole. Section 4.1 reviews the
Hertzian dipole in free space and verifies the vanishing of the divergence directly from the electric
field. Section 4.2 approximates the electric field produced by the Hertzan dipole above a Perfect Elec-
trical Conductor (PEC) and verifies the divergence-free Gaussian splines are better interpolants than
the cubic, natural, and linear splines.

4.1 HERTZIAN ELECTRIC DIPOLE IN FREE SPACE

Figure 34 illustrates spherical coordinates around a short antenna carrying a vertical current ¢ 4 in
free space on a wire of length £4 < A\

Figure 34. Hertzian dipole in spherical coordinates.

31



Figure 35 illustrates the electric-field components in spherical coordinates. In this coordinate sys-
tem, the nonzero magnetic and electric fields of the Hertzian dipole have only three non-zero compo-
nents [5, Section 17.3]:

Hy(r,0,9) = ial —kz 9111(9)6’_jkr J + L @)
o\ 0, @) = tAtA ) kr = (kr)2 )’
: ; - nk? —jkr 1 J
{r.0.d = il cos(@)e IR — >
E.(r,6,0) ialao cos(f)e {(kr)Q G ) (8)
Eo(r,0,¢9) = ial ﬁsin(@)e‘jk" I + =~ &)
o\, Y, ¢ AA ? kr ' (kr)2  (kr)3 [’

where the free-space impedance 1 = 1207 ohms [5, Section 17.2] and
2
k= TF [rad/m)]

is the wavenumber.

Figure 35. Spherical coordinates for the electric field.

Example 5 (Hertzian Dipole at 300 MHz) Figure 36 and 37 show E, and Fy for a vertical dipole of
length

X
la=15=01 (m)

carrying i 4 = 1 amp. Both figures show the cardioid shaping by the sine and cosine with the far field
dominated by Ey.
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180

8 (deg)

6 (deg)

Hertian Dipole E(r,0): Al=0.1 (meters); f=300 MHz
7 60

1 2 3 5 6 7 8 9 10
radius (meters): unit current

Figure 36. | E,.(r,6,)|? (dB): ia = 1 (A), £4 = A/10 (m).

Hertian Dipole Ey(r,0): Al =0.1 (meters); f=300 MIIz
: 60

1 2 3 4 5 6 7 8 9 10
radius (meters): unit current

Figure 37. |Ey(r, 0, 6)|? (dB): i = 1 (A), AL = A/10 (m).
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The divergence operator in spherical coordinates is [1, Eq. 2.31], [5, Section 4.2]

18 . 1 13, 1 JAy
VIA = 5 —(r?A,) + ———— (sin(0) 4y) + ————2.

r2 or (r°Ae) + rsin{f) 06 (sin(#) 4o) + rsin(f) O¢
The magnetic field is easiest to verify zero divergence. Equation 7 reports that only H is non-zero and
also not dependent on ¢ so that

vTH = ;% =

rsin(f) do
The electric field is amenable to symbolic verification of zero divergence.

Example 6 (Symbolic Divergence) This following Matlab code fragment verifies that the electric
field of the Hertzian dipole given by E. (Equation 8) and Ey (Equation 9) has zero divergence:

% Electric Field: observe that the eR component has a constant

% term that is twice the eT component

syms r theta phi k positive

eR = 2xcos(theta) rexp (-j*k+r) = ( (kxr) =2 = dx(kxx) =3 );

eT = sin(theta) »exp (—J*k*r)*={ Jx(k*r) -1 + (k+r) -2 — J*{kxr) " -3);

% Divergence in spherical coordinates

divE = r°=2 % diff( r"2+eR,r) + (r*sin(theta)) -1 *diff( sin(theta)+*eT, theta);
>» simplify (divE)
ans =

0

The sum of Hertzian dipoles is also divergence free. However, the classic examples of electric-field
theory approximate the array’s electric using only single Hertzian dipole shaped by an array factor
as follows. If E,.{r) denotes the electric field produced by a Hertzian dipole at location r,, and Ep(r)
denotes the electric field produced by a Hertzian dipole the origin, the array’s far field is approximated

as
N

Z E,(r) = hap(0, ¢)Eo(r),

n=1

where the array factor hap(f. @) depends only on the direction to r. Although this far-field approxi-
mation is not divergence free, its divergence tends to zero at r gets large. The next section shows the
Gaussian splines still outperform the standard splines on these approximate fields.
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4.2 HERTZIAN DIPOLE OVER A PERFECT ELECTRICAL CONDUCTOR

Figure 38 is a vertical cross section showing a short antenna carrying a vertical current i 4 over a
Perfect Electrical Conductor (PEC) on a wire of length £4 < .

h

PEC

Figure 38. Hertizan dipole over PEC ground plane showing the direct and reflected rays.

The electric fields of this Hertzian dipole admit the following approximation obtained by the vir-
tual source argument |5, Section 17.3], |2, Section 4.7.2]

) o ’r)kg ik 1 g
Fp(r, 0, q ~ 1Al A— COS ¢TI —— — - J s
(r,8,0) iala 5 cos(f)e {(/ﬂ??‘)z L har(8),
| LA O 1 J
Fy(r, 8, ¢ A} —_— 2N 5 — - ¥ s
o(r, 0, 0) iala g sin(d)e {M. + (k)2 (kr)? } har (6)

where the array factor is found in [2, Eq. 4-99]
har(8) = 2 cos(kh 4 cos(f)),
and h 4 is the height of the dipole shown in Figure 38.

Example 7 (Hertzian Dipole at 300 MHz over PEC) Referring to Figure 38, let a vertical Hertzian
dipole be placed hn = 10 meters above the origin and broadcast into the free space above the PEC.
The dipole’s length is

=01 [m]

and carries a current iy = 2 amps. Figure 39, 40, and 41 show the magnitude of E,, E,, and E,
sliced at z = 100 meters above the PEC.

On the horizontal slice at z = 100 meters, the electric field is dominated by

1.2 o= jkr
sin(6) ¢

, . Ui
Eg(r,0,d) il
o(r, 0, ) ~ iz AT

This electric field component, restricted to this slice, points outward and down as shown in Figure 35.
Consequently, the z-component of this field on this slice has maximal response along the x-axis and
zero response along the y-axis. Figure 39 shows that £, on this slice has the radial symmetry around
the origin with maximum and minimum along the z and ¥ axis. Likewise, the y-component of this
field, on this slice, has maximal response along the y-axis and zero response along the x-axis as shown
in Figure 40. The lobing on both figures is caused by the interference between the two rays (See Fig-
ure 38). Figure 41 shows z-component of this field on the slice that captures the spherical symmetry of
the electric field,
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300 MHz

C=

y(m):f,

=300 MHz

y(m):f

€

dB (V/m)y*

-100 -50 0 50 100
x (m): i =1 amps; 1A=10 mm; hA=10 m

Figure 39. |E,(z,y, 2)|? at = = 100 meters for the Hertzian dipole over PEC.

dB (V/im)?

-100 : ; -
-100 -50 0 50 100
x (m): i =1 amps; IA=10 mm; hA=10m

Figure 40. |E,(z,y, z)|? at z = 100 meters for the Hertzian dipole over PEC.

36



y(m):f 300 MHz

dB (V/m)>

-100 -50 0 50 100
x (m): iA=1 amps; IA=10 mm; hA=10 m

Figure 41. |E,(x,y, z)|? at z = 100 meters for the Hertzian dipole over PEC.
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These plots of the electric field magnitudes do not show the rapid interference patterns in the real
and imaginary parts. Figure 42 plots the real part R[E;] on this z = 100 meter slice. The figure
shows rapid oscillations. Interpolation of the real part of R[E,], R[E,]. and R[E,] is the test case for
the Gaussian, linear, and cubic splines.

Vertical Dipole ?R[Ex]: Sliced at z=100 m

0.025
80
0.02
60
0.015
a 40 1001
p=
= 20 0.005
a E
T O [fli xi 0 £
L 2
~ 220 -0.005
g 0.01
> 40 -
-0.015
-60
-0.02
S0 -0.025
-100 : . :
-100 -50 0 50 100

x (m): iA=1 amps; IA=10 mm; hA=10m
Figure 42. R[E,(z.y, z)] at z = 100 meters for the Hertzian dipole over PEC.

Figure 43 shows the real part of the electric field components R[E,], R[E, ], and R[E] on the hor-
izontal strip along the z axis at z = 100 meters. The maximum energy R[E,] and the weakest energy
in R[E,] is consistent with the previous discussion. Figure 44 shows that the Gaussian spline produces
almost perfect recovery of all three fields using a random sampling density of

1887

- W T
= S0 50 2 [samples/m?]

P

Figures 45 and 46 show that the linear and cubic splines deliver relatively poor recovery.

Summary: The Gaussian splines, by enforcing the divergence constraint, recover the relatively com-
plex electric field of a Hertzian dipole over a PEC using fewer samples than the linear or cubic splines.
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Figure 43. Real components of the electric field at z = 100 meters for the Hertzian dipole over PEC.
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Figure 44. Gaussian spline interpolation of the real components.
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Linear Spline at 300 MHz shced at z—100 (m)
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Figure 45. Linear spline of each real component.
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Figure 46. Cubic spline of each real component.
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5. FLIGHT-DECK MEASUREMENTS: MAGNITUDE-ONLY

This section applies the prototype Gaussian splines to the magnitude-only measurements on the
flight deck. The problem is that the Gaussian spline requires the electric field vector at each sample
point ry,

ECU (rn)
Ia(rﬂ) = lgy(rn)
E(ry)

whereas the flight-deck measurements only contain the magnitudes:

o] =\ 1Be (0|2 + | Ey(ra)[2 + [ B () 2

This section addresses this loss of vector and phase information by working through a sequence of
electric-field models of increasing complexity. Figure 47 shows the standard cubic spline fitting these
magnitude-only measurements. The discussion is facilitated by letting +/yp denote this cubic spline
obtained by fitting the magnitude measurements in dB.

Flight Deck: Antenna 001
Cubic Spline at 306.0794 MHz

400 T 110
300 ]
105
200 |
{100
100
= E
€ o {05 2
=~ sl
-
-100
1 90
-200 ]
85
-300 1
-400 : : : ' ' 80
0 200 400 600 800 1000

x (ft)

Figure 47. Cubic spline i)4g of the flight-deck measurements in dB.

Remark: Measurements imply a three-antenna system that is calibrated to map the received voltages
into a 3-D electric field vector. Measurements over a flight deck imply this calibrated antenna system is
translated without rotation to each measurement location.
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5.1 CONSTANT AZIMUTH

The first electric-field model assumes a planar electric field with constant azimuth ¢. At each sam-
ple point r,, with amplitude |v,,|, the electric field vector has direction

cos()
E(r,) = |v,| |sin(¢) | . (10
0

Figure 48 shows the Gaussian spline interpolating amplitude measurements and the electric field
model of Equation 10 with ¢ = 0° so that the electric field points along the z-axis:

1
0
0

E(rn) - |’“'u

Although this Gaussian spline zq(r) interpolates the electric-field amplitudes
N
‘”Um,l = T‘!"‘f'(rm) = Z ‘IJ(B??? Py — rn)wn~

n=1

the “scaling” parameters encoding the spatial correlation of the Gaussian function

2? + ?/2)

=g o) o (555

are toc small. Consequently, the dipoles that constitute this spline (See Figure 8) are revealed as Gaus-
sian thumbtacks.

Flight Deck: Antenna 001: 306.0794 MHz
2-D Gaussian Spline: Fixed aziumth ¢=0 (deg)

400 Ll
300
105
200
100 1100
€ >
= o
_ b=
-100 193
200
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-300
-400 )
. ‘ ‘ . ‘ -
0 200 400 600 300 1000

x (ft): o=15 (ft)

Figure 48. A “thumbtack” Gaussian spline of the flight-deck measurements; the 2-D electric field is
forced to point along the x axis (¢ = (°) with a small spatial correlation (o = 15 feet).
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Figure 49 increases the spatial correlation to o = 50 meters. The Gaussian spline does smooth but
the z-direction set by ¢ = 0° is apparent.

Flight Deck: Antenna 001: 306.0794 MHz
2-D Gaussian Spline: Fixed aziumth ¢=0 (deg)
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Figure 49. 2-D Gaussian spline of the flight-deck measurements; the 2-D electric field is forced to
point along the x axis (¢ = 0°) with spatial correlation o = 50 feet.

Figure 50 turns the azimuth to ¢ = 15°. The Gaussian spline interpolates the electric field vector
of Equation 10 and better matches cubic spline ¢qp of Figure 47. Therefore, a natural approach seeks a
divergence-free spline that is “closest” to the cubic spline of the magnitude-only measurements.

Flight Deck: Antenna 001: 306.0794 MHz
2-D Gaussian Spline: Fixed aziumth ¢=15 (deg)
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Figure 50. 2-D Gaussian spline of the flight-deck measurements; the 2-D electric field vectors all have
15° azimuth.

43



The natural approach seeks optimum azimuth ¢ and spatial correlation ¢ to minimize the ampli-
tude error between the cubic spline 1yqp and the divergence-free spline over a dense sampling of the
2-D domain. At each sample point, the electric field model is parameterized by the azimuth

cos(¢opT)
E(rn) = |'Un| Sin((ﬁOP’l‘) an
0

and divergence-free spline is parameterized by the spatial correlation:

N

$(popT,00PTST) i= Y W(BoPTiF — Tn)Xn;  SBopT =
n=I1

1

2 ]
20Gpr

where ¢opr and oopt are minimizers of the following maximum error function:

min {

Figure 51 reports local minimizers are

b — 1()log10(\|'gg((;).a||2)HOO 0<é<90%10< o< 100}.

dopr = 10°
ooprT = 49 [ft]

The values are relatively close to the azimuth of ¢ = 15° and spatial correlation o = 50 feet obtained
by hand (See Figure 50).

Flight Deck: Antenna 001: 306.0794 MHz
2-D Gaussian Spline: azimuth and spreading optimized

400 : 110
300
105
200
100 {100 _
€ =
= )
o
-100 >
200
90
2300
400 ! ! . . ! g5

0 200 400 600 800 1000

x (ft): i =48.928 (f1): ('J)OPT =10.3591 (deg)

Figure 51. 2-D Gaussian spline of the flight-deck measurements; the 2-D electric field vectors all use
an azimuth angle ¢opT and spatial correlation oopr Optimized to minimize the error from the 2-D
cubic spline of Figure 47.
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5.2 VARIABLE AZIMUTHS

The second electric-field model still constrains the electric field to a plane but varies the azimuths

at each sample point:
cos(¢p)
E(r,) = |vn| |sin(en) | - (12)
0

Therefore, the divergence-free spline is parameterized by the azimuths {¢,, } while the spatial correla-
tion ¢ is held constant:

N
- ) 1
’QD({.éTL};r) = ;\IJ(;’J’;I‘ - rn)wn: B= ﬁ:
o = 50 |ft].

The azimuths {¢,, } are chosen to minimize the amplitude error between the cubic spline and the
divergence-free spline on a dense sampling of the 2-D domain.

min { | s — 101og o (IF({@n DI 0° < 60 < 300°}.
oC

Figure 52 shows a local minimum. This spline interpolates the measured magnitudes and approximates
the cubic spline ¢¥gp assuming the electric field model of Equation 12.

Flight Deck Antenna 001: 306.0794 MHz

2-D Gaussian Spline: azimuth optimized B

400
300
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200
100 ' 4100
. g
& 0 2
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90
300 +
-400 | L ! L L L 85
0 200 400 600 800 1000

x (f): o =50 (ft)

Figure 52. 2-D Gaussian spline of the flight-deck measurements; azimuths {¢; } optimized to fit the
cubic spline.
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5.3 VARIABLE PHASES

The third and final electric-field model is based on the measurements of the electric field over the
flight deck. These measurements employed a vertical dipole so that only E, of the electric field was
measured. Therefore, the electric field is modeled in the z-direction having measured amplitude |v,, |
but an unknown voltage phase Zv,, at each sample point:

0
E(r,) = |vple?“ |0] (13)
1

Therefore, the divergence-free spline is parameterized by the voltage phases { Zv,, } while the spatial
correlation o is held constant:

N

- ; ; 1
p({Lunkir) = ;W(ﬁ;r—rn)wn; B=5m
o = 50 [ft].

The phases {Zv,,} are chosen to minimize the amplitude error between the cubic spline and the
divergence-free spline on a dense sampling of the 2-D domain.

min { || as — 101ogo (IF({ L0 DIP)|_+0 < 20, <3007}
oc

Figure 52 plots a local minimum. This divergence-free spline interpolates the measured magnitudes
and approximates the cubic spline ¢/qp assuming the electric field model of Equation 13.

Flight Deck: Antenna 001: 306.0794 MHz
3-D Gaussian Spline: E -phase optimized
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Figure 53. 3-D Gaussian spline of the flight-deck measurements; voltage phases {Zv;. } are optimized
to fit the cubic spline.
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5.4 SUMMARY

Figure 54 compares the cubic spline g5 to the divergence-free splines {¢n}) and o({ Luop}).
All three splines show similar large-scale features. This similarity is expected because the divergence-
free splines interpolate the measured magnitude of the electric field while varying their free parameters
to approximate the cubic spline 1)q5. The most credible spline is '4.3({17,77, }) because the modeled elec-
tric field direction is consistent with the vertical measurement antenna.

Cubic Spline
110
g
u 100 >
=)
90 =
0 200 400 600 800 1000
Gaussian Spline: optimal azimuths {¢n}
110
g
100 >
90 g
0 200 400 600 800 1000
110
g
i 100 >
=)
90 =

0 200 400 600 800 1000
x (ft): o =50 (ft)

Figure 54. (Top) Cubic spline w4 of the flight-deck measurements; (Middle) Gaussian spline of the
flight-deck measurements optimizing azimuths {¢,, }; (Bottom) Gaussian spline of the flight-deck
measurements optimizing voltage phases {Zv;}.

There are other approaches to handle measurements limited by magnitude only. A classic approach
optimizes the free parameters to find a divergence-free spline that minimizes the worst error obtained
when omitting one or more measurements. More fruitful approaches increase the information about
the electric-field vector. For example, the simplest approach employs three antennas to measure the
amplitude of the electric field components:

|E:r;(rn> ‘ |'U:c,n|
[E(r)| = ||Ey(ra)|| = |lvynl| - (14)
| B, (rn)] [vz,nl

The divergence-free splines interpolate the electric field assuming the measurement model of Equa-
tion 14 where the voltage amplitudes are fixed while the voltage phases are varied to find an optimal
spline as in Section 5.3:
|'U:L‘,n |leu,«,,‘,,
E(r,) = |vy,,l_|ej4v¥l~" . (15)

|Vz.n |€‘7ZUZ‘"
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A more substantial approach employs three antennas to measure the complex-valued components
of the electric field:

EJ‘ (r-” ) ‘T'riﬁ.'ll |ejé Vz.n
E(rﬂ) = Ey (I‘n) = |'Uy‘n|€iy‘éuyvﬂ ) (16)
E,(ry) |0y |7 402m

This measurement model only requires the divergence-free spline vary the spatial correlation at each
sample point. However, both measurement models imply simultaneous sampling of the electric-field.
This simultaneous sampling assumption is implicit in both the 2-D electric fields of Section 3 and the
3-D electric fields of Section 4, Simultaneous sampling requires either multiple phase-locked receivers
or an electric field that is stable over the measurements.

Flight deck measurements are currently conducted by positioning one calibrated antenna over the
flight deck (See Figure 3) while broadcasting a strong continuous wave. Therefore, the sampled ampli-
tudes are almost constant—despite the time between measurements—so that the measurement model
of Equation 14 allows the phase estimation of Equation 15,

Extending these flight deck measurements to the electric-field vector challenging. A strong broad-
cast should force the electric-field vector to be relatively stable at each location. However, moving the
equipment to each measurement location will induce location-dependent phases { ¢, } as modeled by
Equation 16:

Vg €TV m
E(r,) = /% | |uynlef00n | (17)
[02.n |€j£u;ﬁ

In this case, the divergence-free splines interpolate the electric field assuming the measurement model
of Equation 16 while only the location-dependent phases {¢y, } need to be varied to find an optimal
spline:
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6. APPLICATIONS

The canonical example of this report originated from shipboard EMI measurements. The
divergence-free Gaussian splines deliver a physics-based interpolation using these relatively sparse
measurements to recover a complete electric field. Interpolating these EMI measurements is a special
case of electric-field scanning. This final section sets out three applications of electric-field scanning
well-suited for divergence-free splines:

* Flight-deck EMI
» Shipboard HF/VHF/UHF antenna patterns
» VLF antenna patterns

All these applications employ a small drone or quadcopter carrying a vector antenna to sample the
3-D electric field. Discussions on measurement issues close this section. The first application is the
volumetric measurement of the electric field over a flight deck. A UAV sweeping above the flight deck
will produce a dense sampling of this volume in a matter of minutes whereas the standard sparse sam-
pling obtained by manually positioning a single antenna to each measurement location takes at least
one full working day.

The second application measures shipboard HF/VHF/UHF antenna patterns. Measuring these pat-
terns is a substantial task undertaken at a Shipboard Electronic Systems Evaluation Facility (SESEF)
[20]:

SESEF’s are land-based test facilities, established to facilitate testing of electromagnetic
transmitting and receiving equipment for U.S. Navy, U.S. Coast Guard and Military Sealift
Command vessels.

The standard approach to measure the shipboard antenna radiation patterns requires [20]:

the ship to perform a circular maneuver around a SESEF buoy or geodetic point of refer-
ence. The maneuver is required to be as circular as possible with the same angular velocity
(constant turn rate approximately 18 to 20 degrees per minute, circle diameter not greater
than 1 nm).

Figure 55 is a map of the SESEF range off the coast of San Diego, CA. This figure gives the size of the
range and the commitment of a ship to the SESEF measurement protocol. In contrast, a UAV flying

in a kilometer-sized cylinder around the ship could sample antenna patterns for interpolation by the
divergence-free splines with minimal disruption to the ship’s schedule, eliminate the ship’s maneuver
requirements, and free the ship from the SESEF range.
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Figure 55. SESEF range at San Diego, CA [20].

The third application measures VLF antenna patterns [10]. Figure 56 is a map of the Cutler VLF
antenna arrays. The north and south arrays each consist of 13 towers:

¢ A center tower,

 Six middle towers equally spaced around a circle of radius 1,825 feet centered at the center
tower,

« Six outer towers equally spaced around a circle of radius 3,070 feet centered at the center tower.

The size of these VLF arrays and the long wavelength makes pattern measurements challenging [4].
A UAV flying a kilometer-sized cylinder around the arrays could sample the VLF antenna pattern for
interpolation by divergence-free splines.
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Figure 56. Culter VLF antenna arrays [10].

All these applications require the UAV to obtain a sufficiently dense sampling of the electric field
with sampling locations to a appropriate accuracy, and a determination if phase is to be measured. The
wavelength A and the complexity of the field determine the sampling density.

Example 8 (SESEF Sampling) Section 4.2 reports a sampling density p = 2 samples per square
meter when the wavelength X = 1 meter for the Hertzian dipole above a PEC. If this dipole scales

to HF with A = 100 meters, as in a SESEF application at 3 MHz, a sampling density of 2 samples
per 100 x 100 square meters could be possible. Removing the ‘if ” in this SESEF application requires
the modeling and interpolating a simple HF antenna close fo the sea surface to estimate the sampling
density.

This report does not estimate the sensitivity of the GGaussian splines to noise in the measurements
or errors in the measurement locations. An estimate of this sensitivity to the measurement locations
is computable by perturbing the locations. For example, when a sampling density is estimated as in
Example 8§ and measurement locations are determined, a random perturbation of the locations will pro-
duce a different spline and an error between the splines. Varying the size of the perturbations produces
an average error as a function of the location uncertainty. This curve determines the feasibility of the
UAV sampling.

Measurement noise is typically handled with regularization applied to the matrix inversion of
Equations 4 and 5, assuming a noise covariance matrix is available [16]. Total least squares handles
both noise in the measurements and errers assuming the ideal Vandermode matrix [8]. In this applica-
tion, sources of errors in the Vandermode matrix arise from both antenna calibration errors and errors
in the measurement locations. Both regularization and total least squares are excellent extensions of
the Gaussian splines.
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klabeld (" {Wizxl (mI*1)
ylabed [ [Wizy) (m3*1)
ticked| *SE_Z{vphiy (Wbl rbly E_CS=' romZscr(f<HHE) * MHE® | ..
«"Interpracer’, "LaTel b)
hi = solorbary
h. Lalbsl.Berieg = *Vim' )
canis{[-1 1]}
printdpr = iaput(*Prist the eleccrlc field <ret=no> *,"s8%))
if ~isespry{princope)
eval([*print -dipey dfSpline_20Fit_-* inelste(azbeq) *Deq eField’ iz

and

A 2. Gausalas Spline

% 2.1 Zelece the Lnterpolacics polnts

umiver of Lntecpolatisn polista <80 *);

L =3%; and
index = v flosar( rasd(dl. 2)ediagimeoy]) 1, Foowa’);
diapil Jaer(Mi) ¢ umlgque polista®]l)

IndY = indexiz. 2}
21 = xVes (Indx);
yI = yvec(IndY);
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2.2 Collect the interpolated E field
= zeros(2,Ni);
or ni=1:Ni

Vi:,ni) = [E1l(Ind¥(ni), Ind¥(ni)); E2(IndY(ni), IndX{ni)) 1;
end

%
v
£

% 2.3 Display the sample points

figure

plot{ xI , yI , 'o', ‘MarkerFaceColor’ ,'b')
shg

axis ([0 10 -3 3])

grid

xlabel (" {\itx} (m)');
ylabel (“ {\ity} (m)7);
printOpt = input (‘Print the sample points <ret=no> ’,’s');
if “isempty (printOpt)
eval ([’'print -dijpeg dfSpline_2DFit_’ int2str (azDeg) ’Deg_’ int2str(Ni) ‘Samples’]);
end

% 2.4 Display the sampled electric field
figure
e2I = zeros(Ni,1);
for ni=1:Ni
e2I(ni) = EZ(IndY(ni), IndX(ni));
end
stem3( xI, vI, e2I, "filled’' )
xlabel (" {\itx} (m)");
vlabel (" {\ity} (m)");

% 2.5 Spline analysis

% 2.5.1 % Set the spatial grating
gk = 1;

% 2.5.2 REnalysis

W = dfSpline 2DAnalysis{gR,xI,yI,V);

% 2.5.3 Synthesis

[phil,phi2] = dfSpline_2DSynthesis(gR,xI,vI,X,¥,W);

% 2.5.4 Report the Gaussian Spline
figure
subplot (2,1,1)
imagesc( xVec, yVec, phil )
set (geca, "Ydir’, ‘normal”)
ylabel (" {\ity} (m)');
title([ rGaussian Spline $\approx E_1({(\phi; {\bf r}); \phi$=' numZstr(azDeg) ' deg’ |
, ' Interpreter’,’LaTeX’'};
hC = celorbar;
hC.Label.String = "V/m";
caxis([-1 1]}
subplot (2,1,2)
imagesc( xVec, yVec, phi2 )
set (gea, "Ydir’, ‘normal’)
xlabel (["{\itx} (m): (NItN_i}=" num2str(Ni) ’ sample points; \beta=' num2str(gR) 1};
ylabel (" {\ity]} (m)");
title([ 'Gaussian Spline $\approx E_2{\phi; {\bf r}); f_C%=' num2str(fCMHz)} * MHz' |
. "Interpreter’, "LaTeX');
hC = colorbar;
hC.Lakel.String = "v/m’;
caxis([-1 11}
printOpt = input (‘Print the Gaussian spline <ret=no> ',’s’);
if "isempty(printOpt)
eval (['print -djpeg dfSpline_ 2DFit_* int2str(azDeg) ‘Deg_’ int2str(Ni) fSamples_Gaussian’]);
end

% 3. Linear spline

elSpline = scatteredInterpolant( xI(:), yI(:), V(1,:}’, ‘linear’ );
ellinear = elSpline (X,Y);

e2Spline = scatteredInterpolant( xI(:), yI{:), V(2,:}', ‘linear’};
eZlinear = e2Spline (X,Y);

figure

subplot (2,1,1)

imagesc( xVec, yVec, ellinear )

set (gca, fYdir’, ‘normal’)

ylabel (" {\ity} (m)’);

title([ 'Linear Spline $\approx E_1(\phi; {\bf r}); ‘phi$=' num2str(azDeg) ’ deg’ ] ...
. "Interpreter’, "LaTeX");

hC = colorbar;

hC,Label.String = 'V/m";

caxis([-1 171}

subplot (2,1, 2)

imagesc( xVec, yVec, elLinear )

set (gca, "Ydir’, ‘normal”’)

xlabel ([* {Vitx} (m): {N\itN_i}=' num2str(Ni) ' sample points’]);
ylabel (" {\ity} (m)");
title([ fLinear Spline $\approx E_2(\phi; {\bf r}); f_C$=' numZstr(fCMHz) * MHz' ]

,"Interpreter’,’LaTeX’);
hC = colorbar;
hC.Label.String = 'V/m’;
caxis([-1 11}
printCOpt = input (‘Print the linear spline <ret=no> f,’s’);
if “isempty (printOpt)
eval (['print -djpeg dfSpline_2DFit_’ intZstr(azDeg) ’Deg_’ int2str(Ni) ‘Samples_Linear’]);
end

A-2



% 4. Natural spline
elSpline scatteredInterpolant ( xI(:},
elNat elSpline (X,Y);
e2Spline scatteredInterpolant ( xI(:),
e2Nat e2spline (X, Y);
figure
subplot (2,1,1)
imagesc( xVec, yVec, elNat )
set (gea, "Ydir’, “normal”’)
ylabel (" {\ity} (m)");
title([ 'Natural Spline $\approx E_1(\phi;
. Interpreter’,’LaTeX’);
hC colorbar;
hC.Label.String
caxis([-1 1])
subplot (2,1,2)
imagesc( xVec, yVec, e2Nat )
set (gca, fYdir’, ‘normal’)
xlabel ([* {\itx} (m): {\itN_i}=’
ylabel (" {\ity} (m)");
title([ ’'Natural Spline $S\approx E_2{(\phi;
,"Interpreter’, "LaTeX");
hC colorbar;
hC.Lakel.String
caxis([-1 11}
printOpt input (*Print the Natural spline <ret=no> *,’s");
if “isempty({printOpt)

eval(['print -djpeg dfSpline 2DFit_*
end

= vI{:), V(1,:}', ’natural’ };

= yI(:), VI(2,:}", "natural’);

{\bf r}); \phi$=" numZstr(azDeg)

Vimt;

numZstr (Ni) ' sample points’ ]);

{A\bf r}); £_C5=" numZstr (fCMHz)

'v/m’;

intZstr(azDeg) ‘Deg_" intZstr (Ni)
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Todeg’ ] ...

foMHZ' )

rSamples_Natural’]);
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APPENDIX B
2-D GAUSSIAN SPLINE ANALYSIS CODE

function W = dfsSpline_ZDAnalysis(gR,xI,vI,V)
[T =

===

This functicen computes the "analysis"™ of a 2-D electric field samples

se

{xT(n),yI(n),V(n)}; n=1:N

c? o al@

oe

using 2-D Gaussian splines. This analysis, like the wavelet analysis,
finds the matrix 2Z2-by-N matrix "W" that interpolates the electric field:

o°

%

% N

% V{m) = sum Phi(gR; =zI(m) - =xI(n), yI{m) — yI(n) })*W(:,n)
% n=1

ae

e

and Phi(gR;x,y) is the Z-hy-Z Gaussian matrix [1]:

%

% Phi(gR; %,y) = Z2+gRrexp( —gR«x(x"2 + y~2) )

% [ 1= 2%gRxy"2 2xgR*x*y ]
% [ ZrgRxx=*y 1 - 2xgR*x"2 ]
%

% REFERENCES

% [1] McNally, Ceolin P. [2011]

o

Divergence-Free Interpclation of Vector Fields from Point
Values---Exact $\nablalcdot {\bf B}=0$ in Numerical Sclutions,
Mon, Not. R. Astron. 3SocC.

ae

e

CODING AND COMPLAINTS
jefferv.allen@navy.mil

o ol a

ot

o

1. Number of interpolation points
Ni = length(xI);

% 2. Fill the Vandermode matrix
PHI = zeros({ 2+«Ni, Z*Ni };

for nr = 1:Ni
% 2.1 Point to the row of PHI
xr = xI(nr);
vr = yI(nr);

for nc = 1:Ni

% 2.2 Point to the column of PHI
zo = xI(nc);
¢ = ylinc);

% 2.3 Fill the (nr,nc) bleck of PHI
[phill, philz,
phizl, phiZ2Z2] = dfSpline(gR, xr,vyr,Xc,vc);
PHI( Z%(nr-1) + [0:1] + 1, Zx(nc-1) + [0:1] + 1) ...
= [phill, philz;

phiz2l, phizz];

% 3. Trim the tiny elements to aveid a full inversion
PHI( find(PHI)<10"-4 ) = [];
PHI = sparse (PHI);

% 4, Solve the neodal eguation
W = reshape (PHI\V(:) , 2 ,Ni );
return

end
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APPENDIX C
2-D GAUSSIAN SPLINE SYNTHESIS CODE

function [phil,phiZ] = dfSpline 2DSynthesis(gR,xI,yI,X,Y,W)

This function computes the "synthesis" of a 2-D electric field from
samples of the field

{xT{n),yI{n),V{n)}; n=1:N

using 2-D Gaussian splines., This synthesis, like the wavelet synthesis,
interpolates the electric field as

N
Vi{x,y) = sum Phi(gR; x - xI{n), v — vI(n) )+=W{(:,n)
n=1
where matrix 2-by-N matrix "W" is computed from the "analysis"

W = dfspline_Z2DAnalysis (gR,xI,vI,V)

and Phi(gR;x,y) 1s the 2Z-by-Z Gaussian matrix [1]:

Phi(gR; x,v) = 2%xgRxexp{ —gRx(x"2 + yv~2) )
% [ 1- 2xgR*y”2 2%gRex*y ]
[ 2xgR*x*y 1 - 2%gR*xx"2 ]
REFERENCES

[1] McNally, Colin P. [2011]

Divergence-Free Interpolation of Vector Fields from Point
Values---Exact $\nabla\cdot {\bf B}=08% in Numerical Solutions,
Morn. Not. R. Astron. Soc.

CODING AND COMPLAINTS
jeffery.allenlnavy.mil

phil = 0;
phi2z = (;
Ni = length(xI);

for ni=1:Ni

% 2.7.1 Nodal point
xi = xT(ni});
yi = yI(ni);

% 2.7.2 Sample the node
[ phill, phil2
, phizl, phiZz ] = dfSplinel(gR,xi,vi,X,Y);

% 2.7.3 Sum the nodes
phil = phil + phill+W(l,ni) + phil2+W(2,ni);
phi2 = phi2 + phi2l*W(l,ni) + phi22+W(2,ni);

end
return
end
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APPENDIX D
2-D GAUSSIAN SPLINE CODE

function [phill, phi2l, philZ2,phiZ2Z2] = dfSpline(gR,x0,v0,X,Y,plctOpt)

It
]

e oo

Computes the 2-by—2 Gaussian matrix [1]:

cho

% Phi (gR; x,y) = 2xgR#exp( —-gR+«(X"2 + Y 2) ) .
% * [ 1- 2xgR*xY"2 2xgReX+Y ]
% [ 2%gRaXx*Y 1 - 2xgRxX"2 ]
% where

X =x - x0

Y=y - y0

REFERENCES

[1] MeNally, Colin P. [2011]

Divergence-Free Interpolation of Vector Fields from Point
Values—-—-Exact $\nabla\cdct {\bf B}=0% in Numerical Sclutions,
Mon. Not. R. Astron. Soc.

oP S dC ¢ o0 o J° OF J0 o

CODING AND COMPLAINTS
jeffery.allenfnavy.mil

de oo

if nargin < 6
plotOpt = 0;

end

if nargin == 0
x0 = 0;
v0 = 07
gR = 1/4;
xVec = linspace(-2.5,2.5,31);
yVec = linspace(-3.5,3.5,33);
[X, Y] = meshgrid( xVec, yVec);
plotlOpt = 1;

end

X0 =X - x0;

YO =Y - y0;

phi = exp( —gR*({X0."2 + Y0."2) };

phill = 2xgRs+phi.«{ 1 - 2%xgR+Y¥0.72 );
phi2l = 4xgR"2+phi,*X0.,+Y0;

phil2 = phi2l;

phi22 = Z2xgRaphi.*«( 1 - 2+«gR+*X0.72 );

if nargin == 0 || plotOpt == 1
figure
quiver (X,Y,phill,phi2l);
ylabel (" {\ity}’"};
zlabel (! {\Nitx}");
[

title([’\Phi(:,1): {\Nitg_R}=' numZstr(gR)] );
figure
surfl (¥X,Y, sgrt( phill. 2 + phi2l.72 ) };

colormap copper



shading interp

ylabel (" {\ityl}');

xlabel (" {\itx}");

title ([’ | |\Phi(:,1): {\Nitg_R}=" num2str(gR}] };

figure

quiver(¥X,Y,philZ2,phi22);

vlabel (" {\ity}');

xlabel (" {\itx}" };

title(["\Phi(:,2): {\itg_R}=" num2str(gR)] );

figure

surfl(X,Y, sgrt( phil2."2 + phi22.7°2 ) );

colormap copper

shading interp

ylabel (" {\ity}’);

xlabel (7 {\itx}');

title ([" | [\Phi(:,2)||: {\Nitg_R}=' num2str(gR}] );
end
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