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Abstract

Radio tomographic imaging (RTI) is a device-free localization (DFL) technology

that utilizes a wireless sensor network (WSN) to create images based on attenuation

caused by targets obstructing WSN signal propagation. The sensors use radio waves

to transmit and receive signals and the RTI system collects the received signal strength

(RSS) measurements to use for attenuation image generation. The radio waves allow

the RTI system to detect targets through dense mediums such as smoke and walls.

Although radio frequency (RF) signal transmission has benefits, it also introduces

the issue of multipath propagation or interference. One main detriment of multipath

interference is that it presents imaging artifacts in the attenuation images. These

artifacts can lead to degraded image and target localization accuracy.

Various RTI models and reconstruction methods are equipped with capabilities to

mitigate the effects of multipath interference. This thesis combined the network shad-

owing (NeSh) and weighting-g models in conjunction with Tikhonov regularization

and low-rank and sparse decomposition (LRSD). MATLAB was used to implement

the four combinations for six experimental data sets and produce attenuation images.

The attenuation images were analyzed qualitatively and quantitatively to accomplish

the goal of determining which combination performed best at locating human targets.

After analyzing the results, it was determined that no single combination outper-

formed the others for at least three out of the five quantitative metrics. Therefore, a

rating technique was used instead to normalize the average results of each metric and

find the mean across each combination’s newly normalized average results. In accor-

dance with the normalization scale, the lowest and best rating revealed the optimum

combination was the weighting-g model implemented in conjunction with LRSD.
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MITIGATING THE MULTIPATH EFFECTS ON RADIO TOMOGRAPHIC

IMAGING

I. Introduction

This chapter provides background information about the research topic and prob-

lem this thesis will address. It also describes the research objectives that drive the

work performed in this thesis. The chapter concludes with a document overview to

summarize the next chapters to come.

1.1 Problem Background

Radio tomographic imaging (RTI) is a technology used to generate images of

the attenuation caused by objects or targets obstructing a wireless sensor network

(WSN). As the sensors in the WSN transmit and receive signals, the received signal

strengths (RSS) are recorded and used to determine any changes in attenuation [1].

The RTI system utilizes radio waves to transmit signals within the WSN. Multipath

propagation is an inherent characteristic of a radio frequency (RF) sensing network

[2]. The multipath propagation is also referred to as multipath interference and is an

issue because its effects can degrade RTI system performance.

1.1.1 Multipath Interference

Multipath components such as electronic noise, reflection, and shadowing con-

tribute to multipath interference [3, 4, 5]. Electronic noise is attributed to changes in

RSS measurements when no targets are present in the WSN. Reflection of the signal
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occurs when a target is in close proximity to the line-of-sight (LOS) path of the signal.

Shadowing refers to a target obstructing the LOS path of a transceiver pair [5].

Multipath interference introduces imaging artifacts into RTI attenuation images.

The imaging artifacts are excess areas of attenuation that can be mistaken for target-

induced attenuation and form pseudo-targets. The attenuation introduced by imaging

artifacts can degrade the overall RTI system performance by impacting the image

and target localization accuracy. Therefore, it is necessary to mitigate the effects of

multipath interference in order to yield the best RTI system performance [2].

1.1.2 RTI Models and Reconstruction Methods

RTI models and reconstruction methods work to mitigate multipath interference in

different ways. The RTI models consider the changes in RSS measurements caused by

target appearance and different multipath components and characterize the target-

induced attenuation and multipath interference. The RTI reconstruction methods

utilize the RTI models and change in RSS measurements to reconstruct the target-

induced attenuation in the form of attenuation images [2]. The attenuation images can

then be analyzed to determine image and target localization accuracy. Different RTI

reconstruction methods also have unique conditions they set to mitigate multipath

interference and suppress imaging artifacts. RTI models and reconstruction methods

have unique approaches to mitigating multipath interference and these approaches

are strengthened when implemented together.

1.2 Research Objectives

Preliminary research revealed there were novel RTI models and reconstruction

methods able to mitigate multipath interference that had not been implemented to-

gether yet. Based on the preliminary research, the objectives of this thesis will be to

2



implement new combinations of RTI models and reconstruction methods and conduct

a comparative analysis of how well they perform. Each model will be implemented in

conjunction with each reconstruction method to produce different combinations that

are capable of mitigating multipath interference in different ways than previously

researched.

A comparative analysis will be conducted using qualitative and quantitative as-

sessments. After implementing the combinations in MATLAB and generating the

attenuation images, the image data will be used in a target localization algorithm

to estimate the target locations. Visual inspection will be used to assess the noise

prevalence and target localization accuracy of the images on a qualitative basis. The

image accuracy, target localization accuracy, and execution time of the combinations

will be assessed by using quantitative performance metrics. The quantitative perfor-

mance results will ultimately be used to generate ratings for the combinations and

these ratings will be compared to determine which combination has the optimum

performance.

1.3 Document Overview

This thesis is comprised of five total chapters. Chapter I is a brief overview

of the research topic, problem background, and research objectives. Chapter II is

a detailed literature review that provides information on the RTI system, models,

reconstruction methods, and target localization algorithms. Chapter III discusses

the methodology used to carry out the research objectives previously mentioned.

Chapter IV presents the subsequent results after executing the methodology in the

previous chapter. Chapter V is a summary of the final performance results and

ratings that determine which RTI model and reconstruction method combination has

the optimal performance.

3



II. Background and Literature Review

This chapter provides an overview of existing work pertaining to the RTI system,

models, reconstruction methods, and target localization algorithms. The information

about the RTI system provides insight as to how the system itself operates. The

information about the models provides insight as to how the targets are modeled in

a WSN environment and the information about the reconstruction methods provides

insight as to how the attenuation images are generated. Lastly, the information on

the target localization algorithms discusses different methods for estimating single

and multi-target locations.

2.1 Radio Tomographic Imaging

Radio tomographic imaging is a device-free localization (DFL) technology that

generates images of the attenuation caused by targets obstructing the WSN. The

RTI system utilizes RF transmission to pass signals between the transceivers that

make up the WSN. The RSS measurements are recorded and used to determine the

target-induced attenuation [1].

RF transmission allows the RTI system to transmit signals through mediums such

as walls, trees, and smoke while optical and infrared imaging technologies cannot [1, 6].

Also, RF transmission allows the RTI system to effectively operate in darkness where

video cameras fail. One disadvantage of RF transmission is significant non-line of

sight (NLOS) propagation present in the RSS measurements [1]. It is difficult for the

RTI system to distinguish between attenuation caused by a target on the LOS path

or NLOS path [7].

RTI has proven useful in scenarios that require low cost, device-free localization

and tracking. Most wireless commercial-off-the-shelf (COTS) devices have readily

4



available RSS measurements which permit the RTI system to operate on the existing

network [8]. Also, to perform successful device-free localization and tracking, the

target in the WSN does not need a wireless device attached. For these reasons, RTI

has been successfully used in the following scenarios: through-wall target monitoring

[6, 9], residential monitoring [10, 11], and roadside surveillance [12].

2.1.1 Wireless Sensor Network

A wireless sensor network is comprised of transceivers that act as sensors arranged

around a defined perimeter. These transceivers are also referred to as nodes. Links

are formed between pairs of nodes and the total number of unique two-way links is

given by

M =
K2 −K

2
(1)

where K is the number of nodes in the WSN [1].

The nodes in the WSN communicate via a token passing protocol. Each node

transmits a signal to the base station as well as to all of the other nodes [4, 13, 14].

This allows the RSS measurements to be recorded. After the first node transmits a

signal, the token is passed to the next sequential node. If the next sequential node

does not transmit within the allotted time, the base station passes the token to the

next node and the process continues until all of the nodes have had the opportunity

to transmit [4, 13, 14].

Targets in the WSN environment absorb, reflect, diffract, or scatter a portion

of the transmitted signal power and the signal becomes shadowed. This leads to

attenuation which is the reduction of signal amplitude. The attenuation can then be

used to determine the locations of the targets because the node locations are known

and the attenuation occurs across the node links [1].

Figure 1 depicts an example of the RTI WSN. The nodes are arranged around

5



Figure 1: Illustration of RTI WSN.

a defined perimeter and links are created when each individual node is paired with

all of the other nodes. When a grid is laid over the RTI WSN, this creates N pixels

with unique locations. Figure 2 illustrates an example of the unique pixel locations

and the LOS path which is the most direct path a signal travels from one transceiver

to another. On the grid, the direct LOS path is represented by the pixels the RF

link directly passes through. The mathematical model for the LOS path uses the

ellipse to simplify which pixels lie along the LOS path [1]. In figure 2, the gray target

obstructing the link is shown to affect all the yellow pixels that lie within the red

ellipse and that affect is known as target-induced attenuation. The blue pixels in the

figure are unaffected by the attenuating target and represent the NLOS paths which

are indirect paths a signal may travel due to RF multipath signal propagation.
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Figure 2: Example of the LOS path for a single obstructed RF link.

2.1.2 Linear Formulation

RSS measurements are essential to determining the amount of attenuation that

occurs across pixels that make up specific links. The RSS y of a particular link i at

time t is given by

yi(t) = Pi − Li − Si(t)− Fi(t)− vi(t) (2)

where

• Pi is transmitted power

• Li is static loss due to distance, antenna patterns, etc.

• Si(t) is shadowing loss due to the attenuating target(s)

• Fi(t) is fading loss due to constructive or destructive interference in multipath

environments

7



• vi(t) is measurement noise.

All of the above variables are measured in decibels [1]. The shadowing loss vari-

able Si(t) is of particular interest because it is approximately equal to the sum of

attenuation in each pixel along a link. For each link, the pixels affect the amount of

attenuation differently and therefore a weighting is applied. For one specific link, the

shadowing loss is represented by

Si(t) =
N∑
j=1

wijxj(t) (3)

where wij is the weight of pixel j on link i and xj(t) is the attenuation in pixel j at

time t [1].

A calibration step must be performed in order to calculate the change in RSS

∆yi. The calibration step is performed by first recording the RSS measurements

when there are no targets obstructing the links in the WSN [15]. The calibration

RSS measurements yi(tc) are then subtracted from the RSS measurements recorded

when there are targets obstructing the links yi(t) [1, 2, 16]. Under the assumption

that static losses become negligible over time, the change in RSS becomes [1]

∆yi = yi(t)− yi(tc)

= Si(t)− Si(tc) + Fi(t)− Fi(tc) + vi(t)− vi(tc).
(4)

The fading loss Fi(t) and measurement noise vi(t) can be combined into the noise

term ni given by [1]

ni = Fi(t)− Fi(tc) + vi(t)− vi(tc). (5)

Equations (3) and (5) can then be substituted into equation (4) to generate the
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following formula for change in RSS

∆yi =
N∑
j=1

wij∆xj + ni (6)

where ∆xj is the change in attenuation for pixel j from times tc to t [1]. When all of

the links are considered at once, equation (6) can be written in matrix form as

∆y = W∆x + n (7)

where ∆y is the length M change in RSS vector, W is the M × N weight matrix

whose rows contain the weights of the pixels for the node links and whose columns

represent the individual pixels, ∆x is the length N attenuation image vector to be

estimated, and n is the length M noise vector [1]. To shorten the notation in equation

(7), the terms x and y will replace ∆x and ∆y.

2.1.3 Noise

According to [1], the noise vector in equation (7) is attributed to RSS time vari-

ation when no targets are obstructing the LOS paths. In the absence of any target,

the RSS measurements should be constant over time, but this is not the case due to

residual noise in the system. Also, multipath interference contributes to the noise in

the RTI system because it effects the NLOS paths [17].

Patwari and Wilson collected experimental noise samples by implementing the RTI

system and recording the RSS measurements of links when no targets were present

in the environment. For a given link, the results showed periods of heavy fading and

low fading which corresponded to a combination of high variance and low variance

Gaussian distributions. The mean data from each link was extracted and fitted with

a Gaussian mixture distribution that provided a sufficient approximation [1]. Most
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commonly in RTI research, the noise is modeled as a zero-mean Gaussian distribution

known as additive white Gaussian noise (AWGN) [18, 17, 19, 20]. The AWGN model

and Gaussian mixture model both fit the data in a similar fashion [1].

2.2 RTI Models

RTI models mainly consider how the RSS measurements for each link vary based

on the target’s location and geometry. Some models further take into account the

multipath components that are introduced by electronic noise, reflection, and shad-

owing. The purpose of the models is to characterize RSS attenuation and multipath

interference in order to produce attenuation images that have the least amount of

artifacts [2].

2.2.1 Network Shadowing Model

Wilson and Patwari introduced the network shadowing (NeSh) model as part of

the RTI method for model-based DFL [21, 22]. The weight matrix W is used in the

NeSh model to determine the pixel weights necessary to calculate the change in RSS

y. According to [19], the weight matrix can be represented as

W = S�Ω (8)

where S is the binary selection matrix, Ω is a matrix that contains the real-valued

weight magnitudes, and � signifies element-wise multiplication.

The NeSh model utilizes an ellipse with foci at each node to determine the weight-
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ing of each pixel for a particular link. The pixel weight is calculated by

wij =
1√
di


1, if dij(1) +dij(2) < di+λ

0, otherwise

(9)

where di is the distance between the two nodes that make up link i, dij(1) and dij(2)

are the distances from the center of pixel j to the nodes of link i, and λ is the width

of the ellipse [1]. The width of the ellipse is generally set low to simulate the LOS

path, however it is ultimately tuned based on user specification. Figure 3 illustrates

that only pixels that fall within the bounds of the ellipse for a particular link have a

nonzero weight [1].

The length of the node link has an impact on the change in RSS. Longer links that

are obstructed by targets have less change in RSS because the signals have a longer

Figure 3: Image of a single NeSh model weighted link.
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distance to travel and can reflect around the targets, whereas the shorter obstructed

links exhibit substantial change in RSS due to the abrupt target interference [1]. In

equation (9), the weights of the pixels that fall within the ellipse are equal to the

inverse square root of the distance of link i. This is consistent with the knowledge

that the change in RSS is inversely proportional to link length [16]. Although the

NeSh model considers the length of the links, it does not consider the distance between

the targets and links. The model also gives equal weights to all of the pixels that fall

within the ellipse, however this is inconsistent with the fact that the targets affect

pixel locations differently. Research has shown that targets have a greater influence

on nodes when they are located closer to them [22]. For these reasons, the NeSh

model is not the most practical for operational applications.

2.2.2 Inverse Area Elliptical Model

The goal of the inverse area elliptical model (IAEM) is to relate signal shadowing

to attenuation occurring at specific locations in the WSN. The IAEM achieves this

goal by accounting for the fact that some areas of the ellipse contribute more to the

change in RSS than others. To demonstrate the contributions, the weight matrix is

set equal to the inverse area of the smallest ellipse containing a particular link [20].

The area of the ellipse is given by

A(di, λij) ≈
π

4
di
√

2diλij (10)

where di is the distance between the two nodes that make up link i and λij is the

width of the ellipse that is either a set tunable parameter or given by

λij = dij(1) + dij(2)− di (11)
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where dij(1) and dij(2) are the distances from the center of pixel j to the nodes of

link i [19]. Equations (10) and (11) are used to calculate the IAEM given by

W =


A−1(di, λmin), if λij < λmin

A−1(di, λij), if λij ≥ λmin

(12)

where λmin is a tunable parameter [19]. The weights are bounded by the semi-minor

axis lengths determined by λmin and λij [20]. Figure 4 is an example of one IAEM

weighted link.

The IAEM utilizes the ellipse because the Fresnel zone is known to have an ellip-

soidal shape. Although the NeSh model also utilizes the ellipse, the IAEM considers

the fact that the change in RSS is different for signals that travel close to the edge

of the ellipse as opposed to those traveling near the LOS path. The signals traveling

Figure 4: Image of a single IAEM weighted link.
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along the edge of the ellipse have a farther distance to travel and therefore have less

impact on change in RSS. For this reason, the IAEM weights pixels farther from the

LOS path less than that those closer to the LOS path [20]. This is a substantial im-

provement, however the contributions of the individual pixels within an ellipse cannot

be distinguished [16].

2.2.3 Exponential-Rayleigh Model

The Exponential-Rayleigh (ER) model characterizes the change in RSS while also

addressing multipath interference which degrades DFL accuracy. The ER model

consists of a large-scale exponential component that represents the link shadowing

and a Rayleigh component that represents the multipath interference introduced by

targets obstructing the links [18]. For a single target, the ER attenuation model is

expressed as

yi(k) = βae
−λi(k)
σa − βbλi(k)e

−λ2i (k)
σb (13)

where i is the particular link, k is the length M vector of estimated target locations,

βa and σa are the attenuation parameters, βb and σb are the model parameters, and λi

is the excess path length which is the difference between the major axis length of the

ellipse and the intra-focal distance as in equation (11) [18, 19]. Figure 5 illustrates

an example of the change in RSS for one link. The pixel intensities greater than zero

indicate target-induced attenuation and the pixel intensities less than zero imply RSS

enhancement [18]. For multiple targets, the ER attenuation model is expressed as

y(K) =
G∑
g=1

yi(k, g) (14)

where G is the total number of targets and yi(k, g) is the ER component of target g

[18].
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Figure 5: Image of a single link’s change in RSS for the ER model.

For equation (14), the expectation maximization (EM) algorithm is used to de-

termine the attenuation parameters (βa and σa) and the model parameters (βb and

σb). Although the ER model enhances the multipath components to account for their

effect on the change in RSS, this requires the use of the EM algorithm which adds

computational complexity [18]. Conversely, the NeSh model and IAEM more simply

rely on the weight matrix calculations to characterize the changes in attenuation.

In [18], the ER model is not used to create images of the attenuation. Instead,

equations (13) and (14) are used in conjunction with particle filtering to estimate a

known number of target locations. This thesis will focus on the RTI models that

are implemented in conjunction with reconstruction methods to generate attenuation

images and estimate target localization from those images.
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2.2.4 Weighting-g Model

The weighting-g model is an elliptical model that determines the weight matrix

based on the distance of the pixels in the ellipse and their proximity to the LOS

path [16]. The model introduces a distance attenuation factor that improves target

localization performance. The weighting-g model is represented by

wij =


e−h, if dij(1)+dij(2) < di + λ

0, otherwise

(15)

where h is the distance between each pixel inside the ellipse and the LOS path, dij(1)

and dij(2) are the distances from the center of pixel j to the nodes of link i, di is the

distance between the two nodes that make up link i, and λ is the tunable width of

the ellipse [16]. Figure 6 illustrates an example of one weighted link.

Figure 6: Image of a single weighting-g model weighted link.
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The signal shadowing along LOS paths is greater than the shadowing along NLOS

paths [16, 23]. The weighting-g model addresses this difference in shadowing by

assigning different weights to the pixels within the ellipse that reside along the LOS

path or NLOS path. In equation (15), pixels that fall within the ellipse are given a

magnitude equal to the distance attenuation factor e−h. This factor is different for

every pixel due to the fact that every pixel has a unique location. The factor also

ensures the pixels that contain the LOS paths have greater weights than the pixels

that contain the NLOS paths. This is consistent with the shadowing behavior that

occurs in a real world environment [16].

The weighting-g model differs from the previously described RTI models. Unlike

the NeSh model, the weighting-g model considers the distance relationship between

the pixels and LOS path and attributes different weights to the pixels which is more

consistent with actual shadowing behavior. The IAEM model demonstrates actual

shadowing behavior, however the individual pixels are not all uniquely distinguished

[16]. Also, the weighting-g model resists multipath interference by utilizing the dis-

tance attenuation factor to condense the number of pixels that have significant at-

tenuation and reduce the appearance of pseudo targets in the attenuation image [16].

The ER model also addresses multipath interference, but it is more computationally

complex because it implements the EM algorithm [18].

2.3 RTI Reconstruction Methods

RTI reconstruction methods are responsible for generating the estimated attenu-

ation images used to approximate the locations of targets in the WSN environment.

These methods rely on the change in RSS data characterized by the RTI models in

section 2.2 [2]. RTI reconstruction is an ill-posed inverse problem meaning that a

small amount of noise can be substantially amplified. This noise amplification can
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then degrade the attenuation image quality and render inaccurate target localization.

For these reasons, the reconstruction methods must account for the presence of noise

which introduces artifacts into the attenuation images [2].

2.3.1 Tikhonov Regularization

To implement Tikhonov regularization, a derivative energy term is added to the

least squares solution. The least squares solution minimizes the fit error in equation

(7) by manipulating the least-squared error given by

xLS = arg min
x
||Wx− y||22 (16)

where W is the length M × N weight matrix, x is the length N attenuation image

vector, and y is the length M change in RSS vector [1]. The least squares solution

takes the gradient of equation (16) and sets it equal to zero to yield

xLS = (WTW)−1WTy. (17)

However, this solution is only valid if W is full rank and this is not true in RTI

systems due to the ill-posed inverse problem. Therefore, regularization is used to

introduce information into the model that will tackle the ill-posed issue [1].

Tikhonov regularization is represented by

f(x) =
1

2
||Wx− y||2 + α||Qx||2 (18)

where α is an adjustable regularization parameter and Q is the Tikhonov matrix that

approximates the derivative operator [1]. By substituting in the difference matrices
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for Q, equation (18) becomes

f(x) =
1

2
||Wx− y||2 + α(||Dxx||2 + ||Dyy||2) (19)

where Dx and Dy are the difference operators in the horizontal and vertical directions

respectively [1]. After taking the gradient of equation (19) and setting it equal to zero,

the estimated attenuation becomes

x̂ = (WTW + α(DT
xDx + DT

y Dy))
−1WTy. (20)

The estimated attenuation can now be represented as a linear transformation of the

change in RSS data given by

x̂ = Πy (21)

where Π is given by

Π = (WTW + α(DT
xDx + DT

y Dy))
−1WT . (22)

The computational simplicity of the linear transformation is one of the main ben-

efits of Tikhonov regularization. Also, the linear transformation allows for faster

reconstruction because it does not rely on instantaneous measurements and Π can be

precalculated [1]. Tikhonov regularization successfully minimizes noise energy and

generates smooth attenuation images, however some of the target-induced attenua-

tion may be eliminated throughout the process [2].

2.3.2 Heterogeneous Bayesian Compressive Sensing

Heterogeneous Bayesian compressive sensing (HBCS) is a type of BCS that de-

veloped from sparse Bayesian learning (SBL) [23]. BCS implements the Bayesian
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method which recognizes all unknown variables as random variables that follow cer-

tain probability distributions [17, 24, 25]. SBL is a machine learning tool that can be

successfully applied to the RTI system because the attenuation image has a sparse

number of pixels that account for the target-induced attenuation [17]. HBCS solves

sparse signal recovery by implementing a heterogeneous noise variance learning algo-

rithm to estimate the attenuation image [23].

The HBCS method applies a zero-mean multivariate Gaussian distribution over

the attenuation image x and heterogeneous noise n. The Bayesian rule is then applied

to determine the posterior distribution

p(x|y,α,β) =
p(y|x,β)p(x|α)∫
p(y|x,β)p(x|α)dx

= N (µ,Σ)

(23)

where x is the length N attenuation image vector, y is the length M change in

RSS vector, α is the length N vector [α1, α2, ..., αN ]T whose inverse makes up the

attenuation covariance when placed on a matrix diagonal, and β is the length M

vector [β−2
1 , β−2

2 , ..., β−2
M ]T whose inverse makes up the noise covariance when placed

on a matrix diagonal [17, 23]. Modeling the noise in a heterogeneous fashion is more

similar to noise in a real world environment because the noise levels vary for different

links [23]. The mean µ of the posterior Gaussian distribution is given by

µ = ΣWTBy (24)

where W is the weight matrix and B is the diagonal entries of β [23]. The covariance

Σ is given by

Σ = [WTBW + A]−1 (25)

where A is the diagonal entries of α [23]. Using the Gaussian posterior distribution
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in equation (23), the attenuation image is estimated by the following maximum a

posterior (MAP) solution,

xHBCS = arg max
x

p(x|y,α,β). (26)

Equation (26) can be further represented by

xHBCS = [WTBW + A]−1WTBy. (27)

To successfully conduct sparse signal recovery, α and β must be properly esti-

mated. These parameters are estimated using a maximum likelihood solution imple-

mented in the heterogeneous noise variance learning algorithm. The algorithm uses

the parameters µ and Σ to update α and β, the α and corresponding W values are

pruned, the corresponding pixel in x is set to 0 when αi is larger than a threshold

value, and the process continues until µ converges [23]. In HBCS, the noise variance

terms provide more degrees of freedom to maximize sparse solutions. By this ac-

count, HBCS outperforms BCS [23]. However, the algorithmic updates for β render

the algorithm used in HBCS computationally complex [23]. Also, if the multipath

interference that contributes to noise in the environment is sparse, this could lead to

decreased target localization accuracy [2].

2.3.3 Feedback-Based Sparse Bayesian Learning

Feedback-based sparse Bayesian learning implements fast SBL for both heteroge-

neous and homogeneous noise scenarios. It can be applied to the RTI system because

the attenuation image is considered sparse. The feedback-based SBL outperforms fast

SBL because the inaccurate noise estimation of fast SBL reduces the reconstruction

image quality [17].
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To improve image reconstruction quality, feedback-based SBL implements energy

feedback from signal space to noise space. In this way, the noise estimation is linked to

signal estimation. This is accomplished by modeling the noise as a 3-layer framework

of one zero-mean Gaussian distribution and two Gamma distributions [17]. The

distributions are defined as

p(n|β) = ΠM
i=1N (ni|0, β−1

i ) (28)

p(β|ε) = ΠM
i=1Γ(βi|1, si · εi) (29)

p(ε|ϑ) = ΠM
i=1Γ(εi|ϑ, ϑ) (30)

where n is the length M noise vector, β is the length M reciprocal of noise variance

vector, εi is equal to ϑ
siβi+ϑ

, ϑ is a user-defined parameter, and si is a factor of the

scale-parameter in the Gamma distribution given by

si =
P̄x̄
P̄n̄
· βi (31)

where P̄x̄ is the mean power of the signal and P̄n̄ is the mean power of the noise

[17]. Based on equation (31), the signal power has an influence on the noise model

in equation (29) [17]. Since feedback-based SBL focuses on a more accurate noise

model, the signal x remains modeled as a zero-mean Gaussian with covariance α−1

as in HBCS. After applying the Bayesian method, the posterior distribution is the

same as equation (23) for HBCS [17].

The fast feedback-based SBL algorithm is implemented to generate the attenua-

tion image. The algorithm works to estimate the hyper-parameters α and β which

are used to update µ and Σ and determine whether specific column vectors of W are

used [17]. Unlike the SBL algorithm, the fast feedback-based SBL algorithm executes
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quicker and provides more accurate target localization due to the energy feedback

contribution [17].

2.3.4 Low-Rank and Sparse Decomposition

Low-rank and sparse decomposition (LRSD) separates the environmental back-

ground image from the target-induced foreground image to improve attenuation image

quality and target localization accuracy [2]. The image artifacts are reduced by re-

stricting the background environment using a low-rank condition. After constraining

the background, the sparse target-induced foreground is enhanced [2]. The sparsity

algorithm is then used to obtain a solution for x.

The attenuation image x can be represented as the combination of the environ-

mental background image l and the target-induced foreground image s [2, 26, 27].

The combination is given by

x = l + s. (32)

Equation (32) can also be expressed in matrix form by reshaping the l and s vectors

so they have the same dimensions as the true image. The matrix form is given by

X = L + S. (33)

In other sparisty-regularized methods such as BCS and HBCS, the imaging arti-

facts caused by multipath interference may be mistaken as the target-induced atten-

uation [2]. To mitigate this mistake, the LRSD method uses a sufficient constraint to

suppress the artifacts in L. LRSD then implements a sparsity-regularized algorithm

to recognize the target-induced attenuation in S [2].

The LRSD optimization problem is used to solve for the attenuation image. The
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optimization problem is given by

x = arg min
l,s
||y −W(l + s)||22 + ||L||∗ + α||S||1 (34)

where y is the change in RSS vector, W is the weight matrix, ||L||∗ = Σiσi(L) is the

nuclear norm for the minimized rank, σi(L) is the ith singular value of L, and α is

the regularization constant [2]. The background image vector l is solved for by using

partial singular value decomposition (SVD) in the following formula

[U[c],Σ[c],V[c]] = SV D(Y∗ − S[c])

L̂[c+1] = U
[c]
:,1:r ·Σ

[c]
1:r,1:r ·V

[c]T
:,1:r

l̂[c+1] = Vec(L̂[c])

(35)

where c is the iteration count, U is a M×M matrix whose columns form orthonormal

vectors, V is a N × N matrix whose columns form orthonormal vectors, Y∗ is the

matrix form of the reshaped vector y∗ = W∗y according to the notation in [2], S

is the matrix form of the reshaped vector s, Σ is a M × N matrix whose diagonal

entries are the singular values of (Y∗ − S[c]), and Vec is the vectorization of matrix

L [2]. The foreground image s is estimated by

ŝ[c+1] = arg min
s
||y −W(̂l[c+1] + s)||22 + α||s||1. (36)

To solve (36), the iterative shrinkage-thresholding algorithms in [28] are used. The

foreground image is then given by

ŝ[c+1] = Sατ{ŝ[c] − 2τ [Ψ(̂l[c+1] + ŝ[c])− y∗]} (37)

where Ψ = W∗W, y∗ = W∗y according to the notation in [2], τ is the step size, and
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Sατ is the soft thresholding operator given by

Sατ (z)i = sign(zi)max(0, |zi| − ατ) (38)

where sign is the signum function [2]. After l̂ and ŝ converge, the attenuation image

x̂ is obtained by adding l̂ and ŝ [2].

Similar to HBCS and feedback-based SBL, LRSD implements a sparsity method

to reconstruct the attenuation image [2, 17, 23]. However, HBCS and feedback-

based SBL focus on determining the proper distributions to model the multipath

interference which is environment dependent [17, 23]. Conversely, LRSD focuses on

the suppression of the multipath interference and the enhancement of the target-

induced attenuation to reconstruct the attenuation image [2].

2.4 Target Localization

After implementing the RTI reconstruction method to generate the attenuation

image, the image is analyzed to determine target localization. The algorithm used

to perform target localization depends on the number of targets in the environment.

Multi-target localization algorithms are capable of estimating one or more target

locations, however the same is not true for single target localization algorithms [8].

2.4.1 Single Target Localization

For single target scenarios, one method of target localization is finding the center

of the highest intensity pixel in x. This pixel location is regarded as the estimated

target location [16, 17]. The estimated target location is represented by

ẑ = [xk, yk] (39)
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where k = arg max(x), xk is the x-coordinate of the highest intensity pixel, and yk is

the y-coordinate of the highest intensity pixel [17]. If the brightest pixel in x belongs

to a pseudo-target introduced by noise, the pseudo-target location will falsely be

estimated as the actual target location. Therefore, it is vital to implement the proper

model and reconstruction method to reduce the presence of artifacts and potential

pseudo targets [16].

2.4.2 Multi-Target Localization

Clustering algorithms such as hierarchical agglomerative clustering (HAC) and

k-means clustering are used for multi-target localization [8, 18]. Pixel clusters are

identified and the centers of the clusters known as centroids are regarded as the

estimated target locations [8]. For both methods, a threshold is set in order to reduce

the number of pixels that are analyzed as possible target locations [29, 30, 31].

2.4.2.1 Hierarchical Agglomerative Clustering

The HAC algorithm can be used to estimate an unknown number of targets. HAC

initially considers each pixel a cluster. During each iteration, the two closest clusters

are merged together. The average linkage distance between two clusters is calculated

by taking the average of the Euclidean distances between all the pixels that make

up the clusters. This repeats until the minimum of the average linkage distances is

greater than a defined threshold [29]. Low threshold values result in several small

clusters while high values result in fewer larger clusters. For each cluster, the pixel

with the highest intensity is then selected as the cluster head [29]. To reduce the

complexity of target localization, the number of cluster heads is further condensed

via a gating process. The gating process entails eliminating cluster heads whose

locations fall outside of a defined radius around possible targets and whose pixel
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intensities fall below a certain threshold [29]. Lastly, the remaining cluster heads

with the highest intensities are regarded as the estimated target locations. Although

HAC can be useful in scenarios where the number of targets is unknown, it relies on

an experimentally derived threshold value that will vary for targets of different sizes.

Therefore, this threshold renders HAC inappropriate to use in real world applications

where the threshold cannot be experimentally derived from target data.

2.4.2.2 K-Means Clustering

The k-means algorithm works to minimize the average squared distance between

points that form a cluster [31]. For the RTI system, the pixel locations selected via

thresholding correspond to the points in the k-means algorithm. To execute k-means,

the number of clusters k is required as an input. The number of clusters should be

chosen based on the number of targets in the environment. The cluster centers are

then chosen uniformly at random from the pixel locations, each pixel is assigned to

the closest center, and each center is recalculated as the center of mass of all the

pixels that make up its corresponding cluster [31]. The process repeats until the

cluster assignments no longer change.

Although the k-means algorithm executes quickly with few iterations, it deter-

mines locally optimum target locations that may be inaccurate [30]. The k-means++

algorithm improves the speed and target localization accuracy by choosing random

starting centers with specific probabilities [31]. Each new center has a probability

that is proportional to the distance from itself to the closest center already chosen.

The probability is given by

D(p′)2

ΣpεPD(p)2
(40)

where p is a pixel location, p′ is the new center, P is the set of pixel locations

selected via thresholding, D(p) is the shortest distance from p to the closest center
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already chosen, and D(p′) is the shortest distance from p′ to the closest center already

chosen [31]. Even though k-means++ also relies on the number of targets as an

input, overestimating a value for k will ultimately generate multiple estimated target

locations that are approximations of the true target locations.
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III. Methodology

The work performed in this thesis depended on choosing which RTI models to

implement in conjunction with which reconstruction methods. Making the decision

pertaining to which models to implement was based on model performance and which

parameters could be logically compared. Making the decision pertaining to which

reconstruction methods to implement was based on multipath mitigation and com-

putational complexity.

Along with selecting the RTI models and reconstruction methods, it was necessary

to make other choices pertaining to RTI performance and analysis. Five performance

metrics were chosen to quantitatively analyze the performance of each model and

reconstruction method combination. The RTI regularization and width of the el-

lipse parameters were also chosen to enhance the performance of each model and

reconstruction method combination. The rest of this chapter discusses the cylindrical

human model used to simulate the human targets, the RTI data collection process

used to record the RSS measurements, and the k-means++ algorithm used to calcu-

late the estimated target locations.

3.1 RTI Models Chosen

The NeSh and weighting-g models were chosen to generate different weight ma-

trices that impact the model for the change in RSS. The NeSh model was chosen

because it is the most common RTI model that successfully employs an ellipse to

simplify determining which pixels lie along the LOS path [1]. It also mitigates mul-

tipath interference by assigning zero weights to the pixels along the NLOS paths.

The weighting-g model was chosen because it too utilizes the ellipse and this com-

mon feature allows the models and their results to be logically compared. Also, the
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weighting-g model more accurately weights the pixels by assigning values based on

the distance between each pixel inside the ellipse and the LOS path [16]. For both

models, equations (9) and (15) reveal the pixels that do not lie along the LOS paths

are assigned zero weights and the zero weights suppress multipath interference.

3.2 RTI Reconstruction Methods Chosen

Tikhonov regularization and LRSD were chosen as the reconstruction methods to

generate the attenuation images used for target localization. Tikhonov regulariza-

tion was chosen based on its regularization parameter, linearity, and reduced com-

putational complexity. The regularization parameter α is responsible for suppressing

the noise spikes and smoothing the attenuation image to clearly display the target

boundaries without noise significantly interfering. The linearity leads to faster re-

construction because instantaneous measurements are not necessary to solve for Π in

equation (22) [1]. The linearity also contributes to reduced computational complexity

because the estimated attenuation image is solved from the simplified transformation

in equation (21). The LRSD reconstruction method was chosen based on its mul-

tipath mitigation. LRSD suppresses the multipath interference by implementing a

low-rank condition on the background image. It then enhances the target-induced

attenuation by implementing sparsity-regularized methods on the foreground image

[2]. LRSD increases the target localization accuracy by decreasing the prevalence of

noise in the attenuation image.

3.3 Performance Metrics

The performance metrics were used to generate quantitative results for the purpose

of comparing the true attenuation images and true target locations to the estimated

attenuation images and estimated target locations. Each performance metric utilized
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information from the attenuation images, target locations, or algorithms. In this way,

each model and reconstruction method combination was evaluated across a diverse

set of performance parameters.

3.3.1 Image Mean-Squared Error

The mean-squared error (MSE) performance metric was used to determine the

image quality of the estimated attenuation image x̂. The MSE formula is given by

τ =
||xc − x̂Norm||2

N
(41)

where xc is the normalized true image with subscript c referring to the human cylin-

drical model to be discussed in section 3.5, x̂Norm is the normalized estimated image,

and N is the total number of pixels in the image [1, 32]. For the same target scenario,

the RTI model and reconstruction method combinations were implemented to gener-

ate different estimated attenuation images. The MSEs of these estimated attenuation

images were then compared. The optimum MSE value was the lowest of them all and

indicated the respective RTI model and reconstruction method combination produced

the estimated attenuation image that was most similar to the true attenuation image.

3.3.2 Dispersion

According to [33], dispersion measures the spread of the pixels that represent each

target in the attenuation image. The pixels that represent each target are known as

the target pixels and are filtered via thresholding. The pixel locations with pixel

intensities greater than or equal to the threshold retain their normalized value and

signify the target pixels. The pixel locations with intensities that fail to meet the
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threshold are eliminated. The dispersion σCentroid is yielded by

σCentroid =

√
ΣN
j=1||Kj − v||2 · x̂j

ΣN
j=1x̂j

(42)

where Kj is the coordinate of the jth pixel, v is the centroid coordinate location, x̂j

is the intensity of the jth pixel in the normalized estimated attenuation image after

thresholding, and N is the total number of pixels selected via thresholding [33]. The

dispersion of each estimated target in x̂Norm was calculated and compared to the

dispersion of each true target in xNorm. The dispersion error was calculated using

σerror = |σCentroid − σ̂Centroid| (43)

where σCentroid is the dispersion of the true target in xNorm and σ̂Centroid is the dis-

persion of the estimated target in x̂Norm.

3.3.3 Target Location Root-Mean-Squared Error

The root-mean-squared error (RMSE) was used to measure the error between the

true target location(s) and estimated target location(s). The RMSE is given by

RMSE =

√
ΣM
m=1(||ẑm − zm||)2

M
(44)

where ẑm is the mth estimated target location, zm is mth true target location, and M

is the total number of true and estimated target locations [14]. For the same target

scenario, the RTI model and reconstruction method combinations were implemented

to generate different estimated attenuation images. The RMSEs of these estimated

attenuation images were then compared. The optimum RMSE value was the lowest

of them all and indicated the respective RTI model and reconstruction method com-
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bination produced the most accurate target localization out of the results compared.

3.3.4 Execution Time

Execution time is the measure of how fast programming code runs. For this the-

sis, the execution time measured the speed of each written MATLAB function. The

Tikhonov function was written to average the RSS data across multiple frames, cal-

culate the change in RSS using the averaged RSS data and calibration data, calculate

the weight matrices for the Nesh and weighting-g models, and implement Tikhonov

regularization using both models. The LRSD function included the same tasks ex-

cept LRSD was implemented using the NeSh and weighting-g models. The built in

MATLAB function profile was used to measure the execution time of each func-

tion. Execution time is a common performance metric as demonstrated by its use in

[32, 34, 35, 36, 37].

3.4 RTI Parameters Chosen

A wide range of regularization parameters α were tested to determine the proper

amount of smoothing for the attenuation images. A wide range was chosen because

values that were too small made it difficult to distinguish whether a bright pixel was

noise or a target. Also, α values that were too large made the image so smooth that

it became difficult to determine the target boundaries [1].

The width of the ellipse λ played a vital role in determining the pixels included

on the LOS path. When λ was too large, the pixels on the NLOS path were included

even though attenuation may or may not have occurred at those locations. Also,

when λ was too small, some of the pixels that in fact made up the LOS path were

excluded and resulted in loss of attenuation information [1].
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3.4.1 Regularization Parameter

Experimental testing was conducted using a range of 10 to 10,000 to choose the

regularization parameter α. Figure 7 illustrates attenuation images with different α

values and smoothing results. For Tikhonov regularization, the final α values chosen

were 1,000 for the NeSh model and 10,000 for the weighting-g model. One reason

for the difference was that the weighting-g model attenuation factor e−h required a

larger α value in order for the attenuation images to have proper smoothing. Figure

8 (d) illustrates an example of an attenuation image with proper smoothing for the

weighting-g model and Tikhonov regularization. For LRSD, the α value was set to

0.25 for both models based on the algorithmic information given in [2].

3.4.2 Width of the Ellipse

For the NeSh and weighting-g models, experimentation of the λ values was con-

ducted to determine which values produced sufficient results for single and two-target

scenarios. For the NeSh model, the λ values ranged from 0.01 to 0.1 feet with 0.01 feet

increments. The decision to use this range was based on [1] conducting experiments

with a λ value of 0.01 feet in one scenario and 0.07 feet in another. The variation

in λ demonstrated the width of the ellipse was scenario dependent. Also, the range

did not consist of λ values smaller than 0.01 feet because values that were too small

excluded pixels that made up the LOS path. Figure 9 illustrates the NeSh model

weighted links for three different λ values. The smallest value is half the size of 0.01

feet and the largest is twice the size of 0.01 feet. For the weighting-g model, the

λ values ranged from 0.05 to 0.14 feet with 0.01 feet increments. This decision was

based on [16] conducting experiments with a λ value of 0.05 feet. Figure 10 illustrates

the weighting-g model weighted links for three different λ values. The smallest value

is half the size of 0.05 feet and the largest is twice the size of 0.05 feet.
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Figure 7: NeSh model and Tikhonov regularization attenuation images for α values
of 10 (a), 100 (b), 1,000 (c), and 10,000 (d).

The widths of the ellipses for the NeSh and weighting-g models were chosen based

on the MSE, RMSE, and dispersion error performance metrics. These metrics were

chosen based on their results alluding to image and target localization accuracy. The

ranges of λ values previously discussed for the RTI models were tested for six different

target scenarios. The testing was conducted by implementing the models and their

respective parameters in conjunction with Tikhonov regularization and LRSD. Three

of the six target scenarios were single target scenarios for true target locations (9,14),

(5,5), and (15,8). The last three were two-target scenarios for true target location

pairs (2,8) (5,10), (2,10) (15,12), and (11,4) (11,14). The respective α values of 1,000,

10,000, and 0.25 remained constant. After implementing the combinations to test
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Figure 8: Weighting-g model and Tikhonov regularization attenuation images for α
values of 10 (a), 100 (b), 1,000 (c), and 10,000 (d).

the two ranges of 10 λ values, the performance metrics were calculated to yield 60

MSEs, 90 RMSEs, and 90 dispersion errors for each combination. The RMSEs and

dispersion errors each totaled 90 because there were 30 results for the three single

target scenarios and 60 results for the three two-target scenarios. When each λ value

was tested for each two-target scenario, the two individual RMSEs and two individual

dispersion errors were averaged together respectively. The end result was a total of 60

MSEs, 60 RMSEs, and 60 dispersion errors for each combination. Next, the average

errors were calculated across all six target scenarios resulting in 10 MSEs, 10 RMSEs,

and 10 dispersion errors for each combination. The λ values corresponding to lowest

MSE, RMSE, and dispersion error were selected. These three selected λ values were
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then averaged together and rounded to the nearest hundredth to determine the final

λ value for each RTI model and reconstruction method combination. The final λ

results for the NeSh model were 0.02 feet for Tikhonov regularization and 0.05 feet

for LRSD. The final λ results for the weighting-g model were 0.05 feet for Tikhonov

regularization and 0.09 feet for LRSD.
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Figure 9: Images of NeSh model weighted links for λ values of 0.005 (top), 0.01
(middle), and 0.02 (bottom) for an example link.
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Figure 10: Images of weighting-g model weighted links for λ values of 0.025 (top),
0.05 (middle), and 0.10 (bottom) for an example link.
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3.5 Cylindrical Human Model

For the purpose of this thesis, the target is a human represented by an attenuating

cylindrical model. This model was selected because it is a simple way to represent the

size, shape, and attenuation of the human body [1]. The normalized true attenuation

image xc of a human target in the RTI WSN is represented by

xcj =


1, if ||xj − cH || < RH

0, otherwise

(45)

where xcj is the center of pixel j, xj is the location of pixel j, cH is the true target or

human location, and RH is the human radius [1, 2]. The human radius is 1.3 feet in

accordance with [1]. Figure 11 is an example of the true attenuation image produced

after implementing equation (45). The true image xc and true target location(s) are

necessary to compute the MSE, RMSE, and dispersion.
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Figure 11: True attenuation image for target locations (2,8) and (5,10).

3.6 RTI Data Collection

The RSS data used in this thesis was collected by Jeffrey Nishida and Tan Van at

the Air Force Institute of Technology (AFIT). The RTI system in the AFIT laboratory

consisted of 70 TelosB TPR2400CA transceivers manufactured by MEMSIC. The

transceivers communicated using the Spin protocol and operated on the 2.4 GHz

band [38]. They were mounted at 3’4” on polyvinyl chloride (PVC) pipes.

The experimental data was collected by using the RTI system for single and multi-

target scenarios. The laboratory environment surrounding the RTI system consisted

of metal file cabinets and racks that introduced more multipath interference. For

most of the data sets, multipath interference may have contributed to 5% − 10% of

unreported RSS data for some of the links. The links with unreported RSS data were

assigned NaN arguments. There were 27 iterations or frames of data collected for each
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scenario. There was also one frame of calibration data collected before any targets

were positioned in the scenes. To improve the experimental data used in this thesis,

the unreported RSS data denoted by NaN was replaced with the corresponding RSS

data recorded in the previous frame. For each target scenario, the 27 frames of RSS

data were averaged together to form the improved data sets used for processing.

3.7 K-Means++

The k-means++ algorithm was chosen for target localization. This algorithm

was chosen over HAC because of its fast execution time and simple application in

MATLAB using the kmeans function. Although k-means++ still requires an input

for k, if the value for k is overestimated the algorithm will generate multiple estimated

target locations that are approximations of the true target location(s). Figure 12

illustrates examples of using k-means++ to produce 10 target location estimates

although there are only one (left) and two (right) targets located in the attenuation

images. These estimated target locations surround the true target locations and

form groups. The true target locations can be further approximated by computing

the averages of the groups of estimated target locations. Also, thresholding was

performed to only include the pixels with normalized intensities of 0.7 or greater as

potential cluster centers. The normalized pixel intensity of 0.7 was chosen because

higher thresholds eliminated pixels with target-induced attenuation.
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Figure 12: Attenuation image for true target location (9,14) with k = 10 estimated
target locations (left) and attenuation image for true target locations (2,8) and (5,10)
with k = 10 estimated target locations (right).
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IV. Results and Analysis

4.1 Attenuation Image Results

The attenuation images were analyzed qualitatively using visual inspection and

quantitatively using the metrics discussed in Chapter III. The qualitative analysis was

conducted based on the author’s background knowledge of optimum RTI attenuation

images discussed in literature such as [1], [2], and [16]. Optimum RTI attenuation

images have low noise prevalence, clear target boundaries, and estimated target loca-

tions represented by the highest intensity target pixels.

Each figure in this chapter includes a group of four attenuation images for one of

the six target scenarios. For each figure, the Tikhonov regularization images are in the

left column and the LRSD images are in the right column. The NeSh model images are

in the first row and the weighting-g model images are in the second row. Throughout

the rest of this thesis, the RTI model and reconstruction method combinations will

be referred to by the following acronyms:

• N-T: NeSh model in conjunction with Tikhonov regularization

• W-T: Weighting-g model in conjunction with Tikhonov regularization

• N-L: NeSh model in conjunction with LRSD

• W-L: Weighting-g model in conjunction with LRSD.

4.1.1 Target Location (9,14)

Figure 13 illustrates the attenuation images generated for the true target located

at (9,14). In the figure, the W-L image has more dark blue pixels than the other

images. These dark blue pixels have intensities of 0 to 0.1 and are indicative of no
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attenuation which should be expected for pixels that lie along links the target does

not interfere with. This is also consistent with the true attenuation image which has

dark blue pixels with intensities of zero to represent the absence of target-induced

attenuation (figure 11). The greater number of dark blue pixels suggests lower noise

prevalence in the W-L image.

Figure 14 is a magnified version of the attenuation images in figure 13. The x and

y axes have been reduced to only include the pixels that are closest to the true target

location. In the figure, the N-T, W-T, and W-L images have clear target boundaries

formed by the target clusters with individual pixel intensities of 0.07 or greater. Also,

the N-T and W-T images have significantly more bright yellow target pixels with

Figure 13: Attenuation images for target location (9,14).
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intensities of 0.9 to 1 centered around the true target location. These high intensity

pixels are indicative of target-induced attenuation which is consistent with the true

image. The N-T image has the most accurate estimated target location represented

by the black asterisk inside of the red circle which represents the true target location

(9,14). Visually, the W-L image has the lowest noise prevalence while the N-T image

has significantly more bright yellow target pixels and the highest target localization

accuracy.

Figure 14: Magnified attenuation images for target location (9,14).
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4.1.2 Target Location (5,5)

In figure 15, the N-T and W-T images appear to have the most dark blue pixels.

However, they also have green and yellow pixels with intensities of 0.6 to 1 in areas

that are not close to the true target at (5,5). These areas of excess attenuation are

imaging artifacts that can degrade image and target localization accuracy. Therefore,

the N-L and W-L images have the lowest noise prevalence because they do not contain

those imaging artifacts.

Figure 16 provides an enhanced illustration of the target boundaries and higher

intensity pixels. The N-T and W-T images have more distinct target boundaries

Figure 15: Attenuation images for target location (5,5).
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Figure 16: Magnified attenuation images for target location (5,5).

compared to the sparse target cluster in the N-L image and the far spread target

cluster in the W-L image. The N-T and W-T images also have more bright yellow

target pixels with intensities of 0.9 to 1 than the other two images. However, the

bright yellow target pixels in the N-T and W-T images are clustered below the true

target location, whereas in the W-L image the bright yellow target pixels are located

closer to (5,5). The estimated target locations represented by the black asterisks in

the N-L and W-L images are the closest approximations to the true target location

(5,5). Visual inspection suggests the N-L and W-L images have the lowest noise

prevalence and highest target localization accuracy.
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4.1.3 Target Location (15,8)

The N-L and W-L images have the lowest noise prevalence in figure 17. This is

evident by the greater number of dark blue pixels in the N-L and W-L images than

in the N-T and W-T images. The N-T and W-T images also have more green pixels

that represent imaging artifacts near the true target location.

In figure 18, the target boundaries are more clearly defined for the N-T, W-T, and

W-L images. The N-T and W-T images also have more bright yellow target pixels

compared to the N-L and W-L images. The W-L image has significantly more bright

yellow target pixels in the target cluster compared to the N-L target cluster. Using

Figure 17: Attenuation images for target location (15,8).
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Figure 18: Magnified attenuation images for target location (15,8).

visual inspection, it is very difficult to determine target localization accuracy because

all of the estimated target locations are approximately the same distance away from

the true target location.

4.1.4 Target Locations (2,8) and (5,10)

In figure 19, the N-T and W-T images have the lowest noise prevalence while

the N-L and W-L images have smoother image results. The N-T and W-T images

have more dark blue pixels which properly indicate no target-induced attenuation.

The N-L and W-L images have more blue pixels with similar intensities of 0.2 to 0.4
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Figure 19: Attenuation images for target locations (2,8) and (5,10).

which create smoother images. Overall, the N-T and W-T images have the lowest

noise prevalence because they have more pixels with intensities close to zero.

Figure 20 illustrates the magnified attenuation images in figure 19. The W-T

image has the clearest target boundaries. In the N-T, N-L and W-L images, the

two target clusters intersect and make the individual target boundaries less distinct.

The N-T and W-T images appear to have bright yellow target pixels that are more

centrally located around the true target locations. The N-T and W-T images also

have more accurate target localization which is evident by the close proximity of

the estimated target locations to the true target locations (2,8) and (5,10). Visual

inspection suggests the N-T and W-T images have the lowest noise prevalence and
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Figure 20: Magnified attenuation images for target locations (2,8) and (5,10).

highest target localization accuracy.

4.1.5 Target Locations (2,10) and (15,12)

In figure 21, the N-T and W-T images have the lowest noise prevalence. They

have more dark blue pixels compared to the N-L and W-L images. The N-L and W-L

images also have green and dark yellow pixels that represent imaging artifacts around

the bright yellow target pixels. Although the N-L and W-L images have fewer dark

blue pixels and the presence of imaging artifacts, they also have smoother images due

to less variation in the blue pixel intensities.

There is no estimated target location for the true target located at (15,12). The
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Figure 21: Attenuation images for target locations (2,10) and (15,12).

sensors failed to report the RSS measurements along the links that pass through

location (15,12) and those links were assigned NaN arguments. Sensor reporting

failure is one of the drawbacks of the RTI system [14]. In this case, the reporting

failure resulted in a lack of RSS information which led to the absence of attenuation

at location (15,12).

Figure 22 magnifies target location (2,10) in the attenuation images. All four

of the images have clear target boundaries. The N-T and W-T images have more

bright yellow target pixels closely centered around the true target location. For all

four images, it is very difficult to visually determine which image has the highest

target localization accuracy. The target localization accuracy is difficult to visually
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Figure 22: Magnified attenuation images for target location (2,10).

determine because there are two estimated target locations for the target at (2,10)

in each image. After thresholding, the k-means++ algorithm determined there were

two cluster centers around target location (2,10) because there were no pixels with

intensities of 0.7 or greater to represent the attenuation for the target at (15,12). The

numerical results in section 4.2 exclude this two-target data set because it introduces

significantly higher image and target localization errors as a result of the failed sensor

reporting.
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Figure 23: Attenuation images for target locations (11,4) and (11,14).

4.1.6 Target Locations (11,4) and (11,14)

Figure 23 is used to visually analyze the noise prevalence in the attenuation images

for target locations (11,4) and (11,14). The W-T and W-L images have the lowest

noise prevalence. This is evident by the presence of more dark blue pixels than seen

in the other two attenuation images.

Figure 24 is used to visually analyze the target boundaries and the target local-

ization accuracy. The W-L image has the most distinct target boundaries formed

by the distinct target clusters. In the N-T and W-T images, the estimated target

at (11,4) is represented by lower intensity green and dark yellow pixels that could

potentially be mistaken for imaging artifacts. Conversely, the N-L and W-L images
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Figure 24: Magnified attenuation images for target locations (11,4) and (11,14).

have higher intensity yellow target pixels surrounding the true target locations. They

also have the highest target localization accuracy seen by the close proximity of the

estimated target locations to the true target locations (11,4) and (11,14). Overall,

visual inspection suggests the W-T and W-L images have the lowest noise prevalence

while the N-L and W-L images have the highest target localization accuracy.
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4.2 Performance Metric Results

The performance metric tables in this chapter display the quantitative results used

to determine which RTI model and reconstruction method combinations achieved op-

timum image accuracy, target localization accuracy, and execution time. The quanti-

tative results were generated using the mathematical formulas discussed in Chapter

III. The results can be recomputed and verified by other researchers using the same

formulas and data sets. Conversely, the qualitative visual inspection results of the

attenuation images are likely to vary amongst researchers based on differences such

as training and experience with using the RTI system and analyzing the attenuation

image results.

Tables 1 through 5 display the rounded performance metric results for each com-

bination. The numerical values in the rows correspond to each target scenario and

the values were rounded to the nearest hundredth to maintain a condensed table size.

The performance metric results of the two-target scenario (2,10) and (15,12) were

excluded because they introduced significantly higher errors that skewed the average

results of the performance metrics. The high errors were a result of the absence of

attenuation for target location (15,12) as previously explained in section 4.1.5. The

remaining single and two-target scenario performance metric results were averaged

together to determine the overall performance of each combination. To compute the

averages and standard deviations in the tables, the exact results of the individual

target scenarios were used instead of the rounded results displayed in the tables.

4.2.1 Image MSE Results

Table 1 provides the MSE results that were used to determine attenuation image

accuracy. To calculate the results, the estimated attenuation images were compared

to the true attenuation images for five target scenarios. According to the average MSE
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Table 1: Image MSE Results
Target(s) N-T W-T N-L W-L
(9,14) 0.08 0.09 0.07 0.06
(5,5) 0.08 0.10 0.09 0.10
(15,8) 0.08 0.08 0.06 0.06
(2,8) (5,10) 0.06 0.06 0.10 0.09
(11,4) (11,14) 0.09 0.09 0.11 0.09
Average 0.08 0.08 0.09 0.08
Std Dev 0.01 0.01 0.02 0.02

results, the N-T, W-T, and W-L combinations produced the most accurate attenua-

tion images with the lowest average MSE of 0.08. These combinations outperformed

the N-L combination by a close margin of 0.01 which is the difference between the

rounded averages.

4.2.2 Dispersion Results

Table 2 displays the dispersion results which report how far spread out the target

pixels in the attenuation images are. The two individual dispersion results for each

two-target scenario were averaged together to generate one average dispersion result

for each two-target scenario. Averaging the two individual dispersion results for each

two-target scenario was necessary to obtain one result for each of the five target

scenarios. Next, the three dispersion results of the single target scenarios and the

Table 2: Dispersion Results (ft). True dispersion is 0.93 ft for all true targets.
Target(s) N-T W-T N-L W-L
(9,14) 0.83 0.82 0.76 0.81
(5,5) 0.87 2.52 1.08 1.18
(15,8) 0.81 0.77 0.81 0.86
(2,8) 0.81 0.70 1.00 1.07
(5,10) 0.79 0.71 0.99 1.01
(11,4) 0.68 0.53 0.93 1.01
(11,14) 0.80 0.71 0.63 0.70
Average 0.81 1.09 0.88 0.95
Std Dev 0.05 0.81 0.14 0.16
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two average dispersion results of the two-target scenarios were used to calculate the

average dispersion across all five target scenarios. The W-L combination had an

average dispersion of 0.95 feet which was the closest to the true dispersion of 0.93 feet.

The dispersion results were not used alone for further image analysis because merely

finding the difference between the average dispersion results and the true dispersion

was not as meaningful as calculating the individual dispersion error for each target

scenario and then averaging those errors together. Therefore, the dispersion error of

each target scenario was calculated and also used for comparative analysis.

4.2.2.1 Dispersion Error Results

Table 3 displays the dispersion error results that were used to further analyze

image accuracy. The dispersion error was calculated by using equation (43) to find

the difference between the dispersion of each estimated target and the dispersion of

each true target. All of the true targets had a dispersion of approximately 0.93 feet

because the same cylindrical model was used to represent each target at different loca-

tions. The two individual dispersion errors for each two-target scenario were averaged

together out of necessity as discussed previously in section 4.2.2. For each model and

reconstruction method combination, the average dispersion error was computed by

Table 3: Dispersion Error Results (ft)
Target(s) N-T W-T N-L W-L
(9,14) 0.10 0.11 0.17 0.13
(5,5) 0.06 1.59 0.15 0.25
(15,8) 0.12 0.17 0.13 0.07
(2,8) 0.12 0.24 0.06 0.14
(5,10) 0.14 0.22 0.06 0.08
(11,4) 0.25 0.41 0.01 0.08
(11,14) 0.13 0.22 0.30 0.23
Average 0.12 0.48 0.13 0.14
Std Dev 0.05 0.62 0.04 0.07
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averaging the individual error calculations across all five target scenarios. Accord-

ing to table 3, the N-T combination had the lowest average dispersion error of 0.12

feet while the N-L combination was a close second by a margin of 0.01 feet. Accu-

rate dispersion alludes to increased image accuracy because the dispersion calculation

(equation 42) relies on the intensities of the pixels that form the target clusters in the

attenuation images.

4.2.3 Target Location RMSE Results

The target localization accuracy was determined by the RMSE results in table 4.

The estimated target locations were compared to the true target locations for the five

target scenarios. The two individual RMSE results for each two-target scenario were

averaged together out of necessity as previously discussed. The three RMSEs of the

single target scenarios and the two average RMSEs of the two-target scenarios were

then used to calculate the average RMSE across all five target scenarios. According

to table 4, the W-T combination had the most accurate target localization with the

lowest average RMSE of 0.22 feet. The W-L combination was a close second by a

margin of 0.01 feet.

Table 4: Target Location RMSE Results (ft)
Target(s) N-T W-T N-L W-L
(9,14) 0.02 0.07 0.17 0.16
(5,5) 0.28 0.08 0.05 0.04
(15,8) 0.37 0.34 0.33 0.29
(2,8) 0.17 0.11 0.29 0.36
(5,10) 0.33 0.28 0.36 0.28
(11,4) 0.45 0.44 0.41 0.39
(11,14) 0.48 0.39 0.31 0.31
Average 0.28 0.22 0.25 0.23
Std Dev 0.16 0.16 0.13 0.13
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4.2.4 Execution Time Results

For the five target scenarios, the execution times of the N-T, W-T, N-L, and W-L

algorithms are displayed in table 5. According to the table, the algorithms that im-

plemented the weighting-g model ran approximately 50-60 seconds slower than the

algorithms that implemented the NeSh model. Overall, the N-L combination had the

fastest average execution time of approximately 94 seconds. Although execution time

is a key performance metric, a particular scenario could call for increased image and

target localization accuracy at the expense of slower execution time. Also, the exe-

cution time results depend on the programming platform used and the computation

optimization skill of the programmer.

Table 5: Execution Time Results (seconds)
Target(s) N-T W-T N-L W-L
(9,14) 100.88 157.61 91.63 148.44
(5,5) 93.19 149.72 84.74 139.83
(15,8) 94.56 148.30 84.61 140.32
(2,8) (5,10) 112.12 168.36 103.21 158.19
(11,4) (11,14) 112.44 165.07 103.49 156.90
Average 102.64 157.81 93.54 148.74
Std Dev 9.27 8.95 9.40 8.75
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4.3 Performance Metric Average Results

Figures 25 through 28 are bar graphs of the performance metric average results

for each RTI model and reconstruction method combination. According to figure 25,

the N-T, W-T, and W-L combinations all had the lowest average image MSE of 0.08

which indicated high image accuracy. Figure 26 shows the W-L combination had

the most accurate average dispersion of 0.95 feet while the N-T combination had the

lowest average dispersion error of 0.12 feet. These values allude to increased image

accuracy. The figure also shows the W-T combination had the least accurate average

dispersion of 1.09 feet and the highest average dispersion error of 0.48 feet. Figure

27 shows the W-T combination had the lowest average target location RMSE of 0.22

feet which indicated high target localization accuracy. According to figure 28, the

N-L combination had the fastest average execution time of approximately 94 seconds.

Also, the error bars in each figure indicate the standard deviations of the data used

to calculate the respective averages.

Figure 25: Graph of average image MSE results.
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Figure 26: Graph of true dispersion, average dispersion, and average dispersion error
results.

Figure 27: Graph of average target location RMSE results.
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Figure 28: Graph of average execution time results.
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V. Conclusions

The work conducted in this thesis provided a comparative analysis between differ-

ent RTI models and reconstruction methods that were selected based on their ability

to mitigate multipath interference. The NeSh and weighting-g models successfully

used an ellipse to determine the pixels that were included on the LOS paths of the

node links. For these models, the pixels along the LOS paths were assigned weights

greater than zero while the pixels along the NLOS paths were assigned weights of

zero. The multipath interference along the NLOS paths was suppressed by assigning

weights of zero. Tikhonov regularization was chosen based on its linearity and sup-

pression of noise by minimizing the energy in the derivative image. LRSD was chosen

based on its ability to suppress the multipath interference in the background image

while enhancing the target-induced attenuation in the foreground image.

The NeSh and weighting-g models were implemented in conjunction with Tikhonov

regularization and LRSD to form the following four combinations: NeSh in conjunc-

tion with Tikhonov regularization (N-T), weighting-g in conjunction with Tikhonov

regularization (W-T), NeSh in conjunction with LRSD (N-L), and weighting-g in

conjunction with LRSD (W-L). Out of these combinations, the N-T combination is

the most commonly used. Algorithms were written to implement the combinations in

MATLAB for six different target scenarios, three single target and three two-target.

For all six target scenarios, the qualitative analysis of the attenuation images

revealed there was not a single combination that consistently outperformed all the

others in terms of noise prevalence and target localization accuracy. The lack of a

single combination outperforming the others suggested the attenuation images alone

were not sufficient enough to determine the combination performances. Also, the high

variability associated with visual inspection performed by different people led to the

conclusion that the qualitative analysis was not accurate enough to stand alone or be
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used to make concluding inferences.

Five reproducible quantitative metrics (image MSE, target location RMSE, dis-

persion, dispersion error, and execution time) were ultimately used to determine the

performances of the RTI model and reconstruction method combinations. The av-

erage image MSE results revealed the N-T, W-T, and W-L combinations had the

lowest MSE. The average dispersion results revealed the W-L combination had the

most accurate dispersion when compared to the true target dispersion. The average

dispersion errors revealed the N-T combination had the lowest average dispersion er-

ror. The average target location RMSE results revealed the W-T combination had

the lowest average RMSE. Lastly, the average execution time results revealed the N-L

combination had the fastest execution time. The average results of these five per-

formance metrics revealed there was not a single combination that outperformed the

others for at least three out of the five metrics. Therefore, the average results alone

were not used to determine the optimum combination. Instead, a rating technique

was implemented to generate four overall ratings, one for each combination.

The ratings were ultimately used to determine the best performing RTI model

and reconstruction method combination out of the four considered. First to calculate

the ratings, the average results of each performance metric were normalized on a scale

from zero to one with zero indicating the best result. To normalize the four average

results of each metric, the minimum average result was subtracted from all four of the

average results and those differences were divided by the maximum difference. The

average dispersion was normalized in a similar way, except there was an initial step to

find the absolute value of the difference between the true target dispersion and average

target dispersion. Next, the means were calculated across each combination’s five

normalized average results. Lastly, the means were rounded to the nearest hundredth

to yield the following ratings: N-T (0.38), W-T (0.74), N-L (0.35), and W-L (0.26).
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The W-L combination had the best rating of 0.26 which was the closest rating to

zero.

In this thesis, the quantitative results revealed no single RTI model and recon-

struction method combination outperformed the others across at least three out of

the five performance metrics. Therefore, a rating technique was implemented to as-

sign a value to each combination by taking the mean of its corresponding normalized

average results. Comparing the ratings revealed the W-L combination had the low-

est rating of 0.26. The lowest rating was also considered the best rating because it

was closest to zero which corresponded to the best value on the normalization scale.

In conclusion, the W-L combination performed optimally at locating human targets

from the RTI attenuation images.

5.1 Future Work

This thesis provided a comparative analysis between four RTI model and recon-

struction method combinations using previously collected data. The worked per-

formed in this thesis can be expanded by the following tasks:

• Find additional models and reconstruction methods with the ability to miti-

gate multipath interference and then use them to create new RTI model and

reconstruction method combinations

• Expand the total number of target scenarios to include three-target cases

• Explore other performance metrics to find one that can quantitatively assess

noise prevalence in attenuation images

• Collect new RSS measurements for different target locations using the RTI

system and implement the RTI combinations using the new data sets.
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