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Abstract

Software is an increasingly integral and sophisticated part of safety- and mission-

critical systems. Software lies at the backbone of medical devices, automobiles, mobile

devices, Internet of Thing (IOT) devices, military weapons systems, and much more.

Poorly written software can lead to information leakage, undetected cyber breaches,

and even human injury in cases where the software directly interfaces with compo-

nents of a physical system. These systems may range from power facilities to remotely

piloted aircraft. Software bugs and vulnerabilities can lead to severe economic hard-

ships and loss of life in these domains. As fast as software spreads to automate many

facets of our lives, it also grows in complexity. The complexity of software systems

combined with the nature of the critical domains dependent on those systems results

in a need to verify and validate the security and functional correctness of such soft-

ware to a high level of assurance. The current generation of formal verification tools

make it possible to write code with formal, machine-checked proofs of correctness.

This thesis demonstrates the process of proving the correctness of code via a formal

methods toolchain. It serves as a proof of concept for this powerful method of safety-

and mission-critical software development.
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FORMAL VERIFICATION FOR HIGH ASSURANCE SOFTWARE: A CASE

STUDY USING THE SPARK AUTO-ACTIVE VERIFICATION TOOLSET

I. Introduction

1.1 Problem & Objective

The world of formal verification is new to many software developers. Large public

and private organizations such as The National Aeronautics and Space Administra-

tion (NASA), Microsoft, Airbus, and Amazon have openly utilized formal methods

in one way or another. Many other organizations use formal methods but do not

openly discuss them. Even for those that do, they are not always able to disclose

their precise implementations to the public. For private companies, this ensures a

competitive advantage over one another. Because the particulars of formal verifica-

tion as used in many private projects are not publicly available, this thesis attempts

to bring this formal verification process to the forefront by applying formal methods

to different algorithms. The goal is to demonstrate that modern verification tools,

such as SPARK, provide practical formal methods frameworks for accomplishing the

verification of code within Air Force research and development circles. This Thesis

makes use of AdaCore’s SPARK1 due to its maturity and use within the Air Force

Research Laboratory, but other formal methods tools and frameworks do exist. The

SPARK framework takes a software implementation and checks whether it is free

from run-time errors and whether it satisfies user-specified contracts; if not, it pro-

vides the user with feedback on potential issues that must be corrected to achieve

various levels of proof. Built upon several publications that demonstrate the benefits

1https://www.adacore.com/about-spark

1
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of formal methods, this research enumerates the SPARK Verification and Validation

(V&V) process and demonstrates its viability to be used by the U.S. Air Force.

1.2 Overview

This section is based on a portion of a ready to publish Institution of Engineering

and Technology (IET) chapter contribution and a portion of an already published

paper.2 3 The increasing size and complexity of software running on safety-critical

systems such as those developed in the aerospace industry has raised concerns about

how to continue to ensure software quality and reliability, especially in a cost effective

way [1, 2]. At the same time, more and more devices are becoming interconnected,

opening new avenues for cyber security attacks. While any type of software fault

is of concern in a safety-critical system, cyber security-related faults are particularly

pernicious; whereas a general fault might never encounter the circumstances necessary

to trigger it, a cyber security-related fault is actively sought out and exploited by

attackers.

Even the smallest software faults can have severe safety and financial repercus-

sions. For example, in 1990 AT&T lost more than $60 million in unconnected calls

due to a misplaced break statement in a network switch software patch that remained

undetected even after rigorous testing [3]. The 2014 Heartbleed OpenSSL vulnerabil-

ity, a simple defect caused by a single unchecked memory copy, allowed attackers to

remotely read protected memory from an estimated 24–55% of HTTPS sites [4]. In

2017, at least 465,000 St. Jude’s Medical RF-enabled cardiac devices were recalled

due to possible cyber security vulnerabilities [5]. In the same year, the WannaCry

2Laura R Humphrey, Ryan Baity, Kenneth Hopkinson chapter 5 contribution to upcoming IET
Textbook - Section: Introduction.

3Ryan Baity, Laura R Humphrey, Kenneth Hopkinson. Formal verification of a merge sort
algorithm in spark. In AIAA Scitech 2021 Forum, page 0039, 2021. DISTRIBUTION STATEMENT
A. Approved for public release: distribution unlimited. Case #88ABW-2020-3580.
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ransomware and NotPetya malware attacks, which made use of the EternalBlue ex-

ploit to target a vulnerability in Microsoft’s implementation of the Server Message

Block (SMB) protocol, caused an estimated $4 billion and $10 billion in damages,

respectively [6, 7]. Recently, concerns have been raised about cyber security vulner-

abilities in automobiles and aircraft, especially as driverless cars and unmanned air

vehicles begin to see use [8].

Unfortunately, it is extremely difficult to ensure that software is free of faults.

One of the primary mechanisms for finding software faults is testing, but testing can

only achieve partial coverage of all possible software behaviors, a problem that is

exacerbated as the size and complexity of software increases [9]. Because testing only

achieves partial coverage, it can only reveal the presence of faults; it cannot prove

their absence. But given that even a single cyber security-related fault will be sought

out and exploited if found, it would be very much beneficial to do all that can be

done to prove their absence!

A possible solution is the use of formal methods [10, 11], i.e. mathematically-

based tools and techniques for design and verification of software and hardware, to

provide evidence of software quality and reliability. Formal methods have their roots

in formal logic, discrete mathematics, and computer readable languages. Using these

as a foundation, they aim to provide mathematical guarantees about system behavior

through proof and analysis rather than testing, similar to the way in which one can

prove the Pythagorean Theorem is correct using geometric axioms rather than testing

it against the set of all possible right triangles. Formal methods consist of two major

activities, modeling and analysis, often done with the assistance of automated or

semi-automated tools. They are analogous to mathematically-based approaches used

in traditional engineering disciplines (e.g. statics for civil engineering, dynamics for

mechanical engineering, and stoichiometry for chemical engineering). Formal methods

3



can be used to analyze a range of system artifacts, including high- and low-level

requirements, architectures, source code, object code, and discrete logic hardware, for

a variety of properties such as traceability, completeness, consistency, compliance, and

robustness. Formal methods are an accepted means to satisfy verification objectives in

certification standards across a variety of domains, for instance, in railway (EN 50128)

[12] and industrial (IEC 61508) [13] processes and for avionics (DO-333 supplement

to DO-178C) [14, 11, 15]. Certification standards for other domains such as the

automotive (ISO 26262) [16] and nuclear (IEC 60880) and space (ECSS-QST-80C)

[17] domains also recognize some uses of formal methods as a verification technique.

Formal methods have been used by Airbus to determine worst-case execution time

and max stack usage [18], by Dassault-Aviation to replace software robustness testing

[19], by Microsoft to verify third-party drivers [20], by Amazon Web Services to verify

whether user access control policies meet user security requirements [21] and whether

specified computers are reachable from the outside world [22], and to prove security

properties and functional correctness of capabilities of the seL4 microkernel [23], to

name a few.

Given the variety of artifacts, properties, and underlying mathematical frame-

works involved, formal methods are somewhat broad. [24] gives an extensive overview

of formal methods that discusses different categories of approaches according to level

of rigor; variations in the extent to which formal methods can be applied in terms of

lifecycle stage, proportion of the system covered, and types of properties analyzed;

the value of formalizing specifications and the importance of validating them; the

benefits and fallibilities of formal methods; automated and semi-automated systems

and tools; and a review of industrial applications. It also includes a quick intro-

duction to mathematical logic, including propositional calculus, predicate calculus,

first-order theories, modal logics, etc. The DO-333 [14] supplement to DO-178C [25]

4



gives a more recent overview of formal methods, with [11] and [15] each providing an

overview of DO-333 and illustrating the application of various formal methods tools

and approaches on concrete examples relevant to the aerospace domain.

Though formal methods have many benefits, adoption has been slow for a vari-

ety of reasons, including acceptance by certifiers, scalability, usability, and education

[26]. However, given the recent inclusion of formal methods in certification standards,

successful uses of formal methods in industrial applications, and continual improve-

ments in tool scalability and usability, it is expected to see an increased use of formal

methods.

Among previously stated research goals, this research aims to hit upon the last

barrier: education. Specifically, it aims to give the reader an impression of what

is required to formally prove functional correctness of source code (i.e. to verify

compliance of source code with low-level requirements specifying its desired behavior).

This research utilizes SPARK [27, 28, 29], which has been used to develop highly

assured software in a variety of domains, including the aerospace domain [30, 31].

1.3 Roadmap

Here is a roadmap of this document’s organization. Chapter II gives a brief

background of the history of formal methods, a background of SPARK basics, and

some previous SPARK projects. Chapter III uses the SPARK framework to formally

verify three algorithms; interpolation, merge sort, and priority queue. Chapter IV

analyzes the three algorithms implemented and formally proven. Chapter V concludes

this thesis.
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II. Background and Literature Review

2.1 Preamble

This chapter details information and context needed for understanding Chap-

ter III. It starts with a timeline of papers with relation to formal methods and their

applications in Section 2.2. Then in Section 2.3, this chapter gives a brief overview of

the formal methods framework used in this thesis (SPARK). In Section 2.4, this chap-

ter discusses a few projects that utilized and benefited from the SPARK framework. In

Section 2.5, this chapter describes SPARK’s relationship with the Common Weakness

Enumeration (CWE). Section 2.6 presents a few formal methods frameworks similar

to SPARK. Section 2.7 provides a deeper view of the SPARK framework. Section 2.8

touches on SPARK’s role within the Software Development Lifecycle. With the con-

text and information provided in this chapter, Chapter III can be much more easily

understood and comprehended.

2.2 General Timeline

The idea of verifying code for correctness has been around for decades. Hoare

brought up program correctness via formal methods in his 1969 paper “An Axiomatic

Basis for Computer Programming” [32]. He writes about “Proofs of Program Cor-

rectness” in Section 5 of his paper. He mentions that programming is an exact

science and if one creates a proof whose axioms align with the implementations of

the programming language, then that proof “may be used to prove the correctness

of the program.” Interestingly, Hoare predicts that formal methods will not become

widely used for nontrivial programs until better proof techniques become available.

Also acknowledged by Hoare is that these proofs will be difficult to create. Although

he mentions some drawbacks, Hoare stated that the benefits indeed outweigh the
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drawbacks.

Hoare provided that proving programs would solve a few issues in the programming

world. It can be difficult when a large project is created and someone is tasked to come

in at a later date and make a change or add a subroutine. One of the hardest parts

of creating this subroutine is defining its purpose or creating its specification. That

is, what are the pre- and postconditions, etc. Hoare stipulates that once a subroutine

is formally defined and proven, it is easy to plug into a larger whole when it satisfies

the same “criterion of correctness.” Another point he makes is that every application

created in any programming language, especially those specific to a machine, is most

likely taking advantage of a quirk or unique feature of the language and/or machine.

When transferring that application to another machine, it may fail. That machine-

dependent feature will always be revealed when attempting to “prove the program

for machine-independent axioms.”

Overall, Hoare pushed the idea of proving the correctness of code as far back as

1969. When Hoare spoke of programming languages he mentioned Algol, Fortran and

Cobol. Today, familiarity with these legacy languages exists mainly with those that

have been in the industry for decades, yet even today his message resonates. Today

it would be said that he wanted to verify code via formal methods. He finishes off his

paper with an open invitation: “it is hoped that many of the fascinating problems

involved will be taken up by others.” According to the Google Scholar search engine,1

this paper has been cited over 7,748 times. This paper was truly a prominent one

describing the possibilities and benefits of formal verification of code.

Twenty one years later, Kemmerer published his paper and found that integrating

formal methods during development is “faster and more cost-effective” than trying

to verify the code later [33]. An interesting point about the reasoning for utilizing

1https://scholar.google.com/
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formal methods in the development of his project was made by Kemmerer. He talked

about his motivations for said utilization of which there were two. First, to be able to

receive the needed certification from the Department of Defense (DoD) for his project.

Second, he wanted to be sure that his team could deliver on the security requirements

set for in the project specifications. This desire is interesting because it shows that in

1990 the DoD already required some form of formal evidence of software correctness

and it shows that at least some developers were utilizing the ideas that Hoare alluded

to in his seminal 1969 paper [32].

In 1996, the NASA/WVU Software IV & V Facility, Software Research Labo-

ratory, released a technical report named “Experiences Using Formal Methods for

Requirements Modeling” [34]. This report looks into three case studies in which the

team applied formal methods to requirements modeling for their spacecraft’s fault

protection systems. The team mentioned that at the time, studies have shown that

formal methods may be very beneficial for “improving the safety and reliability of

large software systems.” Their technique was simple, take three problems the team

was already facing, work with the requirements analysts, model the code, and apply

formal methods. In all three cases the team found that the benefits observed due to

the early modeling of requirements “more than outweigh the effort needed to main-

tain multiple representations.” The takeaway is that modeling is an effective way to

look at a program and apply formal methods that can bring issues to light that were

not even thought of. It was also interesting that the team concluded it is easier to

have a small team of formal methods experts, rather than to train developers.

A little over a decade later, in 2008, Heitmeyer, et al. published “Applying Formal

Methods to a Certifiably Secure Software System” [35]. They addressed the cost of

verifying code. They argued that validating large software projects is extraordinarily

costly when done in its entirety. In their approach, the authors separate code into
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three categories and only actually formally verify the first category. The first category

is what the team called the Event Code, which represents the code that implements

a “Top Level Specification” (TLS) and touches one or more of what the authors call

“Memory Areas of Interest” (MAIs). The other two categories are Trusted Code and

Other Code. Trusted Code is self-evident and Other Code is any code that is not

trusted, but does not interact with a TLS or MAI. This strategy is much more effective

because the first category is only 10% of the total code, according to the team. The

team applied this to an “evaluation of the separation kernel of an embedded software

system.” The authors also go into to some open problems in Section 7 of their paper.

The takeaway from this paper: in many cases it is not feasible to formally specify

an entire project. Instead, there are key parts of the project that should get more

formal methods attention. In the authors’ eyes, as mentioned above, these key parts

are what the team defined as Event Code, which can be interpreted as critical code.

In the same year, “A Survey of Automated Techniques for Formal Software Veri-

fication” was written [36]. The reader is presented with three techniques for verifying

software via static analysis. The first being abstract domains, the second being model

checking, and the third being bounded model checking. The paper describes the three

techniques and how they are different. The authors conclude that Model Checking

tools with abstraction can track invariants, such as loop invariants, and Bounded

Model Checkers are “unable to prove even simple properties if the program contains

deep loops.” These results were interesting in the fact that many papers seem to ap-

ply formal methods to models of the code it represents. It would be interesting to see

formal methods applied to the actual program code via a formal methods framework.

An example of this form of formal methods will be introduced in two paragraphs.

Woodcock, et al. discussed general experiences with Formal Methods in 2009

[37]. They detailed how utilizing formal methods has helped software development
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across the board. Additionally, the team advocated for developing a global Verified

Software Repository. This is part of the Verified Software Initiative. The technique

of their paper is similar to a survey paper. The team investigates numerous projects

that have utilized formal methods and analyze the effects on the project itself. The

effort collected data from 62 industrial projects. The paper finds that three times

as many projects “reported a reduction in time, rather than and increase” when

applying formal methods. More impressively, 92% found that the quality of their

project was improved and the other 8% was no change in quality. These results mean

that applying formal methods did not worsen the quality of the code in any of the

62 sampled projects. In fact the team found that with regard to time spent, it only

worsened 12% of the time and with regard to cost, it only worsened 7% of the time. In

summary, formal methods were found to have improved the overall quality of product,

with minimal effect on time and cost.

Moving much closer to modern day, “Development and Verification of a Flight

Stack for a High-Altitude Glider in Ada/SPARK 2014” was written [30]. This paper

introduces a weather balloon that is slightly different than the typical weather balloon

used today. A traditional weather balloon gains many kilometers of altitude, logs data

via its sensors, pops and the data come back to Earth’s surface via a parachute. The

researchers’ balloon was designed with a glider that actually transports the data

back to the take off point. Their goal was to test out the SPARK 2014 framework

and use it in their balloon software verification process. This means that they are not

specifically checking models of the code, instead they check the executable code itself.

The paper introduces the GNATprove feature of SPARK, which is the static analyzer

for SPARK. The paper also looks into problems they had with SPARK and some

workarounds. It discusses some design limitations, such as limits with access types,

limited polymorphism, etc. The authors concluded in their results that SPARK 2014
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“raises the bar for formal verification and its tools, but developers still have to be

aware of limitations.”

The one point that all of the publications have in common is the use of some form

of formal methods as a means to creating high quality software and verifying program

correctness, but they do not disclose their actual formal methods implementations.

This need for the use of formal methods applies to the U.S. Air Force. It should

always utilize high quality and functionally correct software; SPARK can potentially

help with that.

2.3 A Brief Overview of SPARK

This section is based on a portion of a ready to publish IET chapter contribution.2

SPARK is both a programming language and associated toolset for formal verification

[28]. The SPARK language is based on the Ada programming language [38, 39].

Ada is a statically-typed, imperative, object-oriented language with a strong type

system, and the principles underlying its design are intended to encourage reliability,

maintainability, and efficiency. These characteristics are inherited by SPARK, which

both removes a few features from Ada that make verification difficult and adds a small

number of features that facilitate verification. Several good resources are available

for learning SPARK and Ada [28, 39, 29, 38]. In what follows, it is assumed that

the reader has some familiarity with SPARK/Ada or is otherwise able to deduce the

meaning of basic SPARK/Ada language features.

In terms of formal verification, SPARK performs two forms of sound static analysis

on source code. The first is flow analysis, which checks initialization of variables and

compliance with user-specified data flow contracts. Flow analysis can also identify

unused assignments and unmodified variables, which often indicate extraneous/un-

2Laura R Humphrey, Ryan Baity, Kenneth Hopkinson chapter 5 contribution to upcoming IET
Textbook - Section: Background on SPARK.
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necessary code. The second is proof, which checks for both functional correctness,

i.e. compliance with user-specified behavioral contracts, and the absence of run-time

errors. It should be noted that these checks and contracts can be optionally com-

piled as executable assertions that are evaluated at run-time, (e.g. to debug code

during development or to verify code through testing if static analysis cannot be fully

completed).

There are different levels to which one can use SPARK to verify a program [40].

Generally, the level of verification performed during development is incremental, go-

ing from lowest to highest. Colloquially, the levels are referred to in order as “stone,”

“bronze,” “silver,” “gold,” and “platinum.” Verification at the stone level is achieved

when code is accepted by SPARK, since the SPARK language has stricter legality

rules than Ada. Bronze is achieved when flow analysis returns with no error. Silver

ensures that no run-time errors, (e.g. division by zero or numeric overflow/under-

flow), will be encountered when executing the program. Gold consists of verifying

compliance with key user contracts/specifications; however, at this level, the speci-

fications only partially describe the desired behavior of the code. Platinum consists

of verifying compliance of the code against a complete set of specifications. Briefly

noted, these levels have a rough correspondence with levels of assurance in certifi-

cation standards, (e.g. “software level” in DO-178C and “software integrity level” in

IEC 61508, EN 50128, et al.). As discussed in [40], silver is the baseline level for all

software levels except Level E, i.e. software whose anomalous behavior would have

no effect on aircraft operational capability or pilot workload. Software at Level A or

Level B may aim for gold or platinum depending on whether key properties or full

functional correctness can be more easily verified to a sufficient level by other means.

Targeting platinum becomes less likely at Level C or Level D, since verification by

testing can be more easily argued to be sufficient. For software at Level E, silver
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might still be considered but could be weakened to bronze if other means were used

to build sufficient confidence that the software is free of run-time errors or such errors

were sufficiently mitigated.

Though SPARK aims to perform fully automated verification at all of these levels,

manual adaptation of the source code is in general necessary. For example, if one

were to translate source code originally written in Ada to SPARK, one would have

to remove features unsupported by SPARK discussed in Section 2.7.2. Verifying

functional correctness also requires that the user formalize and manually write the

requirements at the level of the source code in the form of contracts: type invariants,

data dependency and flow contracts, assertions, loop invariants, loop variants, pre-

and postconditions on subprograms, etc. In order to guide the underlying provers

toward a proof of certain contracts, (e.g. pre- and postconditions on a subprogram),

it is often necessary to write additional contracts (e.g. loop invariants on loops inside

the subprogram).

2.4 Previous SPARK Projects

This section is based on a portion of a ready to publish IET chapter contribution.3

Many projects have or are currently using SPARK to help provide evidence of software

security and correctness, often in conjunction with other formal methods and more

traditional review-based and test-based approaches. “Are we there yet? 20 years of

industrial theorem proving with SPARK” gives a historical overview of several such

projects [41]. Here, a more detailed description of some of those projects along with

other SPARK-related projects that have an aerospace or cyber security focus is given.

One of the first major applications of SPARK was to the Ship Helicopter Operat-

ing Limits Information System (SHOLIS), a safety-critical system that aids the safe

3Laura R Humphrey, Ryan Baity, Kenneth Hopkinson chapter 5 contribution to upcoming IET
Textbook - Section: SPARK aerospace & cyber security projects.
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operation of helicopters on Naval vessels [42]. The work was carried out under the

1991 version of UK Interim Defence Standards 00-55 and 00-56, which required the

use of formal methods for safety-critical applications. In addition to SPARK, the ef-

fort used the Z notation or Z [43] to write parts of the specification. Z is based on set

theory and a first-order predicate calculus and is therefore amenable to proof, either

manually or with tool assistance. In this effort, the software requirement specifica-

tion was written in a combination of English and Z. The software design specification,

which refines the software requirement specification by adding implementation details,

was written in a combination of English, Z, and SPARK. The code was written in

SPARK. The effort, therefore, consisted of two categories of proof activity: Z proof

and SPARK proof. The Z proof activities were mainly manual and included checking

the consistency of global variables and constants, the existence of valid initial states,

and that operator preconditions calculated from the Z specifications [44] matched the

specifier’s expectations. Based on a software safety analysis, some software compo-

nents were classified as safety-critical. For every safety-critical subprogram, SPARK

pre- and postconditions were written based on the Z specifications, and data flow

and information flow contracts were written to check for separation between safety-

critical and non-safety-critical code. SPARK tools were then used to statically prove

these contracts and the absence of run-time errors. Informal feedback found that the

process of proving Z specifications was more efficient at finding faults than testing,

and the use of formal specification led to simpler code that was easier to understand

and maintain. The effort also found that SPARK proof was favorable in comparison

with unit testing, particularly for proving the absence of run-time errors.

SPARK was also used in the development of the Lockheed C130J “Hercules”

[45, 46], in particular to implement the core of the mission computer, which performs

the majority of the aircraft’s mission critical functions. Formal modeling methods
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were used to develop the requirements, including the use of Parnas Tables [47] to

write specifications relating inputs to required outputs. The requirements were then

used to write data and information flow contracts and postconditions for SPARK sub-

programs. Prior to modified condition/decision coverage (MC/DC) testing, only basic

flow analysis with SPARK was performed. Lockheed found that coding proceeded at

near normal Ada rates, yet there was an 80% savings in the expected budget allocated

to MC/DC testing, in part because the code had an unusually low fault density of

less than one tenth the expected industry norm for safety critical software. SPARK

was later used to perform a more thorough analysis [41].

In terms of security, SPARK was used in the development of the Certification

Authority for the Multos smart card [48]. The system’s security-enforcing kernel was

written in SPARK, the infrastructure in Ada, and the graphical user interface in

C++. Other parts of the system were built using commercial off-the-shelf (COTS)

components to save time and money. The effort used a rigorous process to develop the

requirements, including a Formal Security Policy Model (FSPM), which was formal-

ized in Z. The FSPM was manually reviewed for correctness, and a typechecker was

used to check its consistency. A formal top-level specification (FTLS) was created to

describe the functionality of the system. The FTLS was also formalized in Z, a type-

checker was used to check that it was well formed, and some special features allowed

it to be checked against the FSPM. A high-level design was developed to describe

the system’s internal structure and explain how the components work together. This

was particularly important for establishing confidentiality and integrity of the system

through separation between COTS components and the security-enforcing kernel. A

detailed design refined the requirements, assigning functionality to specific software

modules. The process structure was modeled by mapping sets of Z operations in

the FTLS to actions in the communicating sequential processes (CSP) language [49].
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The CSP model was used to check that the overall system was deadlock-free and

that there was no concurrent processing of security-critical functions. Rigorous cod-

ing standards were used for all code. Manual reviews were carried out to check for

compliance with requirements, conformance to standards, and internal consistency.

SPARK was used to carry out some proofs of absence of run-time errors and data

flow errors, though it was not used to prove functional correctness. Instead, manual

reviews and tests were used to check correctness. In the first year of use, reported

faults were far better than the industry average for new systems.

SPARK was also used in Tokeneer [50, 51], an NSA-funded demonstrator of high-

security software engineering approaches that was later made open-source [52]. The

Tokeneer system consists of a secure enclave containing workstations that should only

be accessible to users who can be biometrically authenticated. Furthermore, the level

of user access allowed depends on factors such as the user’s allowed roles, security

clearance, time of day, etc. The Tokeneer ID Station (TIS) project re-developed a

core component of the Tokeneer system. Similar to the efforts on SHOLIS and the

Multos smart card CA, a formal specification describing system states and operations

was written in Z. To validate this specification, existence of a valid initial state was

proven and operator preconditions were calculated and checked against the speci-

fier’s expectations. A typechecker was also used to check for consistency of types in

all expressions. Security properties were also expressed in Z, and the formal spec-

ification was manually proven to exhibit the security properties. A formal design

describing the system in terms of concrete states and operations in Z was developed

to refine the formal specification in areas where more details were needed to bring

the specifications closer to an implementation. For operations where the refinement

was non-trivial, proofs that the formal design correctly refined the formal specifica-

tion were carried out. A rigorous design process was then used to develop a software
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architecture, map Z specifications to software packages, and put bounds on values

in the software implementation, (e.g. state components represented by unbounded

integers in the formal design). The system was implemented in SPARK. Information

flow contracts, data flow contracts, and gold-level functional specifications express-

ing the security properties in the form of pre- and postconditions were written and

proven with SPARK. Platinum-level functional specifications were not written due to

budget constraints and the fact that manual review of the code against the formal

design was relatively straightforward. SPARK was also used to check for the absence

of certain types of run-time errors. System testing was used to further test the code

against the formal design. The effort found that the amount of time spent on sys-

tem testing was significantly less than would normally be expected and that formal

specification was useful for finding errors early in the design process. Independent

system reliability testing found zero defects, and for a period of time after delivery,

the number of defects found remained at zero. However, [53] discusses two defects

in the SPARK code and other issues that were found later, in part due to new de-

velopments that allow SPARK to more efficiently check for certain run-time errors

that were too time-consuming to check for in the original effort. This includes checks

for arithmetic overflow, which was the cause of one of the defects not found in the

original effort.

Other cyber security-related efforts include the Muen x86/64 separation kernel

[54], which is written in SPARK. A separation kernel aims to ensure cyber security

properties such as confidentiality, integrity, and availability by providing an execution

environment in which processes only have access to specified resources, only commu-

nicate with each other according to a specified policy, and are otherwise isolated. For

Muen, SPARK analysis was used to prove full absence of run-time errors and some

functional specifications expressed as postconditions. Similarly, an effort to develop
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a verified SPARK kernel for the Genode operating system framework is underway

[55]. SPARK was also used to create SPARKSkein [56], a reference implementation

of the Skein cryptographic hash algorithm, one of the hash functions considered for

the SHA-3 standard.4 SPARKSkein was implemented based on the Skein specifi-

cation and existing C reference implementation, and SPARK was used to check for

run-time errors, which uncovered a subtle corner-case error that persists in the C ref-

erence implementation. Reference test cases were also used to check the code, which

uncovered an additional specification-related error due to a typo in a constant. A

more extensive effort along these lines is SPARKNaCl, a SPARK implementation of

the NaCl cryptographic library for which SPARK has been used to prove absence

of run-time errors and certain functional correctness properties [57]. As a final ex-

ample, the RecordFlux framework [58] provides a domain specific language (DSL)

for formally modeling binary protocol message formats, including invariant relations

and dependencies between message fields, and a method to automatically generate

SPARK implementations of message parsers from message models. SPARK can then

be used to prove absence of run-time errors in the message parsers and certain gold-

level functional specifications, (e.g. that optional message fields can be accessed if

and only if all requirements defined in the specification are met). Demonstrations of

RecordFlux include Ethernet frames, with a model that covers both the IEEE 802.3

and Ethernet II standards; Fizz, a TLS 1.3 implementation developed and used by

Facebook; and a correct implementation of the TLS Heartbeat extension that was

responsible for the Heartbleed vulnerability.

4http://www.skein-hash.info/
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2.5 CWEs and SPARK

This section is based on a portion of a ready to publish IET chapter contribution.5

SPARK is able to verify that code is free of many types of security vulnerabilities,

including many of those identified by the MITRE corporation. MITRE maintains

two databases relevant to cyber security. One is the Common Weakness Enumera-

tion (CWE) [59], a database that categorizes common types of software and hardware

weaknesses, giving each a unique CWE number. The other is the Common Vulnerabil-

ities and Exposures (CVE) [60], which tracks publicly known security vulnerabilities

and their root causes in terms of CWEs. For example, the Heartbleed OpenSSL vul-

nerability is CVE-2014-0160 and is caused by CWE-126 (buffer over-read), CWE-125

(out-of-bounds read), CWE-130 (improper handling of length parameter inconsis-

tency), and CWE-843 (access of resource using incompatible type). The CWE also

contains a running list of the 25 most dangerous software weaknesses based on CVEs

over the last two years. The current list contains many CWEs that map to common

run-time errors, (e.g. out-of-bounds reads and writes, improper restriction of oper-

ations within the bounds of a memory buffer, and integer overflow or wraparound).

These CWEs are easily eliminated by proving SPARK code to the silver level. In fact,

“Adacore technologies for cyber security” shows how SPARK can be used to address

many CWE weaknesses, some through fundamental stone-level language features and

others by proving code to the silver level or beyond [61].

2.6 SPARK Alternatives

Frama-C is an open-source tool that performs static analysis on C programs.

Static analysis tools can reason about code without ever executing the source code.

5Laura R Humphrey, Ryan Baity, Kenneth Hopkinson chapter 5 contribution to upcoming IET
Textbook - Section: An example of SPARK for cyber security.
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Frama-C’s website claims that it aims to be a tool that will always indicate when

a location may cause a run-time error, and allows the user to manipulate functional

specifications.6

Dafny is another auto-active verification tool similar to Frama-C but utilizes its

own intermediate language Boogie. It was created at Microsoft and predictably tar-

gets the C# programming language as opposed to Frama-C’s, C. Although Frama-C,

Dafny, and a few others not mentioned can be used for verification [62, 63], this thesis

will utilize and focus on SPARK.

2.7 AdaCore’s SPARK Framework

This section will give a deeper view of the SPARK framework. Much of this section

is referenced from the book “Building High Integrity Applications with SPARK.”

This book is a great resource and should be reviewed for a any desired understanding

beyond the scope of this thesis [28]. Although many researchers have looked into

the use of formal methods, as previously mentioned, it has been slow to be heavily

utilized in industry. The creators of SPARK write that this is due to three things:

• Claims that formal methods extend the development cycle.

• They require difficult mathematics.

• They have limited tool support.

SPARK was designed by the AdaCore company to help build high integrity ap-

plications that can be formally verified. SPARK also hopes to ease the three points

addressed.

6https://frama-c.com/html/overview.html
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2.7.1 SMT Solvers and Flow Analysis Contracts

This section is based on a portion of a ready to publish IET chapter contribution.7

At a high level, SPARK performs formal verification by translating SPARK programs,

including checks and contracts to be verified, to the Why3 deductive program veri-

fication platform [64]. Why3 then uses a weakest-precondition calculus to generate

verification conditions (VCs) (i.e. logical formulas whose validity would imply sound-

ness of the code with respect to its contracts). Why3 then uses multiple provers,

including but not limited to satisfiability modulo theory (SMT) solvers Alt-Ergo [65],

CVC4 [66], and Z3 [67], to attempt to prove the validity of the VCs. In this thesis,

GNATprove which utilizes Why3 only ends up utilizing the CVC4 and Z3 provers

throughout its proofs. To reiterate, though SPARK aims to perform fully automated

verification through this process, it is often necessary for the user to provide addi-

tional assertions, (e.g. loop invariants and type invariants), to create additional VCs

that help guide the provers toward a proof of the original checks and contracts to be

verified.

1 procedure Append_To_Stream(Message : in String;

2 Status : out Boolean)

3 with Global => (In_out => Message_Stream),

4 Depends => (Message_Stream => (Message_Stream , Message)

5 Status => (Message_Stream , Message));

Figure 1: Example data dependency and data flow contracts.

As previously mentioned, SPARK performs two types of analysis: flow analysis

and proof. Proof will be covered in Chapter III, so this thesis will now briefly con-

sider flow analysis. There are two types of contracts relevant to flow analysis: data

dependency contracts and flow dependency contracts. Data dependency contracts

7Laura R Humphrey, Ryan Baity, Kenneth Hopkinson chapter 5 contribution to upcoming IET
Textbook - Section: Background on SPARK.
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describe what global data a subprogram depends on and whether that data is read,

written, or both. The second is flow dependency contracts, which describe depen-

dencies between a subprogram’s inputs and outputs, including global data. Consider

the example specification shown in Figure 1. for a procedure Append_To_Stream that

takes a Message string as input, appends it to a global Message_Stream, and reports

whether the operation was successful through boolean output Status. The data de-

pendency contract specified with aspect Global indicates that Message_Stream has

mode In_Out, meaning that it is both an input to the procedure and therefore must

be initialized before the procedure is called and also an output that the procedure

modifies. The flow dependency contract specified with aspect Depends indicates that

the value of Message_Stream after the procedure is called depends both on the cur-

rent value of Message_Stream and the value of Message, and the value of Status

depends on both of these as well. SPARK flow analysis will verify whether or not

these contracts hold True.

2.7.2 SPARK vs. Ada

Because the SPARK language is a stricter subset of the Ada programming lan-

guage, the SPARK User’s Guide lists out some notable Ada features excluded from

SPARK. Adacore calls these restrictions global simplifications to Ada. The following

exclusions listed are from Section 5.1.1 of the SPARK User’s Guide [68]:

• “Uses of access types and allocators must follow an ownership policy, so that

only one access object has read-write permission to some allocated memory

at any given time, or only read-only permission for that allocated memory is

granted to possibly multiple access objects.”

• “All expressions (including function calls) are free of side-effects.”
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• “Aliasing of names is not permitted.”

• “The backward goto statement is not permitted.”

• “The use of controlled types is not permitted.”

• “Handling of exceptions is not permitted.”

• “Unless explicitly specified as (possibly) nonreturning, subprograms should al-

ways terminate when called on inputs satisfying the subprogram precondition.”

• “Generic code is not analyzed directly.”

2.7.3 GNAT Community Edition

GNAT Community Edition is a suite that provides an IDE called GNAT Program-

ming Studio (GPS - changing name to GNATstudio), the Ada/SPARK languages, a

prover, and a few more tools developed by AdaCore that can be utilized for formal

verification of software.8 It is free to software developers, hobbyists, and students.

The IDE provided is similar to any other programming IDE.

2.7.4 GNAT Compiler and GNATprove

The GNAT compiler functions like a typical compiler by checking that written code

conforms to the Ada programming language syntax and then generates executable

code. The GNAT compiler is fully integrated into GPS upon installation. GNATprove

is built specifically to be used with Ada’s subset SPARK. GNATprove may be utilized

in three distinct modes:

• Check

• Flow

8https://www.adacore.com/community
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• Proof

Check mode simply checks that the code adheres strictly to the SPARK syntax.

This is important due to the many differences between what is acceptable in the con-

text of Ada as compared to that of its SPARK subset. As mentioned in Section 2.7.2,

one of the most prominent examples being SPARK’s lack of support for what Ada-

Core calls access types (pointers). The lack of access types in SPARK can be seen as

a limitation and should be taken into account when debating whether or not to im-

plement your project in SPARK. This also means that if one wanted to transcribe an

application from its original language to SPARK, one may be required to restructure

his or her code. This could be tedious.

Flow mode simply performs flow analysis on the supplied SPARK code. Proof

mode is the most important feature of GNATprove. Proof mode will perform the

formal analysis on your SPARK code. McCormick and Chapin write that SPARK

checks for code that may raise run-time errors (divide-by-zero, bound checks, etc).

GNATprove will also attempt to prove any assertions that the programmer has anno-

tated within the SPARK code. These assertions are known as logical statements and

are either True or False [28]. At a minimum, SPARK programs should be shown to

be free of run-time errors. At this point, the program is known to have established

an absence of run-time errors (AoRTE) [30].

When GNATprove analyzes both the SPARK code and the assertions annotated

by the programmer, it produces logical statements known as conjectures to GNAT-

prove [28]. Conjectures are statements that GNATprove believes to be “true but

not yet proven.” These conjectures are known as verification conditions (VCs) as

mentioned in Section 2.7.1. For a program to be proven correct, all VCs must be

discharged (proven correct). If a logical statement is proven true, it is now known as

a theorem.
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2.7.5 GNAT Academic Program

The GNAT Academic Program (GAP) is a program available to researchers, such

as master’s students.9 If the student is utilizing SPARK in his or her research,

he or she is encouraged to join GAP and receive access to all the AdaCore GNAT

community tools (Ada, SPARK, GNAT Compiler, GNATprove, etc) for free. More

notably, GAP members are granted access to AdaCore’s SPARK experts and can

submit problem tickets at any time. The GAP support team will review the ticket

and get back to the student. This program is an invaluable resource for anyone who

has research that may involve formal methods and SPARK specifically.

2.7.6 Assurance Levels - Levels of Proof

This subsection expands upon the levels of proof mentioned in Section 2.3. SPARK

can give a program different levels of assurance as described by AdaCore and Thales

in their “Implementation Guidance for the Adoption of SPARK” [69]. Chapter 2

Section 3 describes the following levels, which are all considered to be higher than

the basic Brick Level (Ada code):

1. Stone - valid SPARK code

2. Bronze - initialization and correct data flow

3. Silver - absence of run-time errors (AoRTE)

4. Gold - proof of key integrity properties

5. Platinum - full functional proof of requirements

All five levels build on each other and each level requires all the previous to be

met. Consequently, each level requires more effort to complete. The guide goes on to

9https://www.adacore.com/academia
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articulate that the Stone Level is a must and should be considered an intermediate

step during adoption. The developers should attempt to achieve a Bronze Level of

assurance for most of the code. The Silver Level should be the goal and expecta-

tion for all “critical software,” and the Gold Level should represent “a subset of the

code subject to specific key integrity (safety/security) properties.” Essentially, the

more important the section of code, the higher the level of assurance that should be

associated with it, but the importance of the code is decided by the developers.

2.7.7 SPARK Formal Method Examples

All of the examples in this section come from two SPARK guides because they

are designed to be an introduction to SPARK [29, 68]. For more information on any

of the following, look into the guides for more details [29, 68]. The following three

items are discussed in this section:

• Contracts

• Loop Invariant

• Ghost Code

2.7.7.1 Contracts

Contracts are critical in specifying how a program should preform in SPARK.

Contracts are applied to what Ada/SPARK calls subprograms. One can think of a

subprogram as a function or method in any other language. This means that in Ada

and SPARK, contracts are applied to procedures (which do not return anything -

similar to a void function in other languages) and functions (do return something).

Contracts are typically comprised of a combination of five parts. The following defi-

nitions are directly from AdaCore [68]:
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1. (precondition) - uses Pre to “[specify] constraints on callers of the subprogram.”

2. (postcondition) - uses Post to “[specify] (party or completely) the functional

behavior of the subprogram.”

3. (contract cases) - uses Contract Cases to “partition the behavior of a subpro-

gram. It can replace or complement a precondition and postcondition.”

4. (data dependencies) - uses Global to “specify the global data read and written

by the subprogram.”

5. (flow dependencies) - uses Depends to “specify how subprogram outputs depend

on subprogram inputs.”

It is important to note that all the above optional components of a contract are

typically used in testing and development. Although this is usually the case, one may

want the contracts to be checked during regular execution as well. This check can be

accomplished by applying the -gnata flag in GNAT when using the command line.

It is also called when pressing “prove” in the GNAT Community IDE with assertions

enabled. Checking the contracts during execution of a SPARK program that fails a

check raises an exception if something like a precondition fails. This means that the

code within the subprogram will not execute making any necessary debugging much

more straight forward. Rather than trying to work through the subprogram to find

the issue, the user will notice something like the following [29]:

raised SYSTEM.ASSERTIONS.ASSERT FAILURE: failed precondition form

Figure 2 has two examples pulled from the “SPARK 2014 User’s Guide” that

showcase pre- and postconditions and contract cases [68]. Add To Total is a simple

function that adds a value (Incr) to a global variable named Total. The first pro-

cedure has a precondition which specifies the number to be incremented by must be

0 or greater before the start of the function and if that is True then check to see if
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Total is in the range between 0 to Integer’Last - Incr, where Integer’Last is the

largest possible value of an Integer, to avoid an Integer overflow. Using and then

short circuits the logic whereas and would evaluate both sides.

1 procedure Add_To_Total (Incr : in Integer) with

2 Pre => Incr >= 0 and then Total in 0 .. Integer ’Last - Incr;

3 Post => Total = Total ’Old + Incr;

4
5 procedure Add_To_Total (Incr : in Integer) with

6 Contract_Cases =>

7 (Total+Incr < Threshold => Total = Total ’Old + Incr ,

8 Total+Incr >= Threshold => Total = Threshold);

Figure 2: Example SPARK Contracts.

The second procedure (in Figure 2) is another approach at a contract for the

Add To Total procedure. Instead of using pre- and postconditions, this implementa-

tion explores contract cases. To reiterate, contract cases are utilized when a subpro-

gram has an input space that can be divided into mutually exclusive regions, where

the desired behavior of the subprogram can be specified for each region. In this pro-

cedure there are two cases, delimited by a comma. This contract comprises two cases.

First, after being incremented Total is still less than a set globally known Threshold,

“in which case” the procedure adds Incr to Total. The second case is when the Incr

+ Total exceeds or is equal to the specified Threshold, “in which case” Total is set

equal to Threshold.

2.7.7.2 Loop Invariants

SPARK and all other formal verification toolsets need additional annotations from

the user due to the way that formal methods tools analyze loops. They process each

iteration of a loop independently, which means that the tools cannot reason based

on past or future iterations. A loop invariant works by checking that it holds for the

first iteration, then for any iteration. This method is essentially proof by induction.
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Sometimes providing a loop invariant helps formal methods tools prove an otherwise

un-provable postcondition. Figure 3 is a simple example of a loop invariant in SPARK

from the “Loop Invariant” section of a SPARK guide [29], which just checks that no

elements of A are equal to E.

1 function Find (A : Nat_Array; E : Natural) return Natural is

2 begin

3 for I in A’Range loop

4 pragma Loop_Invariant

5 (for all J in A’First .. I - 1 => A (J) /= E);

6 if A (I) = E then

7 return I;

8 end if;

9 end loop;

10 pragma Assert (for all I in A’Range => A (I) /= E);

11 return 0;

12 end Find;

Figure 3: Example SPARK Loop Invariant.

This loop and its loop invariant are followed by a simple pragma Assert to ensure

check that no elements in A are equal to E. As mentioned earlier, assertions are

predicates typically placed in code where the programmer thinks that it will always

evaluate to true. An assertion is similar to a loop invariant, but a loop invariant is a

specific type of assertion that can only be used within a loop and asserts something

that should be True before, during, and after a loop.

2.7.7.3 Ghost Code

Ghost code in SPARK is code that has no effect on the functionality of the pro-

gram. Instead, it is typically utilized for testing and verification. For this reason,

when executing with the flag -gnata ghost code will be executed along with the

functional code in the Ada/SPARK program. There are many different variations of

ghost code to include ghost functions, used to express properties used in functions,

ghost variables (global and local), to track of program state, and more [68]. To specify
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something as ghost, one would type with Ghost; following what is to be considered

ghost code. As an example, if one wanted a function Double Array that takes in an

integer array type called IArray and returns an IArray with each index doubled to

be a ghost function, this is what that function specification would look like:

function Double Array(A : IArray) return IArray with Ghost;

2.8 SPARK’s role in the Software Development Lifecycle

This section will briefly discuss the role and location of SPARK development as

it applies to the Software Development Life Cycle (SDLC).10

1. Requirement analysis

2. Planning

3. Software design

4. Software development

5. Testing

6. Deployment

7. Maintenance

Software development via SPARK is special because it integrates testing into the

first four phases listed above. This is because in the requirements analysis and plan-

ning phases, the developer must already start thinking about the contracts required

between the interfaces of the subprograms to be implemented. These contracts must

then of course be incorporated in the software design as well, leading to the imple-

mentation of said contracts in the software development phase. Once the developers

10https://stackify.com/what-is-sdlc/
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reach the testing phase, much of the pure functionality testing is complete. With

respect to the testing phase, the type of formal verification preformed by SPARK is

equivalent to exhaustive unit testing. It can therefore prove the absence of errors,

whereas as traditional testing over a limited number of inputs can only reveal their

presence (examples of this were discussed in Section 2.4). The developer focuses on

integration testing, but he or she can rely upon the proven contracts developed and

implemented in the first four steps as a means for certifying core functionality.

2.9 Summary

This chapter provided information about the formal methods tool SPARK, its

makeup, its applications, and some of its previous projects. With the context and

information provided in this chapter, Chapter III’s use of the SPARK formal methods

framework can be much more easily understood and comprehended.
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III. Methodology

3.1 Preamble

This chapter proves the implementations of three well known algorithms. All for-

mal verification in this chapter is accomplished strictly with the SPARK auto-active

toolset for formal verification described in Chapter II. Each section first describes

a basic implementation of the three algorithms. These basic implementations are

first written in SPARK without any contracts (below the gold level). Each section

then presents updated implementations with user-added contracts such as pre- and

postconditions, loop invariants, and assertions. This chapter describes the formal ver-

ification of interpolation (Section 3.2), merge sort (Section 3.3), and priority queue

(Section 3.4). The following steps outline the general process for what is required to

implement an algorithms via the SPARK formal methods toolset:

1. Understand SPARK and its syntax.

2. Understand the algorithm to be proven with SPARK.

3. Implement the algorithm to a basic level in SPARK (core functionality).

4. In English, identify what the algorithm should do and should not do (define its

specification).

5. Turn the English properties into SPARK contracts that can be proven by

GNATprove.

6. Run SPARK’s GNATprove and then make additional annotations as needed to

prove contracts.

7. If applicable, integrate proven SPARK code back into its origin software system.
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This general process is utilized on the three algorithms discussed in this chapter

(Section 3.2, Section 3.3, Section 3.4). It is assumed that step one is already complete,

so that the thesis can focus on the remaining steps. Each section in this chapter

starts with a quick review of the algorithm and then moves on to defining the basic

implementations in SPARK (step three) before moving through the remaining steps.

Each section then concludes with a proven SPARK implementation of the algorithm.

3.2 Verifying an Interpolation Algorithm in SPARK

This section is based on a portion of a ready to publish IET chapter contribution.1

To provide an entry-level conceptual understanding of SPARK and its process, this

section goes through the process of implementing a simple interpolation algorithm

to the gold level. While it is the case that SPARK is very useful when coding up

a project from scratch, one may receive a snippet of Ada/SPARK code and have

to formally verify it. This example starts with an imperfect implementation of the

interpolation algorithm, goes through its faults, fix them, then moves into formally

verifying the code. This example utilizes AdaCore’s Ada/SPARK integrated devel-

opment environment (IDE) mentioned in Section 2.7.3, GPS. GPS has all the needed

tools built-in to modify the code, add formal contracts, run the provers on the SPARK

interpolation implementation, and formally verify it.

Before moving into the interpolation example implementation, this thesis reviews

what interpolation is. From a mathematical standpoint, interpolation utilizes a dis-

crete set of data points to estimate the value of a hypothetical point that lies between

two consecutive discrete points. For example, if you have points (0, 0) and (2, 2),

interpolation would determine that the Y -value at X = 1 is Y = 2. Hence in this

example, the discrete points (0, 0) and (2, 4) provide that an interpolation at X = 1

1Laura R Humphrey, Ryan Baity, Kenneth Hopkinson chapter 5 contribution to upcoming IET
Textbook - Section: An example of SPARK for cyber security.
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would estimate that for (1, ?), X = 1 lies equally between X = 0 and X = 2, so its

Y -value would too lie equally between Y = 0 and Y = 4, respectively. Of course,

for this to work, the distance of X from both closest known X-values from the dis-

crete set of known points must be taken into account. This example uses equation

Equation (1) to interpolate the desired Y -value based on a supplied and previously

unknown X-value. Where a is the user-supplied X-value, where x1 and y1 are the

closest known X and Y -value less than a, where x2 and y2 are the closest known X

and Y -value greater than a, and finally, where y is the resulting interpolated Y -value.

y = y1 + (a− x1)
(y2 − y1)

(x2 − x1)
(1)

To review, the mathematical function y = f(x) is to be estimated as a piecewise

linear function over a sequence of points (xi, yi) for i = {1, . . . , n}. Suppose the points

are ordered such that xi < xi+1 for i = {1, . . . , n−1}. Then using linear interpolation,

the value f(a) is estimated as follows:

• If a < x1, then f(a) = f(x1) = y1

• If a > xn, then f(a) = f(xn) = yn

• If a = xi for some i, then f(a) = f(xi) = yi

• Otherwise, f(a) = yi + (a− xi)
(xi+1−xi)
(yi+1−yi)

for xi < a < xi+1

3.2.1 Interpolation Implementation

This section now looks at the implementation. Figure 4, Figure 5, and Figure 6

represent the initial implementation that needs to be annotated with contracts and

checked for correctness. Each of the three figures are called a package in Ada/SPARK.

This is a modularization unit of code similar to the Java class and the C++ header

and implementation pair. SPARK, like its superset Ada, uses an Ada specification
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file (.ads), which starts with the first line package [package_name]. This serves

as the specification file. The first code snippet is the specification file (Figure 4) in

this example. It specifies types, subtypes, procedures, and functions. Note that the

X-value is defined as an Integer subtype named Arg and the Y -values as an Integer

subtype named Value. And when (Arg, Value) are paired together, it results in a

Point. Index is a type defined as a range from 1-100. A type called Func is also

defined. Func is defined as an array of Points where the index range can be from

1-100 as long as the first index starts at index 1. The Increasing function is also

defined and should return True only if the Values of each Point are monotonically

increasing. Next, Monotonic_Incr_Func is defined by predicating it on the earlier

defined Increasing function. The intent of this Monotonic_Incr_Func is to specify

a monotonically increasing function. Next, in Figure 5 SPARK uses an Ada body file

(.adb) to provide implementations of functions and procedures defined in the specifi-

cation file. These .adb files start with the first line package body [package_name].

As can be seen in the Interpolation package body (Figure 5), the Eval function is

implemented. This is where the interpolation calculation occurs in this example.

Equation (1) is implemented in the elsif on lines 13–17 of the .adb file. Figure 6

shows a simple main package for exercising the interpolation function Eval through

procedure Test_Interpolation. This package sets up a nominal test case with a

constant F of type Func containing points ((-10, -10), (-1, -3), (0, 6), (5, 12), (12, 12),

(18, 12), (20, 15)). Note that the Y -values of F satisfy Increasing, so that when

Eval is called on F, F can be converted to subtype Monotonic_Incr_Func without vi-

olating its predicate and raising a run-time error. This test case returns the expected

result, printing the following Y -values for X-values ranging from -20 to 10: -10, -10,

-9, -8, -7, -7, -6, -5, -4, -3, 6, 7, 8, 9, 10, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,

12, 12, 13, 15.
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1 package Interpolation with SPARK_Mode is

2
3 subtype Arg is Integer;

4 subtype Value is Integer;

5 type Point is record

6 X : Arg;

7 Y : Value;

8 end record;

9
10 type Index is new Integer range 1 .. 100;

11 type Func is array (Index range <>) of Point with

12 Predicate => Func ’First = 1;

13
14 function Increasing (F : Func) return Boolean is

15 (for all I in F’Range =>

16 (for all J in F’Range =>

17 (if I < J then F(I).Y <= F(J).Y)));

18
19 subtype Monotonic_Incr_Func is Func with

20 Predicate => Increasing (Monotonic_Incr_Func);

21
22 function Eval (F : Monotonic_Incr_Func; A : Arg) return Value;

23
24 end Interpolation;

Figure 4: Initial interpol.ads

1 package body Interpolation with SPARK_Mode is

2
3 function Eval (F : Monotonic_Incr_Func; A : Arg) return Value is

4 begin

5 if A < F(1).X then

6 return F(1).Y;

7 end if;

8
9 for K in F’Range loop

10 if A = F(K).X then

11 return F(K).Y;

12 elsif A > F(K).X and A < F(K+1).X then

13 declare

14 DX : constant Integer := F(K+1).X - F(K).X;

15 DY : constant Integer := F(K+1).Y - F(K).Y;

16 begin

17 return F(K).Y + (A - F(K).X) * DY / DX;

18 end;

19 end if;

20 end loop;

21 return F(F’Last).Y;

22 end Eval;

23
24 end Interpolation;

Figure 5: Initial interpol.adb
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1 with Ada.Text_IO; use Ada.Text_IO;

2 with Interpolation; use Interpolation;

3
4 procedure Test_Interpolation is

5 F : constant Func :=

6 ((-10, -10), (-1, -3), (0, 6), (5, 12), (12, 12), (18, 12), (20, 15));

7 begin

8 for A in -10 .. 20 loop

9 Put_Line ("Eval X =" & A’Image & " Y =" & Eval(F, A)’Image);

10 end loop;

11 end Test_Interpolation;

Figure 6: Initial Test_Interpolation.adb

This section has now successfully presented a simple interpolation algorithm can-

didate. There are many issues with the initial interpolation implementation provided.

At this point, it is advisable to run the SPARK provers on the code to highlight po-

tential issues. On this initial implementation, SPARK and its prover engine, GNAT-

prove, returned five items of concern. In conjunction with SPARK, CodePeer, a tool

available to the SPARK Pro platform, can be used to find vulnerabilities and link

them to a Mitre Common Weakness Enumeration (CWE) entry (discussed in Sec-

tion 2.5). CodePeer also ran against the initial implementation and found the same

five items as SPARK, but this time with mappings to a CWE. All of the SPARK

prover warning items and CodePeer CWE flags are found when run on the initial

interpol.adb as represented in Figure 5. The five items are as follows:

1. [Line 7] – [CWE 118]: array index check might fail if array empty

2. [Line 16] – [CWE 119]: array index check might fail at F(K+1)

3. [Line 18] – [CWE 190]: overflow check might fail at subtraction

4. [Line 19] – [CWE 190]: overflow check might fail at subtraction

5. [Line 21] – [CWE 190]: overflow check might fail at multiplication
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It is now time to go through the issues and provide solutions as a means to ensure

the correctness of this code via formal verification using SPARK. All the following

changes to Figure 4 and Figure 5 are reflected in Figure 7 and Figure 8 and correspond

to the five items SPARK enumerated. The main driver Test_Interpolation.adb is

still the same as Figure 6. This interpolation example cannot be a formally verified

example until a few flaws with the original setup and specification are addressed.

First are the changes reflected in the updated body file (Figure 8), which includes the

interpolation calculation. There are four changes to the flow of the code:

1. If A is equal to the first value in F, not just less than, this condition holds True.

This update can be seen on lines 4-5 of Figure 8.

2. The code now takes into account if A (the provided X-value to interpolate) is

greater than or equal to the last value in the F. This update can be seen on

lines 6-7 of Figure 8.

3. The interpolated value is now fully calculated within the declare section. This

update can be seen on line 18 of Figure 8.

4. The final return in the body of the Eval function is altered to raise a program

error, because the code should never reach this point if the code is implemented

correctly. Remember, at the beginning of the Eval function A is checked to see

if it is at the end of the Monotonic_Incr_Func. This update can be seen on

line 26 of Figure 8.

Next are the changes reflected in the updated specification file (Figure 7). There

are three changes to the general specifications in this file:

1. The ranges for subtypes Arg and Value are restricted to the range -20_000 ..

20_000 to prevent overflows in the interpolation arithmetic. This update can

be seen on lines 3–4 of Figure 7.
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2. The definition of the type Func is expanded to include that any sequence of

Points in Func must have increasing X-values to be considered a Func. In

other words, X is always increasing from Point to Point, and there are no

duplicate X-values. This update can be seen on lines 13–15 of Figure 7.

3. The name of the Increasing function is updated to Monotonic_Increasing

to precisely describe the desired behavior it aims to check. This is because the

Func that is passed into its parameter does not need to be strictly increasing.

The value of a Point can remain steady as long as it does not decrease as it

progresses through the range in a positive direction. This update can be seen

on line 17 of Figure 7.

Now that the appropriate modifications have been made to the core functionality

of the interpolation example code, this thesis can move into the formal specification

of the Eval function. The goal is to formally specify this function specifically because

this is the function that actually interpolates a Y -value given a particular X-value

(A). To accomplish this task, there needs to be a postcondition that is user-defined

on the function. The user has to communicate to SPARK what the correct functional

behavior of code should be. First, add a contract in the form of a precondition that

states that there must be at least one element in Func F. This prevents one possible

error in the Eval body. In particular, line 4 of Figure 8 would result in an error if

checking the first index of an empty Func array. This added precondition can be seen

on line 26 of Figure 7. Additionally, in this interpolation example, there are only four

desired interpolation results based on parameter A’s (supplied X-value) relationship

to the Func F supplied to Eval. A is one of the following and checks in order:

1. Less than or equal to the first element’s X-value

2. Greater than or equal to the last element’s X-value
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3. Equal to an internal element’s X-value

4. Lies between two element’s X-value

If A satisfies condition 1, then Y (the interpolation result) equals the Y -value of

the first element. If A satisfies condition 2, then Y equals the Y -value of the last

element. If A satisfies condition 3, then Y equals that specific internal element’s

Y -value. Finally, if A satisfies condition 4, then Y lies within the range of A’s two

closest elements. Notice, the fourth condition only checks that the interpolated Y

value is in the correct range but it does not check for the exact value as defined by

the interpolation equation (Equation (1)). Because this criteria only checks the range

of the result, this is a gold level proof rather than a full platinum level proof. These

four conditions are implemented as a contract in the form of a postcondition. This

update can be seen on lines 27-33 of Figure 7.

3.2.2 Loop Invariants and Assertions Needed

At this point, SPARK is run again to ensure that the postcondition just added is

sound. As the code stands, SPARK returns the following about line 27 in Figure 7:

“postcondition might fail.” This warning could mean one of three things. One, it

could mean the programmer must provide the provers with more information. Two,

it could mean that the code itself has been unintentionally implemented incorrectly.

Three, it could mean that the specification is something other than what was intended.

But if the provers just need more information, one common issue is that the function

corresponding to the SPARK “postcondition might fail” warning contains a loop

within its implementation. Recall, Eval is implemented in Figure 5 (initial interpol

.adb) and does indeed contain a for loop. SPARK provers have issues working with

loops because they can only reason about each iteration of the loop independently.

In other words, without help, the provers do not know what happened on any other
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1 package Interpolation with SPARK_Mode is

2
3 subtype Arg is Integer range -20_000 .. 20_000;

4 subtype Value is Integer range -20_000 .. 20_000;

5 type Point is record

6 X : Arg;

7 Y : Value;

8 end record;

9
10 type Index is new Integer range 1 .. 100;

11 type Func is array (Index range <>) of Point with

12 Predicate => Func ’First = 1 and

13 (for all I in Func ’Range =>

14 (for all J in Func ’Range =>

15 (if I < J then Func(I).X < Func(J).X)));

16
17 function Monotonic_Increasing (F : Func) return Boolean is

18 (for all I in F’Range =>

19 (for all J in F’Range =>

20 (if I < J then F(I).Y <= F(J).Y)));

21
22 subtype Monotonic_Incr_Func is Func with

23 Predicate => Monotonic_Increasing (Monotonic_Incr_Func);

24
25 function Eval (F : Monotonic_Incr_Func; A : Arg) return Value with

26 Pre => F’Length > 0,

27 Post => (if A <= F(1).X then Eval ’Result = F(1).Y

28 elsif A >= F(F’Last).X then Eval ’Result = F(F’Last).Y

29 elsif (for some K in 1..F’Last => A = F(K).X and then

30 Eval ’Result = F(K).X) then True

31 else (for some K in 1..F’Last - 1 =>

32 A in F(K).X..F(K+1).X and then

33 Eval ’Result in F(K).Y..F(K+1).Y));

34
35 pragma Annotate (GNATprove , Terminating , Eval);

36 end Interpolation;

Figure 7: Corrected and extended specification interpol.ads

arbitrary iteration of the loop. The user must supply user contracts such as loop

invariants and/or assertions to help push the provers to an inductive proof of the

loop. In this example, the loop works by iterating through each element of the array

of Points. In order for SPARK to inductively prove this section of code, the lower

bound at each iteration is needed to make sense of the past iterations of the loop. For

this reason, the loop invariant A >= F(K).X is added at the start of the loop on line

11 of Figure 8. This loop invariant helps because it establishes that the value of A

could not have been between F(K).X and F(K+1).X for values of K in earlier iterations

of the loop (i.e. that the loop did not somehow erroneously “skip over” the points
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that A lies between on a previous iteration). Additionally, it is important to indicate

to the provers that the second condition of the loop, which handles an X-value that

lies between two known elements, should indeed return an interpolated Y -value that

lies between the Y -value of those two surrounding Points. This assertion can be seen

on line 20 of the updated interpolation body file (Figure 8).

1 package body Interpolation with SPARK_Mode is

2 function Eval (F : Monotonic_Incr_Func; A : Arg) return Value is

3 begin

4 if A <= F(1).X then

5 return F(1).Y;

6 elsif A >= F(F’Last).X then

7 return F(F’Last).Y;

8 end if;

9
10 for K in F’Range loop

11 pragma Loop_Invariant(A >= F(K).X);

12 if A = F(K).X then

13 return F(K).Y;

14 elsif (A > F(K).X and then A < F(K+1).X) then

15 declare

16 DX : constant Integer := F(K+1).X - F(K).X;

17 DY : constant Integer := F(K+1).Y - F(K).Y;

18 R : constant Integer := F(K).Y + (A - F(K).X) * DY / DX;

19 begin

20 pragma Assert(R in F(K).Y..F(K+1).Y);

21 return R;

22 end;

23 end if;

24 end loop;

25
26 raise Program_Error;

27 end Eval;

28 end Interpolation;

Figure 8: Corrected interpol.adb

When running the SPARK provers once more on the newly updated code (Fig-

ure 7 & Figure 8), the provers terminate successfully. This means that the provers are

able to prove the user-defined contracts and specifications and guarantee key func-

tional correctness as defined in the pre- and postconditions. Additionally, CodePeer

reanalyzed the formalized code and found no CWE risks are present.

42



3.3 Verifying a Merge Sort Algorithm in SPARK

This section is based on a previously published paper [70].2 This section goes

through the process of verifying SPARK code to the gold level through an example,

namely a recursive merge sort algorithm. Though verification of such a simple, well-

known algorithm may seem like merely an academic exercise, it is interesting to note

that subtle errors in similar algorithms have gone undetected for long periods of time.

For example, the Java Development Kit (JDK) implementation of a binary search over

arrays contained a run-time error due to overflow that went undetected for nine years

[71]. Verification at the silver level or higher in SPARK would have revealed the error.

3.3.1 Merge Sort Implementation

Figure 9 depicts a recursive merge sort algorithm. The underlying procedure splits

an array into left and right halves, then recursively calls itself on each half. The base

case is reached when the procedure is called on an array of size 1. Left and right

halves are merged into a sorted array by taking elements in order from the left and

right halves, and the merged and sorted array is returned. Note this means that when

the procedure goes to merge the left and right halves returned by lower-level calls, it

assumes each half is sorted.

Consider a SPARK implementation of this algorithm that sorts arrays of integers.

The implementation of the driver (main.adb) can be seen in Appendix B under

Listing B.1. SPARK is a strongly typed language, so the first step is to begin by

considering the types to be used in this implementation. A common SPARK design

pattern is to have a separate package that specifies the types used in a program. Here,

this thesis defines the types for the merge sort algorithm in a mergesort_types

2Ryan Baity, Laura R Humphrey, Kenneth Hopkinson. Formal verification of a merge sort algo-
rithm in SPARK. In AIAA Scitech 2021 Forum, page 0039, 2021. DISTRIBUTION STATEMENT
A. Approved for public release: distribution unlimited. Case #88ABW-2020-3580.
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Figure 9: A visual depiction of a merge sort algorithm.

1 package mergesort_types with SPARK_Mode is

2 subtype Sort_Index is Integer range 0 .. 99;

3 type Sort_Array is array(Sort_Index range <>) of Integer;

4 procedure Print(A : Sort_Array);

5 end mergesort_types;

Figure 10: SPARK package specification for the types used by this merge sort algo-
rithm.

package, shown in Figure 10. Line 1 defines the keywords with SPARK_Mode in

the package specification and indicates that it should contain valid SPARK code.

Line 2 defines the subtype Sort_Index as a subtype of standard type Integer that

is constrained to range from 0 to 99. Line 3 defines the type Sort_Array as an

array type indexed by type Sort_Index that holds elements of type Integer. The

notation Sort_Index range <> indicates that this is an unconstrained array type

(i.e. a variable of this type can be instantiated with arbitrary first and last index

values from subtype Sort_Index). For example,

1 A: Sort_Array (0 .. 3) := [2, 4, 6, 8];

2 B: Sort_Array (51 .. 52) := [3, 4];
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3 C: Sort_Array (5 .. 9);

are all valid. It would be possible to make this a generic package so that a user of

the package could choose the range constraints for Sort_Index, enabling Sort_Array

types of arbitrary maximum size. But for simplicity, the arrays are limited to have

indices with a maximum range of 0 to 99 (i.e. arrays with a maximum size of 100

elements). Line 4 defines the procedure Print as a function that prints supplied

Sort_Index array A. This Print procedure is for console output and is implemented

in the mergesort_types body file and can be viewed in Appendix B in Listing B.5.

1 with mergesort_types; use mergesort_types;

2
3 package mergesort_algorithm with SPARK_Mode is

4
5 procedure recursive_mergesort(A: in out Sort_Array; L, R: Sort_Index);

6
7 procedure merge(A: in out Sort_Array; L: Sort_Index;

8 M: Sort_Index; R: Sort_Index);

9
10 end mergesort_algorithm;

Figure 11: Basic SPARK package specification for procedure recursive_mergesort

and helper procedure merge.

Now consider the package for implementing the merge sort algorithm itself, called

mergesort_algorithm. While the mergesort_types package consists of only a spec-

ification, packages containing subprograms more commonly consist of both a spec-

ification and a body. The basic specification at the bronze level for procedures in

package mergesort_algorithm with no contracts is shown in Figure 11. The with

clause on line 1 provides access to package mergesort_types, and the use clause

provides direct visibility to public declarations within the package without having to

prefix them with the package name. As in the mergesort_types package, the key-

words with SPARK_Mode on line 3 specify that the package is to contain SPARK code.

Line 5 defines the specification for procedure recursive_mergesort. Its first formal
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parameter A is of type Sort_Array and has mode in out, meaning that A must be

initialized before the procedure is called, and A is modified by the procedure. The

second and third formal parameters L and R are of type Sort_Index and implicitly

have mode in by default, meaning they cannot be modified by the procedure. The

goal of recursive_mergesort is to sort the values in subarray A(L .. R). Lines 7-8

define the specification for helper procedure merge. The formal parameters are the

1 with mergesort_types; use mergesort_types;

2
3 package body mergesort_algorithm with SPARK_Mode is

4
5 procedure recursive_mergesort(A: in out Sort_Array; L, R: Sort_Index) is

6 M: Sort_Index;

7 begin

8 if (L < R) then

9 M := L+(R-l)/2;

10 recursive_mergesort(A, L, M);

11 recursive_mergesort(A, M+1, R);

12 merge(A, L, M, R);

13 end if;

14 end recursive_mergesort;

15
16 procedure merge(A: in out Sort_Array; L: in Sort_Index;

17 M: in Sort_Index; R: in Sort_Index) is

18 n1: constant Natural := M - L + 1;

19 n2: constant Natural := R - M;

20 L_temp: constant Sort_Array (0..n1 -1) := A(L .. M);

21 R_temp: constant Sort_Array (0..n2 -1) := A(M+1 .. R);

22 ii, jj , kk: Natural := 0;

23 begin

24 while ii < n1 and jj < n2 loop

25 if L_temp(ii) <= R_temp(jj) then

26 A(L + kk) := L_temp(ii);

27 ii := ii + 1;

28 else

29 A(L + kk) := R_temp(jj);

30 jj := jj + 1;

31 end if;

32 kk := kk + 1;

33 end loop;

34
35 if ii < n1 then

36 A(L + kk .. R) := L_temp(ii .. n1 -1);

37 elsif jj < n2 then

38 A(L + kk .. R) := R_temp(jj .. n2 -1);

39 end if;

40 end merge;

41
42 end mergesort_algorithm;

Figure 12: Basic SPARK package body for procedure recursive_mergesort and
helper procedure merge.
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same, except there is an additional parameter M of type Sort_Index. The goal of

this procedure, which assumes the contents of A(L .. M) and A(M+1 .. R) are each

already separately sorted, is to merge the two into A(L .. R) so that the contents of

A(L .. R) are sorted after the procedure completes.

Now consider the body of package mergesort_algorithm, shown in Figure 12.

The procedure recursive_mergesort calculates the midpoint of the array, then re-

cursively calls recursive_mergesort to sort the left and right array halves. It then

calls merge to combine the resulting sorted halves back into a sorted array. Procedure

merge declares several local variables on lines 18-22. Natural constants n1 and n2

store the size of the left and right subarrays to be merged. Sort_Array constants

L_temp and R_temp store copies of the left and right portions of A to be merged.

Natural variables ii, jj, and kk track the position of the algorithm as it increments

through values stored in L_temp, R_temp, and A. Note that these are standard type

Natural rather than type Sort_Index, since on the last iteration of the main loop,

they can potentially be one larger than the maximum value allowed by Sort_Index.

The main loop puts values from L_temp and R_temp back into A starting at A(L) until

it reaches the end of exactly one of either L_temp and R_temp. The final if statement

takes the remaining elements from the temp array that still has un-merged elements

and copies them into the end of A.

Now consider how to formally specify key behaviors of these procedures using

pre- and postconditions in SPARK. For convenience, first, add a function to the

specification for package mergesort_algorithm that returns True if and only if an

array is sorted. This function can be entirely defined in the specification using what

is known in SPARK as an expression function. Its definition is:

1 function Is_Ascending(A: Sort_Array) return Boolean is

2 (if A’Length > 1 then (for all I in A’Range =>

3 (if I < A’Last then A(I) <= A(I + 1))))
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4 with Ghost;

This function is marked with aspect Ghost to indicate that it is mainly used for

proof purposes. That is, it is only compiled and included in an executable if the user

indicates to the compiler that it should be (e.g. to check the code through test rather

than verify it through proof).

1 with mergesort_types; use mergesort_types;

2
3 package mergesort_algorithm with SPARK_Mode is

4
5 function Is_Ascending(A: Sort_Array) return Boolean is

6 (if A’Length > 1 then (for all I in A’Range =>

7 (if I < A’Last then A(I) <= A(I + 1))))

8 with Ghost;

9
10 procedure recursive_mergesort(A: in out Sort_Array; L, R: Sort_Index)

with

11 Pre => A’Length >= 1

12 and then (L in A’Range and R in A’Range)

13 and then L <= R,

14 Post => Is_Ascending(A(L..R))

15 and (for all I in A’Range => (if I not in L..R then A(I) = A’Old(I)

))

16 and (for all I in A’Range => (for some J in A’Range => A(I) = A’Old

(J)));

17
18 procedure merge(A: in out Sort_Array; L: Sort_Index;

19 M: Sort_Index; R: Sort_Index) with

20 Pre => (L in A’Range and R in A’Range)

21 and then L <= R

22 and then M in L..R

23 and then Is_Ascending(A(L..M))

24 and then Is_Ascending(A(M+1..R)),

25 Post => Is_Ascending(A(L..R))

26 and (for all I in A’Range => (if I not in L .. R then A(I) = A’Old(

I)))

27 and (for all I in A’Range => (for some J in A’Range => A(I) = A’Old

(J)));

28
29 end mergesort_algorithm;

Figure 13: SPARK package specification for procedure recursive_mergesort and
helper procedure merge with behavioral contracts expressed using ghost function
Is_Ascending.

With this ghost function defined, it is possible to write pre- and postconditions

for procedures recursive_mergesort and merge using the function Is_Ascending.

Figure 13 shows the modified specification for package mergesort_algorithm. On
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lines 11–13, the precondtion for recursive_mergesort states that A should contain

at least 1 element, that L and R should be within the Range of indices used by A, and

L should be less than or equal to R. On lines 14–16, the postcondition states that

after the procedure executes, the values stored in subarray A(L .. R) should be in

ascending order, that values stored in indices outside the range L .. R should be the

same as they are before execution of the procedure (aspect Old in a postcondition

refers to the value of a subprogram parameter before execution), and that every

value stored in A after execution of the procedure should correspond to some value

stored in A before execution of the procedure. On lines 20–24, the precondition

for merge states that L should be less than or equal to R, M should be between L

and R, and that the left and right halves of the subarray to be merged should each

be sorted. On lines 25–27, the postcondition states the same thing as it does for

recursive_mergesort. This is not surprising since recursive_mergesort is using

merge as a helper function to achieve its own postcondition. Briefly note that pre- and

postconditions in SPARK must be free of potential run-time errors. This is why the

short-circuit and then construct is used in the precondition of merge. If L or M were

outside A’Range, then the expression Is_Ascending(A(L..M)) or Is_Ascending(A(

M+1..R)) would raise a run-time error. The short-circuit and then construct ensures

that these expressions are not evaluated if L or M is outside A’Range. The short-circuit

construct is not necessary for the precondition of recursive_mergesort; it is used

merely for efficiency reasons.

Note that these postconditions are at the gold level and not the platinum level.

This is because they hold for the desired behavior but still allow for additional un-

desired behaviors. Specifically, both postconditions state that all values stored in A

before execution of the subprogram should have a corresponding value stored in A

after execution, but this does not guarantee that A is a one-to-one mapping/permu-
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tation of A’Old. For instance, when A’Old = [1 1 5 5 5 2 2], the desired value

A = [1 1 2 2 5 5 5] satisfies the postcondition, but so does the undesired value A

= [1 2 5 5 5 5 5]. Additional postconditions would be required to rule out such

behaviors (i.e. to ensure that A is a permutation of A’Old). Section 3.3.3 discusses

why proving this particular property is difficult for this particular algorithm.

3.3.2 Loop Invariants Needed

With no additional annotations, SPARK is able to prove that the body of the pro-

cedure recursive_mergesort satisfies the postcondition of recursive_mergesort

based on the precondition of recursive_mergesort, the simple logic required to

compute the midpoint index M, and the pre- and postconditions of internal calls to

recursive_mergesort and merge. However, without additional annotations, SPARK

is not able to prove the postcondition of merge. In particular, user-provided loop

invariants inside the body of merge are needed. These create extra verification con-

ditions (i.e. assertions that SPARK must prove), that can help guide proof of the

postcondition. Subprograms containing loops almost always require loop invariants,

which express properties that the user believes to be True at every iteration of the

loop. These are needed because each execution of a loop can be viewed as a separate

path through the subprogram, and the number of times the loop executes cannot be

determined statically (i.e. there are potentially an infinite number of paths through

a loop). SPARK analyzes loops by splitting them into three parts: the path that

enters the loop for the first time and terminates on the invariant, the path the goes

from the invariant and terminates on the invariant again, and the path that goes

from the invariant and leaves the loop. By splitting the loop into parts, SPARK is

able to prove loop invariants through induction. More specifically, SPARK proves

that the loop invariant holds in the first iteration of the loop, then it proves the loop
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invariant holds in an arbitrary iteration assuming it held in the previous iteration.

The loop invariant and properties of the path out of the loop are then used to help

prove subsequent properties, including subprogram postconditions. Note that a loop

invariant in SPARK can appear anywhere at the top level of a loop (i.e. not nested in-

side another control structure), though it is usually placed at the beginning or end of

the loop. It can also be broken across multiple pragma Loop_Invariant statements,

though these must be grouped together without any other intervening statements or

declarations. Internally, SPARK creates a loop invariant that is a conjunction of all

loop invariant pragmas in the loop.

1 pragma Loop_Invariant(ii <= n1 and jj <= n2);

2 pragma Loop_Invariant(kk = ii + jj);

3 pragma Loop_Invariant(Is_Ascending(A(L..L+(kk -1))));

4 pragma Loop_Invariant(for all I in L..L+(kk -1) =>

5 ((if ii < n1 then A(I) <= L_temp(ii)) and (if jj < n2 then A(I) <= R_temp

(jj))));

6 pragma Loop_Invariant(for all I in A’Range => (if I not in L..L+(kk -1) then

A(I) = A’Loop_Entry(I)));

7 pragma Loop_Invariant(for all I in L..L+(kk -1) =>

8 (for some J in A’Range => A(I) = A’Loop_Entry(J)));

Figure 14: Loop invariant pragmas needed to prove the merge postcondition.

Figure 14 shows a loop invariant that enables SPARK to prove the postcondition

of merge. This loop invariant is broken into six individual loop invariant pragmas that

would be placed between lines 32 and 33 of the subprogram body shown in Figure 12.

The first loop invariant pragma on line 1 specifies upper bounds n1 and n2 on variables

ii and jj, which correspond to the sizes of L_temp and R_temp, respectively. The

second loop invariant pragma on line 2 specifies that kk = ii + jj. Note that the

size of A(L..R) is n1 + n2. Also, recall from Figure 12 that ii, jj, and kk are used to

index into L_temp, R_temp, and A, respectively, as the loop proceeds. These two loop

invariant pragmas help prove several important properties of these variables. First,

they help prove that they remain within the bounds of their type, Natural, and also
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that they stay within the index range of their respective arrays. These checks are

necessary to prove absence of run-time errors. Second, the fact that kk = ii + jj

also helps prove that elements are placed in A(L..R) in order. Each iteration of the

loop evaluates whether L_temp(ii) or R_temp(jj) is smaller, and the smaller value

is stored in A(L + kk). Then either ii or jj is incremented by 1, depending on

which corresponded to the smaller value, and kk is always incremented by 1. So, each

iteration of the loop places the next smallest value at the next location in A.

The third loop invariant pragma on line 3 states that all elements placed in A

up to this point are sorted, (i.e. Is_Ascending(A(L..L+kk-1))), which is critical

for proving the part of the merge postcondition that states Is_Ascending(A(L..R

)). Note that it is necessary to subtract 1 from kk in this expression, since kk is

incremented by 1 in anticipation of the next loop iteration right before this pragma is

evaluated. Unfortunately, SPARK is unable to prove this part of the loop invariant

without additional information. This information is provided by the fourth loop

invariant pragma, which broken across lines 4 and 5. Conceptually, it states that all

elements placed in A up to this point, (i.e. in the range L..L+kk-1), are less than the

next values of L_temp and R_temp indexed by ii and jj. Note that since either ii

or jj is incremented by 1 in anticipation of the next iteration of the loop right before

this pragma is evaluated, whichever is incremented would be outside the index range

of its corresponding array on the last iteration of the loop (i.e. n1-1 for L_temp and

n2-1 for R_temp). This is why line 5 only evaluates whether A(I) <= L_temp(ii) if

ii < n1 and whether A(I) <= R_temp(jj) if jj < n2.

The fifth loop invariant pragma on line 6 conceptually states that all elements of

A that have yet to be changed, (i.e. those outside of indices L..L+kk-1), have the

same value as those in A’Loop_Entry, which refers to the value of A at the start of

the loop. This helps prove the part of the merge postcondition that states (for all
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I in A’Range => (if I not in L .. R then A(I)= A’Old(I))).

The sixth loop invariant pragma broken across lines 7 and 8 conceptually states

that for all values that have been placed in A so far, (i.e. in indices L..L+kk-1),

have a corresponding value somewhere in A’Loop_Entry. This helps prove the part

of the merge postcondition that states (for all I in A’Range => (for some J

in A’Range => A(I)= A’Old(J))).

With these six loop invariant pragmas in place, SPARK is able to prove the post-

condition on merge. As previously mentioned, SPARK is already able to prove the

postcondition on recursive_mergesort without any additional annotations, so it is

now able to prove the whole mergesort_algorithm package.

3.3.3 Discussion (Limitations to proof)

There are two additional issues to discuss with regards to the SPARK implemen-

tation of the recursive mergesort algorithm. The first issue is that the postcondition

is only gold level. Specifically, the postcondition does not require that the value of A

after merge executes is a one-to-one mapping/permutation of A’Old, only that every

value stored in A has a corresponding value stored in A’Old. In theory, it would be

possible to add the permutation property to the postcondition of merge and prove it,

raising the level to platinum. There are in fact example SPARK implementations of

various sorting algorithms in the spark-by-example3 repository, such as an insertion

sort and a selection sort algorithm, that include the permutation property in their

postconditions. However, this property is easier to prove for those particular sorting

algorithms, since they work by iteratively swapping elements of the array to be sorted

in a loop. This makes it easy to write a loop invariant expressing that the permuta-

tion property holds in every iteration of the loop. For merge sort, a loop invariant

3https://github.com/tofgarion/spark-by-example/
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that captures the permutation property is not as easy to write, since the algorithm

incrementally adds new values to the array to be sorted, pulling from either the left

or right half of the original array. Work is being done on using something like the

multiset specifications in the spark-by-example3 repository to model the array to be

sorted and the left and right halves of the array as multisets to write a loop invariant

that expresses that the number of occurrences of each element of A(L..L+kk-1) is

the same as the number of occurrences of each element of L_temp(0..ii-1) unioned

with R_temp(0..jj-1). This should allow the permutation property to be proven

for this merge sort algorithm.

The second issue has to do with subprogram termination. In general, SPARK

does not try to verify termination of subprograms; rather, by default, it proves prop-

erties such as postconditions assuming that subprograms terminate. It is possible

to add pragmas that instruct SPARK to attempt to prove subprogram termination.

For example, the following pragmas can be added to the package specification for

mergesort_algorithm:

pragma Annotate (GNATprove , Terminating , merge);

pragma Annotate (GNATprove , Terminating , recursive_mergesort);

This tells GNATprove, one of the main tools used by SPARK, to attempt to prove that

recursive_mergesort and merge terminate. Subprograms like merge that include

a loop often require loop variants (i.e. assertions about scalar variables modified by

the loop that the user believes to be monotonically increasing or decreasing), to help

prove that the loop terminates if they can be proven to be True. For SPARK to prove

the first termination pragma, the following loop variant must be added before or after

the loop invariant pragmas in the body of merge:

pragma Loop_Variant(Increases => ii + jj);

SPARK is able to prove the loop variant is True. Since the loop termination condition
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is ii < n1 and jj < n2, which must be reached eventually if ii + jj is monotoni-

cally increasing, SPARK can then prove that the loop and merge terminates. Unfor-

tunately, recursive_mergesort is a recursive procedure, which is harder to prove.

SPARK is unable to prove termination for this procedure. In such a case, other forms

of verification such as third party review are appropriate.

3.4 Verifying a Priority Queue Algorithm in SPARK

This section moves through the process of verifying SPARK code to the platinum

level through an example, namely a minimum priority queue algorithm with insert

and extract functionality.

3.4.1 Priority Queue Implementation

This section implements a minimum priority queue with two functionalities, insert

and extract. Figure 15 shows a visual depiction of the implemented priority queue

data structure with size 10. It is implemented in such a way that each element

of the structure has a descriptor and corresponding priority. It is a priority queue

represented as an array of pairs. Because this is a minimum priority queue imple-

mentation, the lower the assigned priority value, the higher the priority. For SPARK

implementation, this array data structure must remain static in memory usage. It

must remain a fixed size. In this case, that fixed size is 10 elements. In order to keep

track of the current scope of the fixed length priority queue, there is a tracker variable

declared and initialized in the priority specification file called REAR. REAR marks the

last element in the current scope of the array data structure, and therefore, the last

reachable and relevant pair within the priority queue. When a pair is inserted, REAR

is moved up one spot, and when a pair is extracted, REAR is moved down one spot -

more detail on this further on.
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Figure 15: A visual depiction of the priority queue implementation with fixed size 10.

Briefly, the implementation of the driver (main.adb) is in Appendix C under

Listing C.1. There are two helper subprograms, insert and extract, that operate

on a priority queue. These test_helper subprograms are not part of the provable

code and only act as helpers for main.adb cleanliness and execution as well as priority

queue data structure initialization and can be seen in Appendix C under Listing C.4

and Listing C.5.

Consider a SPARK implementation of algorithms to insert and extract (Item,

Priority) pairs. The types for this priority queue implementation are now defined

in the priority package, shown in Figure 16. Line 1 includes the keywords with

SPARK_Mode in the package specification to indicate that it should contain valid

SPARK code. Line 3 defines the subtype Item as a subtype of standard type

String that is constrained to a length of 6 characters. Line 5 defines the subtype
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1 package priority with SPARK_Mode is

2
3 subtype Item is String (1..6);

4
5 subtype Given_Priority is Integer;

6
7 type Item_Priority_Pair is record

8 X: Item;

9 P: Given_Priority;

10 end record;

11
12 Initializer_Item : constant Item_Priority_Pair := (("------", Integer ’

Last));

13
14 type Priority_Queue is private;

15
16 procedure Print_Queue(PQ : in Priority_Queue);

17
18 procedure insert(PQ: in out Priority_Queue; pair: Item_Priority_Pair);

19
20 procedure extract(PQ: in out Priority_Queue; pair: out Item_Priority_Pair

);

21
22 private

23
24 subtype Index_Range is Natural range 1 .. 10;

25 subtype REAR_Index_Range is Natural range 0.. Index_Range ’Last;

26
27 type Item_Priority_Array is array(Index_Range) of Item_Priority_Pair;

28
29 type Priority_Queue is record

30 PQ: Item_Priority_Array;

31 REAR: REAR_Index_Range := 0;

32 end record;

33
34 end priority;

Figure 16: Basic SPARK package specification for various priority specific type
definitions as well as specification of procedures insert and extract.

Given_Priority as a subtype of standard type Integer. Given_Priority repre-

sents the priority of each (Item, Priority) pair in the array from Integer’First to

Integer’Last. Lines 7–10 define the type Item_Priority_Pair as a record of both

Item and Given_Priority. Item_Priority_Pair is the type that will represent the

(Item, Priority) pair that has been mentioned many times previously. Line 12 de-

fines the constant Initializer_Item as a Item_Priority_Pair with generic values

(("------", Integer’Last)). Initializer_Item acts as a placeholder for unfilled

elements of the fixed array upon its initialization. In other words, if the user only
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supplies the following three Item_Priority_Pairs,

1 (("test_1", -54648888))

2 (("test_2", -2))

3 (("test_3", 10))

then as previously seen in Figure 15, the other seven elements of the fixed size array

representing the priority queue is initialized with Initializer_Item. Line 14 defines

the type Priority_Queue as a private entity that is defined within the corresponding

private field.

Before describing procedures Print_Queue, insert, and extract, this thesis dis-

cusses the private type Priority_Queue (lines 22-33). Line 24 defines the subtype

Index_Range as a subtype of standard type Natural that is constrained to range from

1 to 10. Index_Range defines the range of elements in the fixed array of pairs. Line

25 defines the subtype REAR_Index_Range as a subtype of standard type Natural

that is constrained to range from 0 to 10. REAR_Index_Range defines the range

of that REAR can be equal to. The value 0 represents that the priority queue has

no elements. Line 27 defines the type Item_Priority_Array as an array type con-

strained by type Index_Range that holds elements of type Item_Priority_Pair.

Item_Priority_Array is the fixed length array of Item_Priority_Pairs that repre-

sents the data structure for the priority queue. Lines 29–32 now define the previously

mentioned Priority_Queue type. Priority_Queue is a record that encapsulates the

current priority queue (Item_Priority_Array) and its corresponding REAR value into

one concise record. This queue/REAR value pair can now be passed around as one

easy to reference unit. For example, if a Priority_Queue called PQ is defined, then

to reference the priority queue the PQ field within the record (line 30) would be refer-

enced. This would look like PQ.PQ. To reference the REAR value, one would reference

the REAR field within the record (line 31). This would look like PQ.REAR.

This thesis now goes back to the procedures Print_Queue, insert, and extract
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on lines 16, 18, and 20, respectively. The basic specification at the bronze level

for procedures in package priority with no contracts is shown in Figure 16. On

line 16, the procedure Print_Queue is defined. This procedure takes in the current

priority queue and current REAR via the Priority_Queue record. The Print_Queue

procedure is implemented in the priority body file, Figure 17, along with the

following two procedures insert and extract.

Line 18 defines the specification for the procedure insert. Its first formal param-

eter PQ is type Priority_Queue. PQ is of mode in out, meaning that the parameter

value must be initialized before the procedure is called, and then be modified by the

procedure. It is important to note that with the stricter subset SPARK, in out

can only be used for a procedure, not a function. This is because formal verifica-

tion is simpler if functions can be assumed to be free of side effects (i.e. if they

do not modify the values of their parameters). Its second parameter pair is of type

Item_Priority_Pair and implicitly has mode in, meaning that the parameter should

be initialized before being passed into the procedure and cannot be modified by the

procedure. To recap, if there is no in out or out descriptor present on the parameter,

it is implied to be treated as an in mode parameter. The goal of insert is to in-

sert the provided Item_Priority_Pair called pair to the provided Priority_Queue

named PQ. The insert procedure then updates the Priority_Queue record with

both the updated REAR and the updated Item_Priority_Array that is holding the

priority queue elements.

Line 20 defines the specification for the procedure extract. Its first formal pa-

rameter PQ, just like in the insert declaration, is of type Priority_Queue. Its second

parameter pair, just like in insert, is of type Item_Priority_Pair, but this time

has mode out, indicating that any input value will not be used, and an output value

is guaranteed. This out parameter conceptually acts as a return value that can be
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referenced in the body files where extract is used. The goal of extract is to extract

the highest priority (lowest Given_Priority value) Item_Priority_Pair from the

provided priority queue. The extract procedure then updates the Priority_Queue

record with the updated queue and REAR value and output the extracted pair to the

out parameter.

Now consider the basic body of package priority, shown in Figure 17. The

function Print_Queue prints the provided Priority_Queue. The procedure insert

places the provided Item_Priority_Pair pair in the index directly following the

original queue’s REAR. The new Item_Priority_Pair has been added into the priority

queue (line 22). At this point, insert updates the Priority_Queue record fields with

the current priority queue and REAR values.

The procedure extract is slightly more complicated. extract looks to find

the minimum Given_Priority of all of the Item_Priority_Pairs in the provided

Priority_Queue priority queue in the loop on lines 32-36. This loop updates the

min_index if it finds an Item_Priority_Pair with a lower Given_Priority. This

min_index can be used later in the procedure to reference the minimum pair, which is

extracted. Next, in lines 38-39, extract removes the identified Item_Priority_Pair.

Line 38 in extract takes everything from the beginning of the priority queue array,

PQ.PQ, to one before min_index and places it in new_array covering the same indexes.

Line 39 then takes everything in PQ.PQ from one above min_index to REAR and places

the priority queue elements in new_array from min_index to one less than the orig-

inal REAR. This new_array essentially is the same as the original Priority_Queue

record, PQ, without the Item_Priority_Pair at min_index. That pair is removed,

and all items to the right of that extracted minimum Item_Priority_Pair are moved

to the left by one element. This means that REAR also moves to the left by one ele-

ment. Now the new REAR needs to move to the left by one element. On lines 41–42,
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1 with Ada.Text_IO; use Ada.Text_IO;

2
3 package body priority with SPARK_Mode is

4
5 procedure Print_Queue(PQ : in Priority_Queue) is

6 begin

7 if Length(PQ) = 0 then

8 Put_Line("EMPTY_Queue");

9 Put_Line("");

10 else

11 for I in 1..PQ.REAR loop

12 Put("Element " & I’Img & ": ");

13 Put("(" & (PQ.PQ(I).X) & ", ");

14 Put_Line(Integer ’Image(PQ.PQ(I).P) & ") ");

15 end loop;

16 Put_Line("");

17 end if;

18 end Print_Queue;

19
20 procedure insert(PQ: in out Priority_Queue; pair: Item_Priority_Pair) is

21 begin

22 PQ.PQ(PQ.REAR + 1) := pair;

23 PQ.REAR := PQ.REAR + 1;

24 end insert;

25
26 procedure extract(PQ: in out Priority_Queue; pair: out Item_Priority_Pair

) is

27 new_priority_queue : Priority_Queue;

28 new_array : Item_Priority_Array := PQ.PQ;

29 min_index : Index_Range := 1;

30 orig_queue : constant Priority_Queue := PQ;

31 begin

32 for I in 1..PQ.REAR loop

33 if PQ.PQ(I).P < PQ.PQ(min_index).P then

34 min_index := I;

35 end if;

36 end loop;

37
38 new_array (1.. min_index -1) := PQ.PQ(1.. min_index -1);

39 new_array(min_index ..PQ.REAR -1) := PQ.PQ(min_index +1..PQ.REAR);

40
41 new_priority_queue.PQ := new_array;

42 new_priority_queue.REAR := PQ.REAR - 1;

43
44 pair := PQ.PQ(min_index);

45 PQ := new_priority_queue;

46
47 end extract;

48 end priority;

Figure 17: Basic SPARK package body for procedure insert and procedure extract.

extract populates the two fields (PQ and REAR as defined in Figure 16). On line 44,

the out parameter pair is given the value of the minimum priority queue pair found.

On line 45, the provided Priority_Queue is updated with the new values.

Now consider how to formally specify key behaviors of these two functions using
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pre- and postconditions in SPARK. The updated version of Figure 16 is one file

but is split into Figure 18 and Figure 19 so that it can fit within this section. For

convenience, this thesis first adds seven functions to the specification for package

priority that return True if and only if desired behaviors are met. These seven

functions (in Figure 18) can usually be entirely defined in the specification file using

what is known in SPARK as an expression function as done in Section 3.3.1. The

1 package priority with SPARK_Mode is

2
3 subtype Item is String (1..6);

4
5 subtype Given_Priority is Integer;

6
7 type Item_Priority_Pair is record

8 X: Item;

9 P: Given_Priority;

10 end record;

11
12 Initializer_Item : constant Item_Priority_Pair := (("------", Integer ’

Last));

13
14 type Priority_Queue is private;

15
16 procedure Print_Queue(PQ : in Priority_Queue);

17
18 function Is_Not_Full(PQ: Priority_Queue) return Boolean

19 with Ghost;

20
21 function Is_Not_Empty(PQ: Priority_Queue) return Boolean

22 with Ghost;

23
24 function Is_Min(Orig_Queue: Priority_Queue; Min_Priority_Found:

Given_Priority) return Boolean

25 with Ghost;

26
27 function Is_At_End_Of_Queue(Orig_Queue , Result_Queue: Priority_Queue;

inserted_pair: Item_Priority_Pair) return Boolean

28 with Ghost ,

29 Pre => Is_Not_Empty(Result_Queue);

30
31 function Is_First_Extracted(Orig_Queue , Result_Queue: Priority_Queue;

extracted_pair: Item_Priority_Pair) return Boolean

32 with Ghost;

33
34 function Did_Queue_Increase(Orig_Queue , Result_Queue: Priority_Queue)

return Boolean

35 with Ghost;

36
37 function Did_Queue_Decrease(Orig_Queue , Result_Queue: Priority_Queue)

return Boolean

38 with Ghost;

Figure 18: PART 1: SPARK package specification of ghost functions.
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39
40 procedure insert(PQ: in out Priority_Queue; pair: Item_Priority_Pair)

with

41 Pre =>

42 Is_Not_Full(PQ),

43 Post =>

44 Did_Queue_Increase(PQ’Old , PQ)

45 and Is_At_End_Of_Queue(PQ’Old , PQ, pair);

46
47 procedure extract(PQ: in out Priority_Queue; pair: out Item_Priority_Pair

) with

48 Pre =>

49 Is_Not_Empty(PQ),

50 Post =>

51 Did_Queue_Decrease(PQ’Old , PQ)

52 and Is_Min(PQ ’Old , pair.P)

53 and Is_First_Extracted(PQ’Old , PQ, pair);

54
55 pragma Annotate (GNATprove , Terminating , insert);

56 pragma Annotate (GNATprove , Terminating , extract);

57
58 private

59
60 subtype Index_Range is Natural range 1 .. 10;

61 subtype REAR_Index_Range is Natural range 0.. Index_Range ’Last;

62
63 type Item_Priority_Array is array(Index_Range) of Item_Priority_Pair;

64
65 type Priority_Queue is record

66 PQ: Item_Priority_Array;

67 REAR: REAR_Index_Range := 0;

68 end record;

69
70 end priority;

Figure 19: PART 2: SPARK package specification for procedure insert, procedure
extract with behavioral contracts expressed using ghost functions.

issue here is that Priority_Queue is a private entity. This means its private fields

cannot be referenced in the public portion of the specification file. To reconcile this,

the expression function is implemented in the body file of the priority package

where the private fields can be referenced freely (body implementatinos can be seen

in Appendix C Listing C.3), rather than the public portion of the specification file.

Their specification file definitions are seen in Figure 18, lines 18–38.

These seven functions (in Figure 18) are marked with aspect Ghost to indicate

that they are used mainly for proof purposes. That is, the seven ghost functions are

only compiled and included in an executable if the user indicates to the compiler that
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it should be (e.g. to check the code through test rather than verify the code through

proof). On line 18, Is_Not_Full returns True if and only if the queue is not full. That

is, it does not have a REAR value equal to the size of REAR_Index_Range’Last. This

is checked with the expression: PQ.REAR < REAR_Index_Range’Last. On line 21,

Is_Not_Empty does the exact opposite and returns True if the REAR value of the queue

is not the lowest possible value. This is accomplished with the following expression:

PQ.REAR > REAR_Index_Range’First. On line 24 Is_Min checks that the priority

of the extracted Item_Priority_Pair is indeed the minimum priority within the

original priority queue, Orig_Queue, provided. It compares the Min_Priority_Found

by extract to the Given_Priority of each Item_Priority_Pair from 1 to the

original REAR. This is done with the expression:

(for all I in 1 .. Orig_Queue.REAR => Orig_Queue.PQ(I).P >=

Min_Priority_Found)

On line 27, Is_At_End_Of_Queue returns True if the pair inserted is inserted at the

end of the resulting queue and if the rest of the original queue up to the point of the

inserted pair is preserved. This is accomplished by the following expression:

(( Result_Queue.PQ(Result_Queue.REAR) = inserted_pair) and (for all I

in 1 .. Orig_Queue.REAR => Orig_Queue.PQ(I) = Result_Queue.PQ(I)

))

It is important to note that Is_At_End_Of_Queue requires a precondition unlike the

rest of the ghost functions. The precondition utilizes an earlier ghost function and is

as follows: Pre => Is_Not_Empty(Result_Queue); This is needed because without

it, SPARK notices that the REAR value within the provided Priority_Queue record

is of type REAR_Index_Range. Remember from Figure 16 and its updated version

Figure 19 that REAR_Index_Range has a range of 0..Index_Range’Last. This means

that REAR could technically be at index 0, which is not in the range of Index_Range

of which Priority_Queue’s Item_Pair_Array is constrained by. This means that
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the expression within Is_At_End_Of_Queue could refer to an index out of range.

Specifying that REAR cannot be 0 as a precondition with Is_Not_Empty means that

REAR must be within 1..Index_Range’Last, which is the legal range for the priority

queue field (PQ) references made in the Is_At_End_Of_Queue expression.

On line 31, Is_First_Extracted returns True if a few conditions are met. The

first condition being that there is a value within the original queue that matches the

extracted pair. This is expressed in the following way:

(for some I in 1 .. Orig_Queue.REAR => extracted_pair = orig_queue.

PQ(I))

The second condition is that all Item_Priority_Pairs located in an index lower

than that point should have a Given_Priority larger than the Given_Priority of

the extracted pair. This ensures that if there were Item_Priority_Pairs with the

same Given_Priority, the first one is extracted. This is the way that the loop in the

extract procedure operates. Recall, the loop does not update the min_index value

unless a pair’s Given_Priority is less than the current min_index, meaning the first

element of the queue with that Given_Priority is extracted. This is expressed in

the following way:

(for all X in 1 .. I-1 => (Result_Queue.PQ(X).P > extracted_pair.P))

where I is the index of the extracted pair in the original queue. The third condition

is the preservation property. All elements/pairs from the beginning of the queue up

to one below the extracted pair in the original queue should remain the same between

the original queue and resulting queue. And all elements in the index directly after the

extracted pair in the original queue should equal that of the elements in the resulting

queue from the index of the extracted pair (as defined by the original queue) to the

REAR of the resulting queue, which is one lower than the REAR of the original queue

from with the pair is extracted. This is expressed with the following expression:
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(Orig_Queue.PQ(1..I-1) = Result_Queue.PQ(1..I-1)) and then (

Orig_Queue.PQ(I+1.. Orig_Queue.REAR) = Result_Queue.PQ(I..

Result_Queue.REAR))

where I is the index of the extracted pair in the original queue once more. Those three

conditions are checked in that order and must all evaluate to True for Is_First_Extracted

to evaluate to True. The body of this ghost function can be seen in Figure 21.

Finally, lines 34 and 37, still located in Figure 18, specify the two ghost functions,

Did_Queue_Increase and Did_Queue_Decrease, respectively. They verify that the

value of REAR either went up by one or down by one. Did_Queue_Increase evaluates

to True if: (Result_Queue.REAR = Orig_Queue.REAR + 1). Did_Queue_Decrease

evaluates to True if: (Result_Queue.REAR = Orig_Queue.REAR - 1). Recall, all of

these seven ghost functions can be seen implemented in the body file of the priority

package in Appendix C under Listing C.3.

It is now possible to write pre- and postconditions for procedures insert and

extract using the seven ghost functions previous defined in Figure 18. Recall, Fig-

ure 18 and Figure 19 show the modified specification for package priority. The pre-

and postconditions for both procedures insert and extract are seen in Figure 19.

Recall, for a pre- and/or postcondition to pass, it must evaluate to True. This thesis

starts with procedure insert’s contracts. In Figure 19, line 42 is the precondition

Is_Not_Full. This precondition means that before this procedure can execute, it

must be True that the the parameter Priority_Queue contains a queue that is not

full. This is because if the queue is already full, then there would be no way to add

a new pair to the queue. Line 44 is the postcondition Did_Queue_Increase. Recall,

this checks that the REAR field within record Priority_Queue is indeed one higher

than the REAR in the original Priority_Queue that can be referenced with the ’Old

attribute. The original queue (PQ’Old) and current queue (PQ) are supplied and their
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REAR values are compared. Line 45 is the postcondition Is_At_End_Of_Queue, which

checks that the parameter pair is inserted at the end of the new queue and it also

checks for the preservation of the original queue within in the resulting queue. All

pairs up to the inserted pair, which sits at the end of the new queue, should be equal.

Now move to extract’s contracts (still in Figure 19). Line 49 is the precon-

dition Is_Not_Empty. This precondition means that before this procedure can ex-

ecute, it must be True that the the parameter Priority_Queue contains a queue

that is not empty. This is because if the queue is already empty, there would

be no way to extract a new pair from the queue. Line 51 is the postcondition

Did_Queue_Decrease. This line checks that the REAR value decreased by one af-

ter execution of the extract procedure. Line 52 is the postcondition Is_Min, which

ensures that the Item_Priority_Pair with the minimum Given_Priority is indeed

the lowest Given_Priority value within the original queue (PQ’Old). In other words,

there should be no Item_Priority_Pair within PQ’Old with a lower value than that

of pair.P. Line 53 is the postcondition Is_First_Extracted, which ensures that if

there were multiple Item_Priority_Pairs with the same minimum Given_Priority

, the first is the one that is extracted from the original queue. It also checks for

the preservation of the original queue within the resulting queue minus the extracted

pair. Lines 55 and 56 will be discussed in Section 3.4.3.

3.4.2 Loop Invariants and Assertions Needed

As with merge sort, with no additional annotations, SPARK is able to prove that

the body of insert satisfies the postcondition of insert based on the precondition of

insert and the simple logic required to insert the new Item_Priority_Pair. How-

ever, without additional annotations, SPARK is not able to prove the postcondition

of extract. In particular, a user-provided loop invariant inside the body of extract
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is needed.

1 for I in 1.. REAR loop

2 if PQ(I).P < PQ(min_index).P then

3 min_index := I;

4 end if;

5 pragma Loop_Invariant(min_index in 1 .. I);

6 pragma Loop_Invariant(for all E in 1 .. I => PQ.PQ(E).P >= PQ.PQ(

min_index).P);

7 pragma Loop_Invariant(for all E in 1 .. min_index -1 => PQ.PQ(E).P > PQ.PQ

(min_index).P);

8 end loop;

Figure 20: Loop invariant pragmas needed to prove the extract postcondition.

To enable SPARK to prove the postcondition of extract, a loop invariant is

needed in the loop of extract’s body. This loop invariant would be placed between

lines 35 and 36 of the basic subprogram body shown in Figure 17 just before the

end of the loop. Figure 20 shows the loop invariant split among three loop invariant

pragmas that enable SPARK to prove the postcondition of extract positioned within

the loop that finds the minimum Item_Priority_Pair based on its Given_Priority

. The first loop invariant pragma proves that min_index is in the current scope by

ensuring that min_index is not outside of 1..I. Because SPARK proves loop invari-

ants through induction, SPARK must be provided with the information needed for an

inductive proof. The second loop invariant pragma is useful to prove the Is_Min post-

condition criteria. It essentially tells the prover, which only reasons about the current

iteration, that up to this point min_index represents the element corresponding to

the Item_Priority_Pair with the minimum Priority_Given value. This is accom-

plished by proving that every member in the priority queue up to the current loop

iteration, I, is indeed greater than or equal to the element that is currently deemed

the minimum. Note the if-condition and its minimum value finding procedure is al-

ready complete by the time the loop invariant pragma is evaluated. This allows the

current iteration’s loop invariant to be evaluated with min_index updated accord-
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ingly. Because of the updated min_index, each iteration of the loop up to the current

REAR ends with PQ(min_index).P representing the minimum Given_Priority and

therefore the minimum pair to extract from the supplied priority queue. The third

loop invariant pragma is useful for Is_First_Extracted. It is very similar to the

second loop invariant, but instead checks for the condition in Is_First_Extracted

where every Given_Priority prior to the current min_index is greater than that of

the current PQ.PQ(min_index).P. This is because in the postcondition that this loop

invariant pragma is trying to prove, it wants to ensure that the first occurrence of an

Item_Priority_Pair with the found minimum Given_Priority is indeed the one

extracted. The third loop invariant fails if min_index is assigned to the hypothetical

second, or third occurrence of the shared minimum Given_Priority.

These Loop_Invariant pragams alone are not enough to help SPARK prove the

postcondition of extract. Specifically, Is_First_Extracted in the extract post-

condition is still not successfully proving. To help the SPARK provers with this

postcondition, it may be helpful to provide more specific information as an assertion

before exiting the extract procedure itself. First, recall the expression to be proven.

Figure 21 represents the expression that SPARK cannot prove with only the three

loop invariants.

1 function Is_First_Extracted(Orig_Queue , Result_Queue: Priority_Queue;

extracted_pair: Item_Priority_Pair) return Boolean is

2 (for some I in 1 .. Orig_Queue.REAR =>

3 extracted_pair = orig_queue.PQ(I)

4 and then (for all X in 1 .. I-1 => (Result_Queue.PQ(X).P > extracted_pair

.P))

5 and then (Orig_Queue.PQ(1..I-1) = Result_Queue.PQ(1..I-1))

6 and then (Orig_Queue.PQ(I+1.. Orig_Queue.REAR) = Result_Queue.PQ(I..

Result_Queue.REAR)));

Figure 21: Ghost function Is_First_Extracted body expression function implemen-
tation.

To help the provers with Is_First_Extracted in the postcondition the two as-
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sertions in Figure 22 are added at the very end of the extract procedure. They are a

copy from the body of Is_First_Extracted expressed in two different ways. The first

one using the min_index found earlier within the scope of the extract procedure and

the second by using the same expression that is found within Is_First_Extracted.

1 pragma Assert(pair = orig_queue.PQ(min_index)

2 and then (for all X in 1 .. min_index -1 => (PQ.PQ(X).P > orig_queue.PQ(

min_index).P))

3 and then (orig_queue.PQ(1.. min_index -1) = PQ.PQ(1.. min_index -1))

4 and then (orig_queue.PQ(min_index +1.. orig_queue.REAR) = PQ.PQ(min_index ..

PQ.REAR)));

5
6 pragma Assert(for some I in 1 .. orig_queue.REAR =>

7 pair = orig_queue.PQ(I)

8 and then (for all X in 1 .. I-1 => (PQ.PQ(X).P > orig_queue.PQ(I).P))

9 and then (orig_queue.PQ(1..I-1) = PQ.PQ(1..I-1))

10 and then (orig_queue.PQ(I+1.. orig_queue.REAR) = PQ.PQ(I..PQ.REAR)));

Figure 22: Assert pragmas needed to prove the extract postcondition.

These three loop invariants (Figure 21) and two assertions (Figure 22) are enough

for SPARK to reason that Is_Min and Is_First_Extracted are True and therefore

allows the postcondition of extract to successfully prove. To summarize Figure 22,

the prover cannot recognize that the for some I statement is True without knowing

exactly which value of I makes the statement True. So the exact value is asserted

in a nearly identical expression giving the proves the information they need to prove

the Is_First_Extracted postcondition criteria (Figure 21) on the extract proce-

dure. As previously mentioned, SPARK is already able to prove the postcondition

on insert without any additional annotations, so it is now able to prove the whole

priority package.

3.4.3 Discussion (Limitations to proof)

Like with the previous merge sort implementation, there is an additional point to

discuss with regards to the SPARK implementation of this section’s minimum priority

70



queue algorithm. Again, the issue has to do with subprogram termination. To help

with this, the following pragmas can be added, as seen on lines 61–62 of Figure 18,

to our package specification for priority:

pragma Annotate (GNATprove , Terminating , insert);

pragma Annotate (GNATprove , Terminating , extract);

This tells GNATprove to attempt to prove that insert and extract terminate. Sub-

programs like extract that include a loop often require loop variants, (i.e. assertions

about scalar variables modified by the loop that the user believes to be monotonically

increasing or decreasing), to help prove that the loop terminates if they can be proven

to be True. Unlike that of the merge sort implementation, SPARK is able to prove

that both insert and extract prove without any additional loop variants.

3.5 Summary

This chapter utilized the SPARK formal methods toolset to prove three SPARK

implementations at or above the gold level of proof.
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IV. Results and Analysis

4.1 Preamble

This research has resulted in three additional algorithms added to universal library

of proven algorithms in SPARK. Additionally, this research has demonstrated the

process of utilizing an auto-active prover, in this case SPARK, as a means to the

formal verification of software. The educational aspect of showcasing all relevant

source code cannot be overstated. This research serves as a starting point for many

prospective developers that are looking to formally verify algorithms and/or software

projects. Because the algorithms themselves and how they are implemented are the

results, this section will discuss time and effort information and a proof analysis on

levels of proof achieved along with what prevented a higher level proof.

The GNATprove output can be seen for each algorithm in the Appendix (Ap-

pendix D, Appendix E, and Appendix F). Code highlighted in the color blue indi-

cates the SPARK’s GNATprove has proven something about that line. The line by

line breakdown shows the check proven. Section 4.2 will discuss the time-sinks and

effort involved in this research. And finally, Section 4.3 will discuss the level of proof

achieved, as defined in Section 2.7.6, and will discuss what prevented a higher level

of proof from being achieved.

4.2 Time and Effort

Upon following the steps in Section 3.1, most time went into steps four and five,

which is thinking through the specification, and then creating the pre- and postcon-

ditions as well as the loop invariants to help push the prover towards an inductive

proof. This time sink is true for those subprograms with internal loops. This time

sink is especially true in the case of the merge sort formalization. This algorithm has
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recursion and loops found within the merge body. The biggest issue centered itself

around the loop invanriants needed to guide SPARK’s GNATprove towards a proof of

the relevant postconditions. The provers have to reason and make sense of numerous

changing variables, two temporary arrays, the merged array, and index tracking. This

is a large task for a prover and as shown in Section 3.3.2 requires manual manipulation

of the code in the form of loop invariants. In order for SPARK to be able to reason

about this complex problem, the user must reason about it first and find relation-

ships between all the moving parts. This is a difficult task for someone new to formal

methods and only gets easier through example, practice, and time. There comes the

point where one starts to understand how to communicate with the provers. The

loop invariant construction is the most difficult portion across all three algorithms,

although slightly easier in the case of interpolation and priority queue. This is because

there are fewer variables to account for in those two algorithm’s loops. In each case,

it would take some trial and error, depending on the user’s SPARK experience, to

create the correct loop invariant. One of the most critical things to be communicated

to the provers is that the loop is indeed moving towards the termination condition.

A generic formula must be presented in such a way that implies forward progress.

Upon that realization, it is much easier to create effective loop invariants that lead

to successfully proven subprogram postconditions.

It is also important to note that sometimes the SPARK and GNATprove simply

needed more time. GNATprove has a timeout value associated with its attempt at

a proof. There are occasions in which a proof would fail until the provers timeout is

bumped up, upon which it would successfully prove. One example of this is the Is_Min

postcondition of the insert subprogram within the priority queue implementation.

This postcondition would fail on the lowest timeout setting, and when given more

time, this postcondition would successfully prove. Additionally, there are instances
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in which utilizing the test driver (main function) with relevant sample data could

help identify areas that the prover is having issues with. Specifically, as discussed in

Section 2.7.7.1, this driver should be run with assertions enabled. This is accomplished

by adding the -gnata flag to the command line and can also be enabled from within

the GPS IDE in “Edit” then “Project Properties” then “Build” then “Ada” then

“Debugging” and finally “Enable Assertions.” With assertions enabled, the execution

of the algorithm will halt when an assertion, loop invariant, pre- and/or postcondition,

etc fails. This may, in turn, demonstrate to the user that the code is not implemented

correctly.

Overall, the greatest effort and time-sink present in this research is indeed the

planning of the formal specification and the process of supplying SPARK with the

needed manual annotations for a successful auto-active proof.

4.3 Proof Analysis

Table 1 breaks down the levels of proof achieved as well as what is missing for

the three algorithms this research worked with. The priority queue implementation,

Table 1: Level of Proof Achieved
Algorithm Level of Proof Achieved Keys to Higher Proof
Interpolation Gold Exact result not checked
Merge Sort Gold Termination assumptions &

permutation property
Priority Queue Platinum N/A

which has a insert and extract functionality built-in is proven to full functional

correctness (platinum proof). This level of proof essentially means that SPARK is

able to prove that the insert procedure actually inserted the pair by checking if the

pair supplied to the insert procedure is found in the resulting priority queue and

that it is found at the end of the queue. Similarly, SPARK is able to prove that
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the extract procedure extracted not only the minimum value pair but also the first

minimum pair present in the priority queue based on the particular comparable value

(Given_Priority) of the pair. SPARK is also able to prove the preservation of the

rest of the queue in both insert and extract.

Interpolation and merge sort, on the other hand, are both gold level proofs. The

similarity between the two is that key functional properties are proven, hence the gold

level proof. But they both fall short of a platinum level proof for different reasons.

First, the interpolation algorithm is fully proven other than one important exception.

The exact interpolated result is technically not checked in the postcondition. Instead,

the result is checked to be in the range of the two surrounding Point’s Y -values.

Because the result of the interpolation function is just checked to be in the proper

range rather than the actual interpolated value, this lowers the proof from a platinum

proof to a gold one. And finally, merge sort is neglecting to prove the permutation

property and termination property as discussed in Section 3.3.3. Again, lowering the

merge sort level of proof from platinum to gold.

4.4 Summary

Overall, each of the three algorithms are proven to at least the gold level (i.e. that

key functional correctness is proven in all three algorithms).
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V. Conclusions

5.1 General Conclusions

This section is based on a previously published paper [70].1 This research has given

some impression of what is required to prove functional correctness of a subprogram,

i.e. that a subprogram satisfies user-generated specifications in the SPARK language

and auto-active verification toolset by going through the process of implementing and

verifying an interpolation, a recursive merge sort, and a priority queue algorithm. In

addition to writing the subprograms comprising this algorithm, this required formally

expressing their desired behavior as part of the subprogram specifications and adding

loop invariants and loop variants to the subprogram bodies.

Formal methods can be used to analyze a variety of properties of software and

other design artifacts, such as worst-case execution time, max stack usage, and ab-

sence of run-time errors in software and security properties of software and architec-

tures, as discussed in Section 1.2. The use of formal methods to prove functional

correctness of software seems less common than simpler properties such as absence of

run-time errors, though functional correctness of software has been a focus in the past

[72]. However, as systems continue to become more complex, verifying functional cor-

rectness of software to a sufficient level of assurance through traditional means such

as testing and third-party reviews may become increasingly less tractable and more

expensive. This is especially a concern for complex systems that consist of many in-

teracting modules or implement complex decision-making logic. As an example, this

research has used SPARK to find errors in synthesized software implementations of

protocols for various systems, including teams of unmanned air vehicles, that went

1Ryan Baity, Laura R Humphrey, Kenneth Hopkinson. Formal verification of a merge sort algo-
rithm in SPARK. In AIAA Scitech 2021 Forum, page 0039, 2021. DISTRIBUTION STATEMENT
A. Approved for public release: distribution unlimited. Case #88ABW-2020-3580.
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undetected through casual simulation and testing [73].

5.2 Significance of Research

This research has ultimately led to the publication of a verified merge sort al-

gorithm via the SPARK auto-active verification toolset (Section 3.3) [70]. It has

also presented the formal verification of two additional ready to publish algorithm

implementations, interpolation and priority queue (Section 3.2 and Section 3.4, re-

spectively). Overall, this research has added three algorithmic implementations to

the body of proven SPARK algorithms.

This research also validates the viability of the SPARK toolset as a useful tool to

the research’s sponsor at the Air Force Research Laboratory (AFRL). It accomplished

this by demonstrating the SPARK formal verification process on relatively easy to

grasp algorithms for further utilization by the research sponsor and thereon, the U.S.

Air Force. Ultimately, an effective process for proving that software is functionally

correct allows for the confidence that any algorithm or software deployed onto op-

erational U.S. Air Force units will work, from a software perspective, precisely as

intended and allows for the continuation of mission execution. That is precisely what

formal methods tools can provide.

5.3 Limitations

Although SPARK has been shown to be a worthwhile tool for the formal verifica-

tion of algorithms, it of course does have its limitations. The first and most obvious

limitations manifest themselves in the limitations mentioned in Section 2.7.2. These

limitations may have an effect on specific projects that may rely on some of SPARK’s

excluded language features. Although this is true, the SPARK User’s Guide mentions

that future releases of SPARK may relax some of those restrictions [68]. With that
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noted, the limitations are still currently present, and that might mean the imple-

menter must rewrite vast portions of an algorithm to be free of any of the SPARK

limitations. This may not be possible to avoid in all scenarios. For example, if mul-

tiple access objects are required read-write access to allocated memory, there will be

troubles rethinking the original scheme of that algorithm.

5.4 Future Work

The future possibilities are endless with formal methods. When it relates to this

particular research involving three distinct algorithms, there are a few paths that

can be followed. One of the simplest and most useful would be to implement even

more algorithms in SPARK, or via any other formal methods toolset, and prove

their functional correctness. In other words, continue to add to the body of proven

algorithms. There will always be value in continuing to formally verify algorithms

that can then be used with total confidence by other developers. All of the algorithms

that have been proven functionally correct can then be placed in an open repository,

such as the spark-by-example2 repository.

An additional research path could be to compare formal verification tools side-

by-side. Some of the available tools that can be looked at in depth are mentioned in

Section 2.6. Rather than do what this research did, which utilized one formal methods

tool (SPARK) on three different algorithms, run three tools on one algorithms, for

example.

Another research path could be to look into generalizing the implementations.

This would mean to create a generic implementation of the algorithm in question

and then prove said algorithm. For this to work, it would be necessary to change

many points of the proof. One example is in the merge sort proof; the Is_Accending

2https://github.com/tofgarion/spark-by-example/
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function would have to be re-written to account for generic inputs. This would most

certainly be a difficult and worthwhile problem to investigate.

A final research path would be to look at integrating formalized code into a larger

software system. Because this work serves as a stepping-stone for more in depth works

to come, it only makes sense to take the lessons learned and the algorithms proven

from this research and expand its utility into larger projects. Along the lines of this

research, it would also be interesting to look into the modularization of an existing

large scale project, take critical sections of the code, translate them from their native

language into Ada, then SPARK, then utilize formal methods to verify them, and

then interface them back into their original position within their respective software

system, and see how well they work. This could be an important piece of research

because it would demonstrate that only the most critical portions of large software

systems, such as an individual subprogram, can be formalized and have no negative

effect on the rest of the system when reintegrated.

5.5 Overall Conclusions

This section is based on a previously published paper [70].3 Not only will software

become more difficult to verify, low level requirements themselves will become more

complex, and it will become more difficult to ensure the low level requirements are

correct through traditional means such as modeling and simulation and testing. For

example, it will be challenging to verify that interactions between services in service-

oriented architectures result in desired system-level behavior. Others have made

progress on that front [74, 75], and there are attempts to make progress in that area

by using SPARK to formalize low-level requirements and verify compliance of software

3Ryan Baity, Laura R Humphrey, Kenneth Hopkinson. Formal verification of a merge sort
algorithm in spark. In AIAA Scitech 2021 Forum, page 0039, 2021. DISTRIBUTION STATEMENT
A. Approved for public release: distribution unlimited. Case #88ABW-2020-3580.
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services in a software framework for intelligent control of teams of unmanned vehicles

[76]. It will also be challenging to prove properties about the algorithms that underlie

increasingly complex and/or autonomous systems. NASA has made strides in this

direction by formally proving properties of DAIDALUS (Detect and Avoid Alerting

Logic for Unmanned Systems), a reference implementation of a detect and avoid

concept intended to support the integration of Unmanned Aircraft Systems into civil

airspace [77]. Formal methods have also been used to prove mathematical conjectures

that have defied manual proof, such as Keller’s conjecture [78], and research has been

done to use formal methods to find a subtle error in the “paper and pencil” proof of

a previously published decentralized protocol for controlling a team of unmanned air

vehicles [79]. Given the increasing complexity of both algorithms and software, this

research concludes that analysis through formal methods or similar approaches will

become increasingly important for ensuring system correctness within the U.S. Air

Force and other industries.

80



Appendix A. Interpolation: Full Source Code

Listing A.1: test interpolation.adb
1 with Ada . Text IO ; use Ada . Text IO ;

2 with I n t e r p o l a t i o n ; use I n t e r p o l a t i o n ;

3

4 procedure Tes t I n t e rpo l a t i on i s

5 F : constant Func :=

6 ((−10 , −10) , (−1 , −3) , (0 , 6) , (5 , 12) , (12 , 12) , (18 , 12) , (20 , 15) ) ;

7 begin

8 for A in −10 . . 20 loop

9 Put Line ( ”Eval X =” & A’ Image & ” Y =” & Eval (F , A) ’ Image ) ;

10 end loop ;

11 end Tes t I n t e rpo l a t i on ;

Listing A.2: interpolation.ads
1 package I n t e r p o l a t i o n with SPARK Mode i s

2

3 subtype Arg i s I n t eg e r range −20 000 . . 20 000 ;

4 subtype Value i s I n t eg e r range −20 000 . . 20 000 ;

5 type Point i s record

6 X : Arg ;

7 Y : Value ;

8 end record ;

9

10 type Index i s new I n t eg e r range 1 . . 100 ;

11 type Func i s array ( Index range <>) of Point with

12 Pred icate => Func ’ F i r s t = 1 and

13 ( for a l l I in Func ’Range =>

14 ( for a l l J in Func ’Range =>

15 ( i f I < J then Func ( I ) .X < Func ( J ) .X) ) ) ;

16

17 function Monoton ic Increas ing (F : Func ) return Boolean i s

18 ( for a l l I in F’Range =>

19 ( for a l l J in F’Range =>

20 ( i f I < J then F( I ) .Y <= F(J ) .Y) ) ) ;

21

22 subtype Monotonic Incr Func i s Func with

23 Pred icate => Monoton ic Increas ing ( Monotonic Incr Func ) ;

24

25 function Eval (F : Monotonic Incr Func ; A : Arg ) return Value with

26 Pre => F’ Length > 0 ,

27 Post => ( i f A <= F(1) .X then Eval ’ Result = F(1) .Y

28 e l s i f A >= F(F’ Last ) .X then Eval ’ Result = F(F’ Last ) .Y

29 e l s i f ( for some K in 1 . . F ’ Last => A = F(K) .X and then

30 Eval ’ Result = F(K) .X) then True

31 else ( for some K in 1 . . F ’ Last − 1 =>

32 A in F(K) .X . . F(K+1) .X and then

33 Eval ’ Result in F(K) .Y . . F(K+1) .Y) ) ;

34

35 pragma Annotate (GNATprove , Terminating , Eval ) ;
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36 end I n t e r p o l a t i o n ;

Listing A.3: interpolation.adb
1 package body I n t e r p o l a t i o n with SPARK Mode i s

2 function Eval (F : Monotonic Incr Func ; A : Arg ) return Value i s

3 begin

4 i f A <= F(1) .X then

5 return F(1) .Y;

6 e l s i f A >= F(F’ Last ) .X then

7 return F(F’ Last ) .Y;

8 end i f ;

9

10 for K in F’Range loop

11 pragma Loop Invar iant (A >= F(K) .X) ;

12 i f A = F(K) .X then

13 return F(K) .Y;

14 e l s i f (A > F(K) .X and then A < F(K+1) .X) then

15 declare

16 DX : constant I n t eg e r := F(K+1) .X − F(K) .X;

17 DY : constant I n t eg e r := F(K+1) .Y − F(K) .Y;

18 R : constant I n t eg e r := F(K) .Y + (A − F(K) .X) ∗ DY / DX;

19 begin

20 pragma Assert (R in F(K) .Y . . F(K+1) .Y) ;

21 return R;

22 end ;

23 end i f ;

24 end loop ;

25

26 raise Program Error ;

27 end Eval ;

28 end I n t e r p o l a t i o n ;
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Appendix B. Merge Sort: Full Source Code

Listing B.1: main.adb
1 with Mergesort Types ; use Mergesort Types ;

2 with Mergesort Algor ithm ;

3

4 procedure Main i s

5 A: Sort Array (1 . . 10) := (90 , 5 , 200 , 250 , −1, 13 , −72, 44 , 47 , 5) ;

6 begin

7 Print (A) ;

8 Mergesort Algor ithm . Recurs ive Mergesort (A, A’ F i r s t , A’ Last ) ;

9 Pr int (A) ;

10 end Main ;

Listing B.2: mergesort algorithm.ads
1 with Mergesort Types ; use Mergesort Types ;

2

3 package mergesor t a lgor i thm with SPARK Mode i s

4

5 function I s Ascend ing (A: Sort Array ) return Boolean i s

6 ( i f A’ Length > 1 then ( for a l l I in A’Range =>

7 ( i f I < A’ Last then A( I ) <= A( I + 1) ) ) )

8 with Ghost ;

9

10 procedure Recurs ive Mergesort (A: in out Sort Array ; L , R: Sort Index ) with

11 Pre => A’ Length >= 1

12 and then (L in A’Range and R in A’Range)

13 and then L <= R,

14 Post => I s Ascend ing (A(L . .R) )

15 and ( for a l l I in A’Range => ( i f I not in L . .R then A( I ) = A’ Old ( I ) ) )

16 and ( for a l l I in A’Range => ( for some J in A’Range => A( I ) = A’ Old ( J ) ) ) ;

17

18 procedure Merge (A: in out Sort Array ; L : Sort Index ;

19 M: Sort Index ; R: Sort Index ) with

20 Pre => (L in A’Range and R in A’Range)

21 and then L <= R

22 and then M in L . .R

23 and then I s Ascend ing (A(L . .M) )

24 and then I s Ascend ing (A(M+1. .R) ) ,

25 Post => I s Ascend ing (A(L . .R) )

26 and ( for a l l I in A’Range => ( i f I not in L . . R then A( I ) = A’ Old ( I ) ) )

27 and ( for a l l I in A’Range => ( for some J in A’Range => A( I ) = A’ Old ( J ) ) ) ;

28

29 end mergesor t a lgor i thm ;

Listing B.3: mergesort algorithm.adb
1 with Mergesort Types ; use Mergesort Types ;

2

3 package body mergesor t a lgor i thm with SPARK Mode i s
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4

5 procedure Recurs ive Mergesort (A: in out Sort Array ; L , R: Sort Index ) i s

6 M: Sort Index ;

7 begin

8 i f (L < R) then

9 M := L+(R−l ) /2 ;

10 Recurs ive Mergesort (A, L , M) ;

11 Recurs ive Mergesort (A, M+1, R) ;

12 Merge (A, L , M, R) ;

13 end i f ;

14 end Recurs ive Mergesort ;

15

16 procedure Merge (A: in out Sort Array ; L : in Sort Index ;

17 M: in Sort Index ; R: in Sort Index ) i s

18 n1 : constant Natural := M − L + 1 ;

19 n2 : constant Natural := R − M;

20 L temp : constant Sort Array ( 0 . . n1−1) := A(L . . M) ;

21 R temp : constant Sort Array ( 0 . . n2−1) := A(M+1 . . R) ;

22 i i , j j , kk : Natural := 0 ;

23 begin

24 while i i < n1 and j j < n2 loop

25 i f L temp ( i i ) <= R temp( j j ) then

26 A(L + kk ) := L temp ( i i ) ;

27 i i := i i + 1 ;

28 else

29 A(L + kk ) := R temp( j j ) ;

30 j j := j j + 1 ;

31 end i f ;

32 kk := kk + 1 ;

33 pragma Loop Invar iant ( i i <= n1 and j j <= n2 ) ;

34 pragma Loop Invar iant ( kk = i i + j j ) ;

35 pragma Loop Invar iant ( I s Ascend ing (A(L . . L+(kk−1) ) ) ) ;

36 pragma Loop Invar iant ( for a l l I in L . . L+(kk−1) =>

37 ( ( i f i i < n1 then A( I ) <= L temp ( i i ) ) and ( i f j j < n2 then A( I ) <= R temp( j j ) ) ) ) ;

38 pragma Loop Invar iant ( for a l l I in A’Range => ( i f I not in L . . L+(kk−1) then A( I ) = A’

Loop Entry ( I ) ) ) ;

39 pragma Loop Invar iant ( for a l l I in L . . L+(kk−1) =>

40 ( for some J in A’Range => A( I ) = A’ Loop Entry ( J ) ) ) ;

41 end loop ;

42

43 i f i i < n1 then

44 A(L + kk . . R) := L temp ( i i . . n1−1) ;

45 e l s i f j j < n2 then

46 A(L + kk . . R) := R temp( j j . . n2−1) ;

47 end i f ;

48 end Merge ;

49

50 end mergesor t a lgor i thm ;

Listing B.4: mergesort types.ads
1 package mergesor t types with SPARK Mode i s

2 subtype Sort Index i s I n t eg e r range 0 . . 99 ;

3 type Sort Array i s array ( Sort Index range <>) of I n t eg e r ;
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4 procedure Print (A : Sort Array ) ;

5 end mergesor t types ;

Listing B.5: mergesort types.adb
1 with Ada . Text IO ;

2

3 package body mergesor t types with SPARK Mode i s

4

5 procedure Print (A : in Sort Array ) i s

6 begin

7 for I in A’Range loop

8 Ada . Text IO . Put ( Integer ’ Image (A( I ) ) & ” ” ) ;

9 end loop ;

10 Ada . Text IO . Put Line ( ”” ) ;

11 end Print ;

12

13 end mergesor t types ;

85



Appendix C. Priority Queue: Full Source Code

Listing C.1: main.adb
1 with t e s t h e l p e r s ; use t e s t h e l p e r s ;

2 with p r i o r i t y ; use p r i o r i t y ;

3 with Ada . Text IO ; use Ada . Text IO ;

4

5

6 procedure Main i s

7

8 PQ : Pr ior i ty Queue ;

9

10 item 1 : I t em Pr i o r i t y Pa i r := ( ( ” t e s t 4 ” , −100) ) ;

11 item 2 : I t em Pr i o r i t y Pa i r := ( ( ” t e s t 5 ” , 400) ) ;

12 item 3 : I t em Pr i o r i t y Pa i r := ( ( ” t e s t 6 ” , −888) ) ;

13 item 4 : I t em Pr i o r i t y Pa i r := ( ( ” t e s t 7 ” , −1234) ) ;

14 item 5 : I t em Pr i o r i t y Pa i r := ( ( ” t e s t 8 ” , 4) ) ;

15 item 6 : I t em Pr i o r i t y Pa i r := ( ( ” t e s t 9 ” , −95669) ) ;

16 item 7 : I t em Pr i o r i t y Pa i r := ( ( ” t e s t 10 ” , 876543) ) ;

17

18 begin

19 t e s t i n s e r t ( item 1 , PQ) ;

20 t e s t i n s e r t ( item 2 , PQ) ;

21

22 Put Line ( ”” ) ;

23 Put Line ( ”RUN PROGRAM WITH ASSERTIONS ENABLED. ” ) ;

24 Put Line ( ”” ) ;

25 Put Line ( ” [ INITIAL ] : Here i s the i n i t i a l P r i o r i t y Queue : ” ) ;

26 Print Queue (PQ) ;

27

28

29 −−add the seven equeues { i tem 1 , i tem 2 , . . . . , i t em 7 }

30

31

32 t e s t i n s e r t ( item 3 , PQ) ;

33 t e s t i n s e r t ( item 4 , PQ) ;

34 t e s t i n s e r t ( item 5 , PQ) ;

35 t e s t i n s e r t ( item 6 , PQ) ;

36 t e s t i n s e r t ( item 7 , PQ) ;

37

38

39 −− remove e l emen t s from the Min P r i o r i t y Queue

40

41 t e s t e x t r a c t (PQ) ;

42 t e s t e x t r a c t (PQ) ;

43 t e s t e x t r a c t (PQ) ;

44 t e s t e x t r a c t (PQ) ;

45 t e s t e x t r a c t (PQ) ;

46 t e s t e x t r a c t (PQ) ;

47 t e s t e x t r a c t (PQ) ;

48

49
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50 −− add two equeues { i tem 1 , i t em 2 }

51

52 t e s t i n s e r t ( item 1 , PQ) ;

53 t e s t i n s e r t ( item 2 , PQ) ;

54

55

56 −− remove e l emen t s from the Min P r i o r i t y Queue

57

58 t e s t e x t r a c t (PQ) ;

59 t e s t e x t r a c t (PQ) ;

60

61 −− end o f t e s t demons t ra t ion

62

63 end Main ;

Listing C.2: priority.ads
1 package p r i o r i t y with SPARK Mode i s

2

3 subtype Item i s St r ing ( 1 . . 6 ) ;

4

5 subtype Given Pr io r i ty i s I n t eg e r ;

6

7 type I t em Pr i o r i t y Pa i r i s record

8 X: Item ;

9 P: G iven Pr io r i ty ;

10 end record ;

11

12 I n i t i a l i z e r I t em : constant I t em Pr i o r i t y Pa i r := ( ( ”−−−−−−” , Integer ’ Last ) ) ;

13

14 type Prior i ty Queue i s private ;

15

16 procedure Print Queue (PQ : in Prior i ty Queue ) ;

17

18 function I s No t Fu l l (PQ: Pr ior i ty Queue ) return Boolean

19 with Ghost ;

20

21 function Is Not Empty (PQ: Pr ior i ty Queue ) return Boolean

22 with Ghost ;

23

24 function Is Min ( Orig Queue : Pr ior i ty Queue ; Min Prior ity Found : G iven Pr io r i ty ) return Boolean

25 with Ghost ;

26

27 function Is At End Of Queue (Orig Queue , Result Queue : Pr ior i ty Queue ; i n s e r t e d p a i r :

I t em Pr i o r i t y Pa i r ) return Boolean

28 with Ghost ,

29 Pre => Is Not Empty ( Result Queue ) ;

30

31 function I s F i r s t Ex t r a c t e d (Orig Queue , Result Queue : Pr ior i ty Queue ; e x t r a c t ed pa i r :

I t em Pr i o r i t y Pa i r ) return Boolean

32 with Ghost ;

33

34 function Did Queue Increase ( Orig Queue , Result Queue : Pr ior i ty Queue ) return Boolean

35 with Ghost ;

87



36

37 function Did Queue Decrease ( Orig Queue , Result Queue : Pr ior i ty Queue ) return Boolean

38 with Ghost ;

39

40 procedure i n s e r t (PQ: in out Prior i ty Queue ; pa i r : I t em Pr i o r i t y Pa i r ) with

41 Pre =>

42 I s No t Fu l l (PQ) ,

43 Post =>

44 Did Queue Increase (PQ’ Old , PQ)

45 and Is At End Of Queue (PQ’ Old , PQ, pa i r ) ;

46

47 procedure ex t ra c t (PQ: in out Prior i ty Queue ; pa i r : out I t em Pr i o r i t y Pa i r ) with

48 Pre =>

49 Is Not Empty (PQ) ,

50 Post =>

51 Did Queue Decrease (PQ’ Old , PQ)

52 and Is Min (PQ’ Old , pa i r .P)

53 and I s F i r s t Ex t r a c t e d (PQ’ Old , PQ, pa i r ) ;

54

55 pragma Annotate (GNATprove , Terminating , i n s e r t ) ;

56 pragma Annotate (GNATprove , Terminating , ex t r a c t ) ;

57

58 private

59

60 subtype Index Range i s Natural range 1 . . 10 ;

61 subtype REAR Index Range i s Natural range 0 . . Index Range ’ Last ;

62

63 type I t em Pr io r i ty Ar ray i s array ( Index Range ) of I t em Pr i o r i t y Pa i r ;

64

65 type Prior i ty Queue i s record

66 PQ: I t em Pr io r i ty Ar ray ;

67 REAR: REAR Index Range := 0 ;

68 end record ;

69

70 end p r i o r i t y ;

Listing C.3: priority.adb
1 with Ada . Text IO ; use Ada . Text IO ;

2

3 package body p r i o r i t y with SPARK Mode i s

4

5 procedure Print Queue (PQ : in Prior i ty Queue ) i s

6 begin

7 i f Length (PQ) = 0 then

8 Put Line ( ”EMPTY Queue” ) ;

9 Put Line ( ”” ) ;

10 else

11 for I in 1 . .PQ.REAR loop

12 Put ( ”Element ” & I ’ Img & ” : ” ) ;

13 Put ( ” ( ” & (PQ.PQ( I ) .X) & ” , ” ) ;

14 Put Line ( Integer ’ Image (PQ.PQ( I ) .P) & ” ) ” ) ;

15 end loop ;

16 Put Line ( ”” ) ;
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17 end i f ;

18 end Print Queue ;

19

20 function I s No t Fu l l (PQ: Pr ior i ty Queue ) return Boolean i s

21 (PQ.REAR < REAR Index Range ’ Last ) ;

22

23 function Is Not Empty (PQ: Pr ior i ty Queue ) return Boolean i s

24 (PQ.REAR > REAR Index Range ’ F i r s t ) ;

25

26 function Is Min ( Orig Queue : Pr ior i ty Queue ; Min Prior ity Found : G iven Pr io r i ty ) return Boolean

i s

27 ( for a l l I in 1 . . Orig Queue .REAR => Orig Queue .PQ( I ) .P >= Min Prior ity Found ) ;

28

29 function Is At End Of Queue (Orig Queue , Result Queue : Pr ior i ty Queue ; i n s e r t e d p a i r :

I t em Pr i o r i t y Pa i r ) return Boolean i s

30 ( ( Result Queue .PQ( Result Queue .REAR) = i n s e r t e d p a i r )

31 and

32 ( for a l l I in 1 . . Orig Queue .REAR => Orig Queue .PQ( I ) = Result Queue .PQ( I ) ) ) ;

33

34 function I s F i r s t Ex t r a c t e d (Orig Queue , Result Queue : Pr ior i ty Queue ; e x t r a c t ed pa i r :

I t em Pr i o r i t y Pa i r ) return Boolean i s

35 ( for some I in 1 . . Orig Queue .REAR =>

36 ex t r a c t ed pa i r = or ig queue .PQ( I )

37 and then ( for a l l X in 1 . . I−1 => ( Result Queue .PQ(X) .P > e x t r a c t ed pa i r .P) )

38 and then ( Orig Queue .PQ( 1 . . I −1) = Result Queue .PQ( 1 . . I −1) )

39 and then ( Orig Queue .PQ( I +1. . Orig Queue .REAR) = Result Queue .PQ( I . . Result Queue .REAR) ) ) ;

40

41 function Did Queue Increase ( Orig Queue , Result Queue : Pr ior i ty Queue ) return Boolean i s

42 ( Result Queue .REAR = Orig Queue .REAR + 1) ;

43

44 function Did Queue Decrease ( Orig Queue , Result Queue : Pr ior i ty Queue ) return Boolean i s

45 ( Result Queue .REAR = Orig Queue .REAR − 1) ;

46

47 procedure i n s e r t (PQ: in out Prior i ty Queue ; pa i r : I t em Pr i o r i t y Pa i r ) i s

48 begin

49 PQ.PQ(PQ.REAR + 1) := pa i r ;

50 PQ.REAR := PQ.REAR + 1 ;

51 end i n s e r t ;

52

53 procedure ex t ra c t (PQ: in out Prior i ty Queue ; pa i r : out I t em Pr i o r i t y Pa i r ) i s

54 new pr io r i ty queue : Pr ior i ty Queue ;

55 new array : I t em Pr io r i ty Ar ray := PQ.PQ;

56 min index : Index Range := 1 ;

57 or i g queue : constant Prior i ty Queue := PQ;

58 begin

59 for I in 1 . .PQ.REAR loop

60 i f PQ.PQ( I ) .P < PQ.PQ( min index ) .P then

61 min index := I ;

62 end i f ;

63 pragma Loop Invar iant ( min index in 1 . . I ) ;

64 pragma Loop Invar iant ( for a l l E in 1 . . I => PQ.PQ(E) .P >= PQ.PQ( min index ) .P) ;

65 pragma Loop Invar iant ( for a l l E in 1 . . min index−1 => PQ.PQ(E) .P > PQ.PQ( min index ) .P) ;

66 end loop ;

67
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68 new array ( 1 . . min index −1) := PQ.PQ( 1 . . min index −1) ;

69 new array ( min index . .PQ.REAR−1) := PQ.PQ( min index +1. .PQ.REAR) ;

70

71 new pr io r i ty queue .PQ := new array ;

72 new pr io r i ty queue .REAR := PQ.REAR − 1 ;

73

74 pa i r := PQ.PQ( min index ) ;

75 PQ := new pr io r i ty queue ;

76

77 pragma Assert ( pa i r = or ig queue .PQ( min index )

78 and then ( for a l l X in 1 . . min index−1 => (PQ.PQ(X) .P > or ig queue .PQ( min index ) .P) )

79 and then ( o r i g queue .PQ( 1 . . min index −1) = PQ.PQ( 1 . . min index −1) )

80 and then ( o r i g queue .PQ( min index +1. . o r i g queue .REAR) = PQ.PQ( min index . .PQ.REAR) ) ) ;

81

82 pragma Assert ( for some I in 1 . . o r i g queue .REAR =>

83 pa i r = or ig queue .PQ( I )

84 and then ( for a l l X in 1 . . I−1 => (PQ.PQ(X) .P > or ig queue .PQ( I ) .P) )

85 and then ( o r i g queue .PQ( 1 . . I −1) = PQ.PQ( 1 . . I −1) )

86 and then ( o r i g queue .PQ( I +1. . o r i g queue .REAR) = PQ.PQ( I . .PQ.REAR) ) ) ;

87 end ex t ra c t ;

88 end p r i o r i t y ;

Listing C.4: test helpers.ads
1 with p r i o r i t y ; use p r i o r i t y ;

2

3 package t e s t h e l p e r s i s

4

5 procedure t e s t i n s e r t ( pa i r : I t em Pr i o r i t y Pa i r ; PQ: in out Prior i ty Queue ) ;

6

7 procedure t e s t e x t r a c t (PQ: in out Prior i ty Queue ) ;

8

9 end t e s t h e l p e r s ;

Listing C.5: test helpers.adb
1 with p r i o r i t y ; use p r i o r i t y ;

2 with Ada . Text IO ; use Ada . Text IO ;

3

4 −− Below are h e l p e r f u n c t i o n s t h a t j u s t p r o v i d e t h e user v i s u a l ou tpu t

5 −− These f u n c t i o n s { i n i t i a l i z e , t e s t i n s e r t , t e s t e x t r a c t } are c a l l e d by

6 −− t h e main d r i v e r f u n c t i o n to demons tra te t h e p r i o r i t y queue imp lementa t ion

7

8 −− These h e l p e r f u n c t i o n c a l l t h e p r i o r i t y queue imp l emen ta t i ons o f i n s e r t and e x t r a c t

9 −− I n s e r t i s c a l l e d on [ l i n e 39 ]

10 −− Ex t r a c t i s c a l l e d on [ l i n e 51 ]

11 package body t e s t h e l p e r s i s

12

13 procedure t e s t i n s e r t ( pa i r : I t em Pr i o r i t y Pa i r ; PQ: in out Prior i ty Queue ) i s

14 begin

15 Put Line ( ” [ INSERT ] : Here i s the r e s u l t i n g P r i o r i t y Queue : ” ) ;

16 I n s e r t (PQ, pa i r ) ; −− INSERT

17 Print Queue (PQ) ;
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18 end t e s t i n s e r t ;

19

20 procedure t e s t e x t r a c t (PQ: in out Prior i ty Queue ) i s

21 temp ext rac t r e tu rn : I t em Pr i o r i t y Pa i r ;

22 begin

23 Put Line ( ” [EXTRACT] : Here i s the r e s u l t i n g P r i o r i t y Queue : ” ) ;

24 ex t ra c t (PQ, temp ext rac t r e tu rn ) ; −− EXTRACT

25 Put Line ( ”The Item removed was : [ ” & temp ext rac t r e tu rn .X & ” ] with P r i o r i t y : [ ” &

temp ext rac t r e tu rn .P’ Img & ” ] ” ) ;

26 Print Queue (PQ) ;

27 end t e s t e x t r a c t ;

28 end t e s t h e l p e r s ;
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Appendix D. Interpolation: GNATprove Output

Figure 23: Highlighted interpolation .adb GNATprove results on source code.
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Figure 24: interpolation .adb GNATprove results.
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Figure 25: Highlighted interpolation .ads GNATprove results on source code.
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Figure 26: interpolation .ads GNATprove results.
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Appendix E. Merge Sort: GNATprove Output

Figure 27: Highlighted mergesort algorithm.adb GNATprove results on source code.
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Figure 28: mergesort algorithm.adb GNATprove results.
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Figure 29: Highlighted mergesort algorithm.ads GNATprove results on source code.

Figure 30: mergesort algorithm.ads GNATprove results.
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Appendix F. Priority Queue: GNATprove Output
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Figure 31: Highlighted priority .adb GNATprove results on source code.
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Figure 32: priority .adb GNATprove results.

101



Figure 33: Highlighted priority .ads GNATprove results on source code.

Figure 34: priority .ads GNATprove results.
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Software is an increasingly integral and sophisticated part of safety- and mission-critical systems. Poorly written software
can lead to information leakage, undetected cyber breaches, and even human injury in cases where the software directly
interfaces with components of a physical system. These systems may range from power facilities to remotely piloted
aircraft. Software bugs and vulnerabilities can lead to severe economic hardships and loss of life in these domains. As fast
as software spreads to automate many facets of our lives, it also grows in complexity. The complexity of software systems
combined with the nature of the critical domains dependent on those systems results in a need to verify and validate the
security and functional correctness of such software to a high level of assurance. The current generation of formal
verification tools make it possible to write code with formal, machine-checked proofs of correctness. This thesis
demonstrates the process of proving the correctness of code via a formal methods toolchain. It serves as a proof of
concept for this powerful method of safety- and mission-critical software development.
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