

POSTGRADUATE DENTAL COLLEGE SOUTHERN REGION OFFICE 2787 WINFIELD SCOTT ROAD, SUITE 220 JBSA FORT SAM HOUSTON, TEXAS 78234-7510 https://www.usuhs.edu/pdc

THESIS APPROVAL PAGE FOR MASTER OF SCIENCE IN ORAL BIOLOGY

Title of Thesis: "Differing Acidity Levels of Five Dipping Tobacco Products and the Possible Dental Implications"

Name of Candidate: CPT Michael Rice Master of Science Degree June 14, 2018

THESIS/MANUSCRIPT APPROVED:

William J. Greenwood, COL, D DEAN, FORT HOOD AEGD-2yr RESIDENCY Committee Charperson

Michael Mansell, LTC, DC DIRECTOR, FORT HOOD AEGD-2yr RESIDENCY

Committee Chairperson

Zachary Highberger, LTC, DC DEPARTMENT OF ORAL MAXILLOFACIAL SURGERY Committee Member DATE:

11 MAU 18

<u>11 MAU 18</u>

<u>11 MAY 18</u>

"The author hereby certifies that the use of any copyrighted material in the thesis/dissertation manuscript entitled:

"Differing Acidity Levels of Five Dipping Tobacco Products and the Possible Dental Implications"

is appropriately acknowledged and, beyond brief excerpts, is with the permission of the copyright owner.

ومدير المسرجين

4

Dr Michael Rice Fort Hood AEGD-2yr Residency Uniformed Services University 11 June 2018

Distribution Statement

Distribution A: Public Release.

The views presented here are those of the author and are not to be construed as official or reflecting the views of the Uniformed Services University of the Health Sciences, the Department of Defense or the U.S. Government.

Differing Acidity Levels of Five Dipping Tobacco Products and the Possible Dental Implications

A Thesis

Presented to the Faculty of the Advanced Education in General Dentistry, Two-Year Program, United States Army Dental Activity, Fort Hood, Texas And the Uniformed Services University of the Health Sciences – Post Graduate Dental College In Partial Fulfillment of the Requirements for the Degree of Master of Science in Oral Biology

> By Michael R. Rice, CPT, USA, DC May 2018

Differing Acidity Levels of Five Dipping Tobacco Products and the Possible Dental Implications

A REPORT ON

Research project investigating differences in pH of aqueous mixtures of five different dipping tobacco products.

By Michael R. Rice, CPT, DC, USA D.D.S., University of Southern California - 2014

Staffed By Zachary Highberger, LTC, DC, USA D.M.D., University of Pittsburgh - 2008

> Fort Hood, Texas May 2018

ABSTRACT

Purpose: The purpose of this study is to compare pH differences of different dipping tobacco products and provide a literature based discussion of potential dental implications.

Methods: Fifty (50) total samples prepared from five dipping tobacco products. For each sample, 2.00 grams of dipping tobacco weighed using a scientific scale and weighing paper. The dipping tobacco was then transferred to a 25-mL graduated cylinder and 20 mL of reagent grade water was added. pH readings were then taken for each sample. For the first sample of each tobacco product, pH was measured at 5, 15, and 30 minutes. If there was no systematic variation in pH with time, the subsequent nine samples were measured at 5 minutes. Final pH determination was recorded to an accuracy of two decimal places for each sample.

Results: Of the five products tested, Grizzly Long Cut Wintergreen showed the highest mean pH of 8.19. Skoal Long Cut Classic Wintergreen had the lowest mean pH at 6.88. The thus null hypothesis is rejected. In other words, a significant difference exists in the measured pH between the different aqueous mixtures of dipping tobacco products. No significant difference between the mean pH for the Skoal Long Cut Berry Tobacco Blend dipping tobacco and the Skoal Long Cut Classic Wintergreen tobacco. However, all other means are statistically different.

Conclusion: Statistically significant differences exist between the pH levels of different dipping tobacco products when prepared in aqueous mixture.

ACKNOWLEDGMENTS

The author would like to thank the following:

Dr. Michael Mansell of the U.S. Army for assistance throughout the project.

Dr. Zachary Highberger of the U.S. Army for aid and advice in study design and execution.

Dr. John Vidic of the U.S. Army for general support and mentorship.

DISCLAIMER

The opinions or assertions contained herein are the private ones of the author and are not to be construed as official or reflecting the view of the Department of Defense or the Uniformed Services University of the Health Sciences.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 Background

1.2 Military Relevance

1.3 Purpose and Hypothesis

1.4 Study Limitations

CHAPTER 2 LITERATURE REVIEW

2.1 Foodstuffs and Dental Caries
2.2 Federal Law
2.3 Nicotine Chemistry
2.4 Dental Effects of Dipping Tobacco
2.4.1 Carcinogenicity
2.4.2 The 1980 Spring Training Study
2.4.3 Effects on the Periodontium
2.4.4 Effects on the Dentition
2.4.5 The 1980 JADA Articles
2.4.6 Present Study

CHAPTER 3 MATERIALS AND METHODS3.1 Product Selection3.2 Experimental Design3.3 Sample Preparation3.4 pH Meter Calibration3.5 Procedure

CHAPTER 4 RESULTS

4.1 Mean pH Values

4.2 One-Way ANOVA

4.3 Post-hoc Testing

CHAPTER 5 DISCUSSION

5.1 Interpretation of Results

5.2 Relationship of Mean pH Calculations to "Critical pH" Levels

5.3 Conflicting Prior Studies

5.4 Ethical Considerations

CHAPTER 6 CONCLUSION

REFERENCES

APPENDIX A MATERIALS APPENDIX B CALIBRATION PHOTOS APPENDIX C STATISTICAL ANALYSIS APPENDIX D DATA TABLES

CHAPTER 1 INTRODUCTION

1.1 Background

This study examines the acidity, or basicity, of smokeless tobacco in aqueous solution, measured using the pH scale.

This study will focus on the variety of smokeless tobacco known as dipping tobacco (also known as moist snuff, or dip) as this is the most common form, traditionally accounting for over 90% of the smokeless tobacco market share₁. Furthermore, sales of dipping tobacco in the US increased by 65.6% between 2005 and 2011. (3) Finally, this study focuses specifically on flavored dipping tobacco products. Sales of flavored forms of dipping tobacco increased by 72.1%.9 between 2005 and 2011₂.

Comprehensive reports are available regarding the physical and chemical properties of tobacco products, including $pH_{1,2}$. However, due to the continued introduction of new flavors of dipping tobacco to the market, it is incumbent on the scientific community to continue the study of contemporary products.

1.2 Military Relevance

Significant differences in rates of smokeless tobacco use exist between military and civilian populations. In 2011, the overall prevalence of smokeless tobacco use among military personnel was 12.8%., compared to 2.7% amongst all US adults₃.

A recent survey regarding smokeless tobacco use was completed by dental patients at Army installation Fort Bragg, North Carolina. Just over half of smokeless tobacco users reported initiation of use during or after basic training. More than thirty percent reported never having been talked to about quitting, and Army reports suggest zero percent utilization of smokeless tobacco cessation programs. Finally, respondents cited stress as the primary barrier to quitting4.

1

In order to maximize military relevance of this study, all dipping tobacco products tested were purchased at a Post Exchange store within Fort Hood, Texas.

1.3 Purpose and Hypothesis

The purpose of this study is to compare pH differences of different dipping tobacco products and provide a literature based discussion of potential dental implications.

Aqueous mixtures of five dipping tobacco products will be prepared, and mean pH values will be analyzed.

The hypothesis is that there will be a difference in pH between the different varieties of dipping tobacco.

The null hypothesis is that there will be no difference in pH between the different varieties of dipping tobacco.

1.4 Study Limitations

There are three major limitations to this study.

The first major limitation is that sample mixtures for pH measurement are created by mixing dipping tobacco and water, thus poorly simulating conditions *in vivo*. Human saliva importantly possesses pH buffers, primarily in the form of phosphate buffers. Previous in vitro studies have used over-the-counter (OTC) sialagogues for sample fabrication. Unfortunately, these products serve to replace certain functions of salivary flow, but don't actually resemble the physical characteristics of human saliva. For example, OTC sialagogues may have lubricating proteins that render them acidic. Thus the experimenter has chosen to instead, per federal guidelines, to use reagent grade water in mixture preparation_{5.6}.

The next major limitation is that the study focuses on pH as opposed to dental caries. Thus any results of this study cannot be used to suggest clinical implications. However, this study may serve as a pilot study for future research into the product-specific cariogenicity of dipping tobacco.

The last major limitation is the limited number of study samples. This study focuses on only five different dipping tobacco products.

CHAPTER 2 LITERATURE REVIEW

2.1 Foodstuffs and Dental Caries

The importance of alkalinity and acidity in the oral environment has long been studied in the field of dentistry₇. Past literature shows a relationship between dental caries and an acidic oral environment_{8,9}. Additionally, literature shows that the pH of the oral cavity is affected by things introduced to the oral cavity₁₀, including foodstuffs, beverages, sweets, and possibly dipping tobacco.

2.2 Federal Law

Under the Comprehensive Smokeless Tobacco Health Education Act of 1986, tobacco manufacturers report annually to the Centers for Disease Control and Prevention (CDC) on the pH of their smokeless tobacco products. This information however is considered confidential and in accordance with federal law cannot be released to the public_{11,12,13}. Therefore, it is incumbent upon the scientific community to ascertain this information.

2.3 Nicotine Chemistry

Absorption of nicotine across biological membranes depends on pH. Nicotine is a weak base with a pKa of 8.0. In its ionized state, such as in acidic environments, nicotine does not rapidly cross biologic membranes. However, at a higher pH a greater proportion of nicotine exists in the un-ionized state ("free nicotine"), which more readily crosses biologic membranes₁₄.

Smokeless tobacco is known to contain a number of additives, including bicarbonate salts₂. It has been suggested that during smokeless tobacco production, various alkaline agents are added that boost pH and increase the amount of free nicotine that can be delivered to the user₁₅. Prior studies examining pH levels and levels of free nicotine in different smokeless tobacco products show a large variance from product to $product_1$.

4

2.4 Dental Effects of Dipping Tobacco

2.4.1 Carcinogenicity

Extensive literature exists about the possible carcinogenicity of dipping tobacco products. This topic is outside of the scope of the present study.

2.4.2 The 1988 Spring Training Study

The most robust clinical study to-date regarding the oral effects of smokeless tobacco use comes from the study of professional baseball players participating in Spring Training in 1988₁₆. Data collected from this study lead directly to the 1990 publication of separate Journal of Periodontology (JOP) and Journal of the American Medical Association (JAMA) articles about the oral effects of smokeless tobacco use_{17,18}.

This study involved 1109 subjects, from seven major league organizations, playing in the Phoenix and Tucson areas. Participants received extensive medical and dental evaluations.

Analysis adjusted for age, race, cigarette smoking, alcohol consumption, and dental hygiene practices. The overall prevalence of dental caries, gingivitis, and plaque did not differ between ST users and nonusers. However, in analysis confined to the facial surfaces of mandibular incisor teeth, where ST is most commonly used, there were significant increases among users in both gingival recession and attachment loss_{16,17}.

2.4.3 Effects on the Periodontium

Various studies have contradicted the findings of the spring training studies, instead failing to show any significant differences between users and non-users of smokeless tobacco_{19,20}.

Systematic reviews conducted in 1986, 2003, and 2007 all note the inconclusively of past studies. These reviews do however note that limited evidence does suggest an association between smokeless tobacco use and gingival recession_{21,22,23}.

2.4.4 Effects on the Dentition

Similarly to the periodontal effects of smokeless tobacco, studies reveal differing results as to the possible effects on the dentition of smokeless tobacco use₂₄. Again, multiple published reviews reflect these incongruities_{21,22,23}.

Perhaps the strongest evidence of the possible risk of dipping tobacco use to caries development comes from 1999 JADA article titled "Chewing Tobacco Use and Dental Caries Among U.S. Men." This study took data from the Third National Health and Nutrition Examination Survey. Studying 14807 dentate adults, researchers found a dose-dependent relationship between weekly tobacco use and the likelihood of having a decayed or filled root surface₂₅.

2.4.5 The 1980 JADA Articles

It has been speculated that smokeless tobacco may have both cariogenic and cariostatic properties_{26,27}.

In 1980, JADA published two articles assessing and discussing the dental implication of two particular components of smokeless tobacco: sugar (sucrose) and fluoride. Researchers used gas liquid chromatography to measure the sugar content of various smokeless tobacco products, and a pH meter with a fluoride ion activity electrode to measure fluoride content.

The researchers found large variations in both sugar and fluoride content from product to product. Researchers concluded that the ideal smokeless tobacco should contain a relatively low-sugar/high-fluoride content to minimize promotion of dental caries_{26,27}.

2.4.6 Present Study

The present study seeks to build upon the 1980 studies by assessing and discussing a third property of dipping tobacco which may affect dental caries susceptibility: acidity.

CHAPTER 3 MATERIALS AND METHODS

3.1 Product Selection

In order to maximize military relevance of this study, all dipping tobacco products tested were purchased at a Post Exchange store within Fort Hood, Texas.

The varieties of dipping tobacco to be tested were carefully selected based on popularity, as judged by market share.

The three largest selling dipping tobacco brands are: Grizzly, Copenhagen, and Skoal₂₈. The most popular flavor of dipping tobacco is Wintergreen. Three of the five products tested are the wintergreen varietals from each of the top-selling brands₂₉. Two additional flavors have been included, both of which are manufactured by the Skoal label.

3.2 Experimental Design

Experimental materials and methods will adhere to guidelines set forth in the Federal Register regarding measurement of the pH of smokeless tobacco products_{5,6}.

3.3 Sample Preparation

Fifty (50) total samples prepared. Ten (10) samples using each of the following five dipping tobacco products were prepared:

- 1) Copenhagen Long Cut Wintergreen
- 2) Grizzly Long Cut Wintergreen
- 3) Skoal Long Cut Classic Wintergreen
- 4) Skoal Long Cut Berry Tobacco Blend
- 5) Skoal Long Cut Citrus Tobacco Blend

A single canister of each product was used for sample collection.

For each sample, 2.00 grams of dipping tobacco weighed using a scientific scale and weighing paper.

The dipping tobacco was then transferred to a 25-mL polypropylene graduated cylinder.

For each sample, 20 mL of reagent grade water was measured using a 25-mL borosilicate glass graduated cylinder and poured into the graduated cylinder containing the measured dipping tobacco.

Each mixture was created immediately before data collection.

3.4 pH Meter Calibration

A three-point calibration of the pH meter will be performed to an accuracy of two decimal places using standard pH buffers (4.00 and 7.00 or 7.00 and 10.00).

3.5 Procedure

A teflon-coated magnetic stirring bar was placed in each sample. The mixture was stirred using a magnetic stirrer placed atop a laboratory jack. The laboratory jack was elevated to allow immersion of the pH probe into the mixture.

For the first sample of each tobacco product, pH measured at 5, 15, and 30 minutes. If there was no systematic variation in pH with time, the subsequent nine samples were measured at 5 minutes. All five dipping tobacco products showed no systematic variation with time.

Between each sample measurement the pH electrode was rinsed thoroughly with reagent grade water.

Final pH determination recorded to an accuracy of two decimal places for each sample.

CHAPTER 4 RESULTS

4.1 Mean pH Values

IBM SPSS software used for statistical analysis. Results for the mean pH for each tobacco brand and flavor are shown below:

Final pH						
Brand and Flavor	Mean	N	Std. Deviation			
Grizzly LC Wintergreen	8.19340	10	.029345			
Copenhagen LC Wintergreen	7.56310	10	.023974			
Skoal LC Classic Wintergreen	6.87760	10	.034225			
Skoal LC Berry Blend	6.90590	10	.021362			
Skoal LC Citrus Blend	7.29590	10	.039884			
Total	7.36718	50	.491304			

4.2 One-way ANOVA

One-way ANOVA was performed to analyze the differences in the mean pH values for each tobacco product:

ANOVA

Final pH					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	11.786	4	2.946	3165.219	.000
Within Groups	.042	45	.001		
Total	11.828	49			

The significance value obtained from one-way ANOVA allows for the rejection of the null hypothesis (p<0.001).

4.3 Post-hoc Testing

		Mean			95% Confid	ence Interval
(I) Brand and Elavor	(I) Brand and Elavor	J)	Std. Error	Sig.	Lower Bound	Upper Bound
Grizzly LC Wintergreen	Copenhagen LC Wintergreen	.630300*	.013645	.000	.59153	.66907
	Skoal LC Classic Wintergreen	1.315800*	.013645	.000	1.27703	1.35457
	Skoal LC Berry Blend	1.287500*	.013645	.000	1.24873	1.32627
	Skoal LC Citrus Blend	.897500*	.013645	.000	.85873	.93627
Copenhagen LC	Grizzly LC Wintergreen	630300*	.013645	.000	66907	59153
wintergreen	Skoal LC Classic Wintergreen	.685500*	.013645	.000	.64673	.72427
	Skoal LC Berry Blend	.657200*	.013645	.000	.61843	.69597
	Skoal LC Citrus Blend	.267200*	.013645	.000	.22843	.30597
Skoal LC Classic	Grizzly LC Wintergreen	-1.315800*	.013645	.000	-1.35457	-1.27703
wintergreen	Copenhagen LC Wintergreen	685500*	.013645	.000	72427	64673
	Skoal LC Berry Blend	028300	.013645	.249	06707	.01047
	Skoal LC Citrus Blend	418300*	.013645	.000	45707	37953
Skoal LC Berry Blend	Grizzly LC Wintergreen	-1.287500*	.013645	.000	-1.32627	-1.24873
	Copenhagen LC Wintergreen	657200*	.013645	.000	69597	61843
	Skoal LC Classic Wintergreen	.028300	.013645	.249	01047	.06707
	Skoal LC Citrus Blend	390000*	.013645	.000	42877	35123
Skoal LC Citrus Blend	Grizzly LC Wintergreen	897500*	.013645	.000	93627	85873
	Copenhagen LC Wintergreen	267200*	.013645	.000	30597	22843
	Skoal LC Classic Wintergreen	.418300*	.013645	.000	.37953	.45707
	Skoal LC Berry Blend	.390000*	.013645	.000	.35123	.42877

Post-hoc testing was performed using Tukey's Range Test:

*. The mean difference is significant at the 0.05 level.

The results of the Tukey's range show no significant difference between the mean pH for the Skoal Long Cut Berry Tobacco Blend dipping tobacco and the Skoal Long Cut Classic Wintergreen tobacco. All other means are statistically different. These same relationships can also be seen below in a homogenous groups analysis of the above post-hoc testing:

Tukey HSD ^a						
		Subset for alpha = 0.05				
Brand and Flavor	N	1	2	3	4	
Skoal LC Classic Wintergreen	10	6.87760				
Skoal LC Berry Blend	10	6.90590				
Skoal LC Citrus Blend	10		7.29590			
Copenhagen LC Wintergreen	10			7.56310		
Grizzly LC Wintergreen	10				8.19340	
Sig.		.249	1.000	1.000	1.000	

Final pH

Means for groups in homogeneous subsets are displayed.

CHAPTER 5 DISCUSSION

5.1 Interpretation of Results

Of the five products tested, Grizzly Long Cut Wintergreen showed the highest mean pH of 8.19. Skoal Long Cut Classic Wintergreen had the lowest mean pH at 6.88. This equates to a pH range of 1.31. The mean pH of all 50 samples was 7.37 with a standard deviation of 0.49.

The standard deviations within each group (product) were relatively low, the highest being 0.4 in the Skoal Long Cut Citrus Tobacco Blend group. These small standard deviations can be attributed to the precision of sample preparation. Additionally, these small standard deviation values suggest large homogeneity within a particular canister of dipping tobacco.

One-way ANOVA yielded a p-value of 0.00 when measured to two decimal places. This is less than the significance value of 0.05. The thus null hypothesis is rejected. In other words, a significant difference exists in the measured pH between the different aqueous mixtures of dipping tobacco products.

Post-hoc testing was performed using Tukey's range test to analyze to the specific relationships between groups. The results show no significant difference between the mean pH for the Skoal Long Cut Berry Tobacco Blend dipping tobacco and the Skoal Long Cut Classic Wintergreen tobacco. However, all other means are statistically different.

5.2 Relationship of Mean pH Calculations to "critical pH" Levels

The graph below shows how the mean pH values of each product relate to literature reported values for approximate "critical pH" of both enamel and dentin_{30,31}.

None of the five products tested had a measured pH below the critical pH levels for enamel and dentin. This suggests that these dipping tobacco products are unlikely to cause tooth structure dissolution by means of chemical erosion alone.

5.3 Conflicting Prior Studies

The 1980 JADA studies, which discussed the opposing effects of sugar and fluoride content in smokeless tobacco, attempted to quantify the cariogenicity of different dipping tobacco products relative to each other. This study did conclude that wide differences may exist in cariogenicity from one product to the $next_{26,27}$.

Considering the results of the 1980 JADA studies, it is possible that the differences amongst the different dipping tobacco products is contributory towards the varying results of clinical studies. According to the results of a CDC study, pH is a primary factor in the amount of nicotine that is

in the most readily absorbable, unprotonated form, and that the brands of dipping tobacco with the largest amount of unprotonated nicotine also are the most frequently sold brands₁₅. Thus it may be that clinical studies are predisposed to fail to show a link between dipping tobacco use and dental caries if the study subjects are in fact using the most frequently sold brands.

5.4 Ethical Considerations

There are five fundamental principles that form the foundation of the American Dental Association Code of Professional Conduct: patient autonomy, nonmaleficence, beneficence, justice and veracity₃₂.

Practitioners may face ethical dilemmas when discussing the effects of dipping tobacco with patients. A practitioner may fail to discuss the inconclusiveness of the literature regarding the adverse oral effects of smokeless tobacco. In this situation, a practitioner may experience a conflict between the principle of veracity and the principles of beneficence and nonmaleficence.

Practitioners may also face ethical dilemmas when comparing different tobacco products with a patient who is unwilling to quit, and who inquires as to which products are less detrimental. Based on the results of this study, a dentist may be apt to advise a higher pH product over a lower one in hopes of minimizing caries susceptibility. Many higher pH products however are likely to allow more free nicotine absorption, placing the patient at an increased risk of harm. Thus it is prudent for the dental practitioner to be well informed and advise only within his or her scope of practice.

CHAPTER 6 CONCLUSION

Statistically significant differences exist between the pH levels of different dipping tobacco products when prepared in aqueous mixture.

REFERENCES

- 1. World Health Organization, International Agency for Research on Cancer. (2004). *IARC Monographs on the Evaluation of Carcinogenic Risks to Humans*(Vol. 89, Smokeless Tobacco and Some Tobacco-specific N-Nitrosamines).
- 2. National Cancer Institute and Centers for Disease Control and Prevention. Smokeless Tobacco and Public Health: A Global Perspective. Bethesda, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Institutes of Health, National Cancer Institute. NIH Publication No. 14-7983; 2014.
- 3. Bergman, H. E., Hunt, Y. M., & Augustson, E. (2012). Smokeless tobacco use in the United States military: a systematic review. *Nicotine and Tobacco Research*, *14*(5).
- Bray, R. M., Pemberton, M. R., Hourani, L. L., Witt, M., Olmsted, K. L. R., Brown, J. M., et al. (2009). 2008 Department of Defense survey of health related behaviors among active duty military personnel: A component of the Defense Lifestyle Assessment Program (DLAP).
- 5. 62 FR 24116
- 6. 74 FR 712
- 7. Pickerill, H. P. (1912). *The Prevention of Dental Caries and Oral Sepsis*. London: Bailliere, Tindall and Cox.
- 8. Stephan, R. M. Changes in hydrogen-ion concentration on tooth surfaces and in carious lesions. J.A.D.A. 27:718 May 1940.
- 9. Fosdick, L. S., & Clarke, A. C., Jr. (19039). Solubility of Tooth Enamel in Saliva at Various pH Levels. *Journal of Dental Research*, *18*(5).
- 10. Caldwell, R. C., & Gibby, B. G. (1958). The effect of foodstuffs on the pH of dental cavities. *The Journal of the American Dental Association*, *57*(5).
- 11. 5 U.S.C. 552(b)(4)
- 12. 15 U.S.C. 4401 et seq., Pub. L. 99-252
- 13. 18 U.S.C. 1905
- 14. Benowitz, N. L., Hukkanen, J., & Jacob, P., III. (2009). Nicotine Chemistry, Metabolism, Kinetics and Biomarkers. *Handbook of Experimental Pharmacology*, *192*.
- 15. Richter, P., & Spierto, F. W. (2003). Surveillance of smokeless tobacco nicotine, pH, moisture, and unprotonated nicotine content. *Nicotine and Tobacco Research*,5(6).
- Ernster, et al. "Smokeless Tobacco Use and Health Effects Among Baseball Players." *Journal of the American Medical Association*, vol. 264, July 1990, pp. 218– 224.
- 17. Robertson, et al. "Oral Effects of Smokeless Tobacco Use By Professional Baseball Players." *Advances in Dental Research*, Sept. 1997, pp. 307–312.
- 18. Robertson, et al. "Periodontal Effects Associated With the Use of Smokeless Tobacco." *Journal of Periodontology*, vol. 61, July 1990.
- Greer, and Poulson. "Oral Tissue Alterations Associated with the Use of Smokeless Tobacco by Teen-Agers." *Oral Surgery, Oral Medicine, Oral Pathology*, vol. 56, Sept. 1983, pp. 275–284.
- 20. Greer. "Oral Manifestations of Smokeless Tobacco Use." *Otolaryngologic Clinics of North America*, Feb. 2011, pp. 31–56.
- 21. Weintraub, and Burt. "Periodontal Effects and Dental Caries Associated with Smokeless Tobacco Use." *Public Health Reports*, vol. 102, 1987.

- 22. Unal, and Critchley. "Health Effects Associated with Smokeless Tobacco: a Systemic Review." *Thorax*, vol. 58, 2003, pp. 435–443.
- 23. Vellappally, et al. "Influence of Tobacco Use in Dental Caries Development." *Central Europe Journal of Public Health*, vol. 15, 2007, pp. 116–121.
- Offenbacher, and Weathers. "Effects of Smokeless Tobacco on the Periodontal, Mucosal and Caries Status of Adolescent Males." *Journal of Oral Pathology*, vol. 14, Feb. 1985, pp. 169–181.
- 25. Tomar, and Winn. "Chewing Tobacco Use and Dental Caries Among U.S. Men." *Journal* of the American Dental Association, vol. 130, Nov. 1999.
- 26. Going, et al. "Sugar and Fluoride Content of Various Forms of Tobacco." *Journal of the American Dental Association*, vol. 100, Jan. 1980, pp. 27–33.
- 27. Hsu, et al. "Sugars Present in Tobacco Extracts." *Journal of the American Dental Association*, vol. 101, Dec. 1980.
- Delnevo, C. D., Wackowski, O. A., Giovenco, D. P., Bover Manderski, M. T., Hrywna, M., & Ling, P. M. (2014). Examining market trends in the United States smokeless tobacco use: 2005–2011. *Tobacco Control*,23(2).
- 29. "Smokeless Tobacco Where the Gains Are." *Category Management Handbook*, 2014, pp. 44–48.
- 30. Featherstone, J.; Lussi, A. Understanding the chemistry of dental erosion. 2006.
- 31. Dawes, C. What is the Critical pH and Why Does a Tooth Dissolve in Acid? Journal-Canadian Dental Association 2003, 69(11), 722–725.
- "Principles of Ethics Code & of Professional Conduct." American Dental Association, Feb. 2018.

APPENDIX A MATERIALS

1) Grizzly Long Cut Wintergreen

2) Copenhagen Long Cut Wintergreen

3) Skoal Long Cut Classic Wintergreen

4) Skoal Long Cut Berry Tobacco Blend

5) Skoal Long Cut Citrus Tobacco Blend

6) 100-gram calibration weight

7) Torbal Model AGZN100 precision scientific scale

8) 3"x3" glassine weighing paper

9) Karter Scientific 25-mL borosilicate glass graduated cylinder

10)) 25-mL polypropylene graduated cylinders

11) Laboratory wash bottle

12) 4"x4" Aluminum Scientific Lab Jack

13) IKA Topolino magnetic stirrer

14) 6x15mm Teflon (PTFE) coated octagonal stirring rods

15) RICCA Chemical Company ACS Reagent Grade Water (ASTM Type I, ASTM Type II) with MSDS

Safety Data Sheet

SECTION 1: Identification

1.1. Product Identifier Trade Name or Designation: Water, ACS Reagent Grade, ASTM Type I, ASTM Type II Packaged in plastic containers Product Number: 9150 Other Identifying Product Numbers: 9150-1, 9150-1CT, 9150-2,5, 9150-32, 9150-5, 9150-500, 9150-55, 9150-5HP 1.2. Recommended Use and Restrictions on Use General Laboratory Reagent 1.3. Details of the Supplier of the Safety Data Sheet Company: Ricca Chemical Company Address: 448 West Fork Drive Arlington, TX 76012 USA Telephone: 888-467-4222 1.4. Emergency Telephone Number (24 hr) CHEMTREC (USA) 800-424-9300 CHEMTREC (International) 1+ 703-527-3887 SECTION 2: Hazard(s) Identification 2.1. Classification of the Substance or Mixture (in accordance with OSHA HCS 29 CFR 1910.1200) For the full text of the Hazard and Precautionary Statements listed below, see Section 16. This product is not categorized as hazardous in any GHS hazard class. 2.2. GHS Label Elements Pictograms: None required. Signal Word: None required. Hazard Statements: None required. Precautionary Statements: None required.

Product Number: 9150

Page 1 of 9

16) Innovating Science pH Buffer Calibration Kit with MSDS

SDS No.:	BBR404	SAFETY DATA SH	EET	GENERAL STORAGE CODE GREEN
Section 1	Chemical Product and Comp	any Identification		Page E1 of E2
nno\ "cu	vating Science [®] by Aldor Itting edge science for the classi	Corporation 221 Rocheste Avon, NY 14 (585) 226-617	r Street 414-9409 17	CHEMTREC 24 Hour Emergency Phone Number (800) 424-8300 For laboratory use only. Not for drug, food or household use.
roduct	BUFFER SOLUTION, PH4 (RED COLOR	R CODED)		
ynonyms	Standard Buffer Solution, pH 4.00			
ection 2	Hazards Identification			
ignal word ictograms arget orgai HS Classif	: WARNING : None required ns: None known lication:		Precautio P264: Was P305+P35 Remove c P332+P31	nary statement(s): h hands thoroughly after handling. 1+P338: IF N PESS: Rinse cautiously with water for several minutes. ontact lenses, if present and easy to do. Continue rinsing. 3: If skin irritation occurs: Get medical attention.
dn imitation /e irritation HS Label i 316: Cause 320: Cause 320: Cause	(Category 3) (Category 2) (Category 2) s mid skin initiation. s eye irritation.	s known in the State of Califo	P337+P31	s: If eye inflation pensists: Get medical attention.
ection 3	Composition / Information or	n Ingredients		car or reproductive toxicity.
nemical Nam	10	CAS #	%	EINECS
(ater cetic acid, odium acet D&C Red #	glacial ate 40 (C.I.No. 16035)	7732-18-5 64-19-7 127-09-3 25956-17-6	98.52% 0.99% 0.49% Trace	231-701-2 231-913-4 215-185-5 247-388-0
ection 4	First Aid Measures			
NGESTION Inconscious NHALATION EYE CONTA Ittention. 3KIN ABSO	: Call physician or Poison Control Center im person. N: Remove to fresh air. If not breathing, giv IGT: Check for and remove contact lenses. RPTION: Remove contaminated clothing. F	mediately. Induce vomiting of e artificial respiration. If brea Flush thoroughly with water i Flush thoroughly with mild so	only if advised by a thing is difficult, gi for at least 15 min ap and water. If in	ppropriate medical personnel. Never give anything by mouth to an we oxygen. Get medical attention.
Section 5	Fire Fighting Measures			
uitable Ext	tinguishing Media: Use any media suitable	e for extinguishing supporting	fire	
Protective A ire-exposed Specific Ha	actions for Fire-fighters: In fire conditions, containers cool. zards: During a fire, irritating and highly tox	wear a NIOSH/MSHA-appro	oved self-contained	t breathing apparatus and full protective gear. Use water spray to keep losition or combustion.
Contion C	Assidental Delesse Messure	-		

Section 6 Accidental Release Measures Personal Precautions: Evacuate personnel to safe area. Use proper personal protective equipment as indi Environmental Precautions: Avoid find some severs and ditches which lead to waterways. Containment and Cleanup: Absorb with inert dry material, sweep or vacuum up and place in a suitable cont n spill area with soap and wa 17) Hanna instruments HI5221-01 Laboratory Research Grade Benchtop pH/mV Meter with 0.001 pH Resolution

18) HI1131B-Refillable Combination pH Electrode with BNC Connector

APPENDIX B CALIBRATION PHOTOS

1) Scale Calibration:

2) pH Meter Calibration:

APPENDIX C STATISTICAL ANALYSIS

1) Levene's test was performed to verify homogeneity of variance:

Test of Homogeneity of Variances					
Final pH					
Levene Statistic	df1	df2	Sig.		
.806	4	45	.528		

A measured significance value of 0.528 does not allow for the rejection of the null hypothesis that population variances are equal. In other words, homogeneity of variance is confirmed.

2) Below is a detailed reporting of the results of ANOVA:

Dependent Variable: Final pH							
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	
Corrected Model	11.786 ^a	4	2.946	3165.219	.000	.996	
Intercept	2713.767	1	2713.767	2915277.52	.000	1.000	
Brand	11.786	4	2.946	3165.219	.000	.996	
Error	.042	45	.001				
Total	2725.595	50					
Corrected Total	11.828	49					

a. R Squared = .996 (Adjusted R Squared = .996)

The strength of association between the independent and dependent variable is measured as an effect size, partial eta squared. Partial eta squared equals 0.996. In other words, 99.6% of the variability in pH is explained by the type of tobacco used in the sample mixture.

3) The results of one-way ANOVA testing are reported as:

$$F(4,5)=3,165.219,p<.001,n_p^2=0.996$$

APPENDIX D DATA TABLES

1) Grizzly Long Cut Wintergreen

		рH	
Sample	Five minutes	Fifteen minutes	Thirty minutes
1	8.175	8.196	8.231
2	8.152		
3	8.243		
4	8.207		
5	8.169		
6	8.177		
7	8.192		
8	8.210		
9	8.165		
10	8.188		

2) Copenhagen Long Cut Wintergreen

	рН					
Sample	Five minutes	Fifteen minutes	Thirty minutes			
1	7.565	7.572	7.588			
2	7.550					
3	7.549					
4	7.57					
5	7.551					
6	7.543					
7	7.560					
8	7.601					
9	7.592					
10	7.527					

3) S	koal	Long	Cut	Classic	Wintergreen
------	------	------	-----	---------	-------------

		pН	
Sample	Five minutes	Fifteen minutes	Thirty minutes
1	6.884	6.886	6.893
2	6.900		
3	6.885		
4	6.922		
5	6.86		
6	6.817		
7	6.844		
8	6.915		
9	6.846		
10	6.894		

4) Skoal Long Cut Berry Tobacco Blend

	рН					
Sample	Five minutes	Fifteen minutes	Thirty minutes			
1	6.858	6.865	6.878			
2	6.928					
3	6.924					
4	6.918					
5	6.935					
6	6.906					
7	6.879					
8	6.915					
9	6.882					
10	6.894					

	pH		
Sample	Five minutes	Fifteen minutes	Thirty minutes
1	7.295	7.305	7.385
2	7.255		
3	7.308		
4	7.244		
5	7.297		
6	7.320		
7	7.280		
8	7.268		
9	7.291		
10	7.311		

5) Skoal Long Cut Citrus Tobacco Blend