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EXECUTIVE SUMMARY 

The research presented here illustrates the impact of several model error techniques on the fidelity of 
extended-range global coupled ensemble forecasts produced by the Navy ESPC model. The presented 
methods aim to improve the forecasts by reducing errors in the forecasted state both at initial time and 
during the model integration. To address error in the initial state, we explore the use of Relaxation To 
Prior Perturbations (RTPP) which will aim to better capture model uncertainty in the initialization of the 
ensemble forecast by relaxing the initial state from the analysis (produced by the data assimilation 
system) back toward the prior (or forecasted state). During the model integration, we explore the use of 
two methods; 1) Analysis Correction-based Additive Inflation (ACAI) and Stochastic Kinetic Energy 
Backscatter (SKEB). Both of these methods will act as a representation of stochastic model error intended 
to increase the divergence of the ensemble; however, in the case of ACAI, there is also an explicit term in 
the perturbations aimed at reducing systematic errors. On the other hand, we have also found that the 
SKEB perturbations can act to modify the mean state resulting in improvements to the bias. All three 
model error techniques present clear improvements to the skill of the forecasts both in the short-range 
(weeks 1 and 2) and at extended range time scales (weeks 3-6). The Navy ESPC model is used 
operationally to generate 45-day forecasts, and these research findings present a clear pathway to improve 
the skill of our global coupled ensemble forecasting system. 

This report presents research conducted by Dr. William Crawford of the Marine Meteorology Division of 
NRL in Monterey, California. Dr. Crawford would like to thank the Karles Fellowship program for the 
opportunity to conduct this research. 
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Impact of model error techniques on the forecast skill of the Navy ESPC ensemble 

1. INTRODUCTION

At extended-range time scale (~2-6 weeks), where deterministic forecast skill is lost, probabilistic
outlooks provided by an ensemble of forecasts become progressively more important for capturing the 
most likely environmental state. To fully capture the true uncertainty in a forecast, the ensemble system 
must be formulated to account for stochastic model error to ensure accurate representation of forecast 
uncertainty both at initial time and during the forecast. Stochastic error can arise from many sources 
including discretization and parameterization of unresolved process, and without proper representation, 
the ensuing ensemble forecast will be under-dispersive. Furthermore, at extended forecast lead-times as 
the model is drawn toward an attractor that may not align with reality, large biases may form in the 
forecasted state. It is important to also explore model error techniques that are capable of removing these 
systematic errors. 

Presently, the Navy ESPC system uses an ensemble of data assimilations (EDA) with perturbed 
observations [1] to represent uncertainty in the initial state and has no method to account for uncertainty 
during the forecast. Recent work at NRL [2] illustrates that the EDA-based system results in an ensemble 
that is under-dispersive at initial time and does not identify modes of variability conditioned to grow in 
time. Similar results have been found in the EDA implementation at ECMWF where they find they must 
combine the EDA-perturbations with fast growing singular vectors to achieve a proper representation of 
model uncertainty [3].  

The atmospheric component of the Navy ESPC model uses the Navy Global Environmental Model 
[4] run at the T359 horizontal resolution (~37km) with 60 vertical levels. The ocean and cryosphere are
encompassed within the Global Ocean Forecasting System (GOFS) 3.1 [5] where the Hybrid Coordinate
Model (HYCOM; [6]) and Los Alamos Community Ice model (CICE; [7]) are used to forecast the ocean
and sea-ice states respectively. In the operational configuration of the Navy ESPC system, the ocean/ice
resolution is set to 1/12°; however, in order to conserve valuable computational resources, many of the
presented experiments are run with a 1/4° resolution for the ocean/ice. In both cases; HYCOM is set to
run with 41 vertical levels. Two-way coupling between all model components is achieved through the
Earth System Modeling Framework (ESMF; [8]) as shown in Figure 1. The data assimilation (DA)
systems of the atmosphere (NAVDAS-AR; [9, 10]) and ocean/ice (NCODA; [11]) are weakly coupled in
that neither system directly assimilates observations of the other medium. However; observational
information will be exchanged between the model components through the 1-hourly forecast coupling. In
this way, oceanic observations can influence the background of the subsequent atmospheric DA cycle and
vice versa.

The Navy ESPC system has been transition to the Fleet Numerical Meteorology and Oceanography 
Center (FNMOC) for operational production of 45-day ensemble forecasts. The presented research 
outlines several model error techniques aimed at improving the forecast skill of the Navy ESPC system as 
measured through typical forecast skill metrics include bias, root mean squared error and ensemble spread 
skill. We also investigate impacts on more phenomenological based skill metrics including integrated 
vapor transport (IVT) important for forecasting atmospheric rivers as well as variables related to 
forecasting of the Madden-Julian Oscillation (MJO). 

The report outlines the model error techniques explored in Section 2 followed by a description of the 
numerical experiments carried out in Section 3. Section 4 will describe results of each model error 
technique with conclusions given in Section 5. 

______________
Manuscript approved Month 00, 2021.
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Figure 1 — Illustration of coupling between components of the Navy ESPC model. Reproduced from [2] 
 
2. APPROACH 
 
2.1 Relaxation To Prior Perturbations (RTPP) 

In the Navy ESPC model, the atmospheric data assimilation system is run every 6 hours at 00, 06, 
12 and 18UTC. During the data assimilation process, observations are combined with forecast 
information to arrive at the most accurate initial state. In the EDA framework of the Navy ESPC model, 
the assimilated observations are perturbed so that each ensemble member will have a slightly different 
initial (or analysis) state. However, it has been shown that the analysis uncertainty provided by the 
perturbed observations method does not adequately capture the true uncertainty (i.e. the ensemble is 
under-dispersive). Regardless of any uncertainty growth in the model over the prior 6-hour period of the 
forecast, the DA system will invariably draw the ensemble members back toward the observations, 
effectively reducing the ensemble variance at initial time. The method of relaxation to prior perturbations 
(RTPP; [12]) acts to combat the reduction of the ensemble variance by relaxing the ensemble analyses 
back toward the prior (or forecasted) state after the DA has run. By drawing the ensemble initial states 
back toward the prior forecast, RTPP allows the ensemble to retain some forecasted variance that has 
developed over the last 6-hours of the forecast. 

The new ensemble perturbations are computed according to equation (1) where the 𝑓𝑓 and 𝑎𝑎 
superscripts represent prior and analysis states respectively. The 𝑖𝑖 subscript represents individual 
ensemble member states and the 𝑒𝑒 subscript with an overbar represents an ensemble mean state. 

 

𝛿𝛿𝛿𝛿𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝛼𝛼 �𝛿𝛿𝑖𝑖
𝑓𝑓 − 𝛿𝛿𝑒𝑒

𝑓𝑓����� + (1 − 𝛼𝛼)�𝛿𝛿𝑖𝑖𝑎𝑎 − 𝛿𝛿𝑒𝑒𝑎𝑎�����       (1) 

 

The RTPP perturbation for any ensemble member 𝑖𝑖 (𝛿𝛿𝛿𝛿𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) is then a weighted sum of its 
deviation from the mean forecast state (𝛿𝛿𝑒𝑒

𝑓𝑓����) and mean analysis state (𝛿𝛿𝑒𝑒𝑎𝑎����). The relaxation parameter (𝛼𝛼) 
determines the level of weighting between the forecast and analysis perturbations. 

Given that the mostly likely estimate of the true initial state is represented by the ensemble mean 
analysis (𝛿𝛿𝑒𝑒𝑎𝑎����), the ensemble is re-centered on this state. The ensemble of initial conditions (𝛿𝛿𝑖𝑖′) will then 
be given by 
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𝛿𝛿𝑖𝑖′ = 𝛿𝛿𝑒𝑒𝑎𝑎���� +  𝛿𝛿𝛿𝛿𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅        (2). 

 
 
2.2 Analysis Correction-based Additive Inflation (ACAI) 

In addition to initial condition uncertainty, the ensemble system must be formulated to account for 
forecast uncertainty and systematic errors. One method explored as part of this research has been tested 
by several other operational forecasting centers around the world, most notably by the UK Meteorological 
Office [13, 14] and uses analysis corrections from the data assimilation (DA) system as a representation 
of model error. The DA system routinely generates analysis corrections to be applied to the forecast state 
to bring it closer to the observed state. We can therefore anticipate that the average of these analysis 
corrections can tell us something about the biases existent in our model and be used during the model 
forecast to reduce bias. Furthermore, in ensemble forecasting systems it is desirable to accurately capture 
the uncertainty in the ensemble mean by matching the ensemble spread to the error in the ensemble mean 
relative to some estimate of the true state (commonly referred to as spread-skill). A common problem in 
many ensemble forecasting systems is for the ensemble of forecasts to diverge too slowly, and therefore 
not accurately capture the uncertainty of future forecast states. To increase the divergence of our 
ensemble forecasts, we combined the mean analysis correction with a randomly sampled analysis 
correction from the archive as an additional representation of stochastic model error. We refer to this 
method as Analysis Correction-based Additive Inflation (ACAI; [15]).  

 
2.2.1 Perturbation calculation 

The ACAI perturbations draw upon an archive of analysis corrections which can be expressed as  

 

𝛿𝛿𝛿𝛿𝑎𝑎 = 𝛿𝛿𝑎𝑎(𝑡𝑡) −𝑀𝑀�𝛿𝛿𝑎𝑎(𝑡𝑡 − ∆𝑡𝑡𝑎𝑎)�       (3), 

 

where 𝛿𝛿𝑎𝑎 represents an analysis state valid at time 𝑡𝑡 and 𝑀𝑀�𝛿𝛿𝑎𝑎(𝑡𝑡 − ∆𝑡𝑡𝑎𝑎)� represents a forecast state 
produced by advancing the analysis state valid at time 𝑡𝑡 − ∆𝑡𝑡𝑎𝑎 by the non-linear model 𝑀𝑀. The analysis 
correction is then the difference between the analysis state and the forecasted state. 

The ACAI perturbations are represented by (4) as a combination of a mean analysis correction 
and a randomly sampled analysis correction: 

 

𝛿𝛿𝛿𝛿𝑖𝑖 =
1
𝑁𝑁𝑠𝑠

�𝛿𝛿𝛿𝛿𝑘𝑘𝑎𝑎
𝑁𝑁𝑠𝑠

𝑘𝑘=1

+ 𝛽𝛽 �𝛿𝛿𝛿𝛿𝑟𝑟𝑖𝑖
𝑎𝑎 −

1
𝑁𝑁𝑒𝑒

�𝛿𝛿𝛿𝛿𝑟𝑟𝑗𝑗
𝑎𝑎

𝑁𝑁𝑒𝑒

𝑗𝑗=1

�        (4). 

 
 

The first term on the right hand side represents an average of the 𝑁𝑁𝑠𝑠 analysis corrections (𝛿𝛿𝛿𝛿𝑘𝑘𝑎𝑎) 
produced over some extended time period. The mean correction term is aimed at reducing bias in the 
forecast. The second term on the RHS is meant as an additional representation of stochastic model error 
and is aimed at increasing divergence in the ensemble. For each ensemble member, 𝑖𝑖, a random analysis 
correction is sampled from the same set of corrections used to produce the mean term (i.e. 1st term on 
RHS). Before adding to the mean correction, the mean of the 𝑁𝑁𝑒𝑒 randomly sampled analysis corrections is 
subtracted to reduce any contamination to the mean correction. An optional scaling term for the random 
perturbations is given by 𝛽𝛽 and is intended to control the overall impact of the random portion of the 
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ACAI perturbations. The ACAI perturbations are computed at each model grid point for surface pressure, 
temperature, humidity, zonal wind speed, and meridional wind speed.  
The ACAI perturbations are divided by the number of time steps per 6-hour period of the forecast (𝑇𝑇) and 
added as a tendency during the forecast integration as  
 

𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝛿𝛿𝑖𝑖) +  𝛿𝛿𝑥𝑥𝑖𝑖
𝑅𝑅

       (5), 
 

where 𝑓𝑓(𝛿𝛿𝑖𝑖) is the tendency term of the prognostic equation. A new ACAI perturbation for each ensemble 
member is computed for each 6-hour period of the forecast. 
 
2.2.2 Mean analysis corrections 

As stated above, the mean analysis corrections are a representation of the model bias since they 
illustrate how the data assimilation is adjusting the forecasted state on average. However; it has been 
found that the structure of the mean corrections vary considerably based on the time of day. Figure 2 
shows the mean analysis corrections to surface level pressure and temperature at 00, 06, 12 and 18UTC. 
In the case of surface pressure, the primary adjustment is in the meridional pressure gradient with a 
decrease in pressure poleward of ~30° N/S and an increase in pressure in the tropics. However, a 
secondary signal indicates that the area of maximum adjustment to surface pressure migrates from east to 
west with the passage of a day (00Z18Z). Similarly, the positive adjustment to surface temperature 
over the Pacific Ocean/Australia at 00Z migrates westward to Eurasian and subsequently to the Americas 
by 18Z. 

 

 
 

Figure 2 — Seasonal (3-month) average analysis corrections to surface pressure (left) and temperature (right) according to time-
of-day (00, 06, 12 and 18Z). 

 

For this reason, the perturbations computed in (4) only use analysis corrections from the archive 
that coincide with the time-of-day to which the correction will be applied.  
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2.3 Stochastic Kinetic Energy Backscatter (SKEB) 
 

The Stochastic Kinetic Energy Backscatter (SKEB) method [16] was also tested as a method for 
representation of stochastic model error. SKEB was first introduced in the stand-alone NAVGEM 
atmospheric model [17] and has been retained as an option for the atmospheric component of the fully 
coupled Navy ESPC model. The implementation of SKEB applied here uses a moisture convergence 
mask to determine areas in which to make perturbations to the rotational component of the wind 
(vorticity). The magnitude of perturbations to zonal wind speed are comparable between ACAI are SKEB 
(not shown); however, ACAI also adds perturbations to temperature, surface pressure and humidity 
resulting in a greater perturbation to the system overall. 
 
3. EXPERIMENTS 
 

The Navy ESPC system is formulated to run the data assimilation cycle every 6 (24) hours for the 
atmosphere (ocean/ice) to ingest relevant observations and produce an updated analysis. Presently, 
extended range forecasts are initialized every Wednesday at 12UTC and integrated out to 45 days. Given 
the model error techniques described above are aimed at addressing both initial and forecast uncertainty, 
we will conduct a series of experiments using both the cycling and extended range forecasting systems. 
 
 

Table 1 — List of numerical experiments 
 

 Experiment 
name 

 # of ensemble 
members 

Time period Model error 
technique 

Forecast 
length 

Cycling experiment 
EDActrl 5 July 2017 POBS 6 hours 

RTPP/SKEB 5 July 2017 POBS+RTPP+SKEB 6 hours 
Extended-range forecasts 

ERctrl 7 Feb. 2017 - Jan. 2018 POBS 45 days 

ACAISA 7 Feb. 2017 - Jan. 2018 POBS+ACAI  
(w/ static archive) 45 days 

ACAIMA 7 Feb. 2017 - Oct. 2017 POBS+ACAI  
(w/ moving archive) 45 days 

SKEB 5 Feb. 2017 - Jan. 2018 POBS+SKEB 30 days 

 
3.1 Cycling Experiments 

To investigate the impact of RTPP on the baseline EDA system, a 1-month cycling experiment was 
run over the July 2017 time period with RTPP perturbations generated during each 6-hour update cycle of 
the atmospheric DA system and using 𝛼𝛼 = 0.725 (c.f. Eq. 1). A list of experiments is given in Table 1. 
Since RTPP is formulated to retain some of the forecast variance generated during the prior 6 hours, the 
short-range forecasts were also run with SKEB to allow for a further increase of the initial condition 
uncertainty and also uses the method of perturbed observations during the assimilation procedure. The 
RTPP/SKEB experiment will be compared to a baseline EDA experiment (EDActrl; Table 1) run over the 
same period of time. The EDActrl experiment also uses the method of perturbed observations to generate 
the ensemble, but does not use any other model error techniques. 
 
3.2 Extended-range forecasts 
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A series of extended-range experiments were run using initial conditions from the EDActrl cycling 
experiment describe in Section 3.1. All of the experiments were initialized from the same initial state, and 
therefore, any differences in forecast skill are due only to modifications to the forecast during the model 
integration. The control experiment (ERctrl; Table 1) to which all other forecasts will be compared was 
taken from the recent Validation Test Report issued to FNMOC as an illustration of the Initial Operational 
Capability of the Navy ESPC system [18]. In each of the extended-range experiments, ensemble forecasts 
are issued once per week on Wednesday at 12UTC. The time period of the forecasts is from 01 February 
2017 to 24 January 2018 resulting in 52 extended range forecasts. 

Two experiments testing the ACAI method in the Navy ESPC system were also run in overlapping 
periods with the EDActrl experiment. The two ACAI-based experiments differ in their formulation of the 
analysis correction archive they draw upon as well as the period of time used to for sampling. The 
ACAISA experiment (Table 1) uses a static archive of analysis corrections from the year 2011 when 
deriving the perturbations computed using Eq. (4). The average correction is computed using a 3-month 
average centered on the month of the forecast, and the randomly sampled correction will be drawn from 
the same 3-month period. In the ACAIMA experiment, the analysis corrections from 60-days prior to the 
forecast initialization date are used to derive the mean analysis correction and the random sample. The 
ACAIMA experiment is intended to explore methods to optimize the ACAI method for operations. By 
using a moving archive of analysis corrections, the ACAIMA method alleviates the dependence on 
maintaining an archive of analysis corrections, which can become particularly challenging when making 
large upgrades to the DA or forecast system. Additionally, the moving archive may be able to provide 
more relevant information about the model biases than using analysis corrections from an independent 
year (as in the ACAISA experiment). The time period of the ACAISA experiment mirrors that of the ERctrl 
experiment; however, due to computation constraints the ACAIMA experiment only runs from February to 
October 2017. In all ACAI-based experiments, there is no scaling of the random portion of the 
perturbations (i.e. 𝛽𝛽 = 1). 

A third extended range experiment was run using SKEB as a representation of model error. Again 
due to computational constraints, this experiment was run using only 5 ensemble members and the 
forecasts were only integrated out to 30-days and will be compared against the EDActrl and ACAISA. 
 
4. RESULTS 
 
4.1 RTPP 

RTPP has been implemented in the Navy ESPC model to address deficient spread in the ensemble 
at initial time. The short forecasts of each 6-hour cycle of the DA system is designed to produce the 
background state for the subsequent cycle. Each of these 6-hour short forecasts has been run with SKEB 
turned on to generate divergence in the model over this short period of time. RTPP then relaxes the 
analysis state back toward the prior state which will contain a more accurate representation of the analysis 
uncertainty. As the system cycles, more and more ensemble divergence will be retained by the system, 
allowing the initial states to increase their estimates of uncertainty. Figure 3 illustrates the impact of 
cycling the system with a combination of RTPP and SKEB by showing the variance ratio at initial time as 
a function of initialization date. The variance ratio is a measure of the spread-skill of the ensemble 
represented by the ratio of the squared ensemble variance to the bias corrected mean squared error (c.f. 
Appendix). In the VARR diagrams, a value of 1 indicates a perfect match between the ensemble variance 
and squared error of the ensemble mean.  
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Figure 3 — Comparison of the globally averaged variance ratio (VARR) as a function of initialization date for 500hPa 
geopotential height (left) and 10m wind speed (right) for the EDActrl and RTPP/SKEB experiments. 

 
As expected, at the beginning of the experiment the globally averaged variance ratios in 500hPa 

geopotential height and 10m wind speed are identical for the EDActrl and RTPP/SKEB experiment. 
However, as the system cycles the experiments diverge with RTPP/SKEB experiment progressively 
approaching the ideal value of 1. In both panels, the initial values of VARR are far below the ideal value, 
and in the case of the EDActrl experiment, remain very close to the deficient value throughout the entire 
experiment. In the case of 500hPa geopotential height, by the end of the 1-month time period the variance 
ratio has increased dramatically and is very close to 1 by the end of the experiment. While not as 
responsive as 500hPa geopotential height, the 10m wind speed variance ratio has also increase 
significantly from the EDActrl experiment.  

The presented RTPP experiment used a relaxation value (𝛼𝛼) of 0.725. This value was selected 
based on prior research [19] which shows that the ensemble root mean squared error (RMSE) and 
ensemble are highly sensitive to the relaxation parameter with both RMSE increasing drastically beyond a 
particular threshold. Figure 4 shows that using a value of 0.725 for relaxation keep the RMSE values of 
the RTPP/SKEB experiment close to those of the baseline system. Further testing has indicated that 
increasing the relaxation even to 0.8 greatly increases the RMSE of the RTPP/SKEB experiment. 
 
 

 
 

Figure 4 — Comparison of the globally averaged root mean squared error (RMSE) as a function of initialization date for 850hPa 
temperature (left) and 10m wind speed (right) for the EDActrl and RTPP/SKEB experiments. 
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4.2 ACAI 
 
4.2.1 Forecast skill 

Here we will examine improvements to Navy ESPC extended range forecasts by including the 
ACAI method to account for model error in the atmospheric component of the Navy ESPC model. 
Comparisons are made between two ACAI-based experiments (ACAISA and ACAIMA; Table 1) and a 
control experiment (ERctrl; Table 1). The two ACAI-based experiments presented differ in the formulation 
of the analysis correction archive used to derive the perturbations defined by Eq. (4) as described in 
Section 3.2. Forecast skill performance is analyzed using the variables, metrics and regions described in 
the Appendix. Figure 5 shows scorecards as a function of forecast lead-time for the ACAISA experiment. 
The scorecards depict improvement or degradation relative to the ERctrl experiment based on verification 
against ECMWF analyses.  
 

 
 

Figure 5 — Scorecards showing percent change in (a) bias, (b) VARR, (c) RMSE and (d) CRPS for the ACAISA experiment 
comparted to ERctrl. Green (purple) circles represent improvement (degradation). Grey shading and bold outline represents 

statistical significance at the 95% level. Maximum percentage change represented by circle size is indicated in the panel titles. 
Scores for individual variables (see Appendix) shown on the vertical axis with forecast lead-time on the horizontal axis. All 

scores computed against ECMWF analyses. 
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Figure 5a shows the percent change in bias between the two experiments computed as: 

 

100 ∗
|𝑒𝑒𝛿𝛿𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖𝑎𝑎𝑏𝑏| − |𝑐𝑐𝑐𝑐𝑖𝑖𝑡𝑡𝑒𝑒𝑐𝑐𝑖𝑖 𝑏𝑏𝑖𝑖𝑎𝑎𝑏𝑏|

|𝑐𝑐𝑐𝑐𝑖𝑖𝑡𝑡𝑒𝑒𝑐𝑐𝑖𝑖 𝑏𝑏𝑖𝑖𝑎𝑎𝑏𝑏|  

 
where | ∙ | represents the absolute magnitude of the bias. Overall, the bias is considerably improved by the 
implementation of ACAI. In the extra-tropics, the improvements are most pronounced in tropospheric 
temperatures (T850) and jet level wind speeds (W250), while in the tropics the most significant impacts 
are on 10m wind speeds (W10m) and 500hPa geopotential height (Z500). In the case of Z500, a decrease 
in bias of more than 30% is shown for all lead-times out to 45-days.  

While the bias has been decreased on average, there are a few areas of significant degradation 
(increase) in the model bias as well. Most notable are the degradations in northern extra-tropical 
geopotential height (NE Z500), tropical tropospheric temperatures (TR T850) and southern extra-tropical 
2m air temperature (SE T2m). Figure 6 shows the true bias for NE Z500 and TR T850 for both the ERctrl 
and ACAISA experiments. In the case of NE Z500, the average bias in both experiments is positive at the 
beginning of the forecast, but quickly decreases and passes through zero in the first few days and remain 
negative until the end of the forecast. Application of the ACAI perturbations appears to hasten the 
negative trend in bias resulting in degraded bias scores in the first half of the forecast (c.f. Figure 5a). On 
the other hand, as the forecast progresses, ACAI is able to slow the negative trend resulting in improved 
bias scores in NE Z500 by the end of the forecast. A somewhat similar response is seen in TR T850 
(Figure 6) which shows that ACAI is able to reduce the negative trend in bias in the ERctrl experiment 
beginning on day-2 of the forecast. However, because the negative trend in the ETctrl is more subtle than 
in NE Z500, the bias in TR T850 appears drastically degraded at the beginning of the forecast 
(particularly days-9, 12, 15 and 18), but results in improved scores in the second half of the forecast (c.f. 
Figure 5a). 
 

 
 

Figure 6 — Comparison of bias as a function of forecast lead-time for northern extra-tropical 500hPa geopotential height (left) 
and tropical 850hPa temperature (right) for the ERctrl and ACAISA experiments. 

 
One of the primary motivations for implementing ACAI in the Navy ESPC model was to improve 

the spread-skill of the ensemble forecasts which is measured here by the ratio of the ensemble variance to 
the bias corrected ensemble mean squared error (or VARR), and Figure 5b shows the scorecard results for 
this metric. The scorecard shows that ACAI is able to improve the spread-skill as early as 3-days into the 
forecast, but is most impactful in the first half of the forecast. The ACAI perturbations continue to be 
impactful in the 2nd half of the forecast in the northern extra-tropics and tropics, but begin to decrease in 
impact in the southern extra-tropics. In some cases, ACAI appears to even degrade the spread-skill in the 
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southern extra-tropics; however, many of these are shown to not be statistically significant. The largest 
and most consistent positive impacts are seen in the tropical regions, with 500hPa geopotential height and 
wind speeds seeing the largest improvements. In particular, the spread-skill in 10m wind speed is 
improved by ~20-30% for the entire 45-day forecast. 

Figure 5c and 5d show the RMSE and CRPS scorecards of the ACAISA experiment respectively. 
In both cases, the largest improvements are see in the tropical regions with the largest impact being on 
Z500, W10m and W250. In all three variables, the largest improvements are on the order of 7.5% and 
10% for RMSE and CRPS respectively. The only degradation in RMSE is in SE T2m and only two of 
these are indicated as statistically significant. CRPS, however, shows a large degradation in TR T2m from 
the outset of the forecast, and even increases in magnitude with forecast lead-time. It has been found that 
the degradation in TR T2m is dominated by a regional degradation focused in the eastern tropical Pacific. 
Variability in the eastern tropical Pacific is dominated by fluctuations driven by the El Nino/Southern 
Oscillation (ENSO) a dominate mode of variability in the global ocean and atmosphere. Given the ACAI 
perturbations in the ACAISA experiment are drawn from an independent year (2011), it is anticipated that 
some of this degradation may be due to an incorrect estimate of the model bias by the mean analysis 
correction. 

Contrary to the static analysis correction archive of the ACAISA experiment, the ACAIMA 
experiment uses analysis corrections from the 60-days prior to the forecast initialization date to compute 
the perturbations in Eq. 4. While it can be anticipated that ACAIMA perturbations will have a more reliable 
estimate of the current model bias, the ACAISA has the advantage of additional information provided from 
a 3-month centered mean used when computing the perturbations. Figure 7 shows scorecard summations 
for the ACAISA and ACAIMA experiments. The two experiments are competitive for the first ~2-weeks of 
the forecast, however; after this point, ACAISA is slightly superior to the ACAIMA. 
 

 
 

Figure 7 — Summation across all scorecard combinations of variable (W250, Z500, T850, W10m, T2m), region (NE, T2, SE) 
and metric (Bias, VARR, RMSE. CRPS) as a function of forecast lead-time for the ACAISA and ACAIMA experiments. Scores are 
computed again ECMWF analyses, and positive (negative) values indicate improved (degraded) performance relative to the ERctrl 

experiment. 
 

While the ACAIMA is not competitive with the ACAISA experiment beyond the week-2, there are 
localized benefits from using a moving archive of analysis corrections. Figure 8 illustrates that the 
ACAIMA experiment drastically reduces the degradation of CRPS in 2m air temperature in the tropical 
east Pacific which is primarily responsible for the degradation of TR T2m shown in Figure 5d. However, 
as can be seen the ACAIMA experiment is not able to improve upon the performance of the baseline 
system. 
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Figure 8 — Comparison of CRPS as a function of forecast lead-time for tropical east Pacific 2m air temperature for the ERctrl, 
ACAISA and ACAIMA experiments. 

 
4.2.2 Integrated vapor transport (IVT) 

In addition to the impact of ACAI on the usual forecast skill metrics presented in the previous 
section, we have also looked at the impact on more unconventional metrics included integrated vapor 
transport (IVT). IVT is often used as a measure by which to define atmospheric rivers (ARs), which are 
major source of extra-tropical water vapor transport and precipitation. Figure 9a and 9b show maps of 
IVT at day-14 in summer-time forecast (JJA) for the baseline ERctrl and the ACAISA experiment 
respectively with large regional difference apparent between the two. Figure 9c shows the difference in 
the absolute value of the bias in the two experiments, and while it is apparent there are comes localized 
increases to the bias by ACAI (shown by red colors in Fig. 9c) ACAI is able to reduce many of the larger 
magnitude biases. The regions of largest impact are the central/western Pacific and central 
Atlantic/Africa. While Figure 9 focuses on the reduction of bias at day-14, ACAI has also been found to 
reduce IVT biases throughout the entire 45-day forecast. 

Lastly, because IVT is dependent on the state of the winds as well as moisture, and because 
ACAI will add perturbations to both of these fields, additional research was focused on understanding 
which component was most responsible of the improvement to the forecasts of IVT. It was found that 
while ACAI is improving the moisture content of the atmosphere, the reduction in IVT biases is 
dominated by improvements to the wind speed. 

The results presented here are part of a forthcoming publication lead by Dr. Carolyn Reynolds of 
the Marine Meteorology Division at NRL Monterey [20]. 
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Figure 9 — JJA IVT bias for (a) ERctrl, (b) ACAISA and (c) absolute value of the IVT bias for ACAISA minus the absolute value 
of the IVT bias for ERctrl for forecast day 14 (kg m-1 s-1). Reproduced from [20]. 

 
4.2.3 Madden-Julian Oscillation (MJO) 

Lastly, we have also evaluated the impacts on ACAI on variables important for forecasting the 
Madden-Julian Oscillation (MJO), an area of high priority for the Navy given its connectivity with global 
weather patterns, particular the development of tropical cyclones. Figure 10b shows differences in mean 
absolute bias, anomaly correlation and RMSE for four such variables evaluated over several of the 
environmental domains shown in Figure 10a and overall the results are very positive. The ACAISA 
experiment is shown to reduce biases in OLR (except in the northern Indian Ocean), wind shear 
magnitude and 850hPa vorticity. However, 700hPa relative humidity biases are shown to be increased by 
ACAI, particularly in the eastern Pacific. As shown in Figure 8, by using a moving archive of analysis 
corrections, degraded performance in eastern tropical 2m air temperatures CRPS scores can be somewhat 
alleviated, and a similar impact of the ACAIMA experiment on 700hPa relative humidity might also be 
expected, though this analysis has not yet been completed.  

The anomaly correlation is improved (increased) for all variables in weeks 1-3 with some 
degradation shown beyond this point. It should be noted that the signal in anomaly correlations in the 
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later weeks is quite noisy and the degradations are typically shown as not statistically significant. The 
values of RMSE are generally improved (reduced) with some isolated increases except for 700hPa 
relative humidity in the eastern Pacific where there is a persistent increase beyond week-3. Again, we 
expect that using a moving archive of analysis corrections (as in the ACAIMA experiment) will help 
reduce the degradation to RMSE brought about by the ACAI perturbations. 

The results presented here are part of a forthcoming publication lead by Dr. Matthew Janiga of 
the Marine Meteorology Division at NRL Monterey which will also aim to include the impacts of the 
ACAIMA experiment. 
 

 
 

Figure 10 — (a) Large scale environmental domains used to compute metrics relevant for tropical cyclones. (b) Difference in 
mean absolute bias (left), anomaly correlation (middle), and RMSE (right) between the ACAISA and ERctrl experiments for 

forecasts initialized in JJASON 2017 for (row 1) OLR, (row 2) 200-850 hPa wind shear magnitude, (row 3) 700 hPa relative 
humidity, and (row 4) 850 hPa absolute vorticity. Line colors correspond to regions shown in (a). 

 
4.3 SKEB 

We also tested the Stochastic Kinetic Energy Backscatter (SKEB) method as an additional 
representation of stochastic error in the Navy ESPC model. Figure 11 shows the variance ratio of the 
SKEB-based experiment compared to the baseline ERctrl experiment. As expected, SKEB is able to 
improve upon the spread-skill of the baseline system. In the case of 500hPa geopotential height, SKEB is 
able to make large improvements within the first few days of the experiment and remains higher than the 
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baseline system throughout the 30-day model forecast. For comparison, the ACAISA experiment is also 
shown in Figure 11. In both panels, SKEB is shown to outperform ACAI during week-1 of the forecast. 
The two methods show similar performance during week-2 of the forecast; however, ACAI outperforms 
SKEB throughout the rest of the forecast. As described in Section 2.3, the implementation of SKEB used 
here was first introduced in the stand-alone NAVGEM system and was tuned for short to medium-range 
forecasts (~14 days) and not the extended range scales used here (30 days). In which case, there may be 
additional gains to be had by re-tuning SKEB for our extended range applications. Furthermore, while 
SKEB only adds perturbations to the wind, ACAI perturbs temperature, humidity and surface pressure in 
addition to the wind, leading to larger perturbation to the system overall. This additional perturbation may 
explain why ACAI is able to outperform SKEB at longer lead-times. 
 

 
 

Figure 11 — Comparison of the globally averaged variance ratio (VARR) as a function of forecast lead-time for 850hPa 
temperature (left) and 10m wind speed (right) for the EDActrl and RTPP/SKEB experiments. 

 
While SKEB was originally implemented in Navy ESPC to increase ensemble divergence, we 

have also found that it can have pronounced impacts on the bias of the system. Figure 12 shows a 
reduction in tropical 10m wind speed biases for the entire 30-day forecast by including SKEB. These 
findings are consistent with prior research describing how additive noise of sufficient magnitude can be 
expected to modify the mean state when applied in non-linear systems [21]. Similarly, it has been found 
that the stochastic portion of the ACAI perturbations have a pronounced impact on correcting systematic 
forecast biases [15]. 

 

 
 

Figure 12 — Comparison of bias as a function of forecast lead-time for tropical 10m wind speed for the ERctrl and SKEB 
experiments. 
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5. CONCLUSIONS 

The presented results illustrate several methods to improve the forecast skill of the Navy ESPC 
ensemble. By applying the RTPP method at the initial time of the ensemble forecast, the ensemble 
variance ratios are able to increase toward the ideal value of 1 (i.e. a perfect match between ensemble 
variance and ensemble mean squared error) as the system cycles (Figure 3). It is also clear that the chosen 
relaxation parameter (𝛼𝛼=0.725) is sufficient to keep the root mean squared errors comparable to the 
baseline system (Fig. 4), which is an important finding given the sensitivity of the forecast skill to this 
parameter value. 

During model integration, application of the ACAI-based perturbations is able to notably improve 
upon all of the forecast skill metrics with the largest impacts seen in the tropical region particularly in 
500hPa geopotential height (Z500), surface level wind speed (W10m) and jet level wind speed (W250) 
(Figure 5). The northern extra-tropics are also generally improved out to 45-days; however, the response 
in the southern extra-tropics becomes neutral (and even somewhat degraded) in the second half of the 
forecast. This is particularly notable in ensemble spread-skill (VARR). We tested two implementation of 
ACAI where the perturbations are drawn from either a static archive of analysis corrections from an 
independent year (ACAISA) or from the 60-days prior to the initialization date of the forecast (ACAIMA). 
In aggregate, the two methods are comparable in their improvement to baseline system in the first ~10 
days; however, beyond this period the ACAISA experiment outperforms ACAIMA (Figure 7). On the other 
hand it was found that the ACAIMA is able to improve upon some of the ACAISA degradations. This is 
illustrated in Figure 8 which shows that the degraded values CRPS in 2m air temperature are less 
degraded relative to the baseline when using the moving archive of analysis corrections. 

It was also shown that the ACAISA experiment is able to improve upon forecasts of integrated vapor 
transport (Figure 9), which is important for its analogous representation of atmospheric rivers. While 
ACAI is able to improve upon both the moisture and wind components of the IVT, the most pronounce 
impact was brought about by correction to the wind fields. Additionally, we find that ACAI also improves 
several forecast metrics of variables important for forecasting the Madden-Julian Oscillation (Figure 10). 
Some degradation is seen in the bias and RMSE values of 700hPa relative humidity; however, it is 
anticipated that the ACAIMA may be able to alleviate some of this degradation which is the topic of 
ongoing analysis.  

Lastly, we find that SKEB is able to improve the spread-skill of the baseline system (ERctrl) out to 
30-days with the largest impacts seen in the first week of the forecast (Figure 11). Comparison against the 
ACAISA experiment indicates the SKEB perturbations also provide greater improvement to the spread-
skill in the first week than the ACAI-based perturbations and is competitive with ACAI through the 2nd 
week of the forecast. ACAI does outperform SKEB beyond the week-2 time frame; however, this may be 
due to the fact that ACAI perturbs additional variables and that the implementation of SKEB used here 
was tuned for short to medium-range forecasts. Interestingly we find that random perturbations introduced 
by SKEB can also modify the mean state in a way to reduce the systematic biases (Figure 12). 

The presented results comparing the impact of ACAI and SKEB on the forecast skill of the baseline 
Navy ESPC system will be part of a forthcoming publication by Dr. William Crawford [22]. 
  



 
16 Dr. William Crawford 
 

 

6. APPENDIX: SCORECARD METICS 
 

Scorecard metrics are computed for three regions including; Northern Extratropics (NE; 20°N-
90°N), Tropics (TR; 20°N-20°S) and Southern Extratropics (SE; 20°S-90°S). For each region, we focus 
on five variables at varying atmospheric heights. These include; 2-meter air temperature (T2m), 10-meter 
wind speed (V10m); 850hPa air temperature (T850), 500hPa atmospheric heights (Z500) and wind speed 
at 250hPa (V250). 
 
6.1 Bias and RMSE 
 

1-degree gridded fields are output from the NAVGEM control and experimental model runs, and 
bias and RMSE are computed at each 24-hour lead time against analyses from the European Center for 
Medium Range Weather Forecasting (ECMWF) provided by the TIGGE archive. Over a particular 
region, the bias and RMSE are computed as: 
 

𝐵𝐵𝑖𝑖𝑎𝑎𝑏𝑏 =  
1
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where 𝑁𝑁𝑝𝑝 is the number of points in the region, and �̅�𝛿𝑝𝑝 and 𝑦𝑦𝑝𝑝 are the ensemble mean and value of the 
ECMWF analysis at point 𝑒𝑒 respectively. ∅𝑝𝑝 is a weighting applied according to the cosine of the latitude 
at point 𝑒𝑒. Bias and RMSE at each forecast lead time are averaged across all available forecasts. 
 
6.2 Continuous Ranked Probability Score (CRPS) 
 

The Continuous Ranked Probability Score (CRPS) is measure of the fit between the cumulative 
distribution functions (CDF) of the forecast and a verifying estimate of truth (here taken as the ECMWF 
analyses provided by the TIGGE archive). A closer fit between the forecasted CDF and the step function 
of the analysis CDF results in a lower value of CRPS with 0 indicating a perfect match. CRPS over a 
particular region is computed as the squared difference in the forecast and analysis CDFs weighted 
according to latitude and averaged across all available forecasts.  
 
 
6.3 Ensemble Spread and Variance Ratio (VARR) 
 
 Over a particular region, the spread in the ensemble is computed as:   
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where 𝑁𝑁 is the number of ensemble members, 𝑁𝑁𝑝𝑝 is the number of points in the region, and 𝛿𝛿𝑝𝑝𝑚𝑚 and �̅�𝛿𝑝𝑝 
are the value of ensemble member 𝑖𝑖 and the ensemble mean at point 𝑒𝑒 respectively. ∅𝑝𝑝 is a weighting 
applied according to the cosine of the latitude at point 𝑒𝑒. The variance ratio (VARR) is then the ratio of 
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the squared ensemble spread (𝜎𝜎𝑒𝑒2) to the bias corrected mean squared error. Spread and VARR at each 
forecast lead time are averaged across all available forecasts.  
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