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Summary

Estimating technology development in support of investment decisions continues to be a formidable challenge 
in the cost community. Design, performance, or technical requirements, which drive traditional parametric 
models or translate analogous system costs, are often unavailable in the early life-cycle stages of basic or applied 
technology development. Often compounding the limited availability of information about the technology is 
the proprietary or protected nature of technology research and development efforts and related intellectual 
property. Restrictions on sharing information contribute to the lack of data, objective models, and methods 
that can be broadly applied in early planning stages.

Scientific, technological, and financial communities are in need of forecast models that enable them to estimate 
new or immature technology developments more accurately. This report investigates cost and schedule 
modeling that leverages macro-parameters generally known or available in early technology development 
stages (as illustrated in Figure S-1).
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Figure S-1. Estimating Methods over the Project Life Cycle

Past Approaches

The approach proposed in this report is not novel. A literature search revealed a variety of proposed and extant 
methodologies. These approaches, however, typically focus on later life-cycle phases, are based on narrow 
technology applications or limited data sets, or require technical inputs that are not available in preliminary 
development stages. The approach described in this report uses wide-ranging and fairly common system-, 
platform-, or application-level parameters as independent predictor variables driving broadly applicable 
technology development cost and schedule forecasts. In addition, this methodology leverages a relatively robust 
data set comprising development project costs and durations along with these common predictor variables.

Other contemporary research addresses methods for estimating early-phase technology development through 
the application of similar common predictor variables. Researchers have proposed or developed various 
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frameworks, analyses, and modeling concepts that apply predictors such as technology readiness levels (TRL), 
system readiness levels (SRL), and integration readiness levels (IRL). These models deliver varying results, but 
most are based on limited data sets, concentrate on select technology areas or applications, and often require 
historical baseline information about the program that is, again, generally unavailable in early research and 
development phases.

Modeling Methodology

The author identified the NASA Technology Cost and Schedule Estimating (TCASE) tool as a resource with 
the desired scope and magnitude of historical cost, schedule, and technical data. TCASE was introduced by the 
Cost Analysis Division at NASA Headquarters, along with SpaceWorks Enterprises, Inc., in early 2013. At the 
core of this tool is an extensive technology database containing over 2,900 project records. These records cover 
fourteen wide-ranging technology areas and a broad scope of applications and systems that are relevant across 
the scientific, military, and intelligence sectors.

The goal of the research was to identify causal variables with which to produce viable models for estimating a 
project’s cost and duration. The author evaluated several data fields as potential predictor variables, including 
system hierarchy (SH) level (1–5); TRL at the project’s start and completion (1–9); research and development 
degree of difficulty (RD3) (levels I–V); technology area (TA1–TA14); key performance parameters; total 
full-time equivalents (FTEs) of project labor; capability demonstrations; and certain system characteristics. 
However, due largely to limited data field records, predictor variable selections had to be restricted to two 
measures: TRL and SH.

Parsing the TRL start and end (TRL X–Y) metrics and assessing initial data relationship screening (see 
Appendix B) revealed that the quantity of available data points was inadequate to provide the statistical 
significance required. Instead, the author investigated a different metric, namely TRL level improvement from 
a project’s start and end, often referred to as the TRL transition metric. The author selected TRL improvement 
(TI) level, measured as the project’s net TRL level increase over its development time frame, based on this 
metric’s improved sample sizes and initial screening results. This analysis revealed that nonlinear behavior was 
evident in both TI and SH cost and schedule relationships.

To provide a diversity of perspectives for cost and schedule estimating, the author examined a comprehensive 
set of model forms, including tailored curve fit models, simple and multiple regression models, and a range 
of nonlinear models. The author also explored various data transformations for all regression models. The 
author then applied model selection criteria to model results, including a comprehensive set of statistical key 
performance measures (KPMs), additional measures tailored or relevant to particular model forms, and an 
overall assessment of the goodness of fit to sample data.

Model Performance Results

The author evaluated several hundred cost models, with a few curve fit and multiple regression models 
providing the best results. Research determined that SH level appears to impact cost somewhat moderately 
up to SH level 4, above which point the impact becomes prominent. Therefore, for system-level technology 
developments, models containing the SH level variable are most suitable. Below the system level, the TI level 
is more dominant, and models containing the TI level parameter will more effectively explain model response 
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behavior. However, if planned SH and TI levels are known, multivariate models applying both predictor variables 
may improve model performance, since these variables address both scalar (including scalar complexity) and 
technical dimensions. Schedule modeling produced more limited results, with effective SH-based duration 
curve fits.

Future Work

If the TCASE database can be expanded or other data sources leveraged for key response and predictor 
variables like RD3, technology area, and capability demonstrations, model functionality and accuracy might 
be improved and output variability reduced. In addition, other macro cost and schedule parameters that may 
augment forecasting in early-stage technology development include advanced degree of difficulty; SRL; IRL; 
implementation readiness level; and manufacturing readiness level. Broad-based technology performance or 
complexity factors, however, may hold the greatest potential to complement the models presented in this 
report. Leveraging these types of metrics to better integrate cost and schedule modeling with technology 
road mapping, early systems engineering, and conceptual design efforts should help generate more consistent 
development estimates. More accurate and consistent estimates can further lead to better investment and 
design decisions with greater cost impact early in the project life cycle.
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Industry and government models, tools, and 
contemporary research were explored for 
solutions to formulate cost and schedule 

estimates that enhance investment decision-making 
in early-stage technology development. This 
investigation revealed a variety of proposed and 
existing methodologies. These solutions, however, 
focus on later phases in the project life cycle, are 
based on narrow technology applications and limited 
data sets, or require technical inputs that are typically 
not available in preliminary development stages. 
Estimators need common or wide-ranging system-, 
platform-, or application-level parameters to serve 
as independent predictor variables and drive cost 
and schedule forecasts when little engineering or 
performance information is available, potentially 
even before conceptual design has commenced. 
Therefore, the investigation included a search for 
applicable source data and modeling approaches to 
address a range of technologies applying macro-level 
cost and schedule drivers available in the initial 
planning and research stages of a development 
program. This examination was intended to assess 
existing solutions as well as to identify a relevant data 
set, select parameters, and develop methodologies to 
produce viable models for broad-based estimating 
early in the technology development life cycle.

Background—Literature, Model, 
and Source Data Search
In preconceptual and early conceptual stages of  a 
development project, design and performance 
information typically applied in traditional 
parametric cost and schedule models is usually very 
limited. Key attributes of such models often focus 
on subsystem- or unit/assembly-level characteristics 
or performance metrics that have not yet been 
determined in these preliminary stages. Therefore, 
macro-level parameters must be applied at a broader 
system or platform level. Investigations of estimating 
across the project life cycle have identified this 
phenomenon, as illustrated in Figure 1.

Government and industry databases, repositories, 
and models were investigated for possible estimating 
solutions and applicable technology development
project information. This search considered 
leading commercial parametric cost estimating and 
analysis tools, such as PRICE TruePlanning and
the Galorath SEER tool suite. Other tools tailored 
to estimating the development phase, such as the 
Constructive Technology Development Cost Model 
(COTECHMO)1 were also explored. Commercial 
tools offer robust cost knowledge bases and are 
driven by cost and schedule estimating relationships 
that can be highly tailored or calibrated to a 
particular application, platform, or environment. For 
instance, the COTECHMO Resources (labor effort)
and Direct Cost (hardware) models are based on a 
comprehensive list of cost drivers such as resource 
size, effort, complexity, process, and hardware
requirements. The underlying algorithms within these 
parametric models, however, require detailed and 
sometimes extensive technical design, configuration, 
performance, and complexity metrics that are not 
usually available in initial development stages.

Also conducted was a literature search for 
contemporary research describing models and 
methods for estimating technology projects in 
early phases of development. Various frameworks, 
analysis, and modeling concepts have been 
proposed or developed, including the application of 
metrics based on technology readiness level (TRL). 
These papers and models offer insightful analysis, 
methods, and considerations for using TRL and 
other metrics to drive cost and schedule estimating 
for technology development programs. Approaches 
include a comprehensive four-level assumptions-
based framework2 and several TRL-based cost and 

1 Mark B. Jones et al., “COTECHMO: The Constructive
Technology Development Cost Model,” Journal of Cost Analysis
and Parametrics 7, no. 1 (2014): 48–61.
2 Bernard El-Khoury and C. Robert Kenley, “An Assumptions-
Based Framework for TRL-Based Cost and Schedule Models,”
Journal of Cost Analysis and Parametrics 7, no. 3 (2014): 160–179.
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schedule models or empirical-based functions.3

Methodologies using system readiness level (SRL) 
and integration readiness level (IRL) expanding on 
TRL modeling concepts have also been introduced.4

Current models deliver varying results, but most are 
based on limited data sets or concentrate on select 
technology areas or applications. These models are 
often driven by historical baseline information about 
the program or metrics that are, again, not generally 

3 Edmund H. Conrow, “Estimating Technology Readiness 
Level Coefficients,” in Proceedings of the AIAA SPACE 2009 
Conference & Exposition, 1–9 (Reston, VA: AIAA, 2009); Jason 
Hay et al., “Evidence for Predictive Trends in Technology 
Readiness Level Transition Metrics,” in Proceedings of the AIAA
SPACE Conference and Exposition, AIAA 2013-5369 (Reston, VA: 
AIAA, 2013); Jones et al., “COTECHMO”; Patrick Malone et al., 
“The Application of TRL Metrics to Existing Cost Prediction 
Models: A Practitioners Guide to Applying Cost Correction 
Factors to Technology,” in Proceedings of the 2011 Aerospace 
Conference, 1–12 (Piscataway, NJ: IEEE, 2011); and H. Philip 
Stahl et al., “Single-Variable Parametric Cost Models for Space 
Telescopes,” Optical Engineering 49, no. 7 (2010): 073006.
4 Brian Sauser et al., “A Systems Approach to Expanding the TRL
Level within Defense Acquisition,” International Journal of Defense
Acquisition Management 1 (2008): 39–58; and Brian Sauser et al.,
“From TRL to SRL: The Concept of Systems Readiness Levels,”
in Proceedings of the Conference on Systems Engineering Research, 
paper 126 (Los Angeles: Conference on Systems Engineering
Research, 2006).

available in early research and development phases. 
Various governmental repositories, databases, and 
models also exist but usually focus on the procurement 
and/or operations and support phases, and access is 
generally restricted. In other papers, researchers have 
also recognized the lack of available cost models 
or studies for forecasting technology development 
efforts, especially at the initial development stages.5

Except for certain technology-specific or propri-
etary forms, industry and government solutions 
designed to drive forecasts for early-life-cycle 
research and development projects with general 
technology applications have consequently not been 
readily available.

Data Resource
This investigation identified a key resource with 
sufficient scope and extent of historical cost, 
schedule, and technical data to enable generation of 
broad-based technology development models. The
NASA Technology Cost and Schedule Estimating 

5 Richard Curran, Srinivasan Raghunathan, and Mark Price,
“Review of Aerospace Engineering Cost Modeling: The Genetic
Causal Approach,” Process in Aerospace Sciences 40, no. 8 (2004):
487–534; Hay et al., “Evidence for Predictive Trends”; and Jones
et al., “COTECHMO.”
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Figure 1. Estimating Methods over the Project Life Cycle
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(TCASE) tool was established partially in response 
to the NASA cost community’s findings from the 
2011 Cost Symposium. The community concluded 
that there is “no known good method to estimate
the cost of Technology Readiness Level (TRL) 
advancement that is supported by actual data.”6

In response, the Cost Analysis Division at NASA 
Headquarters and SpaceWorks Enterprises, Inc., 
developed and introduced the TCASE beta version 
in early 2013. TCASE is a unique resource with a
large project repository containing vital technology 
development information.

At the core of this tool is an extensive technology 
database containing over 2,900 project records and 
covering fourteen wide-ranging technology areas, 
with up to 164 available data fields. The resident 
project data was extracted from over seventy 
sources of historical information on technology 
projects, including an array of databases, records, 
repositories, and portfolios, across NASA centers/
directorates, missions, programs, and technologies. 
NASA investigates, researches, and develops an 
expansive range of technologies, going well beyond 
just space and flight systems. The TCASE data set 
contains information germane to both cost and 
schedule modeling for a broad scope of platforms, 
applications, and systems that are relevant across 
the scientific, military, and intelligence sectors. This 
tool was therefore selected as the data source for 
generation of the technology development cost and 
schedule models presented below.

Modeling Approach
An incremental process was applied to identify, 
screen, and select key source data for causal 
relationships to cost and schedule. Independent 
predictor variables and dependent response variables 
were then investigated, and primary project data 

6 Stuart K. Cole et al., Technology Estimating: A Process to
Determine Cost and Schedule of Space Technology R&D, NASA/
TP–2013-218145 (Washington, DC: NASA, 2013), 3.

sets relevant to each independent variable were 
identified, filtered, and normalized. Finally, a 
comprehensive field of model forms was developed 
and performance evaluated based on the strength of 
association between predictor and response variables 
and closeness of fit to the underlying sample data.

Key Data Selection

A key challenge to modeling technology development 
efforts that  are early in their life cycle is finding 
common system or project requirements, attributes, 
and parameters that drive cost and schedule and are 
readily available. These attributes must be general 
or fundamental enough to apply across technology 
areas but do not require a level of conceptual or 
engineering design analysis that has not yet been 
performed. Available TCASE project data fields were 
assessed as possible independent model parameters 
and dependent cost and schedule response variables. 
The dependent cost variable selected from the TCASE 
database is the Total Cost ($)7 field, which contains 
the Total Project Costs normalized to government 
fiscal year  2015 dollars (FY15$). For schedule 
analysis, an overall Project Duration (months) field 
was created using the net difference in months 
between the available  project Start Date and End 
Date database fields.

In parametric estimating, variables that relate to size or 
scale, performance, and complexity are often leading 
drivers of cost and schedule. These basic relationships 
are often found in various estimating applications, 
including a broad range of weapon system platforms 
(e.g., sea, air, space, and land based), information 
technology systems, and standalone hardware and 
software development programs. Analysis of the 
available project attribute data fields for possible 

7 Defined in the NASA TCASE tool as total dollars required
to complete a technology development project. This cost is
provided by year and represents the total cost of labor, materials,
travel, testing, equipment, etc. and also includes (and separately
identifies) any facilities and infrastructure capital investments
made as part of the research project.
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predictor variables was performed in anticipation of 
the development of stochastic, parametric-based cost 
and schedule models. From an initial review of the 
available data fields, principal candidates showing 
the greatest potential as predictor variables for cost 
and schedule included the following:8

 • System hierarchy (SH) level (1–5)

 • TRL at the project’s start and end (1–9)

 • Research and development degree of difficulty 
(RD3) (levels I–V)

 • Technology area (TA1–TA14)

 • System characteristics

 • Key performance parameters (KPPs)

 • Total full-time equivalents (FTEs) of project labor

 • Integral capability demonstrations

In surveying the available data within the target data 
set, it was discovered that many of the database fields
were too sparsely populated to provide significant 
sample sizes.9 Unfortunately, this eliminated the 
RD3, system characteristics, KPPs, and capability
demonstration variables as possible contenders.
Also, insufficient data when deconstructing records 
into the fourteen technology areas prohibited 
effective application of that variable. For this 
investigation, total project labor in FTEs was also 
not considered a practical parameter to effectively 
contribute to the analysis because (1)  labor is
driven by requirements and, therefore, more of an 
outcome than a causal factor; (2) labor resources are
essentially already included in or captured by the 
more comprehensive Total Project Costs response 
variable; and (3)  the mix of labor resources and
corresponding burdened labor rates can vary widely

8 For definitions of NASA SH levels, TRL levels, RD3 levels, and 
technology areas, see Appendix A.
9 According to the central limit theorem, sample sizes of thirty
observations are generally considered desirable for the normality
assumption of means.

by project, distorting the affiliation with cost and 
schedule. TRL and SH levels at the project’s start 
and end were therefore the remaining parameters 
available for analysis as potential predictor variables.
Other variables were also formulated for analysis, as 
described in the Schedule Forecast Models section 
and in Appendix B.

Data Modeling

The Total Cost and Project Duration response 
variables are continuous quantitative variables, yet 
both the TRL and SH level predictor variables are 
discrete ordered categorical values. Categorical 
variables that have more than two categories are 
often measured on an ordinal scale so that the 
characteristic or property described by the category 
levels or class (i.e., 1 through K) can be considered 
as ordered, but not as equally spaced. This is the case 
with both TRL and SH levels, as determination of 
those levels can involve various subjective criteria 
that span a wide range of scale and complexity both 
between and within categories. Traditional linear 
regression models, however, make no distributional 
assumptions about the independent predictor 
variables. Consequently, ordinal variables must be 
interpreted carefully when large interval variance 
between class rankings is possible. Fortunately, 
statistical analysis tools solve this potential issue by 
employing a regression technique that leverages the 
ordinal interval values.

Ordinal response variables have been substantially 
investigated in regression modeling, but there is 
less research on ordinal predictors. Anderson notes 
that there are two major types of ordinal categorical 
predictor variables: grouped continuous variables 
and assessed ordered categorical variables.10

Researchers have suggested various techniques for 
modeling ordinal predictor variables (e.g., qua-

10 J. A. Anderson, “Regression and Ordered Categorical
Variables,” Journal of the Royal Statistical Society Series B 46, no. 1
(1984): 1–30.
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dratic penalization regression, ridge reroughing, 
and five-point Likert scales),11 but no definitive 
method or approach was identified in the literature. 
Nevertheless, ordinal qualitative measures are 
ordered, and for technologies, this progression 
can be driven by certain underlying development 
structures, known or unknown, such as architecture, 
functionality, complexities, common development 
processes, and support activities. As a result, a 
quantitative relationship can exist that can be 
modeled between an ordinal scale (or the variability 
in such a scale) and continuous numeric parameters. 
Since this relationship is not necessarily or even 
likely to be linear in nature, data transformations, 
coefficient/correction/adjustment factors, and non-
linear functions are often applied to normalize 
ordinal values to account for the variability in cost 
and schedule modeling.12

The graduated SH category levels were converted
into ordinal values 1–5, and those were named 
the SH rank for model development and testing as 
follows:

(1) Hardware/software/material end item

(2) Component

(3) Assembly

(4) Subsystem

(5) System

11 William D. Berry, Understanding Regression Assumptions, 
Quantitative Applications in the Social Sciences Series 
(Newbury Park, CA: Sage, 1993); Jan Gertheiss and Gerhard 
Tutz, “Penalized Regression with Ordinal Predictors,” 
International Statistical Review 77, no. 3 (2009): 345–365; 
and Nick Stauner, February 21, 2014, response to “Effect 
of Two Demographic IVs on Survey Answers (Likert 
Scale),” CrossValidated, http://stats.stackexchange.com/
questions/86923/effect-of-two-demographic-ivs-on-survey-
answers-likert-scale.
12 Conrow, “Estimating Technology Readiness Level Co-
efficients”; Malone et al., “The Application of TRL Metrics”;
and Roy E. Smoker and Sean Smith, “System Cost Growth
Associated with TRL,” Journal of Parametrics 26, no. 1 (2007):
8–38.

TRL Levels—Background

TRL levels were conceived at NASA in 1974 and
formally defined in 1989. Mankins13 described the
current nine-level system, which identifies the matu-
rity of a technology based on qualitative criteria of capa-
bilities and achievement or demonstration of related
key milestones (see Appendix A). The Government
Accountability Office (GAO) subsequently encour-
aged the Department of Defense to apply TRLs as a
systematic method for assessing technology matu-
rity. In this same report, GAO recommended that a
weapon system achieve a minimum of TRL 7 before
the department would commit to its development and
production.14 In 2009, the Department of Defense
adapted the NASA TRL definitions for military
acquisitions,15 and other federal agencies have also
adopted the use of TRL metrics for managing new
technology development and acquisitions, including
the Department of Homeland Security16 and the
Department of Energy.17 In 2016, the GAO also devel-
oped a Technology Readiness Assessment Guide that
contains best practices for evaluating the technology
readiness in acquisition programs and projects.18

13 John C. Mankins, Technology Readiness Levels (Washington,
DC: NASA, 1995).
14 US General Accounting Office, Best Practices: Better 
Management of Technology Development Can Improve Weapon 
System, Report to the Chairman and Ranking Minority Member, 
Subcommittee on Readiness and Management Support,
Committee on Armed Services, U.S. Senate, GAO/NSIAD-99-162 
(Washington, DC: GAO, July 1999).
15 Director, Research Directorate, Office of the Director, Defense
Research and Engineering, DoD Technology Readiness Assessment 
(TRA) Deskbook (Washington, DC: Department of Defense, 
July 2009).
16 Homeland Security Institute, Department of Homeland Security 
Science and Technology Readiness Level Calculator (ver. 1.1): Final 
Report and User’s Manual (Washington, DC: Department of 
Homeland Security, September 30, 2009).
17 Ruben Sanchez, Technology Readiness Assessment Guide, DOE
G 413.3-4A (Washington, DC: Department of Energy, September 
2011).
18 US Government Accountability Office, Technology Readiness
Assessment Guide: Best Practices for Evaluating the Readiness of
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Metrics associated with TRL at a project’s start to end 
are sometimes referred to as TRL transition metrics. 
Empirical research and studies applying TRL metrics 
to cost and schedule have been relatively sparse, 
with somewhat inconsistent results. Models have 
generally been based on small and often selective 
data sets for narrow technology areas, resulting in 
relatively weak data relationships. Some studies have 
developed relative measures of cost or schedule, 
such as cost growth, relative transition cost, and 
schedule slippage probability growth. Application of 
these models, therefore, usually requires a baseline 
estimate or actual project history, such as actual 
early-program TRL transition cost or schedule 
experience. Forecasts, however, are typically required 
to gain approval at project start-up, and even fewer 
studies have produced absolute measures of cost or 
schedule necessary to produce these early estimates.

Macro-level predictor variables like TRL- and SH-
related metrics do not replace the fidelity achievable 
through a more detailed analysis using traditional 
design-, performance-, and complexity-related 
cost and schedule drivers. They can, however, be 
effective proxies to capture the broad impact of those 
direct relationships when detailed level metrics are 
not available. SH levels largely address scale- and 
complexity-related development factors, while the 
progression of TRL levels embodies the maturity of 
a technology. Individually, TRL and SH parameters 
do not directly explain all cost or schedule variability; 
however, when modeling at the total development 
cost or duration level, they are effectively assigned 
and reflect the aggregate range and variability found 
in the dependent response variable. Underlying 
engineering design characteristics, performance 
parameters, and complexity factors that drive cost 
and schedule at lower subsystem or unit/assembly 
levels can therefore be reflected in models applying 
macro-level variables, albeit at a more aggregate level. 
Multivariate modeling applying a combination of 

Technology for Use in Acquisition Programs and Projects, GAO-
16-410G (Washington, DC: GAO, August 2016).

macro variables may also add predictive value if the 
variables have complementary causal relationships 
that do not overlap significantly (as evidenced by the 
presence of substantial multicollinearity).

Preliminary Data Relationship Screening

Unlike SH levels, which are straightforward, there 
are thirty-six possible project start and end TRL 
(i.e., TRL X–Y) combination pairings for TRL 1–9.19

Even though the overall TCASE data set is relatively 
large, after the sample was parsed into the thirty-six 
combinations, only a few categories contained enough 
observations (i.e., individual projects) for sample 
sizes to be considered “large” or significant. Curve fits 
of TRL X–Y transitions for both cost and schedule 
also produced inconsistent results (Appendix  B). 
Therefore, another method was necessary to provide 
a more complete solution and extend the analysis 
to leverage the available TRL transition data in 
the database. The TRL project information was 
aggregated into larger, more robust data sets by 
applying a parameter to capture the overall increase 
in TRL level from project start to end. This measure, 
named TRL improvement (TI) level (sometimes 
referred to as TRL transition order20), was selected for 
evaluation. The TCASE database provided enough 
project data to evaluate the breadth of TI level data 
(i.e., levels 1–5).21 See Appendix B for more on the 
application of TI level as a predictor variable.

For the initial evaluation of possible associations 
between selected dependent and independent vari-
ables, scatterplots, correlation/summary statistics, 
and ordinal-level cost and schedule metrics and charts 
were assessed. These initial screening results are 

19 The  nth triangular number, or terminal function, for an
interval range of 8 (i.e., 1–9) is (n2 + n) / 2 = (64 + 8)/2 = 36.
20 For example, a TI level of 2 is also known as a second-order 
transition, a TI level of 3, a third-order transition, etc.
21 Only a few records with TI level above 5 were found. Large TI
progressions greater than 5 in a single project, therefore, appear
to be rare as part of a single project/effort; however, they may also
be modeled by integrating lower-level TI steps in series.
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presented in Appendix B for both cost and schedule 
parameters. Summary statistical plots extracted from 
those analyses are presented in Figures 2–5 to provide 
a general understanding of the relationships between 
predictor to response variables. See Appendix B for a 
more in-depth discussion of the preliminary analyses 
of these data relationships.

Cost Forecast Models

The direct nature of the relationship of cost to TI level 
is evident from a column chart showing the average 
total development costs by level (Figure  2). Cost 
growth appears to be relatively nonlinear, increasing 
at a factor of approximately three between successive 
TI levels 1–4 and tapering off somewhat at level 5.

A chart of average total development costs by SH 
level (Figure  3) also demonstrates the progressive 
nature of cost, yet with more gradual growth at 
lower tiers and a dramatic increase of nearly an 
order of magnitude at the system tier (level 5). This 
pattern suggests a nonlinear, possibly exponential, 
relationship of project cost to SH, with relatively 
moderate impact until reaching the system level 
(i.e., level 5). As with TRL-related metrics, since SH 
is an ordinal variable, this steep cost surge could 
be attributable to various nonlinear quantitative or 
qualitative factors. For instance, the number of major 
subsystems found within a system, as well as other 
effects like the integration, testing, demonstrations, 
and communications activities that can escalate and 

compound significantly at higher levels of complex 
systems, could drive this substantial growth.

Based on initial results, various cost models in 
univariate and multivariate forms were developed as 
a function of these two key parameters: Total Project 
Costs = f {TI, SH, constant term}.

Schedule Forecast Models

For schedule forecast models, preliminary assessments 
looked at the strength of possible data relationships 
to the Project Duration (months) response variable, 
created as a data field for analysis. The column chart 
in Figure 4 suggests that the mean project duration 
may have a direct functional relationship with SH 
level, similar to cost and SH level.

Finally, to assess the relationship between TI level 
and schedule, see the column chart of average project 
duration by TI level shown in Figure 5. Unlike with 
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SH level, a continuous functional association with TI 
level is not indicated, with the relationship peaking 
and then trailing off at level 3.

Despite the lack of strong initial results, various 
schedule models were developed to enable more 
thorough assessment of project duration. The Project 
Spend Rate (average $/mo.) variable, described in 
Appendix B, was also crafted specifically to enhance 
the project duration analysis. Univariate and 
multivariate forms of the three predictor variables 
were again applied: Project Duration (months) = f {TI 
level, SH level, Spend Rate, constant term}.

Data Set Construction

To determine whether TCASE records were 
applicable or appropriate for additional analysis, they 
were evaluated based on several factors. This process 
involved screening and filtering records containing 
estimated costs (versus actual22 historical costs) 
and data fields that were blank or contained values 
of zero. Three primary data sets emerged, centered 
on records with populated fields for the targeted 
independent variables. These data sets were used in 
the analysis of both cost and schedule models.23

22 Defined in the NASA TCASE tool as data collected from 
realized historical technology development projects.
23 Project start or end dates were not available for all records in
each data set, so there were slightly fewer available records for
schedule duration modeling.

(1) SH levels 1–5 record set: The available 
observation count was 603 for cost models and 
551 for schedule models.

(2) TI levels 1–5 record set: The available 
observation count was 405 for cost models and 
395 for schedule models. (Note that only a few 
records above TI level 5 were found, so this is a 
rare phenomenon and data at this level were too 
sparse to evaluate.)

(3) Combined SH and TI level record set (for 
multivariate models): The available observation 
count was 221 for cost and schedule models.

Note that all project outcomes may not be captured 
within the available data set, including canceled 
or nonproductive projects (i.e., those that did not 
end with improved TRL levels) with associated 
sunk costs. Over one-third of the available project 
records showed no TRL improvement. It is not 
clear whether this subset includes all terminated, 
failed, or unsuccessful projects during the period 
in which source data were collected, but this rate 
suggests that a significant amount, if not most, of 
the initiated projects were included. To factor the 
expected costs of project cancellation or failure 
effectively, probability-based outcomes and related 
costs would need to be added to the forecasted cost of 
each project. Since these costs are probability based, 
similar to certain contingency or opportunity costs, 
their interpretation and allocation can be somewhat 
subjective. For singular development efforts, these 
costs are only realized or incurred if the project is 
actually terminated, and therefore they are not direct 
costs relevant to successful projects. Consequently, 
most individual project cost models do not consider 
expected termination or failure costs, and these costs 
are not factored into models presented here. They are, 
however, well suited when more broadly analyzing 
risk or planning investments for portfolios with 
multiple programs, and they may be a good topic for 
further study.
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Core Model Development

To provide a diversity of perspectives for cost and 
schedule estimating, a variety of modeling techniques 
were examined. This approach explores the range of 
relationship types and uncertainty expected across 
the response variables as well as potential interval 
variance between predictor categorical levels. Several 
applicable modeling forms were investigated and 
assessed for their overall performance, including the 
following:

• Tailored curve fit models

 • Simple regression models

– Single predictor

 – Composite variable (i.e., product of predictor 
variable terms)

– Transformed independent variable (single 
and composite variable transformations)

 • Multiple regression models

– Multiple predictor

 – Transformed multiple predictor variables

• A range of nonlinear models

TI- and SH-based probability density function (PDF) 
cost curve fit models were first produced. To create 
these curve fits, the range of dependent variable 
sample data values across each predictor category/
level were “fit” to a library of possible probability-
based distribution functions using a distribution 
fitting utility and standard fit measurement
techniques. These functions (or families of functions) 
included beta, chi-square, Erlang, exponential, 
gamma, inverse Gaussian, Levy, loglogistic,
lognormal, Pareto, Pearson, program evaluation 
and review technique (PERT), Raleigh, triangular, 
uniform, Weibull, and others. A distribution fit utility
was applied initially to down-select higher-per-
forming functions by using the following commonly 
applied goodness-of-fit statistical significance 
methods/techniques:

 • Akaike information criterion

 • Bayesian information criterion

 • Kolmogorov–Smirnov

 • Anderson–Darling

 • Chi-square tests

Functions or curves with the best results across these 
techniques were finally selected considering key 
statistical metrics versus the sample data, such as fit 
of the estimate mean, a commonly applied budget 
and planning forecast range between the fiftieth 
(i.e., median) and eightieth percentiles, the standard 
deviation, and distribution shape characteristics 
(kurtosis, skewness, etc.).

Univariate and multivariate linear regression model 
forms were then developed. Linear model forms may 
seem contrary to the nonlinear behavior between 
predictor and response variables exhibited in the 
initial data relationship screening. However, the 
regression engine for the statistical analysis tool 
(SAS  JMP) codes and interprets ordinal predictor 
variables differently than it does continuous or 
nominal factors. Parameter estimates use indicator 
variables based on the response differences between 
the ordinal tiers in development of least square 
functions, making nonlinear output for variable 
intervals possible across the ordinal range.

In addition, various nonlinear data transformations 
were also explored for both predictor and response 
variables to identify potential cost and schedule 
relationships. For every regression model form, up 
to eleven data transformation types were evaluated 
for each independent predictor and dependent 
response variable combination. These transformations 
included log, square, square root, exponential, 
reciprocal, logistic, and other data conversions. For 
both cost and schedule models, composite forms 
created by merging predictor variables into a single 
product variable (i.e., TI level × SH level) were also 
considered. Multiple regression cost and schedule 
models similarly examined a combination of TI and 
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SH level predictor variables with transformations, 
yielding expressions with coefficients for each ordinal 
level. Finally, nonlinear models were investigated, 
assessing up to twenty-one different forms for each 
predictor variable, including various polynomial, 
sigmoid, and logistic curves as well as exponential 
and peak models.

Preliminary analysis of both cost and schedule 
models investigated numerous candidates across the 
range of modeling techniques. For cost modeling 
alone, a broad field of several hundred initial model 
candidates was explored, from which approximately 
forty different variants demonstrated some strength 
of association to cost. This field was further narrowed 
to approximately a dozen viable models delivering the 
best overall performance across the range of model 
forms. Similarly, schedule models were developed 
and assessed using the range of curve fit regression 
and nonlinear forms. As with cost modeling, a variety 
of data transformations, composites, and variants 
were examined.

Modeling Uncertainty

Once final model solutions were selected, uncertainty 
was applied to produce risk-adjusted estimates, and 
models were assessed for overall fit. This step was 
intended to help convey an understanding of cost 
risk across the possible range of model output. Since 
uncertainty is inherently built into curve fits, the 
actual sample data PDFs provide a perspective of 
expected ranges around predictor variable levels for 
both project cost and duration.

For the linear regression and nonlinear cost modeling 
techniques, to develop risk-adjusted estimates 
around response variable functions, commonly
applied cost uncertainty distribution functions were 
investigated. This process included an evaluation 
of normal, lognormal, PERT, and triangular forms 
where the underlying inputs necessary to drive those 
functions (e.g., sample mean, min, max, mode, and 
standard deviation) were readily available. PERT 

and lognormal functions were considered superior
to normal curves since these functions more 
closely replicated the right-skewed actual sample
data distributions than the symmetrical normal 
distributions.24 Lognormal and PERT functions also 
delivered more natural, continuous distributions 
within a relevant planning range25 and had less of 
a tendency to overemphasize the direction of skew 
than with noncontinuous triangular distributions.

The lognormal function performed best across 
ordinal curve fits and also closely resembled the other 
high-performing gamma and loglogistic functions 
(see Table 2 on page 13). Therefore, the lognormal 
function correlated well with the right-skewed sample 
data and was selected to develop model uncertainty 
distributions for the linear and nonlinear models.

Model Selection Criteria—Measures 
of Performance
Overall model performance was evaluated based on 
best-fit-type characteristics, including the following:

 • A comprehensive list of statistical key performance 
measures (KPMs) provided below

 • Additional measures tailored or relevant to 
the particular model form (e.g., curve fit 
goodness-of-fit statistical methods)

 • An overall assessment of the predicted model’s 
fit to the sample data using statistical benchmark 
metrics and methods previously mentioned26

24 See the Cost Model Performance section and Appendixes B, C, 
and D for some sample data distributions, resulting curve fits, and 
discussion of right-skewed uncertainty distributions common to 
cost and schedule estimating.
25 A normal planning range for investment or budgeting
decisions generally falls within the fiftieth to eightieth percentile, 
depending on factors such as the expected level of overall risk or 
cost growth.
26 These metrics include fit of the predicted versus sample data
values for the mean, a commonly applied budget and planning
forecast range of the fiftieth (i.e., median) to eightieth percentile,
the standard deviation, distribution shape characteristics
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Statistical metrics were assessed at predictor variable 
ordinal levels when possible (versus at the aggregate 
model level) when doing so afforded greater fidelity 
for any measure.

Relevant KPMs applied for initial model screening 
include the following:

 • Error variability and dispersion measures

 – Coefficient of determination (R2 and 
adjusted R2)

 – Root mean square error (RMSE)

 – Coefficient of variation (CV)

 • Statistical significance measures

 – F-ratio

 – t-stat (percent of model terms with probability 
greater than |t|)

 • Autocorrelation measure

 – Durbin–Watson test

 • Data reduction measure

 – Percent of original data sample set unused

See Appendix  E for detailed descriptions of these 
statistical measures.

To assess overall performance, KPMs plus other 
performance measures applicable to or available for 
each particular model form were applied. For instance, 
several of the regression-related performance 
categories do not apply or are not available for the 
curve fit or nonlinear models. Curve fit models 
were assessed based on the five goodness-of-fit 
methods/techniques previously introduced (Akaike 
information criterion, Bayesian information crite-
rion, Kolmogorov–Smirnov, Anderson–Darling, 
and chi-square tests), applicable KPMs (RMSE, CV, 
and percent of data reduction metric), and also the 
key data statistics described above. For nonlinear 

(kurtosis, skewness, etc.), and graphical methods such as plots of
residuals and model forecasts versus actual sample data.

models, available KPMs (R2, adjusted R2, RMSE, 
CV, and percent of data reduction) and the key data 
statistics were used to gauge the closeness of fit. 
Multicollinearity was also evaluated for multivariate 
model forms by applying the variance inflation factor.

Cost Model Performance
This section describes the performance of the 
various models that were evaluated, beginning with 
overall results and then moving to categorical model 
form results for curve fit cost models, simple linear 
regression cost models, multivariate linear regression 
cost models, and nonlinear cost models. Response 
variable output for all final cost models, including 
the multivariate forms, key data benchmarks, 
regression results, functional prediction expressions, 
and uncertainty functions with corresponding PDF 
graphs, may be available on request.

Overall Results

Table 1 shows a cross section of the higher-performing 
cost models for each type, based on just the assessed 
KPM category ratings. This cross section includes 
two curve fit model series (TI and SH), four simple 
regression models (two TI and two SH), three 
multivariate models, and four nonlinear (two TI 
and two SH based) models. Color-coded ratings 
are notional and are simply intended to assist 
with relative model comparison. Closeness of fit 
to the source data and other applicable statistical 
techniques were also applied to judge model 
performance. The resulting cost models produced 
progressive cost variable responses with largely 
favorable performance statistics. In general, costs 
increased steadily across predictor variable levels 
and were amplified significantly at the system level 
(SH  5) and higher TI levels (4–5). Intuitively this 
makes sense, as critical scale and complexity factors, 
along with related process and resource impacts (e.g., 
technical, functional, organizational), can magnify 
or compound dramatically at the higher tiers. For 
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system-level (SH  5) technology developments, it 
appears essential to apply SH level variable models 
but much less important below level  5, based on 
relationship screening (Appendix  B) and 
the detailed results in the models shown in 
Table 1.

Multivariate regression models (numbers 
7, 8, and 9) performed best based solely 
on KPMs. However, curve fit models 
(numbers 1 and 2) most tightly replicate 
the central values of the underlying 
sample data, as illustrated in the plots in 
Figures  6 and 7.27 This may be because 
curve fits are individually tailored to each 

27 Plot lines between ordinal levels (SH or TI) do
not represent continuous functions and are simply
provided to better discern transitions between model
ordinal levels and track the closeness of model values
with sample data (typical for all ordinal graphic plots
in this report). Figure 6. TI Sample Mean Cost vs. TI-Based Models
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predictor ordinal variable level and univariate linear 
and nonlinear models are designed to fit the range 
of ordinal levels in the data. Curve fit models also 

Table 1. Cost Model KPM Results

Model 
No.

Model Form/ 
Method

Predictor 
Variable 

Form

Ref. Model 
Name

KPM

R2 Adj. R2 RMSE 
(000’s)

CV F-ratio Prob. > F t-stat
Durbin–
Watson 

Stat

Data 
Reduction 

(%)

1 Tailored curve fits TI level TI Curve Fits N/A N/A 40,929 0.736 N/A N/A N/A N/A 2.5

2 Tailored curve fits SH level SH Curve Fits N/A N/A 26,724 0.711 N/A N/A N/A N/A 3.2

3* Simple linear regression TI Level TI Reg1 0.401 0.395 46,026 2.344 63.7 <.0001 75 1.519 4.9

4* Simple linear regression TI Level TI Reg2 0.302 0.295 46,428 2.415 42.5 <.0001 50 0.767 1.7

5 Simple linear regression SH level SH Reg1 0.935 0.934 2,590 1.249 1893.2 <.0001 75 0.896 11.8

6 Simple linear regression SH level SH Reg2 0.659 0.657 29,132 2.486 280.8 <.0001 50 1.275 3.5

7 Composite linear regression [TI × SH]2 TI×SH Sqrd7 0.772 0.771 38,324 1.526 719.5 <.0001 100 1.433 3.6

8 Multiple linear regression TI + SH TI+SH Reg14 0.823 0.816 33,397 1.226 116.7 <.0001 100 1.757 5.0

9 Multiple linear regression [TI + SH]2 TI+SH Sqrd Reg15 0.788 0.780 2,621 0.617 90.4 <.0001 50 1.208 8.1

10 Nonlinear—quadratic NL TI level TI NL Quad 0.610 0.609 32,685 1.606 N/A N/A N/A N/A 15.3

11* Nonlinear—Exponential 2P NL TI Level TI NL Exp 2P 0.554 0.553 34,890 1.714 N/A N/A N/A N/A 15.3

12 Nonlinear—exponential 3P NL SH level SH NL Exp 3P 0.744 0.743 24,966 2.070 N/A N/A N/A N/A 11.3

13 Nonlinear—Gompertz 4P NL SH level SH NL Gpertz 4P 0.742 0.742 25,061 2.078 N/A N/A N/A N/A 11.3

Performance ratings are color-coded as follows: green = good; blue = fair; yellow = marginal; orange = poor. The custom TRL start–end curve fit models 
discussed in Appendix B are an incomplete set of fourteen of the thirty-six TRL X–Y transition categories. They are based on more limited sample sizes, producing 
inconsistent results, and were therefore not presented as viable model solutions in this table. From initial analysis, the TI-based linear regression models (numbers 
3 and 4) and nonlinear TI model number 11 (exponential 2P) were eliminated from further consideration due to poor KPM results (noted by asterisks in the table). 
In addition to KPMs, performance measures relevant to each model form were also assessed. KPM categories that do not apply, cannot be generated, or are not 
available to a particular model form are indicated by N/A (not applicable). Actual model prediction expressions for all regression models are available on request.
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essentially neutralize the issue of interval ordinal 
scale variability, since each level is discretely
modeled to align more directly with uncertainty 
distributions of the actual sample data. Linear 
regression and nonlinear models generally employ 
more of a one-function-fits-all approach. However, 
statistical regression engines also mitigate the 
concern of interval ordinal scale variability by the 
method with which they handle predictor ordinal 

values, as discussed in the Core Model 
Development section. 

Curve Fit Cost Models

Table  2 shows the best-performing cost 
curve fit functions with key output statistics 
for both the five TI levels (model number 1) 
and the five SH levels (model number 2). 
Curve fit plots for sample data at each ordinal 
level were developed, and probability 
distributions for the highest-performing 
functions were selected for both TI and SH 
model forms. Two examples of these curve 
fit plots, along with PDF and cumulative 
probability distributions (CPDs) for 
the selected functions, are presented 

in Figure  8 for model number  1 TI level  1 and in 
Figure 9 for model number 2 SH level 1. Output from 
the cost curve fit models demonstrates progressive 
cost growth across predictor tiers, with the Weibull, 
BetaGeneral, exponential, Pearson6, Levy, inverse 
Gaussian, and Raleigh functions generally producing 
good results. The three function types that most 
commonly generated the best fits across both SH and 
TI predictor variables, however, were the lognormal, 

Figure 7. SH Sample Mean Cost vs. SH-Based Models
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Table 2. Summary Cost (FY15$) Curve Fit Model Statistics

Predictor Level/Tier Mean Median
Sixtieth 

Percentile
Eightieth 
Percentile

Curve 
Function Type

TI Level (Model No. 1)

 1 6,098,593 1,352,186 2,098,994 5,827,153 Lognormal

 2 14,886,701 2,937,018 4,636,000 13,379,843 Lognormal

 3 41,949,255 17,585,237 28,194,724 68,557,068 Gamma

 4 113,853,889 30,765,241 49,013,531 144,529,122 Lognormal

 5 171,879,982 87,024,759 130,289,167 283,256,614 Gamma

SH Level (Model No. 2)

 Hardware/software/material 1,508,290 356,516 492,737 1,077,888 Loglogistic

 Component/part 2,320,795 427,230 600,295 1,366,661 Loglogistic

 Assembly 6,439,009 855,392 1,308,794 3,661,668 Loglogistic

 Subsystem 20,461,546 2,327,053 3,946,668 13,457,236 Lognormal

 System 146,709,271 42,205,134 77,094,954 230,367,198 Gamma
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loglogistic, and gamma distributions, shown in 
Table 2.

Simple Linear Regression Cost Models

Simple linear regression models for the SH pre- 
dictor variable (model numbers 5 and 6) produced 
consistent results with moderate statistical 
significance, but TI forms in model numbers 3 and 
4 resulted in low R2 values and were discarded. 
Figure  10 shows two example uncertainty PDF 

plots along with CPDs for the SH regression models 
(model number 5 SH level 1 and model number 6 
SH level 2).

Multivariate Linear Regression Cost Models

Multivariate models performed well across KPM 
categories relative to other model forms. A smaller data 
set of 221 available observations, however, is spread 
across the twenty-five 5 × 5 TI and SH level categories, 
making sample sizes rather limited in some categories. 
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Greater predictive power, applying two variables 
related primarily to scalar and technical maturity 
dimensions, appears to boost performance despite 
the smaller project data set. Variance inflation factors 
in the 1.1–1.8 range also indicate negligible multicol-
linearity, reflecting a preferred lack of 
correlation between the independent TI 
and SH level variables. Multivariate linear 
regression cost models containing both 
TI and SH variables include composite 
linear regression model number 7, of the 
form [TI level × SH level]2, as well as two 
multiple regression models (numbers  8 
and 9). These models exhibited progressive 
results across predictor levels and 
generally resulted in better KPM results. 
Output for model number  9, which 
follows the function f  α  [TI level  +  SH 
level]2 and is the highest-performing 
cost model, is presented in Figure 11. An 
example uncertainty PDF from one of 
the twenty-five possible TI ×  SH output 
combinations for model number  9 is 
shown in Figure  12. Model number  8, 
based on a more straightforward linear 
function of the two variables [TI level + SH 
level], also performed well.

When comparing coefficient values across the same 
TI and SH ordinal levels (1–5) in both models 8 and 9, 
it appears that TI level is significantly more important 
than SH level below level  5. This suggests that SH 
level variables may not significantly augment the T1 
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level explanation of response variable behavior or 
increase overall model performance below the system 
level (SH level  5). When both TI and SH project 
inputs are known or available, however, application 
of multivariate models may still be preferable since 
these models apply more causal information when 
generating a forecast.28

Nonlinear Cost Models

Nonlinear cost models produced responses with 
desirable error variability measures, and they 
tracked fairly well to actual data at the lower TI 
and SH levels but at the expense of considerable 
data reduction. The SAS JMP analysis software 
applies the Newton–Raphson optimization method 
for fitting nonlinear functions. As expected, these 
models (numbers  11, 12, and 13) resulted in 
significant escalation at the highest TI and SH tiers. 
This behavior is demonstrated in Figures 6 and 7, 
where substantial geometric progression produced 

28 Uncertainty PDFs for the twenty-five (5 × 5) TI and SH level
category combinations for each of multivariate models 7, 8 and
9 are too numerous to present but may be available on request.

a divergence from the sample data at both TI level 5 
and SH level 5. The best fits for nonlinear TI cost 
models arose from quadratic, mechanized growth,
and exponential 2 parameter (2P) fitted models. Best 
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Figure 13. SH Nonlinear Model 
Statistics Plot and Data Table
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fits for the nonlinear SH cost models 
were generated by exponential  3 
parameter (3P) and Gompertz  4 
parameter (4P) functional forms. 
A plot of SH nonlinear models 
is presented in Figure  13, and an 
example uncertainty PDF graph for 
SH level 1 of SH model number 12 is 
provided in Figure  14. TI nonlinear 
model number 11 was eliminated due 
to poor KPM results.

Schedule Model 
Performance
The same forms were developed and 
assessed for schedule-based modeling, 
as demonstrated in Appendixes B and 
D. Compared with cost, schedule did 
not result in the same strength of relationship with 
the independent predictor variables. Schedule curve 
fits produced the key TI and SH benchmark statis- 
tics presented in Table  3. The SH-based curve fits 
exhibited consistent cost growth across levels, 
with the best results coming from the Raleigh, 
Erlang, Pearson5, Weibull, and inverse Gaussian 

distributions. An example input profile with curve 
fit plots and the best-performing function PDF/CPD 
for SH level 2 is  shown in Figure 15. For schedule 
model number 1, SH curve fit output is compared to 
the sample mean and median in Figure 16, with the 
mean plots approaching nearly an exact overlay of 
the sample data.

Table 3. Development Schedule Duration (Months) 
Curve Fit Model—Key Benchmark Data

Predictor Level/Tier
No. 

Obs.
Mean Median

Sixtieth
Percentile

Eightieth 
Percen tile

Curve 
Function Type

TI Level (Model No. 1)

 1 176 33.5 31.5 36.2 48.0 Rayleigh

 2 133 41.1 38.6 44.4 58.8 Rayleigh

 3 59 54.1 50.9 58.5 77.5 Rayleigh

 4 21 49.1 45.5 51.4 67.0 Gamma

5 6 43.2 37.2 41.9 56.1 Loglogistic

Total 395 0.0% data reduction

SH Level (Model No. 2)

 Hardware/software/material 98 21.8 17.8 20.4 28.5 Pearson5

 Component/part 169 22.5 19.7 23.6 34.0 Weibull

Assembly 173 26.8 20.0 24.4 38.6 InvGauss

 Subsystem 86 32.3 27.1 32.7 48.3 Erlang

 System 25 51.4 43.1 52.0 77.0 Erlang

Total 551 0.0% data reduction

5.0% 95.0%
27.6% 72.4%

12.0 +∞

6040200 80 100
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

RiskWeibull(1.5404,24.960)
RiskInvGauss(22.207,53.672) 
RiskPearson5(3.4743,54.573)

Total Development Cost (FY15$M)

Pr
ob

ab
ili

ty
 (V

al
ue

s ×
 10

–7
)

 

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

3.6 50.9

0 10 20 30 40 50 60 70�10
0.0%

14.3%

28.6%

42.9%

57.1%

71.4%

85.7%

100.0%

Total Development Cost (FY15$M)

Weibull

 

5.0%5.0% 90.0%

Pr
ob

ab
ili

ty
 (V

al
ue

s ×
 10

–7
)

Figure 15. Example Schedule Curve Fits and Selected PDF—Schedule Model 
No. 1 for SH Level 2, Project Duration (Months)
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being driven or constrained by the availability of 
limited resources and budgetary or political factors 
and less strictly tied to technical or scaling-related 
factors. The SH schedule curve fits nonetheless appear 
to contain useful predictability when compared to 
actual sample data, and this area merits further study.

Cost and Schedule Model Variability
Overall model output and performance variability 
can largely be linked to a few primary sources. Many 
of these factors relate to common data and analysis 
constraints that are often outside the control of 
researchers and analysts. Relatively significant RMSE, 
CV, and standard deviation statistics for many of the 
cost models reflect the collective impact of these 
factors. This uncertainty is expected and appropriate, 
however, for early-stage technology development and 
is reflected in the associated uncertainty distributions.

 • Source data characteristics. Overall, sample 
sizes for each project data set are generally good, 
exceeding several hundred observations; however, 
sample sizes for some of the higher ordinal levels 
are limited. There is also some uncharacteristic 
or unexpected behavior in the underlying project 
source data. The large number of smaller projects 
across predictor variable levels, discovered in 
the screening process described in Appendix B, 
appears to be a primary driver of this variation, 
dampening progressive growth in the cost and 
schedule functions. There may be valid underlying 
reasons for this phenomenon, but a deeper 
investigation into the source data is required to 
make a determination.

Table 4. Model No. 1 (SH Curve Fit) KPM Results

KPM

RMSE 
(Months)

CV
Available 

Observations
Applied 

Observations
Data 

Reduction (%)

20 0.755 551 551 0.0

Schedule duration model no. 1 is a tailored curve fit model applying the 
single SH level predictor variable. Performance ratings are color-coded as 
follows: green = good; blue = fair.

Similar to TRL X–Y cost models, only fourteen of 
the possible thirty-six TRL  X–Y schedule curve 
fit categories resulted in minimal samples sizes, 
producing inconsistent results (see Appendix  D). 
TI level-based schedule models, therefore, pro-
duced poor results compared with cost models, 
demonstrating value degeneration at high category 
levels. This is demonstrated in Figure 5 and Table 3, 
with data inversions at TI levels 4 and 5. The Project 
Spend Rate predictor variable discussed earlier was 
introduced to supplement the analysis and help 
address this concern. This variable, however, did 
not solve the ordinal-level inconstancies or boost 
performance appreciably when included with either 
the TRL- or SH-based variables. This parameter 
may also be difficult to provide as an input unless 
investment budgets have already been established 
for a particular technology development. There was 
no clear or discernible affiliation with schedule and 
TI levels for any of the model forms, and no strong 
results for SH were found using linear regression and 
nonlinear forms. Consequently, the only workable 
solution discovered for the schedule models were the 
SH-based curve fits.

Applicable KPM results for the SH tailored curve 
fit model (schedule model number 1) are presented 
in Table  4. The schedule models’ much weaker 
performance may be partly due to schedule often 

Figure 16. Schedule Model No. 1 (SH Curve 
Fit) Results —Project Duration (Months)
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 • Quantitative measurement. Projects sometimes 
involve multiple technologies or are funded 
partially by other projects or programs. In 
addition, funding is generally programmed or 
tracked by fiscal year or contract line items that 
may not align well with actual TRL transition 
levels at a project’s start and end. Finally, since 
federal government reporting does not follow 
a common set of cost accounting standards, the 
scope of what the Total Project Costs variable 
captures can vary across projects. The type, level, 
and allocation of indirect costs, such as overhead 
support functions or general and administrative 
activities, included in the Total Project Costs can 
also vary considerably.

 • Qualitative measurement. As noted in the 2016 
GAO guide, the quality of technology readiness 
assessment (TRA) in determining TRLs “is 
contingent on the accuracy and relevance of the 
artifacts, test data, analytical reports, and other 
information used to support the evaluation. The 
artifacts, data, and other information collected 
to evaluate critical technologies may have 
dependency, functions, and interaction with 
other program elements that may be outside the 
evaluation scope or may not be available to the 
assessment team conducting the TRA.”29 Since 
the gauged start and end TRLs across the TCASE 
project database come from a variety of sources, 
interpretations of the appraised levels may also 
vary. Similar considerations, to a lesser degree, 
may apply to the subjective SH level assessments 
as well.

 • Range of technologies in project data. As 
discussed previously, the TCASE database 
contains data on a breadth of technologies. 
These diverse technology areas entail varying 
considerations for research and development 
activities and complexities that can drive both 
cost and schedule. The intent of this report, 

29 GAO, Technology Readiness Assessment Guide, 36.

however, is to provide general modeling solutions 
for early-stage projects across technology areas, 
so greater variability is expected and built into the 
corresponding model uncertainty.

 • Inherent model forms. Output variability 
between or across model forms can also relate 
to data relationship characteristics or constraints 
within particular models. These include attributes 
like function fitting at the unit predictor variable 
versus the total aggregate level, the inherent shape 
of linear and nonlinear functions and transfor-
mations applied, and the presence or absence of 
constant intercept terms.

Conclusions and Future Work
Cost and schedule models for estimating technologies 
in early stages of development have not been readily 
available in the industry or the government sector. 
Traditional parametric cost and schedule models 
generally require measures of technical design, 
performance, and complexity that have not been 
established for new or immature technologies in 
preconceptual and early conceptual stages. TRL- 
and SH-based parameters offer key macro-level 
cost and schedule drivers that are often available or 
determinable in these initial development phases. 
These parameters can also be applicable surrogates 
that effectively capture the impact of traditional causal 
metrics that are not yet determined. The usefulness 
of these parameters is demonstrated by the strength 
of parametric relationships found in data screening 
and subsequent model performance.

Using a data set from NASA (TCASE), which includes 
information on development projects across a broad 
range of technologies, a field of curve fit, linear 
regression, and nonlinear models applying TI  and 
SH level predictor variables were developed and 
evaluated. This produced several models with solid 
statistical KPMs and goodness-of-fit characteristics. 
These models can deliver improved forecasting 
value over very rough-order-of-magnitude estimates 
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often applied in early technology development 
based on subject-matter-expert opinions, Delphi 
techniques, or analogous programs with insufficient 
commonality. In addition, uncertainty distributions 
convey expected probability-based understanding 
of  cost and schedule risk critical in performing 
resource planning, budgeting, and investment 
decision analysis.

In the model performance sections, the best-
performing cost and schedule models for each 
model form are presented. Multivariate cost models 
(numbers  8 and 9) produced generally better 
results in terms of available statistical KPMs, while 
univariate cost curve fit models (numbers  1 and 
2) produced superior results in terms of TI and 
SH sample data fit. Table  5 provides some general 
guidance for selecting cost models from this analysis 
in terms of performance and project characteristics. 
When selecting applicable model(s) for a particular 
technology development, the following factors 
should be considered:

 • The availability and quality of overall predictor 
variable data

 • The planned level of the technology in the system 
hierarchy

 • Contemporary and future desired technology 
maturity levels for the application

 • An assessment of historical technical and cost 
drivers available for similar technology programs

 • Known or projected extent of technical, program-
matic, and cost risks

The impact of SH level on cost appears to be 
somewhat moderate up to the system level (SH 
level 5), at which point it becomes very significant. 
This pattern is evident from the relative size of TI and 
SH level ordinal coefficients in multivariate models 
as well as data relationship screening findings in 
Appendix B. Therefore, for system-level technology 
developments, models containing the SH level 
variable are more suitable. Below the system level, 
the TI level is much more dominant, and models 
containing the TI parameter will more effectively 
explain response behavior. However, if both the 
planned SH level and desired TRL start and end 
levels are known, multivariate models applying both 
predictor variables should improve performance, 
since they address both scalar and technical 
dimensions. For applications with greater potential 
risk or volatility, models exhibiting generally higher 
cost points and variability, such as simple linear 

Table 5. General Cost Model Applicability

Model 
No.

Model Form/Method
Predictor 
Variable 

Form

Model Performance and Technology Development Attributes

Best Project Sample 
Data Fit

Generally Higher  
KPM Performance

System-Level 
Development 

(SH Level 5)

Below System-Level 
Development 
(SH Level 1–4)

Generally Higher  
Cost or 

Uncertainty Levelsa

1 Tailored curve fits TI Level  

2 Tailored curve fits SH Level    

5 Simple linear regression SH Level     

6 Simple linear regression SH Level    

7 Composite linear regression [TI × SH]2     

8 Multiple linear regression TI + SH      

9 Multiple linear regression [TI + SH]2     

10 Nonlinear—quadratic NL TI level    

12 Nonlinear—exponential 3P NL SH level    

13 Nonlinear—Gompertz 4P NL SH Level      
a May be more applicable for higher-risk or volatile technology developments.
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regression or nonlinear cost models, may be more 
applicable, especially at the higher ordinal tiers. 
Schedule modeling produced more limited results 
but produced reasonable SH-based duration curve 
fits and deserves further study.

If the TCASE database or other data sources are 
expanded to include additional project data for key 
response and predictor variables like RD3, technology 
area, and capability demonstrations, that could 
improve model robustness and accuracy and reduce 
output variability. Beyond RD3, technology area, and 
capability demonstrations, additional macro cost and 
schedule parameters that may enhance early-stage 
technology development forecasting include the 
following:

 • Advanced degree of difficulty (AD2)

 • System readiness level (SRL)

 • Integration readiness level (IRL)

 • Implementation readiness level (ImpRL)

 • Manufacturing readiness level (MRL)

 • System level or scalar, performance, or complexity 
factors applicable to a broad range of technologies

Leveraging these types of metrics to better integrate 
cost and schedule modeling with technology road 
mapping, early systems engineering, and conceptual 
design efforts should help decision makers with more 
consistent development estimates. More accurate 
estimates in turn effect better investment and design 
decisions with greater cost impact early in the project 
life cycle.
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Appendix A Definitions

This appendix includes definitions for NASA’s system hierarchy (SH) levels, technology readiness levels (TRLs), 
research and development degree of difficulty (RD3), and technology areas.

Table A-1. System Hierarchy

No. Tier Definition Example

5 System
An integrated set of constituent elements that are 
combined in an operational or support environment 
to accomplish a defined objective

A spacecraft or launch vehicle stage

4 Subsystem A portion of a system
A satellite’s propulsion system or launch 
vehicle’s propulsion system

3 Assembly
A set of components (as a unit) before they are 
installed to make a final product

A satellite’s thruster or launch vehicle’s 
engine turbomachinery

2 Component/part A portion of an assembly
A satellite’s propellant valve or a launch 
vehicle’s engine injector

1 Hardware/material An item or substance used to form a component
Alloy, polymer, screws, bolts, pipes, 
semiconductor chips

The numbers in the first column are inverted from the original table to correspond to the progressive ordinal numbers 
necessary for the analysis.

Table A-2. NASA TRL Scale

TRL Level Definition
9 Actual system “flight proven” through successful mission operations
8 Actual system completed and “flight qualified” through test and demonstration (ground or space)
7 System prototype demonstration in space environment
6 System/subsystem model or prototype demonstration in a relevant environment (ground or space)
5 Component and/or breadboard validation in relevant environment
4 Component and/or breadboard validation in laboratory environment
3 Analytical and experimental critical function and/or characteristic proof of concept
2 Technology concept and/or application formulated
1 Basic principles observed and reported
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Table A-3. Research and Development Degree of Difficulty (RD3)

Level Definition

5
The degree of difficulty anticipated in achieving R&D objectives for this 
technology is so high that a fundamental breakthrough is required (Psuccess = 0.2).

4
A very high degree of difficulty is anticipated in achieving R&D objectives for this 
technology (Psuccess = 0.5).

3
A high degree of difficulty is anticipated in achieving R&D objectives for this 
technology (Psuccess = 0.8).

2
A moderate degree of difficulty should be anticipated in achieving R&D objectives 
for this technology (Psuccess = 0.9).

1
A very low degree of difficulty is anticipated in achieving R&D objectives for this 
technology (Psuccess = 0.99).

Table A-4. NASA 14 + 1 Technology Areas

No. Description
TA01 Launch propulsion systems
TA02 In-space propulsion technologies
TA03 Space power and energy storage
TA04 Robotics, telerobotics, autonomous systems
TA05 Communication and navigation
TA06 Human health, life support, habitation systems
TA07 Human exploration destination systems
TA08 Science instruments, observatories, sensor systems
TA09 Entry, descent, and landing systems
TA10 Nanotechnology
TA11 Modeling, simulation, information tech
TA12 Materials, structures, mechanical systems, manufacturing 
TA13 Ground and launch systems processing
TA14 Thermal management systems
(+) 1 Aeronautics
The list of space technology areas and their supporting road maps were developed by NASA 
and reviewed and validated by the National Research Council.
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Appendix B Preliminary Data Relationship Screening

This appendix provides an in-depth discussion of the preliminary analysis of the principal predictor–response 
data relationships.

Cost Forecast Models

To assess the cost for each technology readiness level (TRL) start–end (i.e., TRL X–Y) category, summary 
statistics (mean, μ; median; and standard deviation, σxr) were first developed for each category and then organized 
by TRL improvement (TI) level (see Table C-1 in Appendix C). A total of 405 projects with TRL X–Y and 
Total Project Costs data were available. Categories with very small sample sizes of less than eight observations 
were too small to demonstrate statistical significance as they produced significant volatility as the result of 
limited inputs. Only five TRL X–Y categories had large sample sizes (greater than thirty), but cost curve fits 
for fourteen of the thirty-six possible categories (those with eight or more observations) were developed to 
provide a notion of the distributions for each sample grouping. Figure B-1 includes a representative example 
of one of these distributions with a plot of the actual sample project cost frequencies and resulting curve fits 
for projects transitioning from TRL 2 to 3 (TRL 2–3).

Figure  B-1 is typical of the broader TRL  X–Y 
curve fit results in that the general data plots and 
fitted probability density functions (PDFs) reflect 
a significant right-skewness of the actual data (i.e., 
“input” histogram in blue). This right-skewness 
is commonly observed in both cost and schedule 
estimating for various reasons, but it is often 
attributed primarily to the following factors:

 • Costs and cost or schedule drivers are generally 
bound on the low end and are more open-ended 
at the high end.

 • Cost and schedule growth tends to occur over time 
as a result of phenomena such as requirements 
creep, design or engineering changes, and 
realization of previous unknowns.

 • Humans tend to be overly optimistic and underinclusive (i.e., to leave out items and to understate or 
underscope requirements and indirect costs), both contributing to cost growth over time.

Because of this right-skewness, median cost values may better reflect central tendency, as the highly skewed 
data sets drive mean values to disproportionately higher levels. Figure B-2 shows a plot of median TRL X–Y 
curve fit model Total Project Costs versus the sample data values for the fourteen available TRL  X–Y 
categories through TRL transition  2–6. Plot lines do not represent transitions but are included to assist 
visual acuity so that the reader can better discern the closeness of model values with actual data. The plot 
demonstrates relatively tightly aligned model to sample data fits; however, sample data project costs for TRL 
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Figure B-1. Example TRL X–Y Cost Curve Fit for TRL 2–3
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transitions 5–6, 1–3, 2–4, 2–5, and 2–6 appear to be somewhat erratic and inconsistent with surrounding 
transition results when normalized for TI level.

These poor initial results, along with the lack of sufficient TRL X–Y category data, suggested that another 
forecasting method was needed. The TRL project information was aggregated into larger, more robust data sets 
by applying a parameter that captures the overall TRL level increase from project start to end. This measure, TI 
level (sometimes referred to as TRL transition order30), was selected for evaluation. The Technology Cost and 
Schedule Estimating (TCASE) database provided enough project data to evaluate TI levels 1–5 (405 available 
projects).

To determine whether TRL X–Y combination data are similar enough to be pooled for modeling by TI level, 
plots of cost ranges for the various TRL X–Y combinations by TI level were created. A sample, typical of the 
family of five TI range plots, for the TI level 1 group of TRL X–Y combinations is shown in Figure B-3 (the 
other four TI level plots are provided in Appendix C). 
These charts illustrate a cost range of one standard 
deviation around the mean, plus the median for each 
TRL X–Y. Thus, the horizontal axis represents the 
TRL X–Y combination based on the TRL start level 
for the particular TI tier (e.g., TRL  4–5 represents 
the available projects for TI tier 1, TRL start 4, and 
TRL end 5).31 This plot, like others through TI level 5 
(i.e., fifth-order TRL transitions), demonstrates the 
absence of discernible continuous trends relative 
to starting TRL levels and relatively large standard 
deviations relative to mean values. Others have 
demonstrated similar findings for project samples 
in their research.32 A few studies have suggested 
continuous progressions within a limited range of 

30 For example, a TI level of 2 is also known as a second-order transition, a TI level of 3 a third-order transition, etc.
31 Low values are truncated at zero when the standard deviation (σxr) produces negative cost values at the bottom of the range.
32 El-Khoury and Kenley, “An Assumptions-Based Framework”; Hay et al., “Evidence for Predictive Trends, 7; and Peisen et al., Case
Studies: Time Required to Mature Aeronautic Technologies to Operational Readiness (Arlington, VA: SAIC, 1999).
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TRL transition cost or schedule metrics. However, those studies’ findings are based on much smaller, selective 
samples in more narrowly focused technology areas and are only applicable to TRL levels 2–5 or 6.

The TRL X–Y transitions applicable to each TI level generally fall within a relevant range, overlapping in 
absolute scale. In some studies, significant correlation (coefficients ranging from 0.64 to 0.91) also persists 
among consecutive TRL X–Y transition level metrics of the same TI level.33 These characteristics support 
the hypothesis that applying a TI level parameter by pooling applicable TRL X–Y transitions may produce 
consistent results if a viable, causal cost estimating relationship can be established. Due to the broader data 
range, aggregating TRL X–Y projects of the same TI level will yield greater variance in cost ranges than the 
individual TRL X–Y data will; however, this appropriately reflects the larger, more diverse project samples 
and will effectively be captured through uncertainty analysis. High uncertainty levels are also expected with 
forecasting in early or preconceptual technology development.

To assess TI level’s possible affiliation with cost, a scatterplot and correlation matrix of Total Project Costs vs. 
TI level was developed (see Figure B-4). Nonparametric density ellipses and histogram counts34 were included 
to help with the TI relationship screening. A visual pattern in the plot suggests a direct relationship, yet the 
correlation statistic (r = 0.371) implies a somewhat moderate association.35 To better comprehend the relative 
number of data points at each TI level, scatterplot data points have been jittered into density clusters, with 
data ellipses outlined in red, along with histograms provided in the correlation matrix. Nonparametric density 
ellipses with gray and red shading, also shown on the Figure B-4 plot on the left, illustrate where either an 

33 El-Khoury and Kenley, “An Assumptions-Based Framework,” 170.
34 Histogram counts are number of project observations or raw sample data counts by level.
35 Only a few TI records above level 5 were available, and therefore they were too sparse to model.
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excess or shortage of data could potentially hinder 
development of a parametric construction between 
the variables. These findings indicate a general 
overabundance of smaller projects across TI levels 
2–5, potentially “weighing down” the progressive 
relationship.

The direct nature of cost’s relationship to TI level is 
also evident from a column chart of the average total 
development costs by level (see Figure  B-5). Cost 
growth appears to be relatively nonlinear, increasing 
at a factor of approximately three between successive 
TI levels 1–4 and tapering off somewhat at level 5.

Similarly, a scatterplot and correlation matrix of these 
variables, along with nonparametric density ellipses 
and histogram counts, were developed to assess Total 
Project Costs versus system hierarchy (SH) level. 
The scatterplot (Figure B-6) again indicates a direct 
association with a moderate correlation (r = 0.3228) 
and a general excess of smaller projects across SH 
levels 2–5.

A column chart of average total development costs by 
SH level (shown in Figure B-7) again demonstrates 
the progressive nature of cost, although with 
more gradual growth at lower tiers and a dramatic 
increase of nearly an order of magnitude at the 
system tier (level  5). This finding suggests that 
project cost has a nonlinear, possibly exponential, 
relationship with SH. As with TRL-related metrics, 
and since SH is an ordinal variable, this steep cost 
surge could be attributable to certain qualitative 
or nonlinear quantitative factors. For instance, the 
substantial growth can be driven by the number of 
major subsystems often found within a system, as 
well as effects like the level of integration, testing, 
demonstration, and communications activities and 
overhead that can escalate significantly at higher 
levels of complex systems.

Based on this initial assessment, various cost models 
were formulated and tested in univariate and 
multivariate forms as a function of these two key 
parameters: Total Project Costs = f {TI, SH, constant 
term}.

Figure B-5. Average Total Development Costs vs. TI Level
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Figure B-7. Average Total Development Costs vs. SH Level
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Schedule Forecast Models

For schedule forecast models, a preliminary assessment looked at the strength of possible data relationships 
to the Project Duration (months) response variable. Similar to cost modeling, to consider project durations 
for each TRL start–end (i.e., TRL X–Y) category, summary statistics (like mean, μ; median; and standard 
deviation, σxr

) were calculated and organized into a table by TI level (Table D-1 in Appendix D shows some 
of these stats). This table shows that, similar to the categories for cost, only five of the thirty-six possible 
TRL X–Y categories contained large sample sizes, and twenty-two of thirty-six contained very small samples 
(less than eight observations). Duration curve fits for the fourteen cases with more than seven observations 
were developed. Similar to the TRL X–Y cost curve fits, the duration curve fits generally exhibited significant 
right-skewness and replicated the median sample values well, and cases with smaller sample sizes produced 
much more volatile results.

However, a plot of the resulting curve fits versus sample data medians for the fourteen available cases in 
Figure B-8 again shows inconsistent behavior across transition levels when normalized for TI level. Just as with 
cost modeling, another method was needed to supplement the limited results and effectively extend them to 
cover the full field of TRL X–Y transitions. To assess 
whether TRL X–Y combination data are sufficiently 
comparable to be pooled for modeling by TI level, 
plots of duration ranges for the available TRL X–Y 
combinations by TI level were again developed. 
An example of one of these range plots for the TI 
level 1 family of TRL X–Y combinations is provided 
in Figure B-9, with remaining plots up through TI 
level 5 in Appendix D. Similar to the TI level cost 
plots, overlap in ranges of the TRL start–end schedule 
duration categories and the lack of continuous trends 
provide plausible support for applying a TI level 
parameter by pooling available TRL X–Y data.36

36 TI level 3 data, as with other tiers, demonstrate a substantial overlap in duration ranges but are an exception in that they show a
gradual cost progression for TRL starts between 1 and 3. This could be the result of smaller, more volatile sample sizes.
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To reveal potential schedule data relationships, Figure B-10 includes a scatterplot correlation matrix of Project 
Duration versus TI level. A rather weak affiliation is indicated by the random data distribution, lack of obvious 
visual patterns, substantial nonparametric density areas, and resulting moderate data correlation (r = 0.3238). 
The column chart in Figure B-11 suggests that mean project duration, peaking and then tapering off at level 3, is 
not continuously associated with the TI level. Based on these results, TI level schedule models were abandoned.

Finally, to assess a relationship between SH level and schedule, a scatterplot and correlation matrix of Project 
Duration versus SH level was created (Figure B-12). The lack of structure in the plot, along with extensive 
random scatter, no obvious visual patterns, significant nonparametric density areas, and a relatively marginal 
correlation (r = 0.2869), suggest a weak affiliation. The column chart of average Project Duration by SH level 
shown in Figure B-13, however, does indicate that a direct relationship exists.
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Figure B-11. Average Project Duration vs. TI Level
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To help enhance schedule modeling further, another parameter that also potentially drives schedule was 
formulated to enable measurement of project budget resource loading or burn rate. This parameter, named 
Spend Rate, measures the project’s average financial expenditures in dollars per month over the life of the 
project; it is calculated as Total Project Costs divided by the Total Project Duration (months). The Project Spend 
Rate was essentially designed to complement TI and/or SH levels in multiple regressions. It is complementary 
because it tends to be a side effect of mission priority and the business, budgetary, political, or programmatic 
environment rather than a direct technical driver as with factors related to project scale, complexity, or 
performance.

To screen for a potential association to Project Duration, a scatterplot and correlation matrix of Project Spend 
Rate versus Project Duration was developed (Figure B-14). Correlation again was somewhat moderate at 
r = 0.3504, with substantial nonparametric density areas shaded in gray/red, density ellipses outlined in red, and 
trend lines and trend line uncertainty bands shaded in light red. Although a proportional trend line resulted, 
the visual data plot appears somewhat random with an overabundance of lower-spend-rate projects under 
sixty months in duration, again over-anchoring the relationship. Despite the lack of strong initial screening 
results, SH and TI level and Spend Rate variables were assessed as schedule predictors across the range of 
modeling forms.
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Appendix C Technology Readiness Level (TRL) Start–End Cost Data

Table C-1. Actual Project Costs by TRL Start–End

Start TRL End TRL TRL X–Y No. Obs.a Mean Median

TRL Improvement Level 1  

1 2 1–2 20 2,967,398 1,477,615

2 3 2–3 45 5,790,337 1,846,495

3 4 3–4 66 5,160,085 988,260

4 5 4–5 17 4,680,995 1,034,116

5 6 5–6 19 8,795,076 4,087,391

6 7 6–7 8 4,637,718 1,097,893

7 8 7–8 1 102,148 102,148

8 9 8–9 0 N/A  N/A 

TRL Improvement Level 2  

1 3 1–3 10 24,775,284 720,632

2 4 2–4 51 7,901,939 1,025,091

3 5 3–5 24 18,275,863 7,031,593

4 6 4–6 45 15,758,338 12,429,265

5 7 5–7 3 8,571,468 745,572

6 8 6–8 0 N/A N/A 

7 9 7–9 0 N/A N/A 

TRL Improvement Level 3  

1 4 1–4 11 44,565,378 8,022,825

2 5 2–5 18 34,361,579 1,932,640

3 6 3–6 33 42,300,951 21,531,093

4 7 4–7 1 155,585,488 155,585,488

5 8 5–8 0 N/A N/A 

6 9 6–9 0 N/A N/A 

TRL Improvement Level 4  

1 5 1–5 3 135,751,924 22,494,634

2 6 2–6 16 80,649,554 3,390,228

3 7 3–7 1 59,465,169 59,465,169

4 8 4–8 1 749,542 749,542

5 9 5–9 1 9,807,907 9,807,907

(continued)
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Start TRL End TRL TRL X–Y No. Obs.a Mean Median

TRL Improvement Level 5  

1 6 1–6 5 18,095,038 2,451,542

2 7 2–7 3 45,435,638 1,244,334

3 8 3–8 1 594,678,801 594,678,801

4 9 4–9 1 213,567,134 213,567,134

TRL Improvement Level 6  

1 7 1–7 0  N/A N/A 

2 8 2–8 0 N/A N/A 

3 9 3–9 0 N/A N/A 

TRL Improvement Level 7 0  

1 8 1–8 0 N/A N/A 

2 9 2–9 0 N/A N/A 

TRL Improvement Level 8  

1 9 1–9 0 N/A N/A 

36 TRL X–Y types Total Records 405    

a TRL start–end (TRL X–Y) combinations with less than eight observations were too limited to be assessed 
and demonstrated high volatility.

Table C-1 (continued)
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Appendix D Technology Readiness Level (TRL) Start–End Duration Data

Table D-1. Actual Project Duration by TRL Start–End

Start TRL End TRL TRL X–Y No. Obs.a Mean Median

TRL Improvement Level 1  

1 2 1–2 20 39.9 36.0

2 3 2–3 45 37.4 36.0

3 4 3–4 66 28.6 35.5

4 5 4–5 17 29.1 30.0

5 6 5–6 19 35.7 36.0

6 7 6–7 8 41.3 42.0

7 8 7–8 1 6.0 6.0 

8 9 8–9 0 N/A  N/A 

TRL Improvement Level 2  

1 3 1–3 10 34.1 36.0

2 4 2–4 51 38.5 36.0

3 5 3–5 24 38.3 35.0

4 6 4–6 45 50.6 59.0

5 7 5–7 3 21.3 24.0

6 8 6–8 0 N/A N/A 

7 9 7–9 0 N/A N/A 

TRL Improvement Level 3  

1 4 1–4 8 30.4 30.0

2 5 2–5 17 47.4 35.0

3 6 3–6 33 62.9 59.0

4 7 4–7 1 107.0 107.0

5 8 5–8 0 N/A N/A 

6 9 6–9 0 N/A N/A 

TRL Improvement Level 4  

1 5 1–5 3 55.7 36.0

2 6 2–6 15 47.4 48.0

3 7 3–7 1 95.0 95.0

4 8 4–8 1 24.0 24.0

5 9 5–9 1 35.0 35.0

(continued)
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Start TRL End TRL TRL X–Y No. Obs.a Mean Median

TRL Improvement Level 5  

1 6 1–6 3 32.0 24.0

2 7 2–7 3 63.7 36.0

3 8 3–8 0 N/A N/A 

4 9 4–9 0 N/A N/A 

TRL Improvement Level 6  

1 7 1–7 0  N/A N/A 

2 8 2–8 0 N/A N/A 

3 9 3–9 0 N/A N/A 

TRL Improvement Level 7  

1 8 1–8 0 N/A N/A 

2 9 2–9 0 N/A N/A 

TRL Improvement Level 8  

1 9 1–9 0 N/A N/A 

36 TRL X–Y types Total Records 395    

a TRL start–end (TRL X–Y) combinations with less than eight observations were too limited to be assessed 
and demonstrated high volatility.

Table D-1 (continued)
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Figure D-1. Duration Ranges for TRL X–Y Transition by TI Level (Average with 1 Standard Deviation Range and Median)
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Appendix E Key Performance Measure Descriptions

This appendix includes descriptions of the statistical key performance measures (KPMs).

Error Variability and Dispersion Measures

 • Coefficient of determination—R2 and adjusted R2. Most commonly used measure of goodness of fit. 
Relative measure of fit equal to the percent of the variation in the dependent variable (Y) explained by the 
independent variable (X) = SSR/SST.

 • Root mean square error (RMSE). Absolute measure of fit or accuracy based on the differences between 
sample and population values predicted by a model.

 – Coefficient of variation (CV). RMSE for models as applied here (standard deviation for individual 
variables) divided by mean of the Y-data, a unitless relative measure of estimating error. Using this 
convention, a CV less than 1 is considered low variance and a CV greater than 1 is considered high 
variance.

Statistical Significance Measures

 • F-ratio. Tests whether the entire regression equation is valid (i.e., how well the statistical model is fitted to 
a sample data set).

 • t-stat. Tests whether the individual hypothesized predictor (X-variables) values are valid. T-stat represents 
the calculated difference represented in units of standard error. The percent of expression terms with 
probability > |t| was applied as an overall measure.

Autocorrelation Measure

 • Durbin–Watson test. Measures independence of regression residuals.

Data Reduction Measure

 • Percent of unused portion of original data sample set. The extent of selectivity in actual data set applied, 
measured as the percent of available sample observations filtered out due to outliers, large residuals, or 
noncore data, etc.

DISTRIBUTION STATEMENT A.  Approved for public release: distribution unlimited. 



DISTRIBUTION STATEMENT A.  Approved for public release: distribution unlimited. 



PARAMETRIC COST AND SCHEDULE MODELING FOR EARLY TECHNOLOGY DEVELOPMENT  43

Acknowledgments

Thanks to Matt Schaffer and Rodney Yerger for their constructive reviews of drafts and suggestions that helped 
focus key aspects of the report. Thanks also to Marc Greenberg, Eric Plumer, and Doug Comstock of NASA 
Headquarters and Kirk Cole of the NASA Langley Research Center Research Directorate for providing access 
to and background for the TCASE database, which was pivotal to this effort.

About the Author

Chuck Alexander is a Senior Professional Staff member in the Cost Analysis Section of JHU/APL’s National 
Security Analysis Department. He performs economic and cost analysis for a variety of sponsors across a range 
of applications, technologies, and system environments. He has over 30 years of professional experience in cost 
engineering, investment decision analysis, business operations, technology management, and management 
consulting. Mr. Alexander is a licensed professional engineer (PE), a certified public accountant (CPA), and 
a former certified cost estimator/analyst (CCE/A). He holds a BS in mechanical engineering from Clarkson 
University and an MBA in finance from the William & Mary Mason School of Business.

DISTRIBUTION STATEMENT A.  Approved for public release: distribution unlimited. 



DISTRIBUTION STATEMENT A.  Approved for public release: distribution unlimited. 



PARAMETRIC COST AND SCHEDULE MODELING FOR EARLY TECHNOLOGY DEVELOPMENT  45

Bibliography

Anderson, J. A. “Regression and Ordered Categorical Variables.” Journal of the Royal Statistical Society Series B 
46, no. 1 (1984): 1–30.

Berry, William D. Understanding Regression Assumptions. Quantitative Applications in the Social Sciences 
Series. Newbury Park, CA: Sage, 1993.

Cole, Stuart K., John D. Reeves, Julie A. Williams-Byrd, Marc Greenberg, Doug Comstock, John R. Olds, Jon 
Wallace, Dominic DePasquale, and Mark Schaffer. Technology Estimating: A Process to Determine Cost and 
Schedule of Space Technology R&D. NASA/TP–2013-218145. Washington, DC: NASA, 2013.

Conrow, Edmund H. “Estimating Technology Readiness Level Coefficients.” In Proceedings of the AIAA SPACE 
2009 Conference & Exposition, 1–9. Reston, VA: AIAA, 2009.

Curran, Richard, Srinivasan Raghunathan, and Mark Price. “Review of Aerospace Engineering Cost Modeling: 
The Genetic Causal Approach.” Process in Aerospace Sciences 40, no. 8 (2004): 487–534.

Director, Research Directorate, Office of the Director, Defense Research and Engineering. DoD Technology 
Readiness Assessment (TRA) Deskbook. Washington, DC: Department of Defense, July 2009.

El-Khoury, Bernard, and C. Robert Kenley. “An Assumptions-Based Framework for TRL-Based Cost and 
Schedule Models.” Journal of Cost Analysis and Parametrics 7, no. 3 (2014): 160–179.

Gertheiss, Jan, and Gerhard Tutz. “Penalized Regression with Ordinal Predictors.” International Statistical 
Review 77, no. 3 (2009): 345–365.

Hay, Jason, J. D. Reeves, Elaine Gresham, Julie Williams-Byrd, Emma Hinds, and Jillian Taylor. “Evidence for 
Predictive Trends in Technology Readiness Level Transition Metrics.” In Proceedings of the AIAA SPACE 
Conference and Exposition, AIAA 2013-5369. Reston, VA: AIAA, 2013.

Homeland Security Institute. Department of Homeland Security Science and Technology Readiness Level 
Calculator (ver. 1.1): Final Report and User’s Manual. Washington, DC: Department of Homeland Security, 
September 30, 2009.

Jones, Mark B., Phil F. Webb, Mark D. Summers, and Paul Baguley. “COTECHMO: The Constructive Technology 
Development Cost Model.” Journal of Cost Analysis and Parametrics 7, no. 1 (2014): 48–61.

Malone, Patrick, Roy Smoker, Henry Apgar, and Lawrence Wolfarth. “The Application of TRL Metrics to 
Existing Cost Prediction Models: A Practitioners Guide to Applying Cost Correction Factors to Technology.” 
In Proceedings of the 2011 Aerospace Conference, 1–12. Piscataway, NJ: IEEE, 2011.

Mankins, John C. Technology Readiness Levels. Washington, DC: NASA, 1995.

Peisen, Deborah J., Catherine L. Schultz, Richard S. Golaszewski, David B. Ballard, and John J. Smith. Case 
Studies: Time Required to Mature Aeronautic Technologies to Operational Readiness. Arlington, VA: SAIC, 
1999.

DISTRIBUTION STATEMENT A.  Approved for public release: distribution unlimited. 



 THE JOHNS HOPKINS UNIVERSITY APPLIED PHYSICS LABORATORY46

Sanchez, Ruben. Technology Readiness Assessment Guide. DOE G 413.3-4A. Washington, DC: Department of 
Energy, September 2011.

Sauser, Brian, Jose Ramirez-Marquez, Dinesh Verma, and Ryan Gove. “From TRL to SRL: The Concept of 
Systems Readiness Levels.” In Proceedings of the Conference on Systems Engineering Research, paper 126. 
Los Angeles: Conference on Systems Engineering Research, 2006.

Sauser, Brian, Jose E. Ramirez-Marquez, Romulo Magnaye, and Weiping Tan. “A Systems Approach to 
Expanding the TRL Level within Defense Acquisition.” International Journal of Defense Acquisition 
Management 1 (2008): 39–58.

Shermon, Dale, and Catherine Barnaby. “Macro-Parametrics and the Applications of Multi-Colinearity and 
Bayesian to Enhance Early Cost Modeling.” In Proceedings of the International Cost Estimating and Analysis 
Association 2015 Professional Development & Training Workshop. Annandale, VA: ICEAA, 2015.

Smoker, Roy E., and Sean Smith. “System Cost Growth Associated with TRL.” Journal of Parametrics 26, no. 1 
(2007): 8–38.

SpaceWorks Enterprises, Inc.. TCASE Technology Cost and Schedule Estimation Tool User Training Presentation, 
Rev5 (2015-03-19). Atlanta: SpaceWorks, 2015.

Stahl, H. Philip, Kyle Stephens, Todd Henrichs, Christian Smart, and Frank A. Prince. “Single-Variable 
Parametric Cost Models for Space Telescopes.” Optical Engineering 49, no. 7 (2010): 073006.

Stauner, Nick. February 21, 2014. Response to “Effect of Two Demographic IVs on Survey 
Answers (Likert Scale).” CrossValidated, http://stats.stackexchange.com/questions/86923/
effect-of-two-demographic-ivs-on-survey-answers-likert-scale.

US General Accounting Office. Best Practices: Better Management of Technology Development Can Improve 
Weapon System. Report to the Chairman and Ranking Minority Member, Subcommittee on Readiness and 
Management Support, Committee on Armed Services, U.S. Senate. GAO/NSIAD-99-162. Washington, 
DC: GAO, July 1999.

US Government Accountability Office. Technology Readiness Assessment Guide: Best Practices for Evaluating 
the Readiness of Technology for Use in Acquisition Programs and Projects. GAO-16-410G. Washington, DC: 
GAO, August 2016.

DISTRIBUTION STATEMENT A.  Approved for public release: distribution unlimited. 



DISTRIBUTION STATEMENT A.  Approved for public release: distribution unlimited. 



DISTRIBUTION STATEMENT A.  Approved for public release: distribution unlimited. 




