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Problem Statement and Focus

Writing secure C++ code is hard, existing coding standards are insufficient

MISRA C++:2008 and JSF++ (2005) focus on safety-critical systems; outdated

 CERT rules focus on modern concerns: C++11 and C++14.
- Concurrency, lambdas, and other modern, high-impact C++ features

C++ Core Guidelines (2015) are modern, but subset the language; e.g.,
- ES.75: Avoid do statements
- |.11: Never transfer ownership by a raw pointer (T*)

« CERT rules do not subset the C++ language
- Encourages adoption within legacy code bases as well as new

Enforceability of the rules is desirable.
« Demonstrate implementing checkers to help strengthen and enforce rules

Do not replicate rules from the CERT C Coding Standard
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Our Results: Checkers

Contributed 15 new checkers to the Clang open source

compiler (the C/C++ frontend to the LLVM compiler
infrastructure)

Clang community has shown significant interest in

CERT's contributions

 Community members are making their own
contributions based on our rules

e Demonstrated a desire to make it easier to enable all
checks for CERT rules
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Clang is used by 10s of millions of programmers to write
r Tnfyas®

100s of millions of apps that are used by billions of users
* Primary compiler for MacQOS, iOS, FreeBSD
e Supported by Microsoft Visual Studio, Linux
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Our Results: Rules

CERT C++ Coding Standard Rules
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Declarations and Initialization (DCL)
Expressions (EXP)

Integers (INT)

Containers (CTR)

Characters and Strings (STR)
Memory Management (MEM)

Input Output (FIO)

Exceptions and Error Handling (ERR)
Object Oriented Programming (OOP)
10 Concurrency (CON)

11. Miscellaneous (MSC)

All rules were heavily modified
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Our Results: Rule Organization

Pages /... / Rec. 01. Declarations and Initialization (DCL) # Edit © Watch [2 Share

DCL22-CPP. Functions declared with [[noreturn]] must return void

Created by Aaron Ballman, last modified on Aug 24, 2016 \W

As described in MSC55-CPP. Do not return from a function declared [[noreturn]], functions declared with the [ [noreturn] ]
attribute must not return on any code path. If a function declared with the [ [noreturn]] attribute has a non-void return value, it
implies that the function returns a value to the caller even though it would result in undefined behavior. Therefore, functions declared

with [ [noreturn] ] must also be declared as returning void.

Introduction &
Normative Text
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Noncompliant Code Example

#include <cstdlib>

[[noreturn]] int f() {
std::exit(0);
return 0;

}

This example does not violate MSC55-CPP. Do not return from a function declared [[noreturn]]
because std::exit() is declared [[noreturn]], so the return 0; statement can never he
executed.

Compliant Solution

Because the function is declared [ [noreturn]], and no code paths in the function allow for a return
in order to comply with MSC55-CPP. Do not return from a function declared [[noreturn]], the compliant
solution declares the function as returning void and elides the explicit return statement:

#include <cstdlib>

[[noreturn]] void f() {
std: :exit(0);
}

In this noncompliant code example, the function declared with [ [noreturn]] claims to return an int:
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Noncompliant Code

Don’t try this at home!

Compliant Code

Fixes noncompliant code.
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Risk Assessment

A function declared with a non-void return type and declared with the [ [noreturn]] attribute is
confusing to consumers of the function because the two declarations are conflicting. In turn, it can
result in misuse of the API by the consumer or can indicate an implementation bug by the producer.

Rule Severity Likelihood Remediation Cost Priority Level

DCL22-CPP Low Unlikely Low P3 L3

Automated Detection

Tool Version  Checker Description

Clang 3.9 -Winvalid-noreturn
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Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Related Guidelines

SEl CERT C++ Coding Standard = MSC54-CPP. Value-returning functions must return a value from all exit paths
MSC55-CPP. Do not return from a function declared [[noreturn]j

Bibliography

[ISO/NEC 14882-2014] Subclause 7.6.3, "Noreturn Attribute”
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Our Process

* ISO WG21 (C++ Standards Committee) Pages /... / Rule 08. Exceptions and Error Handling (ERR) # Edit > Watch B2 Share
* 1SO C++14 Standard ERR52 CPP. Do not use setjmp() or longimp()

e C++ Books —
 MITRE CVEs

HH The C standard library facilities setim and Llongjm can be used to simulate throwing and catching
 CERT Vulnerability Database y s 5 9jmp{) g and catching
exceptions. However, these facilities bypass automatic resource management and can result in undefined
behavior, commonly including resource leaks, and denial-of-service attacks.

E:\1lvm\2015>clang-tidy -checks=-*,cert-* E:\Desktop\testl.cpp -- -std=c++14
2 warnings generated.
E:\Desktop\testl.cpp:7:7: do not call 'setjmp'; consider using exception

handling instead [cert-err52-cpp]
if (setjmp(env) == @) {
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