Establishing Coding
Requirements for Non-Safety
Critical C++ Systems

David Svoboda (Presenter)
Aaron Ballman (PI)

@ @
® ©o @ e eeo o
® [
0000 o000 ee ()
® ®) ° °
(] Q [
Establishing COding Requiremen[s for Non—Safety [DISTRIBUTION STATEMENT A] This material has been approved

Critical C++ for public release and unlimited distribution.

% Software Engineering Institute | Carnegie Mellon University & 2018 Carmegie Mellon Universiy

SEI Research Review 2016

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering
Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON
AN “AS-1S” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS
TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-
US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting
formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute
at permission@sei.cmu.edu.

CERT® is a registered mark of Carnegie Mellon University.

DM-0004094

Establishing Coding Requirements for Non-Safety Critical C++ [DISTRIBUTION STATEMENT A] This material has been approved
October 25, 2016 for public release and unlimited distribution.

SOftware Engineeri ng I"stitute Cﬂl’]lfgi(‘ }l(‘lkl“ l]ﬂi"{"rﬂit}’ © 2016 Carnegie Mellon University 2

SEI Research Review 2016

Problem Statement and Focus

Writing secure C++ code is hard, existing coding standards are insufficient

MISRA C++:2008 and JSF++ (2005) focus on safety-critical systems; outdated

 CERT rules focus on modern concerns: C++11 and C++14.
- Concurrency, lambdas, and other modern, high-impact C++ features

C++ Core Guidelines (2015) are modern, but subset the language; e.g.,
- ES.75: Avoid do statements
- |.11: Never transfer ownership by a raw pointer (T*)

« CERT rules do not subset the C++ language
- Encourages adoption within legacy code bases as well as new

Enforceability of the rules is desirable.
« Demonstrate implementing checkers to help strengthen and enforce rules

Do not replicate rules from the CERT C Coding Standard

October 25, 201 for public release and unlimited distribution.
© 2016 Carnegie Mellon University

Software Engineering Institute | Carnegie Mellon University

Establishing Coding Requirements for Non-Safety Critical C++ [DISTRIBUTION STATEMENT A] This material has been approved
ob 016

SEI Research Review 2016

Our Results: Checkers

Contributed 15 new checkers to the Clang open source

compiler (the C/C++ frontend to the LLVM compiler
infrastructure)

Clang community has shown significant interest in

CERT's contributions

 Community members are making their own
contributions based on our rules

e Demonstrated a desire to make it easier to enable all
checks for CERT rules

. S
’ ~ " 4 \\
T C\
Dy o

Clang is used by 10s of millions of programmers to write
r Tnfyas®

100s of millions of apps that are used by billions of users
* Primary compiler for MacQOS, iOS, FreeBSD
e Supported by Microsoft Visual Studio, Linux

Establishing Coding Requirements for Non-Safety Critical C++ [DISTRIBUTION STATEMENT A] This material has been approved
- - - s = ® October 25, 2016 for public release and unlimited distribution.
Software Engineering Institute | Carnegie Mellon University

© 2016 Carnegie Mellon University

i

SEI Research Review 2016

Our Results: Rules

CERT C++ Coding Standard Rules

120
100
80
60

40

20

0
C Rules C++ Rules

B Old m New (FY16) mInapplicable to C++

i

Establishing Coding Requirements for Non-Safety Critical C++
October 25, 2016
Software Engineering Institute | Carnegie Mellon University ©2016 Cainegie Mellon University

Declarations and Initialization (DCL)
Expressions (EXP)

Integers (INT)

Containers (CTR)

Characters and Strings (STR)
Memory Management (MEM)

Input Output (FIO)

Exceptions and Error Handling (ERR)
Object Oriented Programming (OOP)
10 Concurrency (CON)

11. Miscellaneous (MSC)

All rules were heavily modified

© 0N Oh WDhE

[DISTRIBUTION STATEMENT A] This material has been approved
for public release and unlimited distribution

SEI Research Review 2016

Our Results: Rule Organization

Pages /... / Rec. 01. Declarations and Initialization (DCL) # Edit © Watch [2 Share

DCL22-CPP. Functions declared with [[noreturn]] must return void

Created by Aaron Ballman, last modified on Aug 24, 2016 \W

As described in MSC55-CPP. Do not return from a function declared [[noreturn]], functions declared with the [[noreturn]]
attribute must not return on any code path. If a function declared with the [[noreturn]] attribute has a non-void return value, it
implies that the function returns a value to the caller even though it would result in undefined behavior. Therefore, functions declared

with [[noreturn]] must also be declared as returning void.

Introduction &
Normative Text

Establishing Coding Requirements for Non-Safety Critical C++ [DISTRIBUTION STATEMENT A] This material has been approved
i - - - - - = October 25, 2016 for public release and unlimited distribution.
~== Software Engineering Institute | Carnegie Mellon University ©2016 Carnegie Mellon Universiy 6

e

SEI Research Review 2016

Noncompliant Code Example

#include <cstdlib>

[[noreturn]] int f() {
std::exit(0);
return 0;

}

This example does not violate MSC55-CPP. Do not return from a function declared [[noreturn]]
because std::exit() is declared [[noreturn]], so the return 0; statement can never he
executed.

Compliant Solution

Because the function is declared [[noreturn]], and no code paths in the function allow for a return
in order to comply with MSC55-CPP. Do not return from a function declared [[noreturn]], the compliant
solution declares the function as returning void and elides the explicit return statement:

#include <cstdlib>

[[noreturn]] void f() {
std: :exit(0);
}

In this noncompliant code example, the function declared with [[noreturn]] claims to return an int:

October 25, 2016

“Z= Software Engineering Institute | Carnegie Mellon University

© 2016 Carnegie Mellon University

Noncompliant Code

Don’t try this at home!

Compliant Code

Fixes noncompliant code.

Establishing Coding Requirements for Non-Safety Critical C++ [DISTRIBUTION STATEMENT A] This material has been approved

for public release and unlimited distribution.

SEI Research Review 2016

Risk Assessment

A function declared with a non-void return type and declared with the [[noreturn]] attribute is
confusing to consumers of the function because the two declarations are conflicting. In turn, it can
result in misuse of the API by the consumer or can indicate an implementation bug by the producer.

Rule Severity Likelihood Remediation Cost Priority Level

DCL22-CPP Low Unlikely Low P3 L3

Automated Detection

Tool Version Checker Description

Clang 3.9 -Winvalid-noreturn

[DISTRIBUTION STATEMENT A] This material has been approved

Establishing Coding Requirements for Non-Safety Critical C++
for public release and unlimited distribution. 8

October 25, 2016

“Z= Software Engineering Institute | Carnegie Mellon University S Zoneis el sty

SEI Research Review 2016

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Related Guidelines

SEl CERT C++ Coding Standard = MSC54-CPP. Value-returning functions must return a value from all exit paths
MSC55-CPP. Do not return from a function declared [[noreturn]j

Bibliography

[ISO/NEC 14882-2014] Subclause 7.6.3, "Noreturn Attribute”

Establishing Coding Requirements for Non-Safety Critical C++ [DISTRIBUTION STATEMENT A] This material has been approved

- - - - - = October 25, 2016 for public release and unlimited distribution.
i Software Engineering Institute | Carnegie Mellon University © 2016 Carnegie Mellon Universiy 9

SEI Research Review 2016

Our Process

* ISO WG21 (C++ Standards Committee) Pages /... / Rule 08. Exceptions and Error Handling (ERR) # Edit > Watch B2 Share
* 1SO C++14 Standard ERR52 CPP. Do not use setjmp() or longimp()

e C++ Books —
 MITRE CVEs

HH The C standard library facilities setim and Llongjm can be used to simulate throwing and catching
 CERT Vulnerability Database y s 5 9jmp{) g and catching
exceptions. However, these facilities bypass automatic resource management and can result in undefined
behavior, commonly including resource leaks, and denial-of-service attacks.

E:\1lvm\2015>clang-tidy -checks=-*,cert-* E:\Desktop\testl.cpp -- -std=c++14
2 warnings generated.
E:\Desktop\testl.cpp:7:7: do not call 'setjmp'; consider using exception

handling instead [cert-err52-cpp]
if (setjmp(env) == @) {

Establishing Coding Requirements for Non-Safety Critical C++ [DISTRIBUTION STATEMENT A] This material has been approved
October 25, 2016 for public release and unlimited distribution. 10

SOftWﬂI‘E EnginEEl’i ng ||"|5ﬂtute! Cill’]lfgi(‘ }lelh[l [_Tl]i"l’i_“l'ﬂil}‘ © 2016 Carnegie Mellon University

THEEND [1. 2o gle Fg e i

00 0000 O ' o0 o O
@.. CT o0 o e

3 L X © @ " @ : L
® o o o0 60 ¢ 0 60 o o o o o 90
o000 e o 00 O 0000. © ©0oeese L ®
® ® ® 00 0 ¢ 00 60 & o1 oo ree
®@ oo] o® © ... ® o000 ® oo & on .
@ ® 0000) . 9 e e e e 00
® o o [X o® O ® 000 o000 e e 00
® ® o ¢ @ e oo o a8 =
® e o 200 @ ® @ o0 o e o ee o c0e -3
® @ ® & 290600 o ee « @ @ ®
(XN oo () [0000 oo) “Tee b}
@ ° ® O N @ 0 @ ® e - e e o 8 eoe
@ @ @ @® @ e @ e e L e @
Establishing Coding Requirements for Non-safety critical C++ [DISTRIBUTION STATEMENT A] This material has been approved
© 2016 Carnegie Mellon University for public release and unlimited distribution.

% Software Engineering Institute | Carnegie Mellon University

