
1Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

SATURN 2019

Scaling Up Incremental Design
Reviews: A Tutorial

Felix Bachmann

Stephany Bellomo

2Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Document Markings

Copyright 2019 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Health and Human Services (HHS) under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON
AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS
TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice
for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting
formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering
Institute at permission@sei.cmu.edu.

DM19-0472

3Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Introduction

Design reviews are useful tools for architects to identify early software problems, but there
are considerations at scale
Today’s design review must …

• handle multiple concurrent activities generating artifacts that result in information
overload

• avoid impeding project progress by doing risk analysis while the train is moving
• understand that small teams are a big thing and collaborate with them to have an

impact
Over the past several years, we have refined an approach to incremental design review
with characteristics that help architects deal with these things
This is what we will present today

4Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

History of the Scaled Incremental Review

We ran the first incremental experiment of our approach in 2009–2011 with a small team
and limited context; characteristics included

• financial system, strenuous performance, reliability, extensibility requirements
• replacement of an old system, some new features
• team size: 30 people (developers, testers, architects, requirements)

Since then we have used the approach over a 2-year span; characteristics have included
• number projects in portfolio we oversee: 14
• software category: various IT systems for a large organization
• team sizes: range 5–20
• number of design/code reviews conducted: 22

5Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Terms and Assumptions

Below are informal definitions of terms and assumptions in this tutorial:
• Architect: Person responsible for analyzing software architecture and guiding teams

toward decisions that align with stakeholder goals; the information in this tutorial can be
applied by architects in small teams or large portfolios

• Software Increment: A release of software functionality, a feature, or a bundle of
features

• Design Review: Opportunity to evaluate design decisions for a specified software
increment; it is not a gating function, there is no implied formality, and a design review
can be an architect and a team discussing a whiteboard or a formal group process

• Analysis Artifacts: Analysis artifacts provide evidence that a requirement is met; the
type of artifact needed depends on the requirement; and analysis artifacts can include
whiteboards, diagrams, code, and everything in between

6Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Maintaining Alignment

• A key idea is to maintain alignment of requirements, design, and code as we help
teams evolve the software

• Our approach to incremental design review encourages alignment but allows for
flexibility with how alignment is achieved

Requirements

Design

Code

Requirements must align with design

Design must align with code

Code must align
with requirements

7Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Incremental Design Overview

Note: Gray boxes are techniques
we focus on in the tutorial

1. Select increment
and gather context

2. Get just enough of
the right artifacts for
analysis

4. Prepare
artifacts for
review

3. Perform
software
risk analysis

4. Capture
Risks

6. Determine
Action

Assessment
Cube

Filtering and Evidence
Mapping Table

3. Assess
condition of
selected artifacts Artifact

Strengthening
Techniques

Risk Visibility
Dashboard

Decision
Points

QAS to Evidence
Comparison/Automated
Techniques

8Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Select Increment and Gather Context

The first step in the incremental design process involves selecting an increment (with
stakeholder input) and gathering context
• Increments selected for review should have architectural implications
• Rules of thumb for increment selection:

- quality attribute consideration (we will discuss quality attributes in detail)
- opportunity for significant change or refactoring
- a capability the organization will build on

• Gathering context may require getting up to speed on technologies or frameworks
used by the team in the increment

9Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Incremental Review Overview

We are here
1. Select increment
and gather context

2. Get just enough of
the right artifacts for
analysis

4. Prepare
artifacts for
review

3. Perform
software
risk analysis

4. Capture
Risks

6. Determine
Action

Assessment
Cube

Filtering and Evidence
Mapping Table

3. Assess
condition of
selected artifacts Artifact

Strengthening
Techniques

Risk Visibility
Dashboard

Decision
Points

QAS to Evidence
Comparison/Automated
Techniques

10Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Filtering and Evidence Mapping

• Next step is to get just enough of the right artifacts for analyzing design risk
• With incremental development, it is not uncommon for increments to involve different

technologies and be developed by teams with differing development styles and
capabilities

• A variety of stakeholders ask teams to create all kinds of documentation
• The problem is that it is easy for teams to generate a lot of information that is not

useful for analysis
• Meanwhile, architects can get buried in information
• Filtering is a technique to reduce information for analysis without losing important

details

11Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Typical Inputs

For example, typical inputs we get for a design review include
• detailed functional requirements
• UI mockups and/or business flow descriptions
• demos of working code
• detailed context or explanations of why the software is the way it is
• Repackaged, outdated design documentation
• organizational standards
• team objectives
• COTS overviews
• “market-ecture” illustrating the benefits of the design without technical detail

12Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Avoiding the Fool’s Gold

• Like miners sifting for gold during the gold rush, we often will get lots of rocks we
don’t need

• If not careful, we end up wasting time analyzing fool’s gold

Gold pan
(Filter)

“Fool’s gold”

13Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

What Is Really Needed?

While many artifacts provide useful context, we mainly need two sets of inputs for an
incremental design review:

1. quality attribute requirements
2. evidence that Quality Attribute Scenarios (QAS) are satisfied

During the review, we compare and analyze these artifacts to surface risks

The next few slides provide examples of these inputs

Quality
attribute

requirements

Evidence that
QAS are
satisfied

Analyze

Risks

14Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

What Is a Quality Attribute?

• Quality attribute requirements describe the qualities of the software, such as
performance, security, modifiability, and availability

• These are typically captured as quality attribute scenarios (QAS)
• The next slide shows some example quality attribute requirements

15Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

QAS Examples

An authorized user pulls up a record in a system other than
SystemABC and changes the notes. That change is recorded in the
audit log in 99.9999% of the cases.

While not connected to the network, a user adds/edits financial data.
Connection is reestablished. All changes and attachments are sent to
the server with no data consistency issues in 99.9999% of cases.

A business decides that the rule for who can change business notes
should be extended. This change can be done on the production
system within 15 minutes.

Security

Reliability

Flexibility

16Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

What Is Evidence?

Evidence is a subset of information
We only need to see a view that convinces the architect that the QAS is fulfilled
This further reduces the amount of information to analyze and reduces waste
Artifacts for evidence analysis may come in many forms, such as

• design diagrams
• code
• performance test results
• whiteboard snapshots

As long as the evidence supports analysis of the selected QAS, it works!

17Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Component Evidence: Example

Property revealed by this artifact: Portability

18Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Property revealed by this artifact: Maintainability
We can reason about whether changing one component may impact other components

Keep in mind that when analyzing code we always stay at design level

Code Analysis Evidence: Example

19Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Informal Evidence: Example

Property revealed by this artifact: Performance
Allows for reasoning about response time from the client to the database and back

20Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Deployment Diagram

Property revealed by this artifact: Security

Web
browserWeb

browser

Web
browser

NIPRNET
HTTPS

int
ers

erv
er

 co
ord

ina
tio

n o
ve

r IP

LDAP
using
SSL

F5 Networks
BIG-IP 540 with
SSL accelerator
Load balancing
(sticky connections);
automatic failover

Windows 2000
IBM x235

WebLogic
6.1

WebLogic
6.1

Windows 2000
IBM x345

WebLogic 6.1
admin. server

Windows 2000 - IBM x235

Helix Server

ASAT multimedia
Real Media, Windows Media,

Flash, QuickTime, MPEG

IBM AIX 4.3.3
IBM H80

Oracle 9i
DB Server

ATIA-M
Enterprise
Database

Windows 2000
IBM x345

RDL-M
documents

html, self-
extracting zip,
pdf, jpeg, etc.

JD
BC

 ov
er

TC
P

HTTP, RTSP,
MMS
ports 80, 554,
1755

HTTP(S)
ports 80, 443

AKO repository
LDAP

HTTPS SOAP

Key:
Server
machine

Web
browser

TDDT
.NET

 Data repository
residing on a
machine

 Server software
running on a
machine

User
machine

Communi-
cation
protocol

HTTPS

Firewall

File
I/O

Oracle RAC
synch.

HTTP(S)
ports 80, 443

HTTP(S)
ports 80, 443

Windows 2000
IBM x235

WebLogic
6.1

WebLogic
6.1

Windows 2000
IBM x235

WebLogic
6.1

WebLogic
6.1

IBM AIX 4.3.3
IBM H80

Oracle 9i
DB Server

ATIA-M
Enterprise
Database

21Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Property revealed by this artifact: Performance
Enumerating the sequence diagram with time spent on each call allows for reasoning
about performance bottlenecks

Sequence Diagram

sd Order Process Latency - Matching Engine Lev el processing

«connector»
:Communication Bus

«thread»
:Communications

Peer

«connector»
:Queue

«thread»
:Bid Processor

:Dispatcher 1Administrative
Data Objects

(from Components)

Find out the
incomming order rate,
so we will know if we
can process faster than
the orders arrive or the
other way which will
affect the queue size.

When this method is
called, the timer starts.

This time includes
serializacion and
deserialization.

This is a generic call to
access data from the
ADO.

When this method is
called, the timer stops.

«invariant»
{Response time less or
equals to 0.980 msec}

send(Message)

{0.002 msec.}
onReceive(Order)

{0.008 msec.}
put(Order)

{0.005 msec.}
get(Order)

getInformation() :ADO Information

send(Order Response)

{0.005 msec.}
send(Message Response)

This time includes

onReceive(Order)

{0.008 msec.}
put(Order)

22Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Test Output/Logs Evidence

Test output or logs can also be used as evidence for a subset of quality attributes
Property revealed by this artifact: Performance

Time (ms) Type Description

161 Java/DB Tag[processReadXDataMsg in XXProcessor]

1 Java Tag[processReadOperationDataMsg in XXProcessor]

168 Java/DB Tag[Transaction ID -9999: readxDat in XXXProcessor]

2 Java Tag[Transacction ID: convertLogictoXML for read xxresponse in XX
processor]

176 Java/DB Tag[ProcessReadxxDatMsg in XXProcessor]

36 DB Tag[getNextTransactionID in XXFacadeBean]

68 Java Tag[generateNextTranIC in XXProcessor]

23Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

We have started experimenting with filtering static analysis violations by “design
rules”; this helps us focus on which parts of the software to analyze

For example, xServiceImpl.java files have several design rule violations

Type Violations Grouped by
Design Paradigm

Original
Version (#
Violations)

Refactored
Version (#
Violations)

DR Complexity 8 0
DR Exception Handling 8 0
DR Logger 0 1
DR Duplicated blocks 0 9
ND Useless assignment 26 1
ND Hardcoded constants 6 2

48 5

Static Analysis Design Rules

Violations Files

48 xServiceImpl.java
29 FindDocDialog.java
26 xDocEnterMetaData Comp.java
57 UpdateDocumentDialog.java

24Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

QAS to Evidence Mapping Table

Even after we filter down to QAS and evidence, we find there can be mismatches
between what teams develop and what is needed for analysis

• A handy tool is the Evidence Mapping Table
• List the QAS and expected evidence; team commits to create these artifacts for

the review

QA Quality Attribute Scenario Evidence

Modularity Changes to the physical data structures will not impact
business logic code

Component diagram

Security While not connected to the network, a user adds/edits data.
Connection is reestablished. All changes and attachments are
sent to the server with no data consistency issues in
99.9999% of cases.

Deployment diagram
(network/physical diagram)

Performance System processes a message while processing 100
messages; system stores the data and responds with in 2 ms

Annotated sequence diagram
or performance test results

25Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Allocating QAS to Increments

In incremental design review, we don’t analyze all the QAS at the same time
• We typically allocate 3–5 QAS to an increment
• Often teams will sprinkle the QAS increments between feature-only releases
• We try to align the QAS analysis with increments that make sense

3–5 Quality Attribute
Requirements

Increment 1 Increment 2
…

3–5 Quality Attribute
Requirements

26Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Filtering Recap

• We explained that in an incremental development environment there is a lot going on
and much information is generated!

• Filtering reduces the amount of information teams need to generate and architects
need to analyze to surface design risk

• QAS and evidence are the main inputs needed for analysis; everything else may or
may not be useful context

• Reducing to only QAS and relevant evidence is not enough; we need to also make
sure we get useful information

• The QAS Evidence Mapping Table helps ensure we get information appropriate for
analysis

27Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Incremental Review Overview

We are here

1. Select increment
and gather context

2. Get just enough of
the right artifacts for
analysis

4. Prepare
artifacts for
review

3. Perform
software
risk analysis

4. Capture
Risks

6. Determine
Action

Assessment
Cube

Filtering and Evidence
Mapping Table

3. Assess
condition of
selected artifacts Artifact

Strengthening
Techniques

Risk Visibility
Dashboard

Decision
Points

QAS to Evidence
Comparison/Automated
Techniques

28Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

The next step in the incremental design review is to assess the condition of artifacts
submitted by teams for design analysis

Why is this step needed?

We found that teams often show up to reviews with artifacts that are not adequate
because

• the QAS are weak
• the design evidence artifacts are weak
• or both

If we (architects) don’t recognize this, we waste the team’s time and do the wrong things

Assessing the Condition of Artifacts-1

29Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

• Assessing the state of the artifacts increases the likelihood of a productive design
analysis activity and helps architects determine what to do next

• We know that teams do not follow the same path to develop the analysis artifacts
• Sometimes they have given more thought to requirements than design or vice versa
• In the next few slides, we describe several paths we observe that teams take to get

artifacts to the appropriate state
• We also describe techniques that architects can use to help teams strengthen artifacts

regardless of the path they take

Assessing the Condition of Artifacts-2

30Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Assessment Cube

The Artifact Assessment Cube is a reasoning
tool for determining the state of artifacts prior to
analysis
The goal is to move the artifacts toward the top
right corner
By evaluating the condition of input artifacts,
architects can use the cube to determine what
actions they should take next

Note: We show the cube as a square here for
ease of explanation; later we will explain the
cube aspect Concreteness of

Design

C
on

cr
et

en
es

s
of

 R
eq

ui
re

m
en

ts

31Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Artifact State Overview

Sufficient requirements for analysis
Insufficient design for analysis

Concreteness of Design

C
on

cr
et

en
es

s
of

 R
eq

ui
re

m
en

ts

Insufficient requirements
Sufficient design

Sufficient requirements for analysis
Sufficient design for analysis

There are three states that artifacts can be in:

32Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Factors for Determining What to Do Next

In this example, we assume that the scope of
iteration is already chosen; steps the architect
needs to take next depend on

1. the concreteness of the requirements for
the features of that iteration/release

2. the concreteness of the design of the
solution

Concreteness of
Design

C
on

cr
et

en
es

s
of

 R
eq

ui
re

m
en

ts

33Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Beginning of Increment (Green)

At the beginning of an increment (lower left
corner),

1. QAS requirements are vaguely defined
(e.g., only business goals)

2. evidence describes some major decisions
(e.g., frameworks), but some decisions
have not yet been made

• If we find a risk here, it is likely a show stopper
• Under certain conditions, it is appropriate to

have a review
• e.g., initial analysis to find major gaps in

business goals (e.g., security risk)
Concreteness of
Design

C
on

cr
et

en
es

s
of

 R
eq

ui
re

m
en

ts

34Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Moving Up the Diagonal Green Path

• The further we move up the green diagonal,
the greater the detail in the artifacts

• We work with teams in a collaborative way
to get them to evolve the architecture

• We refer to this as a Sidecar Model of
collaboration

• We have informal reviews at every step, but
as we go up the risks become more
concrete

Concreteness of
Design

C
on

cr
et

en
es

s
of

 R
eq

ui
re

m
en

ts

35Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Beginning of Increment (Yellow)

At this time,
1. project goals and functional

requirements are defined; quality
attribute properties are defined (e.g.,
security) but not measures

2. design is still vague

Review at this stage does not seem to be
appropriate because of missing design
decisions

Concreteness of
Design

C
on

cr
et

en
es

s
of

 R
eq

ui
re

m
en

ts

36Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Beginning of Increment (Red)

At this time,
1. project goals and functional requirements

are poorly defined; QAS are not created
2. there is a fairly specific design for the

system/feature available

• If a team is in this state, it has made a lot of
assumptions about what the requirements
actually mean without validating those
assumptions

• This is a risky position to be in
Concreteness of
Design

C
on

cr
et

en
es

s
of

 R
eq

ui
re

m
en

ts

37Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

End of Increment (Green)

The “Happy State”

At this time,
1. measurable quality attribute

requirements are defined
2. there is a specific design for the

system/feature available

The design can be reviewed and will lead to
concrete risks (if there are some)

Concreteness of
Design

C
on

cr
et

en
es

s
of

 R
eq

ui
re

m
en

ts

38Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Multiple Paths

Teams may use multiple paths to reach the Happy State, which means they are ready for
design review
The paths have trade-offs
Depending on the project context and goals, it may make sense to go with one path vs.
another

39Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

The Iterative Path

This path makes sense when using an incremental lifecycle

In this example, we have a new feature for which the
requirements are not clear yet and it requires a new
design
The team

1. decides to work toward a better understanding of
the requirements

2. designs the solution while understanding the
requirements

3. uses the gained knowledge to refine the
requirements

4. adds the necessary details to the design

40Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

The Waterfall-ish Path

This may be appropriate in a safety-critical system where understanding and analysis of
requirements are critical or the organization prefers this path

It is a new feature for which the requirements are not
clear yet and it requires a new design

1. Team decides to work on the requirements first
and get them to a well-understood state

2. After that, the team designs how the new feature
should be implemented

41Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

The Prototype Path

This path may be more appropriate for trying out a new technology (e.g., Agile spike)

It is a new feature for which the requirements are not
clear yet and it requires a new design

1. Without understanding the requirements, the
team goes ahead to design the solution

2. After the design is finished, the team starts
understanding the requirements

3. Requirements might be refined to fit the design

42Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Incremental Review Overview

We are here

1. Select increment
and gather context

2. Get just enough of
the right artifacts for
analysis

4. Prepare
artifacts for
review

3. Perform
software
risk analysis

4. Capture
Risks

6. Determine
Action

Assessment
Cube

Filtering and Evidence
Mapping Table

3. Assess
condition of
selected artifacts Artifact

Strengthening
Techniques

Risk Visibility
Dashboard

Decision
Points

QAS to Evidence
Comparison/Automated
Techniques

43Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Artifact-Strengthening Techniques

Artifact State:
• Insufficient requirements for analysis
• Sufficient design for QAS analysis

Artifact-Strengthening Techniques
• Extend functional requirements (e.g.,

user stories) as a basis for QAS
• Create “seed” QAS via doc review or

active listening
• Conduct stakeholder workshop to

develop QAS and measures
• Share metric examples from projects
• Query the organization for established

measures

Based on the current state, architects can use a variety of practices to help teams move
artifacts toward the green, such as…

Concreteness of Design

C
on

cr
et

en
es

s
of

 R
eq

ui
re

m
en

ts

44Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Architect Practices for Navigating the Cube

Artifact State:
• Sufficient requirements for analysis
• Insufficient design for QAS analysis

Artifact-Strengthening Techniques
• Create example evidence artifact with the

team (e.g., architecture drawing tool,
whiteboard)

• Conduct Options Workshop if decisions
need to be made

• Provide iterative artifact feedback
• Conduct design review dry run
• Skill coaching in design analysis and tool

usage (e.g., UML, dependency analysis)
• Share examples from other projects

Concreteness of Design

C
on

cr
et

en
es

s
of

 R
eq

ui
re

m
en

ts

45Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Class Exercise-1

Sufficient requirements
Insufficient design

Insufficient requirements
Sufficient design

Sufficient requirements
Sufficient design Concreteness of

Design

U
nd

er
st

an
di

ng
 o

f R
eq

ui
re

m
en

ts

1

1

12

2

23

3

3

Exercise1:
Raise your hand if the
teams you work on
have artifacts mostly in

• State 1
• State 2
• State 3
• N/A

46Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Class Exercise-2

Exercise 2 (1)

1. Do you use any of
these practices?

2. How well do they
work?

3. Do you use others
not listed here?

Artifact State Problem Architect Activities

Insufficient
requirements

Missing
QAS

1. Use functional requirements to
derive QAS

2. Create “seed” QAS via doc review
or active listening

3. Conduct workshop to develop QAS

Lacking
QAS
Measures

4. Facilitate sessions with team and
business

5. Share past project metric examples

6. Query organization for established
measures

47Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Class Exercise-2

Exercise 2 (2)

1. Do you use any of
these practices?

2. How well do they
work?

3. Do you use others
not listed here?

Artifact
State

Problem Architect Activities

Insufficient
design

Wrong
evidence

1. Create example evidence artifact
with the team (e.g., architecture
drawing tool, whiteboard)

Options 2. Conduct Options Workshop to make
a design decision

Incomplete
design

3. Provide iterative evidence feedback

4. Give bite-sized skill builder sessions
(e.g., UML, dependency analysis)

5. Provide examples from other
projects

48Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

The “Cube” Actually Is a Cube

• The third dimension is code conformance
• It is important that code aligns with

design and requirements
• In early stages, we might have minimal

code
• As we move up the cube, the amount of

code increases

Design

C
od

e
C

on
fo

rm
an

ce

49Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Multiple Projects

• Even within one project, multiple developments can go on in parallel where the teams
are in different stages

• You might have to coordinate several projects to create a new product
• You might be responsible for coordinating applications for an enterprise
• Regardless, we can quickly figure out where teams are and what to do next

Release 2

Design
Review

Release 3

Code
Review

Release 1

Code
Review

Design
Review

50Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Enabling Scalability with the “Cube”

Characteristics of the “cube concepts” that scale during this phase include
• inputs at an adequate level of specificity for the analysis activity
• helps architects do the right things
• non-linear process: no dependencies on previous steps/gates; you can apply on your

desk tomorrow
Continuous collaboration also helps

• We refer to this as the Sidecar Model
• Benefits: Reduces wasted time due to context switching, builds trust, allows early

detection of problems, enables easier sprint planning, and has greater flexibility

51Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Artifact Assessment Recap

• We shared the Artifact Assessment Cube concept, which is a reasoning tool for
assessing the state of a design review artifact quickly and efficiently

• We explained that this is useful for three things:
1. helping teams along the way
2. helping architects know what to do next
3. serving as a pre-design review checkpoint

• We practiced artifact assessment in an exercise
• We talked about activities that architects can do to close artifact gaps

52Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Incremental Review Overview

We are here

1. Select increment
and gather context

2. Get just enough of
the right artifacts for
analysis

4. Prepare
artifacts for
review

3. Perform
software
risk analysis

4. Capture
Risks

6. Determine
Action

Assessment
Cube

Filtering and Evidence
Mapping Table

3. Assess
condition of
selected artifacts Artifact

Strengthening
Techniques

Risk Visibility
Dashboard

Decision
Points

QAS to Evidence
Comparison/Automated
Techniques

53Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Design Analysis

• The main activity during the design analysis step is comparing evidence artifacts to
QAS for analysis

• The main output is a list of software risks or TODOs
• The next slide shows an example comparison that happens during design review

54Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Design Risk: Example

Evidence Description: Changes to the physical tables require the repository (repo)
component to change; the business logic components are likely not impacted

Non-functional Requirement: Changes to the physical data structures will not impact
business logic code

55Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Design Risks: Examples

Risks
• Lack of clarity around responsibilities for how developers should use modules in Spring

framework that implement the Model–View–Controller pattern may result in
maintainability issues and developer confusion.

• Intranet Service X assumes that access control checking is done prior to calling XYZ
Service; however, this leaves a security gap because an unauthorized user could call
the service

• The enterprise service bus is a single point of failure; therefore, the team should
consider adding a redundancy or failover tactic

TODOs:
• Investigate other options for mobile that support non-Windows platforms
• Based on the evidence provided, there is not sufficient evidence that QAS performance

measures are met; provide performance testing metrics

56Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Incremental Review Overview

We are here

1. Select increment
and gather context

2. Get just enough of
the right artifacts for
analysis

4. Prepare
artifacts for
review

3. Perform
software
risk analysis

4. Capture
Risks

6. Determine
Action

Assessment
Cube

Filtering and Evidence
Mapping Table

3. Assess
condition of
selected artifacts Artifact

Strengthening
Techniques

Risk Visibility
Dashboard

Decision
Points

QAS to Evidence
Comparison/Automated
Techniques

57Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Visibility Promotes Action

• The goal of this step is to get action on important risks
• The best way to motivate action is not to tell people what to do; it is to make the data

visible and let it speak for itself
• If people can see it, they are more motivated to make changes
• We don’t want an information stream that overwhelms
• During the design review, we bring up only what is most important
• These are classified as risks or TODOs

58Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Visibility and the Architect’s Role

It is the architect’s responsibility to make sure something happens
Architects typically focus on fixing things
Rather than having architects take on fixing all the design risks, the work becomes making
it visible to encourage teams to fix it
By making risks visible, we mean the following:

• Risks are written down
• Risks are stored in an accessible repository (we don’t care what kind)
• Risks are communicated to developers
• Risk activity and status are monitored
• Risk data is viewable in such a way as to encourage action (e.g., dashboard)

59Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Where to Put Design Risks

We suggest putting risks in the project backlog
However, for important risks we also recommend a software quality design risk repository
and dashboard where open risks are visible
The reason for this is that at the project level feature development is typically prioritized
higher than design risks and technical debt
Consequently, the design risks and technical debt items fall to the bottom of the project
backlog and no action is taken

60Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Design Risks and Technical Debt

In practice, teams frequently choose (often for good reasons) to delay fixing design risks
This can result in technical debt, which is risk that accumulates effort, money, or time
In our experience, these debts are very likely to be forgotten and the debt never paid
down because there is no practice in place for doing so
Therefore, it is particularly important to make technical debt visible at the project and
enterprise levels

61Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Software Architecture Dashboard

Our Software Architecture Dashboard has 4 parts; The bottom two quadrants are
project level and the top two quadrants are enterprise level
We only focus on the project level (blue) for this talk

Project and
Enterprise Level
data

Project Level
data

Project Level
data

Enterprise Level
data

62Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Dashboard – Project Design Risk List

The Project Design Risk List shows the project design risks

ID Project Risk Description Project

SWQ-114 Data object definitions in Service belong in Utility Project A
SWQ-108 Role/permission architecture is not flexible Project B
SWQ-106 Use inheritance to get rid of unnecessary classes Project B
SWQ-99 Design missing integration with Secure gateway Project C
SWQ-77 Reduce branching complexity in xxDetailMgr.java Project B
SWQ-71 Performance issue due to calls to database Project B
SWQ-62 Duplication of data requires synchronization Project D
SWQ-35 Add a notification component Project E

SWQ-105 Manager and Model dependency Project B
SWQ-76 Investigate JPA for complex SQL stmts in validation Project B
SWQ-72 Move business rule logic to service layer Project B
SWQ-36 Clarify data transformation responsibility Project E
SWQ-27 Define IDs to map extranet records to intranet Project E
SWQ-16 Use repo component via a manager Project B

63Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Dashboard – Design/Code Review Summary

The Design/Code Review a project-level roll up of open issues by design or code review
activity

Review Name
Design
Risks Code Risk

Technical
Debt Item TODO

Design Review 09-16-18 0 4 2 2

Code Analysis 10-13-18 7 2 4 1

Design Review 11-20-18 2 0 3 3

Design Review 11-26-18 9 3 0 2

Code Analysis 01-12-19 5 9 1 5

Design Review 02-09-19 0 3 0 4

Code Analysis 03-24-19 6 7 0 2

Design Review 04-03-19 7 0 1 0

Design Review 06-18-19 7 1 2 1

64Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Dashboard Metadata Overview

The purpose of this structure is to track review activities and risk across multiple projects
Summarized data risk and activity can be used to monitor system/application quality

65Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Projects and Activity Relationships Expanded

• The model is flexible and
easily expanded

• There may be different types
of projects
• These are some that we

commonly have
• We (architects) also support

many types of activities

66Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Risk Types

The risk metamodel is also
flexible, allowing for handling
many types of risks
The most common risk types we
use are

• design risk
• code quality
• ToDo
• technical debt*

*We discuss this in a separate
session

67Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Format for Design Risk

Try to use a consistent format for capturing design risk, such as
• problem statement
• consequence
• proposed solution

Consequence allows us to
• argue for high priority if appropriate
• reason about whether the risk is a technical debt item (if effort or cost will accumulate,

it might be)

68Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Design Risk: Example

Problem: Lack of clarity around responsibilities for how developers should use modules
in Spring framework that implement the Model–View–Controller pattern.

Consequence: Developers put business logic in Spring framework components
inconsistently. When it is time to change the business logic, developers have to spend
additional time analyzing the code, and there is a high risk of making a change that has
unintended consequences. It is likely that effort and cost to maintain the software will go
up over time, particularly because this pattern is intended to be reused across multiple
projects.

Proposed Solution: Include component responsibility descriptions in the software design
document that clearly specify where business logic goes. Check for conformance to these
responsibility descriptions during code analysis.

69Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

• It is not enough to track only
risk status (e.g., open,
closed)

• It is also helpful to track
steps in the incremental
review process to see if
teams are getting stuck

• Each row in the table maps
to an increment

• A project may have multiple
increments

Tracking Progress in Incremental Design

70Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Incremental Review Overview

We are here

1. Select increment
and gather context

2. Get just enough of
the right artifacts for
analysis

4. Prepare
artifacts for
review

3. Perform
software
risk analysis

4. Capture
Risks

6. Determine
Action

Assessment
Cube

Filtering and Evidence
Mapping Table

3. Assess
condition of
selected artifacts Artifact

Strengthening
Techniques

Risk Visibility
Dashboard

Decision
Points

QAS to Evidence
Comparison/Automated
Techniques

71Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Motivating Action Through Decision Points-1

Making design risk data visible is good, but sometimes this alone is not enough
For this reason, we found it necessary to identify decision points
Decision points are a forcing function for stakeholders to come together to make a
decision
A good example is a stakeholder meeting or call to discuss project design risk

The next slide explains some of the decision points in our process and why they matter…

72Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Motivating Action Through Decision Points-2

Ecosystem
Action Decision

Point

System
Architecture

Risks/Trade-offsEcosystem TDI
Decision Point

Ecosystem TDI

Architecture
Decision Points

generates

Actions/Change
• Budget
• SOW
• Plans
• Verification

approved

Decision
Points

Architecture
Runway

Components

Phased
Roadmap

Project TDIArtifact

Project
Impact

Enterprise
Impact

73Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Summary

• The goal of a design review is to produce quality software
• What is quality software? Software without major design risks!
• To do this, we need to keep requirements, design, and code in alignment
• Our incremental design process is designed to maintain alignment for analysis while

keeping up with a fast pace and project increments in different stages of evolution
• We introduced techniques we use to support the incremental design process
• Techniques we shared include filtering, evidence mapping table, assessment cube, risk

dashboard, and decision points
• Finally, we find that the incremental design process provides the greatest impact if

architects work collaboratively with teams in a continuous, ongoing manner rather than
use design reviews as a gating function

74Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

We Made It!

1. Select increment
and gather context

2. Get just enough of
the right artifacts for
analysis

4. Prepare
artifacts for
review

3. Perform
software
risk analysis

4. Capture
Risks

6. Determine
Action

Assessment
Cube

Filtering and Evidence
Mapping Table

3. Assess
condition of
selected artifacts Artifact

Strengthening
Techniques

Risk Visibility
Dashboard

Decision
Points

QAS to Evidence
Comparison/Automated
Techniques

75Scaling Up Incremental Design Reviews
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Contact Information

Stephany Bellomo
sbellomo@sei.cmu.edu

Felix Bachmann
fb@sei.cmu.edu

mailto:sbellomo@sei.cmu.edu
mailto:fb@sei.cmu.edu

	Scaling Up Incremental Design Reviews: A Tutorial
	Document Markings
	Introduction
	History of the Scaled Incremental Review
	Terms and Assumptions
	Maintaining Alignment
	Incremental Design Overview
	Select Increment and Gather Context
	Incremental Review Overview
	Filtering and Evidence Mapping
	Typical Inputs
	Avoiding the Fool’s Gold
	What Is Really Needed?
	What Is a Quality Attribute?
	QAS Examples
	What Is Evidence?
	Component Evidence: Example
	Code Analysis Evidence: Example
	Informal Evidence: Example
	Deployment Diagram
	Sequence Diagram
	Test Output/Logs Evidence
	Static Analysis Design Rules
	QAS to Evidence Mapping Table
	Allocating QAS to Increments
	Filtering Recap
	Incremental Review Overview
	Assessing the Condition of Artifacts-1
	Assessing the Condition of Artifacts-2
	Assessment Cube
	Artifact State Overview
	Factors for Determining What to Do Next
	Beginning of Increment (Green)
	Moving Up the Diagonal Green Path
	Beginning of Increment (Yellow)
	Beginning of Increment (Red)
	End of Increment (Green)
	Multiple Paths
	The Iterative Path
	The Waterfall-ish Path
	The Prototype Path
	Incremental Review Overview
	Artifact-Strengthening Techniques
	Architect Practices for Navigating the Cube
	Class Exercise-1
	Class Exercise-2
	Class Exercise-2
	The “Cube” Actually Is a Cube
	Multiple Projects
	Enabling Scalability with the “Cube”
	Artifact Assessment Recap
	Incremental Review Overview
	Design Analysis
	Slide Number 54
	Design Risks: Examples
	Incremental Review Overview
	Visibility Promotes Action
	Visibility and the Architect’s Role
	Where to Put Design Risks
	Design Risks and Technical Debt
	Software Architecture Dashboard
	Dashboard – Project Design Risk List
	Dashboard – Design/Code Review Summary
	Dashboard Metadata Overview
	Projects and Activity Relationships Expanded
	Risk Types
	Format for Design Risk
	Design Risk: Example
	Tracking Progress in Incremental Design
	Incremental Review Overview
	Motivating Action Through Decision Points-1
	Motivating Action Through Decision Points-2
	Summary
	We Made It!
	Contact Information

