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A Framework for Modeling and Assessing System 
Resilience Using a Bayesian Network: 

A Case Study of an Interdependent Electrical  
Infrastructure System 

 
 
 
 

  Abstract 
 

  

This research utilizes Bayesian network to address a range of possible risks to the electrical 
power system and its interdependent networks (EIN) and offers possible options to mitigate 
the consequences of a disruption. The interdependent electrical infrastructure system in 
Washington, D.C. is used as a case study to quantify the resilience using the Bayesian net- 
work. Quantification of resilience is further analyzed based on different types of analysis 
such as forward propagation, backward propagation, sensitivity analysis, and information 
theory. The general insight drawn from these analyses indicate that reliability, backup power 
source, and resource restoration are the prime factors contributed towards enhancing the 
resilience of an interdependent electrical infrastructure system. 

 
 

 

 
 
 
 
 

 

1. Introduction 
 

United States economic sectors are highly reliant on the elec- 
tric power industry with generated energy being utilized to 
serve its people and conduct business in the global market [1]. 
This critical infrastructure system performs four fundamen- 
tal functions: the generation, transmission, distribution, and con- 
sumption of electricity. The electric power system is linked with 
many other supporting infrastructures such as telecommuni- 
cation, transportation, fuel distribution, and water supply [2]. 

The U.S. electrical systems are susceptible to diverse 
threats that can cause short-term power interruptions to long 
duration power outages. The Department of Energy (DOE) 
reports that the outages could be triggered by natural dis- 
asters and climate conditions such as tornados, hurricanes, 
blizzards, and earthquakes or man-made threats such as 
physical or cyber-attacks [3]. Such disruptions may affect the 
security, health and safety of residents and cause an annual 
estimated economic loss of $18-70 billion. For instance, the 
Northeast power blackout in 2003 caused financial losses in 
excess of $6 billion [3]. Needless to say, a resilient and reliable 
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electrical grid has been a central concern of national security
for decades. A recent report by the National Academies of
Sciences, Engineering, and Medicine (NASEM) entitled “En-
hancing the Resilience of the Nations Electricity System”
highlighted the potential threats including natural disaster,
manmade attack, and cyber-attack of the power system and
offered overarching recommendations to enhance the overall
resilience of the U.S. electrical system [4] . 

The conditions of any disruptive event can be broadly
characterized as intense, unsettling, and severe under both
pre-and post-disaster applications. The complex nature and
the dynamic interactions between the system components
challenge the achievement of optimal operations for system
infrastructure, and this causes economic loss [5] . For instance,
statistics show that the economic losses caused by natural
disasters from 2000 to 2017 were around $3,312 billion across
the world [6] . In 2011, when Japan was devastated by the
tsunami and the massive earthquake Tohoku, economic
losses soared to $440 billion [7] . In the U.S. recent hurri-
canes Harvey, Irma, and Sandy caused immense damage to
the economy. These three hurricanes caused an estimated
$320 billion in financial losses [8] . Beyond financial losses
and property damage, all these mentioned disasters have
wreaked havoc on business, manufacturing and production
industry, the job market, and devastation of human life.
These examples would clearly highlight the importance of
conducting research on systems resilience. 

The term resilience comes from the Latin word “resiliere”
which means “bounce back”. Resilience is an intrinsic prop-
erty of a system that describes the system’s ability to absorb
the shock of a disruptive event and recover to a pre-defined
level of performance. The concept of resilience integrates four
fundamental concepts, namely: robustness, resourcefulness,
speed of recovery, and adaptability. These four concepts are
addressed in risk management approaches during the differ-
ent stages of the disruptive event [9] . The consequences of dis-
ruptions often lead to unanticipated system behaviour and re-
duced overall system resilience [10] . Several research studies
have been conducted to reduce the likelihood of the occur-
rence of the catastrophic event by applying security manage-
ment tools, known as pre-disaster or contingency strategy . Be-
yond the contingency strategy, a fast response, a high level
of preparedness, and a quick recover are of paramount im-
portance in minimizing the disruption caused by the event.
The combined approach of response and recovery are often
referred to as post-disaster strategy or mitigation strategy . 

The purpose of this research paper is to quantify the re-
silience of interdependent electrical systems by building an
effective Bayesian network model. The model is specifically
developed to deal with risks and uncertainties associated with
the complex network of electrical infrastructure systems un-
der disruption. The underlying factors related to the resilience
of electrical infrastructure systems are identified, and the
model is developed based on expert judgement and histori-
cal data. Washington, D.C. is used as a case study to illustrate
the quantification of the resilience of an electrical system and
its interdependent network. 

The following subsection discusses the literature pertain-
ing to the quantification of resilience and the state-of-the-
art Bayesian approach in risk and resilience engineering.
Section 2 discusses various factors related to design in the
resilience of EIN. Section 3 provides background information
about the Bayesian structure. Quantification of resilience
factors associated with the Bayesian network for EIN is
presented in Section 4 . Various kinds of analysis such as for-
ward propagation, backward propagation, sensitivity analysis
and information theory are described in Section 5 . Finally,
Section 6 ends the paper with concluding remarks and future
recommendations. 

1.1. Related research 

This section has two primary purposes. The first is to show
some of the related methods used in quantifying system re-
silience and to present the general thread running through
these methods. The different methods are then mathemati-
cally presented. The second is to discuss the existing litera-
ture related to the use of the Bayesian network in risk and
resilience engineering and to present current gaps in the liter-
ature. To address these gaps, this research identifies the basic
factors of resilience associated with the interdependent elec-
trical infrastructure system in Washington, D.C. and then pro-
poses a conceptual framework to quantify the resilience based
on the Bayesian network. 

1.1.1. Quantification of resilience 
In recent years, research pertaining to system resilience in
critical infrastructure has significantly increased and quan-
tification of resilience has become a central factor. Despite an
increased importance on system resilience in various sectors
over the past few years, substantial differences exist among
the definitions and descriptions of resilience. Different re-
searchers attempted to quantify resilience in different man-
ners. For instance, Youn et al. [11] developed a metric for mea-
suring engineering resilience in terms of passive survival rate
and proactive survival rate where resilience is the summa-
tion of passive survival rate and proactive survival rate . Passive
survival rate refers to the reliability of the system and proac-
tive survival rate represents the restoration of the system (see
Eq. (1) ). Although this approach is most applicable for earth-
quakes, it still can be utilized to quantify resilience for other
systems. 

Resilience (�) = Reliability (R ) + Restoration (ρ ) (1)

Bruneau et al. [9] designed a resilience triangle model
for civil infrastructure by incorporating four dimensions of
resilience: robustness, resourcefulness, rapid recovery, and
adaptability. The authors proposed a deterministic static
metric for measuring the resilience loss in terms of quality
of degraded infrastructure. In this approach, resilience loss
is calculated by the quality of the infrastructure before dis-
ruption, which is assumed to be 100, minus the quality of the
disrupted infrastructure after recovery over time period t 0 to
t 1 where t 0 represents the time when the disruption occurred
and t 1 refers the time when the infrastructure returns to its
normal pre-disruption state. This approach is presented as
a mathematical expression in Eq. (2) . Let RL is defined as the
resilience loss and the average disrupted scenario is exhibited
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Fig. 1 – System performance and state transition to describe resilience (adapted from [13] ). 
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s a function of Q ( t ). 

L = 

∫ t 1 

t 0 
(100 − Q(t)) dt (2) 

Rose [12] provided a definition of dynamic resilience ( DR ) 
hich incorporated the concept of time-dependent charac- 

eristics of recovery. The author further computed dynamic 
esilience in terms of output of the system under hastened 

ecovery ( SO HR ) and without hastened recovery ( SO WR ) where 
 is the number of time steps and t i is the i th time step during

ecovery (see Eq. (3) ). 

R = 

N ∑ 

i =1

SO HR (t i ) − SO WR (t i ) (3) 

Another time-dependent resilience approach was pro- 
osed by Henry and Ramirez-Marquez [13] . This approach 

imply computed the resilience as a ratio of recovery to loss.
n this approach, the performance of the system at a point 
n time is measured through performance function φ( t ), and 

hree different transition states are considered: ( i ) the base- 
ine stable state ( S 0 ) functions under normal conditions be- 
ore any disruption e j occurs at time t e , ( ii ) the disruptive state
 S d ) at time t d due to disruptive event e j , and ( iii ) the recov-
red state ( S f ) that represents the new state after the recov- 
ry action started at time t s . The resilience equation ( � ( t | e j ))
s the ratio of recovery to loss and is presented in Eq. (4) and
llustrated in Fig. 1 . 

 (t | e j ) = 

φ(t | e j ) − φ(t d | e j ) 
φ(t 0 ) − φ(t d | e j ) 

(4) 

There are several other approaches such as graph theory,
imulation, and optimization techniques that have been con- 
ucted to quantify resilience in different ways. For instance,
mer et al. [14] propose a resilience metric for infrastructure 
ystem resilience where resilience is computed as the ratio 
f the closeness centrality of the network for pre-and post- 
isruptive scenarios. Soni et al. [15] use graph theory to de- 
ermine the supply chain resilience in terms of the determin- 
stic modeling approach. Carvalho et al. [16] apply discrete 
vent simulation to compare different scenarios to enhance 
he resilience of a supply chain network. In another research,
aturechi et al. [17] develop a mathematical model in order 
o maximize the resilience of an airport’s taxiway and run- 
ay system. An optimization model and heuristic solution 

pproach is proposed by Khaled et al. [18] and Vulgrin et al.
19] to maximize the resilience of the U.S. transportation sys- 
em. Interested readers can refer to the works of Chang and
hinozuka [20] , Cimellaro et al. [21] , Murray-Tuite [22] , Berche
t al. [23] , Heaslip et al. [24] , Dorbritz [25] , Miller-Hooks et al.
26] , and Hosenni et al. [27] to understand different techniques
pplied to quantifying and assessing resilience. The different
echniques used in quantifying and modeling resilience are
ummarized in Table 1 .

.1.2. Existing literature related to Bayesian network in risk 
nd resilience engineering 
he Bayesian network (BN) has a wide range of usage in the 
eld of reliability, resilience engineering, and decision sup- 
ort systems. Hosseni and Barker [47] develop a resilient sup- 
lier selection method based on the Bayesian approach which 

odeled a Bayesian framework that can assess and select the 
est supplier based on primary and green criteria. Constanti- 
ou et al. [48] develop a robust Bayesian structure to select the 
ptimal decision for a complex medical support system. The 
uthors develop a realistic BN model that can handle both ex- 
ert knowledge and data-driven interviews with patients in 

rder to provide decision support for a forensic medical sys- 
em. Khan et al. [49] examine the risk associated with marine 
ransportation in arctic waters by conducting a quantitative 
isk assessment via BN. The authors predict the risk of col- 
ision between oil tankers and ice floes in the waters of the 
orthern Sea Route. Perez-Minana et al. [50] conduct an envi- 

onmental risk assessment using the BN to illustrate the un- 
erlying risk associated with biodiversity. The authors initially 
evelop mind-maps and the information obtained through 

he minds-map is fed into the BN to better manage the uncer- 
ainty associated with functions of biodiverse ecosystems. In 

nother study, Amunddson et al. [51] demonstrate a Bayesian 

uantitative approach to handle the risk in the development 
f sustainable biomass supply chain networks. The authors 

dentify risk drivers related to a biomass supply chain net- 
ork and translated these factors into the Bayesian frame- 
ork to assess how risk factors influence each other and how 

hey impact the overall resilience of the biomass feedstock 
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Table 1 – Different techniques for quantifying and modelling resilience. 

Approach References Application areas 

Conceptual framework Vlacheas et al. [28] Telecommunication 
Labaka et al. [29] Nuclear plant 
Sterbenz et al. [30] Communication network 

Semi quantitative Shirali et al. [31] Community 
Bruyelle et al. [32] Process industry 

Probabilistic approach Barker et al. [33] Networks 
(Quantitative) Pant et al. [34] Transportation 

Ouyang et al. [35] Urban infrastructure 
Deterministic approach Enjalbert et al. [36] Transportation 
(Quantitative) Orwin and Wardle [37] Soil system 

Ouedraogo et al. [38] Human-machine system 

Brown et al. [39] Organization 
Fuzzy Tadic et al. [40] Organization 

Azadeh et al. [41] Chemical industry 
Simulation Jain and Bhunya [42] Water system 

Spiegler et al. [43] Supply chain 
Landegren et al. [44] IT network 

Optimization Alderson et al. [45] Infrastructures 
Baroud et al. [46] Water system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

supply network. Some other applications of BN available in the
literature are traffic accidents [52] , customer service manage-
ment [53] , manufacturing systems [54] , data classification [55] ,
software development projects [56] , and safety management
[57] . All the results drawn from this research indicate that the
BN model can effectively address mutual interdependency of
incidents in risk analysis and provide recommendations to
mitigate risk.

Although BN has been applied in different research, two
significant gaps are identified and need to be addressed. These
gaps are: 

• The need for a Bayesian framework to design an inter-
dependent electrical infrastructure system that takes into
consideration the complex interactions that exist among
different entities of the entire network.

• The lack of research assessing the resilience of EIN with re-
spect to the concept of absorptive, adaptive and restorative
capacities.

To address these gaps, this research paper proposes a new
decision making approach based on Bayesian network theory
that addresses the risk and uncertainty associated with EIN.
A Bayesian network is an analytical tool that demonstrates
all the causal relationships among the different qualitative
and quantitative variables and allows practitioners to under-
stand the interdependencies among the variables and how the
change in one variable affects the others. The main contribu-
tions of the research are summarized below: 

• Proposing a new conceptual framework for designing elec-
trical system and its interdependent network.

• Classifying the underlying factors of EIN with respect to the
concept of absorptive, adaptive, and restorative capacities.

• Developing a probabilistic graphical model, known as
Bayesian network, for assessing the resilience of EIN.
• Conducting different types of analysis such as forward
propagation, backward propagation, sensitivity analy-
sis and information theory to provide a better insight
regarding the result of the model.

2. Problem description and model
formulation

This section discusses the problem description and model for-
mulation using a case study and quantifying the resilience of
EIN with respect to the concept of absorptive, adaptive, and
restorative capacities. 

2.1. Interdependent electrical infrastructure system case 
study 

The main objective of the research is to build a Bayesian net-
work for assessing and quantifying the resilience of an inter-
dependent electrical infrastructure system. For this objective,
the interdependent electrical infrastructure of Washington,
D.C. is chosen to serve as a case study. Washington, D.C. is
selected because ( i ) it is the capital of the U.S., ( ii ) the electrical
infrastructure of Washington, D.C. plays a crucial role in the
U.S. economy because it promotes an opportunity to trade
electricity and is correlated to the U.S. gross domestic product
(GDP) [58] , and ( iii ) the electrical infrastructure is connected to
the adjacent states of Maryland and Virginia which makes it a
complex network to study. Washington, D.C. has a population
around 65 million and the annual electric power generation is
0.1 TWh which is less than 1% of total U.S power generation
[59] . The electricity is mainly generated from natural gas. The
electrical infrastructure of Washington, D.C. is subjected to
several disruptions mainly caused by natural disaster and
human error such as executing a wrong computer command
to control the equipment. The most common natural hazards
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Fig. 2 – Energy sector profile of Washington, D.C (Adapted from [59] ). 
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n Washington, D.C. are thunderstorms, lightning and winter 
torms [60] . This study covers all possible aspects related to 
uantifying the resilience of the interdependent electrical 

nfrastructure system of Washington, D.C. Energy sector 
rofile of Washington, D.C is shown in Fig. 2 . 
.2. Resilience capacity (RC) 

apacity is the property of a system to achieve its objec- 
ives. Resilience capacity enhances the capability of a system 

o absorb, adapt, and recover from any shock or disruption.
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Fig. 3 – Fundamental structure of the resilience capacity for EIN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Resilience capacity can take the form of resources such as
the aptitude and skills of people, assets including intelligence
systems, and/or actions [61] . Biringer et al. [62] proposed that
the resilience paradigm can be described by using a set of re-
silience capacities, namely, absorptive capacity, adaptive ca-
pacity, and restorative capacity based on the different stages
before, during, and after a disruption. After review of the liter-
ature, we have identified some underlying factors pertaining
to these three capacities for the interdependent electrical in-
frastructure system of Washington, D.C. The underlying fac-
tors, which appear in Fig. 3 , will be included and quantified in
the developed BN framework to measure the resiliency of the
interdependent electrical infrastructure system ( Fig. 4 ). 
2.2.1. Absorptive capacity 
Absorptive capacity , an endogenous feature of a system, is the
ability of a system to automatically absorb the impact of a
disruption in order to minimize exposure or sensitivity to the
shock. Absorptive capacity is also considered to be the first line
of defense to withstand and absorb the shock due to a disrup-
tive event. The absorptive capacity of a system involves a set of
preventive measures and a course of strategies that must be
developed before a disruption occurs in order to circumvent
permanent undesirable consequences. The literature identi-
fies the following eight aspects of absorptive capacity that are
key factors related to the absorptive capacity of the electrical
power system and its interdependent network. 
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Fig. 4 – An example of a Bayesian network with five nodes. 
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• Skilled Labour Management , an efficient response team, and
strong utility management are key features of absorptive
capacity. Well-trained operators and efficient resources
can react quickly to the disruption and maintain operation
of the electrical power system [63] . A competent response
team can quickly arrive at the repair yards and take less
time to repair the fault.

• A Control Strategy is a substantial factor in absorptive capac- 
ity. Advanced automatic control and different kinds of con- 
trol strategies such as Distributed Energy Resources (DER)
help to prevent the severity of the outage [2] . The self- 
adapting and self-repairing feature of the advanced au- 
tomatic control increases the reliability of fault-tolerant
systems and maintains the power quality.

• The deployment of Visual and Physical Protection such as
tall opaque fencing, grills, protective walls, and roadblocks
serve as protection from physical attack, help to prevent
from unauthorized visual data collection, and ultimately
maintain privacy. Vegetation management and selective
undergrounding also help mitigate the potential threat of
local distribution outage [64] .

• Because over-reliance on a single fuel source might lead
to vulnerability in an energy supply network, it is prudent
to have Alternative Fuel Sources . Incorporating diverse fuels
such as renewable fuels, coal, and nuclear power enhances
the robustness of the fuel supply network and ensures
continued power service [63] . Redundancy of supply op- 
tions due to multiple fuel sources also strengthens system
reliability.

• Routine preventive maintenance activities including on- 
time repair scheduling of electrical components and ready
availability of spare parts limit the probability of a major
failure and the resulting massive financial loses. For the
electrical system, Periodic Maintenance consists of a set of el- 
ementary tasks such as data collection, visual inspection,
replacing old motors, lubrication, and bolt tightening. All
of these activities must be completed in accordance with
periodic maintenance guides and up-to-date safety stan- 
dards. 

• In terms of Reliability , the pieces of equipment used in
electrical systems are highly sensitive and interrelated so
that failure in one component may ripple through the
entire system and affect the whole facility. Reliability of
an electrical system is defined as the probability that
electrical components continue to operate normally for
a given amount of time under normal operating condi- 
tions. Redundancy of critical components, a standby power
source, and a current risk analysis enhance the reliabil- 
ity of the electrical system. Lessening the probability of
failure would greatly decrease the interruption of power
generation and distribution.

• Having in place an effective plan for Information and Com- 
munication can reduce the impact of a disruption. Deploy- 
ment of sensors, advanced data analytics, development of
the Internet of Things (IoT) enable seamless communica- 
tion among the generation, distribution and transforma- 
tion networks [63] . Detailed pre-register information and
register checklist related to the emergency power must
be stored in a centralized, accessible database to ensure
immediate action during the power interruption.

• A strong Physical Cyber Critical Infrastructure can reduce the
consequences of a disruption. For an electrical system, a
cyber-attack can be classified as inadvertent or deliberate.
Implementing the Supervisory Control and Data Acquisi- 
tion (SCADA), a Distributed Control System (DCS), smart
meter, corporate network communication, strong pass- 
word control, and secure software updates can all reduce
the likelihood of an individual or group attack [2] .

.2.2. Adaptive capacity 
daptive capacity adjusts the perturbations due to the shock 
rought on by a disruptive event. Adaptive capacity, which is 
onsidered to be the second line of defense , is defined as the
apability of a system to adapt itself and attempt to cope 
ith the adverse consequences or moderate potential dam- 

ge without any recovery activity. It is considered to be part 
f a post-disaster strategy also known as “capacity of re- 
ponse” [65] . Following is a list of four key factors related to 
he adaptive capacity of the electrical power system and its 
nterdependent network 

• Stockpiling regular equipment and contracts for the provi- 
sion of emergency power equipment reduces the severity of
adverse consequences during power outages [63] .

• Provision of advanced technology such as advanced meter- 
ing infrastructure and smart inverter can improve the
robustness of the entire electrical system and limit the
consequences of any disruption [66] .

• Mode flexibility (substitution) is one of the key factors to
maintaining continuity of an electrical system operation.
Backup interdependence management such as electric ve- 
hicles, locomotives, and other non-standard power sources
can be connected to the grid to provide limited electric ser- 
vice during outages. Advanced technologies such as smart
grid can serve as a strong media to connect and regu- 
late the operation between vehicle to grid (V2G) to ensure
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interoperability (two-way flow of electricity) between two
systems [66] . 

• A backup power source is regarded as an adaptive measure.
When the grid is down due to any disruption, backup gen-
erators can serve as an emergency measure during crisis
management [63] . Backup power sources are an affordable
option and can be permanent, standby or portable with
ease of use.

2.2.3. Restorative capacity 
Restorative capacity is the degree of ease with which a system
can recover permanently from a disruption. Restorative ca-
pacity is considered as the last line of defense . Restorative ca-
pacity is highly dependent on the restoration of the budget
and restoration of technical resources. Restorative capacity
might not be fully achieved if the stakeholders fail to provide
adequate financial and technical support. Within restorative
capacity, three factors are identified. 

• Resource restoration , which involves the repair or recovery
of damaged equipment or facilities through post-disaster
strategy. Resource restoration can be done through either
human-based assistance such as trained engineers and a
repair task force or non-human based support such as re-
pair equipment and repair vehicles.

• In order to restore or repair the disrupted electrical infras-
tructure, budget restoration or monetary capital is one of the
primary factors of resilience-enhancing investments [67] .
For an electrical system, the damaged equipment can be
repaired or restored depending on the severity of disrup-
tion and budget availability.

• The last factor, restoration of cyber control is expected to go
faster compared to physical attacks. Cybersecurity staff
and resource services often struggle to predict all vulnera-
bilities and threats related to cybersecurity. For instance,
if the entire system is affected by the malicious virus,
reinstallation might take more time than expected [68] .

3. Background of the Bayesian network

This section provides background information on the
Bayesian Network (BN), which is a powerful tool for risk
assessment, reliability prediction, and decision making un-
der the stochastic conditions of a complex system. The BN
makes statistical inference in a rational way by updating
the prior beliefs of an elementary event. Prior beliefs or
probabilities are set based on subjective judgement (e.g., expert
knowledge, historical data) or through a frequentist approach .
BN is a Directed Acyclic Graph (DAG), developed based on
the Bayes theorem [69] , that helps in addressing the cause
and effect relationship (edges) among the set of interacting
variables (nodes). The complete network represents a full
joint probability distribution where the cause to effect and
effect to cause relationships are mathematically equivalent,
even though the direction of the underlying network depicts
a unidirectional impact [69] . 
3.1. Bayes theorem 

Bayes theorem, proposed by Thomas Bayes [70] , is a mathe-
matical expression that enables us to reason about belief un-
der the condition of uncertainty. According to Bayes rule, the
probability that A and B both would occur is the product of
the probability of A and probability of B given A and this can
be presented using the following equation. 

P(A ∩ B ) = P(A ) × P(B | A ) (5)

where, P(A ∩ B ) = probability of A and B both would occur (joint
probability); P(A ) = initial probability of A (prior probability);
and P(B | A ) = probability of B given that A already occurred
(posterior probability). Eq. (5) can be modified by symmetry
and written as follows: 

P(A | B ) = 

P (B | A ) P (A ) 
P(B ) 

(6)

The common terminology associated with BN is described
below, followed by a detailed mathematical expression. 

• Node : Node is also known as vertices , represents a random
variable.

• Edge : Edge is also known as an arc , represents the condi-
tional interdependencies between the variables.

• Directed graph : The underlying topology of the BN structure
consisting of a set of variables and a set of arcs.

• Parent node : Parent nodes are without root nodes.
• Intermediate nodes : Intermediate nodes are node with

parent and child node.
• Child node : Child nodes are without leaf nodes.
• Node Probability Table (NPT) : Every node possesses probabil-

ity tables, known as node probability table (NPT). NPT can be
developed manually or achieved by eliciting the distribu-
tion or related expression. For a node without its parent
node, the NPT would be simply the probability distribution
of that specific node.

3.2. Mathematical expression for Bayesian network 

Suppose a BN consists of n variables Y 1 , Y 2 , Y 3 , . . . , Y n . The full
joint probability distribution of BN can be written as follows: 

P(Y 1 , Y 2 , Y 3 , . . . , Y n ) = P(Y 1 | Y 2 , Y 3 , . . . , Y n ) P(Y 2 | Y 3 , . . . , Y n ) 

. . . P (Y n −1 | P n ) P (Y n ) (7)

The above equation can be further simplified and stream-
lined as follows: 

P(Y 1 , Y 2 , Y 3 , . . . , Y n ) = 

n ∏ 

i =1

P(Y i | Y i +1 , Y i +2 , . . . , Y n ) 

= 

n ∏ 

i =1

P(Y i | Parents (Y i )) (8)

The above concepts can be represented with a simple ex-
ample in Fig. 7 where a BN consists of a set of variables S =
{ Y 1 , Y 2 , Y 3 , Y 4 , Y 5 } and a set of edges to show the interdepen-
dencies among the variables. An outgoing edge from Y i to Y j

signifies a relationship where the value of Y j is conditioned on
the value of Y i and Y i is the parent of Y j and Y j is the child of
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 i . Based on this definition, Y 1 and Y 2 are the parent nodes, Y 5 

s the child node, and Y 3 and Y 4 are the intermediate nodes.
hen, according to Eq. (8) the full joint probability distribution 
an be written as follows: 

(Y 1 , Y 2 , Y 3 , Y 4 , Y 5 ) = P (Y 1 ) P (Y 2 ) P (Y 3 | Y 1 ) P(Y 4 | Y 2 , Y 3 ) P(Y 5 | Y 4 ) (9) 

nce we compute the full joint probability, then the marginal 
istribution of each node can be calculated by the process 
f marginalization . Marginal distribution provides the prob- 
bilities of different values of the random variables in the 
ubset without explicitly referring to the values of the other 
ariables. For instance, we are interested in calculating P ( Y 3 ) 
y the marginalization approach. Marginalization of variable 
 3 can be calculated as follows: 

(Y 3 ) = 

∑ 

Y 1 ,Y 2 ,Y 4 ,Y 5 

P (Y 1 ) P (Y 2 ) P (Y 3 | Y 1 ) P(Y 4 | Y 2 , Y 3 ) P(Y 5 | Y 4 ) (10) 

Marginalization in belief function theory corresponds to a 
istributive operation over combinations which specifies that 
e can marginalize the global joint probability by marginal- 

zing local NPTs [69] . From Fig. 7 , P ( Y 3 ) can be calculated as
ollows: 

(Y 3 ) = 

(∑ 

Y 1 

P (Y 1 ) P (Y 3 | Y 1 ) 
(∑ 

Y 4 

(∑ 

Y 2 

P(Y 4 | Y 2 , Y 3 ) P(Y 2 ) 

(∑ 

Y 5 

P(Y 5 | Y 4 ) 
))))

(11) 

It is important to note that Eqs. (9)–(11) are considered 

o be true when all the variables in the BN structure have 
wo possible binary outcomes: true or false . However, in many 
ases, such as the Washington, D.C. case study, different types 
f variables including continuous and fixed variables must be 
aken into consideration during the computation. 

. Quantifying resilience capacity

he following subsections demonstrate the quantification of 
he resilience of the system as a function of the various el- 
ments of the BN through the interdependent electrical in- 
rastructure of our Washington, D.C. case study. AgenaRisk 
oftware [69] is used to show the different states of the vari- 
bles to quantify the resilience. Various kinds of nodes such 

s discrete, continuous, rank node, label node can be designed 

hrough AgenaRisk. 

.1. Types of variables used 

• Boolean variables (BV): A Boolean variable is expressed in
forms of exactly two states, true and false , to present positive
and negative outcomes, respectively. For instance, in Fig. 5 ,
the node for periodic maintenance (bottom of the figure)
shows True = 0.71453 and False = 0.28547, meaning that
the periodic maintenance of the electrical system is suc- 
cessful 71.453% and fails 28.547% of the time, respectively.
In other words, the chance of being a successful periodic
maintenance ( true state) is 71.453% while the probability
of being a failed state is 28.547%. Similarly, the prior distri- 
bution of the management variable with two states of True
= 0.82 and False = 0.18 means that there is a 82% chance
that a strong management policy, administered by author- 
ities, can effectively thwart the adverse impacts of disrup- 
tive events according to expert opinion; on the other hand,
there is a 18% chance that it may fail. In another example,
while 92% of the time a strong cyber critical infrastructure 
may positively contribute towards adaptive capacity, there 
is an 8% chance that it might fail. 

• Continuous variables (CV): Continuous variables can take
continuous realizations via a probability distribution of
random variables. An example of a continuous variable is
the availability of spare parts (see Fig. 5 ). The node of the
continuous variable, “availability of spare parts” is mod- 
eled using a truncated normal distribution (TNORM) with a
mean ( μ) of 87%, variance ( σ 2 ) of 2%, and a lower bound ( LB )
and upper bound ( UB ) set as 70% and 100%, respectively.
This is represented in Eq. (12) .

Availability of spare parts ∼ T NORM 

(μ = 0 . 87 , σ 2 = 0 . 02 , LB = 0 . 70 , UB = 1 . 0) (12) 

The above equation represents that in the worst possible 
scenario, the availability of spare parts is not lower than 

70% and in the best possible scenario all the spare parts 
(100%) are available to conduct the periodic maintenance 
work. Since truncated normal distribution is a simple mod- 
ification of a normal distribution that confines the mean 

values between lower and upper bounds, it is one of the 
best possible ways to represent the continuous variables 
related to the electrical system and its interdependent net- 
work. All the parameters for continuous normal distribu- 
tion are generated through collecting and analyzing the 
historical data. 

• Qualitative variables : Qualitative variables, which are also
known as categorical variables , capture ordinal categories
used for the weight of different factors pertaining to ab- 
sorptive, adaptive, and restorative capacity.

• Labelled variables : These variables possess a number of dis- 
crete states. Weighted value node is an example of Labelled
variables.

.2. Quantifying absorptive capacity 

s discussed earlier, eight important factors were identified 

s contributing to the absorptive capacity of EIN ( Fig. 3 ). The
rior probability distribution for six of the variables i.e., skill 
tility management, control strategy, visual and physical pro- 
ection, alternative fuel source, information and communica- 
ion, and strong cyber-physical infrastructure are represented 

y two states through Boolean expression. In other words,
hese six variables follow the same rules of Boolean variables 
s discussed in Section 4.1 . The posterior probability distribu- 
ion for the reliability and periodic maintenance variables are 
omputed based on Boolean logic. 

To calculate the reliability of EIN, mean time to failure (MTTF) 
s computed in terms of operating hours. MTTF can be simply 
btained from historical data and is an example of a contin- 
ous variable. If the MTTF is greater than or equal to the ex-
ected MTTF of EIN, then the electrical system and its related 
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Fig. 5 – Base model of the Bayesian network for measuring the resilience of EIN. 

Table 2 – Boolean expression used to define the posterior probability distribution of reliability and periodic. 

Variable name Prior distribution Boolean expression Significance of boolean expression 

Reliability MMTF ∼ TNORM (μ = 8 , 064 , 
σ 2 = 75 , LB = 0 , UB = 8 , 400) 

IF (MTTF ≥ 8,016, “On”, “Fail”) If the MTTF is greater than or equal to 8,016 
hr of EIN, then EIN is reliable (On state); 
otherwise, it fails (Fail state) 

Maintenance On time repair ∼ TNORM 

( μ= 0.85, σ 2 = 0 . 01 , LB = 0 . 50 , 
UB = 0 . 95) 
Availability of spare parts ∼
TNORM ( μ= 0.87, σ 2 = 0 . 02 , 
LB = 0 . 70 , UB = 1 . 0) 

IF (Ontime repair ≥ 0.85 || 
Availability of spare parts ≥ 0.85, 
“True”, “False”) 

If the probability of on time repair scheduling 
is greater than or equal to 85% AND the the 
probability of availability of spare equipment 
is greater than 85%, then the maintenance 
mission will succeed (True state); otherwise 
not (False state) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

networks are reliable ( on state); otherwise, they are failures
( fail state). The same logic is applied to determine the posterior
probability value for the continuous variable on time repair
scheduling and spare parts availability. The Boolean expres-
sions for these “reliability” and “periodic maintenance” nodes
are summarized in Table 2 . 

The posterior probability distribution of absorptive capac-
ity of EIN is computed by the weighted sum of probabilities of
its parent nodes. In order to calculate the absorptive capacity
of EIN, a labelled node named “weighted value” is created to
show the weight of each variable contributing to the absorp-
tive capacity of EIN. Such weights can be obtained through dif-
ferent decision-making processes such as Analytical Hierar-
chy Process (AHP) [71] , swing weights, or from survey data. The
general equation associated with a weighted mean (WMEAN) is
presented in equation (13) , where i is the number of variables
connected (eight in this case) to the weighted average node of
absorptive capacity (see Fig. 5 ) and W i is the weight associated
with the i th variable. This same weighted average approach
has been applied to the weighted value of adaptive capacity
and restorative capacity as well. 

WMEAN = 

∑ 

W i X i = 1 , 2 , . . . , n, ∀ i = 1 ; 0 < W i < 1 ;
∑ 

i 

W i = 1 

(13)

4.3. Quantifying adaptive and restorative capacity 

To set the prior probability of four nodes under adaptive ca-
pacity and three nodes under restorative capacity, the same
Boolean logic will be applied. Adaptive capacity and restora-
tive capacity contribute to post-disaster strategy; however, their
significance might be different. Adaptive capacity is the sec-
ond line of defense in recovering the lost capacity whereas
restorative capacity is the last line of defense. If adaptive ca-
pacity is not able to withstand the shock due to the disrup-
tion, restorative capacity restored the damage, but it takes a
longer time compared to adaptive capacity. The fundamen-
tal structure of Bayesian networks depicts the causal relation-
ship between the nodes. The causal relationships between
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Table 3 – NPT for lost production capacity. 

Absorptive capacity False True 

Expression PDO × APC 0 

Table 4 – NPT for recovered production capacity. 

Post disaster strategy False True 

Expression 0 LPC × 0.95 
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he nodes are shown by drawing a connection between them 

hrough arcs. The posterior probability of post-disaster strat- 
gy can be calculated through Boolean logic. However, other 
han adaptive and restorative capacity, there might be some 
ther hidden factors contributing toward post-disaster strat- 
gy. This can be better described by NoisyOR function. These 
idden or missing parameters are known as “leak parameters”

n NoisyOR function. For instance, if there are n causal factors 
uch as Y 1 , Y 2 , . . . , Y n are conditioned on Z , with a probability
alue for Z being true when one and only one Y 1 is true , and
ll causes other than Y 1 are false . The NoisyOR function is pre- 
ented in Eq. (14) where for each i , S i = P(Z = true | Y i = true, Y j =

false ; ∀ j � = i ) is the probability of the conditional being true if
nd only if that causal factor is true [69] . 

oisyOR (Y 1 , S 1 , Y 2 , S 2 , . . . , Y n , S n , l) (14) 

Leak factor l can be defined as the extent to which there 
re missing factors from the model that can contribute to the 
onsequence being true . It is the probability that Z will be true 
hen all of its causal factors are false . The conditional prob- 

bility of Z obtained with the NoisyOR function is presented 

elow in Eq. (15) . 

(Z = True | Y 1 , Y 2 , . . . , Y n ) = 1 −
n ∏ 

i =1

[ (1 − P(Z = True | Y i = True ) 

(1 − P(l)) ] (15) 

As discussed in the proposed BN model, in order to calcu- 
ate the posterior probability of the “post-disaster strategy”,
e have used NoisyOR function, represented in Eq. (14) . This 

quation means that the chance of successful achievement 
f a post-disaster strategy is 70% if only adaptive capacity is 
et, while this value increases to 95% when only restorative 

apacity is met and the leak parameters are set as 0.02 (shown 

elow in Eq. (16) ). This approach is supported by Vugrin et al.
72] where the authors stated that during a disruption, restora- 
ive capacity is needed to attain a higher level of recovery com- 
ared to adaptive capacity.

oisyOR ( Adaptive capacity , 0 . 7 , Restorative capacity , 0 . 95 , 0 . 02)

(16) 

.4. Disruption modeling 

n electrical system and its interdependent network (EIN) are 
ubject to different types of disasters. The three most com- 
on types of disasters are natural disasters, human threats,

nd cyber-attacks. The most common natural disasters are 
urricanes, tornados, and snow storms. Human threats can be 

ntentional (sabotage) or electromagnetic while cyber-attacks 
re often in the form of denial of service, cross-site scripting,
nd arbitrary code generation. In Fig. 5 , the likelihood of occur- 
ence of these threats is represented through True state based 

n historical data. We have used NoisyOR function to compute 
he posterior probability of natural disaster, human threat,
nd cyber-attack (see equations (17)–(19) ). Finally, the proba- 
ility of disruption is calculated based on the weight value of 
ach individual disaster. 
( Natural disaster ) = NoisyOR ( Hurricane , 0 . 15 , Snow storm , 

0 . 10 , Tornados , 0 . 05 , 0 . 1) (17) 

( Human threat ) = NoisyOR ( Electromagnetic , 0 . 12 , Sabotage , 

0 . 09 , 0 . 08) (18) 

( Cyber-attack ) = NoisyOR ( Arbitrary code , 0 . 15 , Denial of 

services , 0 . 1 , Cross site scripting , 0 . 05 , 0 . 1) 

(19) 

.5. Actual production capacity and lost production 

apacity 

ased on the available data source for the city of Washington,
.C., yearly production capacity is considered as 0.1TWh [59] .
he production capacity of the electrical facility may hamper
ue to either man-made attacks or natural disasters, such as
atural disaster, human attack, or cyber-attack. The lost pro- 
uction capacity is highly dependent on whether the absorp- 
ive capacity is capable of absorbing shocks (the probability
f being a True state) or not (the probability of being False). In
ur model, the lost production capacity variable is conditioned
n three variables including the probability of disruption oc- 
urrence, the absorptive capacity, and the actual production.
ost production capacity is computed as the product of the
ikelihood of disaster occurrence and actual production. The
lectrical facility does not lose its production if the shock of
isruption can be absorbed (True-state). Thereby, the lost pro- 
uction capacity is set to zero. NPT for lost production capacity

s shown in Table 3 .

.6. Recovered lost production capacity 

ecovered lost production capacity is a function of two vari- 
bles: post-disaster strategy and lost production capacity (LPC). We 
ssume that an electrical facility will recover 95% of its lost 
roduction capacity, if the post-disaster strategy is success- 
ul ( True -state); zero otherwise ( False -state). NPT for recovered 

roduction capacity is represented in Table 4 . 
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Fig. 6 – Different approaches to model interdependencies [74] . 

Fig. 7 – Triangular Fuzzy Numbers representation of ASP [75] . 

Fig. 8 – Forward propagation analysis of Bayesian network for measuring resilience of EIN. 

 

 

 

 

 

4.7. Resilience 

Resilience is the ratio of recovery (recovered production capac-
ity) to loss (lost production capacity). Based on this calculation,
the expected resilience is 0.87 as depicted in Fig. 5 . 
4.8. Other modeling and quantification techniques 

Holistic and reductionist approaches, mixed holistic-
reductionist paradigm, and multiple formalism are some
techniques that can be used to model infrastructure in-



13

Fig. 9 – Backward propagation analysis of Bayesian network for measuring the resilience of EIN. 

Table 5 – Comparative scenarios among different capacities. 

Scenario periodic 
maintenance 

Backup 
interdependence 
management 

Restoration 
resource 

Absorptive 
capacity (%) 

Adaptive 
capacity (%) 

Restorative 
capacity (%) 

Expected 
resilience (%) 

Base Case – – – 82.00 84.44 87.00 86.70 
1 false – – 68.55( ↓ ) 84.44 87.00 85.70( ↓ ) 
2 false false – 68.55 71.25( ↓ ) 87.00 84.80( ↓ ) 
3 false false false 68.55 71.25 55.50( ↓ ) 71.64( ↓ ) 

↓ indicates that the value of the corresponding variable reduces compare to the value of the base case. 
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erdependencies [73,74] . Holistic approaches treat critical 
nfrastructures as a whole unit by simplifying the appearance 
f infrastructure interdependencies(see Fig. 6 a). Reductionist 
pproaches on the other hand identify different fundamental 
ystems components of the complex infrastructures, and 

hen describe the evolutionary development of the entire sys- 
em based on the aggregate behavior of the identified system’s 
omponents(see Fig. 6 b). In the mixed holistic-reductionist 
MHR) approach, modeling of infrastructure interdepen- 
encies is performed through reductionist approaches and 

he logical and functional dependencies between the het- 
rogeneous infrastructures are performed through holistic 
pproaches. Fig. 6 (c) shows the MHR modelling approach. 

With regards to the quantification of different variables,
he extension of this work can be performed using triangu- 
ar fuzzy approach. For example, the conditional probability 
able of variables using expert knowledge can be expressed in 

erms of triangular fuzzy numbers. Fuzzy approach is one of 
he easiest ways to handle data uncertainty and a more flexi- 
le technique to define a prior probability [75] . Let us define a 
uzzy number M on Z to be a triangular fuzzy number and let 

M 

( y ): Z → [0, 1] be its elemental functions as represented in 
p
ollowing Eq. (20) where, l ≤ m ≤ u, l and u denote lower and
pper value of of the support for M, respectively, and m repre- 
ents the mid value of the fuzzy triangular number. This tri- 
ngular fuzzy number can be donated by ( l,m,u ) [76] . 

M 

(y ) = 

⎧ ⎪⎪⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

y 
m − l 

− l
m − l 

, y ∈ [ l, m ] , 
y 

m − u 
− u

m − u 
, y ∈ [ m, u ] , 

0 , otherwise 

⎫ ⎪⎪⎪⎬
⎪⎪⎪⎭

(20) 

For our base model as depicted in Fig. 5 , the NPT of avail-
bility of spare parts (ASP) for the periodic maintenance of EIN 

an be defined in terms of triangular fuzzy number. For exam- 
le, the expert opinions suggest that in order to successfully 
onduct the periodic maintenance, the probability of spare 
arts availability should range from a minimum of 70% to a 
aximum of up to 100% while most likely may fall into 85%.

his can be represented by a triangular fuzzy number where 
.70 is the minimum value (lower bound, l), 0.85 is the most 
ikely value (m), and 1.0 is the maximum value (upper bound,
). The mathematical representation of this statement is de- 
icted in Fig. 7 . 
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Fig. 10 – Sensitivity analysis of absorptive capacity. 
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Fig. 11 – Sensitivity analysis of adaptive capacity. 
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. Results and analysis

his section analyzed results based on forward propagation,
ackward propagation, sensitivity analysis, and information 

heory. During the analysis of probabilistic inference of mul- 
iconnected BN, the posterior probability of a set of variables 
s computed such that Y 1 ⊂ S at given evidence e . The feature 
f the BN to disseminate the effect of evidence through the 
etwork is defined as “propagation analysis”, and the related 

robability is represented by P(Y i | e ) ; ∀ Y i ∈ Y l [69] . BN offers a
obust framework to compute posterior propagation probabili- 
ies from the experimental data. There is no strict direction 

f information flow; thus, queries can be made at any node 
n the underlying structure. Forward propagation refers to the 
ropagation of an individual or set of observed variables and 

easures their impact on the target node. Forward propa- 
ation is a type of reasoning that refers the cause to effect 
nalysis. In the forward propagation analysis, predictive cal- 
ulations are computed by successively passing the resulting 

arginal distributions from one node to one of its connected 

hild nodes. 
In order to conduct the forward propagation analysis, three 

ifferent types of scenarios are designed by setting the false 
tate to three different variables types. Three decision vari- 
bles are chosen that contribute significantly toward the over- 
ll resilience of the electrical system and its independent net- 
ork. The three variables are: ( i ) maintenance , which belongs to

bsorptive capacity, ( ii ) backup interdependence management as 
 part of adaptive capacity, and ( iii ) restoration resource which 
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Fig. 12 – Sensitivity analysis of restorative capacity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

falls into restorative capacity. Scenario 1 accounts for the
failure of periodic maintenance which if not successful ( false
state) eventually increases the lost production capacity. Sce-
nario 2 refers to the case when observation is made for failure
of two events: periodic maintenance and backup interdependence ,
which ultimately drops the resiliency from 86.70% to 84.80%.
Scenario 3 simulates the impact of failures of all three vari-
ables: periodic maintenance, backup interdependence management ,
and restoration resource . Results indicate that failure of all three
variables generates a larger adverse impact on the resilience
which drops the resilience of EIN to 71.64%. The observations
generated by these three scenarios are reported in Table 5 .
Forward propagation analysis for scenarios 1, 2, and 3 is illus-
trated in Fig. 8 . 

On the other hand, backward propagation is the opposite ap-
proach to the forward propagation analysis. Backward propa-
gation enables us to conduct what-if analysis; an observation
is set for a specific (descendant/target) variable and then the
BN calculates the marginal probabilities of ancestor variables
by propagating the impact of the successor variable in a back-
ward tactic through the entire network. In the case study, if
the resilience value is set to 92%, as shown in Fig. 9 , then the
absorptive, adaptive, and restorative capacities should be en-
hanced from 82.00% to 87.04%, 84.44% to 86.58%, and 87.00% to
91.46%, respectively. Several analyses could also be performed
for different desired outcomes as well. 

Remark 1. We realized that in the real-world BN models,
where different number of states exist for each variable, it
becomes a daunting task to perform all the calculations man-
ually. Therefore, there is a need to develop computationally-
efficient algorithms which are capable of assessing fast and
efficient propagation for a large class of BN models. Among the
existing ones, Junction Tree (JT) is commonly used to feature
factorization of the distribution for efficient inference with
faster calculation [77] . This inference algorithm runs based on
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Fig. 13 – Mutual information between resilience and three 
individual capacities. 
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he distributive property of marginalization and conduct local 
omputation on the different part of the tree and propagate 
his calculation to other parts of the tree. Future extension of 
his work can delve more into this research direction. 

Sensitivity analysis is a useful means to check the validity 
f the expert-built simulation model. Sensitivity analysis pro- 
ides a visual representation to understand the greatest im- 
act of a set of variable nodes on a selected node (target node) 

n the BN. Sensitivity analysis is highly applicable in the field 

f analysis, quantification, and propagation of uncertainty in 

 complex system. In order to gain more insight and a better 
nderstanding of the simulation model, we have used Age- 
aRisk software to examine the extent to which the input pa- 
ameters affect the output (target) of the underlying model.
o examine the impact of the causal factors of the absorptive 
apacity, absorptive capacity is set as a target node and the im- 
act of its causal factors is measured in terms of conditional 
Fig. 14 – Different states of mutual information b
robability. The sensitivity analysis of the absorptive capac- 
ty is illustrated in Fig. 10 , in the form of a tornado graph.
he length of the bar in the tornado chart represents the im- 
act of that corresponding variable on absorptive capacity.
ig. 10 (a) illustrates the impact of a set of selected nodes in-
luding reliability, maintenance, visual and physical protec- 
ion, control strategy, alternative fuel source, information and 

ommunication, management and strong cyber-physical in- 
rastructure on the absorptive capacity when absorptive ca- 
acity is false . Fig. 10 (b) shows the impacts of those variables 
hen the absorptive capacity is true . It is evident from both 

gures that reliability has the highest impact and visual and 

hysical protection has the lowest impact on absorptive ca- 
acity. Fig. 10 (b) further shows that the probability of absorp- 
ive capacity changes from 0.613 (when reliability is false = 

ail ) to 0.856 (when reliability is true = on ). Compared to the
idely impacted range of reliability, the impact of visual and 

hysical protection is limited to a narrow range which varies 
rom 0.777 to 0.828. This implies that improvement in electri- 
al system reliability will have the highest impact on improv- 
ng the absorptive capacity of EIN, whereas improvement in 

isual and physical protection will have a negligible impact on 

nhancing the absorptive capacity of the EIN. The sensitivity 
nalysis of adaptive and restorative capacities are shown in 

he Figs. 11 and 12 , respectively. It is evident from Fig. 11 that
 backup power source has the highest impact and provision 

f advanced technology has the lowest impact on improving 
daptive capacity. Further, Fig. 12 shows that resource restora- 
ion has the highest impact and budget restoration has the 
owest impact on improving restorative capacity. 

In order to improve the quality of communication, we uti- 
ize information theory as proposed by Shannon and Weaver 
78] . In information theory, entropy is one of the critical fac- 
ors in calculating the mutual information between the par- 
nt node and its child nodes. The entropy is measured by the
etween resilience and absorptive capacity. 
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Fig. 15 – Different states of mutual information between resilience and adaptive capacity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“mess” inherent in the variable X . Let P ( X ) and H ( X ) be the
probability and entropy of a random variable X . In terms of
risk analysis, entropy is a measure of uncertainty which can
be computed using Eq. (21) as shown below: 

H(X) = −
∑ 

x ∈ X
P X (x ) log 2 P X (x ) (21)

Suppose, the entropy of the target node X is conditional on
its dependent variables Y , then Eq. (22) can be used to repre-
sent such relationships: 

H(Y| X) = 

∑ 

i 

P(Y i ) H(Y i | X i ) (22)

where i refers the number of states. The mutual information
between the target node and its conditional node can be rep-
resented by Eq. (23) as shown below: 

I(X, Y ) = H(X) − H(Y| X) (23)

where I ( X, Y ) refers to the mutual information between the tar-
get node and its dependent node; H ( X ) signifies the marginal
entropy of the target node; and H ( Y | X ) refers to the conditional
entropy of target node on its dependent node. 

In the proposed model, resilience is conditional on absorp-
tive, adaptive, and restorative capacities. These capacities
are connected through the dotted line with the resilience
node as illustrated in Fig. 13 . We have used dotted lines since
in our model these capacities are not directly connected
to resilience. We are interested in calculating the mutual
information between resilience and all of these individual
capacities. A different state of mutual information between
resilience and absorptive capacity I ( X, Y ) is shown in Fig. 14 .
The detailed calculation for mutual information between
resilience and absorptive capacity I ( X, Y ) is shown below.
Note that H (Resilience), H (Resilience|Absorptive capacity),
and I (Resilience, Absorptive capacity) are calculated using
Eqs. (21), (22) , and (23) , respectively. 
From Fig. 14 , we find out that the prior probability of nodes
(Resilience = Yes) = 0.867 and (Resilience = No) = 0.132.
H (Resilience) and H (Resilience|Absorptive capacity) can be
cmputed as follows: 

H( Resilience ) = 

∑ 

x ∈ X
P x ( Resilience ) log 2 P x ( Resilience ) 

= 0 . 867 log 2 (0 . 867) + 0 . 132 log 2 (0 . 132) 

= 0 . 5656 

H( Resilience | Absorptive capacity ) 

= 

2 ∑ 

i =1

P( Resilience ) × H(( Resilience | Absorptive capacity ) 

= P( Resilience = Yes ) H( Resilience = Yes | Absorptive 

capacity = Yes ) + P( Resilience = No ) H( Resilience No | = 

Absorptive capacity = No ) (24)

In order to calculate H( Resilience = Yes | Absorptive
capacity = Yes ) and H( Resilience = No | Absorptive capacity =
No ) in equation (24) , we set the absorptive capacity at True and
False state, respectively, and simulate the model. The resulting
outputs are reported below: 

H( Resilience = Yes | Absorptive capacity = Yes ) 

= −{ 0 . 985 log 2 (0 . 985) + 0 . 015 log 2 (0 . 015) } 
= 0 . 1123 

H( Resilience = No | Absorptive capacity = No ) 

= −{ 0 . 33 log 2 (0 . 33) + 0 . 67 log 2 (0 . 67) } 
= 0 . 9149 

Plugging the above values into Eq. (24) yields the following: 
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Fig. 16 – Different states of mutual information between resilience and restorative capacity. 

Table 6 – Summary of information theory results. 

H (Resilience|Types of capacity) Mutual information Significance of mutual information 

H (Resilience|Absorptive capacity) = 21.81% I (Resilience|Absorptive capacity) = 34.75% If we have proper knowledge about 
absorptive capacity, we can reduce the 
uncertainty about resilience by 34.75% 

H (Resilience|Adaptive capacity) = 31.27% I (Resilience|Adaptive capacity) = 25.29% If we have proper knowledge about adaptive 
capacity, we can reduce the uncertainty 
about resilience by 25.29% 

H (Resilience|Restorative capacity) = 31.70% I (Resilience|Restorative capacity) = 24.78% If we have proper knowledge about 
restorative capacity, we can reduce the 
uncertainty about resilience by 24.78% 

Concluding Remarks: I (Resilience, Absorptive capacity) > I (Resilience, Adaptive capacity) > I (Resilience, Restorative capacity). This implies that 
absorptive capacity , the first line of defense, has more influence in terms of uncertainty for the resilience of EIN. 

H

a
r

H

H

I

a

r
b

(
I

H

H

I

r
s
t  

T
r

( Resilience | Absorptive capacity ) = (0 . 867 × 0 . 11236) 

+ (0 . 132 × 0 . 91493)

= 21 . 87%

I( Resilience | Absorptive capacity ) = H(X) − H(Y| X) 

= 0 . 5656 − 0 . 2181 = 34 . 75% 

This implies that if we have proper knowledge about 
bsorptive capacity, we can reduce the uncertainty about 
esilience by 34.75%. Similarly, for adaptive capacity 

( Resilience ) = 

∑ 

x ∈ X
P x ( Resilience ) log 2 P x ( Resilience ) = 0 . 5656 

( Resilience | adaptive capacity ) = 0 . 3127 = 31 . 27% 

( Resilience , adaptive capacity ) = H(X) − H(Y| X) 

= 0 . 5656 − 0 . 3127 = 25 . 29% 

Likewise, it implies that if we have proper knowledge 
bout adaptive capacity, we can reduce the uncertainty about 
esilience by 25.29%. Different states of mutual information 

etween resilience and adaptive capacity is shown in Fig. 15 . 
Finally, for restorative capacity we can compute H 

Resilience), H (Resilience|Restorative capacity), and 

 (Resilience, Restorative capacity) as follows: 

( Resilience ) = 

∑ 

x ∈ X
P x ( Resilience ) log 2 P x ( Resilience ) = 0 . 5656 

( Resilience | Restorative capacity ) = 0 . 3178 = 31 . 78% 

( Resilience , Restorative capacity ) = H(X) − H(Y| X) 

= 0 . 5656 − 0 . 3178 = 24 . 78% 

This implies that if we have proper knowledge about 
estorative capacity, we can reduce the uncertainty about re- 
ilience by 24.78%. Different states of mutual information be- 
ween resilience and restorative capacity is shown in Fig. 16 .
he summary of results obtained from information theory are 
eported in Table 6 . 
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6. Conclusion

A general framework for the resilience of electrical systems
and their interdependents (EIN) is proposed in this research
paper. The prime objective is to quantify the resilience of
electrical systems during disruptive events. We developed a
BN model for assessing resilience with respect to the con-
cept of absorptive capacity, adaptive capacity, and restora-
tive capacity. BN is a rigorous tool that provides a better in-
sight into the uncertainty pertaining to complex models and
allows the creation of future scenarios where assumptions
and alterations in conditions or states can be tested and
verified. 

The proposed framework has been demonstrated through
a case study of the interdependent electrical infrastructure
system of Washington, D.C. The BN framework facilitates the
identification of the different underlying factors that could
potentially impact the resilience of the electrical system and
its interdependent network. The information obtained from
the historical data and the subjective judgment of experts
is translated into BNs to provide a better understanding of
the complex interaction among the different variables. The
BN model is then validated through sensitivity analysis. We
found that the key elements of the EIN are reliability, a backup
power source, and resource restoration. The belief prepara-
tion further reveals how the failing of any variable impacts
the other variables. The information theory analysis was also
conducted to better understand the mutual information be-
tween resilience and different capacities. The contribution of
this paper to the existing body of knowledge in interdepen-
dent electrical infrastructure system can be summarized as
follows: 

• A model for designing an electrical system and its interde-
pendent network was developed.

• The underlying factors pertaining to interdependent elec-
trical infrastructure system were identified and classified
with respect to the concept of absorptive, adaptive and
restorative capacities using Bayesian structure.

• A real-world case study of the model is presented and
different kinds of analysis are performed to validate
the effectiveness of the proposed model. Although this
framework is specifically developed for the electrical
infrastructure network, it can be modified based on the
structure and nature of complex systems and utilized to
quantify the resilience for any other system as well. This
framework can also be used as a decision support tool in
assessing risk and uncertainties in a complex environment
and providing better insight when designing and develop-
ing strategies to offset the severity of a disruptive event.

This work can be extended in several directions. For in-
stance, decision-theoretic troubleshooting for interdependent
electrical infrastructure systems and corresponding improve-
ment activities can be designed and executed in order to
achieve higher resiliency. 
Supplementary material 

Supplementary material associated with this article can be
found, in the online version, at doi: 10.1016/j.ijcip.2019.02.002 . 
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