
Newsletter Major Article Template

 [Distribution Statement A] Approved for public release and unlimited distribution. 1

Systems Engineering and
DevSecOps: Reviewing the Principles

Dr. Richard Turner, rturner@sei.cmu.edu

As software engineering adopts a more continuous delivery mode for embedded and complex systems,
systems engineering must both adapt and influence DevSecOps and related practices. In this article, I
revisit the principles of agile, lean and DevSecOps, and provide a commentary on possible model
clashes or disconnects that could be increase risks to system development, deployment, and evolution.
(Much of the material in this article was previously presented a Software Engineering Institute Blog Post.)

Are there fundamental issues?
I believe there are. The interaction of these two disciplines is not well understood, and experience from
early application suggests model clashes between them. The following table identifies some of the
fundamental differences between systems engineering as generally practiced and systems engineering
for evolving software engineering environments. Mitigation of the clashes could enhance the success rate
of DevSecOps adoption and support adjustments to both disciplines. However, mitigation requires
identifying the specifics and understanding the context and sources of the clashes.

Systems Engineering as Generally Practiced DevSecOps-Based Systems Engineering

Large-batch processing (products, documents, events) Small batch processing (products, documents, events)

Single-pass lifecycle (all requirements done before the design

is initiated; all design done before implemented)

Incremental, iterative multi-pass lifecycle (small batches of products and their

artifacts built/tested iteratively, delivered incrementally)

Single-point design Set-based design

Solution intent fixed early (all requirements defined in detail

early)

Most of solution intent variable early (only near-term requirements in detail;

others are higher level with details based on learning)

Fixed point, large-batch integration (components all “done”

before integration occurs)

Cadence-based, small-batch integration used as frequently as feasible;

integrate as available to prevent rework (for software, may be daily)

Centralized, command-and-control leadership Mix of centralized and decentralized leadership; “servant leadership”

Detailed, allocated baseline early; high overhead change

management practices in play for the rest of development

Allocated baseline level of abstraction allows learning-based change

throughout development; no high-overhead change processes

Hardware and software treated separately, integrated late Hardware and software treated together, integrated early and frequently

Large-batch model-based engineering used to improve the

detail of requirements and design prior to implementation;

often abandoned after design

Model-based engineering moves between large- and small-batch modeling

activities; models and simulations flow with implementation and support the full

lifecycle, development through sustainment

Projective (to be) requirements and design documentation

dominates early discussion and activities

Projective documentation takes second place to working prototypes and

demos; used to guide, not specify; documentation is as-built, not to-be.

systems engineering function separate from hardware and

software development functions

systems engineering function integrated into capability-focused teams that

include all disciplines needed (HW, SW, UX, reliability, etc.)

Component-based work breakdown structure Capability-based work breakdown structure

systems engineering primarily as artifact transformation (e.g.,

Requirements->Architecture->Design)

systems engineering as a service (facilitation of artifact transformation; focus

on communication, coordination, conflict resolution, collaboration)

System architecture decisions neutral to development

approach

System architecture decisions strongly support loosely coupled

components/subsystems, especially for software capabilities

Assumption that early work is correct and that late failure is a

surprise

Assumption that early work is inherently flawed, and learning from early failure

feeds the evolution of knowledge about the system

System and software architecture frozen early Intentionally extendable and iteratively evolving architecture throughout

development and sustainment

User participation only early and late User participation continuous throughout lifecycle

https://insights.sei.cmu.edu/blog/comparing-devsecops-and-systems-engineering-principles/
https://pdfs.semanticscholar.org/ceed/8a476ac4bd15417dbd013dcb9c47dbd97695.pdf?_ga=2.192285932.796859047.1614014207-2107900412.1614014207

Newsletter Major Article Template

 [Distribution Statement A] Approved for public release and unlimited distribution. 2

Due to the breadth of domains covered by both disciplines, I have gone back to the basic principles of
each to better understand the model clashes. Systems engineering principles are generally less focused
on activities than the lean, agile, and DevSecOps principles. I therefore present them first and then
discuss the DevSecOps principles in terms of their interaction with the systems engineering principles
and activities.

Systems Engineering Principles and Activities
The Systems Engineering Body of Knowledge (SEBoK) defines systems engineering as

“…a transdisciplinary approach and a means to characterize and manage the development of
successful systems, where a successful system satisfies the needs of its customers, users, and
other stakeholders. Systems engineering focuses on holistically and concurrently understanding
stakeholder needs; exploring opportunities; documenting requirements; and synthesizing,
verifying, validating, and evolving solutions while considering the complete problem, from system
concept exploration through system disposal.”

Systems engineering principles have generally not been as visible as those for DevSecOps. Earlier lists
have recently been revisited by the NASA Systems Engineering Research Consortium to address some
of the differences identified in Table 1, but the adoption of these refined principles by practitioners is
unknown. The principles are somewhat generic because they must apply across so many domains. Here
are the 14 NASA principles (I’ve highlighted some of the key concepts for this article).

NASA Systems Engineering Research Consortium Systems Engineering Principles

Principle 1: Systems engineering integrates the system and the

disciplines considering the budget and schedule constraints.

Principle 2: Complex systems build complex systems.

Principle 3: A focus of systems engineering during the develop-

ment phase is a progressively deeper understanding of the in-

teractions, sensitivities, and behaviors of the system, stakeholder

needs, and its operational environment.

Principle 4: Systems engineering has a critical role through the entire

system lifecycle.

Principle 5: Systems engineering is based on a middle-range set

of theories.

Principle 6: Systems engineering maps and manages the discipline

interactions within the organization.

Principle 7: Decision quality depends on the system knowledge

present in the decision-making process.

Principle 8: Both policy and law must be properly understood to not

overly constrain or under constrain the system implementation.

Principle 9: Systems engineering decisions are made under un-

certainty, accounting for risk.

Principle 10: Verification is a demonstrated understanding of all the

system functions and interactions in the operational environment.

Principle 11: Validation is a demonstrated understanding of the

system’s value to the system stakeholders.

Principle 12: Systems engineering solutions are constrained based on

the decision timeframe for the system need.

Principle 13: Stakeholder expectations change with advance-

ment in technology and understanding of system application.

Principle 14: The real physical system is the only perfect representa-

tion of the system.

Comparison of Systems Engineering to Lean-Agile Principles
DevSecOps success relies heavily on the application of fundamental Lean and Agile principles. The
following sections present short descriptions of Lean-Agile and DevSecOps principles along with a short
description of key related systems engineering activities. Given that there are numerous versions of Agile
and Lean principles, I have used the collective principles as articulated in the SAFe Scaled Agile
Framework as being most comparable to systems engineering:

Principle 1: Take an Economic View. Decisions are made by comparing clearly stated or unconsciously

considered values. In systems development, specifically addressing values allows decisions to be made
in an economic framework. Value should be a factor in prioritization and sequencing of work.

Understanding and intentionally capturing value in requirements and design components as they are
seen by the multiple stakeholders enables better impact analyses and prioritization in development and

https://sebokwiki.org/wiki/SEBoK_Introduction
https://www.nasa.gov/consortium/SystemsEngineeringPrinciples
https://www.nasa.gov/consortium/SystemsEngineeringPrinciples
https://www.scaledagile.com/enterprise-solutions/what-is-safe/
https://www.scaledagile.com/enterprise-solutions/what-is-safe/
https://youtu.be/hTMwhjVVYu4?t=276

Newsletter Major Article Template

 [Distribution Statement A] Approved for public release and unlimited distribution. 3

sustainment. Using a common value-determination process, including the gamut of stakeholders, can
provide visibility into decisions, support decisions at deeper and deeper layers of implementation, and
support temporal, internal and external influences that impact aspects of value. Appendix C of The
Incremental Commitment Spiral Model (ICSM): Principles and Practices for Successful Systems and
Software provides a discussion of values-based systems engineering.

Principle 2: Apply Systems Thinking. Systems thinking broadens the focus of development to

encompass the full value stream in acquisition, development, and operational organizations. It considers
more factors than those related to requirements or how the product system operates; it enables
understanding of the socio-technical system that encompasses the product and its context.

Nearly all systems engineering incorporates systems thinking by definition. Understanding the full scope
of the effort (including the DevSecOps activities and requirements) and the associated value streams and
networks are critical to the holistic nature of systems thinking.

Principle 3: Assume Variability; Preserve Options. Locking in a single, detailed description of a
system that will take years to develop can become a barrier as soon as a change in one or more naturally
evolving factors--threats, political landscapes, economics, technology, or markets--invalidates an
assumption or specification. Acquirers and developers must acknowledge that variability and uncertainty
are facts of life, and that investing in and maintaining options with decisions made at the last responsible
moment is a good way to manage change.

While there are specific systems engineering tasks that look at risk management, safety, and security-
failure modes, there is less activity associated with understanding how environmental changes impact the
actual development, once approved. Identifying useful options and managing the impact of changes
require ongoing resources and intentional activities.

Principle 4: Build Incrementally with Fast, Integrated Learning Cycles. This principle provides rapid

feedback on estimates, assumptions, and feasibility quickly enough to eliminate much of the high cost of
rework. Coupled with small batch size, it provides a high degree of stability in work planning and
enhanced agility to take advantage of opportunities resulting from uncertainty and variability. It eliminates
much of the overhead of maintaining large, monolithic and generally inaccurate master schedules and
focuses on delivering value quickly.

This principle is a key area of concern. Systems engineering generally drives software development and
sustainment to the bottom of the traditional V model. Adaptation to the continuous, incremental, and
iterative nature of DevSecOps forces an earlier and sustained focus on the software-related systems
engineering activities. The cultural challenge for systems engineering is moving from relatively rare
interactions to a continuous involvement in the software development and evolution.

Principle 5: Base Milestone Completion on the Objective Evaluation of Working
Systems. Milestones are traditionally treated as gates, with passage based on a set of static technical
artifacts with little evidence of their completeness or accuracy. Demonstration of status is more useful
and provides more learning opportunities.

Technical reviews (particularly those in support of milestone gates and progress measurement) are often
predicated on boilerplate documentation, overly formalized plans, incomplete or inadequately vetted
requirements, or design specifications that include guesses made to remove "to be determined" items
rather than acknowledging further analysis is required at the milestone. The scope is also often very
broad, driven by the complex scheduling of critical resources.

Principle 6: Visualize and Limit Work in Progress (WIP), Reduce Batch Sizes, and Manage Queue
Lengths. Visualizing and limiting work in progress regulates the number of tasks that are being worked
on at any one time. It also keeps the human resources from being overwhelmed by the context switching
between tasks. Managing batch size and queue lengths supports the focus on WIP with the principle of
"stop starting and start finishing," since the user gets value only with completed work, and work waiting in
a queue is a waste.

Systems engineering is often understaffed, and the continuous nature of the DevSecOps environment
puts a strain on available systems engineering resources. Understanding how much work is being

https://dl.acm.org/doi/abs/10.1145/2785592.2785619
https://dl.acm.org/doi/abs/10.1145/2785592.2785619
https://dl.acm.org/doi/abs/10.1145/2785592.2785619
https://youtu.be/Fo3ndxVOZEo
https://youtu.be/YrEhH9R3NYg
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=635239
https://youtu.be/zEJn6eQO6FE
https://youtu.be/zVASqSj_kvc

Newsletter Major Article Template

 [Distribution Statement A] Approved for public release and unlimited distribution. 4

expected and its production rate supports maximizing the flow and increasing the value of many systems
engineering activities. Staffing practices are a significant factor for systems engineering in applying this
principle.

Principle 7: Apply Cadence and Synchronize with Cross-Domain Planning. While predictive or

"push" scheduling usually ignores uncertainty, management and users need reasonable estimates.
Setting cadences and synchronizing across the various teams and activities is the Lean answer to
bounding uncertainty and are essential to:

 provide a predictable cycle of results and feedback opportunities;

 align metrics;

 convert unpredictable events into predictable ones;

 provide opportunities to understand, resolve, and integrate the work of multiple teams, and at
the same time, manage multiple stakeholder perspectives.

Aligning different cadences between systems engineering and software engineering activities is a
challenge; adjustments should not reduce the value of either discipline.

Principle 8: Unlock the Intrinsic Motivation of Knowledge Workers. To ensure motivation and
engagement among team members, create an environment marked by autonomy, mutual respect, and
mission understanding.

Most systems engineering technical activities are likely unaffected by this principle. However, effectively
managing the systems engineering workforce entails consideration of whether the systems engineering
personnel are sufficiently engaged by software engineering and other disciplines to maintain interest, as
well as situational awareness. This principle is particularly important in large complex programs, such as
weapons systems, highly regulated systems, and systems of systems, where the work may be spread
across a large number of organizations or companies.

Principle 9: Decentralize Decision Making. Decentralized decision making is a key component for

achieving the shortest sustainable value-delivery time. Decisions that require sequential acceptance by
multiple levels of authority can destroy cadence, delay progress, and often lead to decisions based on
outdated information. Strategic decisions are more effective if centralized, but all others should be
delegated to the level closest to the information involved.

Most systems engineering activities support rather than make decisions. Regardless of the decision
maker, recommendations made by the systems engineering workforce should be accomplished by those
closest to the problem. It is critical that those making a recommendation have sufficient access to
information and the scope of visibility to understand the systemic consequences of those
recommendations. Analysis paralysis is contagious and should not be allowed to become a factor (See
variability and options above.).

Comparison of Systems Engineering to DevSecOps Principles
DevSecOps principles are built on the Lean, Agile, and DevOps principles. DevSecOps broadens these
principles and applies them to integrate development, security, and operations activities into a continuous
integration/continuous deployment (CI/CD) pipeline. The SEI Guide to Implementing DevSecOps for a
System of Systems in Highly Regulated Environments defines these principles as follows:

Principle 1: Collaboration. Full stakeholder engagement in every aspect of the software development

lifecycle facilitates full awareness and input on all decisions and outcomes. Developers, operators,
engineers, end users, customers, and other stakeholders are active participants in decision making and
work progress.

Having ongoing access to systems engineering expertise is key in maintaining DevSecOps activities. In
the same way, having software engineers involved in the technical systems engineering activities
reduces the opportunities for significant conflict and associated rework. Collaboration with project and
program management can also be improved with collaboration among systems and software engineers.

https://youtu.be/UgXcOsmfVM8
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=528893
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=528893
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=638576
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=638576
https://youtu.be/kpuJSpp3hhA

Newsletter Major Article Template

 [Distribution Statement A] Approved for public release and unlimited distribution. 5

Principle 2: Infrastructure as Code (IaC). IaC are software artifacts that specify the hardware/software

components needed to run correctly, as well as the details of how each should be accessed, configured,
and installed. Infrastructure components can be actual, virtualized, or a mix of both.

While IaC is not specifically a systems engineering activity, the use of IaC provides for more complete
documentation of the execution environment maintained in the same repository as the code, and
supports the configuration management issues that often plague software and system components. It
also eases the transition of the code to an altered or completely new environment by providing a clear
description of what was expected and identifying what software components may need to be changed.

Principle 3: Continuous Integration. Continuous integration is often and automatically unifying

individual components of a system into a single entity. Unification occurs on a regular basis. The
components, once unified, are meant to function together as a whole. The components may have
dependencies on one another to function properly.

When coupled with IaC, continuous integration is the implementation of short learning cycles/increments
that allows systems engineering continuous visibility into the state of the code and assures that code
being developed by teams or teams of teams will not run into unexpected integration problems late in the
development cycle. Rather than developing multiple components or capabilities in separate insular silos,
continuous integration enables rapid access to integration issues before they cause significant rework.
(See also the Environment Parity principle.)

Principle 4: Continuous Delivery. Continuous Delivery refers to the automated transfer of software to a
staging environment that has parity with the production environment. Once delivered, the operations
organization may conduct further testing, but must decide whether and when to manually deploy the
software into production. An example of this would be unclassified software that runs on classified data
produced by another system and that may be independently changing; operations may want independent
testing using live data before deployment. It also allows the operations team to decide if a set of updates
are of enough value to deploy.

Principle 5: Continuous Deployment. Continuous deployments need no operations team activity and

transfers operational software directly into a production environment. It relies solely on the rigorous static
testing of source code and dynamic testing of deployable artifacts within the CI/CD pipeline.

Both of the continuous modes pass the fully integrated and tested software, including complete
documentation and deployment information, to the operational organization. A continuous mode of
transition to the user provides a more rapid resolution for evolving cybersecurity vulnerabilities. While
both modes limit delay in the delivery of capability, each provides for different circumstances. When the
testing is completed in a duplicated operational environment, the concept of continuous deployment
makes sense. If there is not absolute congruity between the testing environment and the operational
environment--perhaps because of security- or infrastructure needs--continuous delivery allows the
organization to adjust the cadence of deployment to their need without impacting the velocity of the
software development.

Continuous delivery/deployment provides systems engineering with a sequence of complete, fully
documented software. The drawbacks include the level of trust required and in the rapid baseline
evolution.

Principle 6: Environment Parity. When two or more system environments are as identical as possible,

they are said to be in parity. In DevSecOps, parity is pursued between development, staging, and
production environments. IaC and deployable artifacts are critical to achieving parity.

Like IaC, maintaining environment parity supports the continuous integration and accelerates certain
kinds of testing. An example of maintaining environment parity is including security testing from the initial
development all the way through deployment. If the environment is constantly changing, there is greater
risk of significantly delaying the identification of a defect due to an environmental anomaly.

Principle 7: Automation. A pipeline is the technical implementation of DevSecOps principles that

assists all stakeholders in every aspect of software development including building, testing, delivery, and
monitoring. For engineers, the main use of a pipeline is to continuously and iteratively build, integrate,

https://insights.sei.cmu.edu/blog/infrastructure-as-code-moving-beyond-devops-and-agile/
https://insights.sei.cmu.edu/blog/continuous-integration-in-devops/
https://insights.sei.cmu.edu/blog/microcosm-a-secure-devops-pipeline-as-code/

Newsletter Major Article Template

 [Distribution Statement A] Approved for public release and unlimited distribution. 6

test, and deliver or deploy code through automation. For the purposes of software development, a
pipeline is used for code development and for project management.

Automation has a significant impact on systems engineering by providing significant visibility in the status
of the software and providing for verification and validation (V&V) activities throughout the lifecycle. It
ensures that testing at every level is always performed, and that no package can be signed off until it has
been integrated and tested. Automation also enables earlier and consistent inclusion of V&V across
systems and components.

Principle 8: Monitoring. Continuous monitoring of performance metrics simultaneously drives pipeline
improvement and the quality of the software under development. Security is also monitored for both the
software being developed and for the pipeline automation.

So now what?
Now that we have compared the principles, it appears that the principles align fairly nicely, but the foci of
the practices are very different. It is clear that the details of agile, lean and DevSecOps are fairly narrow,
very specific and are designed to be highly automated. Systems engineering takes a broader perspective
in the sense of incorporating the broader, systems view. These should be mutually supportive.
Unfortunately, the context, values, and incentives of many practices run counter to other practices In and
between both disciplines. This is not insurmountable, but there needs to be collaboration on mitigations
and solutions. Hopefully, there is growing understanding by both disciplines of the needs and goals of the
other, and the general alignment of principles will provide room for innovation and improving outcomes.

Acknowledgements
Copyright 2021 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002

with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and

development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an

official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE

MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,

WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED

FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY

KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is

granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or

electronic form without requesting formal permission. Permission is required for any other external and/or commercial use.

Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM21-0296

Additional Resources

The SEI Technical Report Guide to Implementing DevSecOps for a System of Systems in Highly
Regulated Environments by Jose Morales, Richard Turner, Suzanne Miller, Peter Capell, Patrick Place,
and David James Shepard.

https://insights.sei.cmu.edu/blog/the-modern-software-factory-and-independent-vv-for-machine-learning-two-key-recommendations-for-improving-software-in-defense-systems/
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=638576
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=638576

Newsletter Major Article Template

 [Distribution Statement A] Approved for public release and unlimited distribution. 7

The SEI Technical Note Agile Software Teams: How They Engage with Systems Engineering on DoD
Acquisition Programs by Eileen Wrubel, Suzanne Miller, Mary Ann Lapham, and Tim Chick.

The SEI Webinar DevSecOps Implementation in the DoD: Barriers and Enablers with Hasan Yasar,
Eileen Wrubel and Jeff Boleng.

The SEI presentation video Continuous Iterative Development and Deployment Practices With Hasan
Yasar and Eileen Wrubel

The Incremental Commitment Spiral Model: Principles and Practices for Successful Systems and
Software, a 2013 book by Barry Boehm, Jo Ann Lane, Supannika Koolmanojwong, and me. Appendix C
of the book discusses a value-based theory of systems engineering; an earlier version of that material
can be found here.

The SEI Blog eight-part series Challenges to Implementing DevOps in Highly Regulated Environments by
Jose Morales.

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=295943
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=295943
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=528893
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=528893
https://www.amazon.com/Incremental-Commitment-Spiral-Model-Principles/dp/0321808223
https://www.amazon.com/Incremental-Commitment-Spiral-Model-Principles/dp/0321808223
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiapIqDvIXvAhVSOs0KHazECTYQFjACegQIARAD&url=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.334.6719%26rep%3Drep1%26type%3Dpdf&usg=AOvVaw32vfQD5UGpYTCYU63Q9LQW
https://insights.sei.cmu.edu/blog/challenges-to-implementing-devops-in-highly-regulated-environments-first-in-a-series/

