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1. Introduction
Kalman filtering and extended Kalman filtering are well-known techniques for es-
timating the states of stochastic systems of differential equations. They are used
extensively in navigation systems, attitude estimators, parameter estimation, and
many other applications. Building the Kalman filter consists of modeling the pro-
cesses and measurements involved using state-space methods, and building an ex-
tended Kalman filter requires knowledge of how to properly linearize a nonlinear
system. As such, an Extended Kalman Filter (EKF) can be challenging to build,
tune, analyze, and implement. In general, the more accurately the system is mod-
eled, the better the state estimator will perform.

The purpose of this report is to present a modular approach to building Kalman fil-
ters that model the system as completely as possible, yet still run efficiently through
matrix partitioning, and how to use covariance analysis as a design and analysis tool
for these filters. The approach is built upon the EKF and Schmidt Kalman filter ba-
sics presented in state estimation references such as Simon,1 Brown and Hwang,2

Maybeck,3 or Gelb.4 Since the methods documented here will be repeatedly used
in other global positioning system (GPS)-denied navigation projects, it would be
beneficial to document the underlying approach in one place.

The EKF presented is implemented as an error-state Kalman filter. Using error states
is a commonly used approach in navigation filters because they allow for nonlin-
ear update rules that allow rotations to stay within the SO(3) (or unit quaternion)
group.5 Though more ad-hoc than matrix Lie group-based approaches (e.g., see
Solà6), error-state mechanizations often provide Jacobians that are equivalent up
to a first order approximation. In addition, some of the “exactness” achieved using
Lie approaches vanishes when sensor calibration errors are present in the model.
A generic error state convention is discussed that is capable of representing any
systems used in navigation, but also is easy to use with symbolic math software
such as MathWorks, MATLAB’s Symbolic Math Toolbox,7 in order to compute Ja-
cobians and propagation matrices. Partitioning the states into dynamic states that
change with time and static states that remain constant reduces the complexity of
the propagation step. Partitioning the states into active states that are estimated by
the Kalman filter, and consider states that are not estimated, but have their uncer-
tainty accounted for when computing the Kalman gain, can reduce the complexity
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of the update step. Each dynamic system model is partitioned into the four resulting
permutations of state categories. Multiple partitioned dynamic system models are
then combined to form filters.

An example is provided at the end to demonstrate the benefits of the matrix parti-
tioning proposed here. A navigation system is constructed that combines a black-
box GPS receiver with an inertial measurement unit (IMU) and magnetometer to
estimate the attitude, position, velocity, and various sensor calibration errors. The
GPS, IMU, and magnetometer are all modeled using separate dynamic systems.
Each dynamic system is modeled in three different ways: one in which a high fi-
delity error model is used with a mixture of active and consider states, one in which
a simplified model is used with covariance inflation, and one in which a high fi-
delity model is used without consider states. Three Kalman filters are constructed
from the dynamic system models. The filters are then tested against a tumble-test
trajectory and a guided munition trajectory. From the simulation results, the simpli-
fied filter is shown to be both less accurate and less consistent, but faster. Additional
tuning could probably improve the performance of the simplified model filter, but
the high fidelity models were tuned directly from the sensor specifications and did
not need a manual tuning step. The high fidelity filter with consider states is shown
to be faster but less accurate than the one without consider states.

The example is extended by designing a slightly different filter based on the er-
ror budget of the consider state filter. The error budget illuminates which errors
would improve the navigation performance the most if they were modeled as active
states instead of consider states. The new filter with these modeling changes per-
forms almost identically to the optimal filter. Complexity analysis was performed
on the different filters, and an error budget was performed on the optimal filter to
determine if there were any sensor-quality limiting factors. The presented naviga-
tion filters demonstrate the ability to reduce computational complexity, yet maintain
near-optimal state estimation, and offer the filter designer a clear methodology to
trade accuracy versus speed using consider states.
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2. Error State Systems
Error state Kalman filters differ from normal EKFs in that they do not directly
estimate the state. Instead, it is assumed that the true state x can be composed of
the estimated state x̂ and the error state x̃ with

x = x̃ ⊕ x̂ (1)

The error state Kalman filter computes Jacobians with respect to x̃, and updates
an estimate of the error states ˆ̃x in the innovation step. The error state is the only
quantity that has to be expressible as a vector. The actual states and their estimates
can be sets of objects belonging to different mathematical groups such as rotation
matrices in addition to real vectors, and⊕would be the “product” operator in group
theory language. Because ⊕ applies a correction to the estimated states, it will be
referred to here as the “correction operator”.

The basic module of the Kalman filter is a system (of stochastic differential equa-
tions). It is up to the designer to determine which errors effect a sensor or process.
Consider the two (greatly simplified) systems described in Table 1. The attitude
system uses a quaternion as the state, but a small-angle vector as the error state.
The quaternion evolves through time as a function of the angular rates, which are
measured by a gyroscope. The gyroscope outputs are considered exogeneous inputs
to the system. Likewise, noise on the gyroscope causes the error-states to change in
time. * The magnetometer system only includes a magnetometer bias as the state,
and an error in this bias as the error state, which are both constant. The magnetome-
ter produces an output: the measured magnetic field. This output is a function not
only of the magnetometer states but the attitude states.

The propagation and measurement steps are described in more detail in the follow-
ing subsections. The goal is to be able to define the errors of each system indepen-
dently, and then to combine multiple systems into a Kalman filter.

*Attitude error propagation has been studied extensively. We refer the reader to Trawny’s techni-
cal report8 (JPL quaternion convention used here) or Maley’s technical report9 (Hamiltonian quater-
nion convention) for details.
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Table 1 Simple conceptual example

System States Error States Inputs/External States Outputs

attitude quaternion small angles gyroscope outputs none

magnetometer bias bias error quaternion measurement magnetic field

2.1 Propagation
The vast majority of things that need to be modeled in a Kalman filter can be repre-
sented by states x that propagate according to

ẋ = f (x, u,w) , (2)

where u is a vector of exogeneous inputs and w is a vector of uncorrelated white
noise with a Power Spectral Density (PSD) of 1. It is assumed that u is known. The
state estimates will propagate by integrating ˙̂x = f (x̂, u) from time tk to time tk+1

using some numerical integration scheme (Euler, trapezoidal, Simpson’s rule etc.).
In order to propagate the error-state covariance, the error-state dynamics must be
used. The error-state dynamics propagate according to

˙̃x = f̃ (x̂, x̃, u,w) . (3)

The function f̃ can be obtained from Eq. 1 and Eq. 2 and treating products of error
states as negligible. For example (similar to the derivation in Titterton10 just with a
different angle error convention), consider a simple system consisting of a rotation
matrix R and a velocity vector v with:

• state estimates x̂ =
{

R̂, v̂
}

• error state vector x̃ =
[
θ̃
>

ṽ>
]>
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• correction operator

x =
{

R, v
}

= x̃ ⊗ x̂

=
{

exp
(
−
⌊
θ̃×
⌋)

R̂, ṽ + v̂
}

≈
{(

I−
⌊
θ̃×
⌋)

R̂, ṽ + v̂
}

• and dynamics ẋ =
{

Ṙ = −bω×cR, v̇ = R>a + g
}

where ω , a, and g are perfect gyroscope, accelerometer, and gravity values.

Because inertial outputs are imperfect, ω = ω̂ + ω̃ , and a = â + ã. By applying
the correction function operator to the dynamics, one obtains for the attitude errors

Ṙ = −bω×cR
d

dt

((
I−

⌊
θ̃×
⌋)

R̂
)
≈ − (bω̂×c+ bω̃×c)

(
I−

⌊
θ̃×
⌋)

R̂

−bω̂×c R̂ +
⌊
θ̃×
⌋
bω̂×c R̂ −

⌊
˙̃θ×
⌋

R̂ ≈ −bω̂×c R̂ − bω̃×c R̂ + bω̂×c
⌊
θ̃×
⌋

R̂⌊
˙̃θ×
⌋
≈
⌊
θ̃×
⌋
bω̂×c − bω̂×c

⌊
θ̃×
⌋

+ bω̃×c
˙̃θ ≈ −bω̂×c θ̃ + ω̃

and for the velocity errors

v̇ = R>a + g

˙̃v + ˙̂v ≈ R̂
> (

I +
⌊
θ̃×
⌋)

(â + â) + g

˙̃v + ˙̂v ≈ ˙̂v + R̂
> ⌊
θ̃×
⌋

â + R̂
>

ã

˙̃v = −R̂
>
bâ×c θ̃ + R̂

>
ã

This leads to the error dynamics function[
˙̃θ

˙̃v

]
︸︷︷︸

˙̃x

=

[
−bω̂×c θ̃ + ω̃

−R̂
>
bâ×c θ̃ + R̂

>
ã

]
︸ ︷︷ ︸

f̃(x̂,x̃,u,w)

(4)

There is significant flexibility in how the inertial outputs are modeled, which is
further discussed in Section 5. In this small example, since only the attitude and
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velocity were defined, we will assume the sensor estimates are the raw sensor out-

puts, and the error is noise, which would make u =
[
ω̂> â>

]>
=
[
ω̆> ă>

]>
,[

ω̃> ã>
]>

=
[
σωw>ω σaw

>
a

]>
, and w =

[
w>ω w>a

]
, where σω and σa are the

sensor noise standard deviations.

Once it is defined, it is easy to work with f̃ to generate the covariance propagation
matrices for the system. A first order Taylor series expansion around the nominal
conditions of x̃ = 0 and w = 0 leads to

˙̃x ≈ f̃ (x̂, x̃, u,w)

∣∣∣∣
x̃=0,w=0

+ A (x̃ − 0) + G (w − 0) , (5)

where A and G are defined as

A = df̃ (x̂, x̃, u,w)ex̃
∣∣∣∣
x̃=0,w=0

G = df̃ (x̂, x̃, u,w)ew
∣∣∣∣
x̃=0,w=0

.

Because of how it is defined, f̃ evaluated with x̃ = 0 and w = 0 is 0. This is
consistent with the expected error in Eq. 2 being equal to 0. The initial errors must
be small (e.g., less than approx. 10◦ for rotation errors) in order for the Taylor series
in Eq. 5 (and everything that follows) to be valid. So the error state propagation
simplifies to:

˙̃x ≈ Ax̃ + Gw (6)

Although it is possible to integrate the continuous covariance propagation equation
(the Sylvester equation)1 the continuous time error dynamics are usually discretized
in order to propagate the error state covariance according to

Pk = Φk|k−1Pk−1Φ>k|k−1 + Qk|k−1.

The state transition matrix defined as a function of the dummy time variable τ is:

Φτ |t = eA(τ−t) =
∞∑
i=0

1

i!
(A(τ − t))i = I + A(τ − t) +

1

2
A2(τ − t)2 . . . . (7)
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The covariance of the process noise in between tk−1 and time tk is given by:

Qk|k−1 =

∫ tk

tk−1

Φτ |tk−1
GG>Φ>τ |tk−1

dτ (8)

The shorthand Φk|k−1 = Φtk|tk−1
, and Qk|k−1 = Qtk|tk−1

will be used to represent
the state transition and covariance matrices in between time tk−1 and time tk. Note
that A and G are functions of the current state estimate x̂ and possibly u. This
means that Φk|k−1 and sometimes Qk|k−1 will also be functions of the state estimate
and inputs. As an approximation, it is usually assumed that the state estimates and
inputs are approximately constant over the time step. Because the state prediction
has been integrated, the state vector is interpolated halfway between x̂k−1 and x̂k
(care must be taken doing this with rotations).

2.2 Outputs
Systems usually have one or more outputs of the form:

z = h(x, u, e, v)

Where the state vector and inputs are joined by external states from other systems
e and measurement noise v ∼ N (0, I). The estimated outputs are functions of the
estimated states:

ẑ = h(x̂, û, ê)

In general, the outputs, estimated outputs, and output errors are related by nonlinear
operators ⊕ and 	 such that

z = z̃ ⊕ ẑ

z̃ = z 	 ẑ = h̃(x̂, x̃, u, ê, ẽ, v)

As in the propagation step, the measurement error function h̃ can be expanded about
the no-error condition to obtain linear mappings for the error states to the residuals

z̃ ≈ Hx̃ + Eẽ + Lv, (9)
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were

H = dh̃ (x̂, x̃, u, ê, ẽ, v)ex̃
∣∣∣∣
x̃=0,ẽ=0,v=0

E = dh̃ (x̂, x̃, u, ê, ẽ, v)eẽ
∣∣∣∣
x̃=0,ẽ=0,v=0

L = dh̃ (x̂, x̃, u, ê, ẽ, v)eṽ
∣∣∣∣
x̃=0,ẽ=0,v=0

.

2.3 Kalman Updates
It is the error state that is being estimated during the Kalman update. Once the error
state is estimated, it is used to correct the states using the ⊕ operator, after which
the error state is set to 0. To state this explicitly, suppose ˆ̃x− denotes the estimated
error state maintained by the EKF algorithm. Here, we will use − and + superscripts
to distinguish between quantities before and after performing the nonlinear update,
respectively. We will temporarily use subscripts to denote how many measurements
have been processed, so after processing the z measurements the estimated error
state is ˆ̃x−z , and its covariance is P−z = E

[
(x̃ − ˆ̃x−z )(x̃ − ˆ̃x−z )>

]
. The nonlinear

update involves setting x̂z+ = ˆ̃x−z ⊕ x̂0
−, ˆ̃x+

z = 0, and P+
z = P−z . Immediately

following the propagation step, ˆ̃x−0 will still be 0. The Kalman update using mea-
surement 1 is of the form:

ˆ̃x−1 = K1

(
z1 	 ẑ1−

)
≈ K1 (H1x̃ + L1v1)

≈ ˆ̃x−0 + K1

(
H1

(
x̃ − ˆ̃x−0

)
+ L1v1

)
The error in the error state estimates is given by:

x̃ − ˆ̃x−1 ≈ x̃ − ˆ̃x−0 −K1

(
H1

(
x̃ − ˆ̃x−0

)
+ L1v1

)
≈ (I−K1H1)

(
x̃ − ˆ̃x−0

)
−K1L1v1

And so in general the updated covariance E
[(

x̃ − ˆ̃x−1

)(
x̃ − ˆ̃x−1

)>]
= P−1 is

given by:

P−1 = P−0 −K1H1P−0 − P−0 H>1 K>1 + K1H1P−0 H>1 K>1 + K1L1L>1 K1
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If there is more than one uncorrelated measurement available at the current timestep,
there are three options, and no obvious consensus in the literature as to which is the
best. Option 1 would be to process it at the same time as measurement 1. That is,
the measurement equation would be[

z1 	 ẑ1
z2 	 ẑ2

]
︸ ︷︷ ︸

z̃1,2

≈

[
H1

H2

]
︸ ︷︷ ︸

H1,2

(
x̃ − ˆ̃x−0

)
+

[
L1v1

L2v2

]
︸ ︷︷ ︸
L1,2v1,2

,

and the update computes ˆ̃x−2 and P−2 as a function of z̃1,2,H1,2,L1,2 and P−0 . Using
this option, the Jacobians are all computed around x̂0

−.

Option 2 would be to process measurement 1 to obtain ˆ̃x−1 ,P
−
1 , and then process

the second measurement as

ˆ̃x−2 = ˆ̃x−1 + K2

(
z2 	 ẑ2−

)
≈ ˆ̃x−1 + K2

(
H2

(
x̃ − ˆ̃x−0

)
+ L2v2

)
.

In option 2, the Jacobians are still computed around x̂0
−, but the Kalman gain is

computed using P−1 . The measurement errors L1v1 and L2v2 must be uncorrelated
for this to be valid. In the case where K1 and K2 are optimal, this produces an
identical ˆ̃x−2 and P−2 as option 1,1,2 which is easily seen in information form. It is
unknown if this is still the case when K1 and K2 are suboptimal, as is the case with
reduced order filters. The advantage of option 2 is that it uses less computational
complexity to calculate the Kalman gains, since that involves inverting the residual
covariance which has cubic complexity with the number of measurements being
processed at once. This is the method used in the examples in Section 5.

In options 1 and 2, all of the measurements available at the given timestep are pro-
cessed to produce a final ˆ̃x− before it is used to perform the nonlinear correction to
x̂. Option 3 is to perform the nonlinear update after each measurement is processed.
Using this option the measurements would be linearized around the most up-to-date
state estimates. The first measurement, z1,H1,L1 would still be functions of x̂0

−.
However, z2,H2,L2 would be functions of x̂1

+, and in general zz,Hz,Lz would
be functions of x̂z−1+. The benefit of this option is that it should reduce the effect
of linearization errors. The potential downside is that the effect of the linearization
errors depends on which order the measurements are processed. Whether or not this
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is actually a problem is application specific.

3. System Partitioning
It is often advantageous to partition a system. During the propagation step, some
error states evolve over time deterministically, while others do not. Error states
that evolve over time such as position or orientation are referred to as dynamic.
Error states such as biases or scale factor errors that do not change (except for
random walks) are referred to as static. During the update step of a Kalman filter,
some error states can be estimated while some can have their effects accounted for
without explicitly estimating them. States that are updated in the innovation step of
the Kalman filter are referred to as active states, while states that are not are referred
to as consider states.

Partitioning the state vector in this way has two main advantages: stability and effi-
ciency. By not multiplying the zero elements of the state transition matrix, the co-
variance propagation can be performed more efficiently in partitioned form if there
are a large number of static error states. Likewise, consider states have their rows of
the Kalman gain zeroed out to form a Schmidt Kalman filter,1 which reduces overall
complexity of the covariance update step if the number of consider states is large.
In addition, using consider states allows the designer to completely model all of the
known errors in a system, without effecting the observability of the system. Mod-
eling all of the errors makes the system easier to tune, since neglecting these errors
would require artificial inflation of the process and/or measurement covariance ma-
trices. It also may provide some robustness to unknown or difficult-to-model errors.
Using any variant of an EKF with an unobservable system is ill-advised because the
first order Taylor series expansions become less accurate as the unobservable sub-
space accumulates error. The rest of this section will present the algebra involved
in working with the partitioned system.

The four permutations of state types are referred to as ã, b̃, c̃, and d̃ as defined in
Fig. 1. The error-state vector and error covariance are partitioned as

x̃ =


ã

b̃

c̃

d̃

 P =


Paa Pab Pac Pad
P>ab Pbb Pbc Pbd
P>ac P>bc Pcc Pcd
P>ad P>bd P>cd Pdd

 (10)
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dynamic static

active ã b̃

consider c̃ d̃

Fig. 1 Error-state vector conventions

3.1 Discretization
The propagation equations can sometimes be carried out more efficiently using a
discretized version of the partitioned system.

Assumptions:

• Dynamic consider state propagation does not depend on any other states

– For example, correlated noise processes do not depend on states or bi-
ases

• The noise of a/b/c/d type processes is uncorrelated

– For example, rate random walk is uncorrelated with angle random walk,
etc.

This means the error-state derivatives in Eq. 6 will be partitioned as:

˙̃x =


˙̃a
˙̃b

˙̃c
˙̃d

 ≈


Aaa Aab Aac Aad

0 0 0 0
0 0 Acc 0
0 0 0 0




ã

b̃

c̃

d̃

+


Gaa 0 0 0

0 Gbb 0 0
0 0 Gcc 0
0 0 0 Gdd

w

Carrying out the first few powers of A used in the matrix exponential series expan-
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sion reveals which terms of the state transition matrix will be non-zero:

A2 =


AaaAaa AaaAab AaaAac + AacAcc AaaAad

0 0 0 0
0 0 AccAcc 0
0 0 0 0



A3 =


AaaAaaAaa AaaAaaAab AaaAaaAac +

(
AaaAac + AacAcc

)
Acc AaaAaaAad

0 0 0 0
0 0 AccAccAcc 0
0 0 0 0



So, the state transition matrix is going to be of the form:

Φ =


Φaa Φab Φac Φad

0 I 0 0
0 0 Φcc 0
0 0 0 I



What about the Q matrix? Evaluating the integral in Eq. 8 involves the integration
of ΦSΦ>, where S = GG>. Because the partitioned G is block diagonal, so is S.
The integrand takes the form:

ΦSΦ> =


Φaa Φab Φac Φad

0 I 0 0
0 0 Φcc 0
0 0 0 I




Saa 0 0 0
0 Sbb 0 0
0 0 Scc 0
0 0 0 Sdd




Φ>aa 0 0 0
Φ>ab I 0 0
Φ>ac 0 Φ>cc 0
Φ>ad 0 0 I



=


ΦaaSaaΦ>aa + ΦabSbbΦ>ab + ΦacSccΦ>ac + ΦadSddΦ>ad ΦabSbb ΦacSccΦ>cc ΦadSdd

SbbΦ>ab Sbb 0 0
ΦccSccΦ>ac 0 ΦccSccΦ>cc 0

SddΦ>ad 0 0 Sdd


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The non-zero elements of the Q matrix will then be:

Q =


Qaa Qab Qac Qad

Q>ab Qbb 0 0
Q>ac 0 Qcc 0
Q>ad 0 0 Qdd



3.2 Propagation
The propagation of the covariance matrix from one timestep to the next is given by
P− = ΦPΦ> + Q (dropping subscripts). Expanding this in partitioned form leads
to

Paa− = Φaa

(
PaaΦ>aa + PabΦ>ab + PacΦ>ac + PadΦ>ad

)
+ Φab

(
P>abΦ

>
aa + PbbΦ>ab + PbcΦ>ac + PbdΦ>ad

)
+ Φac

(
P>acΦ

>
aa + P>bcΦ

>
ab + PccΦ>ac + PcdΦ>ad

)
+ Φad

(
P>adΦ

>
aa + P>bdΦ

>
ab + P>cdΦ

>
ac + PddΦ>ad

)
+ Qaa

Pab− = ΦaaPab + ΦabPbb + ΦacP>bc + ΦadP>bd + Qab

Pac− = ΦaaPacΦ>cc + ΦabPbcΦ>cc + ΦacPccΦ>cc + ΦadP>cdΦ
>
cc + Qac

Pad− = ΦaaPad + ΦabPbd + ΦacPcd + ΦadPdd + Qad

Pbb− = Pbb + Qbb

Pbc− = PbcΦ>cc
Pbd− = Pbd
Pcc− = ΦccPccΦ>cc + Qcc

Pcd− = ΦccPcd
Pdd− = Pdd + Qdd.

3.3 Kalman Update
The next section will discuss combining multiple systems into a filter, but for now
we will pretend that this has already occurred and we are working with a single
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filter with no external states. The residual error is partitioned as

ỹ ≈
[
Ha Hb Hc Hd

]


ã

b̃

c̃

d̃

+ Lv.

The residual covariance matrix is given by:

S = Ha

(
PaaH>a + PabH>b + PacH>c + PadH>d

)
+ Hb

(
P>abH

>
a + PbbH>b + PbcH>c + PbdH>d

)
+ Hc

(
P>acH

>
a + P>bcH

>
b + PccH>c + PcdH>d

)
+ Hd

(
P>adH

>
a + P>bdH

>
b + P>cdH

>
c + PddH>d

)
+ LL>

The Kalman gain is

K = PH>S−1,

which, when expanded gives

Ka =
(
PaaH>a + PabH>b + PacH>c + PadH>d

)
S−1

Kb =
(
P>abH

>
a + PbbH>b + PbcH>c + PbdH>d

)
S−1

Kc =
(
P>acH

>
a + P>bcH

>
b + PccH>c + PcdH>d

)
S−1

Kd =
(
P>adH

>
a + P>bdH

>
b + P>cdH

>
c + PddH>d

)
S−1.

In the Schmidt Kalman filter construct, a suboptimal Kalman gain K structure is
chosen in which the gain terms associated with the consider states are set to 0.
Using this suboptimal gain means we must use the Joseph form of the Kalman
update

P+ = (I−KH) P (I−KH)> + KRK>

= P−KHP− PH>K> + KHPH>K> + KRK>

= P−KHP− PH>K> + KSK>.

The Joseph form update can be simplified with a Schmidt Kalman gain, just not
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quite as much as for an optimal Kalman gain. The simplifications available are
more apparent when using the follow substitutions:

K =

[
Kα

0

]

Kα =

[
Ka

Kb

]
Pαα =

[
Paa Pab
P>ab Pbb

]

Pαβ =

[
Pac Pad
Pbc Pbd

]
Pββ =

[
Pcc Pcd
P>cd Pdd

]
Hα =

[
Ha Hb

]
Hβ =

[
Hc Hd

]
.

The updated covariance is given by

P+ =

[
Pαα Pαβ
P>αβ Pββ

]

−

[(
PααH>α + PαβH>β

)
S−1
(
HαPαα + HβP>αβ

) (
PααH>α + PαβH>β

)
S−1
(
HαPαβ + HβPββ

)
0 0

]

−

[(
PααH>α + PαβH>β

)
S−1
(
PααH>α + PαβH>β

)> 0(
P>αβH>α + PββH>β

)
S−1
(
PααH>α + PαβH>β

)> 0

]

+

[(
PααH>α + PαβH>β

)
S−1SS−1

(
PααH>α + PαβH>β

)> 0
0 0

]
.

Noting the cancellation in the Pαα update, the partitioned covariance updates are
given by

Pαα+ =
(
Pαα −

(
PααH>α + PαβH>β

)
S−1
(
HαPαα + HβP>αβ

))
Pαβ+ =

(
Pαβ −

(
PααH>α + PαβH>β

)
S−1
(
HαPαβ + HβPββ

))
Pββ+ = Pββ

or, in terms of K

P+
αα = Pαα −Kα

(
HαPαα + HβP>αβ

)
P+
αβ = Pαβ −Kα

(
HαPαβ + HβPββ

)
P+
ββ = Pββ.
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Expanding the updates leads to

Paa+ = Paa −Ka

(
HaPaa + HbP>ab

)
−Ka

(
HcP>ac + HdP>ad

)
Pab+ = Pab −Ka

(
HaPab + HbPbb

)
−Ka

(
HcP>bc + HdP>bd

)
Pbb+ = Pbb −Kb

(
HaPab + HbPbb

)
−Kb

(
HcP>bc + HdP>bd

)
Pac+ = Pac −Ka

(
HaPac + HbPbc

)
−Ka

(
HcPcc + HdP>cd

)
Pad+ = Pad −Ka

(
HaPad + HbPbd

)
−Ka

(
HcPcd + HdPdd

)
Pbc+ = Pbc −Kb

(
HaPac + HbPbc

)
−Kb

(
HcPcc + HdP>cd

)
Pbd+ = Pbd −Kb

(
HaPad + HbPbd

)
−Kb

(
HcPcd + HdPdd

)
.

3.3.1 Reduced Computation
The Kalman gain and covariance updates can be written in a slightly less computa-
tionally complex form using partitioned matrices U and V as intermediate values:

Ua = PaaH>a + PabH>b + PacH>c + PadH>d
Ub = P>abH

>
a + PbbH>b + PbcH>c + PbdH>d

Uc = P>acH
>
a + P>bcH

>
b + PccH>c + PcdH>d

Ud = P>adH
>
a + P>bdH

>
b + P>cdH

>
c + PddH>d

S = HaUa + HbUb + HcUc + HdUd + LL>

Ka = UaS−1

Kb = UbS−1

16



Vaa = KaU>a
Vab = KaU>b
Vac = KaU>c
Vad = KaU>d
Vba = KbU>a
Vbb = KbU>b
Vbc = KbU>c
Vbd = KbU>d

Paa+ = Paa − Vaa

Pab+ = Pab − Vab

Pac+ = Pac − Vac

Pad+ = Pad − Vad

Pbb+ = Pbb − Vbb

Pbc+ = Pbc − Vbc

Pbd+ = Pbd − Vbd

Pcc+ = Pcc
Pcd+ = Pcd
Pdd+ = Pdd

3.3.2 Joseph Form
In certain situations, such as when computing an error budget, it is necessary to
update a filter using a completely arbitrary gain matrix. In these cases, the Joseph
form still gives the updated covariance without requiring any assumptions on how
the gain was calculated.11 Using new partitioned matrices U, V, W, and X as inter-
mediate values, the update becomes:

Ua = HaPaa + HbP>ab + HcP>ac + HdP>ad
Ub = HaPab + HbPbb + HcP>bc + HdP>bd
Uc = HaPac + HbPbc + HcPcc + HdP>cd
Ud = HaPad + HbPbd + HcPcd + HdPdd
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Vaa = KaUa

Vab = KaUb

Vac = KaUc

Vad = KaUd

Vba = KbUa

Vbb = KbUb

Vbc = KbUc

Vbd = KbUd

Wa = VaaH>a + VabH>b + VacH>c + VadH>d
Wb = VbaH>a + VbbH>b + VbcH>c + VbdH>d

Xaa = WaK>a
Xab = WaK>b
Xbb = WbK>b

Paa+ = Paa + Xaa + KaLL>K>a − Vaa − V>aa
Pab+ = Pab + Xab + KaLL>K>b − Vab − V>ba
Pac+ = Pac + Xac − Vac

Pad+ = Pad + Xad − Vad

Pbb+ = Pbb + Xbb + KbLL>K>b − Vbb − V>bb
Pbc+ = Pbc + Xbc − Vbc

Pbd+ = Pbd + Xbd − Vbd

Pcc+ = Pcc + Xcc

Pcd+ = Pcd + Xcd

Pdd+ = Pdd + Xdd
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3.4 Partitioned Accumulation
Some systems have higher sample rates than others. In some cases, it is helpful to
“accumulate” state transition matrices and Q matrices to show equivalent transfor-
mations between updates. For example, in visual-inertial odometry problems it is
intuitive to accumulate state transition matrices for states related to the IMU, and
only update the error covariance when a camera frame is available.12 Because IMUs
are typically sampled at least 10 times faster than cameras, this leads to significant
computational savings.

Consider two steps of covariance propagation:

Pk+1 = ΦkPkΦ>k + Qk

Pk+2 = Φk+1Pk+1Φ
>
k+1 + Qk+1

= Φk+1

(
ΦkPkΦ>k + Qk

)
Φ>k+1 + Qk+1

=
(
Φk+1Φk

)
Pk
(
Φk+1Φk

)>
+ Φk+1QkΦ

>
k+1 + Qk+1.

If multiple propagation steps occur in between measurement updates, an equivalent
transformation from the last measurement time n up to the current timestep can be
propagated with

Φ+
n = ΦkΦn

Q+
n = ΦkQnΦ

>
k + Qk.

Expanding these calculations for the partitioned form leads to

Φaa
+
n

= ΦaakΦaan

Φab
+
n

= ΦaakΦabn + Φabk

Φac
+
n

= ΦaakΦacn + ΦackΦccn

Φad
+
n

= ΦaakΦadn + Φadk

Φcc
+
n

= ΦcckΦccn ,
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and

Qaan
+ = Φaak

(
QaanΦ

>
aak

+ QabnΦ
>
abk

+ QacnΦ
>
ack

+ QadnΦ
>
adk

)
+ Φabk

(
Q>abnΦ

>
aak

+ QbbnΦ
>
abk

)
+ Φack

(
Q>acnΦ

>
aak

+ QccnΦ
>
ack

)
+ Φadk

(
Q>adnΦ

>
aak

+ QddnΦ
>
adk

)
+ Qaak

Qabn
+ = ΦaakQabn + ΦabkQbbn + Qabk

Qacn
+ = ΦaakQacnΦ

>
cck

+ ΦackQccnΦ
>
cck

+ Qack

Qadn
+ = ΦaakQadn + ΦadkQddn + Qadk

Qbbn
+ = Qbbn + Qbbk

Qccn
+ = ΦcckQccnΦ

>
cck

+ Qcck

Qddn
+ = Qddn + Qddk .

3.5 Stochastic Cloning
Stochastic cloning is a state transformation that is frequently used to process de-
layed measurements.13 Typically the cloned states are stored as active, constant
states, and are transformed from the active states only. Therefore, the linear trans-
formation of the state errors is given by:


ã′

b̃
′

c̃′

d̃
′

 =


I 0 0 0

Cba Cbb 0 0
0 0 I 0
0 0 0 I




ã

b̃

c̃

d̃


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As such, the covariance matrix must be transformed:

P′aa = Paa
P′ab =

(
PaaC>ba + PabC>bb

)
P′ac = Pac
P′ad = Pad
P′bb = Cba

(
PaaC>ba + PabC>bb

)
+ Cbb

(
P>abC

>
ba + PbbC>bb

)
P′bc = CbaPac + CbbPbc
P′bd = CbaPad + CbbPbd
P′cc = Pcc
P′cd = Pcd
P′dd = Pdd

3.6 General a/b Transform
The following transform can be useful for when things are transformed from a states
to b states. 

a′

b′

c′

d′

 =


Gaa 0 0 0
Gba Gbb 0 0
0 0 I 0
0 0 0 I




a

b

c

d


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P′aa = GaaPaaG>aa (11)

P′ab = Gaa

(
PaaG>ba + PabG>bb

)
(12)

P′ac = GaaPac (13)

P′ad = GaaPad (14)

P′bb =
(
Gba

(
PaaG>ba + PabG>bb

)
(15)

+ Gbb

(
P>abG

>
ba + PbbG>bb

))
(16)

P′bc =
(
GbaPac + GbbPbc

)
(17)

P′bd =
(
GbaPad + GbbPbd

)
(18)

P′cc = Pcc (19)

P′cd = Pcd (20)

P′dd = Pdd (21)

3.7 Complexity
The complexity of most common operations, covariance propagation and covari-
ance update, can be approximated by counting the number of multiplications. If a
is the dimension of the active-dynamic partition of the whole filter (i.e., dim(ãf )),
and b, c, d, the dimensions of their prospective partitions, then the sum of multipli-
cations in the covariance propagation is given by:

propagation complexity = O(ab2 + 3a2b+ 3ac2 + 4a2c+ 2bc2 + 3a2d+ 2c2d

+ 2a3 + 2c3 + 3abc+ 2abd+ 3acd+ add′)

This accounting uses the fact that some of the terms that appear in the P−aa update
are functions of P−ab and P−ad, which could be computed first and then used in the
computation of P−aa. The term d′ could be 1 or d, depending on the modeling of Pdd.
In many cases, Pdd will be initialized as a diagonal matrix, and it will stay that way
through propagation and update operations. This sparsity can be exploited to make
PddΦ>ad a O(ad) operation instead of a O(ad2) one.

Counting all of the multiplications in Section 3.3.1 involved in the Kalman update
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with a measurement vector of dimension m leads to:

update complexity = O(m(4ab+ 3ac+ 3ad+ 3bc+ 3bd+ 2cd+ dd′

+ 2am+ 2bm+ cm+ dm+ 2a2 + 2b2 + c2 +m2))

There is a m3 term that refers to theO(m3) cost of inverting S when computing the
Kalman gain, even though this is not strictly multiplication.

It is possible that more simplifications exist that could reduce the computational
burden. The naive Kalman filter with no partitioning uses 2n3 multiplications to
perform covariance propagation, where n = a + b + c + d. The naive covariance
update equation is actually more streamlined because the Joseph form update sim-
plifies to P+ = P − KHP when K is optimal. However, the Kalman gain is still
a O(n2m + 2nm2 + m3) operation and the covariance update another O(n2m)

operation.

4. Modular Kalman Filters
The point of a Kalman filter is to combine information from multiple systems. How-
ever, it is often helpful to develop systems independently so that they can be unit
tested and re-used. Creating a filter consists of concatenating the partitioned state
vectors of the subsystems to form an augmented system. That way, the partitioned
operations (covariance propagation, Kalman update, etc.) described in the previous
section can be performed on the augmented system.

The filter system f consists of an error state vector, state transition matrix, discrete
Q matrix, and measurement Jacobians that are constructed from the individual sys-
tems; system 1, 2, 3, etc. The filter error-state vector consists of

x̃af =


x̃a1

x̃a2
...

 x̃bf =


x̃b1

x̃b2
...

 x̃cf =


x̃c1

x̃c2
...

 x̃df =


x̃d1

x̃d2
...

 .
The filter propagation matrices are block diagonal constructions of the component
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system propagation matrices:

Φaaf =


Φaa1 0 0

0 Φaa2 0

0 0 . . .

 Φabf =


Φab1 0 0

0 Φab2 0

0 0 . . .

 etc. (22)

The external error-states that contribute to system outputs in Eq. 9 are now error-
states from other systems in the filter. For example, a simple magnetometer system
(mag) has an output that is dependent upon attitude errors. However, the only error-
states in the simple magnetometer system are the bias errors, which are modeled as
static active (b) states. The magnetometer system models the output residual as:

z̃mag ≈ Hbmag x̃bmag + Eθ ẽθ + Lmagvmag,

where ẽθ is the external attitude errors. Suppose a filter f is constructed that com-
bines an IMU system (IMU ) with the simple magnetometer system. The attitude
errors are part of the IMU system, which models attitude errors as dynamic active
(a) states. The external attitude errors are now just ẽθ = dx̃aIMU

eθ̃ x̃aIMU
, where

dx̃aIMU
eθ̃ is the Jacobian of the IMU error-state vector with respect to the attitude

errors. For the Kalman filter update, the magnetometer output error becomes

z̃mag ≈ Hbmag x̃bmag + Eθdx̃aIMU
eθ̃ x̃aIMU

+ Lmagvmag

≈
[
Eθdx̃aIMU

eθ̃ 0
]

︸ ︷︷ ︸
Haf

[
x̃aIMU

x̃amag

]
︸ ︷︷ ︸

x̃af

+
[
0 Hbmag

]
︸ ︷︷ ︸

Hbf

[
x̃bIMU

x̃bmag

]
︸ ︷︷ ︸

x̃bf

+Lmagvmag

5. Example
In this example, three example filters are constructed from three example systems.
The majority of the states are present in an IMU system, but magnetometer systems
and GPS system are incorporated to use their measurements. The goal is to describe
the modeling of the systems as described in Section 2, then partition the systems in
different ways. For each system, there will be an oversimplified, optimal, and bal-

anced approach to this partitioning. Filters are created from the different partitioned
systems and evaluated on reference trajectories.

24



5.1 Inertial Measurement Unit (IMU)
IMUs consist of an orthogonal triad of gyroscopes and accelerometers. They are
the backbone of most navigation systems because they do not require the use of
a physics-based dynamics model to propagate position, velocity, and attitude esti-
mates.

5.1.1 System Modeling
Though it is possible to (approximately) separate the inertial sensor errors from the
resulting trajectory errors (see Forster et al.14), it is simpler to include them in one
dynamic system (see Titterton and Weston10).

The kinematics that drive the system assume a fixed, nonrotating global reference
frameG, and a body-frameB that is centered at and rotates with the IMU. The states
modeled by the IMU system are listed in Table 2. The external inputs to the system
are the raw gyroscope and accelerometer outputs Bω̆B/G and Bă, and gravity Gg,
which is assumed to be known perfectly in global coordinates. The velocity and
rotation errors depend on the gyroscope and accelerometer errors Bω̃B/G and Bã.
In this case, Bω̆B/G and Bă are modeled as functions of the true angular rate and
specific force (BωB/G and Ba) modified by several factors:[
Bω̆B/G
Bă

]
=

[
I + bsω\c+ bmω×c+ bnω/c bgω ≡c

0 I + bsa\c+ bma×c+ bna/c

]
︸ ︷︷ ︸

Acal

[
BωB/G
Ba

]

· · ·+

[
bω + cω1 + cω2

ba + ca1 + ca2

]
︸ ︷︷ ︸

bcal

+

[
ρω√
2
wω

ρa√
2
wa

]
︸ ︷︷ ︸

wimu

The notational conventions are listed at the end of the report, and ρω and ρa are the
noise densities for the gyroscopes and accelerometers, respectively. Technically, the
definitions for misalignment and non-orthogonality are only approximations and
not true rotations. However, this approximation is sufficient when the actual value
of these rotations is not of interest. Extracting the true specific force and rotation
rates leads to: [

BωB/G
Ba

]
= A−1cal

([
Bω̆B/G
Bă

]
− bcal − wimu

)
.
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The estimated angular rates and specific forces are outputs of the system that are
used to perform the integration:[

Bω̂B/G
Bâ

]
= Â

−1
cal

([
Bω̆B/G
Bă

]
− b̂cal

)
.

The errors are additive:

Bω̃B/G = BωB/G − Bω̂B/G,
Bã = Ba − Bâ.

The errors get quite complicated if terms like misaligment and g-sensitivity are
actively being estimated. For implementation, extensive use of the MATLAB sym-
bolic toolbox15 was used to generate functions for the system outputs, Jacobians,
and propagation matrices.

The correlated noise is meant to approximate "flicker" noise, which is used to model
bias instability. The bias instability σBI of a sensor corresponds to a flat region on
sensor noise Allan deviation (AD) curve at the level σAD = σBI

√
2 ln(2)/π.16

Since flicker is a nonlinear stochastic process, it is approximated by two exponen-
tially correlated noise processes. The analytical expression for the AD resulting
from these processes is given in IEEE standards,17 and a Levenberg-Marquadt opti-
mization routine was used to adjust the τC and σC parameters of the two processes
to minimize the error between the ideal and approximated AD curves. More expo-
nentially correlated processes could be used to achieve a better approximation. An
example of the resulting AD curve including the angle random walk, rate random
walk, and two exponentially correlated noise processes is shown in Fig. 2.
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Fig. 2 AD curves representing how the sensor noise is modeled. The ideal curve consists of
angle random walk, bias instability, and rate random walk contributions. The approximated
curve replaces the bias-instability process with two exponentially correlated noise processes.

Table 2 IMU dynamic system states and how they are modeled in the navigation filter

Name x̃ ⊕ x̂ ẋ = f(. . . ) ˙̃x = f̃(. . . )

attitude e−bθ̃×cBR̂G BṘG = −
⌊
BωB/G×

⌋
BRG

˙̃
θ ≈ −

⌊
Bω̂B/G×

⌋
θ̃ + Bω̃B/G

velocity GṽB + Gv̂B
Gv̇B = BR>GBa + Gg G ˙̃vB ≈ BR̂

>
G
B ã − BR̂

>
G

⌊
B â×

⌋
θ̃B

position Gp̃B + Gp̂B
GṗB = GvB

G ˙̃pB = GṽB

gyroscope bias b̃ω + b̂ω ḃω = σbωwbω
˙̃
bω = σbωwbω

accelerometer bias b̃a + b̂a ḃa = σbawba
˙̃
ba = σbawba

gyro. correlated noise process i c̃ωi + ĉωi ċωi = − 1
τcωi

cωi
+ σcωi

wcωi

˙̃cωi
= − 1

τcωi

c̃ωi
+ σcωi

wcωi

accel. correlated noise process i c̃ai + ĉai ċai = − 1
τcai

cai + σcai
wcai

˙̃cai = − 1
τcai

c̃ai + σcai
wcai

gyro. scale adjustment s̃ω + ŝω ṡω = 0 ˙̃sω = 0
accel. scale adjustment s̃a + ŝa ṡa = 0 ˙̃sa = 0
gyro. misalignment m̃ω + m̂ω ṁω = 0 ˙̃mω = 0
accel. misalignment m̃a + m̂a ṁa = 0 ˙̃ma = 0
gyro. non-orthogonality ñω + n̂ω ṅω = 0 ˙̃nω = 0
accel. non-orthogonality ña + n̂a ṅa = 0 ˙̃na = 0
gyro. g-sensitivity g̃ω + ĝω ġω = 0 ˙̃gω = 0
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5.1.2 System Partitioning
All versions of the system will include the position, attitude, and velocity error
states, but there is variability in which of the calibration error states are modeled
and how. There are three main variants, which are summarized in Table 3. The
oversimplified variant does not estimate or explicitly model any of the higher order
terms. Instead, covariance inflation factors must be determined in order to make this
filter consistent. The advantage of this filter is speed and ease of implementation.
The optimal variant does not model anything as a consider state; it models the full
system and tries to actively estimate all of the error states. The advantage of this
filter is that it should give the best performance; at least if there is sufficient motion
for all of the error states to be observable. The disadvantage is that it has a signifi-
cantly higher number of matrix operations in the Kalman update step, and may be
unstable if the system is unobservable. The balanced variant is a suboptimal filter
that still models the full system. Biases are treated as active states, but all of the
higher order terms are modeled as consider states.
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Table 3 State vectors for each state in each IMU system variant using the convention in Fig. 1

Error State Oversimplified Optimal Balanced

attitude a a a

velocity a a a

position a a a

gyro./accel. bias b b b

gyro./accel. correlated noise processes a c

gyro./accel. scale adjustment b d

gyro./accel. misalignment b d

gyro./accel. non-orthogonality b d

gyro. g-sensitivity b d

5.2 Magnetometers
By sensing the Earth’s magnetic field in body coordinates, magnetometers provide
orientation information that is also very beneficial to estimating gyroscope biases.
Magnetometers come with their own errors that need to be modeled.

5.2.1 System Modeling
The states in the magnetometer system are listed in Table 4. It is assumed that the
Earth’s magnetic field in global coordinates Gm is known. This is the only external
input to the system. The model of the magnetometer sensor output Bm̆ includes
calibration errors as well as attitude errors. In this case, the raw magnetometer out-
put (Bm̆) is modeled as a function of the true magnetic field in body-coordinates

Table 4 Magnetometer system states and how they are modeled

Name x̃ ⊕ x̂ ẋ = f(. . . ) ˙̃x = f̃(. . . )

magnetometer bias b̃m + b̂m ḃm = 0 ˙̃
bm = 0

magnetometer soft-iron adjustments s̃m + ŝm ṡm = 0 ˙̃sm = 0

attitude (external) e−bθ̃×cBR̂G N/A N/A
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(Bm = BRG
Gm) corrupted by errors:

Bm̆︸︷︷︸
zmag

= BRG
Gm + bm + bsm ≡c BRG

Gm + σmvm︸ ︷︷ ︸
hmag(x,e,u,v)

, (23)

where vm ∼ N (0, I). Magnetometers that are surrounded by materials with differ-
ent magnetic permeabilities are subjected to “soft-iron” errors, caused by the mag-
netic field being attenuated as a function of the platform orientation. In addition,
proximity to magnetized objects on the same platform create constant “hard-iron”
errors. These can be estimated in calibration,18 but the lumped errors in the calibra-
tion will typically dominate normal sensor errors such as sensitivity error or electri-
cal bias. Therefore, all of the misalignment, cross-axis sensitivity, and nonorthogo-
nality errors have been lumped into a “soft-iron” matrix parameterized by the 9× 1

vector sm, and the biases and hard-iron errors have been lumped into bm. The pre-
dictions are given by:

B ˆ̆m︸︷︷︸
ẑmag

= BR̂G
Gm + b̂m + bŝm ≡c BR̂G

Gm︸ ︷︷ ︸
ĥmag(x̂,u,ê)

, (24)

If the error definitions from Table 4 are used in Eq. 23, the residual equation can be
determined by:

h̃mag (x̂, x̃, u, ê, ẽ, v) = zmag − ẑmag (25)

It is sufficient to use the first order approximation to the matrix exponential for
attitude errors, i.e., BRG ≈

(
I−

⌊
θ̃×
⌋)

BR̂G. The Jacobians in Eq. 9 can then be
computed manually or with symbolic math software.

5.2.2 System Partitioning
Like the IMU system, the magnetometer also has an oversimplified, optimal, and
balanced variant. The partitioning assignments are summarized in Table 5. For the
magnetomer system, the soft-iron effects are neglected in the oversimplified variant,
treated as static-active states in the optimal variant, and treated as static-consider
states in the balanced variant.
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Table 5 State vectors for each state in each IMU system variant using the convention in Fig. 1

Error State Oversimplified Optimal Balanced

magnetometer bias b b b

magnetometer soft-iron adjustments b d

5.3 Black-Box GPS System
A GPS receiver provides position and velocity estimates if it can acquire enough
satellites. The “black-box” terminology refers to using the position and velocity
measurements produced by the receiver’s internal least-squares solution as opposed
to using a more tightly coupled algorithm that combines the raw pseudorange and
doppler shift measurements with the rest of the navigation system. A system can be
constructed to model the GPS errors and the GPS outputs.

5.3.1 System Modeling
The GPS model consists of position and velocity measurements corrupted with cor-
related noise. The internal and external system states are listed in Table 6. In the
models, wp and wv are unit white noise processes, βp and βv are bandwidths, and
σ2
p and σ2

v are variances. The system outputs are the raw GPS measurements given

Table 6 GPS system states and how they are modeled

Name x̃ ⊕ x̂ ẋ = f(. . . ) ˙̃x = f̃(. . . )

correlated position bias b̃p + b̂p ḃp = −βpbp +
√
2σ2

pβpwp
˙̃
bp = −βp b̃p +

√
2σ2

pβpwp

correlated velocity bias b̃v + b̂v ḃv = −βvbv +
√
2σ2

vβvwv
˙̃
bv = −βv b̃v +

√
2σ2

vβvwv

position (external) p̃B + p̂ N/A N/A
velocity (external) ṽB + v̂ N/A N/A
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by: [
p̆GPS

v̆GPS

]
︸ ︷︷ ︸
zgps

=

[
GpB + bp
GvB + bv

]
︸ ︷︷ ︸

hgps(x,e)

. (26)

There are no external inputs or noise, the system outputs depend on the states and
external states. From here, computing the predictions, residuals, and Jacobians for
the system outputs is trivial.

5.3.2 System Partitioning
Like the IMU system, the GPS system also has an oversimplified, optimal, and bal-

anced variant. The partitioning assignments are summarized in Table 7. The cor-
related biases are neglected in the oversimplified variant. Instead, they are approx-
imated by measurement noise. The correlated biases are treated as dynamic-active
states in the optimal variant, and dynamic-consider states in the balanced variant.

Table 7 State vectors for each state in each GPS system variant using the convention in Fig. 1

Error State Oversimplified Optimal Balanced

correlated position bias a c

correlated velocity bias a c

5.4 Simulation Setup
The various filter designs were evaluated in two separate dynamic platforms. The
first simulation was of a “tumble test” calibration. Essentially, the IMU platform is
held stationary while it is rotated into multiple orientations. There are 26 setpoint
orientations with a dwell time of 5 s each. In order to not instantaneously jump to
the different orientations, the IMU is assumed to be attached to a platform with non-
negligible moments of inertia that must be rotated into position with a proportional
controller. This produces settling times around 2 s and transient angular rates of
under 100 deg/s. The second platform is a fictitious gun-launched projectile that
deploys wings at apogee, then glides for several minutes to hit a target that is several
kilometers downrange and to the right of the line of fire. The munition launches
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with some initial uncertainty that is used in the initialization of the IMU states. The
initial condition variances shown in Table 8 are used to tune the initial covariance of
the IMU system. Each platform includes the same sensor models. Example sensor
outputs for each of the simulations are shown in Fig. 3.

The IMU specifications are listed in Table 9. The magnetometer and GPS specifi-
cations are listed in Table 10. Both the IMU and magnetometer errors are based on
the VN-100 data sheet,19 although some errors had to be guessed at using engineer-
ing judgement. The GPS parameters are based off of past experience fitting u-blox
reciever errors to mortar trajectories run with a Spirent GPS simulator. To evaluate
navigation drift in a GPS-denied environment, the GPS measurements were stopped
one-third of the way through the simulation.

Table 8 Initial condition standard deviations

Name Munition Calibration

Launch velocity 1σ (m/s) 3 0
Launch elevation 1σ (deg) 0.02813 0
Launch azimuth 1σ (deg) 0.1519 0
Initial roll error 1σ (deg) 0.1 0
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Fig. 3 Example sensor outputs from the two sample trajectories. Notice that the GPS stops
providing outputs one-third of the way through each trajectory.
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Table 9 IMU simulation parameters

Gyroscope Accelerometer
Name Value Name Value

Sample rate (Hz) 500 Sample rate (Hz) 500
Noise density (deg/sec/rt-Hz)) 0.0035 Bias stability (mg) 0.04
Bias stability (deg/hr) 10 Noise density (mg/sqrt(Hz)) 0.14
Rate random walk (deg/sec/rt-hr) 0.001485 Acceleration random walk (mg/sec/rt-hr) 0.0297
Bias repeatability 1σ (deg/sec) 0.5 Bias repeatability 1σ (mg) 20
Sensitivity repeatability 1σ (%) 0.3333 Sensitivity repeatability 1σ (%) 0.3333
Misalignment 1σ (deg) 0.05 Misalignment 1σ (deg) 0.05
Non-orthogonality 1σ (deg) 0.05 Non-orthogonality 1σ (deg) 0.05
g-Sensitivity 1σ (deg/sec/g) 0.015 Nonlinearity 1σ (%FSV) 0
Nonlinearity 1σ (%FSV) 0

Table 10 Magnetometer and GPS simulation parameters

Magnetometer GPS
Name Value Name Value

Sample rate (Hz) 50 Sample rate (Hz) 10
Nonlinearity (%FSV) 0 Position βp (Hz) 1
Bias repeatability (mGauss) 610 Position σp (m) 5
Noise density (mGauss/sqrt(Hz)) 0.0259 Velocity βv (Hz) 0.4
Soft iron errors (%) 1 Velocity σv (m/s) 4
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5.4.1 Initial Results
Small Monte-Carlo batches of 20 runs were performed with each filter and trajec-
tory combination. Two error metrics are used to measure filter performance: root
sum of squared error (RSSE) and normalized estimation error squared (NEES),
which are defined as follows:

RSSE (x̃) =

√
x̃>x̃

NEES (x̃,Pxx) = x̃>P−1xx x̃

RSSE is essentially the norm of the state error x that is computed from the true state
provided by the simulation and the estimated state using the appropriate 	 opera-
tor. NEES takes into account Pxx, the block of the estimator covariance associated
with x to compute the Mahalanobis distance. The Mahalanobis distance follows a
χ2 distribution, and provides a measure of how closely the true state errors fit into
the distribution predicted by the EKF. These measurements are performed on sub-
sections of the state vector: attitude, velocity, and position. Because each of these
subsections have 3 degrees of freedom, a NEES of 3 indicates the estimator is con-
sistent. Both metrics are computed for each run in the Monte-Carlo simulation, and
then averaged together. The RSSE results are contained in Fig. 4, and the NEES
results are in Fig. 5.

Two trends are apparent from the data. The first is that the oversimplified filter is
significantly less accurate and less consistent than the other estimators. It is possi-
ble that additional tuning of the covariance inflations could fix this, but this tuning
is neither simple, nor robust. Too much covariance inflation causes large attitude
errors, which start to violate the small-angle approximations used to propagate the
velocity and position errors. Too little covariance inflation causes the filter to over-
weight either the process model or the measurements. The second trend is that while
both the optimal and balanced filter are consistent (they both have a NEES of about
3), the balanced estimator has about twice as much RSSE error on average when
GPS is removed.
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Fig. 4 Average RSSE results for each filter on each trajectory

Fig. 5 Average NEES results for each filter on each trajectory
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5.4.2 Error Budget
The balanced filter is less accurate than the optimal filter, and uses consider states
extensively. An error budget is a useful tool that estimates how much each error
source contributes to the total variance of the estimator. It can also be used to decide
if it makes sense to change the filter to estimate any of the error states that are
currently modeled as consider states. Error budget computation has been described
in Gelb,4 Estefan et. al.,20 and more recently by Geller et. al.21 To compute the error
budget, the systems that build up the Kalman filter are duplicated in a “truth model”.
The filter model error states and covariance x̃f , Pff and the truth model error states
and covariance x̃t, Ptt form the augmented system:

x̃a =

[
x̃f

x̃t

]
∼ N

([
0
0

]
,

[[
Pff 0
0 Ptt

]])
[

˙̃xf
˙̃xt

]
=

[
A 0
0 A

][
x̃f

x̃t

]
+

[
Gf 0
0 Gt

][
wf

wt

]
[
z̃f

z̃t

]
=

[
H 0
0 H

][
x̃f

x̃t

]
+

[
Lf 0
0 Lt

][
vf

vt

]

To determine the variance contribution from a specific error source (or group of
error sources), the truth model is tuned with every element in Lt, Gt, and the initial
value of Ptt set to 0 except for the elements relating to that error source. The filter
model tuning never changes. The two models are run side-by-side and share all of
the same linearization points. That is, a state vector from a nominal trajectory is
used for all linearization, and the system model only propagates and updates the
covariance. However, when a measurement is used, the gain is computed from the
filter model, and the same gain is used for both systems:

Kf = PffH>
(
HPffH> + LL>

)−1[
Pff 0
0 Ptt

]+
=

[
I−KfH 0

0 I−KfH

][
Pff 0
0 Ptt

][
I−KfH 0

0 I−KfH

]>

+

[
KfLfL>f K>f 0

0 KfLtL>t K>f

]

Note that in this case the filter and truth models remain uncorrelated. For this reason,
it is common to run the filter model first, save the Kalman gains, and then run the
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truth models with the saved Kalman gains.

An initial error budget was performed for the balanced filter, on the munition tra-
jectory. The resulting error contributions are shown in Fig. 6. The figure shows the
traces of two blocks of the truth model covariance matrix: the attitude error block
Pttθ and the position error block Pttp . The error categories were purposely broad: all
IMU noise, all GPS noise, all magnetometer noise, all of the gyroscope nonlinear
errors, all of the accelerometer nonlinear errors, and all of the magnetometer non-
linear errors. Notice that the total variance is also shown on the plots. Because the
filter model and truth model are always linearized around the same state, and the
covariance operations are linear, all of the individual error variances should add up
to the total error variance. Early on, the categories examined do not sum up to the
total error variance for attitude. This is because the categories do not include all of
the errors that drive the system. In particular, the categories do not include initial
condition variances, or initial sensor bias variances (since biases are all estimated
by the balanced filter). Because the filter model is observable while there is GPS,
the variance contribution from these errors becomes negligible after about 40 s.

After GPS is removed, the three largest contributors to the position error are the
magnetometer noise, the gyroscope nonlinear errors, and the magnetometer nonlin-
ear errors. The errors from magnetometer noise cannot be removed by an EKF, but
it is possible that if some of the gyroscope or magnetometer nonlinear errors were
modeled as active states instead of consider states the filter performance would
improve. However, this adds computational complexity to the Kalman update oper-
ation, so model changes should be reserved for the errors that have the largest effect
on performance. To determine this, a second error budget was created that “zooms
in” on the gyroscope and magnetometer nonlinear errors. Instead of turning groups
of sensor errors on at a time, specific nonlinear errors were turned on individually.
The results of this error budget are shown in Fig. 7. From the plots, gyroscope g-
sensitivity and magnetometer soft-iron (these are the only nonlinear magnetometer
errors) errors appear to dominate.
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(a) (b)

Fig. 6 Initial error budget: a) major error contributions; b) prior to GPS loss, position error
is dominated by GPS noise
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Fig. 7 Second error budget only looking at nonlinear gyroscope and magnetometer errors
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5.4.3 Balanced Filter 2
From the error budget analysis, it was determined that magnetometer soft-iron ef-
fects and gyroscope g-sensitivity errors are the primary contributors to position
drift after GPS-loss in the munition trajectory (using the error levels in this study).
Magnetometer soft-iron errors are already treated as static active states in the op-

timal version of that system. A new IMU system was created called the balanced

2 version that is identical to the balanced version with the exception that gyro g-
sensitivity is modeled as a static-active state instead of a static-consider state. The
balanced 2 filter consists of the balanced 2 IMU system, the optimal magnetometer
system, and the balanced GPS system.

The Monte-Carlo analysis was repeated with all versions of the filter. The RSSE
results are shown in Fig. 8, and the NEES results are shown in Fig. 9. As hoped
for, the balanced 2 filter has RSSE values that are much closer to the optimal RSSE
values for the munition simulation. The RSSE values are not quite as close to the
optimal RSSE values for the calibration simulation, but still better than the original
balanced filter. It is intuitive that more errors are observable with the calibration
simulation, which is why the optimal filter still outperforms both balanced filters.
From the NEES data, the consistency of the balanced 2 filter appears to be not
significantly different than that of the balanced and optimal filters.
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Fig. 8 Average RSSE results for each filter on each trajectory

Fig. 9 Average NEES results for each filter on each trajectory
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5.4.4 Performance Evaluation
One benefit to using consider states is a reduction in computational complexity. A
crude comparison of the four filter versions was performed using MATLAB’s profil-
ing tools. The average times per function call using a 3.1 GHz processor are shown
in Fig. 10. For comparison, the theoretical complexity as described in Section 3.3.2
for each filter is calculated and shown in Fig. 11. The MATLAB execution obvi-
ously has some overhead, since the average execution times for the oversimplified

filter were similar to the other filters, when according to the complexity analysis
they should be at least an order of magnitude less. The optimal filter had longer
execution times than either balanced filter, which is consistent with the complexity
analysis. It is unclear why the balanced filter took longer on average to compute the
covariance propagation than the balanced 2 filter.

For reference, the theoretical complexity plots also include the complexity of a
completely unpartitioned version of the optimal filter, which is called the naive

full filter. Because of the dynamic/static partitioning in the optimal and balanced

filters, they have around 4 times less complexity than the naive full version when
propagating the error covariance. The effect is less dramatic for performing the
Kalman update. As expected, the optimal filter (which has no consider states) has
the same complexity as the naive full filter for the Kalman update. The naive full

filter has 60% higher Kalman update complexity than the balanced filter, and 28%
higher Kalman update complexity than the balanced 2 filter.

Fig. 10 Profiling results

The efficiency gains obtained by partitioning depend on the application. In this case,
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Fig. 11 Theoretical complexity

the profiling differences do not appear dramatic. However, suppose an embedded
processor runs about 4 times slower than the computer used in this evaluation. The
combined propagation and update execution time of about 4×0.58 ms and 4×0.80
ms for the balanced 2 and optimal filters, respectively, mean the balanced 2 filter
can run at 431 Hz while the optimal filter will only run at 312 Hz. Having the
ability to increase the update rate by 25% just by changing filter design could be
useful when considered against the other guidance and control requirements of the
vehicle.

5.4.5 Best-Case Error Contributions
So far, it has been demonstrated that if a consider state contributes significantly to
the RSSE of the filter, then it can be remodeled as an active state to significantly
reduce that RSSE contribution. Covariance analysis is a good way to model the aug-
mented system to find a good balance between efficiency and RSSE performance.
But what if the optimal filter was used, which would be the best-case scenario in
terms of RSSE? There will still be errors in the state estimates, but at this point
nothing else can be fixed with a modeling change. However, performing an error
budget on the optimal filter might show which error sources could be nullified by
choosing higher quality sensors. Such an error budget was performed on the mu-
nition trajectory, and the results are shown in Fig. 12. The error contributions to
the attitude variance and position variance were ranked at 100 s (right before GPS
loss), and at 295 s. Only the top 5 (out of 22) contributors are shown for each
scenario. From the error budget, it would appear that magnetometer noise is the
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(a) (b)

Fig. 12 Optimal filter error budget: a) contributions prior to GPS loss; b) contributions for
whole trajectory. Legends list the top 5 contributors and their percentage of the total variance.

primary contributor to attitude and position error in all cases. Low attitude error
is a necessary, but not sufficient, condition for low position error because specific
forces must be transformed using the attitude estimate prior to integrating them.
The next lowest contributor is gyroscope bias stability (or instability, depending on
convention). This is a commonly listed specification for gyroscopes, with more sta-
ble gyroscopes typically costing more. Magnetometer noise and gyroscope stability
are coupled, because observing magnetometers tends to make gyroscope bias ob-
servable. However, in practice magnetometers must contend with magnetic fields
created by on-board electronics, which may result in larger magnetometer noise.

The position error budget prior to GPS loss is interesting. It would appear that by
actively estimating the correlated GPS errors, their contribution to position errors
has become negligible. Also, initial attitude errors and accelerometer scale factor
error play a larger part than in the rest of the trajectory.
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6. Conclusions
A modular error-state Kalman filtering approach has been developed. Using error-
states allows the designer to perform filtering on manifolds (to a given level of
approximation) while being able to compute Jacobians using symbolic math soft-
ware. It was demonstrated that using a partitioned state vector can result in signifi-
cant computational savings while still allowing the system to be correctly modeled.
Fully modeling the system simplifies tuning because there are fewer (if any) “fudge
factors” that need to be adjusted. It was also demonstrated that consider states can
be used to improve filter efficiency, although no improvements to consistency were
observed in the considered example. In the example, partitioning the filter along the
lines of static and active states resulted in a dramatic reduction in complexity when
performing the covariance propagation operation.

Error budget creation was discussed and used for two purposes with the munition
trajectory. In one example, the error budget was used to determine which states
should be remodeled as active states instead of consider states to achieve the best
increase in filter accuracy. It was determined that estimating gyroscope g-sensitivity
and magnetometer soft-iron errors caused a new suboptimal filter to perform nearly
as well as the optimal filter on that trajectory. In the next example, an error budget
was created for the optimal filter to show where performance was limited not by
modeling decisions, but by sensor quality. The errors from sensor limitations were
dominated by a combination of gyroscope instability and magnetometer noise.

The primary shortcoming of the method proposed here is the lack of external states
in the propagation equations. Adding this would enable covariance analysis of nav-
igation systems coupled with dynamic systems, such as in Geller et al.21
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List of Symbols, Acronyms, and Abbreviations
AD Allan deviation

EKF Extended Kalman Filter

GPS global positioning system

IMU inertial measurement unit

NEES normalized estimation error squared

PSD Power Spectral Density

RSSE root sum of squared error
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Notational Conventions
v Vectors are bold, roman font lowercase
M Matrices are bold uppercase
x Bold, italic, lowercase indicates a variable or set of variables

that could be a vector, scalar, or matrix
CvB/A A vector v describing something (e.g., velocity, position) of

frame B with respect to frame A, represented in frame C
coordinates

BRA A rotation matrix that transforms a vector’s A-frame coordi-
nates to its B-frame coordinates (e.i. Bv = BRA

Av)
bv×c A skew-symmetric matrix constructed from vector v (e.g.

bv×c a = v × a)
bv/c A non-orthogonal error matrix formed from the vector bv/c

i.e. bv/c =

 0 vz vy

vz 0 vx

vy vx 0


bv\c A matrix with elements of the vector v along the diagonal
bv ≡c A non-orthogonal error matrix formed from the vector v ∈

R9 i.e. bv ≡c =

v1 v4 v7

v2 v5 v8

v3 v6 v9


E [. . . ] Expectation operator

dfev
∣∣∣∣
v=y

Jacobian of function f w.r.t. vector v evaluated at v = y

x The true value of variable x
x̂ The estimated value of variable x
x̃ The error in x̂, i.e. x = e (x̃, x̂) (x̃ is always a vector)
v̆ The raw measured value of vector v from a sensor
v̆− The output vector v from a sensor predicted from the current

state estimate
v′ A vector ∈ R2 consisting of the y and z components of the

vector v ∈ R3

ẋ The time derivative of x (i.e., dx/dt)
v ∼ N (µ,C) v is normally distributed with mean µ and covariance C
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