

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

CENTRALLY PRETRAINED FEDERATED FINE-TUNING:
ENABLING A SECURE AND ACCURATE MILITARY

SECURITY APPLICATION ON EMBEDDED HARDWARE

by

Matthew W. Baxter

December 2020

Thesis Advisor: Marko Orescanin
Co-Advisor: Gurminder Singh

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
December 2020

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
CENTRALLY PRETRAINED FEDERATED FINE-TUNING: ENABLING A
SECURE AND ACCURATE MILITARY SECURITY APPLICATION ON
EMBEDDED HARDWARE

5. FUNDING NUMBERS

6. AUTHOR(S) Matthew W. Baxter

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
A persistent, precise, and adaptive security application is a requisite component to an effective force

protection condition (FPCON) as U.S. military installations have become common targets for violent acts of
terrorism and homicide. Current military security applications require a more automated approach as they rely
heavily on limited manpower and limited resources. The current research developed an off-grid, deployed
federated fine-tuning network composed of embedded hardware and evaluated embedded hardware system and
model performance. Federated fine-tuning takes a centrally pretrained model and performs fine-tuning on a select
number of model layers within a federated learning architecture. The federated fine-tuning models exhibited an
average reduction in CPU load of 65.95% and an average reduction in current draw of 56.18%. The MobileNetV2
model transmitted 81.59% fewer global model parameters across the network. The centrally pretrained MNIST
model began training with an initial accuracy improvement of 53.94% over the randomly initialized model. The
centrally pretrained MobileNetV2 model demonstrated an initial average accuracy of 90.75% at training round 0
and experienced a 3.14% overall performance improvement after 75 federated training rounds. The results of the
current research demonstrated that federated fine-tuning can improve system performance and model accuracy
while providing stronger privacy and security against federated learning attacks.

14. SUBJECT TERMS
machine learning, federated learning, TensorFlow, deep learning, force protection
condition, FPCON

15. NUMBER OF
PAGES

127
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

CENTRALLY PRETRAINED FEDERATED FINE-TUNING:
ENABLING A SECURE AND ACCURATE MILITARY SECURITY

APPLICATION ON EMBEDDED HARDWARE

Matthew W. Baxter
Lieutenant, United States Navy

BS, Northern Illinois University, 2003

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2020

Approved by: Marko Orescanin
Advisor

Gurminder Singh
Co-Advisor

Gurminder Singh
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

A persistent, precise, and adaptive security application is a requisite component to

an effective force protection condition (FPCON) as U.S. military installations have

become common targets for violent acts of terrorism and homicide. Current military

security applications require a more automated approach as they rely heavily on limited

manpower and limited resources. The current research developed an off-grid, deployed

federated fine-tuning network composed of embedded hardware and evaluated embedded

hardware system and model performance. Federated fine-tuning takes a

centrally pretrained model and performs fine-tuning on a select number of model layers

within a federated learning architecture. The federated fine-tuning models exhibited an

average reduction in CPU load of 65.95% and an average reduction in current draw of

56.18%. The MobileNetV2 model transmitted 81.59% fewer global model parameters

across the network. The centrally pretrained MNIST model began training with an initial

accuracy improvement of 53.94% over the randomly initialized model. The centrally

pretrained MobileNetV2 model demonstrated an initial average accuracy of 90.75% at

training round 0 and experienced a 3.14% overall performance improvement after 75

federated training rounds. The results of the current research demonstrated that

federated fine-tuning can improve system performance and model accuracy while

providing stronger privacy and security against federated learning attacks.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. PROBLEM DESCRIPTION...1
C. RESEARCH QUESTIONS ...2
D. CONTRIBUTIONS..2
E. THESIS ORGANIZATION ..3

II. TECHNICAL BACKGROUND ...5
A. MACHINE LEARNING OVERVIEW..5

1. Machine Learning ..6
2. Deep Learning ..7
3. Deep Learning on Small, Low-Powered Edge Devices8

B. MACHINE LEARNING FRAMEWORKS/LIBRARIES10
1. TensorFlow ...11
2. TensorFlow Lite ...11

C. MODERN MACHINE LEARNING MODELS12
D. TRANSFER LEARNING ...12

1. Feature Extraction ...13
2. Fine-Tuning ..14

E. FEDERATED LEARNING ..14
1. Federated Learning Related Work ..16
2. Federated Fine-Tuning on Edge Devices21

F. POTENTIAL MILITARY INSTALLATION APPLICATIONS
AND IMPROVED SECURITY ..22

G. SUMMARY ..25

III. EXPERIMENTAL DESIGN AND SYSTEM SET-UP27
A. THESIS EXPERIMENTS ...27

1. Single Node Centrally Trained ...27
2. Randomly Initialized Federated Averaging29
3. Centrally Pretrained Federated Fine-Tuning29
4. Extended Class Centrally Pretrained Federated Fine-

Tuning ...30
5. MobileNetV2 Centrally Pretrained Federated Fine-

Tuning ...30
6. End-to-End FedAvg Edge Device Network31

B. DATASETS ..32

viii

1. MNIST Dataset...32
2. EMNIST Dataset ..33
3. CelebA Dataset ...34

C. DEEP LEARNING MODEL ARCHITECTURES34
1. MNIST and EMNIST CNN Models ...35
2. Randomly Initialized MNIST CNN ..35
3. Centrally Pretrained MNIST CNN ..35
4. Centrally Pretrained EMNIST CNN ...36
5. MobileNetV2 Federated Fine-Tuning Model36

D. FEDERATED AVERAGING ALGORITHM37
E. NETWORKING PROTOCOL ...39
F. FEDERATED FINE-TUNING HARDWARE SETUP40
G. EDGE DEVICE PERFORMANCE TESTS ON MEMORY,

COMPUTATION, COMMUNICATION AND POWER42
1. Memory ...43
2. Computation ...44
3. Communication ..44
4. Power ...44

IV. RESULTS AND ANALYSIS ..45
A. OVERVIEW ...45
B. EDGE DEVICE PERFORMANCE TESTS ..46

1. Computation Costs...46
2. Power Costs ..51
3. Communication ..60
4. Memory ...64

C. MODEL PERFORMANCE ..68
1. Randomly Initialized MNIST (Experiment II)70
2. Centrally Pretrained MNIST (Experiment III)74
3. Extended Class Centrally Pretrained EMNIST

(Experiment IV) ...77
4. MobileNetV2 Centrally Pretrained CelebA (Experiment

V) ...80

V. CONCLUSIONS AND FUTURE WORK ...95
A. SUMMARY ..95
B. BENEFITS ..96
C. LIMITATIONS ..97
D. FUTURE WORK ...98
E. CONCLUSIONS ..98

ix

LIST OF REFERENCES ..101

INITIAL DISTRIBUTION LIST ...107

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF FIGURES

Figure 1. Artificial Intelligence, Machine Learning, and Deep Learning.6

Figure 2. Deep Learning Training Cycle. Source: [2]. ..7

Figure 3. Image Features by Network Layer Depth. Source: [20].13

Figure 4. Feature Extraction with a New Classifier Trained on Top of the
Convolutional Base. Source: [2]. ...13

Figure 5. Fine-Tuning with the Last Convolutional Block of VGG16. Source:
[2]. ..14

Figure 6. Federated Learning Overview. ...15

Figure 7. Notional Federated Learning Base Security Architecture.24

Figure 8. MNIST Dataset Sample Images. Source: [42]. ..33

Figure 9. EMNIST Dataset Sample Images. Source: [44].33

Figure 10. CelebA Sample Images. Source: [46]. ...34

Figure 11. MobileNetV2 Model Block Structure. Adapted from [48].37

Figure 12. Edge Device Federated Learning Architecture Overview.38

Figure 13. MQTT Protocol Communication Flow. Adapted from [50].39

Figure 14. Experiment I-V Hardware Setup. ..41

Figure 15. Experiment VI Hardware Setup. ..42

Figure 16. Edge Device Performance Test Overview. ..43

Figure 17. RPi 4B Average CPU Load for Experiments I-V.48

Figure 18. RPi 4B Average CPU Temperature for Experiments I-V.49

Figure 19. RPi 4B Current Consumption for Experiments I-V.53

Figure 20. RPi 4B Nominal Battery Life for Experiments I-V.54

Figure 21. RPi Current Consumption for Experiment I. ...56

Figure 22. RPi Current Consumption for Experiment II. ..57

xii

Figure 23. RPi Current Consumption for Experiment III. ..58

Figure 24. RPi Current Consumption for Experiment IV. ..59

Figure 25. RPi Current Consumption for Experiment V. ..60

Figure 26. RPi 4B Transmitted Packets Per Second for Experiments II-V.62

Figure 27. RPi 4B Received Packets Per Second for Experiments II-V.63

Figure 28. RPi 4B Memory Percentage Used for Experiments I-V.66

Figure 29. RPi 4B Context Switches Per Second for Experiments I-V.67

Figure 30. Federated Training Round Cycle for Experiments II-V.69

Figure 31. Randomly Initialized MNIST CNN (Experiment II) Individual Node
Test Accuracy. ...71

Figure 32. Randomly Initialized MNIST CNN (Experiment II) Average
Accuracy for NodeA and NodeB. ..72

Figure 33. Randomly Initialized MNIST CNN (Experiment II) Training Loss
for NodeA and NodeB. ..73

Figure 34. Centrally Pretrained MNIST CNN (Experiment III) Individual Node
Test Accuracy. ...74

Figure 35. Centrally Pretrained MNIST CNN (Experiment III) Average
Accuracy for NodeA and NodeB. ..75

Figure 36. Centrally Pretrained MNIST CNN (Experiment III) Training Loss
for NodeA and NodeB. ..76

Figure 37. Extended Class Centrally Pretrained EMNIST CNN (Experiment
IV) Individual Node Test Accuracy. ..77

Figure 38. Extended Class Centrally Pretrained EMNIST CNN (Experiment
IV) Average Accuracy for NodeA and NodeB. ...78

Figure 39. Extended Class Centrally Pretrained EMNIST CNN (Experiment
IV) Training Loss for NodeA and NodeB. ..79

Figure 40. MobileNetV2 Centrally Pretrained Model (Experiment V) Individual
Node Test Accuracy. ..81

Figure 41. MobileNetV2 Centrally Pretrained Model (Experiment V).82

xiii

Figure 42. MobileNetV2 Centrally Pretrained Model (Experiment V) Training
Loss for NodeA and NodeB. ..83

Figure 43. On Device Average Training Loss for NodeA and NodeB Based on
Layer Federated Fine-Tuned. ...90

Figure 44. On Device Average Test Accuracy for NodeA and NodeB Based on
Layer Federated Fine-Tuned. ...91

Figure 45. Experiment VI Architecture. ..93

Figure 46. End-to-End Edge Device Network Current Consumption for
Secondary Client Node. ...94

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

LIST OF TABLES

Table 1. Overview of Experiments I through VI. ..28

Table 2. MNIST CNN Model Architecture for Experiments I-III. Adapted
from [47]. ...29

Table 3. Experiment IV EMNIST CNN Model Architecture. Adapted from
[47]. ..30

Table 4. Experiment V MobileNetV2 Model Architecture. Adapted from
[48]. ..31

Table 5. Experiment V MobileNetV2 Block 16 and Classification Head
Architecture. Adapted from [48]. ...31

Table 6. Experiment VI MobileNetV2 Model Architecture. Adapted from
[48]. ..32

Table 7. Edge Device Limitation Performance Metrics. ...43

Table 8. RPi Computational Costs for Experiments I-V. ..50

Table 9. RPi Power Costs for Experiments I-V. ..55

Table 10. RPi Communication Costs for Experiments II-V.64

Table 11. RPi Memory Costs for Experiments I-V. ..65

Table 12. Experiment V MobileNetV2 Centrally Pretrained Models.85

Table 13. Experiment V MobileNetV2 Pretrained Model CelebA Dataset
Partitions ..86

Table 14. Experiment V MobileNetV2 Pretrained Model Accuracy on Edge
Device. ...87

Table 15. Experiment V MoblieNetV2 Layers Fine-Tuned on Edge Device88

Table 16. Table 16: Experiment V MobileNetV2 Layers Fine-Tuned on Edge
Device Results. ..89

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

LIST OF ACRONYMS AND ABBREVIATIONS

1D one dimension
ACL access control list
AI artificial intelligence
API application programming interface
ARM advanced RISC machine
AWS Amazon web services
BERT bidirectional encode representations from transformers
CA certificate authority
CAC common access card
CE-FedAvg communication efficient federated averaging
CIFAR Canadian Institute for Advanced Research
CNN convolutional neural network
Conv2D convolutional two dimension
COTS commercial-off-the-shelf
CPU central processing unit
CSV comma separated values
CXR chest x-ray
DL deep learning
DNN depthwise neural network
DoD Department of Defense
EMNIST extended modified National Institute of Science and Technology
FedAvg federated averaging
FFT federated fine-tuning
FL federated learning
FLOPS federated learning operations
FPCON force protection condition
GAN generative adversarial network
GPU graphics processing unit
GroupNorm group normalization
HTTP hypertext transfer protocol

xviii

IC integrated circuit
IoT internet of things
KB kilobyte
LoRaWAN long range wide area network
LR learning rate
LSTM long short-term memory
MB megabyte
ML machine learning
MLP multi-layer perceptron
MNIST modified National Institute of Science and Technology
MQTT message queued telemetry protocol
NLP natural language processing
NWP next word prediction
OEM original equipment manufacturer
RAM random access memory
ReLu rectified linear unit
RPi Raspberry Pi
SAR system activity reporter
SGD stochastic gradient descent
SoC system-on-a-chip
SplitNN split neural network
SVRG stochastic variance reduced gradient
TLS transport layer security

1

I. INTRODUCTION

A. MOTIVATION

On December 04, 2019, a U.S. Navy Sailor killed two Department of Defense

civilians and wounded a third at Pearl Harbor Naval Shipyard, before taking his own life

with a service pistol [1]. Over the past several years, military installations have become

common targets for violent acts of terrorism and homicide. In order to counter potential

threats against military installations an effective security posture is necessary. To ensure

effective security on military installations, security applications must be persistent,

accurate and adaptive to evolving threats. Current military security applications rely on

limited manpower and physical resources and exhibit a need for automating persistence,

accuracy and adaptiveness of the overall security system.

Artificial intelligence (AI) techniques are commonly used in image classification

problems, such as video surveillance and traffic monitoring. However, once deployed these

types of applications are static and not easily adapted to evolving classification problems

without remote assistance. Emerging machine learning techniques, such as transfer

learning and federated learning, make it possible for an image classification application to

adapt and evolve to changing environmental conditions or change in the distribution of

input features. It is proposed that machine learning can be integrated into a military security

application in a way that supplements human tasks and improves the overall security

posture of military installations.

B. PROBLEM DESCRIPTION

Base security systems capture and generate enormous amounts of private and

sensitive data through base entry points and video security footage; for example, video

footage that generates image data of vehicles and license plates, as well as common access

card (CAC) readers that capture facial photos, DoD ID numbers, birthdays, etc. When any

base security application is initially deployed, it must ensure that accurate information is

provided to humans monitoring this data and that all data remains private and secure. This

data is useful and could provide insights into identifying the pattern of life of base

2

personnel, adversarial anomalies, and potential hostile acts. However, these types of

security systems (i.e., closed circuit TV, CAC readers, human security guards) are typically

stovepiped, and require extensive human intervention to be used to build a larger, more

encompassing picture of the surrounding environment.

C. RESEARCH QUESTIONS

• What are the primary limitations and costs incurred in training a deep

learning model on an edge device?

• How can these costs on embedded hardware be reduced through a

federated learning architecture?

• How can federated learning be deployed on an end-to-end edge device

network?

• How can a centrally pretrained state-of-the-art machine learning model be

implemented on edge devices?

• What are the advantages to using a pretrained model over a randomly

initialized model?

• How can on-device model fine-tuning be incorporated into federated

learning on edge devices?

D. CONTRIBUTIONS

Three specific contributions are made in this work in developing a centrally

pretrained federated fine-tuning model on edge device architecture in support of military

installation security and insider threat detection:

1. Demonstrated and quantified the performance of federated learning in

terms of edge device limitations (memory, computation, communication,

and power).

3

2. Proposed, demonstrated and quantified performance of a more secure

approach to federated learning through a pretrained MobileNetV2 model

deployed on edge devices where only a few top layers are trained. In this

manner, a reduced number of parameters are communicated making it

difficult for an adversary to intercept wireless network traffic and

reconstruct all of the model parameters, since most are never transmitted

and remain hidden on the edge nodes.

3. Demonstrated an end-to-end deployment of federated learning on an edge

device network, with all tasks performed by edge devices.

E. THESIS ORGANIZATION

Chapter II defines foundational machine learning concepts, transfer learning, and

federated learning. It also includes federated learning-related work.

Chapter III discusses the federated learning architecture design and overall research

methodology.

Chapter IV reviews the results and analysis of the experimentation, including

metrics, findings, performance, and accuracy.

Chapter V covers system limitations and possible enhancements. It concludes with

the contributions of the thesis work and lists possible future work.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. TECHNICAL BACKGROUND

This chapter explores several key technical concepts relevant to machine learning,

deep learning and federated learning that were utilized throughout the thesis process. First,

an overview of machine learning, deep learning and its applications on edge

devices. Next, a discussion of machine learning models, frameworks and techniques

used throughout the experimentation process. Finally, a discussion of military security and

potential applications of federated learning of video surveillance within a secured military

installation.

A. MACHINE LEARNING OVERVIEW

Machine learning is a subfield of artificial intelligence, which started in the 1950s

by computer science pioneers that sought to understand if computers could automate

intellectual tasks typically conducted by humans [2]. Artificial intelligence is a general

field in computer science that encompasses both machine learning and deep learning.

Machine learning can be described as computers finding patterns in data to create

algorithmic models for prediction. Common applications of machine learning models

include predictions of internet activity patterns, social networks, ecommerce, advertising

and healthcare [2]. Deep learning can be described as allowing computers to learn from

experience by building a hierarchy of concepts describing the world, where each concept

is defined through its relation to a simpler concept [3] (see Figure 1). Building and

gathering knowledge through experience means this approach does not require human

input to specify all the knowledge that the computer needs.

6

Figure 1. Artificial Intelligence, Machine Learning,

and Deep Learning.

1. Machine Learning

Traditional models within machine learning include supervised learning (algorithm

has access to labeled data), unsupervised learning (algorithm has no access to labeled data),

and semi-supervised models (some labeled data is available to the algorithm). In supervised

learning models are trained with input labeled data and tasks solved are broadly regression

and classification. In unsupervised learning the goal is to find patterns in a dataset and a

common task is clustering of data to discover classes. In semi-supervised learning

algorithms are developed on partially labeled data when unlabeled data is freely available

and labeled data is expensive to obtain [4], [5].

Another classification of machine learning algorithms is based on whether the

model must be trained using all of the data (batch learning) or if the model can

incrementally learn on the fly through continuously fed data (online learning). Primary

challenges of machine learning include insufficient training data (machine learning

algorithms require extensive data) or poor-quality data (data with significant errors, outliers

or noise) reflected in issues with overfitting and underfitting. Overfitting occurs during

model training when a model is fit so closely to training data that the model fits poorly to

new data. Underfitting occurs during model training when the model fails to capture the

intricacy of the training data [4], [5].

7

2. Deep Learning

Deep learning is a subfield of machine learning that applies hidden layers between

the input layer and output layer to extract features from data and transform the provided

data into different representation levels [2]. It is commonly used for computer vision, next

word prediction, and speech recognition applications. Deep Learning is an iterative

machine learning process that typically involves four steps executed sequentially during

model training—gather a batch of sample training data, perform a forward pass through

the layers of the neural network, execute a loss function evaluation, and perform a

backpropagation calculation of the parameter error with a weights (parameter) update [2].

At the start of the deep learning training process, weights are typically randomly

initialized, which results in random transformations as the data passes through the network.

Through each iteration of the training process, the weights are adjusted and the loss score

decreases. Training stops when the loss, the difference between the predicted and target

value, ceases decreasing [2] (see Figure 2).

Figure 2. Deep Learning Training Cycle. Source: [2].

8

a. Cross Entropy Loss

Cross entropy loss is used throughout machine learning applications as a loss

function for classification problems. The purpose of a loss function is to control the output

of a neural network by measuring how far predicted output is from the actual or target

output. The deep learning training loop seeks to identify weight values that minimize the

loss function and produces outputs that are as close to the targets as possible. Common loss

functions supported by TensorFlow/Keras include binary cross entropy, categorical cross

entropy and sparse categorical cross entropy. Binary cross entropy is used when there are

only two class labels (typically 0 and 1), with each example having a single floating-point

value for each prediction. Categorical cross entropy is used when there are two or more

label classes. Labels are provided as one-hot encoding, where a sparse vector has one target

element set to 1 and all other elements set to 0. Sparse categorical cross entropy is used

when there are two or more class labels and labels are provided as integers [2].

3. Deep Learning on Small, Low-Powered Edge Devices

In recent years, there has been a rise of interest in deployable machine learning

technology, specifically deep learning, for internet of things (IoT) sensors and edge

computing applications, such as image classification, image detection, anomaly detection,

keyword spotting and next word prediction. However, IoT and edge devices generate large

amounts of data that must be processed and often rely on central cloud servers to aggregate

and process data. Concerns with implementing deep learning models on IoT devices

include increased latency, decreased battery life of devices from high communication costs

and privacy concerns if sensitive data is routinely transmitted.

a. Overview of Deep Learning Applications on Edge Devices

The prevalence of edge and mobile device sensors, such as cameras, has greatly

increased the importance of image recognition. Deep learning techniques, such as

convolutional neural networks (CNN), have been shown to identify people, handwriting

and objects with high accuracy. Traditionally, data resided on a cloud server for processing,

but edge devices have been used more and more to process images [6]. Multiple testbed

9

image datasets are included with the TensorFlow API that are deployable for neural

network implementation on edge devices with TensorFlow or TensorFlow Lite.

Real-time video is a critical sensor in IoT and edge devices that range from self-

driving cars, to traffic safety, and surveillance. Until recently, accurately identifying

objects from low-quality edge device video data had proven difficult. The computational

capabilities of an edge device are a limiting factor in the edge devices ability to process

camera images quickly. Qi and Liu used a quantized deep learning model with an integrated

graphics processing unit (GPU) on a Nvidia Jetson TX2 and ARM processor to reach real-

time video processing speed [7]. They reduced, quantized, the CNN parameters to 16-bit

float and applied pruning techniques to improve deep learning model deployment on edge

devices.

Image classification for medical imaging has yet to be proven accurate enough for

automatic recognition in clinical use due to the variations in medical imaging—such as

poor image quality, a variety of medical imaging protocols, and previously unseen

variations in patients (i.e., zero-shot learning). However, it has proven useful for interactive

recognition that incorporates human-in-the-loop approach. Wang et al. implemented a deep

learning interactive segmentation framework in which the user selected a bounding box for

images and scribbles. The bounding box allowed the user to select the image they wished

to evaluate, and the scribbles were used for medical annotations. Their methodology was

more robust than previous medical imaging applications and allowed for human

intervention enabled fine-tuning of the model to improve accuracy [8].

Automatic speech recognition is rapidly developing due to smartphones and tablets

that interact with technology through speech. However, interest is growing in the

development of offline speech recognition systems with all training occurring on the

device, with no reliance on cloud processing. This process involves limited-vocabulary

speech recognition—one method is known as keyword spotting. The majority of devices

stream audio to cloud servers for processing; however, activation of these devices typically

relies on keyword spotting on-device, such as “Alexa” or “Hey Google.” Tucker et al.

found that they could reduce false alarms and misses without increasing CPU usage by

10

improving acoustic neural models with low-rank weight matrices and an ensemble of

neural networks used during training [9].

b. Challenges in Deep Learning on Small Devices

Deep learning models rely on a large number of parameters, which incur a high

computational cost and require a large amount of memory on the device. MobileNet is a

relatively small model with 4,253,864 total parameters, while a much larger model like

VGG16 has 138,357,544 total parameters [10]. Edge device sensors, such as video cameras

and environmental sensors can generate enormous amounts of data, which has traditionally

been transferred to the cloud for further processing. Deep learning is being utilized more

and more to approach this problem of extracting edge device data in noisy and complex

environments without the need for cloud processing [11].

Limiting factors of resource-constrained edge devices include memory,

computational capability, communication costs and energy constraints. Random access

memory (RAM) on edge devices can range from 512 MB to 8 GB with non-volatile

memory commonly accessed via removable memory (e.g., micro SD card). Central

processing units (CPU) can range from 160 MHz to 1.5 GHz with more advanced system-

on-a-chip (SOC) boards including an integrated GPU (e.g., Nvidia Jetson Nano). IoT

devices are restricted in their functionality due to memory and computational constraints

and require communication with a central device to transfer data and to receive operating

instructions. Commonly used IoT networking protocols include Bluetooth, Zigbee,

LORAN and MQTT. Deployed edge devices must minimize computational and high

communication costs in order to consume power efficiently and ensure maximum uptime

with minimal interruption. While machine learning inference and minimal model training

was demonstrated on, the primary limiting factors of edge devices are in general preventing

training of deep learning models on these devices.

B. MACHINE LEARNING FRAMEWORKS/LIBRARIES

Several machine learning frameworks have board support packages for deployment

on edge devices—Caffe/PyTorch, MXNET, TensorFlow, and TensorFlow Lite. A machine

learning framework is a library that makes developing machine learning applications easier

11

for users. Other common machine learning frameworks deployed on edge devices

include—Theano, ML Kit (Google), and Core ML2 (Apple) [4]. There are numerous deep

learning frameworks available, each with their own characteristic functionality and support

for deployment on edge devices.

1. TensorFlow

TensorFlow is an open-source, large-scale, distributed machine learning platform

for numerical computation on dataflow graphs. At TensorFlow’s core is optimized C++

code executing a Python computational graph. To increase efficiency, Tensorflow can

break up a graph into chunks to be run in parallel on multiple CPU’s or GPU’s. Distributed

computing is supported such that multi-million parameters neural networks can be split

and trained across multiple servers [3]. In conjunction with Keras (a high-level API

supporting TensorFlow), TensorFlow allows for easy machine learning model building and

training. TensorFlow allows for model deployment on-device, in a browser or in the cloud,

regardless of programming language. TensorFlow provides excellent support for

embedded devices and a defined, clear path to deployment on edge devices through

TensorFlow Lite and the TensorFlow Edge TPU API. Multiple chip OEMs support

TensorFlow Lite, such as the Qualcomm Snapdragon SoCs, Arduino Nano 33 BLE,

SparkFun Edge, and Espressif ESP32-DevKit [12], [13].

2. TensorFlow Lite

TensorFlow Lite is designed to convert and run TensorFlow models on mobile,

embedded and IoT devices. TensorFlow Lite workflow steps include: choice of a model,

converting the model, running inference with the model, and optimizing the model for

deployment to an edge device. A full TensorFlow model must be used for conversion into

a TensorFlow Lite format, TensorFlow Lite cannot create or train a model. The TensorFlow

Lite converter reduces the file size, provides optimization that does not affect accuracy,

and increases speed of execution. The TensorFlow Lite interpreter is a library that executes

operations on input data and provides access to the output from the TensorFlow Lite model.

The TensorFlow Lite converter also support quantization by reducing TensorFlow 32-bit

integers to 16- or 8-bit integers without significantly affecting accuracy [14].

12

C. MODERN MACHINE LEARNING MODELS

Deep learning models can include millions of parameters, which limits resource-

constrained edge devices in their ability to train solely on the device itself. Much effort has

been put into the development of small and efficient convolutional neural networks that are

deployable to mobile and edge devices. These efforts typically involve model compression

techniques, such as quantization, hashing or pruning. Another technique involves directly

trained small networks, common “small” networks that have been developed are

SqueezeNet, EfficientNet, MobileNetV1 and MobileNetV2 [15], [16].

Howard et al. developed MobileNet, a convolutional neural network architecture,

that minimizes latency of smaller-scale networks to run on edge devices. MobileNet uses

depth-wise separable convolutions to construct a streamlined, lightweight deep neural

network. Depth-wise separable convolutions are more computationally efficient than

standard convolutions by factorizing a 3D convolution into two separate convolutional

operations. The use of depth-wise separable convolutions enables MobileNet to be 32 times

smaller than a traditional model like VGG16 and 27 times less computationally intensive,

while only reducing accuracy by 1% [17]. Nikouei et al. improved inference on MobileNet

by developing a lightweight CNN that is capable of detecting pedestrians in a real-time

human surveillance system on a Raspberry Pi 3 [18].

D. TRANSFER LEARNING

Transfer learning is a machine learning technique that decreases training time and

computational costs by leveraging previously pre-trained models, such as the

MobileNetV2 architecture on the ImageNet dataset and repurposes it for a task it was not

originally trained for. When deep learning neural networks are trained on images the first

few layers of the model always resemble the same low-level features (e.g., visual edges,

colors, and textures), while the final layers in a neural network are specific to the dataset

and the specific machine learning task (see Figure 3). In transfer learning the base layers

serve as a foundation for a new machine learning model and the “general” features learned

during the base layers are transferred and trained on a new “specific” machine learning

model [19].

13

Figure 3. Image Features by Network Layer Depth. Source: [20].

1. Feature Extraction

There are two primary methods of transfer learning from a pretrained network:

feature extraction and fine-tuning. Feature extraction takes the representations learned by

a previously trained network to extract useful features from new samples by taking the

convolutional base and running new data through it to train a new classifier on top of the

base. The lower layers of the convolutional bases are likely to learn general generic feature

maps of an image (such as visual edges, colors and textures). This allows the early layers

to be easily repurposed, while the final fully connected layers can be specific to the new

task of the classifier [2] (see Figure 4).

Figure 4. Feature Extraction with a New Classifier Trained on

Top of the Convolutional Base. Source: [2].

14

2. Fine-Tuning

Fine-tuning improves performance further by releasing some of the model

parameters in the layers of the base model for training (known as “unfreezing”) and jointly

trains the base layer and the classifier that has been added to the convolutional base. Fine-

tuning can slightly refine the more abstract representations of the convolutional base, in

order to make it more specific to the new task. The general steps to fine-tune a network

involve 1) adding a new classifier on top of a pretrained network, 2) setting the

convolutional base to non-trainable, 3) training the new classifier, 4) making some of the

layers in the convolutional base trainable, and 5) training the entire network to include the

added classifier [2] (see Figure 5). Feature extraction and fine-tuning are powerful

techniques that allow for training accurate models with small training datasets, otherwise

impossible task if one was to train from randomly initialized model.

Figure 5. Fine-Tuning with the Last Convolutional Block of VGG16.

Source: [2].

E. FEDERATED LEARNING

Federated learning is a distributed approach to machine learning in which private

client data residing on edge devices is completely decoupled from the training of the

machine learning model and never transmitted off the edge device. In federated learning,

15

clients use private local data to train a global model and send the updated parameters to a

central server. The central server aggregates and averages the parameters to generate an

updated global model that is sent to clients. Once global parameters are aggregated,

averaged and sent to edge devices, the central server discards the previously aggregated

weights [21] (see Figure 6). Commercial approaches to federated learning commence

model training with a randomly initialized model that improves through many successive

rounds of training. Utilizing this methodology requires a large amount of training rounds

to achieve a model with acceptable accuracy.

Federated learning steps: A) Edge device trains model locally with private, local data, B) Edge device local
updates are sent to the server, C) local updates are aggregated to form a new global update, D) Global update
is sent to edge devices and the process repeats.

Figure 6. Federated Learning Overview.

Advantages of federated learning approaches compared to a conventional

distributed cloud-centered machine learning framework include: efficient use of

bandwidth, data privacy since labeled training data is never transmitted to the server, and

low latency resulting from model training occurring on the edge devices. In a federated

16

learning architecture, less information is required to be transmitted to a central server

resulting in a reduction of communication costs. Participating nodes only need to send

updated parameters for aggregation rather than raw data, which significantly reduces

communication costs. Assuming that participating nodes are non-malicious, user data is

kept private as it resides locally on the end device and is never sent across the network. A

federated learning scheme improves latency as inference can occur directly on the device

as opposed to a remote cloud server. Traditional approaches depend on cloud services to

process data and make inferences, while end nodes in a federated learning network can

perform real-time execution on device [21], [22].

1. Federated Learning Related Work

Konecny et al. developed the federated SVRG (stochastic variance reduced

gradient) algorithm as a practical alternative to traditional approaches to the federated

optimization problem [23]. The federated optimization problem arises due the fact that as

data rapidly increases, a single node cannot store an entire dataset. This requires a

distributed computational framework, in which the training data is distributed across a

cluster of nodes. During each round of federated learning the federated SVRG algorithm

performs a full gradient computation on the server node, all clients downloading the new

global model, followed by several distributed stochastic gradient descent (SGD) updates

by each client, and SGD client updates shared with the server to be aggregated to form an

updated global model. Konecny et al. determined that federated SVRG is computationally

expensive and therefore most applicable for sparse convex problems and not neural

networks since they yield non-convex functions [23].

McMahan et al. developed the FedAvg algorithm as a practical solution for

federated learning that is based on iterative model averaging [22]. Their federated learning

scheme starts with the server deploying a randomly initialized model and distributing

hyperparameters (number of epochs per round, batch size, learning rate and learning rate

decay) to a fraction of the clients. The clients train the global model received from the

server with their local data and send the updated weights back to the server. The server

averages all received weights and repeats the process with a new fraction of clients.

17

McMahan et al. used two different neural network architectures for experimentation—an

MNIST 2NN with two hidden layers and MNIST CNN with two 5x5 convolutional layers.

Their work indicated that FedAvg can train high quality models within a relatively small

number of federated learning training rounds [22].

Caldas et al. expanded on the work of McMahan et al. by developing LEAF, a

benchmark for federated learning settings. LEAF is a modular benchmarking framework

that includes a suite of publicly available federated datasets, an evaluation algorithm, and

a set of reference implementations focused on identifying federated learning obstacles [24].

They currently include the following open-source datasets for benchmarking—EMNIST

(image classification), Shakespeare (next character prediction), Twitter (sentiment

analysis), CelebA (image classification), Synthetic Dataset (classification), and Reddit

(language modeling). Within their framework, the client nodes are simulated and not

intended for embedded deployment. Their evaluation metrics within LEAF included

number of FLOPS (federated learning operations), the number of bytes

downloaded/uploaded, and weighted accuracy across devices (e.g., determining if each

device is equally important in the network). They demonstrated that their open-source

datasets were modular and able to be incorporated into additional simulated experimental

pipelines [24].

Hard et al. successfully trained a recurrent neural language model that used

federated averaging for next-word prediction on the Google Gboard [25]. They found that

their randomly initialized next-word prediction federated learning model outperformed an

identical server-trained next-word prediction model. Yang et al. used federated averaging

in a commercial, global-scale setting to train, evaluate and deploy a federated learning

GBoard keyboard search suggestion model without directly accessing local user data [26].

The model setup included two stages—a server-side baseline model to generate keyboard

query suggestions and a federated learning triggering model that removed low quality

queries suggested by the server baseline model. Their work was one of the first successful

end-to-end examples of federated learning deployed in the real-world [26].

Nilsson et al. benchmarked three federated learning algorithms (federated SVRG,

FedAvg, and CO-OP) and compared their performance against a traditional centralized

18

approach to distributed machine learning frameworks that rely on a central server for data

storage [27]. Using McMahan’s MNIST 2NN model as a baseline, they identified that

FedAvg performed the best with comparable results to the traditional approach. However,

they identified that FedAvg did not perform as well with non-i.i.d. (independent and

identically distributed) data [27].

Bonawitz et al. identified several challenges and solutions to building a scalable

system for federated learning [28]. Federated learning converges slower than traditional

ML designs and increased parallelism of clients would decrease the convergence time of a

federated learning model. Another limitation of federated learning is that clients may not

have new data to train on and when called upon by the server and they will be training on

previously seen data, which requires device scheduling to ensure that only new data is used

for training. They determined that even though federated learning does not require user

data to be communicated, uploading local model updates still requires a significant

communication cost and compression techniques will be important to bring federated

learning to production [28].

A large volume of research on federated learning utilizes random initialization of

the models to begin the federated learning process. However, this paradigm requires a large

number of rounds to reach convergence. Starting with a pre-trained model and using

transfer learning to improve the model would reduce the number of rounds for

convergence. Stremmel and Singh found that a pretrained word embedding model

converged faster than a randomly initialized word embedding model across 1,500 rounds

of training [29]. Their LSTM neural network consisted of four layers, nearly eight million

trainable parameters, and 31.3MB in size. They did not find that using a pretrained model

exceeded performance of the randomly initialized federated averaging approach; however,

they did demonstrate that pretraining provides an initial boost in accuracy over random

initialization [29].

Gao et al. investigated federated learning and SplitNN (split neural network) on

edge devices to compare learning performance and device overhead [30]. SplitNN is a

federated learning method in which a neural network is split into two sections vertically.

The first few layers are on the IoT device and the remaining layers reside with the server

19

(e.g., cloud). The client and server cooperatively train the entire network. Their dataset

consisted of sequential time-series data and the model architecture had four 1D CNN layers

and two dense layers. The first two 1D CNN layers were trained on the Raspberry Pi 3B

and the remainder of the model trained on the server (laptop). They determined that FL

was a more practical recommendation for an IoT architecture and state of the art models

could not be trained on resource-constrained edge devices [30].

Liu et. al investigated recognition of COVID-19 pneumonia CXR images and

compared four machine learning models within a federated learning framework [31]. One

of the models they utilized was a MobileNetV2 model. All of their experimentation was

simulated with all virtual clients trained on one machine using an NVIDIA GPU. They

determined that ResNeXt (similar to ResNet18) achieved the highest performance in

classification of COVID -19 chest x-ray images [31].

Liu and Miller demonstrated that a bidirectional encode representations from

transformers (BERT) model could be pretrained and fine-tuned in a federated manner [32].

BERT has been developed for natural language processing (NLP); however, their research

shows it is possible to pretrain and fine tune within a federated setting.

Hsu, Qi and Brown analyzed two large-scale real-world datasets (species and

landmark classification) for real-world problems in a federated setting [33]. They applied

a virtual client scheme with 10 clients selected every federated round. A MobileNetV2

model with a GroupNorm layer and softmax classifier was pretrained on ImageNet. Their

experimentation demonstrated that large-scale visual classifiers can be trained using a

federated approach. Through their research, they determined that federated learning with

pretraining required fewer communication rounds than training from random state to

achieve a high accuracy [33].

Executing multiple rounds of training with various hyperparameters on resource

constrained edge devices is cost prohibitive. Federated learning adds additional

hyperparameters to the tuning process, such as training rounds, number of clients per

training round, global model update algorithm rules, etc. Kairouz et al. identified

hyperparameter tuning as an open problem in federated learning [34]. Khodak et al. were

20

one of the first to analyze hyperparameter tuning within federated learning and developed

FedEx as a method to enable federated learning hyperparameter tuning for a variety of

federated learning algorithms [35].

Mills, Hu and Min adapted the FedAvg algorithm with an adam optimizer and

compression to produce communication-efficient federated averaging (CE-FedAvg),

which reduced the total data uploaded to the server and reduced the number of training

rounds when compared to similarly compressed FedAvg [36]. They demonstrated that they

could reach a target accuracy in up to 6x fewer rounds than FedAvg. Additionally, they

implemented their experiments on 10 RPi with a desktop computer acting as a server over

a wireless network. They determined that the server work was small and had a minimal

impact on training time, with the RPi requiring a majority of the training time. Their edge

device network was able to reach a target accuracy in up to 1.7x less time than FedAvg

[36].

Das and Brunschwiler demonstrated the feasibility to train deep neural networks on

Raspberry Pi as edge devices. They trained a CNN, LSTM, and MLP on the MNIST dataset

[37]. They determined that the CNN could achieve 85% accuracy within two minutes of

training, while exchanging less than 10MB of data per edge device. Their CNN consisted

of two Conv2D layers, one max pooling layer and one fully connected layer with 47,000

total parameters. Their MLP was comprised of three Fully Connected Layers and had

1,700,000 parameters. Their network consisted of five Raspberry Pi and a MacBook Pro

as the central server. Their research also indicated that 95% accuracy could be achieved

within six federated training rounds with additional epochs per training round on each

device [37].

a. Federated Learning Attacks and Security Vulnerabilities

Multiple adversarial attacks against federated learning have been identified,

including data poisoning, model update poisoning, and model evasion attacks [34].

Federated learning has introduced new attack surfaces within adversarial machine learning

since the datasets and model training are distributed across a network. Data poisoning

occurs when an attacker cannot directly corrupt the server node, so they manipulate client

21

data to corrupt the global model [34]. Model update poisoning typically occurs when an

attacker can directly alter the output of the clients to bias the local model update towards

their objective. Common methods to protect against adversarial attacks on federated

learning schemes include encryption, accuracy checking, and weight update statistics [34].

Another security concern with federated learning is the ability to reconstruct

valuable model data from the parameters shared between the clients and server node.

Shokri et al. demonstrated that they could determine if an output was a member of the

model’s training set by only using information leaked by the machine learning model [38].

Hitaj, Ateniese and Perez-Cruz developed a generative adversarial network (GAN) that

was able to exploit federated learning models and generate prototypical samples of the

target’s private dataset [39]. A requirement of their approach to attack the federated

learning model relies on local federated learning nodes improving accuracy over time.

They also demonstrated that their GAN attack is successful against common security

techniques, such as differential privacy or other common obfuscation methods. However,

they acknowledge that a model only releasing a portion of the global parameters provides

stronger privacy and thwarts their attack [39].

2. Federated Fine-Tuning on Edge Devices

Previous research was identified that implemented various federated fine-tuning

techniques; however, all of the identified research was simulated and not actually deployed

to edge devices. Federated fine-tuning is a machine learning technique that takes a centrally

pretrained global model with desired accuracy and then deploys the pretrained model to

edge devices to be trained on the device’s private local data incrementally through iterative

fine-tuning training rounds. This scheme has the potential to reduce the limiting factors of

edge devices (memory, computation, communication, and energy costs), while enabling a

network of edge devices to train a complex deep learning model that was traditionally

outside the scope of edge device capabilities. Federated fine-tuning may reduce:

• Memory limitations by distributing the dataset across multiple nodes and

minimizing the RAM necessary to support training a deep learning model.

22

• Computational limitations by reducing on device CPU load through

minimal training rounds.

• Communication costs by starting with a pretrained trained model that

requires a limited number of training rounds to achieve high accuracy and

only requiring a portion of the global model to be shared.

• Energy costs by minimizing the memory, computational and

communication costs necessary to conduct on device training of a deep

learning model.

F. POTENTIAL MILITARY INSTALLATION APPLICATIONS AND
IMPROVED SECURITY

Deep learning technology has facilitated the automation of surveillance and insider

threat networks that were traditionally operated by humans, with high accuracy in

identification and anomaly detection in real time [40]. However, these systems are not

typically designed to evolve after deployment and require a central cloud server for large

datasets or additional model training. Federated learning technology provides a framework

for machine learning models to evolve and adapt after deployment and allows for large

datasets to be distributed across multiple nodes.

Many federated learning approaches within the commercial setting utilize

randomly initialized machine learning models that improve over a large number of iterative

training rounds. In contrast, DoD security applications must be accurate, adaptive upon

initial deployment of the architecture, and protect sensitive data collected on military

installations. A centrally pretrained federated learning architecture places an emphasis on

model performance at the time of deployment, security of the global model parameters,

and optimization of edge device performance. It accomplishes this through distribution of

the dataset, distribution of computational costs, and a minimization of edge device

limitations.

Although private data is not transmitted in a federated learning framework, it is still

possible for adversaries to reconstruct the raw data from the global parameters that are

23

transmitted. Federated learning can expose training results, such as parameter updates from

an SGD algorithm, and leak private information when combined with a data structure (e.g.,

image pixels). Given these risks, federated learning needs to safeguard the full global

model during communication with the central server and ensure communication occurs as

few times as possible.

Transfer learning is able to leverage a previously pre-trained model with high

accuracy to support a new task it was not trained for. In conjunction with transfer learning,

federated learning allows a distributed network architecture to incrementally improve

while ensuring that sensitive data remains on the device and is never transmitted across the

network. Combining transfer learning and federated learning can support military security

and insider threat systems in deployment of a highly accurate model that will continue to

improve throughout its lifetime.

Federated fine-tuning addresses security risks of the full global model since only a

small number of parameters are shared. In traditional federated learning parameters of the

global model are shared, but in federated fine-tuning only a portion of the parameters of

the global model are shared. Employing federated fine-tuning addresses security risks on

the global model since only a select number of global parameters are shared with a majority

of the global parameters remaining hidden on device. Thus, making it difficult for an

adversary to intercept the shared parameters when transmitted and reconstruct the full

global model [39].

There is a need for more complex models and networks designed for vision tasks

to be deployed in support of military installation security. Military installation security

applications have the advantage of leveraging persistent security footage and CAC

information to identify an individual or vehicle. This information can be used to label

previously unseen data on the fly to improve the accuracy of the security system. It is

feasible that future applications of military installation security implement a centrally

pretrained federated fine-tuning model to ensure persistence, accuracy and adaptability. In

this model, some of the nodes within the architecture would serve as primary client nodes

and perform federated fine-tuning in conjunction with inference on the data stream.

Secondary client nodes would support image inference, anomaly detection, and support

24

additional tasks as demanded. The secondary client nodes would not have access to CAC

data or perform federated learning, but would still monitor for security anomalies through

the shared global model and send alerts requesting human analysis and follow-on training.

The server node would provide local model aggregation and global model distribution. If

the primary server node is compromised or the network experiences degradation, a

minimally tasked secondary client node could undertake the role of the server. The

workload of the server is minimal enough to be supported by the secondary client nodes

(see Figure 7).

Nodes A, C and E are primary client nodes, Nodes B and D are secondary client nodes,
and the server node coordinates local model aggregation and global model distribution.
Primary client nodes can use labeled data, such as CAC information, vehicle license
plates, etc., for federated training.

Figure 7. Notional Federated Learning Base Security Architecture.

25

G. SUMMARY

Over the last few years, deep learning has become an important implementation in

edge devices in support of real-time video, image classification, medical and smart home

advancements. With deep learning applications expanding, they are likely to proliferate

in military applications as well. Deep learning models are well suited to process the

large amounts of data generated by edge devices and sensors. However, the primary

limitations of commercial-off-the-shelf (COTS) edge devices—memory, computational,

communication and power costs—have been unable to support the high costs of training

an accurate deep learning model on device. It is proposed that a distributed network of edge

devices can maintain an accurate deep learning model while addressing global model

security risks through a centrally pretrained federated fine-tuned deep learning model.

26

THIS PAGE INTENTIONALLY LEFT BLANK

27

III. EXPERIMENTAL DESIGN AND SYSTEM SET-UP

This chapter describes the six experiments conducted to support the findings in this

thesis, the datasets used, the machine learning models developed for the experimentation,

the federated averaging algorithm utilized, networking protocol used, hardware setup for

experimentation, and performance tests employed during experimentation.

A. THESIS EXPERIMENTS

Six experiments were designed to evaluate deployment of federated learning

utilizing TensorFlow on a COTS edge device architecture and to analyze how performance

is impacted as an edge device federated learning architecture increases in complexity (see

Table 1).

1. Single Node Centrally Trained

Utilizes a randomly initialized MNIST CNN and serves as the baseline for training

a deep learning model on an edge device (see Table 2). All training and evaluation occurred

on one edge device. Experiment I is not a test of federated learning, rather it is a baseline

to compare performance costs and potential gains when implementing a federated learning

scheme on edge devices.

28

Table 1. Overview of Experiments I through VI.

Experiment Objective Dataset Parameters
Shared

I. Single Node
Centrally Trained

Baseline DL model trained on one edge
device to identify edge device costs and
limitations incurred when training a DL
model.

MNIST 0%

II. Randomly
Initialized
Federated
Learning

Multi-node federated learning CNN
architecture to identify how edge device
costs and limitations are reduced in a
multi-node edge device architecture.

MNIST 100%

III. Centrally
Pretrained
Federated Fine-
Tuned

Multi-node federated learning
architecture where weights are
pretrained on a central server with only
a select number of parameters shared
for federating averaging in order to
reduce edge device costs/limitations and
improve security.

MNIST 40.26%

IV. Extended
Class Centrally
Pretrained
Federated Fine-
Tuned

Multi-node pretrained federated
learning architecture with a more
complex classification problem over
MNIST. EMNIST is TensorFlow’s
recommended federated learning
testbed dataset.

EMNIST 59.48%

V. MobileNetV2
Centrally
Pretrained
Federated Fine-
Tuned

Multi-node pretrained federated
learning architecture utilizing a state-of-
the-art model. This experiment analyzed
the impacts of local dataset size, type of
centrally pretrained model and model
layer depth from which to conduct
federated fine-tuning.

CELEBA 18.42%–
39.61%

VI End-to-End
FedAvg Edge
Device Network

End-to-end multi-node pretrained
federated learning architecture utilizing
a state-of-the art model. All hardware is
composed of battery-powered edge
devices. Includes a secondary client
node for predictions and anomaly alerts
for accuracies below specified threshold.

CELEBA 18.45%

Experimentation begins with a baseline model that trains a deep learning model on one edge device
and concludes with a multi-node edge device network training a MobileNetV2 model in a federated
learning architecture.

Table 2. MNIST CNN Model Architecture for Experiments I-III.
Adapted from [47].

Layer Shape Total Parameters
Conv2D (3, 3, 32, 64) 320
Max Pooling (64,) 0
Conv2D (3, 3, 64, 64) 18,496
Max Pooling (64,) 0
Conv2D (576, 64) 36,928
Flatten (64,) 0
Dense (64, 10) 36,928
Dense (10,) 650

This architecture is equivalent to the validation architecture used by McMahan et al. in validating
the FederatedAveraging algorithm.

2. Randomly Initialized Federated Averaging

Utilizes a randomly initialized MNIST CNN and serves as the federated averaging

baseline for federated learning (see Table 2). All model training occurs on the client edge

devices and federated averaging occurs on the server edge device. Experiment II is focused

on determining the viability of performing federated learning solely on edge devices and

how the distribution of data and computation on multiple edge device nodes improves

performance over a single node training a CNN.

3. Centrally Pretrained Federated Fine-Tuning

Utilizes the centrally pretrained MNIST CNN parameters (see Table 2) and serves

as a minimal implementation of a centrally pretrained federated fine-tuning

architecture (Experiment III). Experiment III performs federated fine-tuning on the

final two dense layers (37,578 trainable parameters) of the model. The focus is on

determining if a pretrained model can decrease computational, communication and

power costs on the edge devices. Federated fine-tuning also provides stronger security

since a reduced number of the total global parameters shared. This will decrease the

probability of an adversary reconstructing the global model from the transmitted

parameters as only two layers are shared, and the base layers remain fully hidden on the

edge devices [39].

29

4. Extended Class Centrally Pretrained Federated Fine-Tuning

Utilizes the centrally pretrained EMNIST CNN weights (see Table 3) to test the

performance of an extended class federated fine-tuning architectures on edge devices. The

EMNIST CNN trains on the final two dense layers (81,854 trainable parameters) of the

EMNIST CNN model. The focus is on presenting the edge devices with a more complex

classification problem and the ability to achieve suitable accuracy with a minimal number

of training rounds. This design will decrease the ability for an adversary to reconstruct the

global model, since only 59.5% of the parameters are sent to the server and the remaining

parameters remain hidden on the edge devices [39].

Table 3. Experiment IV EMNIST CNN Model Architecture.
Adapted from [47].

Layer Shape Total Parameters
Conv2D (3, 3, 32, 64) 320
Max Pooling (64,) 0
Conv2D (3, 3, 64, 64) 18,496
Max Pooling (64,) 0
Conv2D (576, 128) 36,928
Flatten (128,) 0
Dense (128, 62) 73,856
Dense (62,) 7,998

This architecture is roughly equivalent to the validation architecture used by McMahan et al. to
validate the FederatedAveraging algorithm with the final dense layer expanded to 62 classes vice
10 classes for the MNIST and CIFAR10 datasets used by McMahan et al.

5. MobileNetV2 Centrally Pretrained Federated Fine-Tuning

Utilizes the centrally pretrained MobileNetV2 parameters (see Table 4 and 5)

to test the performance and viability of a state-of-the-art federated fine-tuning

architecture achieving high accuracy. The MobileNetV2 Model fine tunes a select

number of MobileNetV2 layers and the classification head. This design only shares

18.42%-39.61% of the global parameters, depending on the MobileNetV2 layers

fine-tuned, with the remaining parameters remaining hidden on the edge devices.

30

31

Table 4. Experiment V MobileNetV2 Model Architecture.
Adapted from [48].

Layer Shape Total Parameters
MobileNetV2 (1, 1, 320, 1280) 2,257,984
Global Avg Pooling (1280,) 0
Dropout (1280, 1) 0
Dense (1,) 1,281
The MobileNetV2 and classification head have 2,259,265 total parameters.

Table 5. Experiment V MobileNetV2 Block 16 and Classification Head
Architecture. Adapted from [48].

Layer Shape Total Parameters
Expand Conv2D (1,1,160,960) 153,600
BatchNorm (960,) 3,840
ReLU (960,) 0
Depthwise Conv2D (3,3,960,1) 8,640
BatchNorm (960,) 3,840
ReLU (960,) 0
Project Conv2D (1,1,960,320) 307,200
BatchNorm (320,) 1,280
Conv2D (1,1,320,1280) 409,600
BatchNorm (1280,) 5,120
ReLU (1280,) 0
Global Avg Pooling (1280,) 0
Dropout (1280, 1) 0
Dense (1,) 1,281

6. End-to-End FedAvg Edge Device Network

This final experiment utilizes the centrally pretrained MobileNetV2 model in

Experiment V (see Table 5 and 6). A secondary client node is added to make predictions

from a camera triggered by movement in the vicinity. The entire architecture utilizes RPi

4B that run off battery power in an off-grid network. This network includes anomaly alert

detection for predictions below the specified threshold for follow on human directed

analysis. This experiment serves as a proof of concept that a COTS FedAvg network can

function fully off-grid on battery power.

Table 6. Experiment VI MobileNetV2 Model Architecture.
Adapted from [48].

Layer Shape Total Parameters
MobileNetV2 (1, 1, 320, 1280) 2,257,984
Global Avg Pooling (1280,) 0
Dropout (1280, 2) 0
Dense (2,) 2,562
The MobileNetV2 and classification head have 2,260,546 total parameters.

B. DATASETS

Three datasets were chosen to evaluate deep learning performance on edge devices

ranging from a standard machine learning benchmark dataset, to a federated learning

testbed dataset, to a large-scale face attribute dataset.

1. MNIST Dataset

The MNIST dataset is the standard benchmark for machine learning, classification

and computer vision research. MNIST is a relatively small database of handwritten digits

(see Figure 8). The dataset consists of 10 classes of 28x28 pixel images. There are 60,000

training examples and 10,000 test examples [41]. Experiments in the current research

randomly partitioned the data into 750 training (600 train, 150 validation) and 100 testing

examples, matching the data sample sizes used by McMahan et al. and other benchmark

federated averaging research [22]. Since the focus of the current research is federated

learning edge device performance, data was assumed independent and identically

distributed (IID) and not divided by class for non-IID client partitions.

32

33

All MNIST images are 28x28 pixel greyscale
and evenly divided into 10 classes.

Figure 8. MNIST Dataset Sample Images. Source: [42].

2. EMNIST Dataset

The extended MNIST (EMNIST) dataset is a dataset of handwritten characters

derived from the NIST Special Database 19, that has been converted to 28x28 pixel images

with a structure that directly matches the MNIST dataset. There are 62 classes with 697,932

training examples and 116,323 test examples (see Figure 9). EMNIST is TensorFlow’s

recommended small testbed for federated learning research, as it has a natural user-level

partitioning [43]. Experimentation in the current research used a separate partitioned

sample of 45,000 EMNIST images from the full EMNIST dataset on each edge device.

All EMNIST images are 28x28 pixel
greyscale and divided into 62 classes.

Figure 9. EMNIST Dataset Sample Images. Source: [44].

34

3. CelebA Dataset

The CelebFaces attributes dataset (CelebA) is a large-scale dataset of facial

attributes with 202,599 facial images, each with 40 binary attributes annotated. The dataset

covers background clutter and large pose variations (see Figure 10). CelebA is able to be

employed as a training and test set for multiple computer vision tasks—face attribute

recognition, face detection, face landmark localization and face synthesis [45].

Experiments in the current research saved a random sample of resized (96 ,96 ,3) CelebA

images on each edge device with the edge device data partitioned into test, validation and

train datasets. The dataset was resized to conserve memory on the edge devices and this is

also the minimum input shape for MobileNetV2.

CelebA images were resized to (96, 96, 3) in order to conserve memory on the edge
devices.

Figure 10. CelebA Sample Images. Source: [46].

C. DEEP LEARNING MODEL ARCHITECTURES

Four deep learning model architectures were developed to evaluate federated

learning performance on edge devices ranging from a TensorFlow convolutional neural

network image classification model [47] to a state-of-the-art MobileNetV2 model [48].

35

1. MNIST and EMNIST CNN Models

Three Convolutional Neural Network (CNN) models were developed to perform

and evaluate federated learning on the MNIST and EMNIST datasets. Each model

developed for the current research utilized the Keras API, and were equivalent to the

validation architecture used by McMahan et al. in validating the FederatedAveraging

algorithm. These models are not state-of-the-art models, but are sufficient to show the

relative performance of federated learning on an architecture of edge devices. The model

architecture is a TensorFlow CNN [47] with three 3x3 convolution layers—the first with

32 channels and the second and third with 64 channels. Each of the first two convolutional

layers is followed by a 2x2 max pooling, the third convolutional layer is followed by a

flatten layer, and two fully connected layers. The MNIST CNN’s have a total of 93,332

parameters and the EMNIST CNN has 137,598 total parameters (see Table 2).

2. Randomly Initialized MNIST CNN

The MNIST model for Experiment I and II was designed to begin model training

with random initialization of the weights, as is the standard in federated learning (see Table

2 and 3). A majority of academic research utilizes random initialization of the weights for

federated learning research. This federated learning methodology of random initialization

assumes that the server has no access to client data and seeks to ensure privacy.

3. Centrally Pretrained MNIST CNN

For Experiment III, an MNIST CNN was centrally pretrained on Google CoLab

with 750 MNIST image samples (600 train samples, 150 validation samples) and designed

with a callback for early stopping to cease training when the model stopped showing

improvement. This model followed the same model architecture as the randomly initialized

models (see Table 2). Validation accuracy was monitored for a minimum change of less

than 1e-2 for five epochs. This was done so that the model did not excessively overfit and

could still benefit from federated learning. The model early stopped after nine epochs with

a validation loss of 0.4540 and validation accuracy of 0.8810. All weights were saved in

.h5 format and transferred to the edge devices for central pretrained federated fine-tuning.

36

4. Centrally Pretrained EMNIST CNN

For Experiment IV, an EMNIST CNN was pretrained on a MacBook laptop with

350,000 EMNIST train images and 60,000 test images and designed with the same early

stopping metrics as the MNIST CNN (see Table 3). The model early stopped after 14

epochs with a validation loss of 0.4223 and a validation accuracy of 0.8006. All weights

were saved in .h5 format and transferred to the edge devices for central pretrained federated

fine-tuning.

5. MobileNetV2 Federated Fine-Tuning Model

For Experiments V and VI, the pretrained MobileNetV2 model utilized the built in

MobileNetV2 base architecture included with the Keras API, using the ImageNet weights

with classification head removed [48], [49]. A global average pooling 2D layer, dropout

layer and fully connected layer were added as a classification head (see Table 4, 5, and 6).

The CelebA dataset was used with all images resized (96, 96, 3) for memory optimization

on the Raspberry Pi. Three separate MobileNetV2 models were designed and centrally

pretrained on a MacBook laptop in order to evaluate the ideal parameters for a centrally

pretrained MobileNetV2 model on edge devices. Each of the three models were set up for

binary classification on gender. It was designed with the same early stopping metrics as

the MNIST and EMNIST CNN models. Weights were saved in .h5 format and transferred

to the edge devices for central pretrained federated fine-tuning.

Blocks 0 thru 16 of the MobileNetV2 model included with the Keras API follow

the same structure as block 16 (see Figure 11).

37

All MobileNetV2 Blocks included with the Keras API follow the same structure
throughout. The above diagram includes the base architecture of 17 blocks and an
out Conv2D Layer. A classification head is added to complete a MobileNetV2
model.

Figure 11. MobileNetV2 Model Block Structure. Adapted from [48].

D. FEDERATED AVERAGING ALGORITHM

The federated averaging (FedAvg) algorithm, developed by McMahan et al.,

coordinates training through a central server that maintains the global model 𝑤𝑤𝑡𝑡, where t

signifies the communication round. Model optimization occurs on the edge device using

stochastic gradient descent (SGD). The FedAvg algorithm used in the current research had

four primary hyperparameters: batch size B, number of local epochs E, learning rate η, and

number of training rounds TR. Additional hyperparameters for Experiment V and VI

include: pretrained model to use for federated learning, MobilenetV2 layer to fine tune

38

from, number of training samples per training round, number of test samples for evaluation,

and number of validation samples for validation (see Figure 12). One communication round

of FedAvg consists of:

1. Server node selects hyperparameters and distributes the current global

model to edge devices

2. Client nodes train an updated local model on data residing locally on the

edge device

3. Client nodes send the updated local parameters to the server node

4. The server node aggregates and averages the client node local parameters

and generates a new global model to be retransmitted to client nodes

1) Primary client nodes receive hyperparameters and global model from server, 2)
primary client nodes train model on local data, 3) primary client nodes send local
model update to server node, and 4) server aggregates local models and distributes
new global model to primary client nodes.

Figure 12. Edge Device Federated Learning Architecture Overview.

39

E. NETWORKING PROTOCOL

All networking communication between edge devices was executed with message

queued telemetry transport (MQTT) protocol. MQTT is an open source IoT networking

protocol that is lightweight and suitable for use on low power single board computers. It

uses the TCP/IP stack and follows a publisher/subscriber model (see Figure 13), which

makes it suitable for edge device computing on lower power sensors and embedded

hardware [50]. MQTT is an asynchronous protocol making it very useful in federated

learning scenarios, whereas HTTP is a synchronous protocol that lacks scalability and

relies on a request/response pattern of communication. MQTT is a widely accepted IoT

protocol that is supported and utilized by major applications such as IBM, Amazon AWS

IoT, and Facebook Messenger.

In the current research the server node acted as the MQTT broker and the client
nodes acted as the MQTT clients.

Figure 13. MQTT Protocol Communication Flow. Adapted from [50].

40

Throughout the current research, the server node was utilized as the MQTT broker

and coordinated local updates and global model transmissions. All parameters were sent as

binary strings and reshaped by the edge devices once received. MQTT has several options

to improve security, including TLS with CA, server keys, and certificates. For additional

security, the MQTT broker can also establish restricted topics and implement an access

control list (ACL). The maximum packet size allowed by MQTT is 250MB; however, the

largest parameter transmitted in the current research was 1.63 MB [50].

F. FEDERATED FINE-TUNING HARDWARE SETUP

The hardware setup for Experiments I through V consisted of three Raspberry Pi

4B’s—two primary client nodes and one server node (see Figure 14). The server node

conducted federated averaging as well as functioning as the MQTT broker for the network.

The primary client nodes performed model training on local data that was randomly chosen

from the client dataset during each training round in order to simulate multiple clients. The

network router used was a Netgear Nighthawk AC1900. It is believed that this research is

the first to have an edge device perform the role of the server node. This architecture makes

it possible for federated learning architecture to be deployable and non-reliant on a remote

cloud server or GPU enabled server node.

41

Hardware setup includes 2 primary client nodes, 1 server node, and 1 router. 1) NodeA and NodeB
perform federated averaging on local dataset with global model, 2) NodeA and NodeB send local updates
to server node, 3) server node aggregates local updates and publishes a new global update to all nodes.

Figure 14. Experiment I-V Hardware Setup.

The architecture for Experiment VI consisted of five Raspberry Pi 4B—two

primary client nodes, one secondary client node, one server node and one router (see Figure

15). The router was a Raspberry Pi 4B with the hostapd access point software package

installed. This network was an isolated off-grid network with no internet access, ensuring

the system was completely deployable. It is believed that this research is the first end-to-

end edge device federated learning architecture with all edge device hardware components.

This testbed architecture demonstrates a federated learning architecture can be tactically

deployed to remote areas without dedicated power or internet access.

42

Hardware setup includes 2 primary client nodes, 1 secondary client node, 1 server node, and 1 router.
Primary client NodeA and NodeB perform federated averaging on local dataset, 2) NodeA and NodeB
send local updates to server node, 3) server node aggregates local updates and publishes a new global
update to all nodes, 4) secondary client NodeC predicts on local data using the most up to date global
model, 5) NodeC sends an anomaly alert for any predictions below specified threshold, and 6) server
node logs anomaly alert for follow on human analysis and additional model training.

Figure 15. Experiment VI Hardware Setup.

During all testing of experiments I through VI, edge devices were powered with

10,000 mA power banks to simulate an end-to-end deployment of a COTS edge device

architecture. For software, the RPi network used TensorFlow 2.2 and Python 3.6 with

MQTT as the networking protocol.

G. EDGE DEVICE PERFORMANCE TESTS ON MEMORY,
COMPUTATION, COMMUNICATION AND POWER

Performance tests were designed to evaluate and compare memory, computation,

communication and power performance of federated learning on edge devices. Each

performance test was designed to compare performance when executing federating

43

learning and performance when the edge devices were idle. A two-minute idle period was

evaluated prior to the start of the federated training rounds and a two-minute idle period

was recorded after the final federated training rounds were completed (see Figure 16). In

between the idle periods, each performance test included 20 federated training rounds for

evaluation of federated learning.

Each performance test began with a 2-minute idle period, followed by 20 federated
learning training rounds and concluded with a 2-minute idle period.

Figure 16. Edge Device Performance Test Overview.

The following system metrics were captured and analyzed to monitor edge device

performance on memory, computation, communication and power:

1. Memory

Metrics were captured by running Linux SysStat SAR commands and averaging

recorded memory statistics (see Table 7). SAR is part of the SysStat package, which is

composed of utilities designed to monitor system performance and usage activity.

Table 7. Edge Device Limitation Performance Metrics.

Edge Device Limitation Performance Metric
Memory RAM total, RAM free, RAM buffered, swap space total,

swap space free, memory read/write speeds, context
switches

Computation CPU load, CPU temp, seconds per machine learning epoch,
seconds per machine learning step

Communication Bytes received per second (BRS), bytes transmitted per
second (BTS)

Power Current (mA), power (mW), supply voltage (V)
Metrics were recorded using Linux SysStat SAR commands, Raspberry Pi vcgencmd commands,

44

Keras API stats, and the INA219 current shunt and power monitor IC.

2. Computation

Metrics were captured by running Linux SysStat SAR commands and averaging

computation statistics (see Table 7), as well as averaging training metrics from the Keras

API fit method.

3. Communication

Metrics were captured by running Linux SysStat SAR commands and averaging

recorded communication statistics (see Table 7) as well as averaging training time metrics

from the Keras API fit method.

4. Power

Performance was monitored through a RPi 3B and a Texas Instruments INA219

current shunt and power monitor IC (see Table 7). The INA219 is able to monitor both

shunt voltage drop and bus supply voltage, with programmable conversion times and

filtering with accuracy within 0.5% [51]. A python script was written to capture bus voltage

(V), bus current (mA), power (mW), shunt voltage (mV), and supply voltage (V) to a CSV

file for analysis. Bus voltage reads the voltage between GND and V, and is the total voltage

seen by the circuit under test (supply voltage—shunt voltage) [51]. Shunt voltage reads the

voltage drop across the INA219 shunt resistor. Bus current is derived by Ohms Law from

the measured shunt voltage.

45

IV. RESULTS AND ANALYSIS

A. OVERVIEW

Significant memory, computational, and power costs are incurred when training a

deep learning model on a single edge device, such as the Raspberry Pi. A solution to reduce

these costs and improve performance is a multi-node federated learning architecture

composed of edge devices. The current research demonstrated that a federated learning

architecture can be successfully deployed on edge devices with TensorFlow Version 2.2.

TensorFlow Federated, TensorFlow’s federated learning API, is currently available for

simulation only and based on an exhaustive investigation in current research it was not

identified that federated learning had been implemented solely on an edge device network.

Research was identified with federated learning on edge devices that used TensorFlow, but

with a more powerful device (e.g., workstation with GPU or laptop) used to support and

coordinate the architecture, not a full IoT system.

The primary findings in the current research include:

• A multi-node network of edge devices executing federated learning can

improve edge device system performance over a traditional deep learning

model trained on a single edge device.

• Centrally pretrained models can achieve high accuracy in a minimal

number of federated training rounds, whereas a randomly initialized model

requires a large number of federated training rounds to achieve high

accuracy.

• A state-of-the-art machine learning model (MobileNetV2) can be centrally

pretrained and deployed on a network of edge devices for federated fine-

tuning and improve memory, computation, communication and power

costs on embedded hardware.

• A centrally pretrained model shares a minimal percentage of the global

model, which improves the security of the model from a federated learning

46

attack on the transmitted parameters. When the whole global model is

transmitted in a federated learning network it is susceptible to an

adversarial federated learning attack.

• A federated learning architecture can be composed completely of battery-

powered COTS edge devices, thus making it fully deployable and off-grid

for tactical scenarios.

• A true IoT networking protocol (MQTT) can be used to support deep

learning and federated learning applications. This makes it possible for

severely resource constrained embedded hardware and sensors to be

directly involved in expanded applications involving real-time federated

learning.

• An off-grid battery-powered COTS embedded hardware federated

learning architecture was developed as a prototype to analyze and quantify

the capabilities and limitations of federated learning on edge devices,

which can be used for follow-on research.

B. EDGE DEVICE PERFORMANCE TESTS

Memory, computation, communication and power performance tests were

conducted in conjunction with Experiments I-V to determine the impacts of multi-node

federated learning networks. Experiment VI is an extension of Experiment V and it is not

included in this particular section. To analyze edge device performance, a two-minute idle

period was evaluated prior to the start of the federated training rounds and a two-minute

idle period was recorded after the final federated training rounds were completed. In

between the idle periods, each edge device performance test included 20 federated training

rounds for evaluation of federated learning.

1. Computation Costs

Computation costs were calculated through Linux SysStat SAR commands and RPi

vcgencmd commands. Average CPU load percentage is the CPU used for processes owned

47

by normal users and system processes [48]. Average CPU temperature is the core

temperature of the BCM2835 RPi Broadcom SoC. Seconds per epoch is the time it takes

to make one full cycle through the training data for the specified federated training round.

Milliseconds per step is the time it takes to process one batch of examples to perform one

gradient update. The single node centrally trained model (Experiment I) experienced an

average CPU load of 86.5% across all four cores and an average CPU temperature of 51.1

Celsius while training the MNIST CNN model (see Figure 17 and 18). The same RPi edge

device had an average CPU load of .25% and an average CPU temperature of 43.0 Celsius

while at idle (see Table 8).

48

Average CPU load percentage is measured across all 4 cores of the RPi and is the CPU load used
for processes owned by normal users and system processes. Primary client nodes in Experiments II-
V saw an average 72.99% reduction in CPU load over Experiment I.

Figure 17. RPi 4B Average CPU Load for Experiments I-V.

49

Average CPU temperature is measured from the core temperature of the BCM2835 SoC.
Experiments II-V saw a 11.61% reduction in CPU temperature over Experiment I.

Figure 18. RPi 4B Average CPU Temperature for Experiments
I-V.

50

Table 8. RPi Computational Costs for Experiments I-V.

 Experiment Average
CPU Load
%

Average CPU
Temperature

Seconds
per Epoch

Milliseconds
per Step

I Single Node Centrally
Trained

86.5% 51.1 403 400

II Randomly Initialized
(Primary Client
Node)

5.09% 44.25 3 105

II Randomly Initialized
(Server Node)

1.5% 44.3 n/a n/a

III Centrally Pretrained
(Primary Client
Node)

11.1% 45.49 3 105

III Centrally Pretrained
(Server Node)

1.07% 44.35 n/a n/a

IV Extended Class
Centrally Pretrained
(Primary Client
Node)

28% 45.49 24 157

IV Extended Class
Centrally Pretrained
(Server Node)

.93% 44.23 n/a n/a

V MobileNetV2
Centrally Pretrained
(Primary Client
Node)

49.26% 45.83 5 1000

V MobileNetV2
Centrally Pretrained
(Server Node)

3.93% 44.41 n/a n/a

Average CPU load is measured across all four RPi CPU cores. Average CPU temp is the core temperature of
the RPi BCM2835 SoC. The Keras API fit method records the seconds per epoch and milliseconds per epoch
each epoch. Experiment I experienced an average CPU load of 86.5%, while all other experiments experienced
greatly reduced CPU loads.

All primary client nodes and server nodes for Experiments II-V experienced

significantly reduced average CPU loads and CPU temperatures over the centrally trained

single node (see Table 8). The MobileNetV2 primary client nodes experienced the highest

CPU load (49.26%) for Experiments II-V, but trained on over 23 times as many parameters

51

as Experiment I. The server nodes experienced the least impact on CPU load, which

indicates that the server nodes could be tasked with additional responsibilities and tasks as

required.

Additionally, the single node model (Experiment I) experienced much longer

machine learning training times (403 seconds per epoch) as it is responsible for training a

full dataset on one device. The federated client nodes have a smaller local dataset than a

centrally trained model (29,625 train images and 4,950 test images each), which results in

reduced training time. However, this does not limit the federated nodes ability to learn.

They are able to leverage the other edge device’s local data through the distributed global

model.

2. Power Costs

Power measurements were based on the percentage increase from when the RPi

was operating at idle versus when it was performing federated learning training rounds.

The server nodes were serving as the MQTT broker during testing and the primary client

nodes were serving as MQTT subscribers during testing. Battery life was based on a

nominal measurement from a 10,000 mA external battery pack. Performance was

monitored through a RPi 3B and a Texas Instruments INA219 current shunt and power

monitor IC. A python script was developed to capture bus voltage (V), bus current (mA),

power (mW), shunt voltage (mV), and supply voltage (V) and write the results to a .CSV

file for analysis.

The single node centrally trained model for Experiment I experienced a 33.37%

increase in current draw when training the deep learning model, which resulted in a

nominal expected battery life of 14 hours and 28 minutes (see Figure 19 and 20). All

primary client nodes in Experiments II-V drew less current than the single node centrally

trained model (see Table 9), which would result in a longer battery life before recharging

is necessary. The primary client nodes train on a much smaller dataset, since the dataset is

distributed across multiple nodes, which impacts current draw from model training.

The server nodes saw a very minimal increase in current draw over idle, which

would allow server nodes to handle additional tasks as required (see Figure 21-25). The

52

server nodes were tasked with two responsibilities during federated training—global model

aggregation/distribution and MQTT broker of the network. This minimal impact on current

draw of the server nodes indicates that in a degraded environment the role of the server

node could be passed to a node not as heavily tasked (i.e., the secondary client nodes of

Experiment VI).

53

The primary client nodes in Experiments II-V drew 64.00% less current than the
single node setup in Experiment I.

Figure 19. RPi 4B Current Consumption for Experiments I-V.

54

The primary client nodes in Experiment II-V showed a 21.37% improvement in
nominal battery life over the single node setup in Experiment I.

Figure 20. RPi 4B Nominal Battery Life for Experiments I-V.

55

Table 9. RPi Power Costs for Experiments I-V.

Experiment Bus Current
(mA)

Power
(mW)

Shunt
Voltage (V)

Nominal
Battery Life

I Single Node Centrally
Trained

+33.37% +31.64% +33.45% 14h28m

II Randomly Initialized
(Primary Client Node)

+4.16% +3.88% +4.24% 18h49m

II Randomly Initialized
(Server Node)

+9.04% +8.56% +8.86% 20h27m

III Centrally Pretrained
(Primary Client Node)

+9.04% +6.84% +7.18% 17h55m

III Centrally Pretrained
(Server Node)

+7.86% +7.50% +7.96% 20h45m

IV Extended Class
Centrally Pretrained
(Primary Client Node)

+18.27% +17.65% +19.18% 16h28m

IV Extended Class
Centrally Pretrained
(Server Node)

+5.44% +5.09% +5.66% 21h08m

V MobileNetV2
Centrally Pretrained
(Primary Client Node)

+16.57% +15.07% +16.19% 17h02m

V MobileNetV2
Centrally Pretrained
(Server Node)

+8.93% +8.76% +9.66% 21h09m

Bus current, power, and shunt voltage are the average percentage increase over idle when executing
federated training rounds. Battery life is the nominal battery life of a 10,000 mAH rechargeable
battery pack based off bus current.

56

Current draw was measured by the INA219 every second during the duration of the
test. The power performance test for Experiment I began with a two-minute idle
period, then 10 model training epochs, followed by a two-minute idle period. The
single node centrally trained model in Experiment I exhibited a 33.37% increase in
current draw when performing model training.

Figure 21. RPi Current Consumption for Experiment I.

57

Primary client node (top) and server node (bottom). The power performance test for
Experiment II began with a two-minute idle period, then 20 rounds of federated
learning training rounds, followed by a two-minute idle period. The primary client
node exhibited a 4.16% increase in current draw over idle and the server node
exhibited a 9.04% increase in current draw over idle. The spikes in current draw are
MQTT transmissions across the network.

Figure 22. RPi Current Consumption for Experiment II.

58

Primary client node (top) and server node (bottom). The power performance test for
Experiment III began with a two-minute idle period, then 20 rounds of federated
learning training rounds, followed by a two-minute idle period. The primary client
node exhibited a 9.04% increase in current draw over idle and the server node
exhibited a 7.86% increase in current draw over idle. The spikes in current draw are
MQTT transmissions across the network.

Figure 23. RPi Current Consumption for Experiment III.

59

Primary client node (top) and server node (bottom). The power performance test for
Experiment IV began with a two-minute idle period, then 20 rounds of federated
learning training rounds, followed by a two-minute idle period. The primary client
node exhibited a 18.27% increase in current draw over idle and the server node
exhibited a 5.44% increase in current draw over idle. The spikes in current draw are
MQTT transmissions across the network.

Figure 24. RPi Current Consumption for Experiment IV.

60

RPi primary client node (top) and server node (bottom). The power performance test
for Experiment V began with a two-minute idle period, then 20 rounds of federated
learning training rounds, followed by a two-minute idle period. The primary client
node exhibited a 16.57% increase in current draw over idle and the server node
exhibited a 8.93% increase in current draw over idle. The spikes in current draw are
MQTT transmissions across the network.

Figure 25. RPi Current Consumption for Experiment V.

3. Communication

Communication costs evaluated the percentage of parameters shared, packets

transmitted/received per second, and kB transmitted/received per second (see Figure 26

and 27). The randomly initialized federated learning model (Experiment II) sent 100% of

the global model parameters. Since it was randomly initialized when federated training

began all weights must be transmitted so that it can improve through iterative federated

learning training rounds. Each of the centrally pretrained models (Experiments III–V) only

send a fraction of the model parameters, since the parameters have been trained prior to

deployment on the edge devices. Only sending a percentage of the global parameters allows

61

a significant portion of the model to remain hidden on the client nodes (see Table 10). As

identified by Hitaj, Ateniese and Perez-Cruz, this structure of minimal parameter makes it

incredibly difficult for an adversary to reconstruct the global model from the transmitted

parameters [39].

Additionally, the centrally pretrained models achieve high accuracy in fewer

training rounds than a randomly initialized model. The centrally pretrained MNIST model

(Experiment III) primary client nodes had an average accuracy of 96.50% after the first

federated training round. The centrally pretrained EMNIST model (Experiment IV)

primary client nodes began with an average accuracy of 77.80% after the first federated

training round. The centrally pretrained MobileNetV2 model (Experiment V) primary

client nodes began with an average accuracy of 91.75% after the first federated training

round. This initial boost in model accuracy over a randomly initialized model enhances

security since a minimal number of communication rounds are required with the server

node to establish suitable accuracies. Hitaj, Ateniese and Perez-Cruz determined that an

adversarial attack that attempt to reconstruct the global model by intercepting the

transmitted parameters requires iterative training rounds with increasing accuracy [39].

The MobileNetV2 model (Experiment V) transmits 64.43% more packets per

second than the average of the other three models. It also receives 66.62% more packets

per second than the average of the other three models. The MobileNetV2 model transmits

416,001 parameters every federated training round, which is 18.41% of the total model

parameters. While the MobileNetV2 sends the most model parameters of the models in the

current research, it sends the smallest percentage of respective global parameters. This

results in a higher communication cost than the other models, but provides the highest

security of all the federated learning models in the current research.

62

The MobileNetV2 model (Experiment V) transmits 64.43% more packets per
second than the overall average of the other three models.

Figure 26. RPi 4B Transmitted Packets Per Second for
Experiments II-V.

63

The MobileNetV2 model (Experiment V) receives 66.62% more packets per second
than the overall average of the other three models.

Figure 27. RPi 4B Received Packets Per Second for
Experiments II-V.

Table 10. RPi Communication Costs for Experiments II-V.

Experiment Parameters
Shared

Tx
Packet
per
second

Rx
Packet
per
second

Rx Kb
per
second

Tx Kb
per
second

II Randomly Initialized
(Primary Client Node)

100.00% 5.70 5.92 5.68 6.42

III Centrally Pretrained
(Primary Client Node)

40.26% 5.04 7.06 5.42 5.79

IV Extended Class
Centrally Pretrained
(Primary Client Node)

59.49% 7.09 8.27 6.93 7.87

V MobileNetV2 Centrally
Pretrained (Primary
Client Node)

18.41% 16.71 21.22 20.01 24.82

Parameters shared is the fraction of global parameters shared across the network for federated
learning. Packets Tx/Rx per second and Kb Tx/Rx per second are captured through Linux SysStat
SAR commands and averaged across 20 federated training rounds.

4. Memory

Memory costs evaluated the percentage of memory (RAM and swap) used,

percentage of memory needed for current workload in relation to the amount of total

memory (RAM and swap), number of kb paged in by the system per second, number of kb

paged out by the system per second, number of page faults (major and minor) made by the

system per second, and the total number of context switches per second (see Table 11)

[48].

The primary client nodes in Experiments II-V demonstrated comparable

impacts on memory (except the number of page faults) to Experiment I; however, the

server nodes demonstrated very minimal memory utilization for the workload placed

on them (see Figure 28 and 29). The server nodes sent over 400,000 parameters per

training round in Experiment V with minimal impacts on memory. This minimal impact

on memory opens the possibility for server nodes to be tasked with a larger workload or

additional tasks as demanded.

64

65

Table 11. RPi Memory Costs for Experiments I-V.

 Experiment Memory
Used

%
Commit

Pages
in per
sec

Pages
out per
second

Faults
per
second

Context
Switches
per sec

I Non-Distributed
Centrally Trained

19.81

20.46 0.23 33.08 29311.94 7401.11

II Randomly
Initialized
(Primary Client
Node)

25.36 24.55 0.01 8.95 4098.62 645.08

II Randomly
Initialized (Server
Node)

2.72 3.89 0.01 18.02 41.92 753.49

III Centrally
Pretrained
(Primary Client
Node)

25.23 24.58 2.56 9.33 9155.24 874.20

III Centrally
Pretrained
(Server Node)

2.70 3.95 0.00 15.72 41.94 692.21

IV Extended Class
Centrally
Pretrained
(Primary Client
Node)

19.72 20.09 527.78 9.10 21689.50 1714.72

IV Extended Class
Centrally
Pretrained
(Server Node)

2.71 3.89 0.00 9.17 93.15 812.05

V MobileNetV2
Centrally
Pretrained
(Primary Client
Node)

25.91 26.13 1.95 1.95 6367.87 592.66

V MobileNetV2
Centrally
Pretrained
(Server Node)

2.58 3.13 3.92 3.92 2.71 532.84

Memory costs evaluated the percentage of memory (RAM and swap) used, percentage of memory
needed for current workload in relation to the amount of total memory (RAM and swap), number
of kb paged in by the system per second, number of kb paged out by the system per second, number
of page faults (major and minor) made by the system per second, and total context switches [48].

66

Memory used is the percentage of memory (RAM and swap) used averaged over 20
federated training rounds. The primary client nodes did not show a reduction in
memory costs; however, the server nodes showed minimal impacts on memory used
indicating that the server nodes could be tasked with additional requirements.

Figure 28. RPi 4B Memory Percentage Used for Experiments I-V.

67

Context switches are averaged over 20 federated training rounds. The MobileNetV2
primary client node demonstrated an equivalent number of context switches, which
is likely do to the large CelebA datasets on each primary client node that are required
for federated learning.

Figure 29. RPi 4B Context Switches Per Second for Experiments I-V.

68

C. MODEL PERFORMANCE

Model performance for Experiments II-V was performed using the Keras API

evaluate method on test dataset partitions that were disjoint from train datasets.

Experiments II-III utilized well-performing hyperparameters (E=1, B=10, η = .15) from

McMahan et al. research. Experiments II and III used the same dataset and model

architecture as McMahan et al., so it was determined to use the same hyperparameters.

Experiment IV’s dataset is an expanded version of Experiment II and III’s dataset and used

the same model architecture but composed of 52 additional classes (62 total classes). A

reduced learning rate and increase in local edge device epochs, similar to Nillson et al.,

was utilized in order to achieve improved performance (E=5, B=20, η = .088).

Experiment V included a validation dataset to assist in determining effective

hyperparameters since this was a much more complex model architecture. Nilsson et al.

performed extensive research determining the optimal hyperparameters for the FedAvg

algorithm and determined that the optimal hyperparameters were E=10, B=20, and η =

.088. The current research used these hyperparameters as a starting point and ran multiple

federated training rounds on similar hyperparameters (E =1, 5, and 10; B=1, 10, 20; and

η=.01, .05, .15), using validation accuracy as a benchmark for hyperparameter

choice. Ultimately it was determined that Nilsson et al.’s optimal hyperparameters

performed best on the tested hyperparameters; however, E=5 was chosen to conserve

battery life as multiple epochs increase current draw during federated training rounds.

In Experiments II-V, one federated training round consisted of:

1. Primary client nodes perform model training on a random partition of their

local training dataset (see Figure 30)

2. Primary client nodes evaluate model performance utilizing local test

dataset

3. Primary client nodes extract updated local model weights

69

4. Primary client nodes send the updated local model to the server node

5. Server node aggregates and averages the local model weights

6. Server node sends the updated global model to the primary client nodes

7. Primary client nodes update their local model weights with the newly

updated global model

Figure 30. Federated Training Round Cycle for Experiments II-V.

70

Each federated learning experiment experienced improvements in accuracy through

federated averaging. The pretrained models did not experience large improvements, but

did show improvements from the initial training round. This is similar to the findings of

Stremmel and Singh in their research on a pretrained federated fine-tuned long short-term

memory (LSTM) model on next word prediction (NWP) using a Stack Overflow dataset

[29]. Although accuracy improved, it was observed that there was increased variability in

accuracy and test loss across training rounds for the pretrained models. This variability is

likely due to the fact that the base layers are frozen and the weights in these layers do not

update during federated training rounds. These frozen weights are reliant on the previous

training they experienced during centralized pretraining. If pretraining was not optimally

performed or not enough data was used to pretrain, these weights are likely not fully

optimized. While this federated learning structure may be limited in its ability to improve,

it provides high accuracy from early training rounds and improves security since only a

select number of parameters are shared.

1. Randomly Initialized MNIST (Experiment II)

The randomly initialized MNIST model (Experiment II) utilized train accuracy,

train loss, test accuracy and test loss to analyze model performance. Primary client node

performance was evaluated individually and average performance between nodes was also

captured. NodeA had an initial test accuracy of 18.00% after federated training round 0,

while NodeB had an initial test accuracy of 57.00%. After 150 federated training rounds,

NodeA had an overall average test accuracy of 98.37% and NodeB had an overall average

test accuracy of 95.75% (see Figure 31). The average accuracy across the primary client

nodes was 97.06% (see Figure 32). Average training loss for the primary client nodes at

federated training round 0 was 1.978 and after 150 federated training rounds average

training loss dropped to 0.1026 (see Figure 33).

71

NodeA had an initial test accuracy of 18% after federated training round 0, while
NodeB had an initial test accuracy of 57%. After 150 federated training rounds,
NodeA had an overall average test accuracy of 98.37% and NodeB had an overall
average test accuracy of 95.75%.

Figure 31. Randomly Initialized MNIST CNN (Experiment II)
Individual Node Test Accuracy.

72

The average accuracy across the primary client nodes was 97.06%.

Figure 32. Randomly Initialized MNIST CNN (Experiment II)
Average Accuracy for NodeA and NodeB.

73

Average training loss for the primary client nodes at federated training round 0 was
1.635 and after 150 federated training rounds average loss dropped to 0.1069.

Figure 33. Randomly Initialized MNIST CNN (Experiment II)
Training Loss for NodeA and NodeB.

These results demonstrate that with two primary client nodes executing federated

learning can achieve high accuracy with a relatively small training dataset used per

federated training round. The dataset partitions were the same sizes utilized by McMahan

et al. The current research utilized two primary Client nodes per federated training round

with a new random training data partition per round, while McMahan et al. utilized 10

client nodes per round from a pool of 100 client nodes. The deviation in the current research

was made in order to move federated learning from a simulated environment, where a large

number of client nodes can be utilized, to a deployed federated learning environment that

includes a limited hardware setup.

74

2. Centrally Pretrained MNIST (Experiment III)

The centrally pretrained MNIST model (Experiment III) utilized train accuracy,

train loss, test accuracy and test loss to analyze model performance. Primary client node

performance was evaluated individually and average performance between nodes was also

captured. NodeA had an initial test accuracy of 84.00% after federated training round 0,

while NodeB had an initial test accuracy of 80.00%. After 150 federated training rounds,

NodeA had an overall average test accuracy of 96.12% and NodeB had an overall average

test accuracy of 98.29% (see Figure 34). The average accuracy across the primary client

nodes was 97.20% (see Figure 35). Average training loss for the primary client nodes at

federated training round 0 was 0.7923 and after 150 federated training rounds average

training loss dropped to 0.0867 (see Figure 36).

NodeA had an initial test accuracy of 84.00% after federated training round 0, while
NodeB had an initial test accuracy of 80.00%. After 150 federated training rounds,
NodeA had an overall average test accuracy of 96.12% and NodeB had an overall
average test accuracy of 98.29%.

Figure 34. Centrally Pretrained MNIST CNN (Experiment III)
Individual Node Test Accuracy.

75

The average accuracy across the primary client nodes was 97.20%.

Figure 35. Centrally Pretrained MNIST CNN (Experiment III)
Average Accuracy for NodeA and NodeB.

76

Average training loss for the primary client nodes at federated training round 0 was
0.7923 and after 150 federated training rounds average loss dropped to 0.0867.

Figure 36. Centrally Pretrained MNIST CNN (Experiment III)
Training Loss for NodeA and NodeB.

The centrally pretrained model conducted federated averaging on the final two

dense layers of the pretrained model which resulted in a higher accuracy at training round

0 (Experiment II had an initial average accuracy of 37.50%, while Experiment III had an

initial average accuracy of 82.00%). The centrally pretrained MNIST model did not show

any noticeable improvements after federated training round 6. During training rounds 0

thru 6, the average accuracy between NodeA and NodeB was 87.78%, and after training

round 7 the average accuracy increased to 97.66%. This may indicate that a centrally

pretrained model quickly reaches its maximum performance within a minimal number of

training rounds, and does not noticeably improve after that point. Whereas a randomly

initialized model will attain similar performance, but over many more training rounds.

77

3. Extended Class Centrally Pretrained EMNIST (Experiment IV)

The extended class centrally pretrained EMNIST model (Experiment IV) utilized

train accuracy, train loss, test accuracy and test loss to analyze model performance. Primary

client node performance was evaluated individually and average performance between

nodes was also captured. NodeA had an initial test accuracy of 76.66% after federated

training round 0, while NodeB had an initial test accuracy of 75.00%. After 75 federated

training rounds, NodeA had an overall average test accuracy of 79.67% and NodeB had an

overall average test accuracy of 83.16% (see Figure 37. The average accuracy across the

primary client nodes was 80.78% (see Figure 38). Average training loss for the primary

client nodes at federated training round 0 was 0.3268 and after 75 federated training rounds

average train loss dropped to 0.1019 (see Figure 39).

NodeA had an initial test accuracy of 76.66% after federated training Round 0, while
NodeB had an initial test accuracy of 75.00%. After 75 federated training rounds,
NodeA had an overall average test accuracy of 79.67% and NodeB had an overall
average test accuracy of 80.78%.

Figure 37. Extended Class Centrally Pretrained EMNIST CNN
(Experiment IV) Individual Node Test Accuracy.

78

The average accuracy across the primary client nodes was 80.22%.

Figure 38. Extended Class Centrally Pretrained EMNIST CNN
(Experiment IV) Average Accuracy for NodeA and

NodeB.

79

Average loss for the primary client nodes at federated training round 0 was 0.3268
and after 75 federated training rounds average train loss dropped to 0.1019.

Figure 39. Extended Class Centrally Pretrained EMNIST CNN
(Experiment IV) Training Loss for NodeA and NodeB.

The centrally pretrained EMNIST model did not show any noticeable

improvements after training round 12. During training rounds 0 thru 12, the average

accuracy between NodeA and NodeB was 75.83%, and after training round 12 the average

accuracy increased to 80.22%. This follows the findings of Experiment III that a centrally

pretrained model quickly reaches its maximum performance within a minimal number of

training rounds, and does not noticeably improve after that point. Whereas a randomly

initialized model will attain similar performance, but over many more training rounds.

80

4. MobileNetV2 Centrally Pretrained CelebA (Experiment V)

The MobileNetV2 centrally pretrained CelebA model (Experiment V) utilized train

accuracy, train loss, validation accuracy, validation loss, test accuracy and test loss to

analyze model performance. Primary client node performance was evaluated individually

and average performance between nodes was also captured. NodeA had an initial test

accuracy of 92.50% after federated training Round 0, while NodeB had an initial test

accuracy of 89.00%. After 75 federated training rounds, NodeA had an overall average test

accuracy of 94.28% and NodeB had an overall average test accuracy of 93.49% (see Figure

40). The average accuracy across the primary client nodes was 93.89% (see Figure 41).

Average train loss for the primary client nodes at federated training round 0 was 0.00876

and after 75 federated training rounds average train loss dropped to 0.00456 (see Figure

42).

81

NodeA had an initial test accuracy of 92.50% after federated training round 0, while
NodeB had an initial test accuracy of 89.00%. After 75 federated training rounds,
NodeA had an overall average test accuracy of 94.28% and NodeB had an overall
average test accuracy of 93.49%.

Figure 40. MobileNetV2 Centrally Pretrained Model
(Experiment V) Individual Node Test Accuracy.

82

Average accuracy for NodeA and NodeB. The average accuracy across the primary
client nodes was 93.89%.

Figure 41. MobileNetV2 Centrally Pretrained Model
(Experiment V).

83

Average train loss for the primary client nodes at federated training round 0 was
0.00876 and after 75 federated training rounds average train loss dropped to
0.00456.

Figure 42. MobileNetV2 Centrally Pretrained Model
(Experiment V) Training Loss for NodeA and NodeB.

The centrally pretrained MobileNetV2 model did not show any noticeable

improvements after training round 10. During training rounds 0 thru 10, the average

accuracy between NodeA and NodeB was 92.82%, and after training round 12 the average

accuracy increased to 94.04%. This follows the findings of Experiments II and III that a

centrally pretrained model quickly reaches its maximum performance within a minimal

number of training rounds, and does not noticeably improve after that point. Whereas a

randomly initialized model will attain similar performance, but over many more training

rounds.

84

In developing the final hyperparameters and model architecture for Experiment V,

local edge device dataset size, type of centrally pretrained model, and model layer from

which to perform federated fine-tuning was analyzed on the edge device architecture.

1. Centrally pretrained model: Evaluated how performance is impacted by

the type of transfer learning conducted on the pretrained model prior to

deployment to an edge device network.

• Feature extraction with a minimal dataset centrally pretrained

• Feature extraction with a larger dataset centrally pretrained

• Fine-tuning on the feature extracted larger dataset

2. Local dataset size: Evaluated how the local dataset size on an edge device

impacts performance. While dedicated workstations can support large

local datasets, embedded hardware is limited in the amount of data it can

process to train a deep learning model. An understanding of how much

data can be utilized for training on embedded hardware, while still

allowing for improvements in performance is valuable.

3. Fine-tuning layer: Within a federated learning scheme, it is important to

understand what is the ideal layer from which to fine-tune a state-of-the-

art machine learning model, like MobileNetV2.

a. MobileNetV2 Centrally Pretrained Models

Three centrally pretrained MobileNetV2 models were developed and evaluated for

federated fine-tuning performance. A feature extracted model using a minimal size dataset

(minimal feature extraction model), a feature extraction model with a significantly larger

dataset (large feature extraction model), and a fine-tuned model (fine-tuned centrally

pretrained model) that implemented fine-tuning on the feature extracted larger dataset

model (see Table 12). The fine-tuned model was fine-tuned up through block 16 of the

MobileNetV2 base architecture (Layer 144) which included 886,080 total trainable

85

parameters. All models were trained with an early stopping callback for a validation loss

minimum delta of 0.001 and patience of five epochs. These models were each pretrained

centrally on a MacBook laptop prior to deployment to edge devices.

Table 12. Experiment V MobileNetV2 Centrally Pretrained Models.

 Model Transfer

Learning

Type

Dataset Hyperparameters Server

Validation

Metrics

I Minimal

Feature

Extraction

Model

Feature

Extraction

CelebA

Train:

10,000

Test: 2,000

Epochs: 24

(early stopped)

LR: .0001

Batch Size: 20

Val Split: 0.20

Loss: 0.3244

Acc: 85.50%

II Large

Feature

Extraction

Model

Feature

Extraction

CelebA

Train:

48,000

Test:

12,000

Epochs: 19

(early stopped)

LR: .0001

Batch Size: 20

Val Split: 0.20

Loss: 0.2957

Acc: 88.59%

III Fine-Tuned

Centrally

Pretrained

Model

Fine-Tuning CelebA

Train:

48,000

Test:

12,000

Epochs: 29

(early stopped)

LR: .00001

Batch Size: 20

Val Split: 0.20

Loss: 0.118

Acc: 93.40%

Three pretrained models were developed to analyze federated fine-tuning performance based on
the pretrained model.

b. MobileNetV2 Performance by Local Dataset Size

Each of the three pretrained models were tested with three various sizes of local

datasets for training and testing on the edge devices. The small dataset (Dataset I) included

100 random CelebA train images, 50 random CelebA validation images, 50 random

86

CelebA test images per training round (see Table 13). The medium dataset (Dataset II)

included 250 random CelebA train images, 100 random CelebA validation images, and 100

random CelebA test images per training round. The large dataset (Dataset III) included 500

random CelebA train images, 200 random CelebA validation images, and 200 random

CelebA test images. The training images were randomly selected each successive federated

training round. The overall dataset sizes were 3,000 images per node for the small dataset,

6,000 images per node for the medium dataset and 12,000 images per node for the large

dataset.

Table 13. Experiment V MobileNetV2 Pretrained Model CelebA Dataset
Partitions

 Dataset Image

Shape

Train

Images

Per Round

Test

Images

Per Round

Validation

Images per

Node

Total

Images

per Node

I Small (96, 96, 3) 100 50 50 3,000

II Medium (96, 96, 3) 250 100 100 6,000

III Large (96, 96, 3) 500 200 200 12,000

CelebA images were originally (178, 218, 3), but were resized to (96, 96, 3) in order to conserve
memory on RPi’s.

Results indicate that a federated learning edge device network will exhibit the best

performance utilizing a centrally pretrained fine-tuned model with the largest local dataset

an edge device can support (see Table 14). The largest average performance gains were

exhibited with a smaller local dataset (max exhibited was a 6.76% improvement with the

large dataset model); however, the smaller local dataset did not achieve an overall average

accuracy as high as the fine-tuned model utilizing the largest local dataset (overall average

accuracy was 93.89%).

87

Table 14. Experiment V MobileNetV2 Pretrained Model Accuracy on Edge
Device.

Centrally Pretrained

Model

Local Dataset

Size per

Training Round

Training

Round 0 Avg

Accuracy

Overall Avg

Node

Accuracy

Avg Node

Improvement

Minimal Feature

Extraction Model

100/50/50 83.00% 89.11% +6.11%

Minimal Feature

Extraction Model

250/100/100 88.00% 90.13% +2.13%

Minimal Feature

Extraction Model

500/200/200 86.50% 89.66% +3.16%

Large Feature

Extraction Model

100/50/50 77.00% 83.76% +6.76%

Large Feature

Extraction Model

250/100/100 80.00% 85.34% +5.34%

Large Feature

Extraction Model

500/200/200 88.00% 89.96% +1.96%

Fine-Tuned Model 100/50/50 91.00% 91.66% +0.66%

Fine-Tuned Model 250/100/100 89.00% 89.65% +0.65%

Fine-Tuned Model 500/200/200 90.75% 93.89% +3.14%

On device hyperparameters were E = 5, B = 20, η = .01, TR = 25. Each pretrained model (minimal
feature extraction, large feature extraction, fine-tuned model) was tested with the three different
local dataset sizes. It can be observed that the smaller the dataset the larger the overall
improvement, but the best overall performance resulted from the largest dataset partitions.

c. MobileNetV2 Pretrained Model Fine-Tuning Layer Performance

Within a federated learning scheme, it is important to understand what is the ideal

layer from which to fine tune a state-of-the-art machine learning model, like MobileNetV2.

The current research was designed to implement on-device fine-tuning at select layers

within the MobileNetV2 architecture (see Table 15). The final MobileNetV2 block (Block

16) was analyzed for on-device fine-tuning. The fine-tuning occurred at the block 16

88

convolutional layers and the final out convolutional layer (layer 144, layer 147, layer 150

and layer 152, respectively).

Additionally, the fine-tuned pretrained model was also trained up through block 16

on the server prior to edge device deployment. Given that the current research is focused

on developing a more secure AI based military installation surveillance system, the

minimum number of parameters are selected for federated learning and cross network

communication. Research without a security focus could fine-tune more layers within a

model, but this would increase the risk for an adversary to rebuild a model based on

intercepted parameters.

Table 15. Experiment V MoblieNetV2 Layers Fine-Tuned on Edge Device

MobileNetV2 Layer

Index Number

MobileNetV2 Layer Name Trainable Parameters

144 Block 16 Expand Conv2D 894,409

147 Block 16 Depthwise Conv2D 736,961

150 Block 16 Project Conv2D 724,481

152 Out Conv2D 406,001

It was determined that the ideal layer from which to perform federated fine-tuning

on the MobileNetV2 model (block 16 and out Conv2D) under the current federated

learning architecture is the out convolutional layer (MobileNetV2 layer index 152) (see

Table 16). The convolutional layers of block 16 each exhibited average accuracies around

50%, which indicates no learning occurred in a binary classification problem (see Figure

43). It was also observed that the loss increased with each added layer fine-tuned (see

Figure 44). The out convolutional layer had an average loss of 0.0080, while the block 16

expand convolutional layer had an average loss of 79.4773.

89

Table 16. Table 16: Experiment V MobileNetV2 Layers Fine-Tuned on Edge
Device Results.

MobileNetV2 Layer

Index

MobileNetV2 Layer

Name

Average Loss Average

Accuracy

144 Block 16 Expand Conv2D 79.477 55.85%

147 Block 16 Depthwise

Conv2D

50.655 50.65%

150 Block 16 Project Conv2D 27.443 52.55%

152 Out Conv2D 0.0080 93.40%

On-device hyperparameters were E = 5, B = 20, η = .088, TR = 20, train sample size = 500,
validation sample size = 200, test sample size = 200.

90

Layers fine-tuned were block 16 expand Conv2D (Layer 144), block 16 depthwise
Conv2D (layer 147), block 16 project Conv2D (Layer 150) and out Conv2D (layer
152). On device hyperparameters were E = 5, B = 20, η = .088, TR = 20, train sample
size = 500, validation sample size = 200, test sample size = 200.

Figure 43. On Device Average Training Loss for NodeA and
NodeB Based on Layer Federated Fine-Tuned.

91

Layers fine-tuned were block 16 expand Conv2D (layer 144), block 16 depthwise
Conv2D (layer 147), block 16 project Conv2D (layer 150) and out Conv2D (layer
152). On device hyperparameters were E = 5, B = 20, η = .088, TR = 20, train sample
size = 500, validation sample size = 200, test sample size = 200.

Figure 44. On Device Average Test Accuracy for NodeA and
NodeB Based on Layer Federated Fine-Tuned.

It is not fully known why the performance drops significantly when performing

federated fine-tuning when adding in additional layers past the out convolutional layer. In

a traditional fine-tuning scenario with a centralized dataset the performance should

improve with each additional layer fine-tuned. It is assessed that this reduced performance

is occurring since a very small local dataset (500 images) is changing the weights

developed by a much larger dataset (48,000). Overall, these results indicate that it is best

to perform federated fine-tuning from the final convolutional layer in the model

architecture.

92

d. End to End FedAvg Edge Device Network

The final experiment was designed as a proof of concept that an end-to-end edge

device network could execute federated fine-tuning on battery power. This experiment

builds off of Experiment V, which used a state-of-the-art machine learning model to

perform federated fine-tuning. The Netgear Nighthawk router was replaced with an RPi

4B as a router using hostapd software. The primary client nodes had the same setup as in

Experiment V and a secondary client node was added with an RPi camera that was

triggered by a HC SR04 ultrasonic sensor (see Figure 45. The ultrasonic sensor was chosen,

due to the fact that ultrasonic sensors draw less current than a live camera feed or a

proximity IR sensor. The RPi camera draws 280 mA on average, while the HC SR04 draws

only 15 mA on average. Using an RPi camera as a sensor would decrease the nominal

battery life of a secondary client node by 5 hours and 20 minutes, while the HC SR04

would only decrease the nominal battery life by 25 minutes.

93

Hardware included 2 primary client nodes, 1 secondary client node, 1 server node,
and 1 edge router all composed of Raspberry Pi’s.

Figure 45. Experiment VI Architecture.

The secondary client node included anomaly detection to alert the server node of

any predictions below 95%. These anomalous predictions were sent via MQTT and

recorded in a CSV file on the server node for additional human directed analysis. The

secondary client node had a 9.66% increase in current draw while executing predictions

once per second from the updated global model received from the server node (see Figure

46). The nominal battery life of a 10,000 mAH battery is 18 hours and 0 minutes. The

average CPU load on the secondary client node was 22.64%, average RAM memory used

was 6.99%, and 0.00% swap space was utilized. These results indicate that a secondary

94

client node can be supported in a deployed network and could accept additional tasks as

needed.

The power performance test for Experiment VI secondary client note began with a
two-minute idle period, then 20 rounds of federated learning training rounds,
followed by a two-minute idle period. The secondary client node exhibited a 9.66%
increase in current draw over idle. The spikes in current draw are MQTT
transmissions across the network.

Figure 46. End-to-End Edge Device Network Current
Consumption for Secondary Client Node.

The RPi router transmitted an average of 24.32 packets per second and received an

average of 23.49 packets per second. The average CPU load on the router was only 0.66%,

average RAM memory used was 1.07%, and 0.00% swap space was utilized. These results

indicate that a battery powered edge device router can easily support a deployed federated

learning network.

Experiment VI did not rely on a wireless internet connection to conduct federated

fine-tuning and could continuously operate for at least 18 hours with 10,000 mAH battery

packs. This experiment demonstrates that federated learning can be deployed on edge

devices without a cloud server, no internet connection, and completely reliant on battery

power. An end-to-end edge device federated learning network of this sort could be utilized

in multiple real world forward deployed military applications, such as a forward operating

base security application.

95

V. CONCLUSIONS AND FUTURE WORK

A. SUMMARY

The goals of the current research were to evaluate the system performance of

federated learning on edge devices and to analyze the model performance of a centrally

pretrained state-of-the-art model conducting federated fine-tuning on an edge device

network. The experiments conducted throughout the thesis process demonstrated that a

multi-node architecture distributes the computational, memory, communication, and power

requirements to a sufficient level in order to support federated learning on edge devices. In

computational costs the federated fine tuning models (Experiments III-V) exhibited a

65.95% average reduction in CPU load over the baseline model (Experiment I) and a

10.75% average reduction in CPU temp over the baseline model. In power costs the

federated fine tuning models exhibited a 56.16% average reduction in current draw and an

average improvement in nominal battery life of 18.47% over the baseline model. For

communication costs the baseline federated learning model (Experiment II) shared 100%

of the model parameters, while the MobileNetV2 model shared 18.41% of model

parameters. For memory costs the federated fine tuning servers utilized 86.55% less

memory than the baseline model, which allows server nodes to be tasked with additional

requirements.

Additionally, it was demonstrated that a multi-node federated fine-tuning

architecture begins federated learning training with a higher accuracy over a randomly

initialized model and incrementally improves over iterative federated training rounds. The

centrally pretrained federated fine-tuning MNIST model (Experiment III) began training

with an initial accuracy improvement of 53.94% over the randomly initialized federated

learning MNIST model (Experiment II) and achieved an average accuracy of 97.66%

within seven federated training rounds. The centrally pretrained EMNIST model

demonstrated a final performance improvement of 4.39% over the initial federated training

round. Finally, the MobileNetV2 model demonstrated a final performance improvement of

3.14% over the initial federated training round.

96

B. BENEFITS

The current research exhibited that a federated fine-tuning COTS edge device

network supports a secure and accurate application that can be used in a military security

application framework. Four primary benefits of federated fine-tuning were identified—

initial accuracy, efficiency, security, and feasibility of deployment. It was demonstrated

that a centrally pretrained model can initiate training at federated training round 0 with high

accuracy, whereas a randomly initialized federated averaging model would take many

rounds to achieve acceptable accuracy. This initial boost in performance of a federated

learning network is vital in military applications that depend on high accuracy from initial

deployment. In the proposed scenario of a military surveillance application, the network

cannot rely on multiple training rounds for accuracy and must be highly accurate, persistent

and adaptable upon deployment, while enabling the model to improve over time.

It was validated that a multi-node federated learning edge device network

sufficiently distributes the computational load across the network and supports state-of-

the-art model training, which had not been previously demonstrated in academic research.

The reduction in computational load also results in lowered current draw on devices and in

turn longer edge device battery life. A distributed network also benefits from a distributed

dataset, as no single node has the full dataset. This improves efficiency as an edge device

is only required to process a small local dataset versus the entire dataset of the network and

yet can leverage full network dataset through the shared global model.

Additionally, an off-grid edge device network improves the overall security of the

network. Experiments II-VI did not rely on a remote cloud server and were isolated from

any outside networks, which ensures that no data transmits outside the local area network.

This guarantees that an adversary can only intercept transmissions if they are physically

located within Wi-Fi range of the network. Experiments III-VI employed centrally

pretrained models that utilized only a select number of model layers for training and local

model updates. Hitaj, Ateniese and Perez-Cruz identified that federated learning

architectures releasing only a portion of global parameters provide stronger security and

are more resistant to federated learning attacks than models that transmit the full global

model [39].

97

Finally, the federated learning network presented in the current research is a proof-

of-concept that demonstrates the possibility of a deployable federated learning network

that can be utilized in forward deployed tactical scenarios. No previous research was

identified that has evaluated and tested the feasibility of a battery-powered federated

learning network. Commercial entities employing a federated learning architecture would

typically rely on dedicated power for the network; however, many military applications

would benefit from a federated learning network with no external power requirements. The

networking protocol utilized in the current research is scalable, widely accepted and

asynchronous, which also ensures the network is deployable. The architecture was

composed of all COTS edge devices, which ensures that the network is reproducible and

easily acquired for research and deployment.

C. LIMITATIONS

While the research questions proposed for the current research were supported by

the analysis and results, there are draw-backs and limitations that should be addressed for

any follow-on work. The MNIST and EMNIST datasets are recommended testbed datasets

for machine learning and federated learning research; however, they are not real-world

datasets and often result in high accuracies with little data pre-processing. The CelebA

dataset contains more female photos than male photos and has been shown to demonstrate

a bias toward the female category [52]. These datasets are limited in their scope and not

suited for real-world deployment.

The experiments performed did not conduct federated learning training rounds until

batteries were fully discharged. Therefore, the expected battery life is a nominal

measurement based off the battery packs used and current draw. The architecture also

utilized a limited number of Raspberry Pi’s as edge devices for federated learning.

McMahan et al.’s original research design utilized 100 clients with 10 percent randomly

chosen per federated training round. Finally, the edge devices used only had 4 GB RAM

and did not contain a GPU. There are more advanced edge devices available with additional

RAM and GPU capability to improve system performance.

98

D. FUTURE WORK

It is recommended that future work utilizes a dataset specifically geared towards

real world video surveillance detection and classification. VIRAT is a large-scale

surveillance video dataset that includes videos from stationary ground cameras and moving

aerial vehicles [53]. The Live Videos (LV) Dataset contains a large collection of video

surveillance sequences detecting dangerous events, such as car accidents, robberies,

kidnappings and other abnormal situations [54]. The current research focused on

determining if an edge device network can even support federated learning with a state-of-

the-art architecture, so it was determined that the utilized datasets be standard testbeds for

machine learning and federated learning.

Future work would also benefit from benchmarking additional COTS edge device

architectures to compare performance. Nvidia provides several options for embedded

hardware, including the Jetson Nano Developer Kit, Jetson TX2, and the Jetson AGX

Xavier. The Nvidia Jetson products include GPU capabilities and up to 32 terabit

operations per second (TOPS) on the AGX Xavier. The Google Coral provides a system-

on-module (SoM) development board with Edge TPU and compatible modules for

prototyping.

Additional research into security applications would be valuable to continued

federated fine-tuning research. Much of the research surrounding computer vision involves

image detection and classification; however, real-world security applications cannot waste

valuable resources on classifying each object in frame. Outlier detection utilizing

autoencoders would help resource constrained networks by only utilizing valuable

computation on anomalous activity. Additional sensors and data sources (e.g., audio,

network IDS, firewall logs) utilized in federated training could provide a more robust

understanding of insider threat in military security applications.

E. CONCLUSIONS

The results of the current research demonstrate that a distributed network of edge

devices can support an accurate deep learning model while addressing global model

security risks through a centrally pretrained federated fine-tuned model. Deep learning

99

applications are continually expanding and it is likely that deep learning will be

implemented more and more in DoD applications. Utilizing COTS hardware and open-

source software for federated fine-tuning allows the DoD to quickly develop and deploy

security applications that adapt to evolving threats, while preserving the security of the

application itself. In summary, this thesis has validated that federated fine-tuning supports

high accuracy from initial deployment, improves efficiency through a distributed network

of edge devices, provides stronger privacy through minimal parameter sharing, and has the

potential for off-grid deployment in tactical scenarios.

100

THIS PAGE INTENTIONALLY LEFT BLANK

101

LIST OF REFERENCES

[1] Navy Times, “Sailor who killed two in Pearl Harbor shooting spree identified,”
Dec. 6, 2019. [Online]. Available: https://www.navytimes.com/news/your-
military/2019/12/06/sailor-who-killed-two-in-pearl-harbor-shooting-spree-
identified/

[2] F. Chollet, Deep Learning with Python. Shelter Island, NY, USA: Manning
Publications, 2016.

[3] A. Geron, Hands-on Machine Learning with Scikit-Learn, Keras and Tensorflow:
Concepts, Tools and Techniques to Build Intelligent Systems. Sebastopol, CA,
USA: O’Reilley Media, 2019.

[4] J. Grus, Data Science from Scratch, 2nd ed. Sebastopol, CA, USA: O’Reilly
Media, 2019.

[5] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Cambridge, MA,
USA: MIT Press, 2016.

[6] Google, “Machine learning glossary.” Accessed May 13, 2020. [Online]
Available:https://developers.google.com/machine-learning/glossary

[7] X. Qi and C. Liu, “Enabling deep learning on IoT edge: Approaches and
evaluation.” Proc. of the Int. Conf. on Comput. -Aided Des., article no. 135, pp.
367–372, Nov. 2018. [Online]. doi: https://doi-
org.libproxy.nps.edu/10.1145/3240765.3243473

[8] G. Wang et al, “Interactive medical image segmentation using deep learning with
image-specific fine tuning.” IEEE Trans. on Med. Imaging, vol. 37, no. 7, pp.
1562–1573, July 2018. [Online]. doi: 10.1109/TMI.2018.2791721

[9] G. Tucker, M. Wu, M. Sun, S. Panchapagesan, G. Fu, and S. Vitaladevuni,
“Model compression applied to small-footprint keyword spotting.” InterSpeech
2016, pp 1878–1882, Sept. 8–12, 2016. [Online]. doi:
http://dx.doi.org/10.21437/Interspeech.2016-1393

[10] Keras, “Keras applications.” Accessed: Oct. 6, 2020. [Online]. Available:
https://keras.io/api/applications/

[11] H. Li, K. Ota, and M. Dong, “Learning IoT in edge: Deep learning for the internet
of things with edge computing.” IEEE Network, vol. 32, no. 1, pp. 96–101, Jan.
2018. [Online]. doi: 10.1109/MNET.2018.1700202

102

[12] TensorFlow, “Accelerating TensorFlow Lite on Qualcomm Hexagon DSPs.”
Accessed: Oct. 6, 2020. [Online]. Available:
https://blog.tensorflow.org/2019/12/accelerating-tensorflow-lite-on-
qualcomm.html

[13] TensorFlow, “TensorFlow Lite for microcontrollers.” Accessed: Oct. 6, 2020.
[Online]. Available: https://www.tensorflow.org/lite/microcontrollers

[14] TensorFlow, “Getting started with TensorFlow Lite.” Accessed May 20, 2020.
[Online]. Available: https://www.tensorflow.org/lite/guide/get_started

[15] F. Iandola, S. Han, M. Moskewcz, K. Ashraf, W. Dally, and K. Keutzer,
“SqueezeNet: AlexNet-Level accuracy with 50x fewer parameters and <0.5MB
model size,” 2016. [Online]. Available: arXiv:1602.07360.

[16] T. Tan and Q. Lu, “EfficentNet: Rethinking model scaling for convolutional
neural networks,” 2019. [Online]. Available: arXiv:1905.11946.

[17] A. Howard et al., “MobileNets: Efficient convolutional neural networks for
mobile vision applications,” 2017. [Online]. Available: arXiv:1704:04861.

[18] S. Nikouei, Y. Chen, S. Song, R. Xu, B. Choi, and T. Faughnan, “Smart
surveillance as an edge network service: From harr-cascade, SVM to a
lightweight CNN,” 2018. [Online]. Available: arXiv:1805.00331.

[19] TensorFlow, “Transfer learning and fine-tuning.” Accessed Aug. 13, 2020.
[Online]. Available:
https://www.tensorflow.org/tutorials/images/transfer_learning

[20] Stanford University, “Convolutional neural networks. Stanford University
CS231n convolutional neural networks for visual recognition.” Accessed: May
14, 2020. [Online]. Available: https://cs231n.github.io/convolutional-networks/

[21] B. McMahan and D. Ramage, “Federated learning: Collaborative machine
learning without centralized training data,” Google, Apr. 6, 2017. [Online].
Available https://ai.googleblog.com/2017/04/federated-learning-
collaborative.html

[22] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Aracs,
“Communication-efficient learning of deep networks from decentralized data,”
2017. [Online]. Available: arXiv:1602.05629.

[23] J. Konecny, B. McMahan, D. Ramage, and P. Richtarik., “Federated optimization:
Distributed machine learning for on-device intelligence,” 2016. [Online].
Available: arXiv:1610.02527.

103

[24] S. Caldas et al., “LEAF: A benchmark for federated settings,” 2017. [Online].
Available: arXiv:1812.01097

[25] A. Hard et al., “Federated learning for mobile keyboard prediction,” 2018.
[Online]. Available: arXiv:1811.03604.

[26] T. Yang et al., “Applied federated learning: Improving Google keyboard query
suggestions,” 2018. [Online]. Available: arXiv:1812.02903.

[27] A. Nilsson, S. Smith, G. Ulm, E. Gustavsson, and M. Jirstrand, “A performance
evaluation of federated learning algorithms.” DIDL ‘18, pp. 1–8, Dec. 10–11,
2018, Rennes, France. [Online]. doi:https://doi.org/10.1145/3286490.3286559

[28] H. Bonawitz et al., “Towards federated learning at scale: System design,” 2019.
[Online]. Available: arXiv:1902.010146.

[29] J. Stremmel and A. Singh, “Pretraining federated text models for next word
prediction,” 2020. [Online] Available: arXiv:2005.04828.

[30] Y. Gao et al., “End-to-end evaluation of federated learning and split learning for
internet of things, “ 2020. [Online]. Available: arXiv:2003.13376.

[31] B. Liu, B. Yan, Y. Zhou, Y. Yang, and Y. Zhang, “Experiments of federated
learning for COVID-19 chest x-ray images,” 2020. [Online]. Available:
arXiv:2007.05592.

[32] D. Liu and T. Miller, “Federated pretraining and fine-tuning of BERT using
clinical notes from multiple silos,” 2020. [Online]. Available: arXiv: 2002.08562.

[33] T. Hsu, H. Qi, and M. Brown, “Federated visual classification with real-world
data distribution,” 2020. [Online]. Available: arXiv:2003.08082.

[34] P. Kairouz et al., “Advances and open problems in federated learning,” 2019.
[Online]. Available: arXiv:1912.04977.

[35] M. Khodak, T. Li, L. Li, M. Balcan, V. Smith, and A. Talwalkar, “Weight sharing
for hyperparameter optimization in federated learning.” Int. Workshop on
Federated Learning for User Privacy and Data Confidentiality in Conjunction
with ICML 2020. [Online]. Available:
http://www.cs.cmu.edu/~mkhodak/docs/FL2020Workshop.pdf

 [36] J. Mills, J. Hu, and G. Min, “Communication-Efficient Federated Learning for
wireless edge intelligence in IoT.” IEEE Internet of Things J., vol. 7, no. 7, pp.
5986–5994, July 2020. [Online]. doi:10.1109/JIOT.2019.2956615

104

[37] A. Das and R. Brunschwiler, “Privacy is what we care about: Experimental
investigation of federated learning on edge devices.” AIChallengeIoT’19, Nov.
10–13, 2019, New York, NY. [Online].
doi:https:/doi.org/10.1145/3363347.3363365

[38] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference
attacks against machine learning models.” 2017 IEEE Symp. on Security and
Privacy, pp. 3–18, San Jose, CA, 2017. [Online]. doi:10.1109/SP.2017.41

[39] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the GAN:
Information leakage from collaborative deep learning,” 2017. [Online]. Available:
arXiv: 1702.07464.

[40] F. Turchini, L. Seidenari, T. Uricchio, and A. Del Bimbo, “Deep learning based
surveillance system for open critical areas.” Inventions, vol. 4, no. 69., 2018.
[Online]. doi:10.3390/inventions/3040069

[41] Y. LeCun, C. Cortes, and C Burges, “The MNIST database of handwritten digits.”
Accessed Aug. 14, 2020. [Online]. Available: http://yann.lecun.com/exdb/mnist/

[42] TensorFlow, “MNIST.” Accessed Aug. 16, 2020. [Online]. Available:
https://www.tensorflow.org/datasets/catalog/mnist

[43] G. Cohen, S. Afshar, J. Tapson, and A. Schaik, “EMNIST: An extension of
MNIST to handwritten letters,” 2017. [Online]. Available: arXiv:1702.05373.

[44] TensorFlow, “EMNIST.” Accessed Aug. 16, 2020. [Online]. Available:
https://www.tensorflow.org/datasets/catalog/emnist

[45] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild.”
2015 IEEE Int. Conf. on Comput. Vision (ICCV), Santiago, CL, 2015, pp. 3730–
3738. doi: 10.1109/ICCV.2015.425

[46] Z. Liu, P. Luo, X. Wang, and X. Tang, “Large scale CelebFaces attributes
(CelebA) dataset.” Accessed Aug 17, 2020. [Online]. Available:
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

[47] TensorFlow, “Convolutional neural network: TensorFlow core tutorials.”
Accessed: Aug. 13, 2020. [Online]. Available:
https://www.tensorflow.org/tutorials/images/cnn

[48] TensorFlow, “Transfer learning and fine-tuning: TensorFlow core tutorials.”
Accessed: Aug. 13, 2020. [Online]. Available:
https://www.tensorflow.org/tutorials/images/transfer_learning

105

[49] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “MobileNetV2:
inverted residuals and linear bottlenecks,” 2018. [Online]. Available:
arXiv:1801.04381.

[50] G. Hillar, Hands-On MQTT Programming with Python. Birmingham, AL, USA:
Packt Publications, 2018.

[51] Texas Instruments, “INA219 zero-drift, bidirectional current/power monitor with
I2C interface.” Accessed: Sep. 23, 2020. [Online]. Available:
https://www.ti.com/lit/ds/symlink/ina219.pdf?ts=1601005067674&ref_url=https
%253A%252F%252Fwww.google.com%252F

[52] K. Karkkainen and J. Joo, “Fair face: attribute dataset for balanced race, gender
and age,” 2019. [Online]. Available: arXiv: 1908.04913.

106

THIS PAGE INTENTIONALLY LEFT BLANK

107

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

	20Dec_Baxter_Matthew_First8
	20Dec_Baxter_Matthew
	I. INTRODUCTION
	A. Motivation
	B. Problem Description
	C. Research Questions
	D. Contributions
	E. Thesis Organization

	II. Technical Background
	A. Machine Learning Overview
	1. Machine Learning
	2. Deep Learning
	a. Cross Entropy Loss

	3. Deep Learning on Small, Low-Powered Edge Devices
	a. Overview of Deep Learning Applications on Edge Devices
	b. Challenges in Deep Learning on Small Devices

	B. Machine Learning Frameworks/Libraries
	1. TensorFlow
	2. TensorFlow Lite

	C. Modern Machine Learning Models
	D. Transfer Learning
	1. Feature Extraction
	2. Fine-Tuning

	E. Federated Learning
	1. Federated Learning Related Work
	a. Federated Learning Attacks and Security Vulnerabilities

	2. Federated Fine-Tuning on Edge Devices

	F. Potential Military Installation Applications and Improved Security
	G. Summary

	III. EXPERIMENTAL DESIGN and system set-up
	A. Thesis Experiments
	1. Single Node Centrally Trained
	2. Randomly Initialized Federated Averaging
	3. Centrally Pretrained Federated Fine-Tuning
	4. Extended Class Centrally Pretrained Federated Fine-Tuning
	5. MobileNetV2 Centrally Pretrained Federated Fine-Tuning
	6. End-to-End FedAvg Edge Device Network

	B. Datasets
	1. MNIST Dataset
	2. EMNIST Dataset
	3. CelebA Dataset

	C. Deep Learning Model Architectures
	1. MNIST and EMNIST CNN Models
	2. Randomly Initialized MNIST CNN
	3. Centrally Pretrained MNIST CNN
	4. Centrally Pretrained EMNIST CNN
	5. MobileNetV2 Federated Fine-Tuning Model

	D. Federated Averaging Algorithm
	E. Networking Protocol
	F. Federated Fine-Tuning Hardware Setup
	G. Edge Device Performance Tests on Memory, Computation, Communication and Power
	1. Memory
	2. Computation
	3. Communication
	4. Power

	IV. RESULTS AND ANALYSIS
	A. Overview
	B. Edge Device Performance Tests
	1. Computation Costs
	2. Power Costs
	3. Communication
	4. Memory

	C. Model Performance
	1. Randomly Initialized MNIST (Experiment II)
	2. Centrally Pretrained MNIST (Experiment III)
	3. Extended Class Centrally Pretrained EMNIST (Experiment IV)
	4. MobileNetV2 Centrally Pretrained CelebA (Experiment V)
	a. MobileNetV2 Centrally Pretrained Models
	b. MobileNetV2 Performance by Local Dataset Size
	c. MobileNetV2 Pretrained Model Fine-Tuning Layer Performance
	d. End to End FedAvg Edge Device Network

	V. CONCLUSIONS AND FUTURE WORK
	A. Summary
	B. Benefits
	C. Limitations
	D. Future Work
	E. Conclusions

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

