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ABSTRACT 

A persistent, precise, and adaptive security application is a requisite component to 

an effective force protection condition (FPCON) as U.S. military installations have 

become common targets for violent acts of terrorism and homicide. Current military 

security applications require a more automated approach as they rely heavily on limited 

manpower and limited resources. The current research developed an off-grid, deployed 

federated fine-tuning network composed of embedded hardware and evaluated embedded 

hardware system and model performance. Federated fine-tuning takes a 

centrally pretrained model and performs fine-tuning on a select number of model layers 

within a federated learning architecture. The federated fine-tuning models exhibited an 

average reduction in CPU load of 65.95% and an average reduction in current draw of 

56.18%. The MobileNetV2 model transmitted 81.59% fewer global model parameters 

across the network. The centrally pretrained MNIST model began training with an initial 

accuracy improvement of 53.94% over the randomly initialized model. The centrally 

pretrained MobileNetV2 model demonstrated an initial average accuracy of 90.75% at 

training round 0 and experienced a 3.14% overall performance improvement after 75 

federated training rounds. The results of the current research demonstrated that 

federated fine-tuning can improve system performance and model accuracy while 

providing stronger privacy and security against federated learning attacks. 
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I. INTRODUCTION 

A. MOTIVATION 

On December 04, 2019, a U.S. Navy Sailor killed two Department of Defense 

civilians and wounded a third at Pearl Harbor Naval Shipyard, before taking his own life 

with a service pistol [1]. Over the past several years, military installations have become 

common targets for violent acts of terrorism and homicide. In order to counter potential 

threats against military installations an effective security posture is necessary. To ensure 

effective security on military installations, security applications must be persistent, 

accurate and adaptive to evolving threats. Current military security applications rely on 

limited manpower and physical resources and exhibit a need for automating persistence, 

accuracy and adaptiveness of the overall security system.  

Artificial intelligence (AI) techniques are commonly used in image classification 

problems, such as video surveillance and traffic monitoring. However, once deployed these 

types of applications are static and not easily adapted to evolving classification problems 

without remote assistance. Emerging machine learning techniques, such as transfer 

learning and federated learning, make it possible for an image classification application to 

adapt and evolve to changing environmental conditions or change in the distribution of 

input features. It is proposed that machine learning can be integrated into a military security 

application in a way that supplements human tasks and improves the overall security 

posture of military installations.  

B. PROBLEM DESCRIPTION 

Base security systems capture and generate enormous amounts of private and 

sensitive data through base entry points and video security footage; for example, video 

footage that generates image data of vehicles and license plates, as well as common access 

card (CAC) readers that capture facial photos, DoD ID numbers, birthdays, etc. When any 

base security application is initially deployed, it must ensure that accurate information is 

provided to humans monitoring this data and that all data remains private and secure. This 

data is useful and could provide insights into identifying the pattern of life of base 
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personnel, adversarial anomalies, and potential hostile acts. However, these types of 

security systems (i.e., closed circuit TV, CAC readers, human security guards) are typically 

stovepiped, and require extensive human intervention to be used to build a larger, more 

encompassing picture of the surrounding environment.  

C. RESEARCH QUESTIONS 

• What are the primary limitations and costs incurred in training a deep 

learning model on an edge device?  

• How can these costs on embedded hardware be reduced through a 

federated learning architecture? 

• How can federated learning be deployed on an end-to-end edge device 

network?  

• How can a centrally pretrained state-of-the-art machine learning model be 

implemented on edge devices? 

• What are the advantages to using a pretrained model over a randomly 

initialized model? 

• How can on-device model fine-tuning be incorporated into federated 

learning on edge devices?  

D. CONTRIBUTIONS 

Three specific contributions are made in this work in developing a centrally 

pretrained federated fine-tuning model on edge device architecture in support of military 

installation security and insider threat detection: 

1. Demonstrated and quantified the performance of federated learning in 

terms of edge device limitations (memory, computation, communication, 

and power). 



3 

2. Proposed, demonstrated and quantified performance of a more secure 

approach to federated learning through a pretrained MobileNetV2 model 

deployed on edge devices where only a few top layers are trained. In this 

manner, a reduced number of parameters are communicated making it 

difficult for an adversary to intercept wireless network traffic and 

reconstruct all of the model parameters, since most are never transmitted 

and remain hidden on the edge nodes.  

3. Demonstrated an end-to-end deployment of federated learning on an edge 

device network, with all tasks performed by edge devices.  

E. THESIS ORGANIZATION 

Chapter II defines foundational machine learning concepts, transfer learning, and 

federated learning. It also includes federated learning-related work.  

Chapter III discusses the federated learning architecture design and overall research 

methodology.  

Chapter IV reviews the results and analysis of the experimentation, including 

metrics, findings, performance, and accuracy.  

Chapter V covers system limitations and possible enhancements. It concludes with 

the contributions of the thesis work and lists possible future work.  
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II. TECHNICAL BACKGROUND 

This chapter explores several key technical concepts relevant to machine learning, 

deep learning and federated learning that were utilized throughout the thesis process. First, 

an overview of machine learning, deep learning and its applications on edge  

devices. Next, a discussion of machine learning models, frameworks and techniques  

used throughout the experimentation process. Finally, a discussion of military security and 

potential applications of federated learning of video surveillance within a secured military 

installation.  

A. MACHINE LEARNING OVERVIEW 

Machine learning is a subfield of artificial intelligence, which started in the 1950s 

by computer science pioneers that sought to understand if computers could automate 

intellectual tasks typically conducted by humans [2]. Artificial intelligence is a general 

field in computer science that encompasses both machine learning and deep learning. 

Machine learning can be described as computers finding patterns in data to create 

algorithmic models for prediction. Common applications of machine learning models 

include predictions of internet activity patterns, social networks, ecommerce, advertising 

and healthcare [2]. Deep learning can be described as allowing computers to learn from 

experience by building a hierarchy of concepts describing the world, where each concept 

is defined through its relation to a simpler concept [3] (see Figure 1). Building and 

gathering knowledge through experience means this approach does not require human 

input to specify all the knowledge that the computer needs.  
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Figure 1. Artificial Intelligence, Machine Learning, 

and Deep Learning. 

1. Machine Learning 

Traditional models within machine learning include supervised learning (algorithm 

has access to labeled data), unsupervised learning (algorithm has no access to labeled data), 

and semi-supervised models (some labeled data is available to the algorithm). In supervised 

learning models are trained with input labeled data and tasks solved are broadly regression 

and classification. In unsupervised learning the goal is to find patterns in a dataset and a 

common task is clustering of data to discover classes. In semi-supervised learning 

algorithms are developed on partially labeled data when unlabeled data is freely available 

and labeled data is expensive to obtain [4], [5]. 

Another classification of machine learning algorithms is based on whether the 

model must be trained using all of the data (batch learning) or if the model can 

incrementally learn on the fly through continuously fed data (online learning). Primary 

challenges of machine learning include insufficient training data (machine learning 

algorithms require extensive data) or poor-quality data (data with significant errors, outliers 

or noise) reflected in issues with overfitting and underfitting. Overfitting occurs during 

model training when a model is fit so closely to training data that the model fits poorly to 

new data. Underfitting occurs during model training when the model fails to capture the 

intricacy of the training data [4], [5]. 
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2. Deep Learning 

Deep learning is a subfield of machine learning that applies hidden layers between 

the input layer and output layer to extract features from data and transform the provided 

data into different representation levels [2]. It is commonly used for computer vision, next 

word prediction, and speech recognition applications. Deep Learning is an iterative 

machine learning process that typically involves four steps executed sequentially during 

model training—gather a batch of sample training data, perform a forward pass through 

the layers of the neural network, execute a loss function evaluation, and perform a 

backpropagation calculation of the parameter error with a weights (parameter) update [2].  

At the start of the deep learning training process, weights are typically randomly 

initialized, which results in random transformations as the data passes through the network. 

Through each iteration of the training process, the weights are adjusted and the loss score 

decreases. Training stops when the loss, the difference between the predicted and target 

value, ceases decreasing [2] (see Figure 2).  

 
Figure 2. Deep Learning Training Cycle. Source: [2].  
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a. Cross Entropy Loss

Cross entropy loss is used throughout machine learning applications as a loss 

function for classification problems. The purpose of a loss function is to control the output 

of a neural network by measuring how far predicted output is from the actual or target 

output. The deep learning training loop seeks to identify weight values that minimize the 

loss function and produces outputs that are as close to the targets as possible. Common loss 

functions supported by TensorFlow/Keras include binary cross entropy, categorical cross 

entropy and sparse categorical cross entropy. Binary cross entropy is used when there are 

only two class labels (typically 0 and 1), with each example having a single floating-point 

value for each prediction. Categorical cross entropy is used when there are two or more 

label classes. Labels are provided as one-hot encoding, where a sparse vector has one target 

element set to 1 and all other elements set to 0. Sparse categorical cross entropy is used 

when there are two or more class labels and labels are provided as integers [2]. 

3. Deep Learning on Small, Low-Powered Edge Devices

In recent years, there has been a rise of interest in deployable machine learning 

technology, specifically deep learning, for internet of things (IoT) sensors and edge 

computing applications, such as image classification, image detection, anomaly detection, 

keyword spotting and next word prediction. However, IoT and edge devices generate large 

amounts of data that must be processed and often rely on central cloud servers to aggregate 

and process data. Concerns with implementing deep learning models on IoT devices 

include increased latency, decreased battery life of devices from high communication costs 

and privacy concerns if sensitive data is routinely transmitted.  

a. Overview of Deep Learning Applications on Edge Devices

The prevalence of edge and mobile device sensors, such as cameras, has greatly 

increased the importance of image recognition. Deep learning techniques, such as 

convolutional neural networks (CNN), have been shown to identify people, handwriting 

and objects with high accuracy. Traditionally, data resided on a cloud server for processing, 

but edge devices have been used more and more to process images [6]. Multiple testbed 
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image datasets are included with the TensorFlow API that are deployable for neural 

network implementation on edge devices with TensorFlow or TensorFlow Lite. 

Real-time video is a critical sensor in IoT and edge devices that range from self-

driving cars, to traffic safety, and surveillance. Until recently, accurately identifying 

objects from low-quality edge device video data had proven difficult. The computational 

capabilities of an edge device are a limiting factor in the edge devices ability to process 

camera images quickly. Qi and Liu used a quantized deep learning model with an integrated 

graphics processing unit (GPU) on a Nvidia Jetson TX2 and ARM processor to reach real-

time video processing speed [7]. They reduced, quantized, the CNN parameters to 16-bit 

float and applied pruning techniques to improve deep learning model deployment on edge 

devices.  

Image classification for medical imaging has yet to be proven accurate enough for 

automatic recognition in clinical use due to the variations in medical imaging—such as 

poor image quality, a variety of medical imaging protocols, and previously unseen 

variations in patients (i.e., zero-shot learning). However, it has proven useful for interactive 

recognition that incorporates human-in-the-loop approach. Wang et al. implemented a deep 

learning interactive segmentation framework in which the user selected a bounding box for 

images and scribbles. The bounding box allowed the user to select the image they wished 

to evaluate, and the scribbles were used for medical annotations. Their methodology was 

more robust than previous medical imaging applications and allowed for human 

intervention enabled fine-tuning of the model to improve accuracy [8].  

Automatic speech recognition is rapidly developing due to smartphones and tablets 

that interact with technology through speech. However, interest is growing in the 

development of offline speech recognition systems with all training occurring on the 

device, with no reliance on cloud processing. This process involves limited-vocabulary 

speech recognition—one method is known as keyword spotting. The majority of devices 

stream audio to cloud servers for processing; however, activation of these devices typically 

relies on keyword spotting on-device, such as “Alexa” or “Hey Google.” Tucker et al. 

found that they could reduce false alarms and misses without increasing CPU usage by 
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improving acoustic neural models with low-rank weight matrices and an ensemble of 

neural networks used during training [9]. 

b. Challenges in Deep Learning on Small Devices 

Deep learning models rely on a large number of parameters, which incur a high 

computational cost and require a large amount of memory on the device. MobileNet is a 

relatively small model with 4,253,864 total parameters, while a much larger model like 

VGG16 has 138,357,544 total parameters [10]. Edge device sensors, such as video cameras 

and environmental sensors can generate enormous amounts of data, which has traditionally 

been transferred to the cloud for further processing. Deep learning is being utilized more 

and more to approach this problem of extracting edge device data in noisy and complex 

environments without the need for cloud processing [11].  

Limiting factors of resource-constrained edge devices include memory, 

computational capability, communication costs and energy constraints. Random access 

memory (RAM) on edge devices can range from 512 MB to 8 GB with non-volatile 

memory commonly accessed via removable memory (e.g., micro SD card). Central 

processing units (CPU) can range from 160 MHz to 1.5 GHz with more advanced system-

on-a-chip (SOC) boards including an integrated GPU (e.g., Nvidia Jetson Nano). IoT 

devices are restricted in their functionality due to memory and computational constraints 

and require communication with a central device to transfer data and to receive operating 

instructions. Commonly used IoT networking protocols include Bluetooth, Zigbee, 

LORAN and MQTT. Deployed edge devices must minimize computational and high 

communication costs in order to consume power efficiently and ensure maximum uptime 

with minimal interruption. While machine learning inference and minimal model training 

was demonstrated on, the primary limiting factors of edge devices are in general preventing 

training of deep learning models on these devices. 

B. MACHINE LEARNING FRAMEWORKS/LIBRARIES 

Several machine learning frameworks have board support packages for deployment 

on edge devices—Caffe/PyTorch, MXNET, TensorFlow, and TensorFlow Lite. A machine 

learning framework is a library that makes developing machine learning applications easier 
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for users. Other common machine learning frameworks deployed on edge devices 

include—Theano, ML Kit (Google), and Core ML2 (Apple) [4]. There are numerous deep 

learning frameworks available, each with their own characteristic functionality and support 

for deployment on edge devices.  

1. TensorFlow 

TensorFlow is an open-source, large-scale, distributed machine learning platform 

for numerical computation on dataflow graphs. At TensorFlow’s core is optimized C++ 

code executing a Python computational graph. To increase efficiency, Tensorflow can 

break up a graph into chunks to be run in parallel on multiple CPU’s or GPU’s. Distributed 

computing is supported such that multi-million parameters neural networks can be split 

and trained across multiple servers [3]. In conjunction with Keras (a high-level API 

supporting TensorFlow), TensorFlow allows for easy machine learning model building and 

training. TensorFlow allows for model deployment on-device, in a browser or in the cloud, 

regardless of programming language. TensorFlow provides excellent support for 

embedded devices and a defined, clear path to deployment on edge devices through 

TensorFlow Lite and the TensorFlow Edge TPU API. Multiple chip OEMs support 

TensorFlow Lite, such as the Qualcomm Snapdragon SoCs, Arduino Nano 33 BLE, 

SparkFun Edge, and Espressif ESP32-DevKit [12], [13]. 

2. TensorFlow Lite 

TensorFlow Lite is designed to convert and run TensorFlow models on mobile, 

embedded and IoT devices. TensorFlow Lite workflow steps include: choice of a model, 

converting the model, running inference with the model, and optimizing the model for 

deployment to an edge device. A full TensorFlow model must be used for conversion into 

a TensorFlow Lite format, TensorFlow Lite cannot create or train a model. The TensorFlow 

Lite converter reduces the file size, provides optimization that does not affect accuracy, 

and increases speed of execution. The TensorFlow Lite interpreter is a library that executes 

operations on input data and provides access to the output from the TensorFlow Lite model. 

The TensorFlow Lite converter also support quantization by reducing TensorFlow 32-bit 

integers to 16- or 8-bit integers without significantly affecting accuracy [14]. 
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C. MODERN MACHINE LEARNING MODELS 

Deep learning models can include millions of parameters, which limits resource-

constrained edge devices in their ability to train solely on the device itself. Much effort has 

been put into the development of small and efficient convolutional neural networks that are 

deployable to mobile and edge devices. These efforts typically involve model compression 

techniques, such as quantization, hashing or pruning. Another technique involves directly 

trained small networks, common “small” networks that have been developed are 

SqueezeNet, EfficientNet, MobileNetV1 and MobileNetV2 [15], [16]. 

Howard et al. developed MobileNet, a convolutional neural network architecture, 

that minimizes latency of smaller-scale networks to run on edge devices. MobileNet uses 

depth-wise separable convolutions to construct a streamlined, lightweight deep neural 

network. Depth-wise separable convolutions are more computationally efficient than 

standard convolutions by factorizing a 3D convolution into two separate convolutional 

operations. The use of depth-wise separable convolutions enables MobileNet to be 32 times 

smaller than a traditional model like VGG16 and 27 times less computationally intensive, 

while only reducing accuracy by 1% [17]. Nikouei et al. improved inference on MobileNet 

by developing a lightweight CNN that is capable of detecting pedestrians in a real-time 

human surveillance system on a Raspberry Pi 3 [18]. 

D. TRANSFER LEARNING 

Transfer learning is a machine learning technique that decreases training time and 

computational costs by leveraging previously pre-trained models, such as the 

MobileNetV2 architecture on the ImageNet dataset and repurposes it for a task it was not 

originally trained for. When deep learning neural networks are trained on images the first 

few layers of the model always resemble the same low-level features (e.g., visual edges, 

colors, and textures), while the final layers in a neural network are specific to the dataset 

and the specific machine learning task (see Figure 3). In transfer learning the base layers 

serve as a foundation for a new machine learning model and the “general” features learned 

during the base layers are transferred and trained on a new “specific” machine learning 

model [19].  
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Figure 3. Image Features by Network Layer Depth. Source: [20]. 

1. Feature Extraction 

There are two primary methods of transfer learning from a pretrained network: 

feature extraction and fine-tuning. Feature extraction takes the representations learned by 

a previously trained network to extract useful features from new samples by taking the 

convolutional base and running new data through it to train a new classifier on top of the 

base. The lower layers of the convolutional bases are likely to learn general generic feature 

maps of an image (such as visual edges, colors and textures). This allows the early layers 

to be easily repurposed, while the final fully connected layers can be specific to the new 

task of the classifier [2] (see Figure 4).  

 
Figure 4. Feature Extraction with a New Classifier Trained on 

Top of the Convolutional Base. Source: [2]. 
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2. Fine-Tuning 

Fine-tuning improves performance further by releasing some of the model 

parameters in the layers of the base model for training (known as “unfreezing”) and jointly 

trains the base layer and the classifier that has been added to the convolutional base. Fine-

tuning can slightly refine the more abstract representations of the convolutional base, in 

order to make it more specific to the new task. The general steps to fine-tune a network 

involve 1) adding a new classifier on top of a pretrained network, 2) setting the 

convolutional base to non-trainable, 3) training the new classifier, 4) making some of the 

layers in the convolutional base trainable, and 5) training the entire network to include the 

added classifier [2] (see Figure 5). Feature extraction and fine-tuning are powerful 

techniques that allow for training accurate models with small training datasets, otherwise 

impossible task if one was to train from randomly initialized model. 

 
Figure 5. Fine-Tuning with the Last Convolutional Block of VGG16. 

Source: [2]. 

E. FEDERATED LEARNING 

Federated learning is a distributed approach to machine learning in which private 

client data residing on edge devices is completely decoupled from the training of the 

machine learning model and never transmitted off the edge device. In federated learning, 
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clients use private local data to train a global model and send the updated parameters to a 

central server. The central server aggregates and averages the parameters to generate an 

updated global model that is sent to clients. Once global parameters are aggregated, 

averaged and sent to edge devices, the central server discards the previously aggregated 

weights [21] (see Figure 6). Commercial approaches to federated learning commence 

model training with a randomly initialized model that improves through many successive 

rounds of training. Utilizing this methodology requires a large amount of training rounds 

to achieve a model with acceptable accuracy.  

 
Federated learning steps: A) Edge device trains model locally with private, local data, B) Edge device local 
updates are sent to the server, C) local updates are aggregated to form a new global update, D) Global update 
is sent to edge devices and the process repeats. 

Figure 6. Federated Learning Overview.  

Advantages of federated learning approaches compared to a conventional 

distributed cloud-centered machine learning framework include: efficient use of 

bandwidth, data privacy since labeled training data is never transmitted to the server, and 

low latency resulting from model training occurring on the edge devices. In a federated 
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learning architecture, less information is required to be transmitted to a central server 

resulting in a reduction of communication costs. Participating nodes only need to send 

updated parameters for aggregation rather than raw data, which significantly reduces 

communication costs. Assuming that participating nodes are non-malicious, user data is 

kept private as it resides locally on the end device and is never sent across the network. A 

federated learning scheme improves latency as inference can occur directly on the device 

as opposed to a remote cloud server. Traditional approaches depend on cloud services to 

process data and make inferences, while end nodes in a federated learning network can 

perform real-time execution on device [21], [22]. 

1. Federated Learning Related Work 

Konecny et al. developed the federated SVRG (stochastic variance reduced 

gradient) algorithm as a practical alternative to traditional approaches to the federated 

optimization problem [23]. The federated optimization problem arises due the fact that as 

data rapidly increases, a single node cannot store an entire dataset. This requires a 

distributed computational framework, in which the training data is distributed across a 

cluster of nodes. During each round of federated learning the federated SVRG algorithm 

performs a full gradient computation on the server node, all clients downloading the new 

global model, followed by several distributed stochastic gradient descent (SGD) updates 

by each client, and SGD client updates shared with the server to be aggregated to form an 

updated global model. Konecny et al. determined that federated SVRG is computationally 

expensive and therefore most applicable for sparse convex problems and not neural 

networks since they yield non-convex functions [23]. 

McMahan et al. developed the FedAvg algorithm as a practical solution for 

federated learning that is based on iterative model averaging [22]. Their federated learning 

scheme starts with the server deploying a randomly initialized model and distributing 

hyperparameters (number of epochs per round, batch size, learning rate and learning rate 

decay) to a fraction of the clients. The clients train the global model received from the 

server with their local data and send the updated weights back to the server. The server 

averages all received weights and repeats the process with a new fraction of clients. 
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McMahan et al. used two different neural network architectures for experimentation—an 

MNIST 2NN with two hidden layers and MNIST CNN with two 5x5 convolutional layers. 

Their work indicated that FedAvg can train high quality models within a relatively small 

number of federated learning training rounds [22]. 

Caldas et al. expanded on the work of McMahan et al. by developing LEAF, a 

benchmark for federated learning settings. LEAF is a modular benchmarking framework 

that includes a suite of publicly available federated datasets, an evaluation algorithm, and 

a set of reference implementations focused on identifying federated learning obstacles [24]. 

They currently include the following open-source datasets for benchmarking—EMNIST 

(image classification), Shakespeare (next character prediction), Twitter (sentiment 

analysis), CelebA (image classification), Synthetic Dataset (classification), and Reddit 

(language modeling). Within their framework, the client nodes are simulated and not 

intended for embedded deployment. Their evaluation metrics within LEAF included 

number of FLOPS (federated learning operations), the number of bytes 

downloaded/uploaded, and weighted accuracy across devices (e.g., determining if each 

device is equally important in the network). They demonstrated that their open-source 

datasets were modular and able to be incorporated into additional simulated experimental 

pipelines [24].  

Hard et al. successfully trained a recurrent neural language model that used 

federated averaging for next-word prediction on the Google Gboard [25]. They found that 

their randomly initialized next-word prediction federated learning model outperformed an 

identical server-trained next-word prediction model. Yang et al. used federated averaging 

in a commercial, global-scale setting to train, evaluate and deploy a federated learning 

GBoard keyboard search suggestion model without directly accessing local user data [26]. 

The model setup included two stages—a server-side baseline model to generate keyboard 

query suggestions and a federated learning triggering model that removed low quality 

queries suggested by the server baseline model. Their work was one of the first successful 

end-to-end examples of federated learning deployed in the real-world [26].  

Nilsson et al. benchmarked three federated learning algorithms (federated SVRG, 

FedAvg, and CO-OP) and compared their performance against a traditional centralized 
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approach to distributed machine learning frameworks that rely on a central server for data 

storage [27]. Using McMahan’s MNIST 2NN model as a baseline, they identified that 

FedAvg performed the best with comparable results to the traditional approach. However, 

they identified that FedAvg did not perform as well with non-i.i.d. (independent and 

identically distributed) data [27].  

Bonawitz et al. identified several challenges and solutions to building a scalable 

system for federated learning [28]. Federated learning converges slower than traditional 

ML designs and increased parallelism of clients would decrease the convergence time of a 

federated learning model. Another limitation of federated learning is that clients may not 

have new data to train on and when called upon by the server and they will be training on 

previously seen data, which requires device scheduling to ensure that only new data is used 

for training. They determined that even though federated learning does not require user 

data to be communicated, uploading local model updates still requires a significant 

communication cost and compression techniques will be important to bring federated 

learning to production [28]. 

A large volume of research on federated learning utilizes random initialization of 

the models to begin the federated learning process. However, this paradigm requires a large 

number of rounds to reach convergence. Starting with a pre-trained model and using 

transfer learning to improve the model would reduce the number of rounds for 

convergence. Stremmel and Singh found that a pretrained word embedding model 

converged faster than a randomly initialized word embedding model across 1,500 rounds 

of training [29]. Their LSTM neural network consisted of four layers, nearly eight million 

trainable parameters, and 31.3MB in size. They did not find that using a pretrained model 

exceeded performance of the randomly initialized federated averaging approach; however, 

they did demonstrate that pretraining provides an initial boost in accuracy over random 

initialization [29]. 

Gao et al. investigated federated learning and SplitNN (split neural network) on 

edge devices to compare learning performance and device overhead [30]. SplitNN is a 

federated learning method in which a neural network is split into two sections vertically. 

The first few layers are on the IoT device and the remaining layers reside with the server 
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(e.g., cloud). The client and server cooperatively train the entire network. Their dataset 

consisted of sequential time-series data and the model architecture had four 1D CNN layers 

and two dense layers. The first two 1D CNN layers were trained on the Raspberry Pi 3B 

and the remainder of the model trained on the server (laptop). They determined that FL 

was a more practical recommendation for an IoT architecture and state of the art models 

could not be trained on resource-constrained edge devices [30]. 

Liu et. al investigated recognition of COVID-19 pneumonia CXR images and 

compared four machine learning models within a federated learning framework [31]. One 

of the models they utilized was a MobileNetV2 model. All of their experimentation was 

simulated with all virtual clients trained on one machine using an NVIDIA GPU. They 

determined that ResNeXt (similar to ResNet18) achieved the highest performance in 

classification of COVID -19 chest x-ray images [31].  

Liu and Miller demonstrated that a bidirectional encode representations from 

transformers (BERT) model could be pretrained and fine-tuned in a federated manner [32]. 

BERT has been developed for natural language processing (NLP); however, their research 

shows it is possible to pretrain and fine tune within a federated setting. 

Hsu, Qi and Brown analyzed two large-scale real-world datasets (species and 

landmark classification) for real-world problems in a federated setting [33]. They applied 

a virtual client scheme with 10 clients selected every federated round. A MobileNetV2 

model with a GroupNorm layer and softmax classifier was pretrained on ImageNet. Their 

experimentation demonstrated that large-scale visual classifiers can be trained using a 

federated approach. Through their research, they determined that federated learning with 

pretraining required fewer communication rounds than training from random state to 

achieve a high accuracy [33]. 

Executing multiple rounds of training with various hyperparameters on resource 

constrained edge devices is cost prohibitive. Federated learning adds additional 

hyperparameters to the tuning process, such as training rounds, number of clients per 

training round, global model update algorithm rules, etc. Kairouz et al. identified 

hyperparameter tuning as an open problem in federated learning [34]. Khodak et al. were 
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one of the first to analyze hyperparameter tuning within federated learning and developed 

FedEx as a method to enable federated learning hyperparameter tuning for a variety of 

federated learning algorithms [35].  

Mills, Hu and Min adapted the FedAvg algorithm with an adam optimizer and 

compression to produce communication-efficient federated averaging (CE-FedAvg), 

which reduced the total data uploaded to the server and reduced the number of training 

rounds when compared to similarly compressed FedAvg [36]. They demonstrated that they 

could reach a target accuracy in up to 6x fewer rounds than FedAvg. Additionally, they 

implemented their experiments on 10 RPi with a desktop computer acting as a server over 

a wireless network. They determined that the server work was small and had a minimal 

impact on training time, with the RPi requiring a majority of the training time. Their edge 

device network was able to reach a target accuracy in up to 1.7x less time than FedAvg 

[36]. 

Das and Brunschwiler demonstrated the feasibility to train deep neural networks on 

Raspberry Pi as edge devices. They trained a CNN, LSTM, and MLP on the MNIST dataset 

[37]. They determined that the CNN could achieve 85% accuracy within two minutes of 

training, while exchanging less than 10MB of data per edge device. Their CNN consisted 

of two Conv2D layers, one max pooling layer and one fully connected layer with 47,000 

total parameters. Their MLP was comprised of three Fully Connected Layers and had 

1,700,000 parameters. Their network consisted of five Raspberry Pi and a MacBook Pro 

as the central server. Their research also indicated that 95% accuracy could be achieved 

within six federated training rounds with additional epochs per training round on each 

device [37]. 

a. Federated Learning Attacks and Security Vulnerabilities 

Multiple adversarial attacks against federated learning have been identified, 

including data poisoning, model update poisoning, and model evasion attacks [34]. 

Federated learning has introduced new attack surfaces within adversarial machine learning 

since the datasets and model training are distributed across a network. Data poisoning 

occurs when an attacker cannot directly corrupt the server node, so they manipulate client 
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data to corrupt the global model [34]. Model update poisoning typically occurs when an 

attacker can directly alter the output of the clients to bias the local model update towards 

their objective. Common methods to protect against adversarial attacks on federated 

learning schemes include encryption, accuracy checking, and weight update statistics [34].  

Another security concern with federated learning is the ability to reconstruct 

valuable model data from the parameters shared between the clients and server node. 

Shokri et al. demonstrated that they could determine if an output was a member of the 

model’s training set by only using information leaked by the machine learning model [38]. 

Hitaj, Ateniese and Perez-Cruz developed a generative adversarial network (GAN) that 

was able to exploit federated learning models and generate prototypical samples of the 

target’s private dataset [39]. A requirement of their approach to attack the federated 

learning model relies on local federated learning nodes improving accuracy over time. 

They also demonstrated that their GAN attack is successful against common security 

techniques, such as differential privacy or other common obfuscation methods. However, 

they acknowledge that a model only releasing a portion of the global parameters provides 

stronger privacy and thwarts their attack [39].  

2. Federated Fine-Tuning on Edge Devices 

Previous research was identified that implemented various federated fine-tuning 

techniques; however, all of the identified research was simulated and not actually deployed 

to edge devices. Federated fine-tuning is a machine learning technique that takes a centrally 

pretrained global model with desired accuracy and then deploys the pretrained model to 

edge devices to be trained on the device’s private local data incrementally through iterative 

fine-tuning training rounds. This scheme has the potential to reduce the limiting factors of 

edge devices (memory, computation, communication, and energy costs), while enabling a 

network of edge devices to train a complex deep learning model that was traditionally 

outside the scope of edge device capabilities. Federated fine-tuning may reduce: 

• Memory limitations by distributing the dataset across multiple nodes and 

minimizing the RAM necessary to support training a deep learning model.  



22 

• Computational limitations by reducing on device CPU load through 

minimal training rounds.  

• Communication costs by starting with a pretrained trained model that 

requires a limited number of training rounds to achieve high accuracy and 

only requiring a portion of the global model to be shared.  

• Energy costs by minimizing the memory, computational and 

communication costs necessary to conduct on device training of a deep 

learning model.  

F. POTENTIAL MILITARY INSTALLATION APPLICATIONS AND 
IMPROVED SECURITY 

Deep learning technology has facilitated the automation of surveillance and insider 

threat networks that were traditionally operated by humans, with high accuracy in 

identification and anomaly detection in real time [40]. However, these systems are not 

typically designed to evolve after deployment and require a central cloud server for large 

datasets or additional model training. Federated learning technology provides a framework 

for machine learning models to evolve and adapt after deployment and allows for large 

datasets to be distributed across multiple nodes.  

Many federated learning approaches within the commercial setting utilize 

randomly initialized machine learning models that improve over a large number of iterative 

training rounds. In contrast, DoD security applications must be accurate, adaptive upon 

initial deployment of the architecture, and protect sensitive data collected on military 

installations. A centrally pretrained federated learning architecture places an emphasis on 

model performance at the time of deployment, security of the global model parameters, 

and optimization of edge device performance. It accomplishes this through distribution of 

the dataset, distribution of computational costs, and a minimization of edge device 

limitations.  

Although private data is not transmitted in a federated learning framework, it is still 

possible for adversaries to reconstruct the raw data from the global parameters that are 
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transmitted. Federated learning can expose training results, such as parameter updates from 

an SGD algorithm, and leak private information when combined with a data structure (e.g., 

image pixels). Given these risks, federated learning needs to safeguard the full global 

model during communication with the central server and ensure communication occurs as 

few times as possible.  

Transfer learning is able to leverage a previously pre-trained model with high 

accuracy to support a new task it was not trained for. In conjunction with transfer learning, 

federated learning allows a distributed network architecture to incrementally improve 

while ensuring that sensitive data remains on the device and is never transmitted across the 

network. Combining transfer learning and federated learning can support military security 

and insider threat systems in deployment of a highly accurate model that will continue to 

improve throughout its lifetime.  

Federated fine-tuning addresses security risks of the full global model since only a 

small number of parameters are shared. In traditional federated learning parameters of the 

global model are shared, but in federated fine-tuning only a portion of the parameters of 

the global model are shared. Employing federated fine-tuning addresses security risks on 

the global model since only a select number of global parameters are shared with a majority 

of the global parameters remaining hidden on device. Thus, making it difficult for an 

adversary to intercept the shared parameters when transmitted and reconstruct the full 

global model [39].  

There is a need for more complex models and networks designed for vision tasks 

to be deployed in support of military installation security. Military installation security 

applications have the advantage of leveraging persistent security footage and CAC 

information to identify an individual or vehicle. This information can be used to label 

previously unseen data on the fly to improve the accuracy of the security system. It is 

feasible that future applications of military installation security implement a centrally 

pretrained federated fine-tuning model to ensure persistence, accuracy and adaptability. In 

this model, some of the nodes within the architecture would serve as primary client nodes 

and perform federated fine-tuning in conjunction with inference on the data stream. 

Secondary client nodes would support image inference, anomaly detection, and support 
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additional tasks as demanded. The secondary client nodes would not have access to CAC 

data or perform federated learning, but would still monitor for security anomalies through 

the shared global model and send alerts requesting human analysis and follow-on training. 

The server node would provide local model aggregation and global model distribution. If 

the primary server node is compromised or the network experiences degradation, a 

minimally tasked secondary client node could undertake the role of the server. The 

workload of the server is minimal enough to be supported by the secondary client nodes 

(see Figure 7).  

 
Nodes A, C and E are primary client nodes, Nodes B and D are secondary client nodes, 
and the server node coordinates local model aggregation and global model distribution. 
Primary client nodes can use labeled data, such as CAC information, vehicle license 
plates, etc., for federated training.  

Figure 7. Notional Federated Learning Base Security Architecture.  
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G. SUMMARY 

Over the last few years, deep learning has become an important implementation in 

edge devices in support of real-time video, image classification, medical and smart home 

advancements. With deep learning applications expanding, they are likely to proliferate  

in military applications as well. Deep learning models are well suited to process the  

large amounts of data generated by edge devices and sensors. However, the primary 

limitations of commercial-off-the-shelf (COTS) edge devices—memory, computational, 

communication and power costs—have been unable to support the high costs of training 

an accurate deep learning model on device. It is proposed that a distributed network of edge 

devices can maintain an accurate deep learning model while addressing global model 

security risks through a centrally pretrained federated fine-tuned deep learning model.  
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III. EXPERIMENTAL DESIGN AND SYSTEM SET-UP 

This chapter describes the six experiments conducted to support the findings in this 

thesis, the datasets used, the machine learning models developed for the experimentation, 

the federated averaging algorithm utilized, networking protocol used, hardware setup for 

experimentation, and performance tests employed during experimentation.  

A. THESIS EXPERIMENTS 

Six experiments were designed to evaluate deployment of federated learning 

utilizing TensorFlow on a COTS edge device architecture and to analyze how performance 

is impacted as an edge device federated learning architecture increases in complexity (see 

Table 1).  

1. Single Node Centrally Trained 

Utilizes a randomly initialized MNIST CNN and serves as the baseline for training 

a deep learning model on an edge device (see Table 2). All training and evaluation occurred 

on one edge device. Experiment I is not a test of federated learning, rather it is a baseline 

to compare performance costs and potential gains when implementing a federated learning 

scheme on edge devices.  
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Table 1. Overview of Experiments I through VI. 

Experiment Objective Dataset Parameters 
Shared 

I. Single Node
Centrally Trained

Baseline DL model trained on one edge 
device to identify edge device costs and 
limitations incurred when training a DL 
model. 

MNIST 0% 

II. Randomly
Initialized
Federated
Learning

Multi-node federated learning CNN 
architecture to identify how edge device 
costs and limitations are reduced in a 
multi-node edge device architecture.  

MNIST 100% 

III. Centrally
Pretrained
Federated Fine-
Tuned

Multi-node federated learning 
architecture where weights are 
pretrained on a central server with only 
a select number of parameters shared 
for federating averaging in order to 
reduce edge device costs/limitations and 
improve security.  

MNIST 40.26% 

IV. Extended
Class Centrally
Pretrained
Federated Fine-
Tuned

Multi-node pretrained federated 
learning architecture with a more 
complex classification problem over 
MNIST. EMNIST is TensorFlow’s 
recommended federated learning 
testbed dataset. 

EMNIST 59.48% 

V. MobileNetV2
Centrally
Pretrained
Federated Fine-
Tuned

Multi-node pretrained federated 
learning architecture utilizing a state-of-
the-art model. This experiment analyzed 
the impacts of local dataset size, type of 
centrally pretrained model and model 
layer depth from which to conduct 
federated fine-tuning.  

CELEBA 18.42%–
39.61% 

VI End-to-End 
FedAvg Edge 
Device Network 

End-to-end multi-node pretrained 
federated learning architecture utilizing 
a state-of-the art model. All hardware is 
composed of battery-powered edge 
devices. Includes a secondary client 
node for predictions and anomaly alerts 
for accuracies below specified threshold. 

CELEBA 18.45% 

Experimentation begins with a baseline model that trains a deep learning model on one edge device 
and concludes with a multi-node edge device network training a MobileNetV2 model in a federated 
learning architecture. 



Table 2. MNIST CNN Model Architecture for Experiments I-III. 
Adapted from [47]. 

Layer Shape Total Parameters 
Conv2D (3, 3, 32, 64) 320 
Max Pooling (64,) 0 
Conv2D (3, 3, 64, 64) 18,496 
Max Pooling (64,) 0 
Conv2D (576, 64) 36,928 
Flatten (64,) 0 
Dense (64, 10) 36,928 
Dense (10,) 650 

This architecture is equivalent to the validation architecture used by McMahan et al. in validating 
the FederatedAveraging algorithm. 

2. Randomly Initialized Federated Averaging

Utilizes a randomly initialized MNIST CNN and serves as the federated averaging 

baseline for federated learning (see Table 2). All model training occurs on the client edge 

devices and federated averaging occurs on the server edge device. Experiment II is focused 

on determining the viability of performing federated learning solely on edge devices and 

how the distribution of data and computation on multiple edge device nodes improves 

performance over a single node training a CNN.  

3. Centrally Pretrained Federated Fine-Tuning

Utilizes the centrally pretrained MNIST CNN parameters (see Table 2) and serves 

as a minimal implementation of a centrally pretrained federated fine-tuning 

architecture (Experiment III). Experiment III performs federated fine-tuning on the 

final two dense layers (37,578 trainable parameters) of the model. The focus is on 

determining if a pretrained model can decrease computational, communication and 

power costs on the edge devices. Federated fine-tuning also provides stronger security 

since a reduced number of the total global parameters shared. This will decrease the 

probability of an adversary reconstructing the global model from the transmitted 

parameters as only two layers are shared, and the base layers remain fully hidden on the 

edge devices [39].  
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4. Extended Class Centrally Pretrained Federated Fine-Tuning

Utilizes the centrally pretrained EMNIST CNN weights (see Table 3) to test the 

performance of an extended class federated fine-tuning architectures on edge devices. The 

EMNIST CNN trains on the final two dense layers (81,854 trainable parameters) of the 

EMNIST CNN model. The focus is on presenting the edge devices with a more complex 

classification problem and the ability to achieve suitable accuracy with a minimal number 

of training rounds. This design will decrease the ability for an adversary to reconstruct the 

global model, since only 59.5% of the parameters are sent to the server and the remaining 

parameters remain hidden on the edge devices [39].  

Table 3. Experiment IV EMNIST CNN Model Architecture. 
Adapted from [47]. 

Layer Shape Total Parameters 
Conv2D (3, 3, 32, 64) 320 
Max Pooling (64,) 0 
Conv2D (3, 3, 64, 64) 18,496 
Max Pooling (64,) 0 
Conv2D (576, 128) 36,928 
Flatten (128,) 0 
Dense (128, 62) 73,856 
Dense (62,) 7,998 

This architecture is roughly equivalent to the validation architecture used by McMahan et al. to 
validate the FederatedAveraging algorithm with the final dense layer expanded to 62 classes vice 
10 classes for the MNIST and CIFAR10 datasets used by McMahan et al. 

5. MobileNetV2 Centrally Pretrained Federated Fine-Tuning

Utilizes the centrally pretrained MobileNetV2 parameters (see Table 4 and 5) 

to test the performance and viability of a state-of-the-art federated fine-tuning 

architecture achieving high accuracy. The MobileNetV2 Model fine tunes a select 

number of MobileNetV2 layers and the classification head. This design only shares 

18.42%-39.61% of the global parameters, depending on the MobileNetV2 layers 

fine-tuned, with the remaining parameters remaining hidden on the edge devices. 

30 



31 

Table 4. Experiment V MobileNetV2 Model Architecture. 
Adapted from [48]. 

Layer Shape Total Parameters 
MobileNetV2 (1, 1, 320, 1280) 2,257,984 
Global Avg Pooling (1280,) 0 
Dropout (1280, 1) 0 
Dense (1,) 1,281 
The MobileNetV2 and classification head have 2,259,265 total parameters. 

Table 5. Experiment V MobileNetV2 Block 16 and Classification Head 
Architecture. Adapted from [48]. 

Layer Shape Total Parameters 
Expand Conv2D (1,1,160,960) 153,600 
BatchNorm (960,) 3,840 
ReLU (960,) 0 
Depthwise Conv2D (3,3,960,1) 8,640 
BatchNorm (960,) 3,840 
ReLU (960,) 0 
Project Conv2D (1,1,960,320) 307,200 
BatchNorm (320,) 1,280 
Conv2D (1,1,320,1280) 409,600 
BatchNorm (1280,) 5,120 
ReLU (1280,) 0 
Global Avg Pooling (1280,) 0 
Dropout (1280, 1) 0 
Dense (1,) 1,281 

6. End-to-End FedAvg Edge Device Network

This final experiment utilizes the centrally pretrained MobileNetV2 model in 

Experiment V (see Table 5 and 6). A secondary client node is added to make predictions 

from a camera triggered by movement in the vicinity. The entire architecture utilizes RPi 

4B that run off battery power in an off-grid network. This network includes anomaly alert 

detection for predictions below the specified threshold for follow on human directed 

analysis. This experiment serves as a proof of concept that a COTS FedAvg network can 

function fully off-grid on battery power. 



Table 6. Experiment VI MobileNetV2 Model Architecture. 
Adapted from [48]. 

Layer Shape Total Parameters 
MobileNetV2 (1, 1, 320, 1280) 2,257,984 
Global Avg Pooling (1280,) 0 
Dropout (1280, 2) 0 
Dense (2,) 2,562 
The MobileNetV2 and classification head have 2,260,546 total parameters. 

B. DATASETS

Three datasets were chosen to evaluate deep learning performance on edge devices 

ranging from a standard machine learning benchmark dataset, to a federated learning 

testbed dataset, to a large-scale face attribute dataset.  

1. MNIST Dataset

The MNIST dataset is the standard benchmark for machine learning, classification 

and computer vision research. MNIST is a relatively small database of handwritten digits 

(see Figure 8). The dataset consists of 10 classes of 28x28 pixel images. There are 60,000 

training examples and 10,000 test examples [41]. Experiments in the current research 

randomly partitioned the data into 750 training (600 train, 150 validation) and 100 testing 

examples, matching the data sample sizes used by McMahan et al. and other benchmark 

federated averaging research [22]. Since the focus of the current research is federated 

learning edge device performance, data was assumed independent and identically 

distributed (IID) and not divided by class for non-IID client partitions.  
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All MNIST images are 28x28 pixel greyscale 
and evenly divided into 10 classes. 

Figure 8. MNIST Dataset Sample Images. Source: [42].  

2. EMNIST Dataset 

The extended MNIST (EMNIST) dataset is a dataset of handwritten characters 

derived from the NIST Special Database 19, that has been converted to 28x28 pixel images 

with a structure that directly matches the MNIST dataset. There are 62 classes with 697,932 

training examples and 116,323 test examples (see Figure 9). EMNIST is TensorFlow’s 

recommended small testbed for federated learning research, as it has a natural user-level 

partitioning [43]. Experimentation in the current research used a separate partitioned 

sample of 45,000 EMNIST images from the full EMNIST dataset on each edge device. 

 
All EMNIST images are 28x28 pixel 
greyscale and divided into 62 classes. 

Figure 9. EMNIST Dataset Sample Images. Source: [44].  
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3. CelebA Dataset 

The CelebFaces attributes dataset (CelebA) is a large-scale dataset of facial 

attributes with 202,599 facial images, each with 40 binary attributes annotated. The dataset 

covers background clutter and large pose variations (see Figure 10). CelebA is able to be 

employed as a training and test set for multiple computer vision tasks—face attribute 

recognition, face detection, face landmark localization and face synthesis [45]. 

Experiments in the current research saved a random sample of resized (96 ,96 ,3) CelebA 

images on each edge device with the edge device data partitioned into test, validation and 

train datasets. The dataset was resized to conserve memory on the edge devices and this is 

also the minimum input shape for MobileNetV2.  

 
CelebA images were resized to (96, 96, 3) in order to conserve memory on the edge 
devices.  

Figure 10. CelebA Sample Images. Source: [46].  

C. DEEP LEARNING MODEL ARCHITECTURES 

Four deep learning model architectures were developed to evaluate federated 

learning performance on edge devices ranging from a TensorFlow convolutional neural 

network image classification model [47] to a state-of-the-art MobileNetV2 model [48]. 
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1. MNIST and EMNIST CNN Models 

Three Convolutional Neural Network (CNN) models were developed to perform 

and evaluate federated learning on the MNIST and EMNIST datasets. Each model 

developed for the current research utilized the Keras API, and were equivalent to the 

validation architecture used by McMahan et al. in validating the FederatedAveraging 

algorithm. These models are not state-of-the-art models, but are sufficient to show the 

relative performance of federated learning on an architecture of edge devices. The model 

architecture is a TensorFlow CNN [47] with three 3x3 convolution layers—the first with 

32 channels and the second and third with 64 channels. Each of the first two convolutional 

layers is followed by a 2x2 max pooling, the third convolutional layer is followed by a 

flatten layer, and two fully connected layers. The MNIST CNN’s have a total of 93,332 

parameters and the EMNIST CNN has 137,598 total parameters (see Table 2).  

2. Randomly Initialized MNIST CNN 

The MNIST model for Experiment I and II was designed to begin model training 

with random initialization of the weights, as is the standard in federated learning (see Table 

2 and 3). A majority of academic research utilizes random initialization of the weights for 

federated learning research. This federated learning methodology of random initialization 

assumes that the server has no access to client data and seeks to ensure privacy.  

3. Centrally Pretrained MNIST CNN 

For Experiment III, an MNIST CNN was centrally pretrained on Google CoLab 

with 750 MNIST image samples (600 train samples, 150 validation samples) and designed 

with a callback for early stopping to cease training when the model stopped showing 

improvement. This model followed the same model architecture as the randomly initialized 

models (see Table 2). Validation accuracy was monitored for a minimum change of less 

than 1e-2 for five epochs. This was done so that the model did not excessively overfit and 

could still benefit from federated learning. The model early stopped after nine epochs with 

a validation loss of 0.4540 and validation accuracy of 0.8810. All weights were saved in 

.h5 format and transferred to the edge devices for central pretrained federated fine-tuning.  
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4. Centrally Pretrained EMNIST CNN 

For Experiment IV, an EMNIST CNN was pretrained on a MacBook laptop with 

350,000 EMNIST train images and 60,000 test images and designed with the same early 

stopping metrics as the MNIST CNN (see Table 3). The model early stopped after 14 

epochs with a validation loss of 0.4223 and a validation accuracy of 0.8006. All weights 

were saved in .h5 format and transferred to the edge devices for central pretrained federated 

fine-tuning.  

5. MobileNetV2 Federated Fine-Tuning Model 

For Experiments V and VI, the pretrained MobileNetV2 model utilized the built in 

MobileNetV2 base architecture included with the Keras API, using the ImageNet weights 

with classification head removed [48], [49]. A global average pooling 2D layer, dropout 

layer and fully connected layer were added as a classification head (see Table 4, 5, and 6). 

The CelebA dataset was used with all images resized (96, 96, 3) for memory optimization 

on the Raspberry Pi. Three separate MobileNetV2 models were designed and centrally 

pretrained on a MacBook laptop in order to evaluate the ideal parameters for a centrally 

pretrained MobileNetV2 model on edge devices. Each of the three models were set up for 

binary classification on gender. It was designed with the same early stopping metrics as 

the MNIST and EMNIST CNN models. Weights were saved in .h5 format and transferred 

to the edge devices for central pretrained federated fine-tuning.  

Blocks 0 thru 16 of the MobileNetV2 model included with the Keras API follow 

the same structure as block 16 (see Figure 11). 
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All MobileNetV2 Blocks included with the Keras API follow the same structure 
throughout. The above diagram includes the base architecture of 17 blocks and an 
out Conv2D Layer. A classification head is added to complete a MobileNetV2 
model. 

Figure 11. MobileNetV2 Model Block Structure. Adapted from [48].  

D. FEDERATED AVERAGING ALGORITHM 

The federated averaging (FedAvg) algorithm, developed by McMahan et al., 

coordinates training through a central server that maintains the global model 𝑤𝑤𝑡𝑡, where t 

signifies the communication round. Model optimization occurs on the edge device using 

stochastic gradient descent (SGD). The FedAvg algorithm used in the current research had 

four primary hyperparameters: batch size B, number of local epochs E, learning rate η, and 

number of training rounds TR. Additional hyperparameters for Experiment V and VI 

include: pretrained model to use for federated learning, MobilenetV2 layer to fine tune 
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from, number of training samples per training round, number of test samples for evaluation, 

and number of validation samples for validation (see Figure 12). One communication round 

of FedAvg consists of:  

1. Server node selects hyperparameters and distributes the current global 

model to edge devices 

2. Client nodes train an updated local model on data residing locally on the 

edge device 

3. Client nodes send the updated local parameters to the server node 

4. The server node aggregates and averages the client node local parameters 

and generates a new global model to be retransmitted to client nodes  

 

1) Primary client nodes receive hyperparameters and global model from server, 2) 
primary client nodes train model on local data, 3) primary client nodes send local 
model update to server node, and 4) server aggregates local models and distributes 
new global model to primary client nodes. 

Figure 12. Edge Device Federated Learning Architecture Overview.  
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E. NETWORKING PROTOCOL 

All networking communication between edge devices was executed with message 

queued telemetry transport (MQTT) protocol. MQTT is an open source IoT networking 

protocol that is lightweight and suitable for use on low power single board computers. It 

uses the TCP/IP stack and follows a publisher/subscriber model (see Figure 13), which 

makes it suitable for edge device computing on lower power sensors and embedded 

hardware [50]. MQTT is an asynchronous protocol making it very useful in federated 

learning scenarios, whereas HTTP is a synchronous protocol that lacks scalability and 

relies on a request/response pattern of communication. MQTT is a widely accepted IoT 

protocol that is supported and utilized by major applications such as IBM, Amazon AWS 

IoT, and Facebook Messenger.  

 
In the current research the server node acted as the MQTT broker and the client 
nodes acted as the MQTT clients. 

Figure 13. MQTT Protocol Communication Flow. Adapted from [50].  
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Throughout the current research, the server node was utilized as the MQTT broker 

and coordinated local updates and global model transmissions. All parameters were sent as 

binary strings and reshaped by the edge devices once received. MQTT has several options 

to improve security, including TLS with CA, server keys, and certificates. For additional 

security, the MQTT broker can also establish restricted topics and implement an access 

control list (ACL). The maximum packet size allowed by MQTT is 250MB; however, the 

largest parameter transmitted in the current research was 1.63 MB [50].  

F. FEDERATED FINE-TUNING HARDWARE SETUP 

The hardware setup for Experiments I through V consisted of three Raspberry Pi 

4B’s—two primary client nodes and one server node (see Figure 14). The server node 

conducted federated averaging as well as functioning as the MQTT broker for the network. 

The primary client nodes performed model training on local data that was randomly chosen 

from the client dataset during each training round in order to simulate multiple clients. The 

network router used was a Netgear Nighthawk AC1900. It is believed that this research is 

the first to have an edge device perform the role of the server node. This architecture makes 

it possible for federated learning architecture to be deployable and non-reliant on a remote 

cloud server or GPU enabled server node.  
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Hardware setup includes 2 primary client nodes, 1 server node, and 1 router. 1) NodeA and NodeB 
perform federated averaging on local dataset with global model, 2) NodeA and NodeB send local updates 
to server node, 3) server node aggregates local updates and publishes a new global update to all nodes. 

Figure 14. Experiment I-V Hardware Setup.  

The architecture for Experiment VI consisted of five Raspberry Pi 4B—two 

primary client nodes, one secondary client node, one server node and one router (see Figure 

15). The router was a Raspberry Pi 4B with the hostapd access point software package 

installed. This network was an isolated off-grid network with no internet access, ensuring 

the system was completely deployable. It is believed that this research is the first end-to-

end edge device federated learning architecture with all edge device hardware components. 

This testbed architecture demonstrates a federated learning architecture can be tactically 

deployed to remote areas without dedicated power or internet access.  
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Hardware setup includes 2 primary client nodes, 1 secondary client node, 1 server node, and 1 router. 
Primary client NodeA and NodeB perform federated averaging on local dataset, 2) NodeA and NodeB 
send local updates to server node, 3) server node aggregates local updates and publishes a new global 
update to all nodes, 4) secondary client NodeC predicts on local data using the most up to date global 
model, 5) NodeC sends an anomaly alert for any predictions below specified threshold, and 6) server 
node logs anomaly alert for follow on human analysis and additional model training. 

Figure 15. Experiment VI Hardware Setup.  

During all testing of experiments I through VI, edge devices were powered with 

10,000 mA power banks to simulate an end-to-end deployment of a COTS edge device 

architecture. For software, the RPi network used TensorFlow 2.2 and Python 3.6 with 

MQTT as the networking protocol.  

G. EDGE DEVICE PERFORMANCE TESTS ON MEMORY, 
COMPUTATION, COMMUNICATION AND POWER 

Performance tests were designed to evaluate and compare memory, computation, 

communication and power performance of federated learning on edge devices. Each 

performance test was designed to compare performance when executing federating 
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learning and performance when the edge devices were idle. A two-minute idle period was 

evaluated prior to the start of the federated training rounds and a two-minute idle period 

was recorded after the final federated training rounds were completed (see Figure 16). In 

between the idle periods, each performance test included 20 federated training rounds for 

evaluation of federated learning.  

 
Each performance test began with a 2-minute idle period, followed by 20 federated 
learning training rounds and concluded with a 2-minute idle period. 

Figure 16. Edge Device Performance Test Overview.  

The following system metrics were captured and analyzed to monitor edge device 

performance on memory, computation, communication and power: 

1. Memory 

Metrics were captured by running Linux SysStat SAR commands and averaging 

recorded memory statistics (see Table 7). SAR is part of the SysStat package, which is 

composed of utilities designed to monitor system performance and usage activity.  

Table 7. Edge Device Limitation Performance Metrics.  

Edge Device Limitation  Performance Metric 
Memory RAM total, RAM free, RAM buffered, swap space total, 

swap space free, memory read/write speeds, context 
switches 

Computation CPU load, CPU temp, seconds per machine learning epoch, 
seconds per machine learning step 

Communication Bytes received per second (BRS), bytes transmitted per 
second (BTS) 

Power Current (mA), power (mW), supply voltage (V) 
Metrics were recorded using Linux SysStat SAR commands, Raspberry Pi vcgencmd commands, 



44 

Keras API stats, and the INA219 current shunt and power monitor IC.  

2. Computation  

Metrics were captured by running Linux SysStat SAR commands and averaging 

computation statistics (see Table 7), as well as averaging training metrics from the Keras 

API fit method.  

3. Communication 

Metrics were captured by running Linux SysStat SAR commands and averaging 

recorded communication statistics (see Table 7) as well as averaging training time metrics 

from the Keras API fit method.  

4. Power 

Performance was monitored through a RPi 3B and a Texas Instruments INA219 

current shunt and power monitor IC (see Table 7). The INA219 is able to monitor both 

shunt voltage drop and bus supply voltage, with programmable conversion times and 

filtering with accuracy within 0.5% [51]. A python script was written to capture bus voltage 

(V), bus current (mA), power (mW), shunt voltage (mV), and supply voltage (V) to a CSV 

file for analysis. Bus voltage reads the voltage between GND and V, and is the total voltage 

seen by the circuit under test (supply voltage—shunt voltage) [51]. Shunt voltage reads the 

voltage drop across the INA219 shunt resistor. Bus current is derived by Ohms Law from 

the measured shunt voltage. 
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IV. RESULTS AND ANALYSIS 

A. OVERVIEW 

Significant memory, computational, and power costs are incurred when training a 

deep learning model on a single edge device, such as the Raspberry Pi. A solution to reduce 

these costs and improve performance is a multi-node federated learning architecture 

composed of edge devices. The current research demonstrated that a federated learning 

architecture can be successfully deployed on edge devices with TensorFlow Version 2.2. 

TensorFlow Federated, TensorFlow’s federated learning API, is currently available for 

simulation only and based on an exhaustive investigation in current research it was not 

identified that federated learning had been implemented solely on an edge device network. 

Research was identified with federated learning on edge devices that used TensorFlow, but 

with a more powerful device (e.g., workstation with GPU or laptop) used to support and 

coordinate the architecture, not a full IoT system.  

The primary findings in the current research include: 

• A multi-node network of edge devices executing federated learning can 

improve edge device system performance over a traditional deep learning 

model trained on a single edge device. 

• Centrally pretrained models can achieve high accuracy in a minimal 

number of federated training rounds, whereas a randomly initialized model 

requires a large number of federated training rounds to achieve high 

accuracy.  

• A state-of-the-art machine learning model (MobileNetV2) can be centrally 

pretrained and deployed on a network of edge devices for federated fine-

tuning and improve memory, computation, communication and power 

costs on embedded hardware. 

• A centrally pretrained model shares a minimal percentage of the global 

model, which improves the security of the model from a federated learning 
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attack on the transmitted parameters. When the whole global model is 

transmitted in a federated learning network it is susceptible to an 

adversarial federated learning attack. 

• A federated learning architecture can be composed completely of battery-

powered COTS edge devices, thus making it fully deployable and off-grid 

for tactical scenarios.  

• A true IoT networking protocol (MQTT) can be used to support deep 

learning and federated learning applications. This makes it possible for 

severely resource constrained embedded hardware and sensors to be 

directly involved in expanded applications involving real-time federated 

learning.  

• An off-grid battery-powered COTS embedded hardware federated 

learning architecture was developed as a prototype to analyze and quantify 

the capabilities and limitations of federated learning on edge devices, 

which can be used for follow-on research.  

B. EDGE DEVICE PERFORMANCE TESTS 

Memory, computation, communication and power performance tests were 

conducted in conjunction with Experiments I-V to determine the impacts of multi-node 

federated learning networks. Experiment VI is an extension of Experiment V and it is not 

included in this particular section. To analyze edge device performance, a two-minute idle 

period was evaluated prior to the start of the federated training rounds and a two-minute 

idle period was recorded after the final federated training rounds were completed. In 

between the idle periods, each edge device performance test included 20 federated training 

rounds for evaluation of federated learning.  

1. Computation Costs 

Computation costs were calculated through Linux SysStat SAR commands and RPi 

vcgencmd commands. Average CPU load percentage is the CPU used for processes owned 
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by normal users and system processes [48]. Average CPU temperature is the core 

temperature of the BCM2835 RPi Broadcom SoC. Seconds per epoch is the time it takes 

to make one full cycle through the training data for the specified federated training round. 

Milliseconds per step is the time it takes to process one batch of examples to perform one 

gradient update. The single node centrally trained model (Experiment I) experienced an 

average CPU load of 86.5% across all four cores and an average CPU temperature of 51.1 

Celsius while training the MNIST CNN model (see Figure 17 and 18). The same RPi edge 

device had an average CPU load of .25% and an average CPU temperature of 43.0 Celsius 

while at idle (see Table 8).  
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Average CPU load percentage is measured across all 4 cores of the RPi and is the CPU load used 
for processes owned by normal users and system processes. Primary client nodes in Experiments II-
V saw an average 72.99% reduction in CPU load over Experiment I. 

Figure 17. RPi 4B Average CPU Load for Experiments I-V.  
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Average CPU temperature is measured from the core temperature of the BCM2835 SoC. 
Experiments II-V saw a 11.61% reduction in CPU temperature over Experiment I. 

Figure 18. RPi 4B Average CPU Temperature for Experiments 
I-V.  
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Table 8. RPi Computational Costs for Experiments I-V.  

 Experiment Average 
CPU Load 
% 

Average CPU 
Temperature 

Seconds 
per Epoch 

Milliseconds 
per Step 

I Single Node Centrally 
Trained 

86.5% 51.1 403 400 

II Randomly Initialized 
(Primary Client 
Node) 

5.09% 44.25 3 105 

II Randomly Initialized 
(Server Node) 

1.5% 44.3 n/a n/a 

III Centrally Pretrained 
(Primary Client 
Node) 

11.1% 45.49 3 105 

III Centrally Pretrained 
(Server Node) 

1.07% 44.35 n/a n/a 

IV Extended Class 
Centrally Pretrained 
(Primary Client 
Node) 

28% 45.49 24 157 

IV Extended Class 
Centrally Pretrained 
(Server Node) 

.93% 44.23 n/a n/a 

V MobileNetV2 
Centrally Pretrained 
(Primary Client 
Node) 

49.26% 45.83 5 1000 

V MobileNetV2 
Centrally Pretrained 
(Server Node) 

3.93% 44.41 n/a n/a 

Average CPU load is measured across all four RPi CPU cores. Average CPU temp is the core temperature of 
the RPi BCM2835 SoC. The Keras API fit method records the seconds per epoch and milliseconds per epoch 
each epoch. Experiment I experienced an average CPU load of 86.5%, while all other experiments experienced 
greatly reduced CPU loads.  

 

All primary client nodes and server nodes for Experiments II-V experienced 

significantly reduced average CPU loads and CPU temperatures over the centrally trained 

single node (see Table 8). The MobileNetV2 primary client nodes experienced the highest 

CPU load (49.26%) for Experiments II-V, but trained on over 23 times as many parameters 
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as Experiment I. The server nodes experienced the least impact on CPU load, which 

indicates that the server nodes could be tasked with additional responsibilities and tasks as 

required. 

Additionally, the single node model (Experiment I) experienced much longer 

machine learning training times (403 seconds per epoch) as it is responsible for training a 

full dataset on one device. The federated client nodes have a smaller local dataset than a 

centrally trained model (29,625 train images and 4,950 test images each), which results in 

reduced training time. However, this does not limit the federated nodes ability to learn. 

They are able to leverage the other edge device’s local data through the distributed global 

model.  

2. Power Costs 

Power measurements were based on the percentage increase from when the RPi 

was operating at idle versus when it was performing federated learning training rounds. 

The server nodes were serving as the MQTT broker during testing and the primary client 

nodes were serving as MQTT subscribers during testing. Battery life was based on a 

nominal measurement from a 10,000 mA external battery pack. Performance was 

monitored through a RPi 3B and a Texas Instruments INA219 current shunt and power 

monitor IC. A python script was developed to capture bus voltage (V), bus current (mA), 

power (mW), shunt voltage (mV), and supply voltage (V) and write the results to a .CSV 

file for analysis. 

The single node centrally trained model for Experiment I experienced a 33.37% 

increase in current draw when training the deep learning model, which resulted in a 

nominal expected battery life of 14 hours and 28 minutes (see Figure 19 and 20). All 

primary client nodes in Experiments II-V drew less current than the single node centrally 

trained model (see Table 9), which would result in a longer battery life before recharging 

is necessary. The primary client nodes train on a much smaller dataset, since the dataset is 

distributed across multiple nodes, which impacts current draw from model training.  

The server nodes saw a very minimal increase in current draw over idle, which 

would allow server nodes to handle additional tasks as required (see Figure 21-25). The 
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server nodes were tasked with two responsibilities during federated training—global model 

aggregation/distribution and MQTT broker of the network. This minimal impact on current 

draw of the server nodes indicates that in a degraded environment the role of the server 

node could be passed to a node not as heavily tasked (i.e., the secondary client nodes of 

Experiment VI).  
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The primary client nodes in Experiments II-V drew 64.00% less current than the 
single node setup in Experiment I. 

Figure 19. RPi 4B Current Consumption for Experiments I-V.  
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The primary client nodes in Experiment II-V showed a 21.37% improvement in 
nominal battery life over the single node setup in Experiment I. 

Figure 20. RPi 4B Nominal Battery Life for Experiments I-V.  
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Table 9. RPi Power Costs for Experiments I-V. 

Experiment Bus Current 
(mA) 

Power 
(mW) 

Shunt 
Voltage (V) 

Nominal 
Battery Life 

I Single Node Centrally 
Trained 

+33.37% +31.64% +33.45% 14h28m 

II Randomly Initialized 
(Primary Client Node) 

+4.16% +3.88% +4.24% 18h49m 

II Randomly Initialized 
(Server Node) 

+9.04% +8.56% +8.86% 20h27m 

III Centrally Pretrained 
(Primary Client Node) 

+9.04% +6.84% +7.18% 17h55m 

III Centrally Pretrained 
(Server Node) 

+7.86% +7.50% +7.96% 20h45m 

IV Extended Class 
Centrally Pretrained 
(Primary Client Node) 

+18.27% +17.65% +19.18% 16h28m 

IV Extended Class 
Centrally Pretrained 
(Server Node) 

+5.44% +5.09% +5.66% 21h08m 

V MobileNetV2 
Centrally Pretrained 
(Primary Client Node) 

+16.57% +15.07% +16.19% 17h02m 

V MobileNetV2 
Centrally Pretrained 
(Server Node) 

+8.93% +8.76% +9.66% 21h09m 

Bus current, power, and shunt voltage are the average percentage increase over idle when executing 
federated training rounds. Battery life is the nominal battery life of a 10,000 mAH rechargeable 
battery pack based off bus current. 
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Current draw was measured by the INA219 every second during the duration of the 
test. The power performance test for Experiment I began with a two-minute idle 
period, then 10 model training epochs, followed by a two-minute idle period. The 
single node centrally trained model in Experiment I exhibited a 33.37% increase in 
current draw when performing model training. 

Figure 21. RPi Current Consumption for Experiment I.  
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Primary client node (top) and server node (bottom). The power performance test for 
Experiment II began with a two-minute idle period, then 20 rounds of federated 
learning training rounds, followed by a two-minute idle period. The primary client 
node exhibited a 4.16% increase in current draw over idle and the server node 
exhibited a 9.04% increase in current draw over idle. The spikes in current draw are 
MQTT transmissions across the network.  

Figure 22. RPi Current Consumption for Experiment II. 
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Primary client node (top) and server node (bottom). The power performance test for 
Experiment III began with a two-minute idle period, then 20 rounds of federated 
learning training rounds, followed by a two-minute idle period. The primary client 
node exhibited a 9.04% increase in current draw over idle and the server node 
exhibited a 7.86% increase in current draw over idle. The spikes in current draw are 
MQTT transmissions across the network. 

Figure 23. RPi Current Consumption for Experiment III. 
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Primary client node (top) and server node (bottom). The power performance test for 
Experiment IV began with a two-minute idle period, then 20 rounds of federated 
learning training rounds, followed by a two-minute idle period. The primary client 
node exhibited a 18.27% increase in current draw over idle and the server node 
exhibited a 5.44% increase in current draw over idle. The spikes in current draw are 
MQTT transmissions across the network. 

Figure 24. RPi Current Consumption for Experiment IV. 
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RPi primary client node (top) and server node (bottom). The power performance test 
for Experiment V began with a two-minute idle period, then 20 rounds of federated 
learning training rounds, followed by a two-minute idle period. The primary client 
node exhibited a 16.57% increase in current draw over idle and the server node 
exhibited a 8.93% increase in current draw over idle. The spikes in current draw are 
MQTT transmissions across the network. 

Figure 25. RPi Current Consumption for Experiment V. 

3. Communication 

Communication costs evaluated the percentage of parameters shared, packets 

transmitted/received per second, and kB transmitted/received per second (see Figure 26 

and 27). The randomly initialized federated learning model (Experiment II) sent 100% of 

the global model parameters. Since it was randomly initialized when federated training 

began all weights must be transmitted so that it can improve through iterative federated 

learning training rounds. Each of the centrally pretrained models (Experiments III–V) only 

send a fraction of the model parameters, since the parameters have been trained prior to 

deployment on the edge devices. Only sending a percentage of the global parameters allows 
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a significant portion of the model to remain hidden on the client nodes (see Table 10). As 

identified by Hitaj, Ateniese and Perez-Cruz, this structure of minimal parameter makes it 

incredibly difficult for an adversary to reconstruct the global model from the transmitted 

parameters [39]. 

Additionally, the centrally pretrained models achieve high accuracy in fewer 

training rounds than a randomly initialized model. The centrally pretrained MNIST model 

(Experiment III) primary client nodes had an average accuracy of 96.50% after the first 

federated training round. The centrally pretrained EMNIST model (Experiment IV) 

primary client nodes began with an average accuracy of 77.80% after the first federated 

training round. The centrally pretrained MobileNetV2 model (Experiment V) primary 

client nodes began with an average accuracy of 91.75% after the first federated training 

round. This initial boost in model accuracy over a randomly initialized model enhances 

security since a minimal number of communication rounds are required with the server 

node to establish suitable accuracies. Hitaj, Ateniese and Perez-Cruz determined that an 

adversarial attack that attempt to reconstruct the global model by intercepting the 

transmitted parameters requires iterative training rounds with increasing accuracy [39]. 

The MobileNetV2 model (Experiment V) transmits 64.43% more packets per 

second than the average of the other three models. It also receives 66.62% more packets 

per second than the average of the other three models. The MobileNetV2 model transmits 

416,001 parameters every federated training round, which is 18.41% of the total model 

parameters. While the MobileNetV2 sends the most model parameters of the models in the 

current research, it sends the smallest percentage of respective global parameters. This 

results in a higher communication cost than the other models, but provides the highest 

security of all the federated learning models in the current research.  
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The MobileNetV2 model (Experiment V) transmits 64.43% more packets per 
second than the overall average of the other three models. 

Figure 26. RPi 4B Transmitted Packets Per Second for 
Experiments II-V.  
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The MobileNetV2 model (Experiment V) receives 66.62% more packets per second 
than the overall average of the other three models. 

Figure 27. RPi 4B Received Packets Per Second for 
Experiments II-V. 



Table 10. RPi Communication Costs for Experiments II-V. 

Experiment Parameters 
Shared 

Tx 
Packet 
per 
second 

Rx 
Packet 
per 
second 

Rx Kb 
per 
second 

Tx Kb 
per 
second 

II Randomly Initialized 
(Primary Client Node) 

100.00% 5.70 5.92 5.68 6.42 

III Centrally Pretrained 
(Primary Client Node) 

40.26% 5.04 7.06 5.42 5.79 

IV Extended Class 
Centrally Pretrained 
(Primary Client Node) 

59.49% 7.09 8.27 6.93 7.87 

V MobileNetV2 Centrally 
Pretrained (Primary 
Client Node) 

18.41% 16.71 21.22 20.01 24.82 

Parameters shared is the fraction of global parameters shared across the network for federated 
learning. Packets Tx/Rx per second and Kb Tx/Rx per second are captured through Linux SysStat 
SAR commands and averaged across 20 federated training rounds. 

4. Memory

Memory costs evaluated the percentage of memory (RAM and swap) used, 

percentage of memory needed for current workload in relation to the amount of total 

memory (RAM and swap), number of kb paged in by the system per second, number of kb 

paged out by the system per second, number of page faults (major and minor) made by the 

system per second, and the total number of context switches per second (see Table 11) 

[48]. 

The primary client nodes in Experiments II-V demonstrated comparable 

impacts on memory (except the number of page faults) to Experiment I; however, the 

server nodes demonstrated very minimal memory utilization for the workload placed 

on them (see Figure 28 and 29). The server nodes sent over 400,000 parameters per 

training round in Experiment V with minimal impacts on memory. This minimal impact 

on memory opens the possibility for server nodes to be tasked with a larger workload or 

additional tasks as demanded.  

64 
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Table 11. RPi Memory Costs for Experiments I-V.  

 Experiment Memory 
Used 

% 
Commit 

Pages 
in per 
sec 

Pages 
out per 
second 

Faults 
per 
second 

Context 
Switches 
per sec 

I Non-Distributed 
Centrally Trained 

19.81 
 

20.46 0.23 33.08 29311.94 7401.11 

II Randomly 
Initialized 
(Primary Client 
Node) 

25.36 24.55 0.01 8.95 4098.62 645.08 

II Randomly 
Initialized (Server 
Node) 

2.72 3.89 0.01 18.02 41.92 753.49 

III Centrally 
Pretrained 
(Primary Client 
Node) 

25.23 24.58 2.56 9.33 9155.24 874.20 

III Centrally 
Pretrained 
(Server Node) 

2.70 3.95 0.00 15.72 41.94 692.21 

IV Extended Class 
Centrally 
Pretrained 
(Primary Client 
Node) 

19.72 20.09 527.78 9.10 21689.50 1714.72 

IV Extended Class 
Centrally 
Pretrained 
(Server Node) 

2.71 3.89 0.00 9.17 93.15 812.05 

V MobileNetV2 
Centrally 
Pretrained 
(Primary Client 
Node) 

25.91 26.13 1.95 1.95 6367.87 592.66 

V MobileNetV2 
Centrally 
Pretrained 
(Server Node) 

2.58 3.13 3.92 3.92 2.71 532.84 

Memory costs evaluated the percentage of memory (RAM and swap) used, percentage of memory 
needed for current workload in relation to the amount of total memory (RAM and swap), number 
of kb paged in by the system per second, number of kb paged out by the system per second, number 
of page faults (major and minor) made by the system per second, and total context switches [48]. 
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Memory used is the percentage of memory (RAM and swap) used averaged over 20 
federated training rounds. The primary client nodes did not show a reduction in 
memory costs; however, the server nodes showed minimal impacts on memory used 
indicating that the server nodes could be tasked with additional requirements. 

Figure 28. RPi 4B Memory Percentage Used for Experiments I-V.  
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Context switches are averaged over 20 federated training rounds. The MobileNetV2 
primary client node demonstrated an equivalent number of context switches, which 
is likely do to the large CelebA datasets on each primary client node that are required 
for federated learning. 

Figure 29. RPi 4B Context Switches Per Second for Experiments I-V. 
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C. MODEL PERFORMANCE 

Model performance for Experiments II-V was performed using the Keras API 

evaluate method on test dataset partitions that were disjoint from train datasets. 

Experiments II-III utilized well-performing hyperparameters (E=1, B=10, η = .15) from 

McMahan et al. research. Experiments II and III used the same dataset and model 

architecture as McMahan et al., so it was determined to use the same hyperparameters. 

Experiment IV’s dataset is an expanded version of Experiment II and III’s dataset and used 

the same model architecture but composed of 52 additional classes (62 total classes). A 

reduced learning rate and increase in local edge device epochs, similar to Nillson et al., 

was utilized in order to achieve improved performance (E=5, B=20, η = .088). 

Experiment V included a validation dataset to assist in determining effective 

hyperparameters since this was a much more complex model architecture. Nilsson et al. 

performed extensive research determining the optimal hyperparameters for the FedAvg 

algorithm and determined that the optimal hyperparameters were E=10, B=20, and η = 

.088. The current research used these hyperparameters as a starting point and ran multiple 

federated training rounds on similar hyperparameters (E =1, 5, and 10; B=1, 10, 20; and 

η=.01, .05, .15), using validation accuracy as a benchmark for hyperparameter 

choice. Ultimately it was determined that Nilsson et al.’s optimal hyperparameters 

performed best on the tested hyperparameters; however, E=5 was chosen to conserve 

battery life as multiple epochs increase current draw during federated training rounds.  

In Experiments II-V, one federated training round consisted of: 

1. Primary client nodes perform model training on a random partition of their 

local training dataset (see Figure 30) 

2. Primary client nodes evaluate model performance utilizing local test 

dataset 

3. Primary client nodes extract updated local model weights 
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4. Primary client nodes send the updated local model to the server node 

5. Server node aggregates and averages the local model weights 

6. Server node sends the updated global model to the primary client nodes 

7. Primary client nodes update their local model weights with the newly 

updated global model 

 
Figure 30. Federated Training Round Cycle for Experiments II-V.  
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Each federated learning experiment experienced improvements in accuracy through 

federated averaging. The pretrained models did not experience large improvements, but 

did show improvements from the initial training round. This is similar to the findings of 

Stremmel and Singh in their research on a pretrained federated fine-tuned long short-term 

memory (LSTM) model on next word prediction (NWP) using a Stack Overflow dataset 

[29]. Although accuracy improved, it was observed that there was increased variability in 

accuracy and test loss across training rounds for the pretrained models. This variability is 

likely due to the fact that the base layers are frozen and the weights in these layers do not 

update during federated training rounds. These frozen weights are reliant on the previous 

training they experienced during centralized pretraining. If pretraining was not optimally 

performed or not enough data was used to pretrain, these weights are likely not fully 

optimized. While this federated learning structure may be limited in its ability to improve, 

it provides high accuracy from early training rounds and improves security since only a 

select number of parameters are shared.  

1. Randomly Initialized MNIST (Experiment II) 

The randomly initialized MNIST model (Experiment II) utilized train accuracy, 

train loss, test accuracy and test loss to analyze model performance. Primary client node 

performance was evaluated individually and average performance between nodes was also 

captured. NodeA had an initial test accuracy of 18.00% after federated training round 0, 

while NodeB had an initial test accuracy of 57.00%. After 150 federated training rounds, 

NodeA had an overall average test accuracy of 98.37% and NodeB had an overall average 

test accuracy of 95.75% (see Figure 31). The average accuracy across the primary client 

nodes was 97.06% (see Figure 32). Average training loss for the primary client nodes at 

federated training round 0 was 1.978 and after 150 federated training rounds average 

training loss dropped to 0.1026 (see Figure 33).  
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NodeA had an initial test accuracy of 18% after federated training round 0, while 
NodeB had an initial test accuracy of 57%. After 150 federated training rounds, 
NodeA had an overall average test accuracy of 98.37% and NodeB had an overall 
average test accuracy of 95.75%. 

Figure 31. Randomly Initialized MNIST CNN (Experiment II) 
Individual Node Test Accuracy.  
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The average accuracy across the primary client nodes was 97.06%. 

Figure 32. Randomly Initialized MNIST CNN (Experiment II) 
Average Accuracy for NodeA and NodeB.  
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Average training loss for the primary client nodes at federated training round 0 was 
1.635 and after 150 federated training rounds average loss dropped to 0.1069. 

Figure 33. Randomly Initialized MNIST CNN (Experiment II) 
Training Loss for NodeA and NodeB.  

These results demonstrate that with two primary client nodes executing federated 

learning can achieve high accuracy with a relatively small training dataset used per 

federated training round. The dataset partitions were the same sizes utilized by McMahan 

et al. The current research utilized two primary Client nodes per federated training round 

with a new random training data partition per round, while McMahan et al. utilized 10 

client nodes per round from a pool of 100 client nodes. The deviation in the current research 

was made in order to move federated learning from a simulated environment, where a large 

number of client nodes can be utilized, to a deployed federated learning environment that 

includes a limited hardware setup.  
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2. Centrally Pretrained MNIST (Experiment III) 

The centrally pretrained MNIST model (Experiment III) utilized train accuracy, 

train loss, test accuracy and test loss to analyze model performance. Primary client node 

performance was evaluated individually and average performance between nodes was also 

captured. NodeA had an initial test accuracy of 84.00% after federated training round 0, 

while NodeB had an initial test accuracy of 80.00%. After 150 federated training rounds, 

NodeA had an overall average test accuracy of 96.12% and NodeB had an overall average 

test accuracy of 98.29% (see Figure 34). The average accuracy across the primary client 

nodes was 97.20% (see Figure 35). Average training loss for the primary client nodes at 

federated training round 0 was 0.7923 and after 150 federated training rounds average 

training loss dropped to 0.0867 (see Figure 36). 

 
NodeA had an initial test accuracy of 84.00% after federated training round 0, while 
NodeB had an initial test accuracy of 80.00%. After 150 federated training rounds, 
NodeA had an overall average test accuracy of 96.12% and NodeB had an overall 
average test accuracy of 98.29%. 

Figure 34. Centrally Pretrained MNIST CNN (Experiment III) 
Individual Node Test Accuracy.  
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The average accuracy across the primary client nodes was 97.20%. 

Figure 35. Centrally Pretrained MNIST CNN (Experiment III) 
Average Accuracy for NodeA and NodeB.  
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Average training loss for the primary client nodes at federated training round 0 was 
0.7923 and after 150 federated training rounds average loss dropped to 0.0867. 

Figure 36. Centrally Pretrained MNIST CNN (Experiment III) 
Training Loss for NodeA and NodeB.  

The centrally pretrained model conducted federated averaging on the final two 

dense layers of the pretrained model which resulted in a higher accuracy at training round 

0 (Experiment II had an initial average accuracy of 37.50%, while Experiment III had an 

initial average accuracy of 82.00%). The centrally pretrained MNIST model did not show 

any noticeable improvements after federated training round 6. During training rounds 0 

thru 6, the average accuracy between NodeA and NodeB was 87.78%, and after training 

round 7 the average accuracy increased to 97.66%. This may indicate that a centrally 

pretrained model quickly reaches its maximum performance within a minimal number of 

training rounds, and does not noticeably improve after that point. Whereas a randomly 

initialized model will attain similar performance, but over many more training rounds. 
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3. Extended Class Centrally Pretrained EMNIST (Experiment IV) 

The extended class centrally pretrained EMNIST model (Experiment IV) utilized 

train accuracy, train loss, test accuracy and test loss to analyze model performance. Primary 

client node performance was evaluated individually and average performance between 

nodes was also captured. NodeA had an initial test accuracy of 76.66% after federated 

training round 0, while NodeB had an initial test accuracy of 75.00%. After 75 federated 

training rounds, NodeA had an overall average test accuracy of 79.67% and NodeB had an 

overall average test accuracy of 83.16% (see Figure 37. The average accuracy across the 

primary client nodes was 80.78% (see Figure 38). Average training loss for the primary 

client nodes at federated training round 0 was 0.3268 and after 75 federated training rounds 

average train loss dropped to 0.1019 (see Figure 39).  

 
NodeA had an initial test accuracy of 76.66% after federated training Round 0, while 
NodeB had an initial test accuracy of 75.00%. After 75 federated training rounds, 
NodeA had an overall average test accuracy of 79.67% and NodeB had an overall 
average test accuracy of 80.78%. 

Figure 37. Extended Class Centrally Pretrained EMNIST CNN 
(Experiment IV) Individual Node Test Accuracy.  
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The average accuracy across the primary client nodes was 80.22%. 

Figure 38. Extended Class Centrally Pretrained EMNIST CNN 
(Experiment IV) Average Accuracy for NodeA and 

NodeB.  
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Average loss for the primary client nodes at federated training round 0 was 0.3268 
and after 75 federated training rounds average train loss dropped to 0.1019. 

Figure 39. Extended Class Centrally Pretrained EMNIST CNN 
(Experiment IV) Training Loss for NodeA and NodeB. 

The centrally pretrained EMNIST model did not show any noticeable 

improvements after training round 12. During training rounds 0 thru 12, the average 

accuracy between NodeA and NodeB was 75.83%, and after training round 12 the average 

accuracy increased to 80.22%. This follows the findings of Experiment III that a centrally 

pretrained model quickly reaches its maximum performance within a minimal number of 

training rounds, and does not noticeably improve after that point. Whereas a randomly 

initialized model will attain similar performance, but over many more training rounds. 
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4. MobileNetV2 Centrally Pretrained CelebA (Experiment V) 

The MobileNetV2 centrally pretrained CelebA model (Experiment V) utilized train 

accuracy, train loss, validation accuracy, validation loss, test accuracy and test loss to 

analyze model performance. Primary client node performance was evaluated individually 

and average performance between nodes was also captured. NodeA had an initial test 

accuracy of 92.50% after federated training Round 0, while NodeB had an initial test 

accuracy of 89.00%. After 75 federated training rounds, NodeA had an overall average test 

accuracy of 94.28% and NodeB had an overall average test accuracy of 93.49% (see Figure 

40). The average accuracy across the primary client nodes was 93.89% (see Figure 41). 

Average train loss for the primary client nodes at federated training round 0 was 0.00876 

and after 75 federated training rounds average train loss dropped to 0.00456 (see Figure 

42).  
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NodeA had an initial test accuracy of 92.50% after federated training round 0, while 
NodeB had an initial test accuracy of 89.00%. After 75 federated training rounds, 
NodeA had an overall average test accuracy of 94.28% and NodeB had an overall 
average test accuracy of 93.49%. 

Figure 40. MobileNetV2 Centrally Pretrained Model 
(Experiment V) Individual Node Test Accuracy.  
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Average accuracy for NodeA and NodeB. The average accuracy across the primary 
client nodes was 93.89%. 

Figure 41. MobileNetV2 Centrally Pretrained Model 
(Experiment V). 
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Average train loss for the primary client nodes at federated training round 0 was 
0.00876 and after 75 federated training rounds average train loss dropped to 
0.00456. 

Figure 42. MobileNetV2 Centrally Pretrained Model 
(Experiment V) Training Loss for NodeA and NodeB.  

The centrally pretrained MobileNetV2 model did not show any noticeable 

improvements after training round 10. During training rounds 0 thru 10, the average 

accuracy between NodeA and NodeB was 92.82%, and after training round 12 the average 

accuracy increased to 94.04%. This follows the findings of Experiments II and III that a 

centrally pretrained model quickly reaches its maximum performance within a minimal 

number of training rounds, and does not noticeably improve after that point. Whereas a 

randomly initialized model will attain similar performance, but over many more training 

rounds. 
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In developing the final hyperparameters and model architecture for Experiment V,  

local edge device dataset size, type of centrally pretrained model, and model layer from 

which to perform federated fine-tuning was analyzed on the edge device architecture.  

1. Centrally pretrained model: Evaluated how performance is impacted by 

the type of transfer learning conducted on the pretrained model prior to 

deployment to an edge device network. 

• Feature extraction with a minimal dataset centrally pretrained 

• Feature extraction with a larger dataset centrally pretrained 

• Fine-tuning on the feature extracted larger dataset  

2. Local dataset size: Evaluated how the local dataset size on an edge device 

impacts performance. While dedicated workstations can support large 

local datasets, embedded hardware is limited in the amount of data it can 

process to train a deep learning model. An understanding of how much 

data can be utilized for training on embedded hardware, while still 

allowing for improvements in performance is valuable.  

3. Fine-tuning layer: Within a federated learning scheme, it is important to 

understand what is the ideal layer from which to fine-tune a state-of-the-

art machine learning model, like MobileNetV2.  

a. MobileNetV2 Centrally Pretrained Models 

Three centrally pretrained MobileNetV2 models were developed and evaluated for 

federated fine-tuning performance. A feature extracted model using a minimal size dataset 

(minimal feature extraction model), a feature extraction model with a significantly larger 

dataset (large feature extraction model), and a fine-tuned model (fine-tuned centrally 

pretrained model) that implemented fine-tuning on the feature extracted larger dataset 

model (see Table 12). The fine-tuned model was fine-tuned up through block 16 of the 

MobileNetV2 base architecture (Layer 144) which included 886,080 total trainable 
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parameters. All models were trained with an early stopping callback for a validation loss 

minimum delta of 0.001 and patience of five epochs. These models were each pretrained 

centrally on a MacBook laptop prior to deployment to edge devices. 

Table 12. Experiment V MobileNetV2 Centrally Pretrained Models.  

 Model Transfer 

Learning 

Type 

Dataset Hyperparameters Server 

Validation 

Metrics 

I Minimal 

Feature 

Extraction 

Model 

Feature 

Extraction 

CelebA 

Train: 

10,000 

Test: 2,000 

Epochs: 24  

(early stopped) 

LR: .0001 

Batch Size: 20 

Val Split: 0.20 

Loss: 0.3244  

Acc: 85.50% 

II Large 

Feature 

Extraction 

Model 

Feature 

Extraction 

CelebA 

Train: 

48,000  

Test: 

12,000 

Epochs: 19  

(early stopped) 

LR: .0001 

Batch Size: 20 

Val Split: 0.20 

Loss: 0.2957 

Acc: 88.59% 

III Fine-Tuned 

Centrally 

Pretrained 

Model 

Fine-Tuning CelebA 

Train: 

48,000 

Test: 

12,000 

Epochs: 29  

(early stopped) 

LR: .00001 

Batch Size: 20 

Val Split: 0.20 

Loss: 0.118 

Acc: 93.40% 

Three pretrained models were developed to analyze federated fine-tuning performance based on 
the pretrained model. 

b. MobileNetV2 Performance by Local Dataset Size 

Each of the three pretrained models were tested with three various sizes of local 

datasets for training and testing on the edge devices. The small dataset (Dataset I) included 

100 random CelebA train images, 50 random CelebA validation images, 50 random 
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CelebA test images per training round (see Table 13). The medium dataset (Dataset II) 

included 250 random CelebA train images, 100 random CelebA validation images, and 100 

random CelebA test images per training round. The large dataset (Dataset III) included 500 

random CelebA train images, 200 random CelebA validation images, and 200 random 

CelebA test images. The training images were randomly selected each successive federated 

training round. The overall dataset sizes were 3,000 images per node for the small dataset, 

6,000 images per node for the medium dataset and 12,000 images per node for the large 

dataset.  

Table 13. Experiment V MobileNetV2 Pretrained Model CelebA Dataset 
Partitions  

 Dataset Image 

Shape 

Train 

Images  

Per Round 

Test 

Images  

Per Round 

Validation 

Images per 

Node 

Total 

Images 

per Node 

I Small (96, 96, 3) 100 50 50  3,000 

II Medium (96, 96, 3) 250 100 100 6,000 

III Large (96, 96, 3) 500 200 200 12,000 

CelebA images were originally (178, 218, 3), but were resized to (96, 96, 3) in order to conserve 
memory on RPi’s.  

Results indicate that a federated learning edge device network will exhibit the best 

performance utilizing a centrally pretrained fine-tuned model with the largest local dataset 

an edge device can support (see Table 14). The largest average performance gains were 

exhibited with a smaller local dataset (max exhibited was a 6.76% improvement with the 

large dataset model); however, the smaller local dataset did not achieve an overall average 

accuracy as high as the fine-tuned model utilizing the largest local dataset (overall average 

accuracy was 93.89%).  
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Table 14. Experiment V MobileNetV2 Pretrained Model Accuracy on Edge 
Device. 

Centrally Pretrained 

Model 

Local Dataset 

Size per 

Training Round 

Training 

Round 0 Avg 

Accuracy 

Overall Avg 

Node 

Accuracy 

Avg Node 

Improvement 

Minimal Feature 

Extraction Model 

100/50/50 83.00% 89.11% +6.11%

Minimal Feature 

Extraction Model 

250/100/100 88.00% 90.13% +2.13%

Minimal Feature 

Extraction Model 

500/200/200 86.50% 89.66% +3.16%

Large Feature 

Extraction Model 

100/50/50 77.00% 83.76% +6.76%

Large Feature 

Extraction Model 

250/100/100 80.00% 85.34% +5.34%

Large Feature 

Extraction Model 

500/200/200 88.00% 89.96% +1.96%

Fine-Tuned Model 100/50/50 91.00% 91.66% +0.66%

Fine-Tuned Model 250/100/100 89.00% 89.65% +0.65%

Fine-Tuned Model 500/200/200 90.75% 93.89% +3.14%

On device hyperparameters were E = 5, B = 20, η = .01, TR = 25. Each pretrained model (minimal 
feature extraction, large feature extraction, fine-tuned model) was tested with the three different 
local dataset sizes. It can be observed that the smaller the dataset the larger the overall 
improvement, but the best overall performance resulted from the largest dataset partitions.  

c. MobileNetV2 Pretrained Model Fine-Tuning Layer Performance

Within a federated learning scheme, it is important to understand what is the ideal 

layer from which to fine tune a state-of-the-art machine learning model, like MobileNetV2. 

The current research was designed to implement on-device fine-tuning at select layers 

within the MobileNetV2 architecture (see Table 15). The final MobileNetV2 block (Block 

16) was analyzed for on-device fine-tuning. The fine-tuning occurred at the block 16
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convolutional layers and the final out convolutional layer (layer 144, layer 147, layer 150 

and layer 152, respectively).  

Additionally, the fine-tuned pretrained model was also trained up through block 16 

on the server prior to edge device deployment. Given that the current research is focused 

on developing a more secure AI based military installation surveillance system, the 

minimum number of parameters are selected for federated learning and cross network 

communication. Research without a security focus could fine-tune more layers within a 

model, but this would increase the risk for an adversary to rebuild a model based on 

intercepted parameters.  

Table 15. Experiment V MoblieNetV2 Layers Fine-Tuned on Edge Device 

MobileNetV2 Layer 

Index Number 

MobileNetV2 Layer Name Trainable Parameters 

144 Block 16 Expand Conv2D 894,409 

147 Block 16 Depthwise Conv2D 736,961 

150 Block 16 Project Conv2D 724,481 

152 Out Conv2D 406,001 

 

It was determined that the ideal layer from which to perform federated fine-tuning 

on the MobileNetV2 model (block 16 and out Conv2D) under the current federated 

learning architecture is the out convolutional layer (MobileNetV2 layer index 152) (see 

Table 16). The convolutional layers of block 16 each exhibited average accuracies around 

50%, which indicates no learning occurred in a binary classification problem (see Figure 

43). It was also observed that the loss increased with each added layer fine-tuned (see 

Figure 44). The out convolutional layer had an average loss of 0.0080, while the block 16 

expand convolutional layer had an average loss of 79.4773. 
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Table 16. Table 16: Experiment V MobileNetV2 Layers Fine-Tuned on Edge 
Device Results.  

MobileNetV2 Layer 

Index 

MobileNetV2 Layer 

Name 

Average Loss Average 

Accuracy 

144 Block 16 Expand Conv2D 79.477 55.85% 

147 Block 16 Depthwise 

Conv2D 

50.655 50.65% 

150 Block 16 Project Conv2D 27.443 52.55% 

152 Out Conv2D 0.0080 93.40% 

On-device hyperparameters were E = 5, B = 20, η = .088, TR = 20, train sample size = 500, 
validation sample size = 200, test sample size = 200. 
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Layers fine-tuned were block 16 expand Conv2D (Layer 144), block 16 depthwise 
Conv2D (layer 147), block 16 project Conv2D (Layer 150) and out Conv2D (layer 
152). On device hyperparameters were E = 5, B = 20, η = .088, TR = 20, train sample 
size  = 500, validation sample size = 200, test sample size = 200. 

Figure 43. On Device Average Training Loss for NodeA and 
NodeB Based on Layer Federated Fine-Tuned.  
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Layers fine-tuned were block 16 expand Conv2D (layer 144), block 16 depthwise 
Conv2D (layer 147), block 16 project Conv2D (layer 150) and out Conv2D (layer 
152). On device hyperparameters were E = 5, B = 20, η = .088, TR = 20, train sample 
size = 500, validation sample size = 200, test sample size = 200. 

Figure 44. On Device Average Test Accuracy for NodeA and 
NodeB Based on Layer Federated Fine-Tuned.  

It is not fully known why the performance drops significantly when performing 

federated fine-tuning when adding in additional layers past the out convolutional layer. In 

a traditional fine-tuning scenario with a centralized dataset the performance should 

improve with each additional layer fine-tuned. It is assessed that this reduced performance 

is occurring since a very small local dataset (500 images) is changing the weights 

developed by a much larger dataset (48,000). Overall, these results indicate that it is best 

to perform federated fine-tuning from the final convolutional layer in the model 

architecture.  
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d. End to End FedAvg Edge Device Network 

The final experiment was designed as a proof of concept that an end-to-end edge 

device network could execute federated fine-tuning on battery power. This experiment 

builds off of Experiment V, which used a state-of-the-art machine learning model to 

perform federated fine-tuning. The Netgear Nighthawk router was replaced with an RPi 

4B as a router using hostapd software. The primary client nodes had the same setup as in 

Experiment V and a secondary client node was added with an RPi camera that was 

triggered by a HC SR04 ultrasonic sensor (see Figure 45. The ultrasonic sensor was chosen, 

due to the fact that ultrasonic sensors draw less current than a live camera feed or a 

proximity IR sensor. The RPi camera draws 280 mA on average, while the HC SR04 draws 

only 15 mA on average. Using an RPi camera as a sensor would decrease the nominal 

battery life of a secondary client node by 5 hours and 20 minutes, while the HC SR04 

would only decrease the nominal battery life by 25 minutes. 
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Hardware included 2 primary client nodes, 1 secondary client node, 1 server node, 
and 1 edge router all composed of Raspberry Pi’s.  

Figure 45. Experiment VI Architecture.  

The secondary client node included anomaly detection to alert the server node of 

any predictions below 95%. These anomalous predictions were sent via MQTT and 

recorded in a CSV file on the server node for additional human directed analysis. The 

secondary client node had a 9.66% increase in current draw while executing predictions 

once per second from the updated global model received from the server node (see Figure 

46). The nominal battery life of a 10,000 mAH battery is 18 hours and 0 minutes. The 

average CPU load on the secondary client node was 22.64%, average RAM memory used 

was 6.99%, and 0.00% swap space was utilized. These results indicate that a secondary 
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client node can be supported in a deployed network and could accept additional tasks as 

needed.  

 
The power performance test for Experiment VI secondary client note began with a 
two-minute idle period, then 20 rounds of federated learning training rounds, 
followed by a two-minute idle period. The secondary client node exhibited a 9.66% 
increase in current draw over idle. The spikes in current draw are MQTT 
transmissions across the network. 

Figure 46. End-to-End Edge Device Network Current 
Consumption for Secondary Client Node.  

The RPi router transmitted an average of 24.32 packets per second and received an 

average of 23.49 packets per second. The average CPU load on the router was only 0.66%, 

average RAM memory used was 1.07%, and 0.00% swap space was utilized. These results 

indicate that a battery powered edge device router can easily support a deployed federated 

learning network. 

Experiment VI did not rely on a wireless internet connection to conduct federated 

fine-tuning and could continuously operate for at least 18 hours with 10,000 mAH battery 

packs. This experiment demonstrates that federated learning can be deployed on edge 

devices without a cloud server, no internet connection, and completely reliant on battery 

power. An end-to-end edge device federated learning network of this sort could be utilized 

in multiple real world forward deployed military applications, such as a forward operating 

base security application.  
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V. CONCLUSIONS AND FUTURE WORK 

A. SUMMARY  

The goals of the current research were to evaluate the system performance of 

federated learning on edge devices and to analyze the model performance of a centrally 

pretrained state-of-the-art model conducting federated fine-tuning on an edge device 

network. The experiments conducted throughout the thesis process demonstrated that a 

multi-node architecture distributes the computational, memory, communication, and power 

requirements to a sufficient level in order to support federated learning on edge devices. In 

computational costs the federated fine tuning models (Experiments III-V) exhibited a 

65.95% average reduction in CPU load over the baseline model (Experiment I) and a 

10.75% average reduction in CPU temp over the baseline model. In power costs the 

federated fine tuning models exhibited a 56.16% average reduction in current draw and an 

average improvement in nominal battery life of 18.47% over the baseline model. For 

communication costs the baseline federated learning model (Experiment II) shared 100% 

of the model parameters, while the MobileNetV2 model shared 18.41% of model 

parameters. For memory costs the federated fine tuning servers utilized 86.55% less 

memory than the baseline model, which allows server nodes to be tasked with additional 

requirements.  

Additionally, it was demonstrated that a multi-node federated fine-tuning 

architecture begins federated learning training with a higher accuracy over a randomly 

initialized model and incrementally improves over iterative federated training rounds. The 

centrally pretrained federated fine-tuning MNIST model (Experiment III) began training 

with an initial accuracy improvement of 53.94% over the randomly initialized federated 

learning MNIST model (Experiment II) and achieved an average accuracy of 97.66% 

within seven federated training rounds. The centrally pretrained EMNIST model 

demonstrated a final performance improvement of 4.39% over the initial federated training 

round. Finally, the MobileNetV2 model demonstrated a final performance improvement of 

3.14% over the initial federated training round.  
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B. BENEFITS 

The current research exhibited that a federated fine-tuning COTS edge device 

network supports a secure and accurate application that can be used in a military security 

application framework. Four primary benefits of federated fine-tuning were identified—

initial accuracy, efficiency, security, and feasibility of deployment. It was demonstrated 

that a centrally pretrained model can initiate training at federated training round 0 with high 

accuracy, whereas a randomly initialized federated averaging model would take many 

rounds to achieve acceptable accuracy. This initial boost in performance of a federated 

learning network is vital in military applications that depend on high accuracy from initial 

deployment. In the proposed scenario of a military surveillance application, the network 

cannot rely on multiple training rounds for accuracy and must be highly accurate, persistent 

and adaptable upon deployment, while enabling the model to improve over time. 

It was validated that a multi-node federated learning edge device network 

sufficiently distributes the computational load across the network and supports state-of-

the-art model training, which had not been previously demonstrated in academic research. 

The reduction in computational load also results in lowered current draw on devices and in 

turn longer edge device battery life. A distributed network also benefits from a distributed 

dataset, as no single node has the full dataset. This improves efficiency as an edge device 

is only required to process a small local dataset versus the entire dataset of the network and 

yet can leverage full network dataset through the shared global model.  

Additionally, an off-grid edge device network improves the overall security of the 

network. Experiments II-VI did not rely on a remote cloud server and were isolated from 

any outside networks, which ensures that no data transmits outside the local area network. 

This guarantees that an adversary can only intercept transmissions if they are physically 

located within Wi-Fi range of the network. Experiments III-VI employed centrally 

pretrained models that utilized only a select number of model layers for training and local 

model updates. Hitaj, Ateniese and Perez-Cruz identified that federated learning 

architectures releasing only a portion of global parameters provide stronger security and 

are more resistant to federated learning attacks than models that transmit the full global 

model [39].  
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Finally, the federated learning network presented in the current research is a proof-

of-concept that demonstrates the possibility of a deployable federated learning network 

that can be utilized in forward deployed tactical scenarios. No previous research was 

identified that has evaluated and tested the feasibility of a battery-powered federated 

learning network. Commercial entities employing a federated learning architecture would 

typically rely on dedicated power for the network; however, many military applications 

would benefit from a federated learning network with no external power requirements. The 

networking protocol utilized in the current research is scalable, widely accepted and 

asynchronous, which also ensures the network is deployable. The architecture was 

composed of all COTS edge devices, which ensures that the network is reproducible and 

easily acquired for research and deployment.  

C. LIMITATIONS 

While the research questions proposed for the current research were supported by 

the analysis and results, there are draw-backs and limitations that should be addressed for 

any follow-on work. The MNIST and EMNIST datasets are recommended testbed datasets 

for machine learning and federated learning research; however, they are not real-world 

datasets and often result in high accuracies with little data pre-processing. The CelebA 

dataset contains more female photos than male photos and has been shown to demonstrate 

a bias toward the female category [52]. These datasets are limited in their scope and not 

suited for real-world deployment.  

The experiments performed did not conduct federated learning training rounds until 

batteries were fully discharged. Therefore, the expected battery life is a nominal 

measurement based off the battery packs used and current draw. The architecture also 

utilized a limited number of Raspberry Pi’s as edge devices for federated learning. 

McMahan et al.’s original research design utilized 100 clients with 10 percent randomly 

chosen per federated training round. Finally, the edge devices used only had 4 GB RAM 

and did not contain a GPU. There are more advanced edge devices available with additional 

RAM and GPU capability to improve system performance. 
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D. FUTURE WORK 

It is recommended that future work utilizes a dataset specifically geared towards 

real world video surveillance detection and classification. VIRAT is a large-scale 

surveillance video dataset that includes videos from stationary ground cameras and moving 

aerial vehicles [53]. The Live Videos (LV) Dataset contains a large collection of video 

surveillance sequences detecting dangerous events, such as car accidents, robberies, 

kidnappings and other abnormal situations [54]. The current research focused on 

determining if an edge device network can even support federated learning with a state-of-

the-art architecture, so it was determined that the utilized datasets be standard testbeds for 

machine learning and federated learning. 

Future work would also benefit from benchmarking additional COTS edge device 

architectures to compare performance. Nvidia provides several options for embedded 

hardware, including the Jetson Nano Developer Kit, Jetson TX2, and the Jetson AGX 

Xavier. The Nvidia Jetson products include GPU capabilities and up to 32 terabit 

operations per second (TOPS) on the AGX Xavier. The Google Coral provides a system-

on-module (SoM) development board with Edge TPU and compatible modules for 

prototyping.  

Additional research into security applications would be valuable to continued 

federated fine-tuning research. Much of the research surrounding computer vision involves 

image detection and classification; however, real-world security applications cannot waste 

valuable resources on classifying each object in frame. Outlier detection utilizing 

autoencoders would help resource constrained networks by only utilizing valuable 

computation on anomalous activity. Additional sensors and data sources (e.g., audio, 

network IDS, firewall logs) utilized in federated training could provide a more robust 

understanding of insider threat in military security applications.  

E. CONCLUSIONS 

The results of the current research demonstrate that a distributed network of edge 

devices can support an accurate deep learning model while addressing global model 

security risks through a centrally pretrained federated fine-tuned model. Deep learning 
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applications are continually expanding and it is likely that deep learning will be 

implemented more and more in DoD applications. Utilizing COTS hardware and open-

source software for federated fine-tuning allows the DoD to quickly develop and deploy 

security applications that adapt to evolving threats, while preserving the security of the 

application itself. In summary, this thesis has validated that federated fine-tuning supports 

high accuracy from initial deployment, improves efficiency through a distributed network 

of edge devices, provides stronger privacy through minimal parameter sharing, and has the 

potential for off-grid deployment in tactical scenarios.  
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