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ABSTRACT 

The military’s installations on remote islands have the highest power costs and 

demand resilient and reliable power for mission assurance. These installations have no 

electrical connection to an external utility provider and encounter numerous challenges in 

incorporating renewable energy, and there is a pronounced gap in both defining resilience 

and measuring it for off-grid islanded microgrids at islanded naval installations (INIs).  

This work’s research objective was to develop a methodology to choose renewable 

energy microgrid designs that maximize resilience and minimize costs on remote islands 

with applications for INIs. The deliverable is a tool that incorporates the methodology to 

identify the cost of resilience using a measure that captures the area under the resilience 

curve. The tool uses the models developed in this research to create the resilience and 

cost trade-off curves for different microgrid design and maintenance options to enable 

decision makers to choose an optimal microgrid design primarily for remote islanded 

military installations like San Nicolas Island. The research concluded that resilience can 

be improved by using optimal power capacity ratios for a renewable energy microgrids, 

that redundancy improves resilience for less costs, and that more maintenance only 

improves resilience when the generation capacity is closer to the demand and for 

microgrids with less redundancy. 
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EXECUTIVE SUMMARY 

Islanded naval installations (INI) are powered by microgrids, and the resilience of 

these microgrids is crucial to their operational mission. Currently, INIs pay between $0.21 

and $0.54/kWh for their mostly diesel-based energy supply, (i.e., two to five times the 

Navy’s average). Not only do INIs have the highest costs of power generation for naval 

installations, they also have the greatest requirements for resilience. However, no method 

exists to determine the cost-effectiveness of resilience at INIs, therefore the decision 

makers need a tool in order to assess renewable energy (RE) microgrid designs. In this 

research, resilience as defined for INIs is the microgrid’s invulnerability and rapid and 

full recoverability from an improbable and severe disturbance. This research assesses 

resilience and costs of RE microgrid designs at INIs, with the objective of identifying how 

design and maintenance decisions that incorporate renewable energy influence the 

resilience and costs trade-space. 

A. KEY FINDINGS 

This research’s contributions facilitate microgrid design investments that increase 

resilience, and cost effectively. A recurring finding is that greater power capacity and 

redundancy increase resilience. This research’s primary contribution addresses the gaps in 

the literature by developing cost and resilience measures for RE microgrids at INIs. The 

second contribution is a decision-making tool for the islanded locations to assess resilience 

of RE microgrids to disturbances, using the resilience and cost measures. The third 

contribution to systems engineering design is the application of this tool to create the 

resilience and costs trade space to visualize and choose a RE microgrid design through the 

system architecture design phase. This third contribution enables smarter investment 

decisions in power capacity, redundancy, and energy storage, as well as identifies the fuel 

cost for diesel gensets (DG) to be cost competitive with solar photovoltaic panels (PV) for 

a microgrid architecture.  

General takeaways on the tradeoffs in resilience and costs confirm that microgrids 

should be designed with redundancy, DG generation should be diversified with RE, and 
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the microgrid’s power rating more than four times the average demand does not improve 

resilience any further. Finally fuel costs have to drop below $1.00/gal for PV to be more 

cost competitive than DG. 

B. METHOD AND CONCLUSIONS 

This work first assesses the RE microgrids, incorporating wind turbines, solar 

photovoltaic panels, diesel gensets and batteries. These microgrids are evaluated for their 

invulnerability and recovery to hurricanes, tsunamis, and cyberattacks via a method for 

assessing resilience at INIs. The assessment uses a decision-making tool developed using 

the method, to generate the resilience and cost measures. The resilience and cost measures 

are then used to graph resilience and cost trade-off functions. These measures include a 

cost measure, LCOED, and the resilience measures invulnerability, recovery, and 

resilience. Through design exploration using these trade-off functions, findings are made 

to improve how a base commander can understand how RE microgrid design and 

maintenance decisions affect resilience and costs.  

A method is developed to create a model to conduct a resilience assessment for a 

RE microgrid subjected to a High-Impact-Low-Probability (HILP) disturbance. This 

method uses demand profile data and distributed energy resources (DER) design 

parameters to calculate the resilience and cost measures simulated by the model for 

different microgrid design and maintenance levels. These measures are then used to 

generate the resilience and costs design trade-space. 

Specifically, the microgrid’s performance behavior is portrayed in Figure 1. The 

behavior of a microgrid subjected to a HILP disturbance is broken down into five distinct 

states: pre-disturbance, degradation, stabilization, recovery, and post-disturbance. The 

three states: degradation, stabilization, and recovery, are represented by invulnerability and 

recovery. 
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Figure 1. Microgrid Resilience Function’s two measures and five 
states 

Figure 2 shows how resilience increases at a diminishing rate as redundancy 

improves while costs do not change.  
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Figure 2. Increasing microgrid’s redundancy increases resilience 
exponentially while costs remain unchanged. 

A demonstration of the model’s applicability is conduced for Naval Station Rota’s 

microgrid as well as the RE microgrids at San Nicolas Island (SNI), San Clemente Island 

(SCI), and Guantanamo Bay, Cuba (GTMO). Figure 3 exhibits how increasing from one 

to two DGs improves resilience much more then any additional increments in DGs. We 

also observe very little contribution in improving resilience with WTs when there are more 

than two DGs. Finally, there is a significant increase in the costs, LCOED, for a microgrid 

with more than three DGs.  
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Figure 3. Relationship between resilience, number of wind turbines, 
and number of diesel gensets at SNI. The color changes from blue 

to yellow as LCOED increases. 

C. RECOMMENDATIONS 

The research finds redundant microgrids provide greater resilience for little added 

costs. Additionally, we identify and present the power capacity ratios for designing the 

most beneficial amount and type of power generation. These ratios include excess power 

that does not exceed the demand by more than 50%. Finally, maintenance has less impact 

as the power capacity ratio increasingly exceeds the demand profile as observed by the 

impact of maintenance investments on resilience. These findings can have immediate 

benefit to ensuring future investments in RE microgrids will provide greater resilience for 

less costs than alternative designs. Overall, this method creates the resilience and costs 

trade space to explore design and maintenance options. 

Therefore, we recommend the following for future research and application: we can 

improve our assumptions. Assuming that the microgrid’s demand following a disturbance 

will mimic its historical demand oversimplifies reality. In fact, we would expect a reduced 

demand that we should be using to assess resilience. We should also not assume that the 

microgrid’s demand will not drop below the microgrid’s post-disturbance power rating. 
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Disturbances and their damage can be made more realistic. The expected damage 

could incorporate the independent probability of the disturbance with the independent 

probability of damage. Additionally, we can introduce stochastic behavior to better handle 

the complexity of common cause failures. Damage can be reassessed at each time step as 

opposed to an instantaneous point-in-time by extending the disturbance over time. And 

finally, we can introduce variability in the intensity of the disturbance at each time step to 

assess damage until the microgrid is recovered with damage that is not limited to a binary 

outcome. The cost and resilience improvement when varying the P(d|Sk) should generate 

meaningful and useful findings to make DERs have more invulnerability. 

Further work can be done to more clearly articulate how threat dependent resilience 

is. The design differences that provide the most resilience for the most threats should be 

highlighted by greater analysis of resilience assessments for different threats. 

Obvious extensions of this research involve data analytics to generate more 

meaningful findings. Recommendations for a design option will be possible simply by 

matching an architecture’s resilience function shape to a shape from previously assessed 

architectures. There is much more we can be done to identify relationships between the 

experimental results through more complex graphing tools.  

More granular time series data will improve the accuracy of the results. Increasing 

the number of 4D surface plots’ datapoints as well as increasing the number of architectures 

will enable more extensive comparisons between the measures and the design and 

maintenance choices.  

Common cause failures are an obvious avenue for research. Much further can be 

done to study how decisions on microgrid architectures relate to common cause failures 

and the resultant impact on resilience and costs.  

The models can incorporate multi-objective optimization to more accurately 

identify the optimal solutions by maximizing resilience and minimizing costs. The 

optimization model’s architecture can be directly input into the resilience model. 

Finally, we can more completely investigate the financial aspects of resilience. 

Specifically, researchers can do more extensive and comparative analysis of the findings 
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in the comparison of optimal points. Financial tools that more completely value the future 

energy that has been stored, as well as the unintended complexity costs that are introduced 

with redundancy, should provide more accurate recommendations. 
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I. INTRODUCTION 

Islanded naval installations (INIs) despite having the highest power costs of all 

naval installations, also have the greatest exigency for improving resilience. This research 

contributes to the problem definition, design, and decision-making phases of systems 

engineering (SE) for INI renewable energy (RE) microgrids by defining resilience with a 

measure, building a resilience and cost model, and creating trade space of resilience vs. 

cost to inform decision makers. The models inform the decision-making phase for different 

microgrid designs subjected to high-impact low-probability (HILP) disturbances. 

This introductory chapter discusses the motivation for the research and the problem 

formulation guiding this research. Specifically, this chapter provides the research 

objective, contributions, and research method. Additionally, this chapter furnishes the 

background to impart an understanding and appreciation of other RE microgrids on remote 

islands. 

A. MOTIVATION 

Islanded naval installations today almost universally depend upon diesel gensets 

(DG) for power; historically, most INIs relied on diesel gensets. Islanded naval installations 

inherently have power supply challenges foremost of which is their isolated location 

creating greater logistical challenges to resupply fuel to the diesel gensets. This dependence 

on diesel fuel makes the INIs vulnerable to meeting their mission when resupply challenges 

arise. 

DGs provide power while operating within their loading parameters of 30%–80%. 

These constraints safeguard the DG from being extremely inefficient at less than 30% 

loading or having insufficient capacity to meet demand when there are spikes in the load. 

Having insufficient capacity requires bringing another DG online. Because an INI’s DGs 

operate in an islanded environment, not exceeding 80% loading is considered more 

seriously than would be for a grid-connected DG; an INI will therefore want to ensure they 

have adequate spinning reserves (a DG on idle standby) if needed.  
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Islanded naval installations have unmatched microgrid design challenges due to 

their remoteness, weather, and uncertainty in demand. For instance, it may take a week to 

ship fuel to Diego Garcia, British Indian Ocean Territory (DGAR). Harsh and variable 

weather conditions can threaten all INIs. Extreme heat, winds, dust and dirt routinely 

threaten Camp Lemonnier, Djibouti (CLDJ). Finally, the INIs due to their high-priority 

mission have a wide uncertainty in their demand profile.  

Islanded naval installations pay between $0.21 and $0.54/kWh for their mostly 

diesel-based energy supply, (i.e., two to five times the Navy’s average) as indicated in 

Table 1. Islanded naval installations have close to zero RE penetration as compared to 30% 

for the Navy’s average. With escalating fossil fuel costs, logistical challenges in shipping 

fuels, and the need to maintain resilience during outages caused by weather or cyberattacks, 

RE microgrid solutions could greatly enhance mission assurance for these installations and 

do so more cost-effectively. 

Table 1. INIs’ extreme energy costs. Adapted from Department of the Navy 
(2018); Kandt (2008). 

Naval installation Net 
Annual 
Energy 
Produced 
[MWh] 

RE 
produced 
[%] 

Annual 
Demand 
[MWh] 

Annual 
Generation 
Costs [$M] 

Cost 
[$/kWh] 

DGAR 69,813 0.0 62,672 29.67 0.43 
SCI 9,545 8.1 (wind) 6,448 5.15 0.54 
SNI 5,119 14.0 (wind) 4,588 1.28 0.23 
GTMO 128,363 TBD 106,082 28.97 0.22 
CLDJ 100,860 0.0 no 

metering 
21.30 0.21 

Atlantic Undersea 
Test and 
Evaluation Center 
(AUTEC), Andros 
Island, Bahamas 

44,304 0.7 (wind) no 
metering 

TBD TBD 

 

This research explores the design space for microgrids assuming that more power 

capacity is better, if redundancy and diversification are also introduced. More power 
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capacity by itself is not assumed to be better with respect to resilience. What however is 

not understood is the relationship between power capacity, redundancy, diversification, 

resilience and costs. By being able to plot these relationships as resilience and costs trade-

off functions for different microgrid architectures, it is expected that some ratios of power 

capacity, and both amount and type of diversification will be more desirable to an INI’s 

situation than others. 

Although literature is identified on assessing resilience with an operational lenses, 

very little relevant literature could be found on design based resilience assessments. Mishra 

et al. (2020) identify microgrid design measures to increase resilience that specifically 

include adding RE generation on islands, diversification of generation, redundant backup 

systems to include storage and uninterruptable power supplies (UPS), and spare parts on 

hand. This research explores how design and maintenance decisions influence the 

resilience and costs trade-space. Mishra et al. (2020) although identifying measures to 

harden a microgrid against resilience, do not create a method to interactively evaluate how 

changes in these decisions (e.g., altering power capacity ratios, diversification 

combinations, or redundancy levels affect the resilience and costs trade-space). 

Anderson et al. (2020) did quantify how many days a grid outage can be reduced 

by comparing the costs of DG to DG, PV and BAT. This research more clearly articulates 

these choices to help decision makers in that they show how a $415K investment could 

reduce the outage by 1.8 days. However, the trade-space is lacking to provide the 

interactive and more meaningful analysis that will ensure better design choices can be 

made. This research squarely is tackling the excess power capacity, diversification, 

redundancy levels so as to connect these design factors with the corresponding 

architectures to generate a powerful and meaningful resilience and costs trade-space. It is 

this contribution that is the most useful and distinct from any of the other research, and 

despite being tailored for INIs, it is also most relevant to any remote island community 

employing off-grid microgrids. 
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1. Proposed INI RE Microgrid Definition 

Islanded naval installations present a compelling case for RE microgrid designs. 

Not only are INIs rich in RE resources, they also have the challenge of an unpredictable 

demand profile combined with much higher operating and maintenance (O&M) costs 

primarily due to their remoteness. DGAR is arguably the most remote island on earth 

having a demand profile equivalent to a small city.  

Islanded naval installations are all required to maintain a much higher level of 

mission assurance due to the unique operational nature of their activities. The need to 

ensure mission assurance is directly linked to the ability to deliver power to the INI’s 

electrical loads. The INI’s mission creates a stochastic and higher demand at the installation 

compared to daily operations without conducting mission specific operations.  

Each INI has an operational military mission to support, and without power, the 

support cannot be provided. Resilience is critical to ensuring mission assurance. Although 

base commanders embrace the need to ensure mission assurance, they have thus far been 

unable to either understood or quantify the INI’s power costs to deliver a sufficient level 

of resilience. 

“Energy Security is defined as having assured access to reliable supplies of energy 

and the ability to protect and deliver sufficient energy to meet mission requirements” 

according to 10 USC 2924, U.S. Code of Definitions, Department of the Navy (2017b, 9). 

The Navy has designated the three pillars of Energy Security as Reliability, Resiliency and 

Efficiency. The Department of the Navy’s defines their terms in the Naval Facilities 

Engineering Command (NAVFAC) P-602 as: 

Reliability: the percentage of time energy delivery systems (utilities) can 
serve customers at acceptable regulatory standards. Reliability can be 
measured by the frequency and duration of service disruptions to customers. 

Resiliency: the ability of a system to anticipate, resist, absorb, respond, 
adapt and recover from a disturbance. 

Efficiency: the use of the minimal energy required to achieve the desired 
level of service Department of the Navy’s (2017b, 9–11).  
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The U.S. Navy relies on INIs to launch operational missions that are dependent 

upon reliable and resilient microgrids. Figure 1 identifies the location of all U.S. Naval 

Installations without external utility grid connections. 

 

Figure 1. Remote islanded naval installations. 

To meet the research objectives to analyze cost and resilience of microgrids on 

military islands, one must first define resilience for the Navy’s RE INI microgrids. The 

resilience definition for this research into the Navy’s INI RE microgrids refines the Navy’s 

resilience definition by emphasizing the speed of recovery: 

The microgrid’s invulnerability and rapid and full recoverability from an 

improbable and severe disturbance. 

The definition reflects the American Society of Mechanical Engineers’ (ASME) 

emphasis on recovery as stated by Hosseini, Barker and Ramirez-Marquez (2016) as well 

as the DOD’s emphasis on invulnerability as indicated by Baxter (2018, 5). 

The Navy’s definition includes the ability to anticipate and adapt from a 

disturbance. Although adaption is important, it occurs over a longer time and therefore this 

is not considered in this research. 
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The resilience definition focuses on INIs and RE microgrids that must be resilient 

to disturbances other than a loss of power from the utility provider. This research 

propounds that a properly designed microgrid should have sufficient invulnerability to 

absorb the disturbance’s impact and ensure a rapid recovery to its pre-disturbance 

performance level.  

Although the Navy has made reliability and resiliency their highest energy security 

priorities, “resiliency” (the Navy’s term) is the least understood.1 It is important to note 

that increasing resilience may lead to trade-offs in reliability and efficiency. Keogh and 

Cody (2013) argue that underground power lines although more robust to weather damage 

have greater recovery time due to being less accessible and taking longer to institute the 

repair. Easily accessible instrumentation decreases recovery time at the expense of reduced 

robustness. Choosing between where and how much to invest requires a better 

understanding of the trade-offs in availability, robustness and recovery. 

Islanded naval installations are unique, and therefore enhancing resilience through 

microgrids requires specially adapted tools. INIs are not only expected to have more 

reliable power, but they must do so at a geographic location that requires an understanding 

of the unusual engineering and climate-driven differences that impact the design and 

operation of the microgrid. We must know how an INI is different not simply by being 

islanded geographically and within a more arduous climate zone, but also due to the 

unpredictably of the demand that is a unique byproduct of the military mission, in order to 

design cost-effective resilience solutions using microgrids.  

2. What Does It Mean to Be Islanded? 

Wattjes and Slootweg (2013) use islanded in the context of power systems as a term 

that means there is no external utility provider. In some situations, being islanded for the 

electrical loads is also geographically indicative. At INIs the loads are islanded both due to 

the power and geographic criteria. Although a microgrid can be islanded for either reason, 

 
1
 Although the Navy initially used the term “resiliency,” they are moving toward using the term 

“resilience” instead, which will be used throughout this dissertation and generally meaning the same as 
resiliency. 
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at all but one of the INIs it is for both. INIs that are not on an island such as Camp 

Lemonnier, Djibouti have similar challenges to being on an island. INIs are U.S. Naval 

Installations without external utility grid connections. 

By the very nature of INIs’ missions being unique and typically erratic in their 

operational tempo, the power demand is also extremely unpredictable. This is an important 

distinction for INIs in that not only is the RE generation stochastic, but the stochastic 

demand is much more extreme in terms of its peak power due to being an operational 

military installation. 

Microgrids are indispensable when there is a need to generate power independent 

of an external utility provider. A microgrid can introduce greater diversity of generation 

much closer to the load. While neither the diversity of generation nor proximity to the load 

are financially compelling either can provide significant energy security enhancements. 

Ton and Smith (2012, 84) adopt the U.S. Department of Energy Microgrid 

Exchange Group’s microgrid definition as “a group of interconnected loads and distributed 

energy resources within clearly defined electrical boundaries that acts as a single 

controllable entity with respect to the grid. A microgrid can connect and disconnect from 

the grid to enable it to operate in both grid-connected or island-mode.” Microgrids have 

four core components that include power generation, controls, energy storage and a load 

with all power being coordinated through controls as indicated in Figure 2.  
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Figure 2. Microgrid core components. Source: Walsh (2014). 

The controls component is critical to operating in islanded mode. At SNI the DG 

control strategy is to always have the gensets on-line and in grid forming mode. SNI’s 

universal microgrid controller (UMC) is automated to dispatch the most efficient 

combination of gensets to meet the demand and provide overhead through spinning 

reserves. The wind turbine control strategy is such that the microgrid controller will 

automatically engage the wind turbines one at a time when the wind exceeds 3.5 m/s. If 

there is too much wind power for the demand, the UMC will reduce the number of wind 

turbines. 

In contrast to an off-grid islanded microgrid, Peterson (2019) presents an overview 

diagram of a grid-connected microgrid system with typical components and distribution 

voltages as seen in Figure 3. Peterson (2019) made this distinction between a grid-

connected and an off-grid microgrid before he evaluated what happens when the microgrid 

is disconnected from the grid.  
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Figure 3. Microgrid overview diagram. Source: Peterson (2019).  

3. Disturbances for INI Microgrids 

INI microgrids experience degradation of generation due to disturbances that are 

both extreme and unexpected (e.g., tsunami or cyberattack). Deliberate attacks can be 

either physical or cyberattacks. Peterson (2019) argues that military installations are a more 

attractive and likely target due to the mission and higher relative value of the infrastructure.  

INIs are not grid connected and accordingly the disturbances explored are not from 

a loss of utility provided power. Rather, the disturbances are mostly weather-related. 

Despite INIs being vulnerable to other disturbances such as cyberattacks, the assumption 

for this research will be that the preponderance of disturbances is weather-related. Using 

this assumption, the author models four weather related disturbance scenarios and one 

cyberattack disturbance scenario. Disturbances will be limited to HILP events upon the 
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INI’s microgrid because this is what resilience is intended to address. Only one disturbance 

is used to disrupt the microgrid. Disturbances included in this research are hurricanes, 

wildfires, earthquakes, tsunamis and cyberattacks. Also, although other combinations of 

impact and probability could be introduced, such as high-impact high-probability or 

medium-impact low-probability we do not explore these within the scope of this research. 

B. PROBLEM STATEMENT 

The literature on microgrid resilience neither incorporates costs nor investigates 

off-grid microgrids on remote islands. This gap in understanding both the cost of resilience 

as well as its application to off-grid microgrids is particularly relevant to the Department 

of Defense (DOD). Not being able to put a price tag on resilience at INIs prohibits the DOD 

from investing in microgrids that will provide the desired resilience and costs for the 

situation.  

Currently, DOD microgrids on islands are either 100% DG generation or, they 

employ RE at a small fraction of the overall microgrid’s power capacity. The DOD incurs 

significant costs and a logistical burden to transport fuel to these INIs, which makes the 

DOD more vulnerable to ensuring fuel can be supplied. Although using RE for the DOD 

is not driven by a need to be green, the DOD does want to become more resilient and RE 

can do this by diversifying the power generation portfolio at INIs. An added benefit of RE 

at INIs is more energy independence from off-island fuels. The need to understand the 

interrelationships between the DG and RE generation is essential when adapting 

conventional diesel genset-based approaches to meeting electrical demand by ensuring 

supply equals the demand. A RE microgrid with supply unequal to demand requires a 

design solution addressing the intermittency of the RE. This intermittency can best be 

addressed by one of the following: 

 diverse portfolio of generation 

 deferrable/adjustable loads 

 backup/highly responsive generation 
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 energy storage 

 extremely high levels of RE generation and “spill” excess capacity (Islam 

2017) 

Islanded naval installations are much more vulnerable to the cost and engineering’s 

indirect impacts on their ability to generate power and therefore there is more opportunity 

to address the gap in the literature at INIs. Islanded naval installations are subject to the 

volatility and ever-increasing costs of diesel fuels when operating the gensets for power 

generation. Additionally, there have historically been fuel shortages placing islanded 

microgrids at significant risk given their dependence upon diesel fuel. Islanded naval 

installations also suffer damage from cyclones and tsunamis and a properly designed 

microgrid can reduce their vulnerability to the damage caused by these extreme weather 

events. Overall, INIs are more vulnerable to costs, engineering challenges, and extreme 

weather than mainland based installations. 

Current state-of-the-art microgrid designs only aim to minimize the cost of energy 

with the constraint of stable operation and do not optimize for resilience, which is the 

Navy’s emphasis. Microgrid optimizations mostly focus on costs or RE penetration. 

Despite resilience being the Navy’s priority, there has been no attempt or ability to 

incorporate resilience into microgrid designs. Rather, it is unclear what the Navy’s 

resilience goals are despite having defined resilience. This problem is exacerbated by the 

lack of microgrid design methodologies in the literature that might offer the Navy the 

ability to grasp the cost and resilience trade-offs. 

The research problem is: How can RE microgrid designs at INIs be assessed in 

order to maximize resilience and minimize cost? It is also expected that this problem is 

equally relevant, for different reasons, and has applications on remote islands other than 

INIs.  
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C. RESEARCH OBJECTIVE 

The research objective is to develop a method and model to analyze the cost and 

resilience of RE microgrids on military islands. The base commander can then choose the 

microgrid design with an acceptable combination of resilience and cost. 

We first define resilience for INIs so that we can distinguish it’s dimensions in order 

to generate the appropriate resilience measures. The resilience measures are used in a 

resilience model constrained by an INI microgrid energy balance equation. 

The resilience model is used to measure a microgrid’s resilience to a disturbance. 

The measures created assess resilience of a microgrid’s design at different maintenance 

levels. 

A cost model calculates a microgrid architecture’s costs for a chosen maintenance 

level. The cost model is adapted from other researchers’ efforts so as to be applicable to an 

INI and communicate meaningful financial information to the INI’s base commander.  

Trade spaces articulate conflicting performance indices (efficiency, cost, resilience) 

created using the cost and resilience models. These trade-off functions help answer design 

and maintenance level questions so as to better inform an INI base commander how to 

invest for resilience. Finally, these same models are used to assess resilience of a case study 

for Naval Station Rota, Spain. 

The deliverable is a tool that incorporates the method to identify the cost of 

resilience. This tool uses the models developed in this research to create the trade-off 

analysis to inform decision makers how their microgrid investments can increase 

resilience. 

D. CONTRIBUTIONS 

The contributions address the gaps in the literature that do not examine costs and 

off-grid microgrids on remote islands in the resilience research. Three primary 

contributions address these gaps with the first contribution developing cost and resilience 

measures for RE microgrids at INIs. The second contribution is a decision-making tool for 

the islanded locations to assess resilience, using the resilience and cost measures, of RE 
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microgrids to disturbances. The third contribution to SE design and optimization of 

complex systems is the application of this tool to create the resilience and costs trade 

analysis that will influence RE microgrid design through the system architecture design 

phase. This third contribution will enable investment decisions in energy storage, power 

capacity ratios, and redundancy levels, as well as identify the fuel cost for DG to be cost 

competitive with PV for a microgrid architecture. This contribution is presented through three-

dimensional (3D and 4D) heat maps to better assess the trade analysis. 

It is also expected that this research will influence the integration of SE principles 

into microgrid designs. This research helps identify significant design factors, to include 

power capacity ratios and redundancy levels. 

Contributions include a novel tool to evaluate resilience for remote naval 

installations. Creating a decision support method for the base commander to select the 

microgrid design that provides the desired combination of resilience and costs for remote 

and isolated RE microgrids will also be a significant and useful contribution.  

There is also the specific application that is anticipated for the Navy to incorporate 

this method both into the NAVFAC P-601 Microgrid Design Guide as well as the 

NAVFAC P-602 3 Pillars of Energy Security. Additionally, the new DOD Microgrid 

Unified Facility Criteria being developed could leverage this method. 

E. INTENDED USERS OF THIS METHOD 

People that might also benefit from this work beyond the primary beneficiary (the 

Navy) include those living in isolated islands that include Small Island Developing States 

(SIDS) that are showing a growing interest in using RE for economic and environmental 

reasons. Islanded naval installations could also exploit RE microgrids for energy security 

(resilience). Three islands were studied and visited to better understand the opportunities 

for INIs to leverage the success demonstrated at Isle of Eigg, Samsø Island, and El Hierro. 

Remote islands that approach 100% RE power generation for an appreciably lower 

cost than INIs creates a compelling argument for the Navy to rely on smarter designs. The 

INI’s energy security will improve if the Navy’s microgrid designs come closer to attaining 
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these islands’ results. As a result, the INIs could deliver better and less costly mission 

assurance. 

Finally, there are two compelling opportunities for the U.S. Navy and National 

Science Foundation to enhance resilience by implementing an effective method at SNI and 

McMurdo Antarctica. Although only SNI is an INI, both locations are islanded and remote, 

have extremely high costs of power generation and have decided to develop and apply a 

method to assess and improve resilience at these locations. 

1. Relevance to Island Communities 

A recent study by Rocky Mountain Institute (RMI) evaluated ten islands and remote 

communities representing various worldwide microgrids Bunker, Hawley and Morris 

(2015). The locations studied include: Bonaire, The Netherlands; Kodiak, Alaska, U.S.; El 

Hierro, Canary Islands, Spain; Falkland Islands, U.K.; King Island, Tasmania, Australia; 

Marble Bar and Nullagine, Australia; Coral Bay, Australia; Isle of Eigg, Scotland, U.K.; 

Necker Island, British Virgin Islands; Mawson Station, Antarctica. 

Despite the higher costs of island electricity (being on the average three times 

higher than that of oil-based mainland) the RMI study still claims that island-based 

communities are enjoying the benefits of alternatives to oil-based electricity systems. 

Bunker, Hawley and Morris (2015) claim these communities realize “operational cost 

savings, reliable and stable power, long term energy price stability, and reduced 

dependence upon oil.” 

Several islands have demonstrated success in powering their communities with RE 

microgrid solutions. Each of these islands has its unique solution, relying heavily upon 

available resources, such as wind, hydro or solar power. For example, El Hierro in the 

Canary Islands has attained 100% RE generation on-island and is one such island that 

generates its primary power from pumped hydropower using wind turbines to power the 

pumps and provide backup power to an island of approximately 11,000 residents. Tetiaroa 

Island in French Polynesia provides power through a combination of solar PV and gensets 

using coconut oil for fuel to power to a seven-star resort. 
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The shallow waters of Kattegat Sea, 15 km off the Jutland peninsula surround 

Samsø Island, an “inner” island of Denmark. Samsø Island has 3,700 inhabitants and its 

annual energy consumption is approximately 600 TJ. Spear (2014) observes that Samsø 

Island’s electricity is entirely from wind power. The electric system is comprised of 11 1 

MW onshore wind turbines, and ten 2.3 MW offshore wind turbines. The islanders funded 

all but four of the wind turbines. The distribution system features 300–400 Amp 

underground capacity and 200 Amp above-ground capacity. 

F. ORGANIZATION OF DISSERTATION 

Chapter II reviews the literature to highlight the gaps in the research. Chapter III 

presents the method to convey how the cost and resilience models both function and are 

linked. Chapter IV provides the validation of the cost model and questions to which the 

results of the experiments are analyzed to identify useful implications. Chapter V applies 

the decision-making tool to assess resilience for Naval Station Rota, Spain’s microgrid to 

disturbances and compares resilience and costs at three RE INIs. Finally, Chapter VI 

presents the conclusions and recommendations. 
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II. LITERATURE REVIEW 

This chapter identifies what other researchers have done to measure resilience in 

order to adapt and create a method that is appropriate for INIs. The focus of this literature 

review is on resilience and cost modeling of RE microgrids.  

We evaluate interdisciplinary and earlier works on resilience as well as several 

military and government documents given their applicability to this research’s focus on 

INIs. However, there is no literature on resilience of off-grid RE microgrids.  

A. RESILIENCE 

Researchers portray resilience as a function of performance over time. D’Lima and 

Medda (2015) consider Bruneau in 2003 as making one of the first known attempts to plot 

resilience to better evaluate, demonstrate, and communicate resilience using a resilience 

triangle for seismic resilience of communities as illustrated in Figure 4. The resilience 

triangle conveys how performance instantly degrades when a disturbance strikes, before 

recovering over time to a restored performance level. The seismic resilience used by 

Bruneau et al. (2003) emphasizes the ability of the community’s infrastructure system to 

perform following an earthquake. Following Bruneau et al. (2003), Yodo and Wang 

(2016), Panteli et al. (2017), Zhang et al. (2018), Zobel (2011), and Rose (2007) have used 

either the resilience triangle, trapezoid or curve.  

 

Figure 4. Bruneau’s 2003 resilience triangle. Source: D’Lima and 
Medda (2015). 
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Willis and Loa (2015) helped influence our understanding of resilience and 

microgrid designs by observing that the resilience function’s shape varies for different 

designs and approaches to operating the energy distribution system, that different responses 

will result in different costs, and resilience is dependent upon the timescale. The timescale 

is integral to the shape of the function due to repeated and new disturbances such as those 

from climate change impacting the energy distribution system if the recovery timeframe is 

over many years.  

Willis and Loa (2015) observe that the resilience function’s shape depends upon 

the energy distribution system’s architecture design. The architecture can influence the 

impact measured by the y-axis and the time to recover measured by the x-axis. It is possible 

that similar shapes among resilience functions will be useful in ultimately assessing 

resilience. If an architecture’s resilience function portrays the same shape as another 

previously assessed architecture’s shape that is considered preferred by the decision maker, 

then it is likely that this architecture that has not yet been assessed will also have similar 

resilience behavior. 

D’Lima and Medda (2015) define static resilience as the ability to maintain existing 

function, as being portrayed by a reduced and smaller triangular area bounded by the three 

points (t0,100), (t0,Q(t0)) and (t1,100) over the same recovery time t1 in Bruneau’s resilience 

triangle shown in Figure 4. And when the recovery is faster, D’Lima and Medda (2015) 

designate the reduced triangular area due to full recovery and occurring before t1 as 

dynamic resilience, a measure of efficiency. They later applied their dynamic and static 

components to modeling the resilience of the London Underground transport system, aka 

London Tube (LT), and proposed that recovery from a more volatile disturbance portrays 

greater resilience than recovery from less volatile disturbances. 

The microgrid’s behavior as demonstrated by its performance over time is 

important and useful to understand when defining and ultimately measuring resilience. 

Panteli and Mancerella (2015; 2017) identify a limitation of Bruneau’s resilience triangle 

in its inability to capture the distinct states (Disturbance, Degraded, and Restorative) 

beyond the single recovery phase assessment. Additionally, the resilience triangle is threat 

specific due to its sharp and immediate degradation. Although the resilience triangle is 
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unable to capture the evolution of a disturbance over time, it may be unfair to criticize this 

model too harshly in that it, like all models, is a simplification of reality.  

The microgrid resilience function in Figure 5 illustrates a disturbance impacting the 

microgrid at time td. A disturbance is any HILP event degrading the microgrid’s 

performance. Microgrid performance is defined as the percentage of demand being met by 

the microgrid. The resilience measures recovery and invulnerability are shown and will be 

explained in more detail in Chapter III. Recovery the resilience measure is different than 

recovery, one of five states. Invulnerability is an adaptation of Francis and Bekera’s (2014) 

vulnerability measure that relates the absorptive capacity to the proportion of original 

system performance retained immediately following the disruption.  

 

Figure 5. Microgrid resilience function’s states and resilience 
measures. 
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Five distinct states partition the resilience function between tp-td, td-ts, ts-tr, tr-tfr, and 

after tfr. The pre-disturbance state occurs before the disturbance from tp to td. In the 

degradation state, the microgrid degrades to a minimum level of performance commencing 

at time td up until ts. During the stabilization state from ts to tr the microgrid will continue 

to perform at diminished level with no recovery. Starting at tr when the disturbance is no 

longer present and/or the microgrid is altered either in architecture or operation the 

microgrid will start to recover its performance until time tfr during the recovery state. 

Finally, the microgrid attains its post-disturbance state upon full recovery of its pre-

disturbance performance at time tfr. 

1. Resilience States and Dimensions 

Resilience is defined in the literature with as many as five and as few as three 

dimensions. The National Renewable Energy Laboratory (2019a, 2) identified the “Five 

Rs” of energy system resilience. These five dimensions include Robustness, Redundancy, 

Resourcefulness, Response and Recovery.  

Bruneau et al. (2003, 738) posit that resilience has only four dimensions: 

Robustness, Redundancy, Resourcefulness, and Rapidity, defining rapidity as “the capacity 

to meet priorities and achieve goals in a timely manner in order to contain losses and avoid 

future disruption.” Li et al. (2017) also define four dimensions of power system resilience: 

continuous situational awareness, robustness and preparedness, responsiveness and 

survivability, and recoverability and rapidity. Finally, Madni and Jackson (2009,187) 

characterize resilience as a “multi-faceted capability of a complex system that encompasses 

avoiding, absorbing, adapting to, and recovering from disruptions.” 

Henry and Ramirez-Marquez (2012) designate F(t) as the value of the delivery 

function resulting from each of the five states following a disruptive event and the 

corresponding resilience action for the respective system. Although F(t) represents an 

important distinction from the performance of the system, this research finds it to be 

equivalent to performance for microgrids because both F(t) and a microgrid’s performance, 

or power capacity, are byproducts of all the states following a disruptive event and 

represent value of the system’s output.  
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However, Henry and Ramirez-Marquez (2012) argue that disruption and recovery 

are transitional and therefore not states. They therefore determine that resilience has just 

three states: Stable Original, Disrupted and Stable Recovered. Whether one believes 

disruption and recovery as transitional or a state is not important, rather being able to 

measure each of these is more essential for assessing resilience then whether or not 

disruption and recovery are transitional or states. Baroud et al. (2014), Hosseini et al. 

(2016), Panteli and Mancerella (2015), Ouyang, Dueñas-Osorio and Min (2012) also use 

this three-state view for their research.  

Willis and Loa (2015) admit that although these dimensions are relevant, they are 

inconsistently used. Willis and Loa (2015, 6) argue that synthesizing the competing 

definitions is neither productive nor worthwhile and instead believe it is more important to 

evaluate the “service delivery, system design, system operations, disruptions, costs, and 

timescale” aspects of resilience. Despite conceding that there are many competing 

definitions, synthesizing these definitions is worthwhile in revealing common themes taken 

by several scholars. 

Other proposed resilience dimensions include prepare and anticipate, resist, 

response and recover Zhang et al. (2018;) and anticipation, absorption, recovery and 

adaptability Mohamed et al. (2019,) which is a distilled outcome of over fourteen other 

organizations. Mohamed et al. (2019) identify the main resilience dimensions as: tolerance, 

resistance, robustness, anticipation, adaptation, absorption, recovery, learning lessons, and 

alternative service.  

Haimes (2018) concludes in evaluating the numerous attempts to define resilience 

that resilience is both multidimensional and threat dependent. The resilience of a system, 

such as a microgrid, is different for a wildfire versus a tsunami. A microgrid designed to 

be more resilient to wildfires should employ less DER that have higher probability of 

damage to a wildfire but in so doing these DER could be more vulnerable to a tsunami. 

Most definitions proposed by others include more than one dimension—for example, 

reliability, restoration, adaptability, anticipation, or absorption—and many use different 

terms that are mostly synonymous. Many threats are weather-related, however military 

microgrids must also consider the intentional acts of an adversary such as cyberattacks, 
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sabotage, and direct attacks on the energy infrastructure. Regardless, of the potential for 

adversary action, the more likely threats to INIs remain weather related. 

Increasing resilience to a specific threat could make it less reliable to other threats. 

The classic example offered is underground vs. above ground utility lines. Above ground 

lines tend to be less reliable in conditions such as high winds and ice storms that are Low-

Impact-High-Probability disturbances, but more resilient due to being faster to repair. Li et 

al. (2017, 3) stipulate that “reliability can be evaluated without specifying the threats; but 

resilience is always relative to a particular threat.” 

Lawton et al. (2003), Wang et al. (2016), and Panteli and Mancerella (2015) defined 

resilience based upon the nature of the attack. Panteli et al. (2017) argue that resilience can 

differ dramatically for an earthquake that only lasts a few seconds vs. a typhoon that can 

last many hours or days. Chanda and Mohanpurkar (2018) find each of these approaches 

to be insufficient due to the omission of the duration of the disturbance in their definition. 

One could argue that not fully capturing the entire area under the resilience function creates 

an incomplete and inaccurate measure of the system’s resilience due to the inadequate 

consideration of the full duration of recovery or full extent of vulnerability. 

Although it could be argued that resilience is multidimensional and not captured by 

just a single measure, other researchers have not reached a consensus on any one measure 

that is exhaustive in capturing all known resilience dimensions. The numerous approaches 

to measuring resilience attempt to measure one or multiple aspects of the area under the 

resilience function. Any or all of the resilience measures suggest that resilience is directly 

related to the area under the entire resilience function. 

Recovery is a key component of resilience but has been approached in different 

ways by researchers. Resilience has been defined by some to only be preparedness and not 

recovery whereas Hosseini, Barker and Ramirez-Marquez (2016) emphasize both. Most 

definitions do incorporate the capability of the system to absorb and adapt from a disruption 

with recovery as an integral component of resilience. Some definitions dictate full recovery 

whereas others do not expect a return to pre-disruption state. The United Nations 

International Strategy for Disaster Reduction (2005) does not dictate full recovery by 
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defining resilience for the United Nations-International Strategy for Disaster Reduction 

(UN-ISDR) as a system’s ability to retain reasonable performance once exposed to 

changing conditions.  

The Arctic Council (2016) defines resilience for the Stockholm Research Center as 

the ability to continually change and adapt while operating within critical thresholds. 

Overbye, Vittal and Dobson (2012) define resilience as how “gracefully” a system 

deteriorates, that is the capability to gradually deteriorate under increasing disturbances 

and rapidly recover to its pre-disturbance state. Haimes (2018) defines resilience as the 

capacity to sustain a noteworthy disturbance within “acceptable degradation parameters” 

and recoup within a worthy time. Both recovery and vulnerability will be incorporated in 

this dissertation as two dimensions to measure resilience.  

Power systems and critical infrastructure usually use capability-based definitions 

to define resilience. Chaudry et al. (2009) define a power system’s resilience for The 

United Kingdom’s Energy Research Center (UKERC) as the capability to endure 

turbulence while still providing power to subscribers and recuperating quickly from a 

disturbance by having alternatives to provide energy. This definition, although pragmatic, 

does not mandate that the microgrid or power system by itself can recover, rather that 

alternatives to obtaining the energy are available. This solution is not practical or even 

feasible for an INI due to being off-grid and so remote.  

The U.K. Cabinet Office (2011, 14) defines critical infrastructure’s resilience for 

the United Kingdom (UK) Cabinet Office as a capability “to anticipate, absorb, adapt to 

and / or rapidly recover quickly from a disruptive event.” This definition expands upon and 

quantifies the desired dynamic behavior.  

Field et al. (2012) devised another capability-based definition equating resilience 

to being able to anticipate, absorb and recover from a disturbance conveniently and 

successfully. This definition could be argued to fall short in that it has not defined any 

criteria for success. After reviewing multiple definitions, Mohamed and Su (2019) 

determined that a resilient power system must have four capabilities in response to a 
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disturbance: anticipation, absorption, recovery, and adaptability. All of these capabilities-

based definitions also support a multi-dimensional approach to resilience. 

Resilience for off-grid RE microgrids introduces different disturbances that have 

risks of damage. The disturbance is not due to a power loss from the grid and there is no 

interconnection to any generation or storage. Although scholars have researched off-grid 

microgrids, the literature reviewed did not identify any attempts to define resilience for off-

grid RE microgrids. Rather, the research tends to be mostly broad and analytical overviews 

without providing detailed frameworks for evaluating a microgrid’s resilience.  

The reviewed literature is limited to resilience in remote off-grid locations that 

excluded power systems Arctic Council (2016), off-grid RE systems excluding resilience 

(Akikur et al. 2013; Arriaga 2016; Mandelli et al. 2016; Markovic et al. 2016; Singh et al. 

2015; Won et al. 2017), and efficiency of diesel gensets in remote locations excluding 

resilience Wheeler (2017). Chatterjee et al. (2019) briefly discusses resilience for off-grid 

RE but fails to demonstrate how others will measure resilience or costs. The extremely 

limited literature addressing this specific topic suggests that there is little-to-no 

understanding of design components most useful to enhancing resilience for off-grid 

microgrids. 

2. Resilience Definitions 

The Resilience Engineering Institute (2019, 1) states, “resilience is a word found in 

nearly a dozen academic disciplines, yet there is no consistent definition or approach shared 

among them.” Most define resilience as a system’s ability to recover from a disruptive 

event. Hosseini, Barker and Ramirez-Marquez (2016) conclude that more general 

definitions not focused on any particular application consider resilience to be an attribute 

associated with returning to a normal condition following a disruptive event. Research 

Assistant Professor Eisenberg of the Naval Postgraduate School in discussion with the 

author, (August 26, 2019), described resilience as a verb to emphasize the dynamic and 

temporal characteristics. 
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a. Vulnerability-focused definitions 

Aven (2011) take a less specific approach defining resilience as simply the 

vulnerability and seriousness of the outcomes for any event. D’Lima and Medda (2015, 

36) offered one definition proposed by Holling in 1973 as “a measure of the persistence of 

systems and of their ability to absorb change and disturbance and still maintain the same 

relationships between populations or state variables.” 

Baxter (2018, 5) defines resilience using the DOD’S definition for “Energy 

Resilience” as “the ability to avoid, prepare for, minimize, adapt to, and recover from 

anticipated and unanticipated energy disruptions to ensure energy availability and 

reliability sufficient to provide for mission assurance and readiness, including task critical 

assets and other mission essential operations related to readiness, and to execute or rapidly 

reestablish mission essential requirements” as stipulated in 10 U.S.C. §101. This definition 

intentionally creates its interpretation of what is included as task critical and mission 

essential.  

Robustness is an element of resilience when evaluating the power system’s 

performance over time. Li (2017) classifies robustness as an element of resilience in 

extreme events that is measured before the disturbance. This predisturbance view of an 

element of resilience is inconsistent with most of the literature that does not study resilience 

any time before the disturbance. 

Robustness in resilience has been defined as the ability to withstand a stress to the 

system. D’Lima and Medda (2015, 37) define resilience as “strength, or the ability of 

elements, systems, and other units of analysis to withstand a given level of stress or demand 

without suffering degradation or loss of function.” Arghandeh et al. (2016, 8) identify 

specific techniques to assure robustness that include designing distribution poles to 

withstand wind speeds and earthquakes and “replacing overhead lines with underground 

cables.” 

Arghandeh et al. (2016, 2–3 and 7) state that “resilience hinges on flexibility and 

survivability in the face of unexpected events, while robustness implies resistance to 

change…. Robustness is concerned with strength, whereas resilience is concerned with 
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flexibility.” Certainly, resilience favors flexibility; however, robustness and resilience 

should not be viewed as mutually exclusive. 

b. Recovery-focused definitions 

D’Lima and Medda (2015, 35) define resilience as “how fast a variable that has 

been displaced from equilibrium returns to it” in their study of delays or disruptions to the 

LT service. Hosseini, Barker, and Ramirez-Marquez (2016,49) define resilience using the 

ASME’s 2009 definition “as the ability of a system to sustain external and internal 

disruptions without discontinuity of performing the system’s function or, if the function is 

disconnected, to fully recover the function rapidly.” The National Infrastructure Advisory 

Council (2009, 8) defines infrastructure systems’ resilience as the ability to “anticipate, 

absorb, adapt to, and/or rapidly recover from a potentially disruptive event.” 

Several researchers include reliability with recovery in defining resilience. Youn 

and Chao (2011) sum reliability and recovery rates. Ayyub’s (2013) comprehensive 

measure incorporates both recovery and reliability. 

c. Definitions emphasizing disturbances 

The literature on resilience of power systems is mostly in agreement that resilience 

is in response to HILP events. The nature of the disturbance is what differentiates resilience 

from reliability that is typically well understood to be in response to LIHP events. This 

differentiation tends to suggest that resilience is much more attributable and requisite for 

more severe and unpredictable disturbances than reliability. 

Li et al. (2017, 2) simply define resilience of a microgrid as the ability “to withstand 

disruptions pertaining to severe weather and climate changes (e.g., hurricanes, tornados), 

catastrophic man-made incidents (e.g., malicious attacks, human operator missteps), and a 

combination of such incidents.” This definition fails to stipulate any desired dimensions in 

the recovery of the microgrid. 

The Department of Energy’s (DOE) definition follows Presidential Policy 

Direction 21 as “the ability to prepare for and adapt to changing conditions and withstand 

and recover rapidly from disruptions.” “Resilience includes the ability to withstand and 
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recover from deliberate attacks, accidents, or naturally occurring threats or incidents,” 

according to Energy Infrastructure Resilience (2015, 3). The DOE has incorporated 

variability of the severity level of the disruption despite DOD not doing so.  

The Department of the Navy’s (DON) definition for Resilience is “the ability of a 

system to anticipate, resist, absorb, respond, adapt and recover from a disturbance.” The 

Department of the Navy (2017, 10) stipulates that each of these six dimensions are an 

important resilience attribute for the DON. The DON does not include a requirement to 

recover rapidly. “Resiliency is what happens when you lose reliability,” as claimed by 

Michael Partyka (NAVFAC’s Energy Security Program Director) in discussion with the 

author August 13, 2019.  

Although most studies focus on disturbances, very few vary the disturbance levels 

as the LT study did in a way that others could perceive as useful. Varying weather-related 

disturbances impacting INI RE is an unnecessary complexity for this research’s resilience 

model. 

d. Operational vs. design approach  

Hollnagel, Woods and Leveson (2006) define resilience as the ability of a system 

to modify its functionality during a disturbance and unpredicted change, emphasizing the 

operational nature of controlling resilience over design. Berkeley and Wallace (2010) has 

a broader resilience definition for The National Infrastructure Advisory Council (NIAC) 

as the capability to learn lessons through subversive events and then modify operations and 

critical infrastructure framework to “restrain or alleviate” the impact of these same events 

in the future.  

Stamp (Microgrid and Energy Surety expert, Sandia National Laboratories) 

discussed the operational character of the microgrid immediately following worst case 

scenarios in discussion with the author July 29, 2019. Stamp suggested that immediate 

recovery is much more significant in enhancing resilience than the longer-term 

performance of unserved critical loads. And given this focus on worst case scenarios, that 

it is not so much how the system is controlled minute-to-minute rather how it shifts from 

the Uninterruptable Power Systems (UPS) seconds after the disturbance, switches lines or 
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starts a generator, curtails less important loads, and manages storage considering forecast 

RE. This perspective could be argued as supporting the greater value to improving 

resilience in the microgrid’s design vs. its operations in that mostly all the behavior in the 

first few seconds following a disturbance should be automated and inherent with its design. 

Arghandeh et al. (2016) use a resilience definition more focused on cybersecurity 

of networked power systems that confuses resilience and robustness as they relate to the 

value proposition; robustness, not resilience, is typically achieved through controls and 

operations. 

An energy investment decision-making model developed for the Navy determined 

the attributes for resiliency (see Table 2). Teague et al. (2015) provide the attributes to 

define the category and represent the volatility and factors over the project’s life cycle. 

Teague et al. (2015) argue these attributes are more focused on operations of the power 

system vice design and appear to qualify as reliability more than resilience as it provides 

an indication of desired attributes for this economically driven approach. And although this 

model does assess multiple attributes it fails to include recoverability. 

Table 2. Categories and relevant attributes of resiliency and cost measures 
per risk. Adapted from Teague et al. (2015). 

 

B. MEASURING RESILIENCE 

Willis and Loa (2015) review resilience definitions from various perspectives to 

filter out those terms inconsistent in describing system characteristics. In this study, Willis 
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and Loa (2015) generated four main findings foundational to a common resilience 

definition and integral to measurements: 

1. Resilience is a system’s attribute in response to a disruption 

2. The system’s state is dependent upon both design and operation 

3. The response to the disruption influences the costs to rebuild the 

electricity grid 

4. Resilience is dependent upon the timescale 

Hosseini, Barker and Ramirez-Marquez (2016) conclude that the literature on 

evaluating resilience is either qualitative or quantitative. Quantitative literature reviewed 

generated the deterministic and probabilistic measures that were evaluated for this 

research’s models. A qualitative literature analysis is not incorporated in this research since 

a quantitative analysis is used instead.  

Reliability measures, not to be used or confused with resilience measures, 

incorporate the System Average Interruption Duration Index (SAIDI) and System Average 

Interruption Frequency Index (SAIFI) of outages. SAIDI and SAIFI measures for reliability 

are described in Keogh et al. (2013) as 

 SAIDI = total number of customer interruptions/total number of customers served (2.1) 

 SAIFI = sum of all customer interruptions/total number of customers served   (2.2) 

Both are typically measured over a year, and despite having much less significance for an 

INI, are still measured and reported by NAVFAC. Reliability measures performance 

against potential low-impact high-probability (LIHP) events; resilience applies to HILP 

extreme events. 

1. Inventory of Measures 

In measurement theory there are five scale types that can be used for measurements: 

nominal, ordinal, interval, ratio and absolute. Each of these scales becomes more 

sophisticated proceeding from nominal to absolute. Giachetti (2003, 49) states that 
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measurement starts with defining the empirical system followed by defining a 

representative model.  

Willis and Loa (2015) conclude that the only relevant measure is their resilience 

index derived from robustness, resourcefulness and recovery. There is no consideration of 

off-grid island microgrids. Despite being able to adapt these measures for an INI, they do 

not include disturbances other than loss of power from the utility provider. As such, this 

gap in having measures for off-grid microgrids remains. Despite not knowing how 

resilience measures would differ for an off-grid island, recoverability from a disturbance 

is constrained by the resources on the island. Local resources are not a constraint for an on-

grid microgrid and therefore we argue has much greater significance for INIs. 

Hosseini, Barker and Ramirez-Marquez (2016) group quantitative resilience 

measures into either generic or structural-based. The generic measures are either 

deterministic or probabilistic. The structural-based modeling can be either optimization, 

simulation, or fuzzy logic and will be discussed in Section D, Modeling Resilience. 

a. Deterministic 

Bruneau et al. (2003) create a deterministic measure derived from the resilience 

triangle to measure resilience loss (R).  

  (2.3) 

where Q(t) is a measure of the quality of infrastructure to the community. This measure is 

rather unrealistic because it assumes that the system is always operating at 100% 

performance when the disturbance starts and in a microgrid typically the performance level 

is less than 100%, the capacity level, to have a cushion to absorb further increases in 

demand. Zobel (2011) also adopts this same measure and despite this measure being useful 

for the resilience triangle, it still fails to distinguish the states in the resilience function. 

Rose (2007) calculates Dynamic Resilience (DR) as recovery without hastened 

(faster recovery due to more funding) conditions, SOWR and recovery under hastened 
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conditions SOHR. SOHR is greater than SOWR due to “hastening repair and reconstructing 

capital stock.” This resilience measure is more of an economic measure of resilience 

attempting to capture the resilience improvement resulting from greater investments. 

 
 
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i
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N is the number of time steps. Hastening the repair is assumed to be made possible through 

investments and reconstructing capital. Although this is not a design decision, it still has 

relevance to this research given the relationships between investing in more maintenance 

and its improvement in repair times to be discussed further in Chapter III. 

Francis and Bekera (2014) calculate resilience using a measure incorporating 

recovery speed Sp, performance level at the recovered state Fr, performance level at the 

original state Fo, and performance level immediately following the disturbance Fd.  
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The applicability of speedy growth in the Sp term to a RE microgrid is unknown given the 

example they created for a fictional electric power network wherin the assumed Sp = 1 but 

without any further explanation. 

Henry and Ramirez-Marquez (2012) calculate resilience of the system state 

transition by taking a ratio of the recovery up to time t over the total loss of performance 

𝜑 due to disruption ej. 

   (2.6) 

(t | ej ) represents the proportion of performance that has been recovered from the disrupted 

state. This measure assumes recovery up to time t in the numerator, and the denominator 

is the total loss due to incorporating vulnerability and recoverability separately. 

Orwin and Wardle (2004) calculate resilience by evaluating instantaneous and 

maximum disturbances using Emax as the maximum intensity of the force that can be taken 
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without disrupting the system’s function, Ej is the magnitude of the disturbance’s impact 

on safety at time Tj. R at time Tj can be between 0 and 1. 

   (2.7) 

This measure fails to incorporate any dynamic components of resilience by virtue of not 

incorporating time. 

As argued by Henry and Ramirez-Marquez (2012), resilience dimensions 

characterize the state in relation to the disturbance event. An effective resilience measure 

therefore should rely on measures that capture these states. The use of the five dimensions 

that include recovery period, impact, performance loss, profile length, and weighted-sum 

as portrayed in Figure 6 to generate a measure as shown in Table 3 were more 

comprehensive in more completely characterizing performance than most of the other 

researchers in the literature.  

  

Figure 6. Five specific dimensions of resilience. Source: Yodo and 
Wang (2016). 
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Table 3. Five specific dimensions of resilience and their measures. Adapted 
from Yodo and Wang (2016). 

Resilience 
dimension 

Description Equation 

Recovery Time required to return to the acceptable 
performance range 

tn-td 

Impact The severity impact on performance P0(t0)- Pv(tv) 
Performance 
loss 

Total performance loss in the area above the 
function P(t) between tn and td 

 

Profile 
length f(t) 

The length of the recovery profile as it 
reaches the acceptable performance level 

 

Weighted-
sum g(t) 

A time-dependent deviation weighted sum to 
capture the speed and shape of the recovery 
response 

 

 

Munoz and Dunbar (2015), laid out an effective path starting with states, to 

corresponding dimensions with weighted measures to generate a resilience score: 

   (2.8) 

Zobel and Khansa (2014) determined that a shorter profile length is characteristic of a more 

resilient system. Munoz and Dunbar (2015) calculated optimized weights of each dimension 

using the path modelling process to maximize the model’s variance. Munoz and Dunbar 

(2015) optimized weighting to avoid measures with arbitrary or equal weighting so as to 

decrease any risk of inappropriate aggregation.  

Panteli et al. (2015) created the ΦΛEΠ (pronounced FLEP) measure, which segregates 

the resilience function into infrastructure resilience and operational resilience. Infrastructure 

resilience occurs first as the disturbance progresses and performance diminishes in Phase I. 

Then in Phase II in the post-disturbance degraded state the system no longer decreases 

performance and starts to recover. Operational resilience then occurs in Phase III during the 

restorative state. This measure comprises how fast (Φ) and low (Λ) resilience descends, how 

extensive the degraded state (E) is, and how quickly it recovers (Π). Φ and Λ are used to 

measure Phase I, E for Phase II, and Π for Phase III. The mathematical expression for each of 
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these phases is simply the trapezoidal area during the timeframe of the respective phase. 

Panteli et al.’s (2015) model, however, fails to address how low the resilience can go. 

Resilience measures of microgrids also include quantitative frameworks for weather-

related disturbances Amiroun et al. (2019) and DC microgrids Liu, Lu and Wang (2019). Li 

et al. (2017) calculates resilience resulting from a disturbance and using the resilience function 

as  

   (2.9) 

The performance loss of the system can be quantified as the largest deviation from a normal 

level where Q is the system performance 

  (2.10) 

or the integration of the relative deviation for performance degradation as shown in Figure 4: 

  (2.11) 

or to emphasize rapid recovery: 

 

  (2.12) 

We believe the last measure emphasizing rapid recovery to be more comprehensive in fully 

capturing the resilience dimensions in that it includes both the dynamic and static resilience 

components that are not normally combined into one measure. However, the first term should 

be t4-t1, not the reciprocal; otherwise as recovery time decreases, the loss would increase, and 

resilience would decrease. 
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Measures have also been proposed for pre-disturbance resilience to include average 

load loss ratio, probability of component failing, possibility of system islanding, generation 

and transmission margins. These measures have been applied to the microgrid being assessed 

while adjusting the hazard intensity (e.g., wind speed) Han et al. (2018). Again, for pre-

disturbance, one is evaluating robustness, not resilience, as previously argued by Li et al. 

(2017). 

The National Renewable Energy Laboratory (2019b) designates Value of Lost Load 

(VoLL) to be the most common measure to value resilience. National Renewable Energy 

Laboratory (2019b, 2) uses VoLL to approximate the “price that consumers are willing to pay 

for uninterrupted electricity.” VoLL ranges from $1/kWh to $300 kWh. VoLL will vary over 

time and by customer class and have a large range due to the range of attributes and context 

of outages; a grocery store will have much higher VoLL for the first few days of an outage but 

then will level off as there is less inventory that can spoil. Anderson et al. (2018) conclude 

that VoLL is difficult to calculate due to its being exogenous to the electricity consumer. 

Anderson et al. (2018, 10) assume VoLL at $100 kWh and argue that VoLL should be 

calculated “as a function of the fraction of load met and number of hours that the critical load 

is sustained.” They also recommend that probabilities of RE damage, RE generation, and DG 

availability would provide more accuracy for VoLL.  

Anderson et al. (2108) incorporate VoLL and Lc, the critical load served during the 

outage, to calculate a Value of Resiliency VoR: 

  (2.13) 

The utility industry assumes that the value of the lost load over time is determined at 

a fixed rate. Keogh and Cody (2013) argue that the value to the customers to have power 

restored is much greater one week after an outage than it is one hour after.  

VoLL attempts to put a financial value on being able to avoid a power disruption. 

Military operations do not change in value based for similar reasons that we see for VoLL. In 

order for VoLL to be useful for a base commander at an INI, much further work must be done 
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to enable base commanders to state what they can pay for uninterrupted electricity for 

different categories of military missions. Budgeted allocations and mission priorities at the 

INI are evolving and competing constraints that complicate the ability to value uninterrupted 

electricity. This VoLL measure requires accurate forecasting of the critical load Lc, and it is 

expected that it would be very sensitive to the probabilities of damage. 

To better place this research in context of the existing body of knowledge, this 

research in that it is focused on INIs, does not focus on on-grid utility centric strategies to 

assess resilience. Rather, this research will apply resilience and cost measures adapted for 

INIs to create a resilience and cost trade space. It is this trade space that will ensure that the 

resultant microgrid’s performance behavior driven by different design choices and 

maintenance decisions is better understood in relation to the power capacity ratios and 

diversification of generation portfolio. And by applying this research’s contributions to assess 

an INI’s RE microgrid, the power capacity ratios, redundancy levels, and diversification of 

DER will be better understood than what is currently made possible by the literature. 

This research will begin to explore the design space for microgrids knowing that more 

power capacity and diversification is better. What however is not understood is the 

relationship between power capacity, diversification, and resilience and costs. By being able 

to plot these relationships on a resilience and costs trade-off function for different microgrid 

architectures, it is expected that some ratios of power capacity and both amount and type of 

diversification will be more desirable to an INI’s situation than others. 

b. Probabilistic 

Resilience measures that incorporate probability include one approach that measures 

resilience using two elements: loss of performance and length of recovery. Chang and 

Shinozuka (2004) evaluate the maximum acceptable loss of system performance r* and 

maximum acceptable recovery time t*: 

 R  P(r
0
 r*and t

1
 t*) (2.14) 

This measure does introduce more realism than assuming the system has no 

uncertainty, by recognizing the uncertainty in quantifying resilience. Vugrin, Warren and 
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Ehlen (2010) also characterize resilience as a function of the uncertainty due to the probability 

and consequence of the disturbance to an attack.  

We do have the ability to incorporate probability into resilience measures either using 

historical time series-data or to forecast future time-series data. Etienne et al. (2016) 

developed two agriculture industry resilience measures for droughts, based on probability of 

recovery from failure and the ratio of drought recovery time to drought time. Hashimoto, 

Stedinger and Loucks (1982) use the conditional probability of nonfailure at a future time 

given failure at an earlier time to suggest that there is a relationship between a system’s 

reliability and its resilience. Although both offer a slightly different approach, they are both 

introduce probability over time and are useful. 

Predictive modeling is used to forecast either system performance or factors 

influencing the system performance to measure resilience. Chanda and Mohankpurkar’s 

(2018, 3680) code-based measure is developed for all time durations and includes both the 

outage duration and spatial impact. Their measure computed resilience several times for all 

outage durations and is a “temporal representation of resilience.” Although forecasting the 

duration of the impact could be useful in an operations solution this research excludes 

forecasting in that design is the focus, not operations. 

Several researchers introduce stochastic behavior into their models. Ouyang, Dueñas-

Osorio and Min’s (2012) resilience measure incorporates the stochastic behavior of the 

performance function as a time-dependent measure for measuring annual resilience of multi-

hazards events. “Energy Infrastructure Resilience” (2015) similarly proposes that there are 

many probability density functions for the same system that reveal resilience for different 

threats and consequences. 

The LT study modeled passenger counts for eleven passenger underground lines using 

a mean-reverting stochastic process that measured resilience as a function of both volatility 

and reversion rate by varying parameters for mean-reversion rate, mean-reversion level, and 

volatility. D’Lima and Medda (2015) grouped the results into behaviors representing different 

levels of volatility and resilience.  
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The disruptions in an underground line divert passengers and platform crowding to 

other lines. This disruption either increases or decreases the number of passengers depending 

upon the nature of the disruption. The passenger spikes will be gradual or steep depending 

upon the disruption’s severity level. 

The LT model calculates the resilience of the LT system to disturbances that include 

delays or disruptions in service. D’Lima and Medda (2015) simulate passenger counts on each 

underground tube-line using a mean-reverting process: 

  (2.15) 

X(t) =  Number of passengers on the line 

 = Mean-reversion rate (speed at which system can revert to normal following a 

disturbance which is proposed measure of resilience) 

 = Volatility of the process (controls randomness in the passenger numbers) 

(t) =  Mean-reversion level (time-dependent average level) 

W(t) =  Brownian motion (randomness) 

dJt = Jumps, severe disruptions 

Using this approach, high volatility and mean reversion equate to an extremely 

resilient system. Although this research views recovery when subject to a more volatile 

disturbance as being very resilient, variability of a disturbance is well beyond the scope of this 

research. This measure of resilience is unique in that it places a higher value on a microgrid’s 

ability to recover when facing a more volatile disturbance. 

2. Nonquantitative Measures 

There is robust literature available on nonquantitative measures that create conceptual 

frameworks tending to focus on capabilities (Kahan, Allen and George 2009; Labaka, 

Hernantes and Sarriegi 2015; Vlacheas et al. 2013; Bruyelle et al. 2014; Patterson et al. 2006; 

Vugrin, Warren and Ehlen 2011; Shirali et al. 2012a; Shirali et al. 2012b; Ainuddin and 

Routray 2012) and quantitative measures that assign a numerical value to different levels of 

dX (t)  ((t) X (t))dt  dW (t) dJ
t
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resilience (Cutter et al. 2008; Pettit, Fiskel and Croxton 2010; Shirali, Mohammadfam and 

Ebrahimpour 2013; Giachetti et al. 2003).  

Shirali, Mohammadfam and Ebrahimpour (2013) use the one ordinal measurement to 

rank objects according to a criterion in that this measurement used the Likert scale which does 

not incorporate any mathematical operations. Pettit, Fiskel and Croxton’s (2010) 

measurement could be classified as interval, although defining the units does not define a zero 

element, in that they measured vulnerability and capability of supply chains using a weighted 

sum approach to 152 questions weighted by policymakers. Cutter et al. (2008) uses the ratio 

scale measurement to define the units and zero element using 36 resilience variables scored 

between 0 and 100 on a percentage scale to generate a total resilience index score. Each of 

these although having qualitative aspects, is a quantitative measure. 

Li et al. (2017) differentiate resilience measures as measuring changes in system 

performance. In general, the differences in defining resilience, resiliency, reliability and 

robustness can be made by comparing the primary attributes and corresponding measures as 

shown in Table 4. 

Table 4. Differences in measures for resilience, resiliency, reliability, and 
robustness. 
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Lloret-Gallego et al. (2017) identify resilience characteristics of elasticity, 

plasticity, evolvability, adaptability in addition to the other attributes previously discussed 

that include vulnerability and recoverability. All of these characteristics should be 

pondered when asking if the microgrid will work when and how we expect it to despite 

catastrophic damage. And despite differentiating resilience, robustness, and reliability from 

each other, each characteristic is addressing this basic question from different perspectives. 

C. ASSESSING RESILIENCE 

Assessing resilience as used in this research is to take the multiple measures of 

resilience and contextualize them within a broader assessment to become actionable for 

decision makers to improve their microgrid’s resilience. The term resilience when used to 

describe the model’s results collectively includes all four of the resilience measures one of 

which is resilience the measure, one component of resilience. It is the assessment that is 

expected to be the actual informative and useful tool to permit decision makers to make 

their microgrid design choices. This research’s models limit these microgrid design choices 

to the quantity, capacity and performance of the DER components: wind turbines, DG, 

Solar PV and battery, and the level of maintenance investment. 

One can compare a resilience assessment to its resilience measurement used to 

make the assessment, as knowledge can be compared to the information used to generate 

the knowledge. The resilience measurement is used to assess the resilience. There are 

several examples of differing approaches to assessing resilience. Assessing resilience is 

more than measuring resilience; assessing evaluates the resilience measure to choose an 

preferred microgrid design.  

Willis and Loa’s (2015) observation that the resilience function’s shape is a 

function of its design could also be used to assess resilience. By comparing the resilience 

function’s shape to similar designs, one can decide to either accept the design as optimal 

or not. This relationship between design and resilience function shape could be useful in 

assessing resilience. 
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1. Energy Resilience Assessment (ERA) Tools 

The Office of Secretary of Defense (OSD) has created an Energy Resilience 

Assessment Tool (ERAT). Figure 7 illustrates the eight steps to set up the simulation: 

1. Make microgrid architectures (top left block); 

2. Generate one year electrical and thermal load profiles (Critical Load 

Profile); 

3. Generate one year of available solar energy for site latitude and weather 

(Resource Availability); 

4. Generate failure rates for all technologies and systems based on models 

and input data (Reliability Model);  

5. Simulate for one year (Monte Carlo Simulation); 

6. Loop back to step 2, repeat several thousand times;  

7. Average results for each architecture, calculate usage-based costs for grid 

power, solar PPA, and fuel consumption (Financial Model); 

8. Plot all costs and unserved loads (Analyze Results).  

The DOD has also created an Electric Resilience Assessment (ERA) Program-Distribution 

Tool using a notional Infrastructure Survey Tool (IST) Resilience Measurement Index 

dashboard for transportation facilities Ton and Wang (2015). Both tools primarily rely on 

critical load profiles. 
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Figure 7. OSD’s Energy Resilience Assessment Tool emphasizing 
reliability. Adapted from Judson, Pina, and Whitehead (2018); 

Baxter (2018). 

It should be noted that the OSD’s ERA tool actually provides decision makers with 

an assessed cost of reliability, not resilience. Although there are parallels here with the 

proposed research, there are also many differences. The ERA tool does not incorporate 

disturbances other than a utility outage; it does not use a measure that reflects both dynamic 

and static attributes of resilience; nor does it create tradeoff functions. Rather the ERA tool 

attempts to put a price on reliability without consideration for disturbances to microgrids 

inside the installation. 

Judson et al. (2016) define resilience as occurring when losing the power from the 

grid. Other disturbances such as a cyberattack or extreme weather events are not studied. 

As a result, their assumption is that all operations continue on a military installation unless 

there is a loss of power from the grid. They have also assumed that the backup generation 

at the buildings will continue to be fueled and has been maintained.  

Judson et al. (2016) conclude that centralizing diesel generation will improve 

resilience due to being able to interconnect the generation and operate in an islanded mode 
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from the local utility grid. They determine that PV and batteries will not provide resilience 

because the batteries would have to be extremely oversized to meet the load during utility 

outages. They did not consider the gensets’ loading constraints which will influence the 

sizing of the gensets when coupled with RE. Finally, they define resilience for the longest 

potential outage with a binary assumption on continuing operations. Overall, despite 

generating trade-off functions for costs and resilience, their methodology will not be 

effective for INIs nor can it maximize resilience through design choices and maintenance 

levels. As a result, the ability to influence recovery time following the grid outage is not 

included in their framework. 

Vugrin, Castillo and Silva-Monry (2017) developed a Resilience Analysis Process 

(RAP) for the DOE using measures of outage magnitude [customer days], recovery costs 

[$], and community impact [# of assets] that could be adapted to generate Pareto frontiers 

of resiliency improvement costs vs. power outages. In that the outage magnitude is very 

much similar to SAIDI, this is more a measure of reliability than resilience.  

2. Energy Security Assessment Tool (ESAT) 

Of particular relevance to this research is the Navy’s ESAT. Although the ESAT 

fails to define resilience, the Department of the Navy (2017, 5) does address it: “Resiliency 

depends to a great extent on the level of partnership with commercial utilities, distributed 

generation capacity, and grid and microgrid configurations.” The Department of the Navy 

(2017b, 19) describes generation and microgrid planning that should “encompass a wide 

range of objectives ranging from serving the entire installation to optimizing secondary 

uses (such as steam or chilled water) and providing adequate “islanding capacity.”  

The need to clearly define resilience and incorporate measures that reflect the 

Navy’s priorities in funding investments that strive to improve resilience could not be more 

clearly highlighted than by the ESAT tool. Between not having resilience adequately 

defined, using measures that do not provide any real indication of meeting the notional 

definition, incorporating subjective measures, and not being able to incorporate RE 

generation, it can easily be argued that this tool can be improved. This dissertation’s 

research strives to improve upon the ESAT tool. 
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The ESAT needs input data for an installation’s facilities required to have backup 

generation. This data includes the following requested input-fields in an Excel spreadsheet:  

1. Facility Peak Load; 

2. Quantity of Facility-Connected Generators; 

3. Standby/Emergency Generator Capacity; 

4. Maintenance; 

5. Testing and condition of the generator(s); 

6. Days of fuel the facility has on site at peak generator capacity; 

7. If facility has equipment that requires a UPS; 

8. If UPS is required; 

9. Rate the maintenance; 

10. Testing and condition of equipment; 

11. Make; 

12. Model; 

13. Installation Year; 

14. If has Automatic Transfer Switch; 

15. Fuel Type; 

16. Plant Replacement Value; 

17. Annual Generator Maintenance Costs. 

From this data three scores are calculated and weighted to generate an overall resilience 

score.  

The Department of the Navy (2017) creates their own resilience score computation 

by summing and arbitrarily weighting three components: 

R = Resilience score 
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1. B = Backup Generation (bg) capabilities score: 

 Percentage of facilities required to have on-site bg that do not have bg; 

 Maintenance, testing and condition score of the facility level generators; 

 Percentage of generator capacity to peak load;  

 Percentage of facilities with bg requirements that do not meet 

requirements for fuel sourcing 

2. U = Uninterruptable Power Systems (UPS) capabilities score: 

 Percentage of facilities required to have UPS installed that do not have the 

requisite UPS and a maintenance;  

 Testing and condition score of the facility level UPS 

3. S = Supported mission resiliency score: the number of facilities deemed to 

not have sufficient resilience. 

  (2.16) 

Applying the ESAT tool to SNI’s microgrid generates a resilience score of 72 as 

illustrated in Figure 8. The three components contributing to the resilience score: 

percentage of backup generation, percentage of UPS, and sufficiency of missions’ energy 

resilience are weighted and summed to calculate the score. 

R  .65B  .25U  .1S
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Figure 8. ESAT resilience score for SNI suggests SNI has poor 
resilience. Adapted from Department of the Navy (2017a). 

These results for SNI confirm that the ESAT tool is not designed or intended for an isolated 

location. With six-fold generation capability over demand at SNI, resilience is still only 

just over 70%. There is no consideration for recovery or vulnerability. Additionally, this 

tool does not allow for any RE generation. Finally, the ESAT tool does not reflect the 
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remoteness of SNI and the corresponding impact on attempting to maintain and refuel 

backup generators at each facility. The ESAT generates a visual display tool to provide an 

overall sense of where investments could be made; see Figure 9.  

 

Figure 9. Energy Security Assessment Reporting tool highlights 
emphasis on backup generation. Source: Department of the Navy (2017a). 

The ESAT tool does not apply to INIs because it assumes that there is no microgrid 

and the disturbance is limited to an outage from the utility grid. This tool primarily equates 

resilience to the installed capacity of backup and UPS to meet peak load. It does not create 

a meaningful definition that differentiates resilience from reliability through ability to both 

withstand and rapidly recover from unexpected disturbances. The ESAT does not address 

disturbances nor does it incorporate either actual or historical time series generation data. 

Adopting the ESAT approach will also not permit varying fuel consumption based upon 

generator loading nor factor in any costs such as LCOE. There is also no functional or 

meaningful power plant model. Perhaps the biggest shortcoming is the ESAT tool neither 

incorporates measures that reflect the definition and/or objective nor does it generate any 
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cost information to inform decision makers on the associated costs to increase the ESAT 

resilience score. 

3. Incorporating Costs 

Faraji et al. (2019) measured resilience and costs of two microgrids to highlight the 

relative effectiveness of the two microgrids. Their resilience measure is survivability, or 

unmet load in kWh/year. Faraji et al.’s (2019) research evaluated a grid-connected RE 

microgrid and an off-grid backup DG. They found no difference in resilience but the RE 

had lower costs. Although their assessment did consider costs and resilience, they did not 

consider a disturbance other than a blackout due to a power disruption from the utility 

provider. In that they did not assess an off-grid RE microgrid, nor incorporate a disturbance 

to the other off-grid microgrid, their study is useful for validation but still did not address 

these two gaps, off-grid RE microgrids and disturbances damaging islanded off-grid 

microgrids. 

4. Other Tools to Assess Resilience 

There are other microgrid resilience assessment tools, but none have been tailored 

to an INI or combine the costs with their assessment. The major approaches with the 

different tools are compiled in Table 5. 

Table 5. Tools to assess microgrid resilience. 

Approach Tool Measures Findings Citation 

Energy security 

OSD’s ERAT Cost of reliability Ability to influence 
recovery time 
following the grid 
outage is not included 
in their framework 

Judson, Pina and Whitehead 
(2018); Baxter (2018) 

DOD’s ERA Outage magnitude 
recovery costs, and 
community impact  

Pareto frontiers of 
resiliency 
improvement costs vs. 
power outages 

Ton and Wang (2015) 

Navy’s ESAT Reliability, 
Efficiency and 
Resilience 

Equates resilience to 
the installed capacity 
of backup and UPS 

Department of the Navy 
(2017a) 

Quantitative 
Recovery 
Index 

Load power 
restored/restoration 
time 

Microgrids improve 
recovery rate and 
hence resilience 

Mathew et al. (2016) 
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Approach Tool Measures Findings Citation 
Level of 
Resilience 

Sag voltage 
percentage, 
reduction in load 
served, recovery 
time 

Placement of 
microgrid resources 
affects resilience 

Ibrahim and Alkhraibat (2020) 

Resiliency 
Vector 

Degree 
connectivity 

Resiliency is multi-
objective optimization 
problem 

Chanda and Srivastava (2015) 

Code based 
measure 

Fraction of load 
unaffected by 
voltage or current 
distortion 

Reliability factor is 
influenced by design 

Chanda and Mohanpurkar 
(2018) 

General 
measure 

Performance and 
time driven 

Does not provide 
insights into points of 
failure, triggers, 
probabilities of 
failures or triggers, 
and asset conditions 

Yodo and Wang (2016); 
Borisoglebsky and Varga 
(2019) 

Probabilistic 

Fragility 
functions 

Failure probability 
as a function of 
weather 

System resilience can 
be quantified to 
intensity of extreme 
weather 

Hussain et al. (2019); Panteli 
et al. (2017b) 

Probabilistic 
analysis with 
uncertainty 
factors 

Semi-quantitative 
uncertainty factors 

Analytical output and 
implications for 
decision making are 
not necessarily 
consistent between 
approaches 

Shortridge et al. (2017) 

Probability 
Bounds 
Analysis 
(PBA) 

Aleatory 
uncertainty being 
represented using 
probability 
distributions, and 
epistemic 
uncertainty being 
represented using 
intervals 

Robust 
decision 
making 

Uncertain input 
quantities 

Qualitative 

Physical 
components 
and socio-
economic 
dimensions 

Resilience 
indicators for each 
dimension 

Takes new elements, 
actors and roles into 
consideration 

Lloret-Gallego et al. (2017) 

 

D. MODELING RESILIENCE 

Off-grid RE microgrids that have employed optimization models are presented to 

demonstrate how optimization has been used to reduce costs and maximize penetration of 

RE. Optimization, simulation and fuzzy-logic models are presented to demonstrate 
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circumstances in which different modeling approaches are most suitable for particular 

applications. 

1. Optimized Off-Grid RE  

There are many examples of off-grid RE microgrids that have been modeled and 

optimized, primarily for to minimize costs. Bates (2011) evaluated HOMER as a model of 

the power system at Lord Howe Island, Australia with inputs of demand and generation to 

conduct a financial analysis of six architecture options. Guevara-Stone (2015) studied 

Kodiak Island, Alaska where 99.7% of the power is provided by wind and pumped hydro. 

They conducted an extensive grid integration study to ensure the successful integration and 

maximum penetration of renewables could not only be attained but also be optimized.  

The U.S. Department of Navy (2013) incorporated RE integration optimization 

models on DGAR, BIOT. A Sonic Detection and Ranging (SODAR) analysis 

demonstrated that wind turbine generation would support the microgrid solution more than 

PV generation and as much as 56% penetration of RE onto the microgrid solution can be 

obtained through 2 MW of PV, 2.2 MW of wind using no energy storage (demand response 

will be used), and a controls system.  

Okinawa Electric Power Company (2012) confirmed that a 1 to 4 ratio of battery 

power to PV power is ideal to stabilize the PV power on Miyako Island, Japan made-up of 

4 MW of solar PV, 4.8 MW of wind, 74 MW of oil and gas generation, and 4 MW battery 

storage. Kim (2015) found that on Gasa Island, Korea which is fully renewable, wind, PV, 

battery storage, and an energy management system were introduced to reduce the power 

generation costs by $300K per year from previous diesel generation. Not one of these 

models or optimizations is done for resilience.  

2. Optimization Models 

One optimization in the literature maximized resilience and presented costs and 

repair times trade-off functions for airports. Faturechi, Levenberg and Miller-Hooks (2014) 

created an optimization model to maximize airport resilience. This model used a resilience 

measure as the ratio of take-off and landing capacities after vs. before the disruption. This 
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model incorporated both pre- and post-disturbance decision variables. This model 

presented resilience trade-off functions in budget vs. maximum repair times that can be 

adapted and applied to RE microgrids. 

Vugrin, Turnquist and Brown (2014) proposed multi-objective optimization 

models for transportation networks. Their model seeks to maximize resilience while 

minimizing network flows, costs, and unmet demand. Although this resilience model could 

conduct multi-objective optimization this is outside the scope of this research.  

Paasch (2016) at the University of Southern Denmark compared the optimization 

“potential advantage of applying string inverters with multiple Maximum-Power-Point-

trackers (MPPT) in large PV plants compared to the use of one large central inverter with 

one MPPT.” Paasch (2016) conducted a comparative investigation of non-uniform 

irradiation events caused by moving clouds over a full year and sorting of the PV panels 

during construction and estimated an increase in the annual energy production by 

approximately 0.4%. This optimization incorporated irradiance forecasting with the 

objective function to maximize PV energy. Alzahrani et al. (2017) also used predictive 

modeling to forecast generation of solar PV to optimize a microgrid to reduce the grid 

consumption by maximizing the penetration of solar PV onto the grid. Alzahrani et al. 

(2017) despite showing that solar PV could be forecast using neural networks, did not either 

articulate or sufficiently demonstrate the benefit of forecasting. 

There are several examples of modeling energy systems. One approach developed 

by NREL is an Integrated Energy Systems Model (IESM). The IESM used a System-of-

Systems approach to modeling the complexities of an electrical grid with DER. Mittal et 

al.’s (2015) IESM incorporated a Home Energy Management System (HEMS) 

optimization engine with the objective to minimize the house’s cooling costs using 

constraints on comfort of the occupants by setting maximum and minimum acceptable 

temperatures for the home.  

Xendee is a RE microgrid modeling tool for conducting multi-objective 

optimization. Xendee does not incorporate resilience into its objective functions. Rather, 

Xendee defines outage scenarios for the utility to determine the impact of decision making. 
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Outage costs in $/kWh are allocated to the outage times and then Xendee can curtail the 

load at the specified costs, oversize the technologies or make new decisions. The outage 

costs change the LCOE costs depending on if Xendee decides to curtail or oversize certain 

technologies. This model provides greater benefits to INIs in that a base commander will 

understand how much resilience they can afford.  

Those who have studied optimal design of RE microgrids for remote locations fail, 

however, to discuss resilience (Scioletti et al. 2017; Nejabatkhah et al. 2018; Kaur, 

Krishnasamy and Kandasamy 2018; Fathi, Beshr and Eteiba 2015; Goel and Sharma 2017; 

Sawle, Gupta and Bohre 2018; Garcia 2017; Mizani and Yazdani 2009; Katsigiannis, 

Georgilakis and Karapidakis 2012; Tucker and Negnevitsky 2011; Singh et al. 2015; 

Karimi and Kaserani 2017). Most all are optimizing to primarily minimize costs and some 

for carbon footprint. No one is optimizing to maximize resilience. 

3. Simulation Models 

Ross (2018) highlights the challenges of operating in islanded mode as shown by 

modeling a DC microgrid using SIMULINK. Simulations were run using a model for a 

microgrid employing a battery and implementing a super capacitor implementing a high 

energy storage system (HESS) in both grid connected and islanded modes. The conclusions 

indicated that the HESS reduces energy losses twice as much in grid-connected mode vs. 

islanded mode.  

Alderson, Brown and Carlyle (2015) modeled operational resilience of a fuel 

delivery system. Using this model, they were able to assess operational resilience, identify 

critical vulnerabilities, and advise policymakers on investments to improve resilience. 

Yodo and Wang (2016) contend that while in the design phase, assessing a system’s 

performance for operations is challenging. This is the primary reason they believe there is 

such little literature on the methodologies and tools for assessing resilience in the design 

phase. Although modeling is useful for operational resilience assessments, there is no 

evidence in the literature reviewed of how it has influenced microgrid design choices.  
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4. Fuzzy Logic Models 

Muller (2012, 370) “estimates infrastructure architecture resilience using fuzzy 

logic.” Fuzzy logic is more powerful in accommodating the inherent ambiguity found in 

the interdependent functional relationships found between infrastructure systems. Further 

evaluation of the power of fuzzy logic to better handle these interdependent relationships 

is needed given the inherent proclivity of power systems to be more vulnerable to cascading 

failures. Although fuzzy logic is beyond the research scope, fuzzy logic optimization tools 

could be more useful than multi-objective optimization primarily due to the ambiguity 

created by the combined and unpredictable weather and demand profiles at INIs. 

E. MEASURING COSTS 

There are numerous cost measures in the literature. Most cost measures are life 

cycle costs and some cost measures also incorporate energy. The two most common are 

reviewed: Life Cycle Cost Analysis (LCCA) and Life cycle Cost of Energy (LCOE) 

The International Renewable Energy Agency (2020) defines LCOE as the price of 

electricity required to ensure that revenues equal costs to include making a return on the 

investment at the WACC. Although a Naval installation receives revenues from utility 

payments paid by its building tenants, LCOE is still useful even though the revenues do 

not have to equal costs for the Navy. It is the utility provider’s need to ensure revenues 

cover costs that drove the creation of LCOE. LCOE conducts a net present value (NPV) 

calculation of both costs and electricity generation throughout the economic life of the 

DER. The NPV of the energy brings the future value of energy back to a present value 

using the same WACC to discount the future energy as used for costs.  

Aldersey-Williams and Rubert (2019) state that LCOE’s promotion by NREL, the 

U.K. government, Lazard, and Ernst and Young helped create its widespread adoption and 

acceptance. However, there has been no previous theoretical review of LCOE in the 

literature. Aldersey-Williams and Rubert (2019) argue that LCOE must be cautiously 

applied and thoughtfully used given its sensitivity to WACC, inflation and future fuel 

prices.  
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LCOE when used by itself is inappropriate for a microgrid on an INI because the 

LCOE assumes that all energy generated, even beyond the energy consumed by the loads, 

can be sold otherwise the International Renewable Energy Agency’s (2020) requirement 

that all revenues equal costs will not be met. Lotfi and Khodaei (2016), and the 

International Renewable Energy Agency (2019), calculate LCOE using the full capacity 

for electricity generation. However, a microgrid on an INI and most islands has no market 

to sell excess energy; consequently, including it in the discounting will underestimate the 

actual cost of the energy used. 

The Department of Defense (2020a) has issued recent guidance to assess all energy 

resilience funding proposals to the Energy Resilience and Conservation Investment 

Program (ERCIP) using a LCCA. Although LCOE is different than LCCA due to 

discounting future energy, LCOE is still a useful measure of life cycle costs for microgrid 

INIs to allocate financial value to the excess energy capacity. 

F. DISCUSSION AND CONCLUSION 

The authors and papers most closely related to this research’s resilience measures 

comprise Francis and Bekera (2014) for their invulnerability measure. We adapt their 

measure to the invulnerability measure in Chapter III. Their measure is similar to this 

research’s invulnerability measure by also taking a ratio of the post disturbance 

performance level to the preperformance disturbance level. The primary difference is their 

measure also incorporates a speed recovery factor and a ratio of the post disturbance 

performance after recovery efforts to the preperformance disturbance level. This research 

did not separate the post disturbance performance level into two levels, rather just one. 

Although it is conceivable there could be different levels of performance following a 

disturbance and before full recovery, the benefit of introducing a speed recovery factor and 

another level of post disturbance performance is not considered worthwhile considering 

the added complexity to the model. 

Renschler et al.’s (2010) approach to measuring resilience influenced the adaption 

of this research’s recovery measure. This research also calculated the area beneath the post-

disturbance performance curve. However, Renschler et al. (2010) used this area as their 
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resilience measure. Whereas this research adapted this measure further by taking a ratio of 

the area bounded between the post disturbance power generation curve and a constant level 

of pre-disturbance demand divided by this demand, and then subtracted from 1. Although 

Renschler et al.’s (2010) approach is related to this, it does not have a fixed range of values 

as this research’s measure does, from 0–1, nor does it factor in the predisturbance level of 

performance. Both are considered essential when combining this adapted measure with the 

invulnerability measure as done in this research to create a measure of resilience, . 

Panteli et al.’s (2015) ΦΛEΠ (pronounced FLEP) measure and how it segregates 

the resilience function into infrastructure resilience and operational resilience is also useful 

to this research. Panteli et al.’s (2015) research is similar in that it also calculates the speed 

of recovery and how extensive the post-disturbance degradation is. However, Panteli et al. 

(2015) is focused on grid-connected power systems and therefore uses number of lines 

tripped and number of lines restored in all but one of their four measures. 

The authors and papers most closely related to this research’s cost measures 

includes Anderson et al.’s (2018) Value of Resiliency VoR work. Anderson et al.’s (2018) 

research is much closer to this research’s focus in terms of emphasizing RE power systems 

and attempting to monetize the impact of not being resilient, the VoLL. This work although 

very good to see another research effort to develop a measure for resilience that could be 

applied to RE microgrids, cannot be applied to INIs due to the base commander’s inability 

to forecast or even place a value on lost loads presently. 

Vugrin, Castillo and Silva-Monry’s (2017) Pareto frontier of resiliency 

improvement costs vs. power outages is the closest to generating an equivalent trade space. 

Vugrin, Castillo and Silva-Monry’s (2017) developed a resilience assessment process, for 

grid-connected systems. Their process also proposed creating pareto frontiers for mapping 

resilience costs to resilience measures. Their research did not actually accomplish this 

concept but created the idea to explore this further.  

Willis and Loa’s (2015) finding that the resilience function’s shape is depending on 

its design helped shape the direction of the experiments. This concept pushed the direction 

of this research to better visualize the behavior of microgrid over time. Although Wills and 
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Loa (2015) did not present 3D graphs, nor do the analysis conducted in this research, their 

instinct that the shape of the curves is a byproduct of the design is very much at the essence 

of this research. 

And finally, Trout’s (2020) findings relating MTTR to different maintenance levels 

are extremely useful in providing the linkage between the maintenance level chosen in the 

cost model and its relationship to MTTR and time to recover in the resilience model. This 

research combined with Thompson et al.’s (2018) findings as they related maintenance to 

reliability resulting from equipment failures, is essential in forming the logic incorporated 

into the resilience and cost framework to link MTTR and time to recover.  

This work differs from the literature first and foremost in its focus and application 

on INIs, a very narrow subset of remote island communities. Specifically, defining 

resilience and costs appropriately for an INI, subjected to HILP disturbances, is different 

than the literature. Additionally, this work differs from the literature by its adaptation of its 

cost model so as to not inaccurately value the generation serving the demand; the 

microgrid’s power generation at an INI does not create revenues. Finally, the work done in 

this research links investments in maintenance to microgrid time to recover in a way that 

provides a more closely inter-connected resilience and cost trade space. This difference 

from the literature is pronounced as demonstrated by the contributions created providing 

the measures, decision-making tool, and trade-off functions that are otherwise not 

applicable to INIs in the literature. 

This chapter presents the most relevant literature on resilience to demonstrate how 

researchers have shaped and informed a logical approach to assessing resilience. Resilience 

is defined by first portraying the behavior of a microgrid system subjected to a disturbance 

through the Microgrid Resilience Function before identifying the states and the associated 

dimensions for each of these states. State-driven dimensions are then used to define 

resilience. Then, the literature on measuring resilience shapes the proposed resilience 

measures so as to more realistically capture the behavior of the resilience function 

consistent with the adopted definition. The resilience measures developed and used in this 

research’s models reflects this approach by calculating the behavior of the resilience 
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function that ultimately inform the assessment. Specifically, the literature influenced the 

state-driven dimensions, invulnerability equation, and recovery equation the most. 

The literature reviewed and presented suggests two main themes. The first theme 

is that resilience is multi-dimensional, yet there has been no agreement on how to capture 

all the attributes of resilience in one score. The second theme is that resilience is influenced 

through design, operations, or both.  

There are three obvious gaps in the research. The first is that cost and resilience 

measures are required for off-grid microgrids on islands having disturbances. The second 

gap is that resilience of off-grid microgrids on islands subjected to disturbances has not 

been studied, so it is not obvious how resilience is defined, which resilience and cost 

measures are meaningful, and which measures can be applied to INIs. The third gap is 

trade-offs in resilience and costs are needed to understand their relationships for different 

microgrid choices. National Renewable Energy Laboratory (2019b) did assess resilience 

vs. VoLL, but VoLL nor LCOE are neither ideal nor appropriate for INIs because there is 

no external utility provider. VoLL does not apply to military operations the same way it 

does to a grocery store or other grid-connected loads. Hamilton et al. (2016) did not 

generate a resilience measure for microgrids; rather, broadly considered analytics as to how 

they can influence resilience and LCOE. Hamilton et al. (2016)’s sensitivity analysis of 

LCOE to fuel prices, cost of lost mission, availability of RE credits, and availability of 

biofuels showed that LCOE is most sensitive to the fuel prices. While Hamilton et al. 

(2016) added to the literature in a useful way, their research left open work in defining 

resilience or incorporating data, and therefore did not answer how to measure resilience. 

Recent studies have focused on microgrids and typically one or more performance 

capabilities. The overarching theme is that resilience is different from reliability due to the 

probability of the disturbance and its resultant impact. The trends and patterns in the 

literature suggest that the resilience function captures and contains any or mostly all 

dimensions of resilience, but not the linkage of these dimensions to the life cycle costs.  

Although there is some debate about how important probability of the disturbance 

is, attempting to assess resilience using probabilities of disturbances is beyond the scope 
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of this research. Proponents of using the probability of disturbance argue that a more 

realistic determination of the disturbance happening is needed to prioritize which threats 

to design the microgrid’s resilience. Those that place little value on this probability believe 

that differences in the probability of a threat striking has little benefit to designing a 

microgrid for resilience because without a disturbance there is no need for resilience. In 

this research, the probability of damage is calculated given that a disturbance occurs. 

Munoz and Dunbar (2015) weighted measures to generate a resilience score 

coupled with Panteli et al.’s (2015) ΦΛEΠ measure are most compelling to create a 

resilience measure for INI microgrids; they each created measures that are applicable to 

INIs and are complete in reflecting the full performance behavior for a resilience 

assessment. Their approach most clearly articulated an overall resilience score that fully 

captured the dimension of the respective state and will be used to influence the resilience 

measures used for INIs.  

Despite significant work done to define resilience of power systems in recent years 

there is only a fraction of microgrid research into resilience. It is important to differentiate 

microgrids as a subset of power systems when defining resilience due to different 

capabilities and opportunities that effect their behavior following a disruption. The 

behavioral differences directly relate to the system’s resilience. A microgrid’s ability to 

recover from a disturbance is much more constrained than due to being off-grid and on a 

remote island such as an INI. As such, one must understand microgrids’ behavioral 

differences from generic power systems before applying general power systems’ resilience 

definitions to remote island locations. 

Measuring and assessing resilience for islanded microgrids is different primarily 

due to the nature of the disturbance and the ability of an off-grid microgrid to recover. On-

grid resilience measures and cost equations can be applied to off-grid islanded microgrids, 

but they will have different outcomes due to greater probabilities of damage to the DER 

from the disturbances and recoverability being impacted by multiple repair times for the 

different DER components. This research incorporates non-islanded resilience measures, 

adapts a cost equation to an off-grid island, and introduces the maintenance level into the 

resilience and cost models for disturbances other than loss of power from the utility. 
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Although there are numerous efforts to create resilience measures for power 

systems, there is a clear gap in both defining resilience and measuring it for off-grid 

islanded microgrids such as INIs. No researchers have proposed any known resilience 

measurements for INI RE microgrids. Similarly, this research failed to identify literature 

measuring resilience and generating trade-off functions for resilience and costs. All of this 

suggests that a resilience measure that captures the area under the resilience function will 

be deemed particularly practical and useful to decision makers when conveyed through 

resilience and costs trade-off functions for different microgrid design and maintenance 

options.  

  



60 

THIS PAGE INTENTIONALLY LEFT BLANK  



61 

III. INI RE MICROGRID RESILIENCE AND COST METHOD 

This chapter presents a method for assessing the adequacy of a microgrid design to 

deliver resilience cost effectively. This method will ensure that an INI’s base commander 

will know the price of resilience and can make more informed decisions before investing 

in a microgrid. The method’s steps for implementing the models are presented in Section 

A. Cost and resilience models to measure an INI RE microgrid’s performance are presented 

in Sections B and C, respectively, followed by a short discussion and conclusion in Section 

D. 

A. METHOD 

This method generates a trade-space of design alternatives to better enable a 

decision-maker to choose the microgrid architecture considering the acceptable 

combination of resilience and costs. This research generates tradeoff functions of the 

resilience and costs for the respective disturbance to help base commanders determine their 

appetite for resilience. 

To implement this method, the model operator, henceforth modeler, must have 

previously selected an installation site for a microgrid based upon investor-driven criteria. 

The modeler compiles demand profile time series data as well as obtains a complete 

understanding of power generation capacity, type, maintenance costs and location of each 

DER. The modeler also establishes the conditional probability of damage to DER for a 

specific disturbance at the microgrid location. The modeler should implement this method 

in five basic steps: gather data, generate disturbance scenario, establish resilience and cost 

baseline, simulate microgrid system, and select preferred microgrid design. 

1. Gather Data 

The first step is to gather data to use as input variables. Historical demand profile 

data and DER design parameters are both required to make the model work. 

Historical demand profile data includes the time series consumption over a certain 

time frame. The modeler must obtain time series interval data not to exceed one hour, for 
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at least one full day and ideally two weeks at the INI. The historical demand profile data 

does not have be exactly hourly real data; if it is not available then the modeler must create 

and input a realistic time-series demand profile data to ensure the model is accurate for the 

INI’s demand. The model will accept up to two weeks of historical demand profile data. 

The modeler should gather the associated generation data for each DER to provide 

the exact values for each of the model’s input variables, which include, the power rating, 

fuel consumption for diesel gensets, availability for wind turbines, and so on (see section 

B1, “Cost Model Nomenclature” and section C1, “Resilience Model Nomenclature”). DER 

data is crucial for the model to work; without this information the model’s results will not 

be accurate for the INI’s microgrid. 

As might be expected, when gathering data, accuracy of some input variables is 

more important than for others—for example, weighted average cost of capital is more 

important than O&M costs for the cost model; for the resilience model, the wind turbine’s 

time to repair is the more consequential variable. Expending effort to obtain exact 

information is more important for the input variables the measures are more sensitive to. 

2. Select Disturbance Scenario 

The modeler should select a disturbance scenario Sk that is the greatest concern for 

the INI. Only HILP scenarios will be used in that LIHP disturbances apply to reliability 

measures, not resilience. HILP disturbances include hurricane, earthquake, wildfire, 

tsunami and cyberattack. There are many others that could also be classified as HILP, 

known, and unknown; however, for the purpose of this research these disturbances are 

considered more likely than others. Once the disturbance is chosen, the probability of 

damage P(d|Sk) for each DER must be chosen. The probabilities can be obtained from 

subject matter experts or if that not an option, then other performance information when 

subjected to this disturbance that is deemed realistic can be used. 

3. Establish Resilience and Cost Baseline 

In order to compare resilience and costs of alternative microgrid architectures to 

the installed microgrid at the INI, we must first assess the installed microgrid for resilience 
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and costs. The model uses the data and scenarios from the previous steps to calculate the 

resilience and cost measures. In this dissertation resilience includes each of the four 

resilience measures: recovery, invulnerability, resilience, and time to recover. Each of 

these resilience measures, and cost measures form the baseline for comparative analyses 

with alternative design and maintenance options. 

Figure 10 outlines these sequential steps. 

 

Figure 10. Steps to establish resilience and cost baseline. 

Establish a baseline analysis of the 
existing microgrid for resilience and 
costs for different disturbances 

•Enter all input variables using the data obtained in 
Step 1

•Select disturbance scenario as decided in Step2

•Enter probability of damage input variables into 
resilience model

Generate resilience and cost trade‐off 
functions

•Determine the number of iterations necessary to 
generate the desired confidence interval and 
accuracy

•Simulate the models using the macro for the number 
of iterations calculated

•Generate both resilience and cost measures

•Create 2D trade‐off functions in Excel using the 
decision support method

•Create 4D trade‐off functions in MATLAB
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4. Simulate Microgrid System 

The modeler creates a model with the information from the previous steps. The 

modeler then simulates the model for different microgrid system architectures. The 

modeling approach is described in detail in Sections B and C. The model generates 

resilience and cost measures to measure the resilience of the respective microgrid for its 

associated costs. These measures generate trade-off functions for the design and 

maintenance choices. 

The model is built in a spreadsheet using a macro. The macro automates the 

keystrokes to simulate the model for more than one iteration when conducting Monte Carlo 

simulations. A macro automatically populates each of the four resilience measures and cost 

measure for each simulation. Automating the simulations reduces the time and opportunity 

for error compared to manually simulating the model. The spreadsheet’s Tool guidance 

worksheet offers further directions for running this macro, and Appendix B provided the 

macro’s code. 

Figure 11 provides the sequential simulation steps to run the model. 
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Figure 11. Steps to simulate the microgrid system 

5. Select Design 

Finally, the modeler analyzes the results to determine the main drivers of resilience 

and costs so as to introduce changes in either the microgrid design and/or the maintenance 

level. It is the trade space between resilience and costs that will enable a decision maker to 

narrow design options to only those that provide the desired resilience for the associated 

costs. 

Figure 12 presents the complete method process flow. 

Redesign microgrid system

•Vary the number of DER components (to include WT, 
solar photovoltaics (PV), DG, and batteries (BAT))

•Vary the power rating of DER components

•Vary the maintenance levels 

Generate resilience and cost trade‐off 
functions

•Determine the number of iterations necessary to 
generate the desired confidence interval and 
accuracy

•Simulate the models using the macro for the number 
of iterations calculated

•Generate both resilience and cost measures

•Create 2D trade‐off functions in Excel using the 
decision support method

•Create 4D trade‐off functions in MATLAB
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Figure 12. Microgrid method process to explore resilience and costs 
trade space to choose microgrid architecture design. 

Figure 13 illustrates the relationship between the input and output variables. This 

figure illustrates not only the relationships between input, random, and output variables for 

calculating resilience and costs measures, but also the relationships that include decision 

variables when optimizing the model. 

 

Step 1: Gather 
data

•Obtain microgrid power generation data and demand profiles data for input 
variables

•Gain a complete understanding of power generation rating, type, and 
location of each DER

Step 2: Generate 
disturbance 
scenario

•Determine the disturbance scenario Sk
•Choose probability of damage P(d|Sk) for each DER

•If the disturbance start time is other than 8:00 am, change the disturbance 
start time 

Step 3: Establish 
baseline

•Establish a baseline analysis of the existing microgrid for resilience and costs 
for different disturbances 

•This will be important so as to validate that the design choice actually has 
improved resilience and minimized costs

Step 4: Simulate 
microgrid 
system

•Redesign microgrid by varying both the number and power rating of DER 
components (to include WT, solar photovoltaics (PV), DG, and batterties 
(BAT)) 

•Generate both resilience and cost trade‐off functions using the decision 
support method

Step 5: Select 
preferred design

•Decision maker will choose preferred design based upon tradeoffs 
presented in resilience and LCOED

•It is expected that the tradeoff function will stimulate greater discussion for 
decision makers before selecting the microgrid design and corresponding 
resilience and costs



67 

 

Figure 13. Data flow: Inputs and outputs for both models. 

B. COST MODEL 

The cost model quantifies the life cycle costs for a microgrid. 

1. Nomenclature 

The indices, superscripts, and different types of variables make up the nomenclature 

used in the cost model.  

a. Indices 

y  Index for year       

Output

1. Resilience: recovery,
invulnerabilty, 
resilience, and time to 
recover

2. Cost:  LCOED

Input variables

Resilience model:

1. PV and WT capacity factors 
2. Availability of WT                                 
3. Battery charging efficiency                           
4. Battery discharging 
efficiency                                     
5. Fuel storage capacity            
6. DG fuel consumption rate                         
7. DER repair times for medium 
maintenance level                                                    
8. Disturbance scenario            
9. DER's Probability of damage                                    
10. Disturbance time              
11. Power rating of each DER                           
12. Demand profile

Cost model:

1. Planning horizon                    
2. WACC                                       
3. Per gallon fuel costs              
4. Economic life of DER             
5. Investment costs of DER      
6. Vendor's recommended 
O&M costs of DER                       
7. Demand profile        
8.Residual value of DER            
9. Power rating of each DER                                                

Random variables

1. MTTR                                       
2.Damage to DER            Decision variables              

1. DG loading factor(s)                            
2. Control authority 
for each DER

Resilience 
and cost 
models
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t  Index for time period        

i  Index for DER unit       

b. Superscripts 

WT  Wind turbine       

PV  Solar photovoltaic      

DG  Diesel genset       

BAT  Battery        

y  Year    

c. Input parameters 

n Economic life of DER  type (e.g., WT, PV)  [years]  

p Planning horizon     [years] 

Iyi
 Investment costs of DER i in year y   [$] 

Jyi
 Vendor’s recommended O&M costs of DER  

i in year y       [$]   

f  Fuel cost per gallon     [$/gal] 

g DG fuel consumption rate    [gal/kWh] 

r  Weighted Average Cost of Capital (WACC)   

Dt  Critical infrastructure demand at time t  [kW] 

Hi  Financial value of DER i at end of planning  

horizon       [$] 

  Power rating of DER i at time t   [kW]  

d. Variables 

LCOE  Life cycle Cost of Energy (LCOE)   [$/kWh] 

P
ti
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LCOED Life cycle Cost of Energy for Demand (LCOED) [$/kWh]  

Ey  Microgrid’s energy generated in year y  [kWh] 

Myi
 O&M costs of DER i in year y   [$] 

m Number of DER 

Fyi
  Fuel costs for diesel genset i in year y  [$] 

e. Decision variables 

Lti  Loading factor of diesel genset i in time period t 

µti  A binary variable that equal 0 when DER i is  

off in time period t, and equals 1 otherwise  

2. Problem Formulation 

The planning horizon is set equal to the expected life of the DER component with 

the shortest expected economic life. Although the component with the shortest life does 

not represent the life of the microgrid system as a whole, we adopt this microgrid’s 

timeframe for our planning horizon in order to simplify the economic analysis. INIs must 

comply with guidance from their leadership and the Department of the Navy (2013b) 

recommends the period of analysis (their term for planning horizon) as the lesser of either 

40 years for energy projects or the life of the energy system for NAVFAC economic 

analyses. The microgrid’s DER components economic lives range from 10–25 years and 

therefore the shortest life for batteries at ten years should be considered the life of the 

energy system and used for the planning horizon. Cost measures’ calculations will 

undervalue if an unrealistically low economic life is used; at INIs, there are several 

instances of DGs operating more than twice their economic life. 

a. LCOED 

The Department of Energy (n.d.) defines LCOE as the lifetime costs of the energy 

produced by a given source. The DoE uses the LCOE to compare different power 

generation methods. This dissertation uses it to calculate the unit cost of energy for an 
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entire microgrid that may contain multiple, different power generative sources (e.g., solar, 

wind, diesel). For this reason, the DoE definition is adjusted to include a residual value 

because in this dissertation all costs will be done based on a planning horizon set to the 

shortest expected life of the generative sources. Hence any resource with a longer life will 

have residual value at the end of the planning horizon.  

  (3.1) 

LCOE’s numerator totals and discounts the costs and benefits in Equation 3.1. The 

denominator totals and also discounts the full power rating of the purchased microgrid to 

generate energy. The DOE assumes that demand will always exceed the generative power 

rating; and when the normal loads served by the utility have less demand than the 

generation, the utility will transmit and distribute to other loads on the grid to ensure there 

is no excess and unused generative power rating so as to control their costs. This obviously 

is not an option for an INI, and therefore this same assumption that the demand will always 

exceed the power generation rating cannot be made at an INI. The LCOE cost measure 

assumes that the microgrid generates energy its Ey using the full power rating of the 

microgrid. There is never any excess energy capacity when measuring costs with LCOE. 

The investment costs Iyi represent the capital expenditure to purchase the DER. The 

O&M costs Myi is dependent upon the maintenance level. The resilience model’s MTTR, 

described in Section C.2.k is also dependent upon the maintenance level.  

The base commander’s operational decisions and the level of investment in O&M, 

training, spare parts, and spare DER influence the recovery of a damaged resource. The 

base commander can set the maintenance level for each DER at medium, low, or no 

maintenance. Three levels are chosen to simplify the model and reflect the full range of 

practical maintenance options. A medium maintenance level depends on the costs to meet 

the vendor’s recommended annual maintenance Jyi for the DER. A low maintenance level 

reduces the manufacturer’s recommended annual maintenance investments Jyi for the DER. 

LCOE 

I
y
 M

y
 F

y
 H

i

(1 r) y
i1

m


y1

p



y1

p


Ey

(1 r) y
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The model also has a maintenance level for when no maintenance is performed by the base. 

Although a fourth and high maintenance level could be used, Thompson et al. (2018) 

determined excessive maintenance to be unnecessary and therefore medium will be the 

highest maintenance level used in this model.  

The pseudocode for determining Myi follows: 

 
IF maintenance level is medium 
 THEN 

 

 IF maintenance level is low 
  THEN 
    

ELSE   
    

ENDIF 
 
ENDIF 

 

The maintenance costs of each DER are assumed to be constant. We recognize that 

maintenance costs will increase when choosing to have more DER components due to 

increasing redundancy. However, the cost model does not increase each DER’s 

maintenance costs to account for the added cost burden of maintaining more DER. 

The energy generated in a year sums the power over time.  

  (3.2) 

Equation 3.3 calculates the annual fuel costs. Recall the gensets are only employed 

when needed by the microgrid. When the demand is less than the microgrid power rating, 

some gensets can either be shut down or operated at a lower loading factor. Our fuel costs 

Equation 3.3 multiplies the DG’s fuel consumption rate by the fuel costs to get the $/hour 

cost before multiplying this by the DG’s loading factor, nominal power rating and control 

authority to account for whether the DG is operating or not. 

M
yi
medium  J

yi

M
yi
low 0.22J

yi

M
yi
none 0

E
y
 G

t
t1

8760


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  (3.3) 

The LCOE calculates a cost per kWh typically for a single source such as wind, 

solar or coal to compare generation costs between alternatives on a $/kWh basis. LCOE 

assumes all the power generated has value, and all the energy is used. However, an off-

grid island may be unable to use all the power that could be generated. Consequently, some 

power generation rating will be wasted and not used. At SNI they only need a fraction of 

their power rating to meet the demand, yet the Navy has already paid for the investment 

and maintenance costs for the microgrid. The LCOE would under-estimate the actual cost 

per kWh on islands with excess power rating such as SNI. The under-estimation will be 

considerable at the INIs’ microgrid architectures with 1.5, 2, and 3 times as much 

generative power rating as demand. 

To account for this aspect of islanded microgrids, we modify LCOE by only 

considering the demand vice the generative power rating. This modification is necessary 

because the LCOE, as mentioned previously, is primarily used for single energy sources. 

We are using it for microgrid architectures with multiple energy sources, which have 

different useful lives. We use the shortest life of all the energy sources as the planning 

horizon, and subtract the residual value of all the other sources with remaining useful lives. 

This equation addresses these modifications. 

 

LCOED 

(I
yi
WT  M

yi
WT ) ( I

yi
PV  M

yi
PV )

(I
yi
DG  M

yi
DG  F

yi
) (I

yi
BAT  M

yi
BAT ) (H

i
WT  H

i
PV  H

i
DG )

(1 r) y





















i1

m


y1

p



D
t

t1

8760


(1 r) y

y1

p


 (3.4) 

The numerator in Equation 3.4 is the NPV of each DER by summing and 

discounting by r the investment, maintenance, and fuel costs for each year less the residual 

value at the end of the planning horizon. The first term in the numerator in Equation 3.4 

F
yi
 gfL

ti
P

i
DG

t1

8760

 
ti
DG
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sums each of the wind turbine’s costs, the second term sums each of the solar PV panel’s 

costs, the third term sums each of the diesel genset’s costs, and the fourth term sums each 

of the battery’s cost. Charging costs are excluded by this model due to those costs already 

being captured by the other DER components of the microgrid. Belderbos et al. (2016) uses 

charging costs instead of fuel costs for the battery, although suitable for an on-grid 

microgrid it is not suitable for an off-grid microgrid that is charging its batteries using 

power it has generated.  

The per unit maintenance costs of each DER are assumed to not change based upon 

the number of DER. Despite recognizing that maintenance costs will increase when 

choosing to have more DER components when increasing redundancy, the cost model does 

not increase the per unit costs.  

The denominator of Equation 3.4 is the NPV of the historical demand profile over 

the planning horizon. This model sums the hourly demand of the INI over a full year and 

then applies the WACC to bring this amount back to present value. The modeler then sums 

each of these yearly values over the planning horizon. 

b. Cost measure differences 

To understand the differences between LCOED and LCOE cost measures, the cost 

model is simulated for a microgrid with 7 MW generation power rating and a medium 

maintenance level as illustrated in Table 6. The demand profile is illustrated in Table 7 

with the highest demand of 4MW but an average demand of 2.7MW. Consequently, the 

microgrid designs are all over-designed for the load with approximately 2.6 times more 

power generation rating than demand. Of significance and a reasonable expectation is that 

LCOED is approximately 2.6 times more than LCOE due to LCOED not valuing this same 

proportional difference in excess generation power rating because LCOE assumes all 

generative sources are producing at their power rating, but on an island with excess power 

rating and no place to sell the excess power rating, they will be usually operating at well 

below power rating. which can be seen in Table 6.  



74 

Table 6. Differences in cost measures for various microgrid architectures 
having a total power generation rating of 7 MW. 

Power rating of each DER 
[KW] 

# of 
WT 

# of 
PV 

# of 
DG 

# of 
BAT 

LCOE 
[$/kWh] 

LCOED 
[$/kWh] 

700 4 4 2 2 0.1096 0.2815 
875 3 3 2 2 0.1140 0.2929 
1,000 3 3 1 1 0.1117 0.2868 

 

Table 7. Relationships between time step and time of day for critical 
infrastructure demand at time t. 

Time step  Time step 
[hour] 

Dt  
[kW] 

Time step  Time step 
[hour] 

Dt  
[kW] 

0 0800 2,000 12 2000 2,800 
1 0900 2,400 13 2100 2,800 
2 1000 2,600 14 2200 2,800 
3 1100 2,800 15 2300 2,600 
4 1200 3,000 16 2400 2,000 
5 1300 3,400 17 0100 2,000 
6 1400 3,800 18 0200 2,000 
7 1500 4,000 19 0300 2,000 
8 1600 4,000 20 0400 2,000 
9 1700 4,000 21 0500 2,000 
10 1800 3,600 22 0600 2,000 
11 1900 3,000 23 0700 2,000 

 

C. RESILIENCE MODEL 

The nomenclature, model outline, and problem formulation are essential to 

effectively formulate the problem. The background and application of each are essential to 

effectively implement the resilience model. 

1. Nomenclature 

The indices, superscripts, and different types of variables make up the nomenclature 

used in the resilience model. Each of the respective abbreviations is presented as used in 

the resilience model. 
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a. Indices 

t  Index for time period        

i  Index for DER unit        

k  Index for disturbance scenario 

d  Index for disturbance start time  

b. Superscripts 

WT  Wind turbine       

PV  Solar photovoltaic      

DG  Diesel genset       

BAT  Battery  

 C  Charge     

c. Input parameters 

  Nominal power rating of DER i at time t = 0  [kW]   

Sk  Disturbance for scenario k      

C Capacity factor of DER      

A  Availability factor of WT      

Dt  Critical infrastructure demand at time t  [kW]   

S  Fuel storage capacity     [gallons] 

Bi  Initial energy capacity of battery i at time t = 0 [kWh] 

c  Efficiency of battery charging    

d  Efficiency of battery discharging     

λ  Time To Repair a damaged DER   [hours]   

q Quantity of DER units      

P(d|Sk)  Probability of DER being damaged given disturbance Sk  

P
i
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occurs  

W  DG’s maximum fuel consumption rate  [gallons/hour]  

d. Decision variables 

Lti  Loading factor of diesel genset i in time period t  

µti  A binary variable that equal 0 when DER i is  

off in time period t, and equals 1 otherwise   

e. Variables 

Pt  Power rating of microgrid at time t   [kW] 

Pti  Power rating at time t of DER number i  [kW] 

Gt  Power generated by microgrid at time t  [kW] 

  Resilience   

Ui  A binary variable that equal 0 when DER i is  

damaged, and equals 1 otherwise  

zti  Fuel consumption for DG i in time period t  [gallons] 

Bti  Energy level for battery i in time period t  [kWh] 

Tt  Unmet demand at time t    [kW] 

 Excess microgrid power available to charge battery  

i in time period t     [kW] 

Vti  A binary variable that equals 1 when a damaged  

DER i is restored in time period t, and equals 0 otherwise    

Oti A binary variable that equals 1 when a damaged DER i is available 

in time period t, and equals 0 otherwise  

MTTRi Mean Time To Repair (MTTR) the damaged DER [hours] 



P
ti
C
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number i. MTTR is exponentially distributed with mean  

 m  Number of DER     

2. Model Outline and Problem Formulation 

The purpose of the model is to inform decision-makers of how microgrid designs 

influence resilience and costs. The Department of Defense (2020c) stipulates that DOD 

components must plan and program for energy resilience and energy security and assess 

energy resilience at all installations in support of mission assurance objectives. Base 

commanders at INIs therefore are expected to ensure their critical infrastructure is resilient 

to ensure mission assurance when a disturbance hits the INI. Base commanders do not have 

either tools or the ability to determine type and which combination of microgrid DER 

components and investment maintenance level will provide the greatest resilience for a 

specific disturbance.  

We model the behavior of a RE microgrid over time while subjecting it to a 

disturbance. Resilience is calculated by adjusting the microgrid’s power rating at each time 

step dependent upon whether the damaged DER has been restored or not. The time to repair 

a damaged DER improves as maintenance increases. The financer of the microgrid can 

then determine their appetite for capital and maintenance investments by being equipped 

with an understanding of the relationship between costs and resilience. 

We are interested in how the microgrid behaves in response to disruptive events, 

the model assumes the disruptive event occurs at time td, and then determines how the 

system behaves. The model makes two simplifying assumptions. First, the model assumes 

the disruptive event occurs at a point in time. Many events such as hurricanes can last for 

hours and even days. HILP disturbances also include earthquakes, wildfires, tsunamis and 

cyberattacks all of which can vary from seconds and hours to days, and all of which have 

high impact. Second, we assume, that if damage occurs, it occurs immediately following 

the disruptive event. In this model the nature of the disruptive events are all of a high impact 

over a short time period, and immediate damage is a reasonable assumption. Another 

implicit assumption we make is we know the disruptive event occurs. For cyberattacks, it 

is possible the operator of the microgrid does not know it is attacked or is under attack 


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which does not change the analysis but does place greater emphasis on the design vice 

operational decisions. Not knowing a disturbance has occurred, precludes any operational 

decisions or actions. 

a. Resilience measure 

The resilience measure  incorporates measures for vulnerability and recovery. 

Invulnerability is defined as the microgrid system’s ability to withstand damage from a 

specific disturbance. Recovery is the microgrid system’s ability to rapidly and completely 

return to the pre-disturbance performance level. Factors that affect recovery include the 

chosen design, maintenance level of investment, and post-disturbance operations. The 

microgrid’s behavior can be described in five states: pre-disturbance, degradation, 

stabilization, recovery, and post-disturbance. The microgrid system’s behavior is portrayed 

using the microgrid resilience function in Figure 14. Recovery (green), the resilience 

measure, is distinguished from recovery (magenta), one of the five states. Robustness, 

adaptability, tolerance, and anticipation are not specifically measured because they are 

considered measured because they are considered either outside the timeframe of td-tfr or 

already incorporated in the two resilience measures of invulnerability or recovery. 
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Figure 14. Microgrid resilience function relates performance and time 
to resilience measures. 

The microgrid resilience function shows how the two measures relate to performance and 

time in relation to the five states of interest when the microgrid is subjected to a 

disturbance. 

The resilience equation calculates an aggregate resilience score weighting 

invulnerability and recovery equally as shown in Equation 3.5.  

  (3.5) 

b. Invulnerability measure 

We adopt Francis and Bekera’s (2014) invulnerability measure. This measure 

calculates the extent of post-disturbance performance loss by taking the fully diminished 

  0.5(invulnerability  recovery)
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power rating of a damaged microgrid and dividing this by the microgrid’s power rating 

before the disturbance. This measure can be influenced by both the maintenance investment 

level as well as design decisions that include the number, power rating, efficiency, and 

location of the DER.  

Disturbance type, damage and restoration are all distinct and separate factors that 

impact the invulnerability measure and should be evaluated independently so as to 

distinguish and evaluate the probabilistic nature of damage, from the probability of damage 

and probability of restoration. This research assumes all damaged DER will be restored 

and therefore does not incorporate probability of restoration. The probability that a 

disturbance occurs is exclusive of the probability of damage; a hurricane can strike an INI 

and cause no damage. The microgrid design choices are all evaluated by assessing their 

resilience to a disturbance. The probability of a disturbance does not change how a 

microgrid behaves or demonstrates its resilience. Rather, this research incorporates the 

probability of damage to a DER for a specific disturbance and excludes the probability of 

a disturbance from the model, by assuming the disturbance has occurred. 

We assume that the demand does not drop below . This is a reasonable 

assumption due to the disturbance’s damage being limited to immediately following the 

disturbance start time and focused on the microgrid.  

The invulnerability equation calculates the ratio of the microgrid’s power rating 

when it has been stabilized following the disturbance divided by the microgrid’s power 

rating when the disturbance first occurs as seen in Equation 3.6: 

  (3.6) 

c. Recovery measure 

We adapt Renschler et al.’s (2010, 6) recovery measure (their equation 3), which is 

“the normalized shaded area underneath the function describing the functionality of the 

system under the system response.” This measure calculates the ratio of the energy the 

P
ts

invulnerability 
P

ts

P
td
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microgrid generates without performance loss to the disrupted microgrid’s energy 

generated. Design decisions that include both the number and power rating of the DER as 

well as the choice to increase the level of maintenance investment influence this measure. 

The recovery equation calculates the ratio of the area bounded between the demand 

and post-disturbance generation function over the demand profile function as seen in 

Equation 3.7: 

  (3.7) 

The demand profile Dt is assumed to always be greater than zero and follows a 

historical projection. Whereas the generation is calculated for the disrupted microgrid’s 

diminished power rating to generate power. The diminished power rating is due to damaged 

DER until all damaged DER have been restored. Recovery of the DER will occur based 

upon the maintenance level and is discussed further in the next section. Finally, the ratio is 

subtracted from 1 so as to be consistent with the invulnerability measure wherein the 

maximum recovery is 1 and minimum 0. 

The recovery measure accurately captures the nonlinear behavior in performance 

due to the disturbance inflicting an immediate decline in performance followed by a 

gradual restoration. By calculating the ratio of unmet demand to demand at each time step 

following a disturbance, the area, a more accurate indication of the ability of the microgrid 

to rapidly recover is calculated than a simpler calculation using the area bounded by a 

resilience triangle. 

d. Maintenance level 

The time to repair a damaged DER will impact recovery by influencing the time to 

recover. A shorter Mean Time to Repair, MTTRi , will result in a shorter time to recover 

time and better recovery. We assume that greater investments in maintenance will reduce 

MTTRi.  

recovery  1  
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There are several assumptions made in calculating MTTRi. Trout (2020) identifies 

the failure’s severity level and assumes that the technician is competent and available to 

make the repair. This second assumption is reasonable for an average severity level of 

damage. It would be unrealstic at an INI to expect the technican to have the competency to 

effect an extensive repair. Anderson et al. (2017) found that SNI had at least three power 

plant operators that are technians on site at all times. Keeping at least three operators onsite 

ensures that there are enough operators to man the power plant with at least one operator 

at all times, and usually rotating every eight hours on average. Other assumptions that are 

made for INIs are that most spare parts are onsite, on-island. This later assumption is rather 

unlikely in many cases. 

There are limitations in applying MTTR. The first is that MTTR does not include 

the lead time for spare parts or the ability of a contracted service level agreement (SLA) to 

effect the repair. Trout (2020) describes lead time and SLAs as components of Mean Time 

to Recovery and not MTTR. Lead time for spare parts and contracted SLA are driven by 

operational decisions and therefore not included in this research’s focus on design 

solutions. The lead time for spare parts is an assumption that the spare parts on on-island 

for INIs.  

Thompson et al. (2018) found that, despite preventative maintenance usually 

reducing failure rates, excessive maintenance may be both wasteful and harmful. They 

analyzed a U.S. Army Corps of Engineers facility and maintenance information database 

of more than 100,000 power, mechanical and electronic components that included 13,000 

unit-years of information just on heating, ventilation and air conditioning equpment. Their 

results demonstrated that when reducing the maintenance hours for shell-and-tube 

condensers to a lower tercile having maintenance hours that are 22% of a middle tercile’s 

maintenance hours, the mean annual failures increased by a factor of 1.33. Similarly when 

reducing the maintenance hours again from the lower tercile to no maintenance, the mean 

annual failures increased by a factor of 2.42.  

MTTRi varies with the maintenance level; as the level of maintenance increases, 

MTTRi decreases. When the time step equals the MTTRi, the damaged DER will be restored 

and Vt set to 1.  
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The pseudocode for determining MTTRi follows: 

 

 = 2.5( medium) 
low= 1.5( medium) 
 
DO i = 1 TO q 

IF maintenance level is low  
 THEN 

MTTRi ~ Exp(low ) 
 ELSE  

IF maintenance level is medium 
   THEN 

MTTRi ~ Exp(
medium ) 

   ELSE 
MTTRi ~ Exp(

none ) 
  ENDIF 
ENDIF 

ENDDO 
 

The Organization of American States (2001) reviewed hurricane damage to 

buildings and concluded that building and equipment maintenance is a very cost effective 

disaster mitigation measure. Without maintenance, all other disaster mitigation methods 

could prove to be insufficient. Their findings, mostly focused on hotels indicated that roofs, 

walls and equipment are more vulnerable to failure at near breakdown or any technically 

deficient level. Specifically, they indicate that maintenance should ensure a facility can 

resist the effects of extreme natural disasters with minimal repair following the disturbance.  

The assumption that greater investments in maintenance will reduce MTTRi is 

supported by Trout (2020) as he argues that although MTTR is reactive maintenance, it 

provides an indication of the effectivness of preventative maintenance. Trout (2020) goes 

on to state that MTTR provides insights into how equipment is purchased, maintenance is 

scheduled, and maintenance is performed. 

Applying Thompson et al.’s (2018) findings to this research, the annual 

maintenance costs Myi should procure a corresponding amount of a technician’s 

maintenance labor hours; more investment in maintenance should deliver more 

none
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maintenance hours. Trout (2020) and the Organization of American States’ (2001) showed 

that MTTR is influenced by maintenance, and Thompson et al. (2018) showed the 

relationship between the mean number of failures and each level of maintenance. Although 

MTTRi following damage is not the same as mean failures resulting from different 

maintenance levels, it is expected that there will be a similar relative improvement in 

MTTRi for greater maintenance investments as Thompson et al. (2018) found for an 

improvement in the mean number of failures resulting from maintenance levels. 

We assume that greater investments in maintenance will result in greater 

availability of spare parts to use when repairing a damaged DER component. And similar 

to what Thompson et al. (2018) found, in general more but not excessive maintenance 

improves reliability. A better-maintained DER should be better able to withstand a 

disturbance by virtue of being more lubricated and having newer parts that overall should 

perform better in the face of a disturbance. Although failure due to disturbance induced 

damage to well-maintained DER is different than what Thompson et al. (2018) found as 

they related maintenance to reliability resulting from equipment failures, it is a starting 

point supported by Trout (2020) and the Organization of American States’ (2001) findings 

for relating the MTTR to different maintenance levels. This relationship between 

invulnerability and MTTR will be evaluated further through sensitivity analysis of 

invulnerability to time to repair a damaged DER K. 

The model calculates the availability Oti of a specific DER component by 

considering both whether the component has been damaged as well as whether it has been 

restored. This is done so a previously damaged DER will be restored and contribute power 

generation to the overall microgrid power rating. 

The pseudocode for determing a DER’s availability follows: 

 

DO i = 1 TO q 
DO t = td TO tfr 

IF Ui = 1 (DER is undamaged) or Vt = 1 (restored 
at t = MTTRi  

  THEN 
Oti = 1 (DER is available) 
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ELSE  
Oti = 0 (DER is unavailable)  

 ENDIF 
ENDDO 

ENDDO 
 

e. Conditional probabilities of damage 

The conditional probabilities of damage P(d|Sk) is an input variable for each DER. 

The assumption is the disturbance Sk has occurred. The P(d|Sk) represents that the DER 

will be damaged. The disturbance will either completely damage the DER, or not at all, 

which is reflective of most damage scenarios of the resource either being damaged and not 

operating at all or escaping damage and being fully operational. This assumption is made 

to simplify the model. 

A DER will be damaged by a disturbance if it meets the conditional probability of 

damage given that a disturbance has occurred. Let Ui denote whether resource i is damaged 

after event Sk occurs. The designers of the microgrid influence the probability of damage 

by hardening the components and infrastructure. For instance, base commanders can bury 

power lines underground, which greatly reduces the probability of hurricane damage. The 

literature reviewed indicates that WTs will have a different probability of damage for a 

weather-related disturbance than solar photovoltaic panels and therefore the modeler must 

use realistic probabilities of damage for the respective DER as input variables.  

The pseudocode for determing if a DER has been damaged follows: 

 

DO i = 1 TO q 
Generate a uniform random number  

IF random number < P(d|Sk)  
THEN 

Ui = 0 (DER damaged)  
  ELSE  

Ui = 1 (DER undamaged)  
 ENDIF 

ENDDO 
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Common-cause failures could also contribute to identical DER types becoming 

unable to generate power as a result of the other DER being damaged by the disturbance. 

Common-cause failures can arise from various situations that include a uniformly and 

incorrect action by a technician when performing preventative maintenance on all wind 

turbines for instance. All PV panels despite being separate could suffer common cause 

failure due to being anchored to the same tracking array. Similarly, all the inverters in a 

PV system may fail at the same time and together due to the same cyberattack. Common-

cause failures although having been deemed to be very low-probability have not been 

included in this method.  

f. Formulation 

The objective function Equation 3.8 maximizes resilience in order to both reduce 

time to recover and the unmet demand. 

  (3.8) 

Recovery or invulnerability can be maximized instead of resilience if that is desired. 

The model’s decision variables include each genset’s loading factor to be varied 

hourly so as to operate the diesel gensets as efficiently as possible in that Wheeler (2017) 

found that only high load conditions maximized efficiency.  

When optimizing, the model varies the control authority hourly to turn various DER 

generation off and on to maximize resilience. We permit the batteries to play a somewhat 

complex role in that the battery can be either charging or discharging and as such the 

decision to have them charge or discharge will alter the resilience measures.  

(1) Microgrid power rating 

The resilience measure incorporates calculations that use the power rating Pt of the 

microgrid by summing the power rating of each DER component as indicated in Equation 

3.9. This model calculates the total loss of power rating of the respective DER components 

following a disturbance by including the conditional probability of damage to the DER 

given a disturbance scenario. The microgrid power is calculated by summing each of the 

maximize   0.5(invulnerability+recovery)
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DER’s power rating from the time the disturbance starts until the microgrid is fully 

recovered. Each DER’s power rating is adjusted for efficiency terms as well as whether or 

not it is damaged.  

   (3.9) 

The first term in Equation 3.9 represents the power rating of the wind turbines by 

summing each wind turbine’s power. We multiply the power rating of the wind turbine 

by the wind turbine’s power rating and availability factors CWT and AWT. The capacity 

factor is a ratio of the actual energy produced in a time period to the maximum possible. 

The availability factor is the percentage of time that the wind turbine operates, that is it is 

not inoperable due to maintenance being needed and/or performed. This model multiplies 

the power generation rating by in order to reduce the DER’s power rating to zero if it 

is not available due to being damaged and not restored. Finally, we multiply by the control 

authority to the WT on or off. 

The Renewable Energy Research Laboratory, University of Massachusetts (n.d.) 

articulates that a capacity factor is not the same as, nor an indicator of efficiency. Capacity 

factors are used to calculate a RE’s generation. Capacity factors indicate how much power 

a particular RE generates for a specific location, and is the ratio of the actual energy 

produced in a given time period to the maximum possible. Availability factors are used to 

reduce the generation by the percentage of time the wind turbine is projected to be down 

for maintenance. 

Fitch et al. (2013) found the diurnal variations during the night increase the WT’s 

generation by a factor of three compared to the daytime. To account for this increase at 

night  is multiplied by 3 for twelve hours from 8:00 pm until 8:00 am daily. In that the 

capacity factor CWT already incorporates this increase due to diurnal behaviors, the WT’s 

capacity factor is reduced in-half in order to not overestimate the WT generation.  
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The second term in Equation 3.9 sums the power rating each PV panel. The power 

rating of the PV panel  is multiplied by the PV panel’s capacity factor CPV. This model 

does not incorporate a solar PV availability factor due to PV systems generally having 

availability over 98% and therefore it is assumed to be 1 for this model. This model 

multiplies the power generation rating by  in order to reduce the DER’s power rating 

to zero if it is not available due to being damaged and not restored. Finally, we multiply by 

the control authority to the PV on or off. 

To account for diurnal variations at night due to no irradiance the PV generation 

 is 0 kW from 8:00 pm until 8:00 am daily. In that the capacity factor CPV already 

incorporates this diurnal behavior, the PV’s capacity factor is doubled in order to not 

underestimate the PV generation.  

The third term in Equation 3.9 represents the power rating of the diesel gensets by 

summing each diesel genset’s power rating. This model uses a loading factor Lti for each 

respective genset to account for variable loading. This model multiplies the power 

generation rating by the availability variable . Finally, we multiply by the control 

authority to the DG on or off. 

The fourth term after the equality sign in Equation 3.9 represents the dischargeable 

power rating of the battery. This model multiplies the power rating of the battery  by 

the availability variable . We apply the battery’s discharging efficiency  to this 

term to account for losses due to discharging. Finally, we multiply by the control authority 

to the BAT on or off. 

(2) Unmet demand 

The unmet demand due to insufficient power rating is: 

  (3.10) 

The pseudocode for determining the microgrid’s generation is: 
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IF Dt  Pti
i1

m

  

 THEN 

Gt  Pti
i1

m

  

 ELSE   

  Gt  Dt  
 ENDIF 
 
ENDIF 

 

This amount of demand response, Tt, is a result of the power balance equation’s constraint 

that generation can never exceed demand: 

  (3.11) 

coupled with the requirement that  

  (3.12) 

Gt is the power generated by the microgrid. In that power can never be generated without 

demand Dt, it must always be less than or equal to the demand. Additionaly, the microgrid 

can not generate more power than its power rating. It should be noted that the demand 

includes the power used to charge the batteries. 

(3) DG fuel consumption 

Equation 3.13 calculates each diesel genset’s fuel consumption at each time step 

using a fixed rate of fuel consumption, W, for the gensets. Each DG’s fuel consumption 

varies based with the loading factor and and control authority variables. When the genset 

is both on,  and available, , the consumption equals the loading factor Lti 

times the genset’s maximum consumption rate W. The DG is available when it is not 

damaged. Otherwise, the consumption is zero gallons/hour.  

  (3.13) 
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(4) Sizing the battery 

The battery serves a useful role in a microgrid by storing excess energy capacity 

and having it available for the future when there is unmet demand. The size of the battery 

should be determined after the microgrid power rating is first selected in order to meet the 

demand. Later, in Chapter IV, useful ratios on the battery’s power rating to the microgrid 

power rating, and the microgrid’s power generation rating will be presented. Although 

these recommended, ratios can be used as a starting point, they do not have to be rather 

instead an iterative process can be used starting with a smaller battery first. 

The nominal power rating  and nominal energy capacity Bi are both input 

variables. The default choice for the nominal power rating should be such that it is equal 

to the nominal power rating of the diesel gensets  in order to have sufficient power 

rating to deliver power in lieu of a damaged DG. The default choice for energy capacity is 

to provide sufficient power rating in order to have sufficient energy capacity to deliver 

power long enough to be able to repair a damaged DG. If DGs are not employed, then the 

energy capacity should be sufficient enough to repair the DERs. However, the value should 

be input to provide resilience and costs for the ratio of BAT power to the microgrid’s 

nominal power rating . 

(5) Battery’s energy level 

We assume the battery’s initial energy level to be fully charged as provided by the 

input variable Boi. Having the battery fully charged at the point in time just prior to the 

disturbance impacting the microgrid is a simplification for the model. This best case 

assumption reflects that the microgrid should only discharge its batteries when the demand 

exceeds the generation rating of the microgrid. Under predisturbance conditions, it is 

expected that the microgrid’s power rating always exceeds demand. These conditions 

preclude the need to discharge the battery prior to the disturbance.  

P
i
BAT

P
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PBAT
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The energy management strategy only uses the batteries for transition when there 

is unmet demand from DER generation. Batteries are expensive and used for short-term 

storage. Fuel is used for long-term storage. 

The model assumes the INI will first dispatch generation to the load and only charge 

an uncharged and undamaged battery when there is excess microgrid power rating . As 

such, the battery should only need to be charged after it has discharged to help meet the 

demand, when the microgrid has been damaged by a disturbance and/or to use any excess 

power rating when operating a DG at its lower loading factor. This situation can occur 

when the demand profile requires the use of the smallest power rating DG’s generation at 

an amount that is less than its lower loading factor. 

We determine the battery’s energy level by first checking for excess microgrid 

power available to charge the batteries. If the first battery’s energy level Bt-1i is less 

than its initial nominal level Bi and there is excess microgrid power rating -Tt then the 

power available to charge the batteries is governed by equation 3.14: 

  (3.14) 

Equation 3.14 subtracts the excess power rating Tt from the battery’s power rating 

P
i
BAT and divides this amount by the battery’s charging efficiency. This calculates the 

excess microgrid power P
ti
C . 

For all other batteries if the numbered battery sequenced before the battery has any 

power available to charge it then so as to reduce the amount of 

for that battery by the amount used to charge the battery before it. Otherwise, there is 

no power available to charge the battery. 

The pseudocode for determing the microgrid’s excess power to charge a battery 

follows: 
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DO i = 1 TO q 
DO t = td TO tfr 

IF Bt-1i<Bi AND Tt<0 (excess power rating)  
  THEN 

Set excess microgrid power 
available to charge the battery 

Pti
C 

T
t
P

i
BAT

c

  

ELSE  

IF  
THEN 

Set excess microgrid power to 

charge the battery Pti
C  Pti1

C Pi1
BAT   

   ELSE 
Set excess microgrid power to 

charge the battery Pti
C  0  

   ENDIF 
ENDIF 

ENDDO 
ENDDO 

 

Let Bti denote the energy in the battery at time t. The new energy level of the battery 

is calculated by reducing the energy level by being discharged or increasing it by being 

charged. The battery will either charge using the excess microgrid power or discharge 

using the rated power of the battery to discharge, P
i
BAT  as governed by the control authority 

if the new energy level is less than or equal to the original nominal energy capacity and 

is greater than or equal to 0, and the rated power of the battery to discharge, P
i
BAT is less 

than the demand Dt. We limit the battery’s energy level by discharging down to 0 kWh and 

charging up to its original nominal energy capacity . Finally, if the rated power of the 

battery to discharge exceeds the demand Dt, then the battery is discharged using the 

level of the demand Dt instead of . 

The pseudocode for determing the battery’s energy level follows: 

 

Pti
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DO i = 1 TO q 
DO t = td TO tfr 

IF Bt1i Pi
BAT (t)0 OR Bt1i+Pti

C (t)0 AND Pi
BAT Dt  

   THEN 

IF ti
BAT 1 (discharging) 

Bti  Bt1i Pi
BAT (t)  

ELSE (charging) 

Bti  Bt1i Pti
C (t) 

ENDIF 
ELSE  

IF  (overdischarged) 
THEN 

B
ti
 B

t1i
 

    ELSE  

IF  (overcharged) 
THEN 

B
ti
 B

i
 

     ELSE 

IF Dt  Pi
BAT 

       THEN 

        IFti
BAT 1 (discharging) 

         THEN 

Bti  Bt1i Pi
BAT (t)  

        ELSE (charging) 

Bti  Bt1i Pti
C (t) 

ENDIF 
ENDIF 

     ENDIF 
    ENDIF 

ENDIF 
ENDDO 
ENDDO 

(6) Constraints 

Equations 3.15–3.17 define the constraints for optimization. Equation 3.15 ensures 

that the total fuel consumed by the gensets from td to tfr is less than the fuel capacity S. The 

DGs’ operating loading limits (Equation 3.16) ensures no wet stacking by being 

Bt1i  Pi
BAT(t)  0 

Bt1i Pti
Ct  Bi
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underloaded, nor being unable to take on more load due to overloading. Finally, all control 

authority decision variables must be binary as indicated in Equation 3.17. 

 
zti  S  

i1

q


ttd

t fr


 (3.15) 

 0.3 L
ti
 0.8   t, i (3.16) 

  (3.17) 

D. DISCUSSION AND CONCLUSION 

This chapter presents cost and resilience models to measure an INI RE microgrid’s 

performance. The two models ensure that an INI’s base commander will know the cost of 

resilience so as to make a more informed decision before investing in a microgrid. 

Using the proposed definition of resilience, the microgrid’s invulnerability and 

rapid and full recoverability from an improbable and severe disturbance, the resilience 

measure ensures that the most invulnerable and rapidly recovering microgrid can score the 

highest. This measure highlights the endogenous factors of the system such as the number 

and power rating of the DER that most improve resilience.  

For exposition, the model in its entirety is presented here again:  
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IV. EXPERIMENTS 

The method presented in Chapter III is implemented to conduct experiments that 

will generate meaningful and useful findings that can be generalized for future microgrid 

design resilience and costs trade space exploration. The model is built using Microsoft 

Excel in order to generate the resilience and cost measures within a tool that is expected to 

be implemented by all of the Navy’s utilities and energy community without any software 

limitations. Section A provides the model’s parameters so others may replicate this work 

using the models presented in Chapter III. Section B shows the sensitivity of the model to 

the variables. Section C validates the cost model by duplicating results with another LCOE 

model’s findings. Then, in Sections D through G, experiments are conducted to answer 

design questions we want to explore using the models. Section H presents a discussion and 

conclusion of the findings. 

A. PARAMETERS 

The parameters used as input variables for the model are presented by first 

providing the reference used as a basis for the parameter’s value, and the rationale for their 

values. The actual values used for each of the resilience and costs input variables is 

presented in Tables 10 and 11 to simplify replicating these results. 

For each power generation type—wind turbines, solar PV, gensets, and batteries—

four scenarios are chosen: hurricane, wildfire, earthquake, and cyberattack. Only one 

scenario is chosen for the simulation. 

We start with the literature to establish point estimates to adapt to our model. 

Although the exact values are not important for our model, they do give us the ability to 

establish relatively reasonable parameters. For wind turbines, Rose et al. (2012) determined 

the probability of hurricane damage as 46% for a Category 3 hurricane with wind speeds 

of 50 m/s or higher, Smith (2014) found that 90% of the wildfires led to substantial 

downtime or total loss, and Avossa et al. (2017) saw a 50% probability of failure for seismic 

loads from earthquakes in the fore and aft direction. For solar PV, Sepanski et al. (2018) 

analyzed 210 wildfire-damage incidents to buildings with PV and determined that 75 fires, 
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or 36%, resulted in damage to the PV system. Nicolas et al. (2019) determined the 

probability of earthquake damage to be lower and hurricane damage higher for solar PV 

than for wind turbines.  

The literature reviewed did not provide any probabilities of damage for diesel 

gensets or batteries. So, the diesel gensets’ probabilities of damage are assumed as just 

under the smaller of PV or WT. The batteries’ probabilities of damage are set at less than 

diesel gensets except for the wildfire scenario because of batteries chemical composition 

being more vulnerable to fire. The basis and rationale applied to generate the probabilities 

of damage to gensets is based upon the protection provided to the DGs by operating inside 

buildings. And these scenarios seemed more likely than other HILP scenarios. For 

example, a meteor strike would represent a high-impact event but is unlikely to occur. 

We also recognize that INIs by virtue of being a military installation are targets for 

hostile warfare attacks. An intentional act of aggression against the INI is a HILP 

disturbance. A missile attack on CLDJ is possible. For a missile attack on an INI, we will 

assume that all DER will have an equal probability of damage and that it should be the 

highest of the other probabilities, 0.9. 

Patel and Zaveri (2010) determined the mean probability of SCADA equipment 

damage resulting from a cyberattack as 25%. The DER probabilities of damage for the 

disturbances shown are presented in Table 8. 

Table 8. Probability of damage given disturbance Sk occurs for scenario k.   

 
 

The time to repair a damaged DER varies for different maintenance levels and type 

of DER. Pfaffel et al. (2017) provided mean down time per failure for each of seven 

onshore WTs that averaged 96.38 hours. Baschel et al. (2018) provided a five-day MTTR 

DER Hurricane Wildfire Earthquake Cyberattack

WT 0.50 0.90 0.50 0.25

PV 0.70 0.40 0.25 0.25

DG 0.30 0.20 0.15 0.25

BAT 0.20 0.50 0.10 0.25

P(d|Sk)
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for inverters in a PV system based upon field experience. Inverters are the most likely to 

fail of all solar PV components. Junior et al. (2017) calculated a MTTR for a diesel genset 

at 4.77 days. And Rimatrix5 (2020) uses a MTTR of just six hours for batteries. Applying 

the relationship from Thompson et al. (2018) discussed in Chapter III, the medium 

maintenance time to repair values are multiplied by 1.5 to obtain the low maintenance time 

to repair values, and 2.5 to obtain the time to repair for no maintenance. Values used for λ, 

time to repair, are provided in Table 9 and only the medium maintenance level values are 

input variables. 

Table 9. Mean values of time to repair for each DER. Input variable values 
are designated with yellow cells. 

 
 

One-hundred thousand (100,000) gallons is determined as sufficient storage to 

operate five 1 MW DGs continuously for two weeks. This is estimated assuming all five 

DGs operate continuously. 

Li and Tseng (2015) determined the charge and discharge efficiencies for a lithium-

ion battery. The energy capacity of a battery is established to provide two hours at their 

full power rating. The assumption is that two hours will be sufficient time to bring any DGs 

up online to meet the demand.  

Appalachian State University (2007) provided an average WT availability factor of 

0.98. CWT uses the capacity factor provided by IRENA (2020) and halves it so as to 

compensate for tripling the nighttime power generation of the wind turbines, as discussed 

in Chapter III C.2.f.(1). 

CPV is the capacity factor provided by IRENA (2020) and doubles it. As previously 

discussed in Chapter III C.2.f.(1), this is to compensate for the model not generating PV 

power at night. 

maintenance level WT PV DG BAT

none 240 300 285 15

low 144 180 171 9

medium 96 120 114 6

λ [hours]
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The residual value is determined as directly relating to the proportional remaining 

economic life. The proportion is determined using the planning horizon and economic life 

and provided in Table 10 which shows all the parameters used to simulate the resilience 

model unless otherwise stated.  

Table 10. Resilience model input parameters used in simulations. 

Variable Parameter Value 
S Fuel storage capacity 100,000 gallons 
c Efficiency of battery charging 0.97 

d  Efficiency of battery discharging 0.98 
Bi Nominal energy capacity of battery number i  

 

CWT Capacity factor of WT 0.22 
CPV Capacity factor of PV 0.36 
A Availability factor of WT 0.98 
Hi Residual value of DER number i at end of planning 

horizon (p = years of planning horizon; n = DER’s 
economic life) 

$  

 

Each DER has input variables for the cost model. Diesel Service & Supply (n.d.) 

provided the diesel fuel consumptions that are extrapolated for an 80% loaded DG to 

generate the fuel consumption rate. Clavier et al. (2013) provided DG and Li-ion batteries 

investment and O&M costs. Oviroh and Jen (2018) estimated the lifetime of a diesel genset. 

Mongird et al. (2019) established the economic life and O&M costs based upon energy 

capacity vice power rating for a lithium-ion battery. Smith et al. (2017) concluded that a 

ten-year lifetime is possible for lithium-ion batteries using a life prediction model. IRENA 

(2020) calculated the investment, O&M costs, capacity and economic life for onshore wind 

and solar PV. Hill et al. (2008) state that the industry accepted lifetime for a WT is 20 

years. The Department of Defense (2020b) provided the DG fuel costs and the costs for 

Alaska are believed most fitting to apply to INIs given the remoteness. The International 

Renewable Energy Agency (IRENA) (2020) calculated the WACC r for Organization for 

Economic Co-operation and Development (OECD) countries. Table 11 provides the 

economic life, investment and maintenance costs, capacity factors used in the cost model.  

2P
i

BAT

I
1i

(n p)

n
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Table 11. Cost model parameters used in simulations. All values are input 
parameters. 

DER Economic 
life 
 n  
[years] 

Planning 
horizon p  
[years] 

Invest-
ment 
costs 
I 
[$/kW] 

O&M 
costs  
J  
[$/kW] 

Fuel 
costs 
f 
[$/gal] 

Fuel 
consum-
ption rate  
g 
 [gal/
kWh] 

WACC 
r 
[%] 
 

WT 20 10 1,636 38.00 — — 7.5 
PV 25 3,081 18.30 — — 
DG 30 620 15.50 2.60 0.06 
BAT 10 4,200; 

$271/ 
kWh 

$1,500.00/
year 

— — 

 

B. SENSITIVITY ANALYSIS 

The number of simulations are calculated to achieve a 90% confidence interval and 

a level of precision at ten minutes per hour, or 0.0333. Using the standard deviation for 500 

simulations we solved for 7,500 required simulations and present the solution in Appendix 

C, Liu (2020,2). The demand profile portrayed in Figure 15 is used for all sensitivity 

analyses, and we see a rather typical daily demand profile increasing in the morning, 

peaking midday, and then returning to a base level by the evening. Unless otherwise stated, 

the maintenance level in every case is set at medium. The disturbance is a hurricane in that 

INIs are all subject to a hurricane. And unless otherwise stated the variance is calculated 

by increasing and decreasing the base value by 50%.  
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Figure 15. Daily demand profile portraying typical increase and 
decrease in consumption throughout the day. 

Figure 16 illustrates the sensitivity of time to recover to the probabilities of damage 

to a WT for the hurricane scenario in Table 8 versus the maintenance levels. Only a 

hurricane scenario and the WT are considered in order to assess the value of conducting 

sensitivity analyses on more than one maintenance level. The generation power rating is 

4.5 MW employing three of each DER at 500 kW. The sensitivity to each variation in 

P(d|Sk) is calculated by varying the values in Table 8 for a WT and then running 7,500 

simulations of the resilience model. Monte Carlo simulations are averaged for 7,500 

simulations so as to obtain a 90% confidence interval. The blue represents an increase in 

P(d|Sk) by 50%, orange the base value chosen for P(d|Sk), and gray a decrease in P(d|Sk) 

by 50%.  
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Figure 16. The sensitivity of time to recover to varying the WTs’ 
probability of damage 50% and maintenance level. 

1. Sensitivity of Resilience Measures to Resilience Input Variables. 

Figures 17–19 illustrate the sensitivity of recovery, invulnerability and time to 

recover to the resilience input variables for the hurricane scenario. Time to recover is the 

time that it takes the microgrid to fully recover, different than recovery. The sensitivity to 

each variation in the resilience model’s parameters is calculated by varying the values in 

Tables 10 one at time. The generation power rating is 3 MW employing two of each DER 

at 500 kW. The variance is calculated by increasing and decreasing the parameter’s value 

by 50% except when increasing would exceed the maximum value as in battery charging 

efficiency, DG fuel consumption rate and WTs’ availability factor. 

All three resilience measures are least sensitive to the battery’s charging efficiency 

and fuel consumption rate. Recovery and time to recover are most sensitive to the time to 

repair K. Invulnerability is the most sensitive to P(dDG|Sk). 
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Figure 17. The sensitivity of recovery to resilience input variables. 

 

 

Figure 18. The sensitivity of invulnerability to resilience input 
variables. 

 

Figure 19. The sensitivity of time to recover to resilience input 
variables. 
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2. Sensitivity of Resilience Measures to Time to Repair λ. 

Figure 20 illustrates the sensitivity to time to recover to repair λ. The sensitivity to 

each variation in λ is calculated by varying the base values in Table 9 for each DER one at 

a time. The generation power rating is 3 MW employing two of each DER at 500 kW. Time 

to recover is not excessively sensitive to the PV, DG, or BAT time to repair λ but is 

especially sensitive to the WTs’ time to repair λ. If the base commander can invest more to 

reduce WT time to repair, this would provide far more benefit in improving the time to 

recover than the other DERs. 

 

Figure 20. The sensitivity of time to recover to each DER’s time to 
repair λ input variables. 

The sensitivity of recovery, invulnerability and time to recover to repair time λ for 

both a low and no maintenance is measured. The generation power rating is 4.5 MW 

employing three of each DER at 500 kW. Recovery and invulnerability had approximately 

the same sensitivity of 30% change to the 50% variance in λ. However, the invulnerability 

had little sensitivity to λ as illustrated in Figures 21 and 22. Therefore, if invulnerability is 

more important than recovery, there should not be any emphasis on investing in λ. 
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Figure 21. The sensitivity of invulnerability to λ for no maintenance. 

 

Figure 22. The sensitivity of invulnerability to λ for reduced 
maintenance. 

3. Sensitivity of Resilience Measures to Battery Discharge Efficiency. 

The sensitivity of recovery, invulnerability and time to recover to battery discharge 

efficiency is measured to better understand the sensitivities of the resilience measures to 

the battery discharge efficiency. The generation power rating is 4.5 MW employing three 

of each DER at 500 kW. Recovery and invulnerability had approximately a 30% decrease 
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for a 50% decrease in battery discharge efficiency. However, time to recover increased by 

over seven times from the base value as illustrated in Figure 23. Therefore, it is important 

to use batteries that have good, ideally 0.98 or better, battery discharge efficiencies. 

 

Figure 23. The sensitivity of time to recover to battery discharge 
efficiency. 

4. Sensitivity of Resilience Measures to WT’s Capacity and Availability 
Factors. 

The sensitivity of recovery, invulnerability and time to recover to CWT and AWT is 

measured. The generation power rating is 4.5 MW employing three of each DER at 500 

kW. Although time to recover almost doubles for a 50% decrease, recovery does not vary 

more than 5% as illustrated in Figures 24 and 25. 
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Figure 24. The sensitivity of recovery to CWT. 

 

Figure 25. The sensitivity of recovery to AWT. 
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5. Sensitivity of Time to Recover to Time of Disturbance 

Figure 26 illustrates the sensitivity of time to recover to the time of the disturbance. 

The sensitivity of time to recover to the time of disturbance is calculated by varying the 

disturbance time for each hour of the day. The generation power rating is 3 MW employing 

two of each DER at 500 kW. Despite the diurnal variations in power generation, there is 

no sensitivity in time to recover to the disturbance start time. Therefore, choosing a DER 

that has better generation during the day versus nighttime, or vice versa, should not be 

considered important. 

  

Figure 26. The sensitivity of time to recover to the time of 
disturbance. 

Figure 27 illustrates the sensitivity of time to recover to the time of the disturbance 

and different ratios of RE power and type of RE to the overall power rating. The sensitivity 

to a morning and evening disturbance is calculated by varying the disturbance time for the 

respective ratio of power capacities. There is a slight improvement in the time to recover 
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Figure 27. The sensitivity of time to recover to the time of disturbance 
and ratio of PWT/ P and PPV/ P. 

6. Sensitivity of LCOED Cost Measure to Cost Input Variables 

Figure 28 illustrates the sensitivity of LCOED to the cost model’s input variables. 

The sensitivity to each variation is calculated by varying the base values in Tables 12 and 

13 for each DER one at time. The generation power rating is 3 MW employing two of each 

DER at 500 kW. LCOED is most sensitive to the fuel consumption rate and fuel costs and 

least sensitive to O&M costs.  

 

Figure 28. The sensitivity of LCOED to cost input variables. 
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Resilience is least sensitive to the battery’s charging efficiency and fuel 

consumption rate, and most sensitive to the WT’s time to repair λ. LCOED is most sensitive 

to the fuel consumption rate and fuel costs and least sensitive to O&M costs. Varying the 

charging efficiency has the smallest impact on resilience because the batteries play a 

smaller, albeit important, role in the recovery. For the parameters simulated, this is 

unlikely. The O&M costs have the least influence on the cost measure due to being 

proportionally much smaller than the investment costs over the planning horizon.  

However, improving the WT’s time to repair will increase resilience much more 

than improving the time to repair the other DERs. This is due to the diurnal behaviors 

resulting in the WT having a higher daily contribution factor. And, it is expected that the 

WACC will have impact on the costs due to its exponential application in the NPV 

calculations for the cost measures.  

C. VALIDATION  

1. Framework  

To validate the models to ensure the assumptions create theoretical model behavior, 

demonstrate reproducibility and generalizability, and ultimately duplicate past 

performance using retrospective experiments, Thomsen et al.’s (1999) framework is used. 

Thomsen et al. (1999) present their trajectory of validation efforts and argue there 

are three essential reasons to conduct validation. First, the assumptions must be validated 

to ensure the model behaves as predicted by theories and observations. Second, the 

representation must be validated, that is, the model’s authenticity, reproducibility and 

generalizability must be demonstrated. And finally, the advice and usefulness the model 

can provide must be validated through either using retrospective experiments to duplicate 

past performance, what-if scenarios, comparison of the model’s predictions with actual 

performance, or attempting to change the future based upon the model’s simulations. 

Thomsen et al.’s (1999) main point worth considering is that no single case validates a 

model. 
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2. Assumptions 

The model’s assumptions are first built from either information obtained from other 

researchers or using reasonable assumptions that are evaluated for each measure’s 

sensitivity to these parameters. We assume that the microgrid’s demand following a 

disturbance will mimic its historical demand. Similarly, we assume that the microgrid’s 

demand will not drop below the microgrid’s post-disturbance power rating.  

We place greater value on energy used today than in the future in our cost model. 

When we evaluate storage of our microgrid’s excess power rating, our cost measure 

discounts future energy. This is a logical but not necessarily appropriate approach for a 

utility that sells their energy, but even less so for an INI.  

We also assume that there is no per unit increase in maintenance as redundancy 

increases. There will be an increased maintenance burden associated with having more 

DER with the same nominal power rating. However, this is not incorporated into the cost 

model. 

3. Reproducibility 

a. Cost model reproducibility 

The ability to reproduce the same findings as other researchers in literature have 

produced using their models provides useful validation. Lotfi and Khodaei (2016) 

calculated LCOE for a microgrid with 50% gas-fired generation (DG), 30% WT, and 20% 

PV. They incorporated energy storage with a contribution factor that is 44% of the gas-

fired generation’s contribution factor. The contribution factor represents what percentage 

of microgrid power is generated by the DER. According to Hossein Lotfi (email to author, 

June 22, 2020), the planning horizon is 20 years and WACC 10%. There is no information 

provided for the DER’s economic life, fuel costs, investment costs, maintenance costs, or 

capacities used to generate their findings.  

Lotfi and Khodaei’s (2016) LCOE published data is used to validate the model for 

the microgrid architecture shown in Table 12. The LCOE calculated by the cost model is 

the same as Lotfi and Khodaei’s LCOE. 
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Table 12. Microgrid architecture validated for LCOE. 

DER DER’s 
nominal 
power 
rating 
P

i
 

[kW] 

Resilience model’s 
contribution 
factors [%] 

Cost model’s 
LCOE 
[$/kWh] 

Lotfi and 
Khodaei’s 
(2016)  
LCOE 
[$/kWh] 

Cost model’s 
LCOE 
[$/kWh] 

WT1 500 19.7 
 

0.0766 0.0882 0.0889 
WT2 500 
WT3 500 
PV1 500 4.6 

 
0.2938 

PV2 500 
DG1 500 55.5 0.2358 
DG2 500 
DG3 500 
DG4 500 
DG5 500 
BAT1 350 20.3 0.0163 
BAT2 350 

 

Lotfi and Khodaei (2016) first conclude that decreasing the share of DG’s power 

and increasing that of RE DERs would cause all contribution factors except for the DG’s 

to increase. To validate their finding, we calculate the contribution factors for the microgrid 

architecture, using the resilience model, with decreased share of DG power shown in Table 

13.  
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Table 13. Contribution factors for microgrid architecture with decreased DG 
power. 

DER DER’s nominal power rating  
P

i
 

[kW] 

Resilience model’s 
contribution factors 
[%] 

WT1 1,000 42.5 
WT2 1,000 
WT3 1,000 
PV1 1,000 10.0 
PV2 1,000 
DG1 500 25.6 
DG2 500 
BAT1 350 21.9 

 BAT2 350 
 

The new contribution factors are consistent with Lotfi and Khodaei’s (2016) findings in 

that all contribution factors increased except for the DG’s contribution factor.  

Lotfi and Khodaei’s (2016, 5) second conclusion is that increasing the share of RE 

DER’s power “with high LCOE would not be economical since the total LCOE becomes 

larger than the utility price.” To validate Lotfi and Khodaei’s (2016) second finding we 

increase the share of PVs, by doubling the number and power, to calculate the LCOE for 

the microgrid shown in Table 14. This new LCOE is consistent with Lotfi and Khodaei’s 

(2016) findings in that it is more costly than the original microgrid’s LCOE of 

$0.0889/kWh. 

Table 14. DER’s LCOE after increasing share of PV. 

DER DER’s nominal power rating  
 

[kW] 

Cost model’s  
LCOE 
[$/kWh] 

WT1 500 0.0947 
WT2 500 
PV1 500 
PV2 500 
PV3 500 
PV4 500 
DG1 500 

P
i
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DER DER’s nominal power rating  
 

[kW] 

Cost model’s  
LCOE 
[$/kWh] 

DG2 500 
DG3 500 
DG4 500 
DG5 500 
BAT1 350 
BAT2 350 

 

Lotfi and Khodaei’s (2016, 5) third conclusion is a “change in the LCOE of the 

DER with the highest (lowest) contribution factor would have the most (least) effect on the 

total LCOE.” To validate Lotfi and Khodaei’s (2016) third finding we calculate the 

microgrid’s LCOE by increasing each DER’s LCOE 10% one by one for the original 

microgrid architecture shown in Table 15. 

Table 15. Microgrid LCOE after increasing each DER’s LCOE by 10%. 

DER  DER’s original 
LCOE  
[$/kWh] 

DER’s new  
LCOE  
[$/kWh] 

Cost model’s microgrid 
LCOE  
[$/kWh] 

WT 0.0766 0.0843 0.0995 
PV 0.2938 0.3232 0.0997 
DG 0.2358 0.2594 0.1067 
BAT 0.0163 0.0179 0.0997 

 

Lotfi and Khodaei’s (2016, 5) “DER with the highest contribution factor” in this 

model is DG, and the lowest is PV as indicated in Table 12. And this model’s DER having 

Lotfi and Khodaei’s (2016, 5) “change in the LCOE of the DER with the highest 

contribution factor,” is DG, which did have the most impact on the total LCOE, although 

the change in the DER with lowest contribution factor, PV, did not have the least effect; 

rather, the BATs have the least effect but the differences between WT, PV, and BAT are 

negligible and well within the errors of this model. This is partially consistent with Lotfi 

and Khodaei’s (2016) findings.  

Lotfi and Khodaei’s (2016, 5) final conclusion is “a decrease in a DER capacity 

factor, while other parameters are unchanged, would cause its own contribution factor to 

P
i
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decrease, whereas other DERs contribution factors would increase. In this situation, the 

total LCOE would decrease (increase) if that DER’s LCOE is greater (smaller) than the 

total LCOE.” To validate Lotfi and Khodaei’s (2016) final finding, we decrease the 

capacity factor of PV by 50%. The contribution factors are now WT 20.1%, PV 2.4%, DG 

56.8%, and BAT 20.7%. These changes in the contribution factors are consistent with Lotfi 

and Khodaei’s (2016) findings in that the PV’s contribution factor did decrease from 4.6% 

to 2.4% and all other contribution factors increased from their original amounts. The PV’s 

LCOE is greater than the total LCOE and after decreasing the capacity factor the total 

LCOE increased to $0.0977 which is inconsistent with Lotfi and Khodaei’s (2016) 

findings.  

We then restore the PV to the original capacity factor and decreased the capacity 

factor of the WT by 50%. The contribution factors are now WT 10.9%, PV 5.1%, DG 

61.5%, and BAT 22.5 %. This is consistent with Lotfi and Khodaei’s (2016) findings in 

that the WT’s contribution factor did decrease from 19.7% to 10.9% and all other 

contribution factors increased from their original. The WT’s LCOE is less than the total 

LCOE and after decreasing the capacity factor the total LCOE increased to $0.0977 which 

is consistent with Lotfi and Khodaei’s (2016) findings. 

b. Resilience, and cost model reproducibility 

Faraji et al. (2019) assessed resilience and costs of two energy systems to a power 

outage. The first microgrid is a DG, and the second a RE microgrid with PV and BAT. The 

load modeled is a small clinic that had a peak load of 2.5 kW and average load of 1 kW. 

The parameters used in their analysis are presented in Table 16. 

Table 16. Parameters for Faraji et al.’s (2019) DG, and PV microgrids.  

Parameter DG microgrid PV microgrid 
 DG PV BAT 
Total power rating [kW] 2.8 10.0 20.0 
DER component power rating [kW] 2.8  1.0  1.0  
Number of components 1 10 20 
Efficiency [%] 95.00 16.25 95.00 
Economic life 15,000 hours 25 years 10 years 
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Parameter DG microgrid PV microgrid 
 DG PV BAT 
Planning horizon [years] 25  
WACC [%] 18 
Investment costs [$] 1,400 3,500 2,480 
Maintenance costs [$/year] 166.03 100.00 -725.00 
Fuel costs [$/gallon] 1.10 0.00 0.00 
MTTR [hours] 48  

 

The results of Faraji et al.’s (2019) analysis indicate that the PV microgrid is less 

expensive than the DG microgrid but has almost the same resilience as the DC microgrid 

using their resilience measure, survivability of load. These same parameters are used to 

simulate the resilience and cost models 500 iterations, and generated the findings presented 

in Table 17. The findings on the cost measures are consistent between Faraji et al.’s model 

and this dissertation’s cost model in that the PV system is cheaper than the DG, and the 

LCOE calculations are the same for the PV microgrid, and are within $0.05/kWh of the 

DG’s LCOE. The findings on the resilience measures are similar but not exactly the same 

as Faraji et al. The resilience measures using the resilience model demonstrate that the PV 

microgrid has greater resilience than the DG microgrid. This most likely is due to the 

resilience model incorporating probability of damage, an exponential probability 

distribution on the MTTR, and a resilience measure that more accurately measures the 

microgrid performance over the time to recover. 
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Table 17. Simulation results for Faraji et al.’s (2019) DG, and PV microgrid.  

Cost and 
resilience 
measure 

DG microgrid PV microgrid 

 Faraji et al. 
(2019) 

Cost 
model 

Resilience 
model 

Faraji et al. 
(2019) 

Cost 
model 

Resilience 
model 

LCOE [$/kWh] 0.0396 0.0949  -0.0032 0.0081  
Survivability of 
load (unmet 
load) [kWh/
year] 

0.0  2.7X10-15  

resilience  0.61  0.83 
invulnerability 0.48 0.67 
recovery 0.73 1.00 
time to recover 
[hours] 

16.70  1.00 

 

This model’s LCOE is the same as Lotfi and Khodaei’s (2016), their first three 

findings are consistent with this model, and their last finding is mostly consistent. This 

model’s LCOE is within $0.05/kWh of Faraji et al.’s (2019) two microgrids, consistent in 

showing that PV is less expensive, and mostly consistent in the resilience findings. In 

deference to Thomsen et al.’s (1999) position that no single case validates a model, two 

cases are used to validate the resilience and cost models. Both of these cases validate that 

the assumptions made generate reproduceable results using the resilience and cost models. 

The third and final reason for validation will be explored in Sections C through N to convey 

the model’s usefulness and corresponding advice for decision makers. 

D. EXCESS POWER GENERATION RATING  

A microgrid with a power generation rating much greater than the power demand 

it serves, and especially when the microgrid uses a diverse and redundant set of power 

generative sources, will have greater resilience than a microgrid in which its power rating 

is more or less equal to demand. The reason is twofold: (1) in the face of a disturbance, 

extra power is an obvious buffer to partial losses of power generation; and (2) multiple, 

different power generative sources are less likely to all be damaged in a disruption 

compared to a single, monolithic power source. Of course, having excess power will lead 
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to higher costs. The decision is to determine the best tradeoff between increased resilience 

for increased costs. Each of these experiments varies the microgrid architectures, and 

maintenance levels so as to understand the relationship between power rating, 

diversification, and resilience and costs. These relationships are plotted as resilience versus 

costs and confirm that some design architectures may be more desirable to an INI’s 

situation. 

This section presents experiments showing how the microgrid’s power rating 

impacts resilience and costs for each of the microgrid’s different maintenance levels. Each 

microgrid architecture chosen has a different power rating ratio. Some of the results 

generated by the experiments are presented in a 4D visualization with different colors for 

each microgrid architecture’s experiment. Each microgrid’s function is a shape created 

through interpolation of the data points generated for each experiment. Each microgrid 

architecture generates three data points corresponding to each of the three maintenance 

levels. The lighter shading of the data points is used for more maintenance; light shading 

is for medium maintenance, medium shading for low maintenance, and dark shading for 

no maintenance. The 2D graphs for LCOED vs. resilience, recovery, and invulnerability 

are provided in Appendix A.  

The findings shown for each experiment, help us understand that maintenance 

matters most when the power to demand ratio is less than 1.5. We also will see how 

resilience grows exponentially while costs increase linearly. Finally, we explore the trade 

space to show when increasing beyond some power rating ratios provides no further 

benefits to either resilience, costs, or both.  

1. Ratio of Microgrid Nominal Power Generation Rating to Demand, and 
Maintenance Level with Constant DER Nominal Power Rating Impacts 
on Resilience and Costs 

This section conducts simulations to evaluate the impact of varying the ratio of 

power generation rating to demand and the annual maintenance investment level on 

resilience and costs for a hurricane scenario. The number of simulations are calculated to 

achieve a 90% confidence interval and a level of precision at ten minutes per hour, or 
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0.0333. Using the standard deviation for 500 simulations we solve for 7,500 required 

simulations and present the solution in Appendix C, Liu (2020,2).  

We test how varying the maintenance level will impact resilience for a microgrid 

with the same proportion of DER components but different overall power rating. Although 

this is not a redundancy experiment, it does provide useful information when comparing 

these results to the next experiment that maintains a constant number of microgrid DER 

components. Three different microgrid architectures with different ratios of generation to 

demand are evaluated as shown in Table 18, all with the same power rating for each DER. 

The starting time for the disturbance is 8:00 am. 

Table 18. Microgrid architectures with same power rating for each DER.  

Architecture 
 

Ratio of 
microgrid 
nominal power 
generation 
rating to 
average 
demand 

PWT  PPV  PDG

Dt

 

Microgrid 
nominal power 
generation 
rating  

[MW] 

DER 
nominal 
power 
rating  
Pi 

[kW] 

# of 
WT 
mWT 

# of 
PV 
mPV 

# of 
DG 
mDG 

# of 
BAT 
mBAT 

3 of each 
DER 

1.2 3.15 350 3 3 3 3 

4 of each 
DER 

1.5 4.20 350 4 4 4 4 

5 of each 
DER 

1.9 5.25 350 5 5 5 5 

 

The first microgrid architecture with PWT  PPV  PDG

Dt

 1.2  is displayed in Figure 29.  

PWT  PPV  PDG
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Figure 29. Microgrid architecture with three of each DER at 350 kW 
and 3.15 MW overall power generation rating. 

It should be noted that the microgrid’s nominal power rating must be sufficient to 

meet the demand. If it is undersized, the microgrid despite recovering, will still be unable 

to meet the demand. Therefore, the demand profile must be considered so as to size the 

microgrid with sufficient power to meet the demand. 

Increasing either the maintenance investment, power rating, or both should provide 

greater resilience, but as the power rating grows beyond demand, resilience will approach 

a point of diminishing returns. The assumptions are made and articulated in Sections A and 

B that include assuming the disturbance scenario is a hurricane; nothing else is varied for 

each architecture other than the number of DER components in order to create the different 

overall microgrid power ratings.  

Time to recover is the time it takes the microgrid to fully recover. When the ratio 

of microgrid power generation rating to demand is greater than 1.5 the importance of 

maintenance is much less due to the small differences in resilience between having no 

maintenance and a medium level of maintenance, as seen in Figures 86–88. Maintenance 

is only significant when the microgrid’s power rating is closer to the demand. This is due 
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to gaining more benefits from faster recovery when the microgrid has less excess power 

rating. 

Figure 30 shows that excess power rating by having more power generation leads 

to large improvements in the time to recover the microgrid. However, the cost per kWh 

also increases significantly. Also, we note maintenance policies become inconsequential 

when the microgrid has a lot of excess power over demand. 

 

Figure 30. The effects of maintenance level on LCOED and time to 
recover. 

Figure 31 shows a decreasing return in improvements of resilience as the 

microgrid’s power generation rating is increased beyond a ratio of 1.5. Increasing the 

power rating from 1.2 to 1.5 increases resilience from 0.65 to 0.82. A further increase of 

power rating ratio to 2 yields a 0.89. Meanwhile the cost increases linearly with increases 

in the power rating ratio.  
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Figure 31. Linear increase in costs and nonlinear increase in resilience 
as power rating ratio increases. 

As shown in this experiments’ figures in Appendix A.1, increasing the microgrid’s 

power rating improves recovery, invulnerability, resilience and time to recover but there is 

a greater improvement in recovery than there is in invulnerability for the same cost. 

Therefore, a decision maker who values invulnerability more than recovery will need to 

invest significantly more both in maintenance and investment costs to realize greater 

benefits in invulnerability. Also, seen in these figures in Appendix A is that increasing 

maintenance improves recovery, invulnerability and time to recover in all architectures but 

has less impact when exceeding a ratio of the generation to average demand greater than 

1.5. Therefore, decision makers should invest less in maintenance as the power rating 

increasingly exceeds demand.  
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The cost of resilience can now be better understood by decision makers. Doubling 

the ratio of power generation rating to demand can greatly reduce time to recover but at 

significant costs compared to the same ratio of one. The base commander can now decide 

whether restoring power four days earlier is worth an additional $0.03/kWh as seen in 

Figure 30.  

When pondering why a power rating ratio of 1.5 is a point of decreasing gains in 

resilience and steadily increasing costs, we recognize that this ratio approximates an 

amount that when the power rating is reduced for efficiencies, and damage due to the 

disturbance, the microgrid’s generation will more closely meet the demand. By having the 

microgrid sized so there is no excess power rating upon being degraded, there are no wasted 

costs. This ratio is also dependent upon the probabilities of damage. Overall, this provides 

a useful insight on maintenance, maintenance matters when excess power is approximately 

50% or greater than the demand.  

2. Ratio of Microgrid Nominal Power Generation Rating to Demand, and 
Maintenance Level with Constant Number of DER Impact on 
Resilience and Costs 

Figure 32 illustrates the sensitivity of time to recover to the redundancy level and 

the microgrid’s nominal power rating over the average demand, P

D
t

. In general, there is 

much greater improvement in time to recover when redundancy is increased for greater 

ratios of P

D
t

 but there are diminishing improvements when 
P

D
t

1.5. When 
P

D
t

 0.5 the 

microgrid never recovers within the two week timeframe simulated; hence all time to 

recover hours are 337 hours, one hour beyond the two weeks evaluated. 
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Figure 32. The sensitivity of time to recover to each microgrid ratio of 
power rating to demand and redundancy level. 

To understand how the ratios of power generation rating to demand influence 

resilience and costs we model microgrids with different capacities for each DER and 

overall microgrid power rating. The number of DER is maintained as shown in Table 19.  

Table 19. Microgrid architectures for different ratios of 
PWT  PPV  PDG

Dt

.  

Ratio of microgrid 
nominal power 
generation rating to 
average demand 

PWT  PPV  PDG

Dt

 

Microgrid 
nominal power 
generation rating  

PWT  PPV  PDG  
[kW] 

DER 
nominal 
power 
rating 
Pi 

[kW] 

# of 
WTs 
mWT 

# of 
PVs 
mPV 

# of 
DGs 
mDG 

# of 
BATs 
mBAT 

1.25 3,413 1,138 1 1 1 1 
1.50 4,095 1,365 1 1 1 1 
2.00 5,462 1,820 1 1 1 1 
3.00 8,193 2,730 1 1 1 1 
4.00 10,924 3,640 1 1 1 1 

 

Figure 33 shows that resilience grows exponentially with respect to increases in the 

power rating to demand ratio, while the total life cycle costs grow linearly. We also see 

how maintenance matters less as the power rating ratio increases. Finally, it costs more to 
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realize similar gains in resilience as we increase the power rating ratio. LCOED increases 

in a linear manner, and resilience increases in an exponential manner as the power rating 

ratio increases.  

 

Figure 33. Power generation rating to demand ratio as viewed from a 
power rating perspective. 

Figure 34 shows how the maintenance level is a factor a decision maker should 

consider only when
PWT  PPV  PDG

Dt

1.5. This finding is consistent with the previous 

experiment’s results. 
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Figure 34. The effects of microgrid power rating to demand ratio on 
LCOED and time to recover.  

This experiment compared to the previous experiment highlights the benefit of 

redundancy for the same power rating ratio. In the previous experiment, the power rating 

ratio of 1.5 has an overall power rating of 4.2 MW with 4 WTs, 4 PV, 4 DG, and 4 BAT 

with resilience = 0.83 and LCOED = $0.12/kWh. In this experiment, for an approximate 

power rating ratio of 1.5, the overall power rating is 4.1 MW with 1 WT, 1 PV, 1 DG, and 

1 BAT with resilience = 0.77 and LCOED = $0.12/kWh. The first experiment has an 8% 

higher resilience, for equivalent costs. This improvement is attributed to redundancy and 

shows how the architecture’s power rating ratio can improve resilience, and costs by 

incorporating redundancy. 

Figure 35 highlights the exponentially decreasing returns on resilience while costs 

increase linearly. We can also more clearly see how there is effectively no improvement in 

resilience beyond a power rating ratio of four. Increasing the power rating ratio from 2 to 

3 increases resilience from 0.83 to 0.88. A further increase of power rating ratio to 4 yields 

a 0.89. Meanwhile the cost increases linearly with smaller increases in power rating ratio.  
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Figure 35. Exponential increase in resilience as costs linearly increase. 

Figure 36 shows how invulnerability and recovery follow an exponential function 

of power rating. We observe how invulnerability contributes more to resilience than 

recovery after a ratio of 1.5.  

 

Figure 36. Exponential increase in recovery and invulnerability as the 
power rating ratio increases. 

Exceeding a power rating ratio of four costs more without any further gains in 

resilience. The previous experiment provided better results for the same power rating ratio 
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due to its microgrid incorporating redundancy. This provides us an additional and more 

useful insight when sizing a microgrid so that we incorporate redundancy and do not 

exceed a ratio of four for the power to demand ratio.  

3. Ratio of RE Nominal Power to DG Nominal Power with Constant DER 
Nominal Power Rating Impact on Resilience and Costs 

To incorporate RE it will be useful to understand how varying the nominal power 

rating ratio of the RE DER to the DG DER will impact a microgrid’s resilience. RE will 

behave differently than DG in this model due to diurnal factors, and the different 

probabilities of damage. These differences in the model do not fully reflect all the 

differences such as the greater and inherent uncertainty in RE power generation. Each 

microgrid modeled has the same nominal power rating for each DER but a different overall 

microgrid nominal power generation rating. Five different microgrid architectures 

employing DER components with a nominal power rating of 1,500 kW are evaluated as 

shown in Table 20.  

Table 20. Microgrid architectures for proportion of DER with constant DER 
power rating.  

Ratio of RE 
nominal 
power rating 
to DG 
nominal 
power rating 

PWT  PPV

PDG  

Ratio of RE 
nominal power 
rating to nominal 
microgrid power 
generation rating 

PWT  PPV

P
 

Microgrid 
nominal 
power 
rating 
P 

[MW] 

DER 
nominal 
power 
rating  
Pi 

[kW] 

# of 
WT 
mWT 

# of 
PV 
mPV 

# of 
DG 
mDG 

# of 
BAT 
mBAT 

2 0.50 18 1,500 3 3 3 3 
3 0.60 15 1,500 3 3 2 2 
4 0.67 9 1,500 2 2 1 1 
5 0.71 21 1,500 5 5 2 2 
6 0.75 12 1,500 3 3 1 1 
 

The nominal BAT power rating is maintained the same as the nominal DG power rating, 

PBAT  PDG . The microgrid architecture with
PWT  PPV

PDG
 2 is portrayed in Figure 37.  
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Figure 37. Microgrid architecture with RE/DG = 2 employing three of 
each DER at 1,500 kW and 13.5MW overall power generation rating. 

The expectation is that increasing the microgrid’s proportion of RE/DG will 

provide greater resilience, but that resilience as before will approach a point of diminishing 

returns considering the costs. The assumptions are made and articulated in Sections A and 

C for a hurricane scenario; nothing else is changed for each architecture other than the 

number of DER components in order to create the different overall proportions of 

microgrid power ratings.  

Figure 38 shows again how maintenance matters more for smaller microgrid power 

ratings. We also see how the largest power ratings are the proportions of two or five with 

maintenance having less benefits due to the small differences in time to recover between 

low and high.  
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Figure 38. The effects of RE proportion to DG on LCOED and time to 
recover. RE/DG = 4 is at bottom because it has the least power rating. 

Recall from Table 21 that as we increase the power rating ratio from 2 to 6, our 

microgrid’s power rating varies from 18 kW to 15 kW when increasing our ratio from 2 to 

3, 15 kW to 9 kW when increasing our ratio from 3 to 4, 9 kW to 21 kW when increasing 

our ratio from 4 to 5, and 21 kW to 12 kW when increasing our ratio from 5 to 6. We also 

see that the smallest power ratings are the proportions of 
PWT  PPV

PDG
 4 and 

PWT  PPV

PDG
 6 with the fewest costs and the most improvement in resilience due to 

maintenance. The ratios of 2, 3, or 5 demonstrating the greatest resilience improvements 

are a byproduct of the greater microgrid power rating, and not due to any proportional 

relationships between RE and DG.  

Also, increasing the microgrid’s power rating improves recovery, invulnerability 

and time to recover but there is a much greater improvement in recovery than there is in 

invulnerability for the same cost. Therefore, a decision maker who values invulnerability 
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more than recovery will need to invest significantly more both in maintenance and capital 

investments to realize greater benefits in invulnerability. 

The cost of resilience can now be better understood by decision makers. 

PWT  PPV

PDG
 3  reduces time to recover by almost four hours for an additional $.10/kWh. 

The base commander can now decide if restoring power four hours earlier is worth these 

additional costs.  

Why we ask when we exceed RE power rating that is triple the DG power rating do 

both resilience and costs plummet? In this experiment, it is mostly due to the most 

significant decrease in power rating from 15 MW to 9 MW, the lowest power rating of any 

of the architectures. This experiment does not generate anything overly meaningful other 

than confirming that maintenance expenditures improve resilience increasingly less as 

excess power rating increases. 

4. Ratio of RE Nominal Power to DG Nominal Power with Constant 
Microgrid Nominal Power Generation Rating Impact on Resilience and 
Costs 

To better understand how varying the proportion and power capacities of RE DER 

to DG DER will impact resilience we will maintain the same nominal microgrid power 

generation rating. Each microgrid modeled has different power ratings for each DER but 

the same overall microgrid power rating of 7 MW. The BAT power rating is maintained 

the same as the DG power rating, PBAT  PDG . Five different microgrid architectures 

employing DER components with varying power ratings are evaluated as indicated in 

Table 21.  
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Table 21. Ratio of RE nominal power rating to DG nominal power rating 

Ratio of 
RE 
nominal 
power 
rating to 
DG 
nominal 
power 
rating 

PWT  PPV

PDG

Ratio of 
RE 
nominal 
power 
rating to 
microgrid 
nominal 
power 
rating 

PWT  PPV

P

Micro-
grid 
nomi-
nal 
power 
rating 
P  

[MW] 

Micro-
grid 
nominal 
power 
genera-
tion 
rating 

PWT  PPV

PDG

 

[MW] 

DER 
nomi
-nal 
rat-
ing  
P

i
 

[kW] 

# of 
WT 
mWT 

# of 
PV 
mPV 

# of 
DG 
mDG 

# of 
BAT 
mBAT 

2 0.50 9.33 7 778 3 3 3 3 
3 0.60 8.75 7 875 3 3 2 2 
4 0.67 8.40 7 700 4 4 2 2 
5 0.71 8.17 7 583 5 5 2 2 
6 0.75 8.00 7 1,000 3 3 1 1 

  

Figure 39 illustrates the microgrid architecture having a ratio of .  

 

Figure 39. Microgrid architecture with RE/DG = 2 employing three of 
each DER at 778 kW and 7 MW overall nominal power generation rating. 
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Monte Carlo simulations are averaged for 7,500 simulations as before. The 

expectation is that increasing the proportion of RE/DG power of the microgrid will provide 

greater resilience, but that resilience will approach a point of diminishing returns 

considering the costs. The assumptions are made and articulated in Sections A and C for a 

hurricane scenario; nothing else is changed for each architecture other than the number of 

DER components in order to create the different overall proportions of microgrid power 

capacities.  

Figure 40 shows when  there are significantly less improvements in 

time to recover for greater maintenance investments. 

  

Figure 40. The effects of RE proportion on LCOED and time to 
recover. 

Figure 41 shows decreasing resilience and exponentially decreasing costs as the 

power rating ratio increases.  
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Figure 41. Resilience and costs decrease as RE to DG power rating 
ratio increases. 

This experiment confirms that a lower proportion of 
PWT  PPV

PDG
 improves time to 

recover but costs more. Additionally, smaller power rating ratios of RE (WT and PV) to 

DG provide more resilience but at a higher cost. 

Why we ask when does more proportional RE reduce resilience? This is due to the 

efficiencies and diurnal impacts on RE being greater than DG. More RE and less DG does 

not improve the excess power rating.  

5. Ratio of WT Nominal Power to DG Nominal Power with Constant 
Microgrid Nominal Power Generation Rating Impact on Resilience and 
Costs 

WTs are employed at three of the six INIs and we want to understand how varying 
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and DG provide the best resilience for the least costs in a quintuple redundancy level 

architecture. 

We model each microgrid using different power ratings for each DER but with the 

same overall microgrid power rating of 4 MW. And we maintain the nominal BAT power 

rating the same as the nominal DG power rating, PBAT  PDG . Table 22 provides the five 

different microgrid architectures employing DER components with varying power ratings.  

Table 22. Microgrid architectures for proportion of DER with constant 
microgrid power generation rating.  

Ratio of 
WT 
nominal 
power 
rating to 
DG 
nominal 
power 
rating 

PWT

PDG
 

Ratio of 
WT 
nominal 
power 
rating to 
microgrid 
nominal 
power 
rating 

PWT

P
 

Microgrid 
nominal 
power 
rating 
P 

[MW] 

Microgrid 
nominal 
power 
generation 
rating 

PWT  PDG  

[MW] 

DER 
nominal 
power 
rating  
Pi 

[kW] 

# of 
WT 
mWT 

# of 
PV 
mPV 

# of 
DG 
mDG 

# of 
BAT 
mBAT 

2 0.50 5.33 4 1,333 2 0 1 1 
3 0.60 5.00 4 1,000 3 0 1 1 
4 0.67 4.80 4 800 4 0 1 1 
5 0.71 4.66 4 667 5 0 1 1 

 

Monte Carlo simulations are averaged for 7,500 simulations as before. The 

expectation is that increasing either or both the maintenance investment and proportion of 

WT/DG of the microgrid will provide greater resilience, but that resilience will approach 

a point of diminishing returns considering the costs. The assumptions are made and 

articulated in Sections A and C for a hurricane scenario; nothing else is changed for each 

architecture other than the number of DER components in order to create the different 

overall proportions of microgrid power ratings.  



137 

Figure 42 shows us how a smaller ratio of WT to DG power provides better time to 

recover. The smaller ratios cost more, and maintenance improves time to recover in all 

instances.  

 

Figure 42. The effects of maintenance level and WT proportion on 
LCOED and time to recover. 

Figure 43 highlights how both resilience and costs decrease with increasing power 

rating ratios.  
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Figure 43. Resilience and LCOED decrease as WT to DG power rating 
ratio increases. 

This experiment, like the one before confirms this same behavior in resilience and 

costs for increasing RE to DG. We can generalize that a greater proportional amount of 

RE, combined with DG, decreases resilience and costs. 

6. Ratio of BAT Nominal Power Rating to Microgrid Nominal Power 
Rating with Constant Microgrid Nominal Power Generation Rating 
Impact on Resilience and Costs 

RE generation is stochastic and can benefit from energy storage. Through arbitrage, 

we can preserve something that has greater financial value to us at a future date, and 

increase the cost-effectiveness of our microgrid. Energy storage can store excess capacity 

for the future, store intermittent and variable power over time, and supply steady, not 

generated with stochastic variability, power to a load. Batteries can do this extremely 

efficiently, but the question remains on how much storage is appropriate. The battery’s 

capacity should ensure the demand can still be met while the microgrid transitions unmet 

demand from damaged generative DER to undamaged DER. We venture to understand 

how much storage is needed before seeing the costs of resilience rapidly increase for the 
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system. Each microgrid modeled has the same power ratings for each DER and the same 

overall microgrid generation power rating of 6 MW and medium maintenance as shown in 

Table 23. Only one of each DER component is employed, and the power rating of each of 

the generation DER is maintained at 2 MW. 

Table 23. Microgrid architectures for storage relationships. PWT  PPV  PDG  
= 6 MW in all instances. 

Ratio of  
BAT nominal 
power rating to 
microgrid 
nominal power 
generation 
rating

PBAT

PWT  PPV  PDG
 

BAT 
nominal 
power 
rating  

PBAT  
[MW] 

DER 
nominal 
power 
rating  
Pi 

[MW] 

# of WT 
mWT 

# of PV 
mPV 

# of DG 
mDG 

# of BAT 
mBAT 

0.17 1.0 2.0 1 1 1 1 
0.25 1.5 2.0 1 1 1 1 
0.33 2.0 2.0 1 1 1 1 
1.00 6.0 2.0 1 1 1 1 
2.00 12.0 2.0 1 1 1 1 
4.00 24.0 2.0 1 1 1 1 
8.00 48.0 2.0 1 1 1 1 
16.00 96.0 2.0 1 1 1 1 

 

Figure 44 highlights how maintenance only matters when the ratio is less than 0.25. 

We also see no improvement in resilience, by increasing this ratio, beyond this ratio of 

0.33. 
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Figure 44. The effects of storage on LCOED and time to recover. 

Figure 45 shows that after increasing the ratio beyond 2 MWh nominal battery 
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virtually no improvement in resilience, but costs continue to increase. This is consistent 
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Figure 45. Costs and resilience increase as power rating ratio 
increases. 

 

Figure 46. Recovery increases but invulnerability stays constant. 
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point for sizing the battery. This could be very useful to an INI’s microgrid project planning 

and estimating team. 

E. ALTERING REDUNDANCY LEVELS 

Experiments are conducted to understand how redundancy, and diversification of 

DER components, with constant microgrid power generation rating impacts resilience and 

costs for different maintenance levels. Redundancy as applied in this research means 

having multiple DER components instead of just one, with the total power rating of the 

redundant architecture being the same as the either without redundancy or at a different 

level of redundancy. This is different than having excess power rating. This is an important 

distinction that must be understood when comparing the results of the model’s simulations. 

The results generated by each of the experiments are presented in a 4D visualization 

with different colors for each microgrid architecture’s experiment as shown in Table 24. 

Each function is a surface mesh interpolation of the 15 data points for each experiment. No 

redundancy is often designated, n, and n represents just one component. One level of 

redundancy, n+1, will be referred to as double, n+2 triple, n+3 quadruple, and n+4 

quintuplet. The lighter shading of the data points is used for more maintenance; light 

shading is for medium maintenance, low shading for low maintenance, and dark shading 

for no maintenance. 2D graphs for LCOED vs. resilience, recovery, and invulnerability are 

provided in Appendix A.  

Figure 47 highlights how maintenance is only significant when there is no 

redundancy and particularly so for the WT+PV+DG architecture (gray shape). Each 

function represents a different architecture and will be evaluated further in the individual 

experiments that follow. The brighter the color shading highlights more maintenance, and 

the darkest color shading is for no maintenance. These functions also show how resilience 

increases and costs remain constant as the redundancy level increases. The best 

architecture, least costs and equivalent resilience, is the WT and DG generation. The only 

architecture with significantly less resilience than the others is the combined WT, PV, and 

DG generation.  
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Table 24. Legend for Figure 47. Colors designate the microgrid architecture 
for each experiment. 

 
 

 

Figure 47. Wind turbines provide least costs for similar resilience; 
darker datapoints are with no maintenance, brighter are medium 

maintenance.  

Why would WT+PV+DG significantly underperform compared to the other 

architectures? The answer might lie in individual DER power capacities being the smallest 

in this architecture, at 267kW for a quintuple redundancy level. This will be explored 

further in the following experiments. 
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1. Redundancy and Maintenance Levels Impact on Resilience and Costs  

It should be useful to understand how varying the redundancy of each DER will 

impact resilience while maintaining the microgrid power rating as constant. Each microgrid 

modeled has different power ratings for each DER but the same overall microgrid power 

rating of 6 MW. The BAT power rating is maintained the same as the DG power rating. 

Five different microgrid architectures employing DER components with varying power 

ratings are evaluated as shown in Table 25. 

Table 25. Microgrid architectures for redundancy.  

Redundancy  
 

Total microgrid nominal 
power generation rating  
P 
[MW] 

DER’s nominal 
power rating 
Pi 

[kW] 

# of 
WT 
mWT 

 

# of 
PV 
mPV 

 

# of 
DG 
mDG 

 

# of 
BAT 
mBAT 

 
no 6 2,000 1 1 1 1 
double 6 1,000 2 2 2 2 
triple 6 667 3 3 3 3 
quadruple 6 500 4 4 4 4 
quintuple 6 400 5 5 5 5 

 

A microgrid architecture with no redundancy is portrayed in Figure 48.  
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Figure 48. Microgrid architecture with no redundancy employing one 
of each DER at 2,000 kW and 6 MW overall power generation rating. 

Monte Carlo simulations are averaged for 7,500 simulations as before. The 

expectation is that increasing either or both the maintenance investment and proportion of 

redundancy of the microgrid will provide greater resilience, but it will approach a point of 

diminishing returns considering the costs. The assumptions are made and articulated in 

Sections A and B for a hurricane scenario; nothing else is changed for each architecture 

other than the number of DER components in order to create the different overall 

proportions of microgrid power capacities. The unlabeled data points correspond to a 

medium maintenance threshold.  

Redundancy should improve resilience because we assume probability of damage 

to each DER is independent. Even if all the PVs for example are located in the same area, 

this would be true. However, we would recommend a base commander purposely distribute 

the DERs locations to minimize common failure modes affecting all of them. The 

probability of all the redundant DERs being simultaneously damaged is less than the 

probability of a single DER with the same power rating being damaged. This conclusion 

would be invalid if there is a common cause failure. The question here is how much 

redundancy is good, and also at what point is additional redundancy not worthwhile. 
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Figure 49 shows, in general, that greater redundancy provides greater resilience for 

the same costs. The best redundancy is quintuple. Maintenance has the most significance 

for no redundancy.  

 

Figure 49. The effects of redundancy levels on LCOED and time to 
recover. 

Figure 50 shows the exponential improvement in resilience as redundancy 

increases, and how maintenance improves resilience but costs more. We note that there is 

no improvement in resilience for more than quadruple redundancy. Again, we see no 

change in costs for the different levels of redundancy. 
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Figure 50. Resilience and LCOED vs. redundancy. 

We consider why redundancy improves resilience. This is a result of decreasing the 

impact of damage. Two components will be less likely to both be damaged when subjected 

to the same disturbance. Therefore, as redundancy is increased, less damage to the overall 

power rating is inflicted. 

2. Functional Redundancy and Maintenance Levels Impact on Resilience 
and Costs 

Which combination of RE is better and if just one RE type is best? To answer this 

question, each microgrid modeled has different capacities for each DER, but the same 

overall microgrid power rating of 4 MW. The BAT power rating is maintained the same as 
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the DG power rating. Three different microgrid architectures employing DER components 

with varying capacities are evaluated as shown in Table 26. 

Table 26. Microgrid architectures for functional redundancy. Architecture 
color corresponds to that shown in architectures illustrated in Figure 47. 

 

The best redundancy level is quintuple in all instances. For the best WT+DG 

architecture, resilience = 0.90 and LCOED = $0.1424/kWh. For the best PV+DG 

architecture resilience = 0.90 and LCOED = $0.1527/kWh. And for the best combined 

WT+PV+DG architecture resilience = 0.80 and LCOED = $0.1111/kWh. PV+DG 

architecture has the highest costs, WT+PV+DG the least.  

Figure 51 shows how the improvements in resilience are very little beyond a 

quintuple redundancy level. We also see how WT, PV and DG has very minor resilience 

improvements after a double redundancy level, whereas the WT and DG and PV and DG 

still see steady improvements at least until a triple redundancy level. 
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Figure 51. Resilience and LCOED vs. functional redundancy. 

Figure 52 shows how recovery increases exponentially but invulnerability is almost 

constant. There is no difference in the behavior of the respective functions.  

 

Figure 52. Recovery and invulnerability vs. functional redundancy. 

Figure 53 shows how maintenance matters most for the combined architecture with 

WT, PV and DG, and with no or little redundancy. Also, we see how more redundancy 
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improves time to recover. For WT+PV+DG we see time to recover improve from 110 hours 

without maintenance or redundancy to 40 hours with quintuple redundancy and no 

maintenance.  

 

Figure 53. The effects of functional redundancy on LCOED and time 
to recover. 

Why then does WT+PV+DG perform the least? This architecture has the smallest 
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rating goes from 667 kW to 444 kW when increasing from double to triple, which is likely 

a minimum threshold for the DER to still be effective in enhancing resilience.  

3. RE Redundancy and Maintenance Levels Impact on Resilience and 
Costs  

We undertake to learn which RE combination, without DG, provides greater value: 

more WTs, more PV, or both WT and PV? Each microgrid modeled has different capacities 

for each DER, but with the same overall microgrid power rating of 4 MW. The BAT 

nominal power rating is maintained at the same as the total nominal power generation 

rating, P
i
BAT  P

i
WT  P

i
PV . Three different microgrid architectures employing DER 

components with varying capacities are evaluated as shown in Table 27. 

Table 27. Microgrid architectures for PV and WT combinations. Architecture 
color corresponds to the architecture illustrated in Figure 47. 

Architecture RE 
redundancy  
 

Total 
microgrid 
nominal 
power 
generation 
rating  
P 
[MW] 

Nominal 
power 
generation 
rating of WT, 
PV and DG  
P

i
 

[MW] 

Nominal 
power 
rating of 
BAT 

P
i
BAT  

[MW] 

# of 
WT 
mWT 

 

# of 
PV 
mPV 

 

# of 
DG 
mDG 

 

# of 
BAT 
mBAT 

 

WT no  4 4.00 4.00 1 0 0 1 
double  4 2.00 2.00 2 0 0 2 
triple  4 1.33 1.33 3 0 0 3 
quadruple  4 1.00 1.00 4 0 0 4 
quintuple  4 0.80 0.80 5 0 0 5 

PV no  4 4 4.00 0 1 0 1 
double  4 4 2.00 0 2 0 2 
triple  4 1.33 1.33 0 3 0 3 
quadruple  4 1.00 1.00 0 4 0 4 
quintuple  4 0.80 0.80 0 5 0 5 

PV+WT no  4 2.00 4.00 1 1 0 1 
double  4 1.00 2.00 2 2 0 2 
triple  4 0.67 1.33 3 3 0 3 
quadruple  4 0.50 1.00 4 4 0 4 
quintuple  4 0.40 0.80 5 5 0 5 
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The least costly redundancy level is quintuple and no maintenance in all instances. 

For the best WT architecture, resilience = 0.91 and LCOED = $0.0468/kWh. For the best 

PV architecture resilience = 0.90 and LCOED = $0.0674/kWh. And for the best combined 

PV+WT architecture resilience=0.91 and LCOED = $0.0571/kWh. 

For decision makers, maintenance has much greater benefit when there is no 

redundancy incorporated in the microgrid. Wind turbines with more redundancy and no 

maintenance offers the most resilience for the least costs.  

Figure 54 shows how maintenance matters much more for these RE architectures, 

especially those with no or little redundancy. Also, we see how more redundancy improves 

time to recover. However, the improvements are relatively minor compared to the 

architectures that combined RE and DG. We only see a few hours at most decrease in time 

to recover as we increase redundancy from no redundancy to quintuple.  

 

Figure 54. The effects of RE redundancy on LCOED and time to 
recover. 
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Figure 55 shows all three architectures increasing resilience exponentially while 

costs remain unchanged. WT has the least costs and same resilience. 

 

Figure 55. Resilience and LCOED vs. RE redundancy. 

Why would WT by themselves offer significant cost savings for the same 
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Comparisons are made in architectures that invest the same amount to increasing the 

nominal microgrid power rating as would have been invested for medium maintenance. 

Each microgrid modeled has the different capacities for each DER and overall microgrid 

power rating. The power rating of each DER is illustrated in Table 28.  

Table 28. Microgrid architectures for power rating or maintenance 
investments. 

Investment Microgrid 
nominal power 
generation rating 
PWT+PPV+PDG 

[kW] 

WT 
power  

P
i
WT  

[kW] 

PV 
power  

P
i
PV   

[kW] 

DG 
power  

P
i
DG   

[kW] 

BAT 
power  

P
i
BAT   

[kW] 

Power 
rating 
[$K] 

Maintenance 
[$K]  

0 0 4,500 1,500 1,500 1,500 1,500 

720 0 5,500 1,500 1,500 2,500 1,500 
0 720 4,500 1,500 1,500 1,500 1,500 

 

The LCOED for a microgrid with three of each DER at 500 kW with a medium 

level of maintenance is $0.1443/kWh. The equivalent LCOED for this same microgrid with 

no maintenance is $0.1399/kWh. The difference is an increase in LCOED by $0.0044/kWh. 

If we apply this increase to the energy generated in a year to meet the demand of 23,878,400 

kWh, this will cost $105,064 annually more and represents the opportunity to invest this 

amount instead of maintenance into power rating. We apply this savings annually 

calculating a present value using a 7.5% discount rate due to not performing maintenance 

over the ten years planning horizon to determine the amount we can invest instead in power 

rating approximates $720K. 

LCOED vs. recovery, invulnerability, resilience and time to recover is plotted in 

Figures 56–59, medium and no maintenance levels as annotated. To gain insights into 

investing in increased power rating, the DG power rating is increased from 1,500 kW to 

2,500 kW. And to understand how investing in maintenance influences recovery and 

invulnerability, we invest additional annual amount in maintenance to maintain the DER 

at a medium level compared to no maintenance at all. 
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We observe in Figures 56–59 that in all instances an investment in maintenance 

provides much greater resilience for appreciably less costs than investing the equivalent 

amount into increased power rating. We observe that there is less improvement in 

invulnerability than there is in recovery. Additionally, an investment in maintenance 

reduces the time to recover by half the time to recover for an investment in power rating. 

A base commander can now understand how any additional funding that he has to spend 

will enhance resilience based upon the commander’s decision to invest in more power 

rating or maintenance. This should be useful information at the end of the fiscal year when 

funding opportunities require quicker decisions on how to invest the money. 

 

Figure 56. The effects of investing in power rating or maintenance on 
LCOED and recovery. 
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Figure 57. The effects of investing in power rating or maintenance on 
LCOED and invulnerability. 

 

Figure 58. The effects of investing in power rating or maintenance on 
LCOED and resilience. 
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Figure 59. The effects of investing in power rating or maintenance on 
LCOED and time to recover. 
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Figure 60. The effects of fuel costs on DG-parity for PV. 

The comparison is strictly on the generation, not the actual delivery costs of power. 
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as $0.2720/kWh when increasing the fuel price 25% to $3.13/gallon. This new LCOE is 

21% more than the LCOE at $2.50/gallon. Both the decrease and increase in fuel prices 

impact LCOE are most consistent with Lazard’s findings. 

We still may give thought to why fuel costs, even when including shipping costs, 

would have to drop by more than half for PV to be financially worthwhile. The answer lies 

in the LCOE calculation. In that it does not consider the costs of the environmental impacts, 

LCOE does not provide a complete accounting of the total costs of each. The financial 

impact upon the environment and of course INI includes the air and water quality impact 

upon those working at the INI, as well as the impact of the noise on the wildlife and habitat. 

The Navy expends other funds to address these at greater levels due to incorporating DG 

in lieu of RE. As such if the financial costs associated with the environmental impacts of 

each are incorporated into LCOE, then arguably the break-even point will be much higher 

than $1.00/gallon. 

H. COMPARISON OF REDUNDANCY ARCHITECTURES 

A compilation of the architectures for each experiment is made in Table 29 to better 

highlight which architectures provided less costs for the resilience. The WT quintuple 

microgrid is the best choice providing the most resilience for the least costs. 

Table 29. Best architectures compared for experiments, all quintuple and no 
maintenance, except IV.E.1 which is quadruple. Colors correspond to 

functions shown in Figure 47. 

Experiment resilience 
 

LCOED 
[$/kWh] 

Microgrid nominal power generation rating  
PWT+PPV+PDG 

[MW] 

IV.E.1 0.90 0.1665 6 
IV.E.2 
WT+DG 

0.90 0.1424 4 

IV.E.2 PV+DG 0.90 0.1527 4 
IV.E.2 
WT+PV+ DG 

0.78 0.1111 4 

IV.E.3 WT 0.91 0.0468 4 
IV.E.3 PV 0.90 0.0674 4 
IV.E.3 PV+WT 0.91 0.0571 4 
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I. DISCUSSION AND CONCLUSION  

Sensitivity analyses highlight that resilience is not very sensitive to the disturbance 

start time but is very sensitive to the WT’s time to repair a damaged DER. LCOED is most 

sensitive to the fuel consumption rate and fuel costs and least sensitive to O&M costs.  

The models are simulated to analyze questions on the impact of redundancy, power 

rating ratios, maintenance, value of investing in invulnerability vs. recovery, and fuel costs 

for DG to be competitive with PV by conducting ten experiments. The experiments 

generate meaningful results by providing constant ratios to attain better resilience and less 

costs as well as the trade-off functions and 4D graphs that highlight the relationships 

between design choices and maintenance investments and resilience and costs. 

Increasing maintenance improved resilience in all architectures but has 

significantly less impact for a ratio with 1.5 times or more the generation as average 

demand. Therefore, decision makers should invest less maintenance dollars as the power 

rating increasingly exceeds demand. Maintenance is only significant when the microgrid’s 

power rating is closer to the demand and for smaller costs as measured by LCOED, and 

when the architecture’s generation is only RE. 

The ratio of microgrid power to demand should not exceed four because there are 

no further improvements in resilience, only increasing costs. This is a result of the 

exponential growth in resilience and linear costs increase as the power to demand ratio is 

increased. Doubling the ratio of power to demand can greatly reduce time to recover but at 

significant costs compared to a ratio of one.  

We confirm that given the option to invest more in more maintenance or more 

power rating, that maintenance improves resilience more. This can be useful to help a base 

commander determine where to invest any incremental, smaller amounts of funding to 

reflecct their emphasis on one of these two resilience measures. 

We confirm that the battery should be sized to equal the microgrid’s generative 

power rating. Finally, fuel costs will have to decrease below $1.00/gal for PV to be more 

cost competitive than DG. 
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A generalization about the behavior of our two measures to increasing the power to 

demand ratio or redundancy is that resilience exponentially increases, and LCOED linearly 

increase for the power to demand ratio but remains constant for redundancy. We observe 

that the resilience function no longer increases after the quintuple redundancy level. 

The architecture combining RE and DG with the least costs is WT+DG. The only 

architecture with significantly less resilience than the others is the WT+PV+DG functional 

redundancy. WTs, without DG, has the highest resilience and the least costs; but of course, 

does not have the diversification that WT and DG does. 
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V. DEMONSTRATION 

Installed microgrid architectures should prove useful to assessing resilience and 

costs using actual historical demand profile data. This chapter applies the model to an 

existing microgrid at Naval Station Rota, Spain. This model is applied to the existing 

microgrid at Rota to assesses whether redundancy can enhance the base case microgrid and 

an optimized microgrid architecture. The findings are provided in Section A. In Section B 

the RE microgrids at SCI, SNI and GTMO are assessed and the findings are presented. 

Section C compares the resilience and cost models with other models. Finally, the 

Discussion and Conclusion are presented in Section D.  

A. ROTA’S ENERGY SYSTEM 

Naval Station Rota is a 6,100 acre Spanish Base Naval de Rota with 5,200 acres 

maintained by the U.S. Navy (Globalsecurity.org (n.d.)). The U.S. Navy has been operating 

at Rota since 1953 and today there are more than 6,000 Americans in Rota. Rota is 

significant strategically due to being halfway between the United States and Southwest 

Asia, and for the close proximity of its airfield and port facilities within the same 

installation. Sullivan (2018) notes that Naval Station Rota is Europe’s only installation with 

a contiguous port, airfield, fuels and munitions. 

Naval Station Rota has 12.5 MW of backup DG generation composed of five 2.5 

MW DGs. In addition to the DG generation, a recent project is now underway to install 

approximately 6 MW of solar PV.  

Naval Station Rota converts the power provided by the local utility provider Endesa 

from 50 Hertz to 60 Hertz. This frequency conversion is necessary in order to power the 

60 Hertz electrical loads for the U.S. operations on the base. Without the conversion, these 

loads could not be powered. As such, Naval Station Rota is comparable to an INI in that it 

is responsible for making the power usable for the load, independent of the grid-connected 

utility provider. 

Given its close similarity to an INI, Naval Station Rota is a useful location to assess 

resilience using this model. The naval station wants to increase resilience and better 
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understand its costs before investing in a solution. Therefore, the cost of both design, and 

maintenance recommendations that increase resilience should be especially useful to the 

base commander.  

An analysis of the air terminal within Naval Station Rota is conducted. A 1.25 MW 

DG provides backup power to an average load of 200 kW. This DG is oversized and runs 

significantly below its design rating which in turn contributes to extreme inefficiencies due 

to wet stacking – i.e., the inability to burn all the fuel supplied to the engine. To increase 

resilience, an optimized microgrid including a smaller DG, PV, and a BAT is evaluated 

and compared to the existing 1.25 MW DG. The 2D graphs for LCOED vs. resilience, 

recovery, and invulnerability are provided in Appendix A.  

1. Parameters 

Because Rota is located just eight miles from Cadiz in the Atlantic Ocean, the 

following parameters are pertinent for the scenarios modeled in this demonstration as they 

are considered the most likely disturbances to strike this location. Patel and Zaveri (2010) 

determined the mean probability of SCADA equipment damage resulting from a 

cyberattack as 25%. Birkman et al. (2010) determined that although the chance of a tsunami 

is low for Cadiz, it would have severe negative consequences. Nicolas et al. (2019) found 

DG and WT to have the same vulnerability to damage to a tsunami as their respective 

vulnerability to a hurricane, and BAT and PV to have the same vulnerability level as a WT. 

The probabilities of damage for the cyberattack, and for the tsunami scenarios are presented 

in Table 30. 

Table 30. Probability of damage given disturbance Sk occurs for a 
cyberattack, and a tsunami. 
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As the table suggests, a tsunami is more likely to inflict damage than a cyberattack, which 

means that resilience to a tsunami should provide even greater resilience to a cyberattack. 

The mean values of time to repair each DER, K, are kept as presented in Table 9. 

The parameters used in simulations remained the same as presented in Tables 10 and 11 

except for those provided by Naval Station Rota’s utilities energy manager as indicated in 

Table 31. All DER investment costs are unchanged from the previous experiments except 

PV which is reduced to $2,000/kW as provided by IRENA (2020) for Spain. DER 

maintenance costs are kept the same for WT. 

Table 31. Parameters used in simulations. 

Variable Parameter Value 
f DG fuel costs $2.99/gal 
W DG fuel consumption rate 22.94 gal/hr 
JPV PV O&M costs $24.00/kW 
JDG DG O&M costs $6.32/kW 
JBAT BAT O&M costs $2,252/year 

 

Table 32 is the hourly demand profile over two weeks we use in the model. 
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Table 32. Air terminal demand at time t. 
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This profile is based on historical demand data provided by the utilities energy 

manager at Naval Station Rota. Time step 0 corresponds to 8:00 am, with daytime indicated 

in orange and nighttime in gray. 

2. Base Case Impact of Redundancy, and Maintenance on Resilience and 
Costs 

Simulations are conducted to evaluate the impact of the annual maintenance 

investment level on resilience and costs for cyberattack and tsunami disturbance scenarios. 

The convention used to differentiate redundancy levels is double for two components, triple 

for three, and so on. The existing base case microgrid architecture with redundancy is 

evaluated as indicated in Table 33. The disturbance start time of 8:00 a.m. on the first day 

is chosen so as to evaluate the impact upon a complete workday.  

Table 33. Microgrid architectures for impact of redundancy and 
maintenance. 

Redundancy  Microgrid nominal power 
rating  
P  
[kW] 

DG nominal power 
rating  

P
i
DG  

[kW] 

# of DGs 
mDG 

no 1,250 1,250 1 
double 1,250 625 2 
triple 1,250 417 3 
quadruple 1,250 313 4 
quintuple 1,250 250 5 

 

The first microgrid architecture (base case) with no redundancy is displayed in 

Figure 61.  
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Figure 61. Microgrid architecture with one 1,250 kW DG. 

Monte Carlo simulations are averaged for 7,500 simulations as before. As seen in 

Figure 62 and the figures in Appendix A, generally, redundancy improves resilience for 

equivalent costs, approximately 30% improvement in time to recover, than the base case 

without redundancy. Also, more maintenance is worthwhile. A resilience of 1 is the 

maximum and cannot be improved upon. A resilience of 0.69 for instance can be improved 

through redundancy.  

The best architecture for both the tsunami and cyberattack is quintuple. The best 

architecture for a tsunami has a resilience = 0.91, and for a cyberattack has a resilience = 

0.92. Both have a LCOED = $1.2324/kWh at a medium maintenance level. 

Figure 62 shows how redundancy quickly improves resilience. We also see again 

how maintenance is more worthwhile when there is no redundancy. The costs are all the 

same, so there is no reason not to incorporate redundancy. We also observe how 

maintenance only improves the time to recover when there is no redundancy.  
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Figure 62. Redundancy’s impact on time to recover and LCOED for 
base case. 

Why does increased redundancy so quickly decrease the rate of improving 

resilience? The answer is related to the demand profile. For this demand profile, when the 

redundancy level gets to triple, each DER’s size is more closely matched to the demand 

and therefore we see much less improvements in redundancy after this point. Additionally, 

the combined probability of damage considering the independent probabilities 

mathematically multiplies the probabilities by each other and as we add more the net 

decrease in probability is rapid and significant. 
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3. Optimized Microgrid’s Impact of Redundancy, and Maintenance on 
Resilience and Costs for a Morning Tsunami 

We should understand how varying the redundancy of each DER will impact 

resilience at Rota in order to make recommendations that will provide the most resilience 

for the least costs. Each microgrid modeled employs different capacities for each DER but 

the same overall microgrid power rating of 516 kW. 516 kW is determined using the 

Xendee optimization model. Five different microgrid architectures employing DER 

components with varying capacities are evaluated as shown in Table 34.  

Table 34. Microgrid architectures for redundancy.  

Redundancy  
 

Microgrid 
nominal power 
generation 
rating 

PPV  PDG  

[kW] 

PV 
nominal 
power 
rating  

P
i
PV  

[kW] 

DG 
nominal 
power 
rating  

 

[kW] 

BAT 
nominal 
power 
rating  

 

[kW] 

# of 
PV 
mPV 

# of 
DG 
mDG 

# of 
BAT 
mBAT 

no 516 196.0 320.0 383.0 1 1 1 
double 516 98.0 160.0 191.5 2 2 2 
triple 516 65.3 107.0 127.7 3 3 3 
quadruple 516 49.0 80.0 95.8 4 4 4 
quintuple 516 39.2 64.0 76.6 5 5 5 

 

A RE microgrid for Rota optimized to minimize costs and created by Xendee is 

used as shown with no redundancy in Figure 63. We subject this microgrid to the tsunami 

because it is the only natural disaster that seems likely to strike based upon the literature 

reviewed and Birkman et al.’s (2010) findings. The tsunami commences at 8:00 am on the 

first day. The same demand profile as provided in Table 32 is used as before, and the ratio 

of the demand to power generation rating is constant. 

P
i
DG Pi

BAT
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Figure 63. Microgrid architecture with no redundancy employing 516 
kW overall microgrid power generation rating. 

Figure 64 illustrates the behavior of the architecture without redundancy during one 

simulation. In this iteration, the DGs and BATs are immediately damaged by the tsunami. 

The mean time to repair the DG is 60 hours, and the mean time to repair the BAT is 10 

hours. For a low maintenance level, the microgrid is able to satisfy the demand once the 

battery recovers after 10 hours. This case illustrates the benefit of redundancy because the 

DG remains unoperational for another 50 hours more.  
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Figure 64. Demand, power rating and delivered power. 

Figure 65 shows the battery’s behavior; the blue line represents the single battery. 

At ten hours, the damaged battery is restored to operation and immediately discharges. 

However, there is insufficient excess power rating to charge the battery until the DG is 

repaired at 60 hours.  
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Figure 65. Battery energy level. 
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Figure 66 illustrates the diesel genset’s behavior. There is no fuel consumption 

while it is damaged. Once it is restored at 60 hours, the diesel genset operates at 18.35 

gallons/hour. 

 

Figure 66. Diesel genset fuel consumption. 

The best architecture is quintuple and provides a resilience = 0.91, with no 

maintenance and a LCOED = $0.3644/kWh. This is a significant improvement in resilience 

especially considering it costs appreciably less than the base case microgrid. 

In general, the optimized microgrid is a much better option than the base case. This 

RE microgrid is optimized to minimize costs and we see that it performs much more cost 

effectively than the base case. Greater redundancy provides greater recovery, 

invulnerability, resilience and better time to recover at less costs. Maintenance is somewhat 

significant but should not exceed a low maintenance level. 

Figure 67 shows how maintenance improves time to recover relatively more than 

the base case and the time to recover is less than three hours. Again, we see benefits of 

redundancy and diversification, as well as we now see maintenance benefits throughout all 

redundancy levels. 
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Figure 67. The effects of redundancy on LCOED and time to recover. 

Why does the optimized microgrid have much better resilience for significantly less 

costs compared to the base case? Not only this microgrid sized more closely to the demand, 

with generation more than half the base case, there is the added diversification benefit of 

PV and BAT. This microgrid architecture is clearly the best choice for Rota due to its 

fractional costs compared to the base case, with much better resilience. 

Figure 68 illustrates how the base case has greater opportunity for improvements 

in resilience but costs almost four times the optimized microgrid. We observe how the 

optimized microgrid has better resilience and both maintain a constant costs for changes in 

redundancy. Finally, these 4D functions show how both maintenance and redundancy 

impact resilience and costs less for the optimized microgrid due to the volume of the shape 

being appreciably less, have a LCOED that is less than a third of the base case’s LCOED. 
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Figure 68. Optimized and base case microgrid’s resilience, and costs as a 
function of redundancy during a morning tsunami. 

Figure 69 shows how the optimized microgrid has appreciably greater resilience, 

and lower costs. Both microgrids have an exponential increase in resilience. 
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Figure 69. Optimized and base case microgrids’ resilience, and costs 
as a function of redundancy. 

In Figure 70 we see how recovery and invulnerability both exponentially increase 

with more redundancy. We also observe how the base case sees no improvement in 

invulnerability until triple redundancy. 

 

Figure 70. Optimized and base case microgrids’ recovery, and 
invulnerability as a function of redundancy. 
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4. Optimized Microgrid’s Impact of Redundancy, and Maintenance on 
Resilience and Costs for a Midnight Tsunami 

Will the individual diurnal differences in the PV have any significant impact 

collectively on resilience when the tsunami strikes at midnight compared to the morning? 

To determine how a tsunami that strikes at midnight will change the findings, the 

redundancy experiment for a tsunami with a disturbance start time of midnight is conducted 

and compared to the experiment’s results for a tsunami that strikes in the morning. The 

previous parameters and architectures remain the same. 

Medium and no maintenance levels are as annotated. The best architecture is again 

quintuple and provides a resilience = 0.92, and for no maintenance has a LCOED = 

$0.3644/kWh. 

Figure 71 shows a slight degradation in time to recover for the same costs, and 

otherwise the findings are almost identical to the morning tsunami. Maintenance plays the 

same role as in the morning tsunami. There is no change in resilience or costs due to diurnal 

factors. 

 

Figure 71. The effects of redundancy and maintenance level on 
LCOED and time to recover. 
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Again, redundancy improves time to recover for less costs. Yet, we may reflect 

upon why we have any degradation in resilience when the disturbance strikes at night 

versus the morning. The only DER subject to diurnal behavior is the PV. The answer lies 

in the time to recover. The time to recover in all instances is less than four hours, before 

sunrise. As such, the PV is unable to generate any power between the midnight and full 

recovery hence the slight degradation in resilience. 

5. Design Options 

When we compare the base case without redundancy to adding redundancy and 

compare this again to the optimized microgrid with redundancy we can see the following 

for a morning tsunami as shown in Table 35. 

Table 35. Design options for Rota compared; optimized architecture provides 
30% higher resilience for only 30% of the base case’s costs. 

Architecture Maintenance  LCOED 
[$/kWh] 

resilience 

Base case, only one DG medium 1.2372 0.70 
Quintuple DG none 1.2324 0.91 
Optimized, quintuple none 0.3644 0.91 

 

Clearly the optimized quintuple microgrid is the best choice. 

B. SCI, SNI, AND GTMO MICROGRIDS 

Of the six INIs—DGAR, CLDJ, GTMO, AUTEC, SNI, and SCI—have RE 

installed, and therefore SCI, SNI, and GTMO are assessed using the resilience and cost 

models. The microgrid architectures illustrated in Figures 72–74 are modeled as before for 

a hurricane disturbance using historical demand profile time-series data as illustrated in 

Figure 75. SCI’s exact same microgrid architecture is modeled. However, SNI has 7, 100 

kW, wind turbines but to adapt this to the model, the microgrid is reduced to five 140 kW 

WT. GTMO has 13 DGs with various capacities totaling 33 MW. To adapt GTMO’s 

microgrid to this model, its microgrid is reduced to five 6.6 MW DGs. 
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Figure 72. SCI’s RE microgrid. 

 

Figure 73. SNI’s adapted RE microgrid. 
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Figure 74. GTMO’s adapted RE microgrid. 

 

Figure 75. GTMO, SNI, and SCI demand profiles. 
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three times the time to recover as SCI and 15 times the time to recover as SNI, and 

approximately ten times the cost of either SCI or SNI. GTMO also benefits the most by 

maintenance. 

The level of maintenance only increases resilience at SCI; SNI and GTMO sees no 

increase in resilience due to maintenance. Medium maintenance reduces the time to recover 

by almost 50% at GTMO, 40% at SCI and 15% at SNI. Medium maintenance reduces costs 

by $9M at GTMO, $800k at SCI and $1.5M at SNI.  

At SCI and SNI, the level of maintenance does not affect invulnerability and has 

little impact, ~0.1% increase, at GTMO. For a higher ratio power rating/demand as seen at 

SNI, the maintenance level will reduce costs by ~ 12%. 

Figure 76 shows how maintenance only improves recovery at GTMO. We also 

observe that SNI’s LCOED is almost four times SCI’s or GTMO’s LCOED. 

 

Figure 76. LCOED vs. recovery for SNI, SCI, and GTMO.  

Figure 77 illustrates that SNI has the least invulnerability. SCI and GTMO have 

almost the same invulnerability. 
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Figure 77. LCOED vs. invulnerability for SNI, SCI, and GTMO.  

Figure 78 shows us that SNI has the least resilience and highest LCOED. 

 

Figure 78. LCOED vs. resilience for SNI, SCI, and GTMO.  
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Figure 79 shows that SNI has the best time to recover, and GTMO the least. 

GTMO’s time to recover is as much as more than a day longer than SNI’s time to recover. 

 

Figure 79. LCOED vs. time to recover for SNI, SCI, and GTMO.  
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We conduct simulations and demonstrate how resilience changes with each 
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Second, GTMO’s resilience is approximately half that of SCI and SNI’s resilience 

for one and two DGs but approaches the same level of resilience with three DGs. SCI and 

SNI have comparable resilience for the design combinations of WT and DG.  

And the third finding is that there is significant improvement in resilience when 

increasing from one to two DGs but this improvement as DGs increase rapidly diminishes 

when increasing from two to five DGs. Only at GTMO is there significant improvement 

from two to three DGs.  

Why would the time to recover be so much better at SNI than SNI and GTMO? 

This likely has to do with the limitation of the model not being able to handle more than 5 

of any DER. As such, GTMO’s adapted microgrid has WT and DG capacities that are 

excessive for the demand. 

Figure 80 illustrates SNI’s much higher LCOED. We see that in all three INIs 

adding DGs increases costs significantly more than WTs. 

 

Figure 80. LCOED vs. # of WTs and DGs for SCI, SNI, and GTMO.  
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Figures 81–83 highlight higher resilience with yellow, and the darker and blue areas 

have lower resilience. We use a color map that degrades from blue to yellow with the 

resilience values for the data points. The values of resilience are indicated in the color bar 

on the right. We observe that it takes 3 DGs at GTMO to improve resilience, and this 

approximates $0.3/kWh. At SCI and SNI we see similar improvements in resilience with 

2 DGs and at SNI this approximates $0.8/kWh and at SCI $0.4/kWh.  

 

Figure 81. LCOED vs. # of WTs and DGs for GTMO.  
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Figure 82. LCOED vs. # of WTs and DGs for SNI.  

 

Figure 83. LCOED vs. # of WTs and DGs for SCI.  
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Figure 84 shows us that GTMO has the most increase in resilience while increasing 

from 2 to 3 DG. However, SNI and SCI see the biggest gain in resilience while increasing 

from one to two DGs. 

 

Figure 84. Resilience vs. # of WTs and DGs for SCI, SNI, and 
GTMO. 

Figures 85–87 highlight higher LCOED with yellow, and the darker and blue areas 

have lower LCOED. At SCI, 3 DG + 2 WT has a resilience at 96.4% of the maximum 

reached with 5DG + 5WT with the benefit of saving a 40% of the LCOED compared to the 

5DG + 5WT architecture. At SNI, 3DG + 1WT exhibits a lower LCOED at $1.0378/kWh 

(compared to $1.7495/kWh for the 5DG+5WT architecture) while maintaining a relatively 

high resilience = 0.81 which is 97.6% of the highest resilience of 0.83 associated with the 

5DG+5WT architecture. And at GTMO, 4DG + 1 WT has a resilience at 91.7% of the 

5DG+5WT architecture’s resilience of 0.87, and at a savings of 20% of the LCOED. 
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Figure 85. Resilience vs. # of WTs and DGs for GTMO.  

 

Figure 86. Resilience vs. # of WTs and DGs for SNI.  
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Figure 87. Resilience vs. # of WTs and DGs for SCI. 

DG redundancy of triple (3 DGs) is best for all three INIs, without regard for the 

number of wind turbines. Redundancy of WT beyond double (2 WTs) is not beneficial due 

to very little improvement in resilience with constant increase in costs. 

We may ask why all SCI and SNI see almost no benefit in employing more than 4 

DGs. This can be explained by the ratio of the power rating to demand. If we calculate the 

microgrid’s generation at four times the demand, and then divide this by the average power 

rating of the one DG, at each INI, we see that SNI should have 2 DGs, and SCI 3 DGs and 

2 WTs, which is mostly consistent with this finding.  

C. COMPARATIVE ANALYSIS OF MODELS 

This method presented is more useful to INIs than the resilience assessments 

reviewed in Table 5. Specifically, the cost measure LCOED is a unique adaptation of LCOE 

that ensures the costs measurement is pertinent to an off-grid microgrid such as an INI. 

None of the other resilience assessments have a suitable cost measure for an off-grid INI. 

This method also gives a decision maker a tool to visualize the trade-offs in resilience and 

costs for the combined impact of both design and maintenance choices while other models 
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do not create these same trade-offs. Finally, this method generates an aggregate resilience 

measure weighting invulnerability and recovery equally for the INI.  

D. DISCUSSION AND CONCLUSION 

The optimized microgrid at Rota, the comparative resilience and costs of the 

existing RE INIs, and the resilience for the RE INIs’ WT and DG design options generate 

useful and general findings. The highlights of each these will be reviewed and discussed. 

The optimized quintuple microgrid at Rota provides 30% higher resilience for 30% 

of the quintuple base case’s costs. For the same architecture, greater redundancy provides 

greater resilience for the same costs. Maintenance is mostly insignificant, except for the no 

redundancy when a medium maintenance level is best. 

SNI’s time to recover is fastest because of the excess power rating present in the 

system at eight times more power rating than the demand compared to SCI and GTMO 

which both have approximately twice the power rating as the demand. GTMO has almost 

three times the time to recover. GTMO also benefits the most from maintenance. 

Medium maintenance reduces the time to recover by almost 50% at GTMO, 40% 

at SCI and 20% at SNI. Medium maintenance increases costs by at 1% at GTMO, SCI and 

SNI.  

First there is more improvement in resilience at SCI by adding more WTs. Second, 

GTMO’s resilience is approximately half that of SCI and SNI’s resilience for one and two 

DGs but approaches the same level of resilience with three DGs. And finally, there is 

significant improvement in resilience when increasing from one to two DGs but this 

improvement as DGs increase rapidly diminishes when increasing from two to five DGs. 

None of the three RE INIs will benefit in more than 4 DGs and 2 WTs.  
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VI. CONCLUSION 

The experiments and demonstration generated findings that have ensured the 

contribution on trade space of resilience and costs is meaningful and based upon a more 

systematic approach than this research found in the literature. General takeaways on the 

tradeoffs in resilience and costs confirm that redundancy imparts more resilience for no 

additional costs. When exceeding a ratio of microgrid power rating 50% greater than the 

demand, investments in maintenance have diminishing improvements on resilience gains. 

Storage should not exceed the microgrid generation power rating. Finally, maintenance is 

mostly insignificant, and fuel costs will have to decrease below $1.00/gal for PV to be more 

cost competitive than DG. 

Each of the graphs presented in this dissertation enhance the visualization of this 

design trade space. Armed with a 4D graph and moving through the different perspectives 

through a dynamic display should provide the INI’s base commander with a faster, better, 

and more intuitive ability to target a preferred RE microgrid design for their INI. 

One area this research did not consider is the corresponding increase in 

maintenance complexity by introducing redundancy. Although having more than one 

single DG improves resilience, it creates a detrimental aftereffect by adding more costs to 

maintain more DGs. A base commander should acknowledge this and understand that the 

maintenance plan will need to accommodate the compounded maintenance complexity. 

Another consideration this research neglects that an INI base commander should 

consider before implementing a microgrid decision, is the heightened vulnerability of the 

microgrid to a cyberattack by virtue of implementing a networked power system. Although 

we consider cyberattack disturbance scenarios as it relates to the probability of damage to 

a DER, there are unknown cyberattack risks that are not able to be incorporated into the 

method and model. The expectation is that future applications of this model should 

reevaluate these risks and revise the model to factor the full impact of a cyberattack’s 

damage potential. 
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This research also did not explore if the base commander should implement 

different maintenance levels for different DER. The experiments conducted in this research 

all maintained the maintenance level the same for each of the four DERs. The base 

commander should consider, for example, if there is value in reducing the maintenance 

level of the PV to no maintenance while maintaining the DG at a medium maintenance 

level. 

Finally, this research did not explore other combinations of the disturbance’s 

impact and probability. Although most unlikely, work should be done to assess the designs 

for high-impact high-probability disturbances. 

This research has made a primary contribution to the body of knowledge by 

developing a useful and tailored cost (LCOED) and resilience () measure for renewable 

energy microgrids on islands. Additionally, our decision-making tool generated these two 

measures by subjecting RE microgrids to HILP disturbances. Finally, the resilience and 

costs trade analysis convey meaningful findings that shows how decisions on excess power 

rating, redundancy, diversification and maintenance relate to resilience and costs. It is 

through the analysis of this third contribution that more informed decisions can be made 

that will be more likely to deliver the desired combination of resilience and costs.  

A. FINDINGS 

Knowing and understanding which parameters have the most and least influence 

on the resilience measures is useful to exploring the design space. The levels of excess 

power rating, redundancy, amount and type of DER diversification confirm not just that 

more power and diversification is better, rather, there are power rating ratios with a 

threshold for further improvements, redundancy levels, and diversification portfolios that 

provide more resilience for the costs.  

We learned from the sensitivity analyses that the models are much more sensitive 

to some input variables than most. Resilience is not very sensitive to the disturbance start 

time but is overly sensitive to the wind turbine’s time to repair a damaged DER, due to the 

wind turbines having a much greater relative power contribution than the same sized solar 

photovoltaic panel or diesel genset. LCOED is most sensitive to the fuel consumption rate 
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and fuel costs and least sensitive to O&M costs. Finally, fuel costs will have to decrease 

below $1.00/gal for PV to be more cost competitive than DG. 

Although the maintenance level impacts future operations on the microgrid 

differently than a design decision, it is a decision made at the same time as design decisions 

and usually by the same decision maker. Greater maintenance levels do not provide more 

resilience when the generation approaches and exceeds 1.5 times the demand. Maintenance 

only matters as it influences resilience or costs when the power generation more closely 

meets the demand, the generation is all RE, and when there is no redundancy. At Rota more 

maintenance is worthwhile only for microgrids without redundancy. And a greater level of 

maintenance increases resilience only at SCI and GTMO, not at SNI.  

We also observe that given a choice in investing extra funding dollars in 

maintenance or power rating, that maintenance provides more benefits. Specifically, a 

maintenance investment will improve resilience more than an increased power rating 

investment. 

Resilience increases exponentially and costs remain unchanged as the redundancy 

level increases. The WT quintuple architecture costs the least to provide the highest 

resilience compared to the other architectures modeled.  

The ratio of power to demand should not exceed four because there are no further 

improvements in resilience, only costs increases. Doubling the ratio of power to demand 

can greatly reduce time to recover but at significant costs compared to a ratio of one. 

Additionally, we learned that when combining PV and WT, that the PV power rating 

should be more than the WT to account for diurnal behavior differences in power 

generation.  

A generalization we can make about the behavior of our two measures to increasing 

the power to demand ratio or redundancy is that resilience exponentially increases, and 

LCOED linearly increase for the power to demand ratio but remains the same for 

redundancy. 
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This research explored the relationships between energy storage and generation. 

There are no further improvements to be gained in resilience or costs by exceeding a battery 

power rating equal to the microgrid generation. 

The optimized quintuple microgrid at Rota provides 30% higher resilience for 30% 

of the quintuple base case’s costs and is the clear choice. The midnight tsunami findings 

are similar as the morning tsunami although there is a slight degradation in resilience with 

little change in costs. Rota can attain greater resilience for the same costs by incorporating 

redundancy. 

Finally, this research assessed resilience at three of the RE INIs to identify 

meaningful findings. Resilience increases at SCI by adding more WTs. Also, SNI sees little 

improvement with more than three DGs. SCI and SNI has significant improvement in 

resilience when increasing from one to two DGs but this improvement as DGs increase 

rapidly diminishes when increasing from two to five DGs. Only at GTMO is there 

significant improvement from two to three DGs. The RE INIs should not install more than 

4 DGs and 2 WTs. However, applying this method at CLDJ, DGAR and AUTEC should 

generate more accurate and specific recommendations for the all INIs and islanded 

location. 

B. RECOMMENDATIONS 

Base commanders at INIs should sagaciously invest in design and maintenance of 

microgrids to maximize resilience and minimize costs. This research’s contributions and 

findings improve a base commander’s ability to decide how best to invest in resilience.  

1. Designing a Microgrid 

Systems engineers should design microgrids with as much redundancy as practical 

while recognizing the diminishing returns on resilience for the same investment. The 

microgrid’s power rating to demand ratio should not exceed four. Microgrids should 

diversify DG generation, giving preference to WT over PV. Energy storage should not 

exceed the microgrid’s power generation rating. Rota should install the optimized 
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quintuple microgrid. Any of the three RE INIs should install no more than 4 DGs and 2 

WTs.  

2. Maintaining a Microgrid 

Investments in maintenance should not exceed a low level, and it is best to reduce 

maintenance as excess power generation increases beyond 50% of the demand. If the 

generation is all RE, then maintenance matters more than microgrids that incorporate DG 

power. 

SNI should not increase their current maintenance level, and SCI and GTMO 

should implement a higher, or medium maintenance level. Rota should only implement 

maintenance at a medium maintenance level for the existing base case microgrid. 

3. Limitations 

The cost and resilience model’s method is useful in establishing a resilience and 

costs baseline for installed microgrids. We evaluate and compare the alternative design and 

maintenance choices to the baseline installed microgrid using the resilience and cost 

measures of each. However, there are still practical limitations. 

There is no hourly time-series data for all INIs. This limited the analysis to only 

SCI, SNI, and GTMO. Additionally, there is not an exhaustive list of costs for an INI. 

All resilience dimensions were not considered. Specifically, adaptability.  

We also did not have sufficient data to portray the expected erratic behavior of the 

demand. INIs’ due to their operational military missions have unique and erratic 

requirements for meeting the demand due to supporting the mission. 

Additionally, the model is limited by not considering common cause failures. 

Although low probability, these common cause failures can be high impact. If every solar 

PV has a technical fault that is exposed during lightning storms, that is high impact and 

should be considered further.  

Another limitation is the model calculates the MTTR for each DER type but not 

individual DER components. All the wind turbines will have the same MTTR. This prevents 
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us from generating a different MTTR for each of the wind turbines, each of the PV, DG, or 

BAT.  

There is no consideration for the availability of spare parts and repair equipment 

needed to repair a damaged DER. It is quite possible that a damaged wind turbine will 

require a crane that will have to be shipped to the INI. 

These limitations can each affect the conclusions drawn by reducing the accuracy 

of the results when running either an insufficient number of simulations to verify the 

performance trends or an exiguous number of iterations for each simulation. Although 

distinctions could be drawn between architectures, the experiments were not sufficient to 

make strong claims of findings specific to one technology, DER. We also exclude the 

minute-to-minute variations in RE generation that could be more accurately modeled using 

more granular time-steps. In general, the conclusions are still valid regardless of these 

limitations when making resilience and cost comparisons between redundancy levels 

created from the same architecture.  

4. Future Work 

There is both opportunity and a need to continue this research in greater depth and 

for more remote off-grid island microgrids. Further improvements in the method, models, 

and analytics should benefit decision makers.  

We can improve our assumptions. Assuming that the microgrid’s demand 

following a disturbance will mimic its historical demand oversimplifies reality. In fact, we 

would expect a reduced demand that we should be using to assess resilience. Additionally, 

we should incorporate the erratic behavior of an INI’s demand.  

Similarly, we seek full recovery to the pre-disturbance performance level assuming 

that is a desired end state. Rather, recovery is not needed at this level and should be attained 

when the microgrid’s performance has reached a level to meet the reduced demand. Finally, 

we should not assume that the microgrid’s demand will not drop below the microgrid’s 

post-disturbance power rating. 
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We also make an assumption in our cost model that should be improved. In valuing 

energy storage, we are placing greater value on a kilowatt-hour used today than in the 

future. This is an unreasonable and inappropriate assumption for an INI. 

Disturbances and their damage can be made more realistic. The expected damage 

could incorporate the independent probability of the disturbance with the independent 

probability of damage. Additionally, we can introduce stochastic behavior to better handle 

the complexity of common cause failures. Damage can be reassessed at each time step as 

opposed to an instantaneous point-in-time by extending the disturbance over time. And 

finally, we can introduce variability in the intensity of the disturbance at each time step. 

The total costs for an INI can be more comprehensive. When evaluating the price 

of DG fuel for PV to be competitive with DG, the fuel costs should also include the 

shipping costs to the INI. Also, we should more carefully research the added costs to 

maintain the DGs by virtue of being on an INI to more accurately be accounted within the 

cost measure. We should also not assume that the DER cost of maintenance increases 

linearly as we increase redundancy. Rather, we should increase the maintenance costs as 

we increase redundancy. Finally, it will be beneficial to include all environmental costs, 

from manufacturing to disposal, that are a byproduct of the DER. 

Further work can be done to more clearly articulate how threat dependent resilience 

is. The design differences that provide the most resilience for the most threats should be 

highlighted by greater analysis of resilience assessments for different threats. 

Practical applications could investigate how protection relays may impact the 

degradation portion of the problem. The remaining INIs that include DGAR, CLDJ and 

AUTEC should conduct resilience assessments to compare to the RE INIs at SNI, SCI and 

GTMO. Finally, McMurdo, Antarctica should use these models to assess their resilience 

and costs. 

We can research improvements that would make DERs less vulnerable. The cost 

and resilience improvement in increasing a DER’s invulnerability should generate 

meaningful and useful findings when varying the P(d|Sk). 
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Obvious extensions of this research involve data analytics to generate more 

meaningful findings. Recommendations for a design option will be possible simply by 

matching an architecture’s resilience function shape to a shape from previously assessed 

architectures. We can determine through mathematical analysis of the shapes if there is a 

common relationship at the shared points of intersection that contributes to the particular 

combination of resilience and costs. There is much more we can be done to identify 

relationships between the experimental results through more complex graphing tools.  

More granular time series data will improve the accuracy of the results. Increasing 

the number of 4D surface plots’ datapoints as well as increasing the number of architectures 

will enable more extensive comparisons between the measures and the design and 

maintenance choices.  

Common cause failures is an obvious avenue for research. Much further can be 

done to study how decisions on microgrid architectures relate to common cause failures 

and the resultant impact on resilience and costs.  

The models can incorporate multi-objective optimization to more accurately 

identify the optimal solutions by maximizing resilience and minimizing costs. The 

optimization model’s architecture can be directly input into the resilience model. 

Finally, we can more completely investigate the financial aspects of resilience. 

Specifically, researchers can do more extensive and comparative analysis of the findings 

in the comparison of optimal points. Financial tools that more completely value the future 

energy that has been stored, as well as the unintended complexity costs that are introduced 

with redundancy, should provide more accurate recommendations. 
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APPENDIX A. RESILIENCE MEASURES VS. COSTS FIGURES 

These 2D figures provide more granular detail to the previous figures. The LCOED 

vs. recovery, LCOED vs. invulnerability, and LCOED vs. invulnerability each contribute 

to the resilience figures. These 2D figures also contribute to the corresponding 4D graphs 

that compare and contrast the behavior of the different microgrid architectures. In all 

figures, the maintenance levels are annotated next to datapoints that are not grouped 

together for the same architecture. 

A. EXCESS POWER GENERATION RATING 

The 2D Figures 88–105 augment the power rating experiments previously 

presented.  

1. Ratio of Microgrid Nominal Power Generation Rating to Demand, and 
Maintenance Level with Constant DER Nominal Power Rating Impact 
on Resilience and Costs 

 

Figure 88. The effects of maintenance level on LCOED and recovery. 
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Figure 89. The effects of maintenance level on LCOED and 
invulnerability. 

  

Figure 90. The effects of maintenance level on LCOED and resilience. 
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2. Ratio of Microgrid Nominal Power Generation Rating to Demand with 
Constant Number of DER, and Maintenance Level Impact on 
Resilience and Costs  

 

Figure 91. The effects of microgrid power rating to demand ratio on 
LCOED and recovery.  
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Figure 92. The effects of microgrid power rating to demand ratio on 
LCOED and invulnerability.  

 

Figure 93. The effects of microgrid power rating to demand ratio on 
LCOED and resilience. 
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3. Ratio of Nominal RE Power to Nominal DG Power and Maintenance 
Level with Constant DER Nominal Power Rating Impact on Resilience 
and Costs 

 

Figure 94. The effects of maintenance level and RE proportion on 
LCOED and recovery. 
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Figure 95. The effects of maintenance level and RE proportion on 
LCOED and invulnerability. 

 

Figure 96. The effects of maintenance level and RE proportion on 
LCOED and resilience. 
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4. Ratio of Nominal RE Power to Nominal DG Power and Maintenance 
Level with Constant Microgrid Nominal Power Generation Impact on 
Resilience and Costs  

 

Figure 97. The effects of maintenance level and RE proportion on 
LCOED and recovery. 
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Figure 98. The effects of maintenance level and RE proportion on 
LCOED and invulnerability. 

 

Figure 99. The effects of maintenance level and RE proportion on 
LCOED and resilience. 
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5. Ratio of WT Power to DG Power, and Maintenance Level with 
Constant Microgrid Power Generation Rating Impact on Resilience 
and Costs 

 

Figure 100. The effects of maintenance level and WT proportion on 
LCOED and recovery. 
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Figure 101. The effects of maintenance level and WT proportion on 
LCOED and invulnerability. 

 

Figure 102. The effects of maintenance level and WT proportion on 
LCOED and resilience 
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6. Ratio of BAT Power Rating to Microgrid Power Rating, and 
Maintenance Level Impact on Resilience and Costs  

 

Figure 103. The effects of storage on LCOED and recovery. 

 

Figure 104. The effects of storage on LCOED and invulnerability. 
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Figure 105. The effects of storage on LCOED and resilience. 

B. ALTERING REDUNDANCY LEVELS 

The 2D Figures 106–114 augment the redundancy experiments previously 

presented. 
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1. Redundancy and Maintenance Levels Impact on Resilience and Costs 

 

Figure 106. The effects of maintenance level and redundancy on 
LCOED and recovery. 
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Figure 107. The effects of maintenance level and redundancy on 
LCOED and invulnerability. 

 

Figure 108. The effects of maintenance level and redundancy on 
LCOED and resilience. 
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2. Functional Redundancy and Maintenance Levels Impact on Resilience 
and Costs 

 

Figure 109. The effects of functional redundancy on LCOED and 
recovery. 
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Figure 110. The effects of functional redundancy on LCOED and 
invulnerability. 
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Figure 111. The effects of functional redundancy on LCOED and 
resilience. 
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3. RE Redundancy and Maintenance Levels Impact on Resilience and 
Costs  

 

Figure 112. The effects of PV and WT redundancy on LCOED and 
recovery.  
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Figure 113. The effects of PV and WT redundancy on LCOED and 
invulnerability. 
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Figure 114. The effects of PV and WT redundancy on LCOED and 
resilience. 

C. ALTERING REDUNDANCY LEVELS AT ROTA 

The 2D Figures 115—123 augment the redundancy experiments at Rota previously 

presented. 
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1. Base Case Impact of Redundancy, and Maintenance on Resilience and 
Costs 

 

Figure 115. The effects of redundancy level on LCOED and recovery. 
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Figure 116. The effects of redundancy level on LCOED and 
invulnerability. 
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Figure 117. The effects of redundancy level on LCOED and resilience. 
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2. Optimized Microgrid’s Impact of Redundancy, and Maintenance on 
Resilience and Costs for a Morning Tsunami 

 

Figure 118. The effects of redundancy level on LCOED and recovery. 

 

Figure 119. The effects of redundancy level on LCOED and 
invulnerability. 
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Figure 120. The effects of redundancy level on LCOED and resilience. 
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3. Optimized Microgrid’s Impact of Redundancy, and Maintenance on 
Resilience and Costs for a Midnight Tsunami 

 

Figure 121. The effects of redundancy and maintenance level on 
LCOED and recovery. 
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Figure 122. The effects of redundancy and maintenance level on 
LCOED and invulnerability. 

 

Figure 123. The effects of redundancy and maintenance level on 
LCOED and resilience. 
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APPENDIX B. MICROSOFT EXCEL TOOL DEVELOPED FOR 
MODELS 

A. RESILIENCE MODEL 

1. Input Variables 

 

Figure 124. Resilience model variables. Measures are in red. 

Table 36. Demand profile for each time step. 

 

maintenance level WT PV DG BAT

Invulnerability 0.83 none 240 300 285 15

Recovery 1.00 low 144 180 171 9

Resilience 1.00 medium 96 120 114 6

CPV 0.36 Pts  [KW] 2,000.00              

CWT 0.22 Ptd  [KW] 2,400.00               Select Scenario Hurricane

A 0.98 P(dWT|Sk) 0.50

tfr‐td [hours] 1 P(dPV|Sk) 0.70 DER Hurricane Wildfire Earthquake Cyberattack

Charging efficiency 0.97 P(dDG|Sk) 0.30 WT 0.50 0.90 0.50 0.25

Discharging efficiency 0.98 P(dBAT|Sk) 0.20 PV 0.70 0.40 0.25 0.25

S  [gal] 5000 f*DG  [gal] 19,354                  DG 0.30 0.20 0.15 0.25

WT maintenance level medium DG maintenance level medium BAT 0.20 0.50 0.10 0.25

PV maintenance level medium BAT maintenance level medium

W  [gal/hr] 72 Disturbance time 0800

MTTRWT  [hours] 72 MTTRDG  [hours] 289 Demand, Capacity and Delivered Power
MTTRPV  [hours] 31 MTTRBAT  [hours] 3

Damaged (0=Yes; 

1=No)

PWT1  [KW] 1500 UWT1 1 PPV1  [KW] 1500 UPV1 0 PDG1  [KW] 2500 UDG1 1 PBAT1  [KW] 1500 UBAT1 1 B1  [KWh] 3000

PWT2  [KW] UWT2 0 PPV2  [KW] UPV2 0 PDG2  [KW] UDG2 1 PBAT2  [KW] UBAT2 1 B2  [KWh] 0

PWT3  [KW] UWT3 0 PPV3  [KW] UPV3 0 PDG3  [KW] UDG3 1 PBAT3  [KW] UBAT3 1 B3  [KWh] 0

PWT4  [KW] UWT4 0 PPV4  [KW] UPV4 1 PDG4  [KW] UDG4 1 PBAT4  [KW] UBAT4 1 B4  [KWh] 0
PWT5  [KW] UWT5 1 PPV5  [KW] UPV5 0 PDG5  [KW] UDG5 0 PBAT5  [KW] UBAT5 1 B5  [KWh] 0

Input variables

Batteries (BAT)Wind turbines (WT) Solar photovoltaic panels (PV) Diesel gensets (DG)

Variables using random numbers

λ [hours]

Metrics

Variables

Decision variables (0=off(charging for battery); 1=on(discharging for battery)

Damaged (0=Yes; 1=No) Damaged (0=Yes; 1=No) Damaged (0=Yes; 1=No)

P(d|Sk)

Objective: maximize resilience
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Time step [hour]

D [KW] Pt [KW] Pdelivered [KW]

Day Time [hour] D  [KW] Pt  [KW] Pdelivered  [KW] T  [KW]

1 0 2000 2000.00 2000.00 0.00

1 2400 2314.04 2314.04 870.94

2 2600 2314.04 2314.04 1070.94

3 2800 2314.04 2314.04 1270.94

4 3000 2314.04 2314.04 1470.94

5 3400 2314.04 2314.04 1870.94

6 3800 2314.04 2314.04 2270.94

7 4000 2314.04 2314.04 2470.94

8 4000 2314.04 2314.04 2470.94

9 4000 2314.04 2314.04 2470.94

10 3600 2314.04 2314.04 2070.94

11 3000 2314.04 2314.04 1470.94

12 2800 2371.07 2371.07 1213.91

13 2800 2371.07 2371.07 1213.91

14 2800 2371.07 2371.07 1213.91

15 2600 2894.39 2600.00 1013.91

16 2000 2894.39 2000.00 413.91

17 2000 2894.39 2000.00 413.91

18 2000 2894.39 2000.00 413.91

19 2000 2894.39 2000.00 413.91

20 2000 2894.39 2000.00 413.91

21 2000 2894.39 2000.00 413.91

22 2000 2894.39 2000.00 413.91

23 2000 2894.39 2000.00 413.91



230 

2. Variables 

Table 37. Power to charge each battery and fuel consumption parameters. 

 
 

Table 38. Parameters for DER. 

 
 

3. Decision Variables 

Table 39. Decision variables for optimization. 

  

Pcharge1  [KW] Pcharge2  [KW] Pcharge3  [KW] Pcharge4  [KW]Pcharge5  [KW] fDG1  [gal] fDG2  [gal] fDG3  [gal] fDG4  [gal] fDG5  [gal]

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 57.60 57.60 57.60 57.60 57.60

0.00 0.00 0.00 0.00 0.00 57.60 57.60 57.60 57.60 57.60

0.00 0.00 0.00 0.00 0.00 57.60 57.60 57.60 57.60 57.60

0.00 0.00 0.00 0.00 0.00 57.60 57.60 57.60 57.60 57.60

0.00 0.00 0.00 0.00 0.00 57.60 57.60 57.60 57.60 57.60

0.00 0.00 0.00 0.00 0.00 57.60 57.60 57.60 57.60 57.60

0.00 0.00 0.00 0.00 0.00 57.60 57.60 57.60 57.60 57.60

0.00 0.00 0.00 0.00 0.00 57.60 57.60 57.60 57.60 57.60

0.00 0.00 0.00 0.00 0.00 57.60 57.60 57.60 57.60 57.60

0.00 0.00 0.00 0.00 0.00 57.60 57.60 57.60 57.60 57.60

0.00 0.00 0.00 0.00 0.00 57.60 57.60 57.60 57.60 57.60

0.00 0.00 0.00 0.00 0.00 57.60 57.60 57.60 57.60 172.80

0.00 0.00 0.00 0.00 0.00 57.60 57.60 57.60 57.60 172.80

0.00 0.00 0.00 0.00 0.00 57.60 57.60 57.60 57.60 172.80

0.00 0.00 0.00 0.00 0.00 57.60 57.60 57.60 57.60 172.80

0.00 0.00 0.00 0.00 0.00 57.60 57.60 57.60 57.60 172.80

0.00 0.00 0.00 0.00 0.00 57.60 57.60 57.60 57.60 172.80

0.00 0.00 0.00 0.00 0.00 57.60 57.60 57.60 57.60 172.80

0.00 0.00 0.00 0.00 0.00 57.60 57.60 57.60 57.60 172.80

0.00 0.00 0.00 0.00 0.00 57.60 57.60 57.60 57.60 172.80

0.00 0.00 0.00 0.00 0.00 57.60 57.60 57.60 57.60 172.80

0.00 0.00 0.00 0.00 0.00 57.60 57.60 57.60 57.60 172.80

0.00 0.00 0.00 0.00 0.00 57.60 57.60 57.60 57.60 172.80

BBESS  [KWHh] B1  [KWHh] B2  [KWHh] B3  [KWHh] B4  [KWHh] B5  [KWHh] OWT1 OWT2 OWT3 OWT4 OWT5 OPV1 OPV2 OPV3 OPV4 OPV5 ODG1 ODG2 ODG3 ODG4 ODG5 OBAT1 OBAT2 OBAT3 OBAT4 OBAT5 VWT VPV VDG VBAT

2670.00 534.00 534.00 534.00 534.00 534.00 0 0 0 0

0.00 0.00 0.00 0.00 0.00 0.00 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0

0.00 0.00 0.00 0.00 0.00 0.00 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0

0.00 0.00 0.00 0.00 0.00 0.00 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0

0.00 0.00 0.00 0.00 0.00 0.00 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0

0.00 0.00 0.00 0.00 0.00 0.00 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0

0.00 0.00 0.00 0.00 0.00 0.00 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0

0.00 0.00 0.00 0.00 0.00 0.00 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0

0.00 0.00 0.00 0.00 0.00 0.00 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0

0.00 0.00 0.00 0.00 0.00 0.00 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0

0.00 0.00 0.00 0.00 0.00 0.00 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0

0.00 0.00 0.00 0.00 0.00 0.00 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0

0.00 0.00 0.00 0.00 0.00 0.00 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0

0.00 0.00 0.00 0.00 0.00 0.00 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0

0.00 0.00 0.00 0.00 0.00 0.00 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0

1068.00 534.00 0.00 0.00 0.00 534.00 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1

534.00 267.00 0.00 0.00 0.00 267.00 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1

534.00 267.00 0.00 0.00 0.00 267.00 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1

534.00 267.00 0.00 0.00 0.00 267.00 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1

534.00 267.00 0.00 0.00 0.00 267.00 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1

534.00 267.00 0.00 0.00 0.00 267.00 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1

534.00 267.00 0.00 0.00 0.00 267.00 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1

534.00 267.00 0.00 0.00 0.00 267.00 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1

534.00 267.00 0.00 0.00 0.00 267.00 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1

LDG1 mWT1 m PV1 mDG1 m BAT1 LDG2 mWT2 m PV2 mDG2 m BAT2 LDG3 mWT3 m PV3 mDG3 m BAT3 LDG4 mWT4 m PV4 mDG4 m BAT4 LDG5 mWT5 m PV5 mDG5 m BAT5

0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1

0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1

0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1

0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1

0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1

0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1

0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1

0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1

0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1

0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1

0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1

0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1 0.80 1 1 1 1

0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1

0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1

0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1

0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1

0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1

0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1

0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1

0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1

0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1

0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1

0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1

0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1 0.80 3 0 1 1



231 

B. COST MODEL 

 

Figure 125. Cost model variables. Measures are in red. 

C. MACRO 

‘ 

‘ Macro used to save Invulnerability, Recovery, and 
Recovery Time from Resilience Model worksheet to Pareto-Curve 
worksheet 

‘ for specified number of iterations from user input 

 

Application.Calculation = xlManual 

Application.DisplayStatusBar = False 

Application.EnableEvents = False 

Application.ScreenUpdating = False 

Dim x As String, counter As Integer, shRead As Worksheet, 
shWrite As Worksheet, shLCOED As Worksheet 

Set shRead = ThisWorkbook.Worksheets(“Resilience 
model”) 

Set shWrite = ThisWorkbook.Worksheets(“Pareto curves & 
simulation data”) 

Set shLCOED = ThisWorkbook.Worksheets(“Cost model”) 

shWrite.Range(“A44:O7543”).Clear 

x = InputBox(“Enter number of iterations for data”) 

counter = 44 

LCOED [$/KWh] 0.2515

p  10 Cy [$] 41,215,108            

WACC [%] 7.5% Ey [KWH] 163,903,271          

Dy[KWh] 23,878,400       f [$/gal] 2.60

WT maintenance level medium g[gal/KWh] 0.06 LCOE

PV maintenance level medium nWT 20 planning horizon

Ey [KWH]     @full 

capacity

Ey [KWH] reduced 

for efficiency 

factors

LCOE [$/KWh]     @ 

full capacity WT $0.341

DG maintenance level medium nPV 25 10 $420,905,444.22 0.0979 PV $1.503

BAT maintenance level medium nDG 30 20 $625,126,210.15 $243,949,252.25 0.0659 DG $0.067

Xy [KWh] $0.00 BAT $0.026

IWT1 1,145,200         MWT1 26,600                    JWT1 26,600                HWT1 572,600                   IPV1 2,156,700               MPV1 12,810                JPV1 12,810            HPV1 1,294,020             

IWT2 1,145,200         MWT2 26,600                    JWT2 26,600                HWT2 572,600                   IPV2 2,156,700               MPV2 12,810                JPV2 12,810            HPV2 1,294,020             

IWT3 1,145,200         MWT3 26,600                    JWT3 26,600                HWT3 572,600                   IPV3 2,156,700               MPV3 12,810                JPV3 12,810            HPV3 1,294,020             

IWT4 1,145,200         MWT4 26,600                    JWT4 26,600                HWT4 572,600                   IPV4 2,156,700               MPV4 12,810                JPV4 12,810            HPV4 1,294,020             

IWT5 ‐                    MWT5 ‐                         JWT5 ‐                     HWT5 ‐                          IPV5 ‐                         MPV5 ‐                      JPV5 ‐                  HPV5 ‐                       

IDG1 434,000            MDG1 10,850                    JDG1 10,850                FDG1 956,592                   HDG1 289,333                  IBAT1 595,000              MBAT1 1,500              JBAT1 1,500                    

IDG2 434,000            MDG2 10,850                    JDG2 10,850                FDG2 956,592                   HDG2 289,333                  IBAT2 595,000              MBAT2 1,500              JBAT2 1,500                    

IDG3 ‐                    MDG3 ‐                         JDG3 ‐                     FDG3 ‐                          HDG3 ‐                           IBAT3 ‐                      MBAT3 ‐                  JBAT3 ‐                       

IDG4 ‐                    MDG4 ‐                         JDG4 ‐                     FDG4 ‐                          HDG4 ‐                           IBAT4 ‐                      MBAT4 ‐                  JBAT4 ‐                       

IDG5 ‐                    MDG5 ‐                         JDG5 ‐                     FDG5 ‐                          HDG5 ‐                           IBAT5 ‐                      MBAT5 ‐                  JBAT5 ‐                       

Input variables

Variables

Maintenance costs [$] Value at end of p [$]Investment costs [$] Maintenance costs [$]

Wind turbines (WT) Solar photovoltaic panels (PV)

Populated from resilience input variables

Populated from cost model input variables

Metrics

Fuel costs [$] Value at end of p [$]

Batteries (BAT)

Vendor's O&M costs [$]

Vendor's O&M costs [$] Vendor's O&M costs [$]

Investment costs [$]

Investment costs [$]

Value at end of p [$]Vendor's O&M costs [$]

Diesel gensets (DG)

Maintenance costs [$]Investment costs [$] Maintenance costs [$]
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Do While counter < 44 + x 

shRead.Calculate 

shRead.Range(“I5”).Copy 

shWrite.Cells(counter, “B”).PasteSpecial xlPasteValues 

shRead.Range(“I4”).Copy 

shWrite.Cells(counter, “F”).PasteSpecial xlPasteValues 

shRead.Range(“I6”).Copy 

shWrite.Cells(counter, “I”).PasteSpecial xlPasteValues 

shRead.Range(“C10”).Copy 

shWrite.Cells(counter, “K”).PasteSpecial xlPasteValues 

shLCAE.Calculate 

shLCAE.Range(“G3”).Copy 

shWrite.Cells(counter, “O”).PasteSpecial xlPasteValues 

counter = counter + 1 

Loop 

Application.Calculation = xlCalculationAutomatic 

Application.DisplayStatusBar = True 

Application.EnableEvents = True 

Application.ScreenUpdating = True 

End Sub 
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APPENDIX C. CONFIDENCE INTERVAL CALCULATIONS 

 
Confidence Interval  x - z  

s

n
, z

s

n





  (AC.1) 

where 

n denotes the number of simulations  

z = z-statistic  

s = standard deviation  

Level of precision is the width of the confidence interval. A confidence interval of two 

minutes per each time step is used for time to recover. This calculation is two minutes per hour, 

or 0.0333. Monte Carlo simulations were averaged for 7,500 simulations so as to satisfy the 

Central Limit Theorem’s requirements for this confidence level and level of precision. The 

amount of simulations is determined to be 7,500 by first running the simulation 500 times and 

calculating the standard deviation as 1.753 for time to recover. Using a 90% confidence interval 

with a 1.645 z-statistic, the Equation AC.1 is solved for n as shown in Equation AC.2. 

 
n 

zs

P







2

 (AC.2) 

where 

n = number of simulations  

P = desired level of precision 

z = z-statistic 

s = standard deviation from 500 simulations 

Equation AC.2 is then solved as shown in Equation AC.3. 

 
n 

1.645(1.753)

0.0333







2

 (AC.3) 

n = 7,499 simulations. 
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