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ABSTRACT 

Haze conditions have reportedly reduced visibility to about 3km in some of the 

busiest shipping lanes in the world. Haze conditions, including inclement 

weather conditions, are identified as a key challenge for autonomous vehicle 

operations. However, field data on poor weather conditions and ship images under 

hazy conditions may not be readily available to support research work aimed toward 

overcoming such challenges for autonomous vehicles. In this thesis, synthetic ship 

images are rendered under hazy conditions to augment a baseline dataset of haze-free 

ship images, in order to support our research on ship vessel classifications in a hazy 

environment using machine learning. The proposed feature extraction involves the 

counting of corner points detected using the Kanade Lucas Tomasi (KLT) technique to 

characterize the pattern of specific ship classes and computing of higher-order 

moments on the color planes on the ship structure detected in the images. Results 

show that the average ship classification accuracy rate is about 40% higher when 

the model is trained using a dataset augmented with synthetic hazy ship images; the 

classifier can classify for ship classes such as container ships, cargo ships, and 

sailing vessels, with an 80% average accuracy rate. 
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I. INTRODUCTION 

A. BACKGROUND 

Autonomous capabilities at sea are increasingly in demand given their potential  

in enhancing the efficiency of operational processes and minimizing human errors [1].  

P. Koopman indicated that the key enabler for a potential widespread deployment of these 

autonomous capabilities thus lies in its assurance for safe operability [2]. Inclement 

weather conditions pose a significant challenge to autonomous vehicles due to performance 

degradation in contact sensing under such conditions [3]. Unfortunately, field data 

comprising poor weather conditions may not be readily available. This limitation may 

hinder studies that aim to overcome such a challenge.  

For example, it was reported that the visibility was reduced to about 3km in some 

parts of Singapore when haze engulfed the island city in September 2019 [4]. The study of 

autonomous ship classification under such hazy conditions, without a database of ship 

images that were captured in such degraded environments, can prove to be an overly 

challenging task. P. Koopman also asserted that the challenge begins with enhancing 

system robustness for difficult environmental conditions in order to achieve ultra-

dependable autonomous capabilities [2]. As sea lanes can potentially be hazy such as 

conditions encountered in Singapore, it is hence useful to account for hazy environmental 

conditions possibly faced by autonomous vehicles in the future.  

In this thesis, we propose to augment an original dataset of haze-free ship images 

with a dataset comprising synthetic hazy ship images rendered based on the atmospheric 

scattering model. The resulting dataset includes ship images in both haze-free and hazy 

conditions and serves to facilitate our study on ship classification performance as part of 

the continual effort toward enhancing the safe operability of future autonomous capabilities 

in the naval domain. 

B. OBJECTIVES AND THESIS ORGANIZATION 

This thesis implements the atmospheric scattering model for rendering of synthetic 

ship images in hazy environments, and investigates ship classification performance 

https://www.nap.edu/catalog/11379/autonomous-vehicles-in-support-of-naval-operations
https://ieeexplore.ieee.org/document/7823109
https://www.rand.org/pubs/testimonies/CT463.html
https://www.channelnewsasia.com/news/singapore/haze-singapore-visibility-reduced-air-quailty-monday-nea-11934886
https://ieeexplore.ieee.org/document/7823109
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obtained with the dataset augmented with synthetic hazy ship images, using the Random 

Forests (RF) classification.   

The remainder of the thesis is organized as follows. The conceptual overview of 

the atmospheric scattering model which forms the basis for our synthetic images rendering 

is introduced in Chapter II. A detailed approach in rendering synthetic hazy ship images 

using haze-free ship images is presented in Chapter III. In Chapter IV, we present our 

proposed approach to detect Corner Points (CPs) in ship images, using the Kanade Lucas 

Tomasi (KLT) technique, and the use of the detected CPs distribution as class features for 

classification. Chapter IV also discusses the extraction of higher order moments of the 

color planes of ship images as features for ship classification. Ship classification results 

obtained are presented and analyzed in Chapter V. Conclusions and recommendations are 

presented in Chapter VI. 
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II. ATMOSPHERIC SCATTERING MODEL 

The atmospheric scattering model is widely used to characterize the formation of 

hazy and foggy images in numerous applications. F. Guo, J. Tang, and X. Xiao proposed 

realistic rendering of foggy images in game development and virtual reality applications 

[6]. E. Ullah, R. Nawaz, and J. Iqbal used the atmospheric scattering model for applications 

in image haze removal [7]. For the purpose of this thesis, the atmospheric scattering model 

is used to generate synthetic hazy images and implemented with MATLAB. The rendered 

synthetic hazy ship images will augment our original dataset of haze-free ship images and 

facilitate our ship classification study. This chapter provides the conceptual overview of 

the atmospheric scattering model (i.e., the basis for rendering of synthetic hazy images). 

A. INTRODUCTION TO ATMOSPHERIC SCATTERING MODELS 

The presence of particles in the air is an atmospheric phenomenon affected by 

weather conditions and air pollution which causes visibility degradation and possibly color 

changes [8]. Haze and fog are the most common atmospheric phenomena: haze is caused 

by air pollution such as smoke and dry particles (e.g., dust) suspending in the air, while fog 

is due to the presence of water vapour in the air. When light rays hit a particle (e.g., dust, 

water droplet), light scattering will occur in all directions with varying magnitude as the 

scattered rays moved away from the particle [9]. An imaging illustration based on the 

atmospheric scattering model with an example of the transmission map and synthetic hazy 

image rendered using our MATLAB implementation is shown in Figure 1. 

 

https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/ieee_s6642199
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/ieee_s4587643
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/elsevier_sdoi_10_1016_j_cviu_2017_09_003
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Figure 1. Atmospheric scattering model 

The mathematical formula of the rendered hazy image J(x) in the atmospheric 

scattering model is given by [10, p. 6]  

 ( ) ( ) ( ) (1 ( )),J x I x t x A t x= + −   

where x denotes a point in the two dimensional (2D) image plane, I(x) represents a haze-

free image, (i.e., three 2D-matrices representing the red, green, blue (RGB) colored 

information), and t(x) is the transmission map of I(x), which is the scalar representation of 

the variations in transmission due to the depth d between the scene and the observer.  

The parameter A represents the atmospheric light intensity, which is usually assumed to be 

a global constant throughout the scene and is often considered as the environmental 

illumination. 

A physical view of the atmospheric scattering model is shown in Figure 1. The 

presence of haze particles and water vapor in the atmosphere scatters and absorbs the light 

transmitting through the atmosphere. The transmission of the reflected light from the scene 

https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/ieee_s5567108


5 

I(x) is partly attenuated due to the light scattering caused by the particles in the atmosphere. 

The transmission map t(x) represents the ratio of “the un-attenuated light that reaches the 

observer” to “the reflected light from the scene”. The term I(x)t(x) is known as the 

attenuation. The term A(1-t(x)) is called the airlight, which is the environmental 

illumination from several sources, including, diffused skylight, sunlight, and ground light 

[11, p. 5]. The rendered hazy image J(x) at the observer viewpoint would be the attenuated 

light with the additive of the airlight. 

B. TRANSMISSION MAP 

The transmission map represents “the portion of the light that is not scattered and 

reaches the observer” [6, p. 3], and since the transmission map is a “function of depth, it 

thus reflects the depth information in the scene” [6, p. 3]. Let us assume d(x) is the distance 

from a scene point at position x to the observer, with d denoted as the depth of the particular 

scene point. The transmission map t(x) is related to the depth d, and is given by 

 ( )( ) ,d xt x e−β=  

where β represents the extinction coefficient of the atmosphere. The parameter β is 

determined by the physical properties of the particles residing in the atmosphere, such as 

the particle size, material, shape and density, and function of the wavelength λ and 

wavelength selectivity γ, given by [11, p. 6] 

Constant( ) .γβ λ
λ

=
 

Under a homogeneous foggy or hazy environment, γ≈0 [12]; hence the extinction 

coefficient β is a spatial constant [10]. Various values for visibility distances and extinction 

coefficients  β corresponding to different weather conditions according to the international 

visibility grades [6, p. 7] are listed in Table 1. 

 

 

https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/springer_jour1016328200723
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/springer_jour1016328200723
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/ieee_s1201821
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/ieee_s5567108
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
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Table 1. International visibility grades. Adapted from [13]. 

Grade Weather Visibility distance Extinction Coefficient β 

0 Dense fog <50m >78.2m-1 

1 Thick fog 50–200m 78.2–19.6m-1 

2 Moderate fog 200–500m 19.6–7.82m-1 

3 Light fog 500m–1km 7.82–3.91m-1 

4 Thin fog 1–2km 3.91–1.96m-1 

5 Haze 2–4km 1.96–0.954m-1 

6 Light haze 4–10km 0.954–0.391m-1 

7 Clear 10–20km 0.391–0.196m-1 

8 Very clear 20–50km 0.196–0.078m-1 

9 Extremely clear >50km 0.0141m-1 

 

C. AIRLIGHT 

Unlike the attenuation term I(x)t(x) which causes the scene radiance to decrease 

along the depth, the airlight term A(1-t(x)) increases the scene radiance along the depth. 

According to [8, p. 3], in situations of bad weather (e.g., hazy or foggy environment), the 

sky is usually overcast and the atmospheric light intensity A can be assumed to be a global 

constant. For the purpose of synthetic hazy image rendering adopted in this thesis, the 

atmospheric light intensity A is chosen to be a constant value equals to 255, consistent with 

an 8-bit representation of light intensity, as referenced in [6, p. 6]. 

D. RENDERED HAZY IMAGE 

The RGB components of the haze-free image I(x) (i.e., IR(x), IG(x), and IB(x)), are 

multiplied by the transmission map t(x), then added to the airlight term A(1-t(x)). Selecting 

the atmospheric light intensity A value equal to 255 results in using white color as the 

atmospheric light intensity for all scenes (i.e., R=255, G=255, B=255). See Figure 2 for the 

composition of the rendered hazy image. 

https://www.researchgate.net/figure/International-visibility-grades-with-their-medium-extinction-coefficients_tbl1_287395953
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/ieee_s4587643
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
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Figure 2. Composition of rendered hazy image 

E. ATMOSPHERIC SCATTERING MODEL CONCLUSION 

The atmospheric scattering model discussed in this chapter, a widely adopted model 

for characterization of hazy and foggy images applications [6], [7],  is used in this thesis to 

generate synthetic hazy images for our ship classification study with ship images under 

hazy conditions. Benchmarking to the international visibility grades in Table 1, an 

extinction coefficient value equals to 1.96m-1 (worst case of Grade 5 for visibility distance 

between 2-4km) is chosen for the rendering of synthetic hazy images in this study. Such 

selection simulates the haze condition encountered by one of the busiest shipping lanes in 

the world, where the visibility range was reportedly reduced to 3km [4]. As haze particles 

may occur in spatially constant or varying density in the atmosphere [14], synthetic hazy 

images are rendered in both conditions, and termed in this thesis as homogenous synthetic 

hazy images and heterogeneous synthetic hazy images. Homogeneous synthetic hazy 

images are rendered with uniform density of haze particles in space. Heterogeneous 

synthetic hazy images are rendered with a non-uniform density of haze particles 

(i.e., non-homogeneous). The approach of the rendering of the homogeneous and 

heterogeneous synthetic hazy images will be addressed in the next chapter. 

 

https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/ieee_s5567108
https://www.channelnewsasia.com/news/singapore/haze-singapore-visibility-reduced-air-quailty-monday-nea-11934886
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/arxiv2005.03560
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III. APPROACH OF SYNTHETIC HAZY IMAGE RENDERING 

The gaming industry has evolved from using software-based rendering tools, such 

as 3ds max and Photoshop, to a more efficient model-based rendering approach for foggy 

and hazy scenes rendering in their games development [6] (i.e., adopting the atmospheric 

scattering model described in Chapter II). Reference [6] also demonstrated the possibility 

to generate realistic foggy scenes with real-life images using the same approach 

implemented as that selected for foggy scene rendering in virtual environments. For this 

study, we will be using a similar approach for the rendering of synthetic hazy images, as 

previously adopted by [6]. This chapter presents the approach considered for rendering 

synthetic hazy image from haze-free images. The rendering processes are implemented 

using MATLAB, and detailed in Appendix A. 

A. SYNTHETIC HAZY IMAGES RENDERING PROCESS FLOW 

Rendering a synthetic hazy image requires three steps for the case of a generic 

heterogeneous hazy texture, following the approach presented in [6, p. 3]. Conversely, two 

steps are required to generate a synthetic image with a homogeneous hazy texture.  

We first need to compute the transmission map with the Markov Random Field 

(MRF) model to generate homogeneous synthetic hazy images [15]. The goal in doing so 

is to assign each image pixel with an accurate label based on the minimum value of the 

energy function of the MRF. A label assigned with smaller value represents the image pixel 

at a deeper depth in the scene, while a larger value label corresponds to a scene point closer 

to the observer. An additional step is required to generate a heterogeneous noise image 

using the Fractional Brownian Motion (FBM) turbulence texture [16]. Finally, the 

synthetic hazy image can be rendered according to the atmospheric scattering model. The 

synthetic hazy image rendering flowchart is depicted in Figure 3.   

https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/sage_s10_5772_58674
https://nullprogram.com/blog/2007/11/20/
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Figure 3. Synthetic hazy image rendering flowchart 

B. TRANSMISSION MAP ESTIMATION 

The most crucial step for synthetic hazy image rendering is the estimation of the 

transmission map. The MRF technique, which is a probabilistic-based graphical model, is 

commonly utilized for analyzing the spatial dependencies of a given image [15]. Here, we 

obtain the estimation of the transmission map using the MRF. To generate the transmission 

map, the input RGB image is first converted to a gray-level image, allocating 8-bits for the 

image intensity level representation. Referencing to the methodology of foggy scene 

images rendering adopted by the computer games industry [6, p. 4], the number of labels 

is set to l=32, where the set of labels L={1,2,3,…,l} represents the transmission values 

{0,1/(l-1),2/(l-1),…,1} [6, p. 4]. 

Table 2. Labels and corresponding label values 

Label xi 1 2 3 4 5 6 7 8 
Label Value L(xi) 0 1/31 2/31 3/31 4/31 5/31 6/31 7/31 
xi 9 10 11 12 13 14 15 16 
L(xi) 8/31 9/31 10/31 11/31 12/31 13/31 14/31 15/31 
xi 17 18 19 20 21 22 23 24 
L(xi) 16/31 17/31 18/31 19/31 20/31 21/31 22/31 23/31 
xi 25 26 27 28 29 30 31 32 
L(xi) 24/31 25/31 26/31 27/31 28/31 29/31 30/31 1 

 

 

https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/sage_s10_5772_58674
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
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Each element ti of the transmission map is assigned a label xi. The labeling of the 

transmission map is estimated by minimizing the associated cost function E(x) 

 
( , )

( ) ( ) ( , ),i i ij i j
i P i j N

E x E x E x x
∈ ∈

= +∑ ∑  

where P denotes the number of pixels in the image, and N denotes the collection of pairs 

of pixels within the cross-connect neighborhood configuration. The cross-connect 

neighborhood configuration using a 3x3 pixels image as an example is illustrated in Figure 

4, where the number of pairs of pixels within a given neighborhood varies between N=2 at 

the corners of the image, N=3 along the edges of the image, and N=4 otherwise. 

 
Figure 4. Cross-connect configuration on a 3x3 pixels image 
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The data term Ei(xi) is related to the probability of the transmission element ti 

assigning to label xi. The data term Ei(xi) is the absolute difference between the label value 

L(xi) and the intensity of each pixel value at the RGB-converted gray-level image Ii’ 

(values ranging from 0 to 255) multiplied with a normalizing factor ω. The normalizing ω 

value is chosen to be 1/255 [6, p. 5] to ensure that the gray-level image Ii and label value 

L(xi) have the same order of magnitude, such that the data term Ei(xi) will always have a 

value between 0 and 1, and can be expressed as 

 ( ) '* ( ) .i i i iE x I L xω= −  

The smooth term Eij(xi,xj) is a component associated with the probability of  

neighboring pixels (i.e., cross-connected pixels) surrounding pixel i, and value of the image 

strength control g=0.01 [6]. The smooth term Eij(xi,xj) expression, is given by 

 ( , ) .ij i j i jE x x g x x= −  

The cost function E(x) can be estimated using the α-expansion algorithm [6], [15], 

which involves performing expansions for all labels of α, where the label values L(x) are 

sequentially assigned to label α [17]. At each iteration of the α-expansion algorithm, the 

algorithm will determine if the pixel i should retain its existing label xi, or replace with the 

label α [18]. The label for pixel i switches to label α when the cost function E(x) is 

minimized, where the condition for label switching for the α-expansion algorithm [18], 

given by 

( , ) ( , ) ( , ) ( , ),
, ,

, , ( ).

ij ij i j j i ij j

i j

E E x x Ei x E x
i j P

x x L x

α α α α

α

+ ≤ +
∀ ∈

∈∀

 

In this thesis, we adopted the GCO-v3.0 library [19], developed by O. Veksler and 

A. Delong, to implement the cost function minimization step using the α-expansion 

algorithm. The library function gets a haze-free image as input parameter and returns as 

output the estimation of each pixel label xi in the transmission map. The pseudo-code using 

the GCO-v3.0 library for the estimation process is shown in Figure 5. 

https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/sage_s10_5772_58674
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/ieee_s4270229
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/ieee_s5384980
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/ieee_s5384980
https://vision.cs.uwaterloo.ca/code/
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Figure 5. Pseudo-code for label estimation using GCO-v3.0 library 

In Figure 5, parameters M and N denote the height and width of the input haze-free 

image, and the parameter Data represents the gray-level image reshaped into a one-

dimensional vector. As a result, with the defined functions in the GCO-v3.0 library, each 

pixel label xi in the transmission map is estimated. Implementation details are presented in 

Appendix A, which includes the MATLAB function transmission.m developed for 

generating the labels xi for an image. Next, we need to translate the pixel labels xi in the 

transmission map (values ranging from 0 to 1) into its corresponding gray-level intensity 

values tint(x) to display the transmission map as a gray-level image (values ranging from 

0 to 255). The gray-level intensity values of the transmission map tint(x) can be as expressed 

[6, p. 6] 

https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
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 int( ) 255 ( 1)*8.it x x= − −  

The transmission map t(x) is given by [15, p. 4] 

 ( )( ) ,d xt x e−β=   

where the depth of the transmission map d(x) given by 

 
( )( )

( ) .
In t x

d x
β

= −   

The extinction coefficient β can be chosen in accordance with the desired weather 

condition listed in Table 1.  

An example of the colored haze-free image (a), its converted gray-level image (b), 

and its corresponding intensity of the estimated transmission map (c) are shown in  

Figure 6. 

 
 Haze-free Image (a), gray-level image (b), and intensity of estimated transmission map (c). 

Figure 6. Conversion to transmission map 

C. HOMOGENEOUS HAZY IMAGE SYNTHESIS 

From the haze-free image I(x), the transmission map t(x), and the atmospheric light 

intensity constant A, the synthetic hazy image J(x) can be rendered using the atmospheric 

scattering model directly as 

 ( ) ( ) ( ) 255*(1 ( )).J x I x t x t x= + −   

The atmospheric scattering model was implemented using MATLAB for rendering 

of synthetic hazy images, and code implementation details are presented in Appendix A 

(setHaze.m). Three different values for the extinction coefficient β were selected to render 

https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/sage_s10_5772_58674
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synthetic homogeneous hazy images under various constant haze densities, and resulting 

synthetic homogeneous images rendered using the setHaze.m function are shown in Figure 

7. By changing the β value, we can control the visibility distance of the objects in the image. 

Note that the haze effects look more natural in (b) than (c) and (d) when compared to real 

images in haze environment (e) and (f).  

  

 
Original haze-free image (a). Synthetic image under homogeneous hazy condition β=2 
(b). Synthetic image under homogeneous light fog condition β=4 (c). Synthetic image 
under homogeneous moderate fog condition β=8 (d). Singapore under haze on 23 Sep 
2019 (e) Source: [4]. Singapore under haze on 13 Sep 2019 (f) Source: [20]. 

Figure 7. Synthetic and real-life images comparison 

https://www.channelnewsasia.com/news/singapore/haze-singapore-visibility-reduced-air-quailty-monday-nea-11934886
https://www.asiaone.com/singapore/hazy-start-weekend-singapore-after-air-quality-nears-unhealthy-levels
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D. HETEROGENEOUS HAZY IMAGE SYNTHESIS 

To render a heterogeneous hazy image, the noise image n(x) is added to the 

synthetic image rendered with the atmospheric scattering model. According to [6, p. 6], the 

process of adding the heterogeneous haze to the synthetic image can be written as 

 ( ) ( ) * ( ),R x J x q n x= +   

where n(x) is the noise image, the parameter q is the gain coefficient to control the 

appearance of the noise image texture (q=0.15 in [6]), and R(x) represents the synthetic 

heterogeneous hazy image rendered. According to [6, p. 6], the hazy image J(x) (i.e., input 

for rendering of the heterogeneous hazy image), can be generated using the transmission 

map t(x), atmospheric light intensity constant A, and hazing effect adjustment value t0, as 

 0( ) ( ( ) )*max( ( ), ) .J x I x A t x t A= − +  

The Fractional Brownian Motion (FBM) technique can be used to generate the 

noise image n(x), required for heterogeneous hazy image synthesis. Referencing to [16], 

the tiles of noise images are randomly generated. These tiles of noise images can be 

concatenated to form a baseline noise image, and can be cropped to the required noise 

image size. Examples of the 256x256 tiles of noise images are illustrated in Figure 8. The 

concatenated 1024x2048 baseline noise image is shown in Figure 9. 

 

https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nullprogram.com/blog/2007/11/20/
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Figure 8. Tiles of noise images generated using FBM 

 
Figure 9. Baseline noise image (1024x2048) 

Required dimension 

for n(x): 600x800 
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The baseline noise image generated is cropped to the required dimensions (i.e., the 

size of the input image J(x)), prior to the heterogeneous hazy image synthesis processing. 

For example, the noise image n(x) will be cropped to the same dimensions as J(x) if J(x) 

has a dimension of 600x800. The MATLAB function FBM.m developed to generate the 

noise image n(x) of required dimension, is provided in Appendix A. The synthetic 

heterogeneous hazy image R(x) can then be rendered by adding the input image J(x) and 

the noise image n(x). 

An example showing the visual comparison for a haze-free image, synthetic 

homogeneous hazy image, and synthetic heterogeneous hazy image is shown in Figure 10. 

Note the texture of the FBM noise image is visually apparent on the heterogeneous hazy 

image rendered. 

 
Haze-free image (a), homogeneous hazy image (b), and heterogeneous hazy image (c). 

Figure 10. Haze texture of heterogeneous hazy image 
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E. SYNTHETIC HAZY IMAGE RENDERING CONCLUSION 

The rendering processes described in this chapter are used to generate the synthetic 

homogeneous and heterogeneous images to augment the size of a baseline dataset 

comprising haze-free ship images. The extinction coefficient was selected to be β=1.96 

(worst case of Grade 5) to simulate the haze condition previously experienced in the 

Southeast Asia region, for our ship classification study. The MATLAB code 

GenerateHazyImage.m, rendering of synthetic hazy images in this thesis, could also be 

used for future studies that require rendering of synthetic images at a specific haze density 

by varying the extinction coefficient value β corresponding to the required visibility ranges. 
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IV. FEATURES FOR SHIP CLASSIFICATION 

Coupled with the increased demand in autonomous systems and the availability of 

computing tools, reliable classification of our daily environment has been deemed as a 

potential technology enabler to enhance processes efficiency and minimize human errors 

[1], [2]. Ships are widely used for transportation, fishing and security in the oceans and 

seas. To potentially field autonomous capabilities in the waters, it is therefore of interest to 

embark on a study on ship classification using computer vision techniques and machine 

learning [3]. This chapter presents the use of the distribution of the detected Corner Points 

(CPs), and the extraction of higher order moments of the color planes of ship images, to 

extract class features for ship classification.  

A. DATASET 

The dataset used in this study comprises eight different classes of ships, namely 

container ships, cruises, cargo ships, tugs, yachts, sailing vessels, warships and fishing 

vessels. The baseline dataset with a total of 6,680 images was downloaded from [21]. The 

MATLAB function flip.m [22] was used to create horizontally flipped images from the 

baseline dataset. The homogeneous and heterogeneous hazy image synthesis processes 

described in Chapter III are also used to create synthetic images to augment the baseline 

dataset size.  

A ship image example from the dataset is shown in Figure 11. By using image 

processing techniques such as the flip.m function and the hazy image synthesis, the ship 

images dataset is expanded to 6 times of the baseline dataset to a total of 40,080 images. 

The dataset distribution is summarized in Table 2. 

http://www.shipspotting.com/
https://www.mathworks.com/help/matlab/ref/flip.html
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Figure 11. Example of ship images from dataset 

Table 3. Dataset distribution 

Classes Baseline Flipped Homogeneous Heterogeneous Total 
Container Ships 923 923 1,846 1,846 5,538 
Cruises 855 855 1,710 1,710 5,130 
Cargo Ships 931 931 1,862 1,862 5,586 
Tugs 693 693 1,386 1,386 4,158 
Yachts 800 800 1,600 1,600 4,800 
Sailing Vessels 810 810 1,620 1,620 4,860 
Warships 750 750 1,500 1,500 4,500 
Fishing Vessels 918 918 1,836 1,836 5,508 
Total 6,680 6,680 13,360 13,360 40,080 

 

B. SHIP IMAGES PRE-PROCESSING 

The dataset includes ship images of varying orientations, background, and distances 

from the observer. To identify the area of interest for our ship classification, pre-processing 

can be applied to detect the well-defined borders of the ship structure. We perform our ship 

structure detection by using the MATLAB function edge.m [23] available in the Image 

Processing Toolbox. The edge.m function receives as the input parameter a gray-level ship 

image, and outputs a binary image, where 1s (nonzero) indicate the edges detected, and 0s 

https://www.mathworks.com/help/images/ref/edge.html
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elsewhere. In Figure 12, we show an RGB image and the resulting output binary image 

with detected edges indicated in “white.”  

 
Figure 12. Detection of edges 

The boundaries of the ship structure can be estimated from the maximum and 

minimum location of the edges in the binary image, which is given by 

 

[ , ] ( ),
min( ),

max( ),
min( ),

max( ).

rows columns find binaryimage
TopRow rows
BottomRow rows
LeftColumn columns
RightColumn columns

=
=

=
=
=

  

Using the MATLAB function find.m, we can find the location of all the nonzero 

pixels in the binary image, and the boundaries (Top-Row, Bottom-Row, Left-Column, 

Right-Column) computed as described. Estimated boundaries of the detected ship structure 

presented in Figure 12, are shown in Figure 13. These estimated boundaries can then be 

used for further processing.  
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Figure 13. Estimated boundaries of ship structure 

C. DETECTION AND DISTRIBUTION OF CORNER POINTS  

After boundaries of the ship structure get estimated, features are extracted for 

classification processing. Our proposed feature extraction involves the detection of Corner 

Points (CPs) using the Kanade Lucas Tomasi (KLT) technique [24]. The KLT technique 

is a feature detection and tracking algorithm which first locates a CP by examining the 

eigenvalues of a 2x2 intensity gradient matrix within a defined neighbourhood, followed 

by pursuing the detected feature over time [25]. Given that the elements of the dataset of 

interest are still images, the application of KLT in this thesis only focuses on the CP 

detection (i.e., without application of tracking). The 2x2 gradient matrix G is given by [26] 

 
,

( , ) ( , ) ( , ) ( , ),T
xy xy

u v
G x y I u v I u v z x u y u= − −∑  

where the intensity gradient matrix of the gray-level image I is defined as  

 ( , ) ( , )( , ) ,T
xy

I x y I x yI x y
x y

δ δ
δ δ

=  
  

And the neighbourhood matrix Z is represented with 

 
1 ( , ) (0,0),

( , )
0 .

if x y Z
z x y

otherwise
∈

= 


 

http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.45.5770&rep=rep1&type=pdf
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/proquest1626434562
https://web.yonsei.ac.kr/jksuhr/articles/Kanade-Lucas-Tomasi%20Tracker.pdf
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A pictorial illustration of the 5x5 neighborhood matrix Z is shown in Figure 14, 

where Z(0,0) represents a 5x5 neighborhood matrix, centered at the origin on the x-y axis 

(i.e., at (x0=0, y0=0)).  

 
Figure 14. 5x5 neighborhood matrix Z 

A discrete approximation can be used to compute the intensity gradient for each 

image pixel [27]. Using the 3x3 Sobel operators in the x-direction and y-direction, the 2D 

impulse responses hx and hy can be used to efficiently compute the intensity gradient Ix and 

Iy for an image [28], as  

1 0 1 1 2 1
2 0 2 , 0 0 0 ,
1 0 1 1 0 1

x yh h
− − − −   
   = − =   
   − −   

 

( , ) 2( , ),

( , ) 2( , ),

x x

y y

I x yI conv I h
x

I x yI conv I h
y

δ
δ

δ
δ

= =

= =
 

where the operation conv2.m performs the two-dimensional convolution of the intensity 

levels matrix I with the impulse responses hx and hy    , respectively. 

https://nrsyed.com/2018/02/18/edge-detection-in-images-how-to-derive-the-sobel-operator/
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A corner of a 2D image is defined by a locality of intensity changes in both the x-

direction and y-direction, hence the presence of corner points in an image can be estimated 

when gradient changes are detected in both directions [29]. The 2x2 gradient matrix G can 

be represented by the 2D convolutions between the power of the intensity gradients [30, p. 

15], with 5x5 neighborhood matrix Z [31]. A 5x5 neighborhood matrix was chosen in this 

study because it can achieve a relatively smooth gradient detection [32] at the points of 

intensity changes, and it is not very sensitive to local noise within the neighbourhood [33]. 

2( ( , )* ( , ), ( , )) 2( ( , )* ( , ), ( , ))
( , ) ,

2( ( , )* ( , ), ( , )) 2( ( , )* ( , ), ( , ))
x x x y

x y y y

conv I x y I x y Z x y conv I x y I x y Z x y
G x y

conv I x y I x y Z x y conv I x y I x y Z x y
 

=  
 

 

with Z defined as 

 

1 1 1 1 1
1 1 1 1 1

.1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Z

 
 
 
 =
 
 
  

  

Using the minimum eigenvalue technique [24] [31], a CP can be said to be detected 

at location (x,y) when the eigenvalues of G are larger than a set threshold, where 

Λ=eigenvalues of G. The array containing the locations of the corner points CP_location 

can be computed using 

max min( ( , ) ),
_ ( , ).

if x y threhold
CP location x y

Λ ≥ Λ >
=

 

Detected CPs (in magenta) using the KLT for the different ship images are 

illustrated in Figure 15. The CPs distribution is observed to represents characteristics for 

each specific classes of ships from images contained in our dataset. The MATLAB function 

GenerateCornerPoints.m for detection of corner points, is provided in Appendix A. 

http://www.ijsrp.org/research-paper-0516/ijsrp-p5354.pdf
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/arxiv1808.08186
http://robots.stanford.edu/cs223b04/algo_tracking.pdf
https://www.researchgate.net/publication/223377841_An_automatic_optimum_kernel-size_selection_technique_for_edge_enhancement
https://www.researchgate.net/post/What_is_the_advantage_of_a_5x5_gradient_mask_edge_detector_over_a_3x3_detector
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.45.5770&rep=rep1&type=pdf
http://robots.stanford.edu/cs223b04/algo_tracking.pdf
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Figure 15. Detected CPs 

To quantitatively tabulate the distribution of CPs for the different classes of ships, 

the estimated boundaries of the ship structure can be sub-divided into R rows and C 

columns of partitions. The number of CPs located within each partition are counted, thus 

allowing us to quantitatively tabulate the CPs distribution. Estimated boundaries of the ship 

structure segmented into 6x8 partitions is illustrated for one ship image in Figure 16. The 

MATLAB function DetectShipAndPartition.m implemented for the estimation of ship 
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structure boundaries of an image, and sub-division of the estimated boundaries into R rows 

and C columns of partitions, is provided in Appendix A. 

 
Figure 16. CPs distribution (6x8 partitions) 

The count of CPs located within each partition C(r,c) is given by 

 
* , *

( 1)* , ( 1)*
( , ) _ ( , ),

r height c width

n r height m c width
C r c CP location n m

= − = −

= ∑   

where r and c represent the row and column positions, respectively, and parameters width 

and height are used to compute the number of CPs contained within a given partition. The 

array CP_location contains all the detected CPs locations (x,y) in the image. The sum of 

the number of CPs located within each partition is computed by the MATLAB function 

CountingCPs.m, code implementation details are provided in Appendix A. 
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D. IMAGE COLOR MOMENTS EXTRACTION 

Another feature uses the color moments computed on the estimated boundaries of 

the ship structures. We take advantage of the fact that ships of the same class predominantly 

have similar color coding. For example, warships are typically grey, while cruise ships are 

generally white. For this thesis, the higher order moments of the color planes are extracted 

as features. The RGB image is vectorized into individual Nx1 vectors, IR, IG, IB, where N 

is the product of the image dimension.  

The 1st moment is the mean color of the image µ, and defined as [34] 
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The 2nd moment is the standard deviation σ, and given as [35]  
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The 3rd moment is the skewness s, which represents the degree of asymmetry 

around the mean value, given as [36] 

https://www.mathworks.com/help/matlab/ref/mean.html
https://www.mathworks.com/help/matlab/ref/std.html?s_tid=srchtitle
https://www.mathworks.com/help/stats/skewness.html?s_tid=srchtitle
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The 4th moment is the kurtosis k which characterizes how outlier-prone the color of 

the image is, and can be computed as [37] 
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The MATLAB function ExtractColorMoments.m for computation of color 

moments information of a specified boundaries of an image, is provided in Appendix A.  

E. FEATURES SUMMARY 

Relevant features are selected as the count of CPs in image partitions and image 

color moments. From the count of CPs in each defined partitions of RxC dimension, we 

have RxC extracted class features, and there are 12 class features from the extraction of the 

image color moments. Therefore, we have (RxC+12) features to apply to the ship 

classification stage.  

 

 

https://www.mathworks.com/help/stats/kurtosis.html?s_tid=srchtitle
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V. RESULTS AND ANALYSIS 

In this chapter, we investigate ship classification under hazy conditions using 

Random Forests (RF) classification. Two models are considered: The first model is trained 

with the baseline dataset that is comprised of only the haze-free ship images. The second 

model is trained with our dataset augmented with synthetic ship images under haze 

conditions. The objective is to quantitatively compare the ship classification results 

between classifier models that were trained with /and without ship images under haze 

conditions. Classification rates are computed using a common test dataset consisting of 

flipped haze-free ship images and synthetic hazy ship images, during the testing  

phase. This chapter presents the ship classification performance results for these two 

considered models. 

A. TERMINOLOGY 

The terminologies used in this ship classification study includes:  

1. Training Sets, Test Set and Models 

The baseline images dataset consisting of 6,680 haze-free ship images, is termed 

the baseline training set. This baseline training set contains no prior information on ship 

images under haze conditions. The Baseline model is created and trained using the baseline 

training set. 

The synthetic images dataset (total: 33,400 images) includes flipped haze-free ships 

images, homogeneous hazy ship images and heterogeneous hazy ship images. The function 

cvpartition.m is used to randomly partition the synthetic images dataset into a synthetic 

training set and a test set with stratification. A 50/50 ratio is set for partitioning; thus we 

have a synthetic training set and a test set each consisting of 16,700 images, respectively. 

The Augmented model is created and trained using the combination of the baseline training 

set and synthetic training set, which consists of haze-free ship images and ship images 

under haze conditions.  
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This test set comprising flipped haze-free ship images and ship images under hazy 

conditions will be used for the testing of the Baseline model and Augmented model.  

A graphical depiction of the training sets, test set and the models involved, is shown in 

Figure 17. 

 
Figure 17. Training sets, test set, and models 

2. Class Features  

Three different configurations of class features corresponding to three different 

image partitions (i.e., 4x3, 6x8, and 8x8), are considered in our study to get CPs features. 

In addition, we extract 12 class features from the image higher order color moments (CMs). 

The summary of class features for the different configurations is shown in Figure 18. 
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Figure 18. Class features configurations 

3. Classification Rate 

The success rate of correct classification (or classification rate), used to evaluate 

classifier performance, is defined as the average percentages of correctly classified 

observations for all classes. A confusion matrix example that displays the total number of 

observations in each cell is shown in Figure 19. The rows of the confusion matrix 

correspond to the true class, and the columns correspond to the predicted class. Diagonal 

and off-diagonal cells correspond to correctly and incorrectly classified observations, 

respectively. The row-normalized row summary displays the percentages of correctly  

(i.e., column in blue) and incorrectly (i.e., column in beige) classified observations for each 

true class. The classification rate of the example in Figure 18 is therefore the average 

percentages of 87.9%, 82.4% and 80.9% (i.e., equals to 83.73%).  
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Figure 19. Confusion matrix and success rate example 

B. RANDOM FORESTS CLASSIFICATION 

Random forests (RF) is a machine learning algorithm which uses ensemble (or 

forest) of decision trees for classification and regression [38]. In random forests, the 

collection of predictor variables is randomly restricted in each split to form diverse trees 

(i.e., the forests). The maximum number of random splits, termed NumMaxSplits, and the 

total number of trees, termed NumTrees, are parameters of random forests that affect  

classification performance [39]. We thus examine classification rates obtained for various 

maximum numbers of random splits and various total numbers of trees to derive the 

optimum parameters for final testing. The mathematical representation of the RF 

classification is provided in Appendix B. 

1. Optimum Parameters 

For training, we used the MATLAB function fitcensemble.m to create the Baseline 

and Augmented models. These two models were then used with the function predict.m to 

compute ship classification rates for the test set. We compare performance rates of 

predictions returned by the trained models based on the three different configurations of 

class features. We varied the maximum number of splits NumMaxSplits using the values 

in the sequence {30,31,...,3m}. m is such that 3m is no greater than n – 1 [40], where n is 

equal to the number of observations in the augmented training set; that is, n equals to 

https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/cdi_liege_orbi_oai_orbi_ulg_ac_be_2268_170309
https://search-proquest-com.libproxy.nps.edu/docview/614511298?rfr_id=info%3Axri%2Fsid%3Aprimo#s10
https://www.mathworks.com/help/stats/fitcensemble.html
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(6,680+16,700) 23,380. The values of NumMaxSplits hence consists of 

{1,3,9,27,81,243,729,2187,6561,19683}.  

Due to time constraint, only three runs were computed for each configuration. The 

average classifications rates versus NumMaxSplits is shown in Figure 20, and the detailed 

performance results are provided in Appendix C. We observed that the classification rates 

remained relatively unchanged at values of NumMaxSplits greater than 2,000 and 6,000 for 

the Baseline model and Augmented model, respectively. We also noted that the 4x3 

Augmented model has the best performance among the rest, with an average classification 

rate of 69.05%. 

The total number of trees also affects the performance of the random forests 

algorithm, thus we also varied the total numbers of trees NumTrees to examine the models 

performances of the three different image partition configurations. A typical total number 

of trees to be generated in random forests algorithm ranges under 300 [41]. We varied the 

NumTrees to range from 10 to 500 in this study. The classification rates of correct 

classifications versus NumTrees is shown in Figure 21. We observed that classification 

rates remained relatively unchanged at values of NumTrees greater than 200 for all cases.  

The 4x3 Augmented model was also observed to emerge as the best performer 

among the rest, consistent with the performance seen in Figure 20. Note the performance 

of the Baseline models are largely similar for the three configurations (i.e., 4x3, 6x8, 8x8). 

From the findings, we chose the 4x3 configuration with the maximum number of splits 

NumMaxSplits equals to 6,561, and total number of trees NumTrees equals to 200, as the 

optimum parameters for another test composing 10 independent runs.  

In addition, we observed that the image partition configuration which has the least 

segments in our tests, provided the best classification rates. We hypothesized that fewer 

segments in the image partitions may be less sensitive to orientation changes of images, 

hence producing better classification rates. Considering this behavior, we investigated the 

2x2 image partition configuration, which has even fewer segments than the 4x3 

configuration, to determine if the classification performance peaks somewhere near our 

selected 4x3 configuration.   

https://www.researchgate.net/post/How_to_determine_the_number_of_trees_to_be_generated_in_Random_Forest_algorithm
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Figure 20. Classification rates vs. number of maximum splits 

 
Figure 21. Classification rates vs. number of trees 
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2. Test Results 

A separate test consisting of 10 independent runs was conducted using the 4x3 and 

2x2 configurations with optimum parameters listed in Table 4.  

Table 4. Optimum parameters 

Parameters Configuration 
4x3 2x2 

NumMaxSplits 6,561 6,561 
NumTrees 200 200 

 
The performance of the two configurations were computed over 10 independent 

runs (i.e., training set and test set are independently generated for each run), and we 

observed that the Augmented model for the 4x3 and 2x2 configurations achieved an average 

classification rates at about 70% and 65%, respectively, and the Baseline model only 

achieved at about 32% and 27% , respectively, listed in Table 5. The detailed results are 

provided in Appendix C. Note the close to 40% improvement in classification rate 

performance between the Baseline model and the Augmented model for both the 4x3 and 

2x2 configurations, tabulated in Table 5. This improvement demonstrated the ability of 

using augmented synthetic images to improve ship classification rate performance 

Since both the 4x3 Augmented and 2x2 Augmented attained better classification rate 

as compared with the 6x8 Augmented and 8x8 Augmented, we can thus infer that fewer 

segments used in the image partitioning stage improves classification rates. Collective 

results from Figure 20, Figure 21 and Table 5 showed that the 4x3 configuration is still a 

better performer than the 2x2 configuration. These results indicate that the optimal number 

of segments in the image partitions is closer to the 4x3 configuration. 

Table 5. Classification rates results 

Run Classification Rate 
4x3 Baseline 4x3 Augmented 2x2 Baseline 2x2 Augmented 

Average 32.4097 69.7295 27.4707 65.3488 
95% C.I. Lower 32.3124 69.6268 27.3832 65.2369 
95% C.I. Upper 32.5190 69.8147 27.5597 65.4738 
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3. Classifier Strength 

We observed that Classes 1, 3, and 6 (i.e., container ships, cargo ships, and sailing 

vessels) have the highest classification rates for the 4x3 and 2x2 Augmented models, as 

illustrated by the confusion matrices example shown in Figure 22. The confusion matrices 

generated from all tests are provided in Appendix C. Ten independent runs of testing for 

these three ship classes using the 4x3 Augmented (best performing) model attained an 

average classification rate of about 82%, as listed in Table 6.  

 
Figure 22. Confusion matrices example 

Table 6. Classification rates for classes 1,3 and 6 (10 runs) 

Classification Rate (Classes: 1, 3, 6 Only) 
4x3 Augmented 
Class 6 3 1 
Average Per Class 82.5340 82.0235 81.9181 
Overall Average 82.1586 
95% C.I. Lower 82.0702 
95% C.I. Upper 82.2506 

 

C. RESULTS SUMMARY 

The 4x3 Augmented configuration was identified to be the best performing 

configuration in our test, with classification rates performance at close to 70% for eight 

ship classes, and at over 80% accuracy for the three ships classes (i.e., container ships, 

cargo ships, and sailing vessels). 
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VI. CONCLUSIONS AND FUTURE WORK 

This study considered the ship classification problem under hazy conditions. The 

lack of readily available real-life data calls for the use of synthetic hazy images to examine 

the impact of haze on ship classification. This thesis implements the atmospheric scattering 

model to generate a dataset of synthetic hazy images to augment the original dataset 

comprising haze-free ship images. Next, it proposes using (1) the count of CPs located 

within the image partitions; and (2) the higher order color moments information, as class 

features for ship classification. Finally, it demonstrates the ability of using a dataset 

augmented with synthetic hazy ship images to improve ship classification rate performance 

using RF classification.  

Results show that (1) the average ship classification rate is about 40% higher when 

the model is trained using a dataset augmented with synthetic hazy ship images; and (2) 

the classifier can classify for ship classes such as container ships, cargo ships, and sailing 

vessels, with an 80% average accuracy rates. 

Considerations for future work could include collecting ship images under real hazy 

conditions and validating results obtained in this study using the collected field data. Future 

improvements could also include different class features such as characterization of the 

ship images into its two-dimensional power spectrum representation, which could 

potentially improve classification rates for other ship classes. 

 



40 

THIS PAGE INTENTIONALLY LEFT BLANK 



41 

APPENDIX A. MATLAB CODES 

A. TRANSMISSION.M 

% Codes in this function are adapted from Pseudo Codes found in 

% [15] F. Guo, J. Tang, and H. Peng, “A Markov Random Field Model 

% for the Restoration of Foggy Images,” International Journal of 

% Advanced Robotic Systems, vol. 11, no. 6, p. 92–, 

% Jun. 2014, doi: 10.5772/58674. 

 

% NOTE: This function requires the GCO-v3.0 library, 

% Developed by O.Veksler and A. Delong, and 

% Source at https://vision.cs.uwaterloo.ca/code/ 

 

% Input: RGB image x 

% Output: Returns a column vector of all labels. 

 

function  Label = transmission(x) 

 

    X = rgb2gray(x); 

    g = 1; 

 

    [M,N] = size(X); 

    NumSites = N*M; 

    NumLabels = 32; 

 

%     figure(3*(cnt-1)+1); 

%     imshow(x); 

%     text = strcat(‘Original Clear Image (‘,num2str(M),’x’, num2str(N),’)’); 

%     title(text); 

 

    Data = reshape(X,[],1); 

 

    h = GCO_Create(NumSites,NumLabels); 

 

    % Compute Data Term 

    for i=1:NumLabels 

        for j = 1:NumSites 

            L(i)= (i-1)/(NumLabels-1)*255; 

            DataTerm(i,j) = abs(Data(j) - L(i)); 

        end 

    end 

 

    GCO_SetDataCost(h, DataTerm); 

 

    % Compute Smooth Term 

    for i=1:NumLabels 

        for j = 1:NumLabels 

            SmoothTerm(i,j) = g*abs((i)-j); 

        end 
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    end 

 

    GCO_SetSmoothCost(h,SmoothTerm); 

 

    GCO_Expansion(h); 

 

    Label = GCO_GetLabeling(h); 

 

    % Show Initial Transmission map 

%     t = 255 - (Label - 1)*8; 

%     t = uint8(t); 

%     I = reshape(t,M,N); 

 

%     imshow(I); 

%     text = strcat(‘Generated Depth Map (‘,num2str(M),’x’, num2str(N),’)’); 

%     title(text); 

end 

B. SETHAZE.M 

%                       Date:26-08-2020(DD-MM-YYYY)                    % 

% This function is written by 

% TANG JUN WEN (Naval Postgraduate School. CA, Monterey, USA) 

% and this is free to use. email: junwen.tang.sn@nps.edu 

% Using Atmospheric Scattering Model to Set Haze in Synthetic Image 

 

function [HazyImage, J] = setHaze(x, tx, beta, Lamda, h, nx) 

 

% Input: 

% Haze-free RGB image, x 

% Label values in transmission map, tx 

% Extinction coefficient, beta 

% Wavelength, Lamda, equals 1 for hazy and foggy scenes 

% Flag, h equals 0 for homogeneous, h = 1 for heterogeneous 

% FBM noise image, nx 

 

% Output: 

% Rendered RGB synthetic hazy image, HazyImage 

% Single dimensional vector of the reshaped RGB image, J 

 

    Airlight = 255; % Global airlight coefficients 

    lamda = Lamda; 

 

    hetereogenous = h; % 0 for homogenous, 1 for hetereogenous 

 

    X = double(reshape(x,[],3)); % reshape into 3 vectors, into R,G,B 

    tx = exp(-tx*(beta)*Lamda); 

 

    % Constant 

    t0 = 0.1; 
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    if hetereogenous == 1 

        %tx_lamda = exp(-tx*beta*lamda); 

        % Heterogeneous Hazy Image 

        max_tx = max(tx,t0); 

        J = (X - Airlight).*(max_tx)+ Airlight; 

 

        H = J + nx; 

    else 

    % Homogeneous Hazy Image 

        J = X.*tx; 

        H = J + Airlight*(1-tx); 

    end 

 

    H = uint8(round(H,0)); 

    [M,N,D] = size(x); 

 

    % Reshape the RGB vectors into a RGB image of original dimension 

    HazyImage = reshape(H,M,N,D); 

 

    % Show Hazy Image 

%     imshow(HazyImage); 

% 

%     if hetereogenous == 1 

%         text = strcat(‘Heterogenous Synthetic Hazy Image: Beta=‘,num2str(beta),... 

%             ‘, Lamda=‘, num2str(lamda)); 

%     else 

%         text = strcat(‘Homogenous Synthetic Hazy Image: Beta=‘,num2str(beta),... 

%             ‘, Lamda=‘, num2str(lamda)); 

%     end 

%     title(text); 

end 

C. FBM.M 

%                       Date:26-08-2020(DD-MM-YYYY)                    % 

% This function is written by 

% TANG JUN WEN (Naval Postgraduate School. CA, Monterey, USA) 

% and this is free to use. email: junwen.tang.sn@nps.edu 

% Generate Fractional Brown Motion (FBM) Noise Image 

 

function image = FBM(N,M) 

 

% Input: Required dimensions of FBM noise image, NxM 

% Output: Returns FBM noise image of NxM dimension, image 

 

% Dimenision of each FBM noise tiles: 256x256 

n = 256; 

m = 256; 

im = zeros(n, m); 
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% Generate FBM tiles with 256 x 256 dimension 

im1 = FBM_noise(im); 

im2 = FBM_noise(im); 

im3 = FBM_noise(im); 

im4 = FBM_noise(im); 

im5 = FBM_noise(im); 

im6 = FBM_noise(im); 

im7 = FBM_noise(im); 

im8 = FBM_noise(im); 

im9 = FBM_noise(im); 

im10 = FBM_noise(im); 

 

% Concatenate into 512 x 256 

image1a = cat(1,im1,im2); 

image2a = cat(1,im3,im4); 

image1b = cat(1,im5,im6); 

image2b = cat(1,im7,im8); 

image3a = cat(1,im1’,im10’); 

image3b = cat(1,im3’,im8’); 

image4a = cat(1,im2’,im7’); 

image4b = cat(1,im4’,im6’); 

image5a = cat(1,im9,im10); 

image5b = cat(1,im5’,im9’); 

 

% Concatenate into 1024 x 256 

image1 = cat(1,image2a,image1b); 

image2 = cat(1,image1a,image2b); 

image3 = cat(1,image3a,image4b); 

image4 = cat(1,image4a,image5b); 

image5 = cat(1,image2a,image5a); 

image6 = cat(1,image1a,image4b); 

image7 = cat(1,image5a,image5b); 

image8 = cat(1,image2b,image3b); 

 

% Concatenate into 1024 x 2048 baseline FBM noise image 

I = cat(2,image1,image2,image3,image4,image5,image6,image7,image8); 

image = imgaussfilt(I, 5); 

 

% Crop FBM baseline noise image to required dimension of NxM 

image = image(1:N,1:M); % Output FBM Noise image to required dimensions 

end 

D. FBM_NOISE.M 

% Codes in this function are adapted from 

% [16] “Noise Fractals and Clouds « null program.” 
% https://nullprogram.com/blog/2007/11/20/ (accessed Jul. 25, 2020). 

 

% Generate FBM image 



45 

function im = FBM_noise(im) 

 

    [n, m] = size(im); 

    i = 0; 

    w = sqrt(n*m); 

 

    while w > 3 

        i = i + 1; 

        d = interp2(randn(n, m), i-1, ‘spline’); 

        im = im + i * d(1:n, 1:m); 

        w = w - ceil(w/2 - 1); 

    end 

end 

E. GENERATEHAZYIMAGE.M 

%                       Date:26-08-2020(DD-MM-YYYY)                    % 

% This function is written by 

% TANG JUN WEN (Naval Postgraduate School. CA, Monterey, USA) 

% and this is free to use. email: junwen.tang.sn@nps.edu 

% Generate Homogeneous and Heterogeneous Hazy Images 

 

clc; 

FBM_image = FBM(1024,2048); % Generate Baseline FBM Noise Image once 

 

for class_num = 1:8 

close all; 

clearvars -except class_num FBM_image; 

 

folder = ‘C:\Users\admin\Documents\MATLAB\Thesis\Random Forest\Ship Images Database 

Flipped & Hazy\’; 

 

    switch class_num 

        case 1 

            subfolder = ‘W0_1’; 

            class_name = ‘Container Ship’; 

        case 2 

            subfolder = ‘W2_1’; 

            class_name = ‘Cruise’; 

        case 3 

            subfolder = ‘W4_1’; 

            class_name = ‘Roro Cargo’; 

        case 4 

            subfolder = ‘W5_1’; 

            class_name = ‘Tug’; 

        case 5 

            subfolder = ‘W8_1’; 

            class_name = ‘Yacht’; 

        case 6 

            subfolder = ‘W9_1’; 
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            class_name = ‘Sailing Vessel’; 

        case 7 

            subfolder = ‘W17_1’; 

            class_name = ‘Warship’; 

        case 8 

            subfolder = ‘W22_1’; 

            class_name = ‘Fishing Vessel’; 

    end 

 

    folder = strcat(folder,subfolder,’\’); 

 

    listing = dir (folder); 

    ll = length(listing); 

    start = 1; 

    limit = ll; 

 

    for ii = start:limit 

        f = listing(ii).name; 

        [~,filename,ext] = fileparts(f); 

        if ext == ‘.jpg’ 

 

            file_str = strcat(folder,f); 

            x = imread(file_str); 

            if ndims(x) == 3 % check if image is RGB, omit if its not 

 

                % Generate FBM Noise Image 

                [n,m,~] = size(x); 

                FBM_noise = FBM_image(1:m,1:n); 

                k = 0.15; 

                nx = k* double(reshape(FBM_noise,[],1)); 

 

                % Generate transmission map & labels 

                Label = transmission(x); 

                tx = (double(Label)) / 32; 

 

                beta = 1.96; % extinction coefficient = 1.96 for visibility distance ~2-

4km 

                lamda = 1; 

 

                % Generate homogenenous image 

                hetereogenous = 0; % 0 for homogenous 

                [HazyImage, ~] = setHaze(x,tx,beta,lamda,cnt,hetereogenous, nx); 

                savefilename = strcat(folder,filename,’_homo’,ext); 

                imwrite(HazyImage,savefilename); % Saving hazy images 

 

                % Generate hetereogenous image 

                hetereogenous = 1; %1 for hetereogenous 

                [HazyImage, ~] = setHaze(x,tx,beta,lamda,cnt,hetereogenous, nx); 

 

                savefilename = strcat(folder,filename,’_heter’,ext); 

                imwrite(HazyImage,savefilename); % Saving hazy images 
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                clear x HazyImage tx Label FBM_noise nx; 

                clc; 

            end 

        end 

    end 

    fprintf(‘Ended, Class_Num:%d\n’,class_num); 

end 

F. DETECTSHIPANDPARTITION.M 

%                       Date:26-08-2020(DD-MM-YYYY)                    % 

% This function is written by 

% TANG JUN WEN (Naval Postgraduate School. CA, Monterey, USA) 

% and this is free to use. email: junwen.tang.sn@nps.edu 

% Detect Ship Structure Boundaries & Perform Image Partitioning 

 

% Inputs: 

% Original RGB Image = Original_Image 

% Intended Number of Horizontal Segments = NumRowSegments 

% Intended Number of Vertical Segments = NumColSegments 

 

% Outputs: 

% Cropped Image with borders & text at bottom of image = I 

% Binary Image of Cropped Image = binaryImage 

% Points depicting area of detected ship = FourCorners 

% FourCorners = [topRow, bottomRow, leftColumn, rightColumn] 

% row_lines = partition horizontal lines indices 

% col_lines = partition vertical lines indices 

 

function [I, binaryImage, FourCorners, row_lines, col_lines] = ... 

    DetectShipAndPartition (Original_Image, NumRowSegments, NumColSegments) 

 

    conn = 80; % 80 pixels, for exclusion of perimeters with less than 80 pixels of info 

    N = NumRowSegments; % Number of Horizontal partition, 3 

    M = NumColSegments; % Number of Vertical partition, 4 

    crop = 10; % pixels from border to crop, to remove unnecessary borders 

 

    [h,w,~]=size(Original_Image); % w = width, h = height 

    crop_rect = [crop crop w-2*crop h-2*crop]; 

    I = imcrop(Original_Image,crop_rect); 

 

    results = ocr(I); 

    %wording = results.WordBoundingBoxes(2:end,:); 

    wording = results.WordBoundingBoxes; 

    % Cropping words portion at bottom of image 

    if ~isnan(wording) 

       %fprintf(‘Wordings in Image\n’); 

       [h1,w1,~]=size(I); % w = width, h = height 

 

       wording_list = []; 
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       [t,~] = size(wording); 

       for k = 1:t 

           % Omit cropping if the wording is at first row & wording occurs 

           % above 20% from image bottom 

           twentypercent = h1 - floor(0.2*h1); 

           if ((wording(k,2) ~= 1) && (wording(k,2)> twentypercent)) 

               wording_list = [wording_list;wording(k,:)]; 

           end 

       end 

       if ~isnan(wording_list) % check if there are wordings for cropping 

           word_vert = min(wording_list(:,2)); 

           word_crop_rect = [1 1 w1 word_vert]; 

           I = imcrop(I,word_crop_rect); 

       end 

    end 

 

    img = rgb2gray(I); 

    BW = edge(img,’Sobel’); % locating edges / lines in gray image 

    BW_out = bwareaopen(imfill(BW,’holes’),conn); % fill areas with more than “Conn” of 

pixels 

 

    % Finding all the points in images in ‘white’, i.e., lines/edges 

    binaryImage = BW_out; 

    [rows, columns] = find(binaryImage); 

    topRow = min(rows); % Min X-value 

    bottomRow = max(rows); % Max X-value 

    leftColumn = min(columns);% Min Y-value 

    rightColumn = max(columns); % Max Y-value 

 

    % Output 

    FourCorners = [topRow, bottomRow, leftColumn, rightColumn]; 

 

    % Partition Detected Area in Image into N rows x M coloumns 

    col_dimension = bottomRow - topRow; 

    row_dimension = rightColumn - leftColumn; 

    horizontal_part_width = col_dimension / N; 

    vertical_part_width = row_dimension / M; 

    for r = 1:N-1 

       row_lines(r) = topRow +  r*horizontal_part_width; 

    end 

 

    for c = 1:M-1 

       col_lines(c) = leftColumn +  c*vertical_part_width; 

    end 

 

end 
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G. GENERATECORNERPOINTS.M 

%                       Date:26-08-2020(DD-MM-YYYY)                    % 

% This function is written by 

% TANG JUN WEN (Naval Postgraduate School. CA, Monterey, USA) 

% and this is free to use. email: junwen.tang.sn@nps.edu 

% Generate corner points in image. 

 

% Input: RGB Image, x 

% Output: Image with Corner Points(CPs) inserted, Image_CP 

% Output: Computed Corner Points (CPs) in X-Y coordinates. 

 

function [Image_CP,points] = GenerateCornerPoints(x) 

 

    I = rgb2gray(x); 

 

    hx = [-1 0 1; 

          -2 0 2; 

          -1 0 1]; 

 

    hy = [-1 -2 -1; 

           0  0  0; 

           1  2  1]; 

 

    [N,M] = size(I); 

 

    Ix = conv2(I,hx); 

    Ix = Ix(2:N+1,2:M+1); 

 

    Iy = conv2(I,hy); 

    Iy = Iy(2:N+1,2:M+1); 

 

    W = [1 1 1 1 1; 

         1 1 1 1 1; 

         1 1 1 1 1; 

         1 1 1 1 1; 

         1 1 1 1 1]; 

 

    Gx = conv2(Ix.*Ix, W); 

    Gy = conv2(Iy.*Iy, W); 

    Gxy = conv2(Ix.*Iy, W); 

 

    Gx = Gx(3:N+2, 3:M+2); 

    Gy = Gy(3:N+2, 3:M+2); 

    Gxy = Gxy(3:N+2, 3:M+2); 

 

    for n1 = 1:N 

        for n2 = 1:M 

            G = [Gx(n1,n2)  Gxy(n1,n2); 

                 Gxy(n1,n2) Gy(n1,n2)]; 

            lamda(n1,n2) = min(eig(G)); 
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        end 

    end 

 

    % Set threshold to be 15% of the maximum value from the min eigenvalues 

    max_lamda = max(max(lamda)); 

    threshold = max_lamda*0.15; 

 

    % Locate Corner Points 

    points = []; 

    for n1 = 1:N 

        for n2 = 1:M 

            if (lamda(n1,n2)>threshold) && (lamda(n1,n2)<=max_lamda) 

                CP = [n2, n1]; 

                points = [points; CP]; 

            end 

        end 

    end 

 

    % Show Images 

    Image_CP = insertMarker(x, points,’x’,’color’,’m’,’size’,1); 

 

end 

H. COUNTINGCPS.M 

%                       Date:26-08-2020(DD-MM-YYYY)                    % 

% This function is written by 

% TANG JUN WEN (Naval Postgraduate School. CA, Monterey, USA) 

% and this is free to use. email: junwen.tang.sn@nps.edu 

% Count CPs located within partitions 

 

%Inputs: 

% CPs = points 

% Detected area = topRow, bottomRow, leftColumn, rightColumn 

% Partition Rows = row_lines 

% Partition columns = col_lines 

 

%Output: Struct data 

% data.CPs_partition = [topleft(x,y),bottomright(x,y)] of 

% each partition (in sequence from left-to-right, then top-to-bottom) 

% data.CPs_index = all indices of CPs within each corresponding partition 

% data.CPs_count = number of CPs in each corresponding partition 

 

function data = CountingCPs... 

    (points,topRow,bottomRow,leftColumn,rightColumn,... 

    row_lines,col_lines) 

 

    % Counting CPs 

    row_rng = [topRow, row_lines, bottomRow]; % Y-values 

    col_rng = [leftColumn, col_lines, rightColumn]; % X-values 
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    partition_array = []; 

 

    % Building from top to bottom 

    for n = 1:length(row_rng)-1 

        % Building from left to right 

        for m = 1:length(col_rng)-1 

            % Coordinates of topleft(x,y) & bottomright(x,y) of partition 

            partition = [col_rng(m),row_rng(n),col_rng(m+1),row_rng(n+1)]; 

            partition_array = [partition_array;partition]; 

        end 

    end 

 

    [K,~] = size(partition_array); 

    [P,~] = size(points); 

 

    for k = 1:K % check for all partitions 

        CPs_index = []; 

        data(k).CPs_partition = partition_array(k,:); 

        for p = 1:P % running through all CPs 

            % current CP 

            coord = [points(p,1),points(p,2)]; 

            topleft = [partition_array(k,1),partition_array(k,2)]; 

            bottomright = [partition_array(k,3),partition_array(k,4)]; 

            % checking if current CP is within current partition 

            if ( (coord(1)>=topleft(1)) && (coord(2)>=topleft(2))... 

                 && (coord(1)<bottomright(1)) && (coord(2)<bottomright(2)) ) 

                CPs_index = [CPs_index,p]; 

            end 

        end 

        data(k).CPs_index = CPs_index; 

        data(k).CPs_count = length(CPs_index); 

    end 

end 

I. EXTRACTCOLORMOMENTS.M 

%                       Date:26-08-2020(DD-MM-YYYY)                    % 

% This function is written by 

% TANG JUN WEN (Naval Postgraduate School. CA, Monterey, USA) 

% and this is free to use. email: junwen.tang.sn@nps.edu 

% Generate corner points in image. 

% Extract Higher Order Color Moments of Ship Structure 

 

%Inputs: 

% Original Image 

% Detected area = topRow, bottomRow, leftColumn, rightColumn 

% Partition Rows = row_lines 

% Partition columns = col_lines 

 

%Output: Struct colorMoments 
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% colorMoments.mean = [Mean_R, Mean_G, Mean_B] 

% colorMoments.var = [Variance_R, Variance_G, Variance_B] 

% colorMoments.skewness = [Skewness_R, Skewness_G, Skewness_B] 

% colorMoments.kurtosis = [Kurtosis_R, Kurtosis_G, Kurtosis_B] 

 

function colorMoments = ExtractColorMoments (Original_Image, topRow, bottomRow, 

leftColumn, rightColumn, row_lines, col_lines) 

 

    I = Original_Image; 

 

    r1 = topRow; 

    r2 = bottomRow; 

    c1 = leftColumn; 

    c2 = rightColumn; 

 

    partition_image = I(r1:r2,c1:c2,:); 

%     figure; 

%     imshow(partition_image); 

 

    block = reshape(partition_image,[],3); 

 

    block_double = double(block); 

 

    % Mean values for RGB 

    currentMean = mean(block_double); 

 

    % Variance values for RGB 

    currentVar = std(block_double); 

 

    % Skewness values for RBG 

    currentSkewness = skewness(block_double,1); 

 

    % Bias corrected values for RGB 

    currentKurtosis = kurtosis(block_double,0); 

 

    colorMoments.mean = currentMean; 

    colorMoments.var = currentVar; 

    colorMoments.skewness = currentSkewness; 

    colorMoments.kurtosis = currentKurtosis; 

 

end 

J. RF50MEAN.M 

%                       Date:26-08-2020(DD-MM-YYYY)                    % 

% This codes are written by 

% TANG JUN WEN (Naval Postgraduate School. CA, Monterey, USA) 

% and this is free to use. email: junwen.tang.sn@nps.edu 

% Compute classification rates for 10 independent runs and 

% calculates the average classification rates and 95% confidence level 
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% for 4x3 configuration models 

 

clear all; 

clc; 

 

Baseline_Success = []; 

Augmented_Success = []; 

 

% Collect success rates for 10 runs 

for rr = 1:10 

    [meanSuccess, meanSuccess2] = RF50Mean(); 

    Baseline_Success = [Baseline_Success;meanSuccess]; 

    Augmented_Success = [Augmented_Success; meanSuccess2]; 

end 

 

% Average of 10 runs 

meanBaseline_Success = mean(Baseline_Success) 

meanAugmented_Success = mean(Augmented_Success) 

 

% 95% Confidence Level 

ci_aug = bootci(2000,@mean,Augmented_Success) 

ci_base = bootci(2000,@mean,Baseline_Success) 

 

% 

function [meanSuccess, meanSuccess2] = RF50Mean() 

 

Percent=‘50%: ‘; 

N = 4; M = 3; 

load(‘C:\Users\admin\Documents\MATLAB\Thesis\Random 

Forest\Workspace\N4M3_Baseline_Only_6680.mat’) 

load(‘C:\Users\admin\Documents\MATLAB\Thesis\Random 

Forest\Workspace\N4M3_Flipped_Hazy_Only_33400.mat’) 

 

% 

Xtrain_Baseline = A; 

Ytrain_Baseline = B; 

 

cvpart50 = cvpartition(HB,’holdout’,0.5); 

Xtrain_50 = HA(training(cvpart50),:); 

Ytrain_50 = HB(training(cvpart50),:); 

 

Xtrain_New = [Xtrain_Baseline;Xtrain_50]; 

Ytrain_New = [Ytrain_Baseline;Ytrain_50]; 

 

Xtest_50 = HA(test(cvpart50),:); 

Ytest_50 = HB(test(cvpart50),:); 

 

% N4M3 Predictor Estimate 

 

rng(1); % For reproducibility 

t = templateTree(‘MaxNumSplits’,6561); 

Mdl_50 = fitcensemble(Xtrain_New,Ytrain_New,’Method’,’Bag’,... 



54 

                  ‘NumLearningCycles’,200,’Learners’,t); 

 

Mdl_Baseline = fitcensemble(Xtrain_Baseline,Ytrain_Baseline,’Method’,’Bag’,... 

                  ‘NumLearningCycles’,200,’Learners’,t); 

 

% N4M3 Confusion Chart for Baseline Model 

figure(); 

Percent=‘50%’; 

Ytest_pred_Baseline = predict(Mdl_Baseline,Xtest_50); 

cm_Baseline = confusionchart(Ytest_50,Ytest_pred_Baseline,’RowSummary’,’row-

normalized’,’ColumnSummary’,’column-normalized’); 

cm =cm_Baseline.NormalizedValues; 

diagM = diag(cm); 

rowSum = sum(cm,2); 

rowpercent = diagM./rowSum; 

meanSuccess = mean(rowpercent)*100; 

disp = strcat(Percent,’RF Baseline Model: Partitions 

(‘,num2str(N),’x’,num2str(M),’),’ ,’MaxSplits:6561, Mean 

Success:’,num2str(meanSuccess),’%’); 

title(disp); 

 

% Confusion Chart for Augment Model 

figure(); 

Ytest_pred_New = predict(Mdl_50,Xtest_50); 

cm_New = confusionchart(Ytest_50,Ytest_pred_New,’RowSummary’,’row-

normalized’,’ColumnSummary’,’column-normalized’); 

cm2 =cm_New.NormalizedValues; 

diagM2 = diag(cm2); 

rowSum2 = sum(cm2,2); 

rowpercent2 = diagM2./rowSum2; 

meanSuccess2 = mean(rowpercent2)*100; 

disp = strcat(Percent,’RF Augmented Model: Partitions (‘,num2str(N),’x’,num2str(M),’), ‘, 

‘MaxSplits:6561, Mean Success:’,num2str(meanSuccess2),’%’); 

title(disp); 

 

 

% Sort Classification Rates in Confusion Matrix in Decending Order 

cm_Baseline.Normalization = ‘row-normalized’; 

sortClasses(cm_Baseline,’descending-diagonal’); 

cm_Baseline.Normalization = ‘absolute’; 

 

cm_New.Normalization = ‘row-normalized’; 

sortClasses(cm_New,’descending-diagonal’); 

cm_New.Normalization = ‘absolute’; 

 

% Clear Unwanted Variables for Storage 

clearvars -except meanSuccess meanSuccess2; 

 

end 
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APPENDIX B. RANDOM FORESTS REPRESENTATION 

This appendix shows the mathematical representation of the random forests 

classification. For further details on random forests algorithm, refer to [42]. 

A. VARIABLES 

The following variables are used: 

• Dn is the training set, where Dn = {(X1,Y1),…,(Xn,Yn)}, 

• n is the size of the training set, 

• X is the input random vector, 

• Y is the labels vector, 

• mn is the classifier trained with Dn, 

• M is the number of trees, 

• Θ is a distribution of random vector 

• θj is a vector of randomly drawn components from Θ with replacement,  

• j is an integer, where j=1,2,…,M, 

B. CLASSIFICATION 

The random forests classifier is acquired through a majority vote, and is given by 

[42, p. 9] 
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APPENDIX C. TEST RESULTS 

This appendix shows the details of our test results. 

A. CLASSIFICATION RATES VS. MAXIMUM NUMBER OF SPLITS 

Classification rates results for various values of NumMaxSplits for the Baseline and 

Augmented models using the 4x3, 6x8, and 8x8 configurations, as listed in Table 7 to  

Table 12. 

Table 7. Classification rates vs. NumMaxSplits (4x3 Baseline model) 

NumMaxSplits Classification Rates (4x3 Baseline) 
Run 1 Run 2 Run 3 Average 

1 17.9038 17.8386 17.8038 17.8488 
3 19.4039 19.8431 19.4401 19.5624 
9 22.5356 22.0322 22.4715 22.3464 
27 23.6090 23.4906 23.9835 23.6944 
81 25.5124 25.5258 25.6887 25.5757 
243 27.3503 27.6172 27.5549 27.5075 
729 29.9892 29.9884 29.9508 29.9761 
2187 32.4356 32.5673 32.6431 32.5487 
6561 32.8655 32.4347 32.9201 32.7401 
19683 32.7567 32.7224 32.6397 32.7063 

Table 8. Classification rates vs. NumMaxSplits (4x3 Augmented model) 

NumMaxSplits Classification Rates (4x3 Augmented) 
Run 1 Run 2 Run 3 Average 

1 17.4520 17.6417 17.5999 17.5645 
3 18.9990 19.3592 19.1342 19.1641 
9 22.8990 24.8437 23.7484 23.8304 
27 27.0144 27.5420 28.1623 27.5729 
81 32.0938 32.6388 33.2653 32.6660 
243 36.3662 37.6441 37.8738 37.2947 
729 44.2054 45.1723 45.3909 44.9229 
2187 56.7003 56.8573 57.7129 57.0902 
6561 68.6399 68.6896 69.8142 69.0479 
19683 68.8283 68.7895 69.8956 69.1711 
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Table 9. Classification rates vs. NumMaxSplits (6x8 Baseline model) 

NumMaxSplits Classification Rates (6x8 Baseline) 
Run 1 Run 2 Run 3 Average 

1 16.1316 16.1991 16.0408 16.1238 
3 19.8715 20.3914 20.3969 20.2199 
9 24.0942 24.3974 24.6820 24.3912 
27 26.0017 26.7582 26.7978 26.5192 
81 27.6440 28.3202 27.9686 27.9776 
243 29.4225 30.0610 29.4055 29.6297 
729 30.9486 31.1928 30.9102 31.0172 
2187 31.9850 32.5427 32.5136 32.3471 
6561 32.2083 32.7195 32.0936 32.3405 
19683 32.2778 32.1721 31.3497 31.9332 

Table 10. Classification rates vs. NumMaxSplits (6x8 Augmented model) 

NumMaxSplits Classification Rates (6x8 Augmented) 
Run 1 Run 2 Run 3 Average 

1 17.7628 18.1385 17.6641 17.8551 
3 21.4157 22.0273 21.4153 21.6194 
9 24.6488 25.2990 24.6395 24.8624 
27 28.3785 28.8549 28.1689 28.4674 
81 33.0632 32.3330 32.3103 32.5689 
243 37.0746 36.9196 37.0594 37.0179 
729 43.7041 43.3386 43.7269 43.5899 
2187 53.7327 52.5803 52.8151 53.0427 
6561 62.6622 62.1359 62.2069 62.3350 
19683 62.6058 61.8908 61.8771 62.1246 
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Table 11. Classification rates vs. NumMaxSplits (8x8 Baseline model) 

NumMaxSplits Classification Rates (8x8 Baseline) 
Run 1 Run 2 Run 3 Average 

1 19.9920 19.7624 19.6965 19.8170 
3 21.4902 21.6605 21.8687 21.6731 
9 24.3705 23.4309 23.6748 23.8254 
27 25.9564 25.2579 25.6076 25.6073 
81 28.3662 27.8897 28.4754 28.2438 
243 30.3184 29.6362 30.2005 30.0517 
729 31.8571 30.7517 31.3772 31.3287 
2187 32.2151 31.6541 32.0718 31.9803 
6561 31.9828 32.1526 32.1991 32.1115 
19683 32.5617 32.0077 32.2345 32.2680 

Table 12. Classification rates vs. NumMaxSplits (8x8 Augmented model) 

NumMaxSplits Classification Rates (8x8 Augmented) 
Run 1 Run 2 Run 3 Average 

1 18.4834 18.4939 18.3451 18.4408 
3 22.9282 22.9436 20.6255 22.1658 
9 25.1384 24.5535 25.4667 25.0529 
27 27.8411 27.8149 27.8919 27.8493 
81 31.7881 31.6682 32.3194 31.9253 
243 35.9558 35.9247 36.4730 36.1178 
729 43.1387 42.7503 43.6679 43.1856 
2187 53.0255 52.2526 53.3108 52.8630 
6561 61.4001 60.7457 61.7346 61.2935 
19683 60.8829 60.9646 61.8318 61.2264 
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B. CLASSIFICATION RATES VS. NUMBER OF TREES 

Classification rates results for various values of NumTrees for the Baseline and 

Augmented models using the 4x3, 6x8, and 8x8 configurations, as listed in Table 13 through 

Table 18. 

Table 13. Classification rates vs. NumTrees (4x3 Baseline model) 

NumTrees Classification Rates (4x3 Baseline) 
Run 1 Run 2 Run 3 Average 

10 27.8791 28.3209 27.7637 27.9879 
50 30.9544 31.8784 31.7095 31.5141 
100 32.5096 32.4481 32.0976 32.3518 
200 32.1923 33.3772 32.3464 32.6386 
300 32.5486 32.7084 32.3349 32.5307 
500 32.6009 32.8256 32.7659 32.7308 

Table 14. Classification rates vs. NumTrees (4x3 Augmented model) 

NumTrees Classification Rates (4x3 Baseline) 
Run 1 Run 2 Run 3 Average 

10 48.0348 49.6127 49.7942 49.1472 
50 55.7382 56.7186 56.3996 56.2855 
100 56.7868 57.5240 57.8216 57.3775 
200 58.0039 58.5686 58.2314 58.2680 
300 58.1648 58.6688 58.4602 58.4313 
500 58.1308 58.6174 58.6090 58.4524 
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Table 15. Classification rates vs. NumTrees (6x8 Baseline model) 

NumTrees Classification Rates (6x8 Baseline) 
Run 1 Run 2 Run 3 Average 

10 26.5235 27.6011 26.9870 27.0372 
50 31.3486 31.1355 30.7362 31.0734 
100 32.2062 32.1085 31.8396 32.0514 
200 32.9926 32.4979 32.1584 32.5496 
300 33.0560 32.9341 32.6272 32.8724 
500 32.7817 32.8806 32.9632 32.8752 

Table 16. Classification rates vs. NumTrees (6x8 Augmented model) 

NumTrees Classification Rates (6x8 Baseline) 
Run 1 Run 2 Run 3 Average 

10 44.5495 44.6688 45.5895 44.9359 
50 51.2984 52.3137 52.2870 51.9664 
100 52.3712 53.6523 52.9231 52.9822 
200 52.8980 53.5848 53.8476 53.4435 
300 53.2469 54.1889 54.1865 53.8741 
500 53.3081 53.9665 54.3984 53.8910 
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Table 17. Classification rates vs. NumTrees (8x8 Baseline model) 

NumTrees Classification Rates (8x8 Baseline) 
Run 1 Run 2 Run 3 Average 

10 26.5034 27.2312 26.4505 26.7284 
50 31.4125 30.9257 30.8509 31.0630 
100 32.0586 31.4402 32.3097 31.9362 
200 32.5453 31.4770 32.1007 32.0410 
300 32.6526 32.0549 33.1651 32.6242 
500 32.9423 32.3113 32.7355 32.6630 

Table 18. Classification rates vs. NumTrees (8x8 Augmented model) 

NumTrees Classification Rates (8x8 Baseline) 
Run 1 Run 2 Run 3 Average 

10 44.1869 45.4754 44.5196 44.7273 
50 51.5701 51.9440 51.3877 51.6339 
100 52.4426 53.4265 52.6742 52.8478 
200 53.3491 54.1040 53.5580 53.6704 
300 53.5372 54.3673 53.6775 53.8607 
500 53.4567 54.7766 54.0649 54.0994 
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C. TEST RESULTS FOR 4X3 AND 2X2 CONFIGURATION 

Classification rates results for all ship classes using the 4x3 and 2x2 configurations, 

as listed in Table 19. The results for classes 1, 3, and 6 only are tabulated in Table 20 and 

Table 21. The confusion matrices generated from the iterative tests using the 4x3 and 2x2 

configurations, are shown in Figure 23 and Figure 24, respectively. The confusion matrices 

(for Classes 1,3,6) are shown in Figure 25. 

Table 19. Classification rates for all classes (10 runs) 

Run Classification Rate 
4x3 Baseline 4x3 Augmented 2x2 Baseline 2x2 Augmented 

1 32.5372 69.8378 27.5839 65.7286 
2 32.4090 69.6105 27.4449 65.2593 
3 32.6949 69.6065 27.1784 65.5681 
4 32.2558 69.7419 27.3217 65.5215 
5 32.4407 69.9280 27.4733 65.4268 
6 32.1784 69.8746 27.4180 65.2767 
7 32.4178 69.6488 27.4726 65.0384 
8 32.6690 69.4171 27.7607 65.2097 
9 32.1993 69.8169 27.5007 65.2363 
10 32.2947 69.8124 27.5524 65.2227 
Average 32.4097 69.7295 27.4707 65.3488 
95% C.I. Lower 32.3124 69.6268 27.3832 65.2369 
95% C.I. Upper 32.5190 69.8147 27.5597 65.4738 
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Table 20. Average classification rates for classes 1,3,6 only (10 runs) 

Run Classification Rate (Classes: 1, 3, 6 Only) 
4x3 Baseline 4x3 Augmented 

1 58.5228 82.0092 
2 59.0838 82.0429 
3 59.2173 82.2922 
4 59.5443 82.3168 
5 59.0809 82.2672 
6 58.8555 82.0279 
7 59.1970 82.0118 
8 59.3180 82.2837 
9 58.9767 82.3409 
10 58.9974 81.9926 
Average 59.0880 82.1586 
95% C.I. Lower 58.9337 82.0702 
95% C.I. Upper 59.2380 82.2506 

Table 21. Classification rates for classes 1,3,6 only 

Run Classification Rates 4x3 Augmented 
Class 6 Class 3 Class 1 

1 85.4886 80.9196 80.2774 
2 79.8872 85.8835 81.7010 
3 80.8336 80.0606 84.0493 
4 86.1303 81.0055 79.7572 
5 79.8439 85.7354 80.8336 
6 81.0485 80.4508 85.5380 
7 86.1303 80.4899 80.2774 
8 80.1473 85.1431 80.9626 
9 80.4899 79.6272 85.6367 
10 85.3405 80.9196 80.1473 
Average 82.5340 82.0235 81.9181 
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(a) 4x3 Baseline model – Run 1 (b) 4x3 Augmented model – Run 1 

  
(c) 4x3 Baseline model – Run 2 (d) 4x3 Augmented model – Run 2 

  
(e) 4x3 Baseline model – Run 3 (f) 4x3 Augmented model – Run 3 

  
(g) 4x3 Baseline model – Run 4 (h) 4x3 Augmented model – Run 4 
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(i) 4x3 Baseline model – Run 5 (j) 4x3 Augmented model – Run 5 

  
(k) 4x3 Baseline model – Run 6 (l) 4x3 Augmented model – Run 6 

  
(m) 4x3 Baseline model – Run 7 (n) 4x3 Augmented model – Run 7 

  
(o) 4x3 Baseline model – Run 8 (p) 4x3 Augmented model – Run 8 
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(q) 4x3 Baseline model – Run 9 (r) 4x3 Augmented model – Run 9 

  
(s) 4x3 Baseline model – Run 10 (t) 4x3 Augmented model – Run 10 

  
 

Figure 23. 4x3 configuration results (10 runs)  
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(a) 2x2 Baseline model – Run 1 (b) 2x2 Augmented model – Run 1 

  
(c) 2x2 Baseline model – Run 2 (d) 2x2 Augmented model – Run 2 

  
(e) 2x2 Baseline model – Run 3 (f) 2x2 Augmented model – Run 3 

  
(g) 2x2 Baseline model – Run 4 (h) 2x2 Augmented model – Run 4 
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(i) 2x2 Baseline model – Run 5 (j) 2x2 Augmented model – Run 5 

  
(k) 2x2 Baseline model – Run 6 (l) 2x2 Augmented model – Run 6 

  
(m) 2x2 Baseline model – Run 7 (n) 2x2 Augmented model – Run 7 

  
(o) 2x2 Baseline model – Run 8 (p) 2x2 Augmented model – Run 8 

  
 
 

 

6 7 3 1 2 8 5 4

Predicted Class

6

7

3

1

2

8

5

4

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (2x2),MaxSplits:6561, Mean Success:27.4734%

693

423

479

581

504

531

466

328

772

934

847

693

725

663

540

78

165

574

174

202

173

140

99

45

56

146

480

107

183

107

97

99

67

100

119

409

194

122

135

54

45

80

121

86

418

88

126

31

55

39

41

42

57

311

49

22

22

32

46

18

41

38

220

1368 67.6%

41.2%

24.7%

20.8%

19.1%

18.2%

15.6%

12.7%

32.4%

58.8%

75.3%

79.2%

80.9%

81.8%

84.5%

87.3%

27.1%

72.9%

14.0%

86.0%

35.8%

64.2%

39.3%

60.7%

32.9%

67.1%

41.1%

58.9%

49.8%

50.2%

50.1%

49.9%

6 3 1 7 8 2 5 4

Predicted Class

6

3

1

7

8

2

5

4

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (2x2),MaxSplits:6561, Mean Success:65.4269%

59

73

112

96

117

114

95

50

166

136

140

149

128

87

77

172

79

208

133

110

141

68

100

76

1205

66

136

85

56

84

110

147

74

104

115

167

66

115

95

112

104

128

92

64

77

76

102

113

108

116

61

74

92

55

97

56

97

978

1555

1621

1582

1471

1335

1223

69.6%

68.6%

64.3%

64.1%

62.4%

61.2%

56.5%

23.2%

30.4%

31.4%

35.7%

35.9%

37.6%

38.8%

43.5%

76.8%

70.0%

30.0%

65.4%

34.6%

63.2%

36.8%

67.2%

32.8%

64.7%

35.3%

65.2%

34.8%

65.1%

34.9%

64.8%

35.2%

6 7 3 1 2 8 5 4

Predicted Class

6

7

3

1

2

8

5

4

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (2x2),MaxSplits:6561, Mean Success:27.4181%

687

405

479

549

504

548

465

380

808

972

860

699

713

663

522

89

156

564

170

226

168

138

114

38

54

137

489

100

193

102

94

105

69

103

119

409

191

116

143

39

38

73

106

83

425

94

120

39

44

40

35

45

47

306

49

21

19

34

49

27

54

33

225

1314 64.9%

43.1%

24.2%

21.2%

19.1%

18.5%

15.3%

13.0%

35.1%

56.9%

75.8%

78.8%

80.9%

81.5%

84.7%

87.0%

26.5%

73.5%

14.4%

85.6%

34.7%

65.3%

40.5%

59.5%

32.6%

67.4%

43.5%

56.5%

50.6%

49.4%

48.7%

51.3%

6 3 1 8 7 2 5 4

Predicted Class

6

3

1

8

7

2

5

4

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (2x2),MaxSplits:6561, Mean Success:65.2767%

53

77

84

118

125

120

94

45

149

149

148

156

136

92

80

176

204

71

123

101

139

76

108

151

94

104

120

169

74

94

84

61

1185

132

92

58

68

121

96

112

102

121

82

67

71

68

111

95

105

125

65

82

102

95

62

59

85

973

1550

1623

1580

1479

1334

1225

69.7%

68.5%

64.4%

63.2%

62.4%

61.3%

56.2%

23.5%

30.3%

31.5%

35.6%

36.8%

37.6%

38.8%

43.8%

76.5%

69.8%

30.2%

65.0%

35.0%

63.9%

36.1%

64.3%

35.7%

66.6%

33.4%

65.5%

34.5%

65.6%

34.4%

63.9%

36.1%

6 7 3 1 2 8 5 4

Predicted Class

6

7

3

1

2

8

5

4

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (2x2),MaxSplits:6561, Mean Success:27.4726%

694

390

426

577

479

551

442

347

779

953

886

670

754

659

562

89

151

560

174

207

176

132

114

45

60

167

498

112

199

114

90

108

65

91

118

427

173

113

127

48

47

77

120

79

412

94

117

26

62

53

32

49

53

305

54

18

17

37

53

17

49

32

226

1344 66.4%

41.5%

24.1%

21.6%

20.0%

18.0%

15.3%

13.0%

33.6%

58.5%

75.9%

78.4%

80.0%

82.0%

84.8%

87.0%

27.4%

72.6%

13.9%

86.1%

34.9%

65.1%

38.8%

61.2%

34.9%

65.1%

41.4%

58.6%

48.1%

51.9%

50.3%

49.7%

6 3 1 7 8 2 5 4

Predicted Class

6

3

1

7

8

2

5

4

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (2x2),MaxSplits:6561, Mean Success:65.0384%

61

73

119

100

121

120

89

49

163

144

153

165

114

78

77

175

73

192

126

117

143

87

100

80

1200

64

124

97

59

86

112

152

80

109

124

174

66

113

91

96

102

124

89

68

78

85

99

125

112

1219

127

49

67

107

64

96

53

85

973

1543

1622

1556

1463

1328

69.7%

67.4%

64.0%

63.7%

62.1%

61.0%

56.2%

23.8%

30.3%

32.6%

36.0%

36.3%

37.9%

39.0%

43.8%

76.2%

69.3%

30.7%

65.2%

34.8%

63.3%

36.7%

66.3%

33.7%

63.6%

36.4%

66.1%

33.9%

63.7%

36.3%

65.1%

34.9%

6 7 3 1 2 8 5 4

Predicted Class

6

7

3

1

2

8

5

4

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (2x2),MaxSplits:6561, Mean Success:27.7608%

711

455

491

578

483

570

459

318

783

894

785

674

713

643

525

90

168

579

204

217

200

153

118

37

50

141

487

105

187

97

87

109

53

106

132

419

193

111

135

48

46

78

121

80

427

90

132

25

42

37

41

41

40

305

51

23

22

38

46

24

52

31

225

1375 67.9%

41.8%

24.9%

21.1%

19.6%

18.6%

15.3%

13.0%

32.1%

58.2%

75.1%

78.9%

80.4%

81.4%

84.8%

87.0%

26.8%

73.2%

14.7%

85.3%

33.5%

66.5%

40.9%

59.1%

33.3%

66.7%

41.8%

58.2%

52.4%

47.6%

48.8%

51.2%

6 3 1 7 8 2 5 4

Predicted Class

6

3

1

7

8

2

5

4

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (2x2),MaxSplits:6561, Mean Success:65.2097%

57

78

111

97

112

114

90

44

141

135

149

154

127

79

66

165

73

199

122

121

131

83

102

82

1207

66

144

95

62

82

110

136

77

119

117

181

66

126

103

103

92

136

91

73

76

81

107

118

112

1205

126

60

73

98

62

99

56

85

972

1551

1619

1588

1475

1319

69.5%

68.8%

64.4%

64.3%

61.7%

60.3%

56.1%

23.4%

30.5%

31.2%

35.6%

35.7%

38.3%

39.8%

43.9%

76.6%

70.2%

29.8%

66.1%

33.9%

64.4%

35.6%

65.6%

34.4%

64.2%

35.8%

64.8%

35.2%

63.5%

36.5%

64.6%

35.4%



70 

(q) 2x2 Baseline model – Run 9 (r) 2x2 Augmented model – Run 9 

  
(s) 2x2 Baseline model – Run 10 (t) 2x2 Augmented model – Run 10 

  
 

Figure 24. 2x2 configuration results (10 runs)  
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 (a) 4x3 Baseline model – Run 1 (b) 4x3 Augmented model – Run 1 

  
(c) 4x3 Baseline model – Run 2 (d) 4x3 Augmented model – Run 2 

  
(e) 4x3 Baseline model – Run 3 (f) 4x3 Augmented model – Run 3 

  
(g) 4x3 Baseline model – Run 4 (h) 4x3 Augmented model – Run 4 
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(i) 4x3 Baseline model – Run 5 (j) 4x3 Augmented model – Run 5 

  
(k) 4x3 Baseline model – Run 6 (l) 4x3 Augmented model – Run 6 

  
(m) 4x3 Baseline model – Run 7 (n) 4x3 Augmented model – Run 7 

  
(o) 4x3 Baseline model – Run 8 (p) 4x3 Augmented model – Run 8 
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(q) 4x3 Baseline model – Run 9 (r) 4x3 Augmented model – Run 9 

  
(s) 4x3 Baseline model – Run 10 (t) 4x3 Augmented model – Run 10 

  
 

Figure 25. 4x3 configuration results for classes 1,3,6 only (10 runs) 
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