

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

MACHINE LEARNING FOR SHIP VESSEL
CLASSIFICATIONS AUGMENTED WITH

SYNTHETIC IMAGES

by

Jun Wen Tang

September 2020

Thesis Advisor: Monique P. Fargues
Co-Advisor: Roberto Cristi

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2020

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
MACHINE LEARNING FOR SHIP VESSEL CLASSIFICATIONS
AUGMENTED WITH SYNTHETIC IMAGES

5. FUNDING NUMBERS

6. AUTHOR(S) Jun Wen Tang

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
Haze conditions have reportedly reduced visibility to about 3km in some of the busiest shipping lanes in

the world. Haze conditions, including inclement weather conditions, are identified as a key challenge for
autonomous vehicle operations. However, field data on poor weather conditions and ship images under hazy
conditions may not be readily available to support research work aimed toward overcoming such challenges
for autonomous vehicles. In this thesis, synthetic ship images are rendered under hazy conditions to augment
a baseline dataset of haze-free ship images, in order to support our research on ship vessel classifications in
a hazy environment using machine learning. The proposed feature extraction involves the counting of corner
points detected using the Kanade Lucas Tomasi (KLT) technique to characterize the pattern of specific
ship classes and computing of higher-order moments on the color planes on the ship structure detected
in the images. Results show that the average ship classification accuracy rate is about 40% higher when the
model is trained using a dataset augmented with synthetic hazy ship images; the classifier can classify
for ship classes such as container ships, cargo ships, and sailing vessels, with an 80% average accuracy rate.

14. SUBJECT TERMS
Kanade Lucas Tomasi, KLT, synthetic hazy images, machine learning, ship vessels
classification

15. NUMBER OF
PAGES

97
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

MACHINE LEARNING FOR SHIP VESSEL CLASSIFICATIONS
AUGMENTED WITH SYNTHETIC IMAGES

Jun Wen Tang
Major, Republic of Singapore Navy

BEE, Nanyang Technological University, 2006

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2020

Approved by: Monique P. Fargues
 Advisor

 Roberto Cristi
 Co-Advisor

 Douglas J. Fouts
 Chair, Department of Electrical and Computer Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Haze conditions have reportedly reduced visibility to about 3km in some of the

busiest shipping lanes in the world. Haze conditions, including inclement

weather conditions, are identified as a key challenge for autonomous vehicle

operations. However, field data on poor weather conditions and ship images under

hazy conditions may not be readily available to support research work aimed toward

overcoming such challenges for autonomous vehicles. In this thesis, synthetic ship

images are rendered under hazy conditions to augment a baseline dataset of haze-free

ship images, in order to support our research on ship vessel classifications in a hazy

environment using machine learning. The proposed feature extraction involves the

counting of corner points detected using the Kanade Lucas Tomasi (KLT) technique to

characterize the pattern of specific ship classes and computing of higher-order

moments on the color planes on the ship structure detected in the images. Results

show that the average ship classification accuracy rate is about 40% higher when

the model is trained using a dataset augmented with synthetic hazy ship images; the

classifier can classify for ship classes such as container ships, cargo ships, and

sailing vessels, with an 80% average accuracy rate.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. OBJECTIVES AND THESIS ORGANIZATION1

II. ATMOSPHERIC SCATTERING MODEL ..3
A. INTRODUCTION TO ATMOSPHERIC SCATTERING

MODELS ..3
B. TRANSMISSION MAP ...5
C. AIRLIGHT ...6
D. RENDERED HAZY IMAGE..6
E. ATMOSPHERIC SCATTERING MODEL CONCLUSION7

III. APPROACH OF SYNTHETIC HAZY IMAGE RENDERING9
A. SYNTHETIC HAZY IMAGES RENDERING PROCESS

FLOW ...9
B. TRANSMISSION MAP ESTIMATION ..10
C. HOMOGENEOUS HAZY IMAGE SYNTHESIS14
D. HETEROGENEOUS HAZY IMAGE SYNTHESIS16
E. SYNTHETIC HAZY IMAGE RENDERING CONCLUSION19

IV. FEATURES FOR SHIP CLASSIFICATION ...21
A. DATASET ...21
B. SHIP IMAGES PRE-PROCESSING ...22
C. DETECTION AND DISTRIBUTION OF CORNER POINTS...........24
D. IMAGE COLOR MOMENTS EXTRACTION29
E. FEATURES SUMMARY ..30

V. RESULTS AND ANALYSIS ..31
A. TERMINOLOGY ..31

1. Training Sets, Test Set and Models ..31
2. Class Features ...32
3. Classification Rate ...33

B. RANDOM FORESTS CLASSIFICATION ..34
1. Optimum Parameters ..34
2. Test Results ...37
3. Classifier Strength ...38

C. RESULTS SUMMARY ...38

viii

VI. CONCLUSIONS AND FUTURE WORK ...39

APPENDIX A. MATLAB CODES ...41
A. TRANSMISSION.M ..41
B. SETHAZE.M ..42
C. FBM.M ..43
D. FBM_NOISE.M ...44
E. GENERATEHAZYIMAGE.M ...45
F. DETECTSHIPANDPARTITION.M ..47
G. GENERATECORNERPOINTS.M ..49
H. COUNTINGCPS.M ...50
I. EXTRACTCOLORMOMENTS.M ...51
J. RF50MEAN.M ...52

APPENDIX B. RANDOM FORESTS REPRESENTATION55
A. VARIABLES ..55
B. CLASSIFICATION ...55

APPENDIX C. TEST RESULTS..57
A. CLASSIFICATION RATES VS. MAXIMUM NUMBER OF

SPLITS ..57
B. CLASSIFICATION RATES VS. NUMBER OF TREES60
C. TEST RESULTS FOR 4X3 AND 2X2 CONFIGURATION63

LIST OF REFERENCES ..75

INITIAL DISTRIBUTION LIST ...79

ix

LIST OF FIGURES

Figure 1. Atmospheric scattering model ...4

Figure 2. Composition of rendered hazy image ..7

Figure 3. Synthetic hazy image rendering flowchart ..10

Figure 4. Cross-connect configuration on a 3x3 pixels image11

Figure 5. Pseudo-code for label estimation using GCO-v3.0 library13

Figure 6. Conversion to transmission map ..14

Figure 7. Synthetic and real-life images comparison ..15

Figure 8. Tiles of noise images generated using FBM ..17

Figure 9. Baseline noise image (1024x2048) ..17

Figure 10. Haze texture of heterogeneous hazy image ...18

Figure 11. Example of ship images from dataset ..22

Figure 12. Detection of edges ..23

Figure 13. Estimated boundaries of ship structure ..24

Figure 14. 5x5 neighborhood matrix Z ..25

Figure 15. Detected CPs ..27

Figure 16. CPs distribution (6x8 partitions) ..28

Figure 17. Training sets, test set, and models ...32

Figure 18. Class features configurations ...33

Figure 19. Confusion matrix and success rate example ..34

Figure 20. Classification rates vs. number of maximum splits36

Figure 21. Classification rates vs. number of trees ...36

Figure 22. Confusion matrices example ..38

Figure 23. 4x3 configuration results (10 runs) ..67

x

Figure 24. 2x2 configuration results (10 runs) ..70

Figure 25. 4x3 configuration results for classes 1,3,6 only (10 runs)73

xi

LIST OF TABLES

Table 1. International visibility grades. Adapted from [13].6

Table 2. Labels and corresponding label values ..10

Table 3. Dataset distribution ..22

Table 4. Optimum parameters ..37

Table 5. Classification rates results..37

Table 6. Classification rates for classes 1,3 and 6 (10 runs)38

Table 7. Classification rates vs. NumMaxSplits (4x3 Baseline model)57

Table 8. Classification rates vs. NumMaxSplits (4x3 Augmented model)57

Table 9. Classification rates vs. NumMaxSplits (6x8 Baseline model)58

Table 10. Classification rates vs. NumMaxSplits (6x8 Augmented model)58

Table 11. Classification rates vs. NumMaxSplits (8x8 Baseline model)59

Table 12. Classification rates vs. NumMaxSplits (8x8 Augmented model)59

Table 13. Classification rates vs. NumTrees (4x3 Baseline model)60

Table 14. Classification rates vs. NumTrees (4x3 Augmented model)60

Table 15. Classification rates vs. NumTrees (6x8 Baseline model)61

Table 16. Classification rates vs. NumTrees (6x8 Augmented model)61

Table 17. Classification rates vs. NumTrees (8x8 Baseline model)62

Table 18. Classification rates vs. NumTrees (8x8 Augmented model)62

Table 19. Classification rates for all classes (10 runs) ...63

Table 20. Average classification rates for classes 1,3,6 only (10 runs)64

Table 21. Classification rates for classes 1,3,6 only ..64

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF ACRONYMS AND ABBREVIATIONS

2D Two-dimensional
CMs Higher order color moments
CPs Corner Points
FBM Fractional Brownian Motion
KLT Kanade Lucas Tomasi
ML Machine Learning
MRF Markov Random Field
RF Random Forests
RGB red, green, blue

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

ACKNOWLEDGMENTS

I would like to sincerely thank my thesis advisors, Dr. Monique P. Fargues and Dr.

Roberto Cristi, for their advice and assistance in the completion of my thesis.

I would also like to thank the Republic of Singapore Navy for sponsoring me on

this learning journey at the Naval Postgraduate School.

Last, but not least, and most importantly, I would like to thank my wife, Charmaine,

for being here with me on this amazing yet challenging journey whilst tending our toddler

daughter, Tessa. Without Charmaine’s sacrifices, especially so during the COVID-19

situation, I would not have been able to fulfill this aspiration of mine.

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. BACKGROUND

Autonomous capabilities at sea are increasingly in demand given their potential

in enhancing the efficiency of operational processes and minimizing human errors [1].

P. Koopman indicated that the key enabler for a potential widespread deployment of these

autonomous capabilities thus lies in its assurance for safe operability [2]. Inclement

weather conditions pose a significant challenge to autonomous vehicles due to performance

degradation in contact sensing under such conditions [3]. Unfortunately, field data

comprising poor weather conditions may not be readily available. This limitation may

hinder studies that aim to overcome such a challenge.

For example, it was reported that the visibility was reduced to about 3km in some

parts of Singapore when haze engulfed the island city in September 2019 [4]. The study of

autonomous ship classification under such hazy conditions, without a database of ship

images that were captured in such degraded environments, can prove to be an overly

challenging task. P. Koopman also asserted that the challenge begins with enhancing

system robustness for difficult environmental conditions in order to achieve ultra-

dependable autonomous capabilities [2]. As sea lanes can potentially be hazy such as

conditions encountered in Singapore, it is hence useful to account for hazy environmental

conditions possibly faced by autonomous vehicles in the future.

In this thesis, we propose to augment an original dataset of haze-free ship images

with a dataset comprising synthetic hazy ship images rendered based on the atmospheric

scattering model. The resulting dataset includes ship images in both haze-free and hazy

conditions and serves to facilitate our study on ship classification performance as part of

the continual effort toward enhancing the safe operability of future autonomous capabilities

in the naval domain.

B. OBJECTIVES AND THESIS ORGANIZATION

This thesis implements the atmospheric scattering model for rendering of synthetic

ship images in hazy environments, and investigates ship classification performance

https://www.nap.edu/catalog/11379/autonomous-vehicles-in-support-of-naval-operations
https://ieeexplore.ieee.org/document/7823109
https://www.rand.org/pubs/testimonies/CT463.html
https://www.channelnewsasia.com/news/singapore/haze-singapore-visibility-reduced-air-quailty-monday-nea-11934886
https://ieeexplore.ieee.org/document/7823109

2

obtained with the dataset augmented with synthetic hazy ship images, using the Random

Forests (RF) classification.

The remainder of the thesis is organized as follows. The conceptual overview of

the atmospheric scattering model which forms the basis for our synthetic images rendering

is introduced in Chapter II. A detailed approach in rendering synthetic hazy ship images

using haze-free ship images is presented in Chapter III. In Chapter IV, we present our

proposed approach to detect Corner Points (CPs) in ship images, using the Kanade Lucas

Tomasi (KLT) technique, and the use of the detected CPs distribution as class features for

classification. Chapter IV also discusses the extraction of higher order moments of the

color planes of ship images as features for ship classification. Ship classification results

obtained are presented and analyzed in Chapter V. Conclusions and recommendations are

presented in Chapter VI.

3

II. ATMOSPHERIC SCATTERING MODEL

The atmospheric scattering model is widely used to characterize the formation of

hazy and foggy images in numerous applications. F. Guo, J. Tang, and X. Xiao proposed

realistic rendering of foggy images in game development and virtual reality applications

[6]. E. Ullah, R. Nawaz, and J. Iqbal used the atmospheric scattering model for applications

in image haze removal [7]. For the purpose of this thesis, the atmospheric scattering model

is used to generate synthetic hazy images and implemented with MATLAB. The rendered

synthetic hazy ship images will augment our original dataset of haze-free ship images and

facilitate our ship classification study. This chapter provides the conceptual overview of

the atmospheric scattering model (i.e., the basis for rendering of synthetic hazy images).

A. INTRODUCTION TO ATMOSPHERIC SCATTERING MODELS

The presence of particles in the air is an atmospheric phenomenon affected by

weather conditions and air pollution which causes visibility degradation and possibly color

changes [8]. Haze and fog are the most common atmospheric phenomena: haze is caused

by air pollution such as smoke and dry particles (e.g., dust) suspending in the air, while fog

is due to the presence of water vapour in the air. When light rays hit a particle (e.g., dust,

water droplet), light scattering will occur in all directions with varying magnitude as the

scattered rays moved away from the particle [9]. An imaging illustration based on the

atmospheric scattering model with an example of the transmission map and synthetic hazy

image rendered using our MATLAB implementation is shown in Figure 1.

https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/ieee_s6642199
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/ieee_s4587643
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/elsevier_sdoi_10_1016_j_cviu_2017_09_003

4

Figure 1. Atmospheric scattering model

The mathematical formula of the rendered hazy image J(x) in the atmospheric

scattering model is given by [10, p. 6]

 () () () (1 ()),J x I x t x A t x= + −

where x denotes a point in the two dimensional (2D) image plane, I(x) represents a haze-

free image, (i.e., three 2D-matrices representing the red, green, blue (RGB) colored

information), and t(x) is the transmission map of I(x), which is the scalar representation of

the variations in transmission due to the depth d between the scene and the observer.

The parameter A represents the atmospheric light intensity, which is usually assumed to be

a global constant throughout the scene and is often considered as the environmental

illumination.

A physical view of the atmospheric scattering model is shown in Figure 1. The

presence of haze particles and water vapor in the atmosphere scatters and absorbs the light

transmitting through the atmosphere. The transmission of the reflected light from the scene

https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/ieee_s5567108

5

I(x) is partly attenuated due to the light scattering caused by the particles in the atmosphere.

The transmission map t(x) represents the ratio of “the un-attenuated light that reaches the

observer” to “the reflected light from the scene”. The term I(x)t(x) is known as the

attenuation. The term A(1-t(x)) is called the airlight, which is the environmental

illumination from several sources, including, diffused skylight, sunlight, and ground light

[11, p. 5]. The rendered hazy image J(x) at the observer viewpoint would be the attenuated

light with the additive of the airlight.

B. TRANSMISSION MAP

The transmission map represents “the portion of the light that is not scattered and

reaches the observer” [6, p. 3], and since the transmission map is a “function of depth, it

thus reflects the depth information in the scene” [6, p. 3]. Let us assume d(x) is the distance

from a scene point at position x to the observer, with d denoted as the depth of the particular

scene point. The transmission map t(x) is related to the depth d, and is given by

 ()() ,d xt x e−β=

where β represents the extinction coefficient of the atmosphere. The parameter β is

determined by the physical properties of the particles residing in the atmosphere, such as

the particle size, material, shape and density, and function of the wavelength λ and

wavelength selectivity γ, given by [11, p. 6]

Constant() .γβ λ
λ

=

Under a homogeneous foggy or hazy environment, γ≈0 [12]; hence the extinction

coefficient β is a spatial constant [10]. Various values for visibility distances and extinction

coefficients β corresponding to different weather conditions according to the international

visibility grades [6, p. 7] are listed in Table 1.

https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/springer_jour1016328200723
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/springer_jour1016328200723
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/ieee_s1201821
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/ieee_s5567108
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629

6

Table 1. International visibility grades. Adapted from [13].

Grade Weather Visibility distance Extinction Coefficient β

0 Dense fog <50m >78.2m-1

1 Thick fog 50–200m 78.2–19.6m-1

2 Moderate fog 200–500m 19.6–7.82m-1

3 Light fog 500m–1km 7.82–3.91m-1

4 Thin fog 1–2km 3.91–1.96m-1

5 Haze 2–4km 1.96–0.954m-1

6 Light haze 4–10km 0.954–0.391m-1

7 Clear 10–20km 0.391–0.196m-1

8 Very clear 20–50km 0.196–0.078m-1

9 Extremely clear >50km 0.0141m-1

C. AIRLIGHT

Unlike the attenuation term I(x)t(x) which causes the scene radiance to decrease

along the depth, the airlight term A(1-t(x)) increases the scene radiance along the depth.

According to [8, p. 3], in situations of bad weather (e.g., hazy or foggy environment), the

sky is usually overcast and the atmospheric light intensity A can be assumed to be a global

constant. For the purpose of synthetic hazy image rendering adopted in this thesis, the

atmospheric light intensity A is chosen to be a constant value equals to 255, consistent with

an 8-bit representation of light intensity, as referenced in [6, p. 6].

D. RENDERED HAZY IMAGE

The RGB components of the haze-free image I(x) (i.e., IR(x), IG(x), and IB(x)), are

multiplied by the transmission map t(x), then added to the airlight term A(1-t(x)). Selecting

the atmospheric light intensity A value equal to 255 results in using white color as the

atmospheric light intensity for all scenes (i.e., R=255, G=255, B=255). See Figure 2 for the

composition of the rendered hazy image.

https://www.researchgate.net/figure/International-visibility-grades-with-their-medium-extinction-coefficients_tbl1_287395953
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/ieee_s4587643
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629

7

Figure 2. Composition of rendered hazy image

E. ATMOSPHERIC SCATTERING MODEL CONCLUSION

The atmospheric scattering model discussed in this chapter, a widely adopted model

for characterization of hazy and foggy images applications [6], [7], is used in this thesis to

generate synthetic hazy images for our ship classification study with ship images under

hazy conditions. Benchmarking to the international visibility grades in Table 1, an

extinction coefficient value equals to 1.96m-1 (worst case of Grade 5 for visibility distance

between 2-4km) is chosen for the rendering of synthetic hazy images in this study. Such

selection simulates the haze condition encountered by one of the busiest shipping lanes in

the world, where the visibility range was reportedly reduced to 3km [4]. As haze particles

may occur in spatially constant or varying density in the atmosphere [14], synthetic hazy

images are rendered in both conditions, and termed in this thesis as homogenous synthetic

hazy images and heterogeneous synthetic hazy images. Homogeneous synthetic hazy

images are rendered with uniform density of haze particles in space. Heterogeneous

synthetic hazy images are rendered with a non-uniform density of haze particles

(i.e., non-homogeneous). The approach of the rendering of the homogeneous and

heterogeneous synthetic hazy images will be addressed in the next chapter.

https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/ieee_s5567108
https://www.channelnewsasia.com/news/singapore/haze-singapore-visibility-reduced-air-quailty-monday-nea-11934886
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/arxiv2005.03560

8

THIS PAGE INTENTIONALLY LEFT BLANK

9

III. APPROACH OF SYNTHETIC HAZY IMAGE RENDERING

The gaming industry has evolved from using software-based rendering tools, such

as 3ds max and Photoshop, to a more efficient model-based rendering approach for foggy

and hazy scenes rendering in their games development [6] (i.e., adopting the atmospheric

scattering model described in Chapter II). Reference [6] also demonstrated the possibility

to generate realistic foggy scenes with real-life images using the same approach

implemented as that selected for foggy scene rendering in virtual environments. For this

study, we will be using a similar approach for the rendering of synthetic hazy images, as

previously adopted by [6]. This chapter presents the approach considered for rendering

synthetic hazy image from haze-free images. The rendering processes are implemented

using MATLAB, and detailed in Appendix A.

A. SYNTHETIC HAZY IMAGES RENDERING PROCESS FLOW

Rendering a synthetic hazy image requires three steps for the case of a generic

heterogeneous hazy texture, following the approach presented in [6, p. 3]. Conversely, two

steps are required to generate a synthetic image with a homogeneous hazy texture.

We first need to compute the transmission map with the Markov Random Field

(MRF) model to generate homogeneous synthetic hazy images [15]. The goal in doing so

is to assign each image pixel with an accurate label based on the minimum value of the

energy function of the MRF. A label assigned with smaller value represents the image pixel

at a deeper depth in the scene, while a larger value label corresponds to a scene point closer

to the observer. An additional step is required to generate a heterogeneous noise image

using the Fractional Brownian Motion (FBM) turbulence texture [16]. Finally, the

synthetic hazy image can be rendered according to the atmospheric scattering model. The

synthetic hazy image rendering flowchart is depicted in Figure 3.

https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/sage_s10_5772_58674
https://nullprogram.com/blog/2007/11/20/

10

Figure 3. Synthetic hazy image rendering flowchart

B. TRANSMISSION MAP ESTIMATION

The most crucial step for synthetic hazy image rendering is the estimation of the

transmission map. The MRF technique, which is a probabilistic-based graphical model, is

commonly utilized for analyzing the spatial dependencies of a given image [15]. Here, we

obtain the estimation of the transmission map using the MRF. To generate the transmission

map, the input RGB image is first converted to a gray-level image, allocating 8-bits for the

image intensity level representation. Referencing to the methodology of foggy scene

images rendering adopted by the computer games industry [6, p. 4], the number of labels

is set to l=32, where the set of labels L={1,2,3,…,l} represents the transmission values

{0,1/(l-1),2/(l-1),…,1} [6, p. 4].

Table 2. Labels and corresponding label values

Label xi 1 2 3 4 5 6 7 8
Label Value L(xi) 0 1/31 2/31 3/31 4/31 5/31 6/31 7/31
xi 9 10 11 12 13 14 15 16
L(xi) 8/31 9/31 10/31 11/31 12/31 13/31 14/31 15/31
xi 17 18 19 20 21 22 23 24
L(xi) 16/31 17/31 18/31 19/31 20/31 21/31 22/31 23/31
xi 25 26 27 28 29 30 31 32
L(xi) 24/31 25/31 26/31 27/31 28/31 29/31 30/31 1

https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/sage_s10_5772_58674
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629

11

Each element ti of the transmission map is assigned a label xi. The labeling of the

transmission map is estimated by minimizing the associated cost function E(x)

(,)

() () (,),i i ij i j
i P i j N

E x E x E x x
∈ ∈

= +∑ ∑

where P denotes the number of pixels in the image, and N denotes the collection of pairs

of pixels within the cross-connect neighborhood configuration. The cross-connect

neighborhood configuration using a 3x3 pixels image as an example is illustrated in Figure

4, where the number of pairs of pixels within a given neighborhood varies between N=2 at

the corners of the image, N=3 along the edges of the image, and N=4 otherwise.

Figure 4. Cross-connect configuration on a 3x3 pixels image

12

The data term Ei(xi) is related to the probability of the transmission element ti

assigning to label xi. The data term Ei(xi) is the absolute difference between the label value

L(xi) and the intensity of each pixel value at the RGB-converted gray-level image Ii’

(values ranging from 0 to 255) multiplied with a normalizing factor ω. The normalizing ω

value is chosen to be 1/255 [6, p. 5] to ensure that the gray-level image Ii and label value

L(xi) have the same order of magnitude, such that the data term Ei(xi) will always have a

value between 0 and 1, and can be expressed as

 () '* () .i i i iE x I L xω= −

The smooth term Eij(xi,xj) is a component associated with the probability of

neighboring pixels (i.e., cross-connected pixels) surrounding pixel i, and value of the image

strength control g=0.01 [6]. The smooth term Eij(xi,xj) expression, is given by

 (,) .ij i j i jE x x g x x= −

The cost function E(x) can be estimated using the α-expansion algorithm [6], [15],

which involves performing expansions for all labels of α, where the label values L(x) are

sequentially assigned to label α [17]. At each iteration of the α-expansion algorithm, the

algorithm will determine if the pixel i should retain its existing label xi, or replace with the

label α [18]. The label for pixel i switches to label α when the cost function E(x) is

minimized, where the condition for label switching for the α-expansion algorithm [18],

given by

(,) (,) (,) (,),
, ,

, , ().

ij ij i j j i ij j

i j

E E x x Ei x E x
i j P

x x L x

α α α α

α

+ ≤ +
∀ ∈

∈∀

In this thesis, we adopted the GCO-v3.0 library [19], developed by O. Veksler and

A. Delong, to implement the cost function minimization step using the α-expansion

algorithm. The library function gets a haze-free image as input parameter and returns as

output the estimation of each pixel label xi in the transmission map. The pseudo-code using

the GCO-v3.0 library for the estimation process is shown in Figure 5.

https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/sage_s10_5772_58674
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/ieee_s4270229
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/ieee_s5384980
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/ieee_s5384980
https://vision.cs.uwaterloo.ca/code/

13

Figure 5. Pseudo-code for label estimation using GCO-v3.0 library

In Figure 5, parameters M and N denote the height and width of the input haze-free

image, and the parameter Data represents the gray-level image reshaped into a one-

dimensional vector. As a result, with the defined functions in the GCO-v3.0 library, each

pixel label xi in the transmission map is estimated. Implementation details are presented in

Appendix A, which includes the MATLAB function transmission.m developed for

generating the labels xi for an image. Next, we need to translate the pixel labels xi in the

transmission map (values ranging from 0 to 1) into its corresponding gray-level intensity

values tint(x) to display the transmission map as a gray-level image (values ranging from

0 to 255). The gray-level intensity values of the transmission map tint(x) can be as expressed

[6, p. 6]

https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629

14

 int() 255 (1)*8.it x x= − −

The transmission map t(x) is given by [15, p. 4]

 ()() ,d xt x e−β=

where the depth of the transmission map d(x) given by

()()

() .
In t x

d x
β

= −

The extinction coefficient β can be chosen in accordance with the desired weather

condition listed in Table 1.

An example of the colored haze-free image (a), its converted gray-level image (b),

and its corresponding intensity of the estimated transmission map (c) are shown in

Figure 6.

 Haze-free Image (a), gray-level image (b), and intensity of estimated transmission map (c).

Figure 6. Conversion to transmission map

C. HOMOGENEOUS HAZY IMAGE SYNTHESIS

From the haze-free image I(x), the transmission map t(x), and the atmospheric light

intensity constant A, the synthetic hazy image J(x) can be rendered using the atmospheric

scattering model directly as

 () () () 255*(1 ()).J x I x t x t x= + −

The atmospheric scattering model was implemented using MATLAB for rendering

of synthetic hazy images, and code implementation details are presented in Appendix A

(setHaze.m). Three different values for the extinction coefficient β were selected to render

https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/sage_s10_5772_58674

15

synthetic homogeneous hazy images under various constant haze densities, and resulting

synthetic homogeneous images rendered using the setHaze.m function are shown in Figure

7. By changing the β value, we can control the visibility distance of the objects in the image.

Note that the haze effects look more natural in (b) than (c) and (d) when compared to real

images in haze environment (e) and (f).

Original haze-free image (a). Synthetic image under homogeneous hazy condition β=2
(b). Synthetic image under homogeneous light fog condition β=4 (c). Synthetic image
under homogeneous moderate fog condition β=8 (d). Singapore under haze on 23 Sep
2019 (e) Source: [4]. Singapore under haze on 13 Sep 2019 (f) Source: [20].

Figure 7. Synthetic and real-life images comparison

https://www.channelnewsasia.com/news/singapore/haze-singapore-visibility-reduced-air-quailty-monday-nea-11934886
https://www.asiaone.com/singapore/hazy-start-weekend-singapore-after-air-quality-nears-unhealthy-levels

16

D. HETEROGENEOUS HAZY IMAGE SYNTHESIS

To render a heterogeneous hazy image, the noise image n(x) is added to the

synthetic image rendered with the atmospheric scattering model. According to [6, p. 6], the

process of adding the heterogeneous haze to the synthetic image can be written as

 () () * (),R x J x q n x= +

where n(x) is the noise image, the parameter q is the gain coefficient to control the

appearance of the noise image texture (q=0.15 in [6]), and R(x) represents the synthetic

heterogeneous hazy image rendered. According to [6, p. 6], the hazy image J(x) (i.e., input

for rendering of the heterogeneous hazy image), can be generated using the transmission

map t(x), atmospheric light intensity constant A, and hazing effect adjustment value t0, as

 0() (())*max((),) .J x I x A t x t A= − +

The Fractional Brownian Motion (FBM) technique can be used to generate the

noise image n(x), required for heterogeneous hazy image synthesis. Referencing to [16],

the tiles of noise images are randomly generated. These tiles of noise images can be

concatenated to form a baseline noise image, and can be cropped to the required noise

image size. Examples of the 256x256 tiles of noise images are illustrated in Figure 8. The

concatenated 1024x2048 baseline noise image is shown in Figure 9.

https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/hindawi10.1155%252F2014%252F308629
https://nullprogram.com/blog/2007/11/20/

17

Figure 8. Tiles of noise images generated using FBM

Figure 9. Baseline noise image (1024x2048)

Required dimension

for n(x): 600x800

18

The baseline noise image generated is cropped to the required dimensions (i.e., the

size of the input image J(x)), prior to the heterogeneous hazy image synthesis processing.

For example, the noise image n(x) will be cropped to the same dimensions as J(x) if J(x)

has a dimension of 600x800. The MATLAB function FBM.m developed to generate the

noise image n(x) of required dimension, is provided in Appendix A. The synthetic

heterogeneous hazy image R(x) can then be rendered by adding the input image J(x) and

the noise image n(x).

An example showing the visual comparison for a haze-free image, synthetic

homogeneous hazy image, and synthetic heterogeneous hazy image is shown in Figure 10.

Note the texture of the FBM noise image is visually apparent on the heterogeneous hazy

image rendered.

Haze-free image (a), homogeneous hazy image (b), and heterogeneous hazy image (c).

Figure 10. Haze texture of heterogeneous hazy image

19

E. SYNTHETIC HAZY IMAGE RENDERING CONCLUSION

The rendering processes described in this chapter are used to generate the synthetic

homogeneous and heterogeneous images to augment the size of a baseline dataset

comprising haze-free ship images. The extinction coefficient was selected to be β=1.96

(worst case of Grade 5) to simulate the haze condition previously experienced in the

Southeast Asia region, for our ship classification study. The MATLAB code

GenerateHazyImage.m, rendering of synthetic hazy images in this thesis, could also be

used for future studies that require rendering of synthetic images at a specific haze density

by varying the extinction coefficient value β corresponding to the required visibility ranges.

20

THIS PAGE INTENTIONALLY LEFT BLANK

21

IV. FEATURES FOR SHIP CLASSIFICATION

Coupled with the increased demand in autonomous systems and the availability of

computing tools, reliable classification of our daily environment has been deemed as a

potential technology enabler to enhance processes efficiency and minimize human errors

[1], [2]. Ships are widely used for transportation, fishing and security in the oceans and

seas. To potentially field autonomous capabilities in the waters, it is therefore of interest to

embark on a study on ship classification using computer vision techniques and machine

learning [3]. This chapter presents the use of the distribution of the detected Corner Points

(CPs), and the extraction of higher order moments of the color planes of ship images, to

extract class features for ship classification.

A. DATASET

The dataset used in this study comprises eight different classes of ships, namely

container ships, cruises, cargo ships, tugs, yachts, sailing vessels, warships and fishing

vessels. The baseline dataset with a total of 6,680 images was downloaded from [21]. The

MATLAB function flip.m [22] was used to create horizontally flipped images from the

baseline dataset. The homogeneous and heterogeneous hazy image synthesis processes

described in Chapter III are also used to create synthetic images to augment the baseline

dataset size.

A ship image example from the dataset is shown in Figure 11. By using image

processing techniques such as the flip.m function and the hazy image synthesis, the ship

images dataset is expanded to 6 times of the baseline dataset to a total of 40,080 images.

The dataset distribution is summarized in Table 2.

http://www.shipspotting.com/
https://www.mathworks.com/help/matlab/ref/flip.html

22

Figure 11. Example of ship images from dataset

Table 3. Dataset distribution

Classes Baseline Flipped Homogeneous Heterogeneous Total
Container Ships 923 923 1,846 1,846 5,538
Cruises 855 855 1,710 1,710 5,130
Cargo Ships 931 931 1,862 1,862 5,586
Tugs 693 693 1,386 1,386 4,158
Yachts 800 800 1,600 1,600 4,800
Sailing Vessels 810 810 1,620 1,620 4,860
Warships 750 750 1,500 1,500 4,500
Fishing Vessels 918 918 1,836 1,836 5,508
Total 6,680 6,680 13,360 13,360 40,080

B. SHIP IMAGES PRE-PROCESSING

The dataset includes ship images of varying orientations, background, and distances

from the observer. To identify the area of interest for our ship classification, pre-processing

can be applied to detect the well-defined borders of the ship structure. We perform our ship

structure detection by using the MATLAB function edge.m [23] available in the Image

Processing Toolbox. The edge.m function receives as the input parameter a gray-level ship

image, and outputs a binary image, where 1s (nonzero) indicate the edges detected, and 0s

https://www.mathworks.com/help/images/ref/edge.html

23

elsewhere. In Figure 12, we show an RGB image and the resulting output binary image

with detected edges indicated in “white.”

Figure 12. Detection of edges

The boundaries of the ship structure can be estimated from the maximum and

minimum location of the edges in the binary image, which is given by

[,] (),
min(),

max(),
min(),

max().

rows columns find binaryimage
TopRow rows
BottomRow rows
LeftColumn columns
RightColumn columns

=
=

=
=
=

Using the MATLAB function find.m, we can find the location of all the nonzero

pixels in the binary image, and the boundaries (Top-Row, Bottom-Row, Left-Column,

Right-Column) computed as described. Estimated boundaries of the detected ship structure

presented in Figure 12, are shown in Figure 13. These estimated boundaries can then be

used for further processing.

24

Figure 13. Estimated boundaries of ship structure

C. DETECTION AND DISTRIBUTION OF CORNER POINTS

After boundaries of the ship structure get estimated, features are extracted for

classification processing. Our proposed feature extraction involves the detection of Corner

Points (CPs) using the Kanade Lucas Tomasi (KLT) technique [24]. The KLT technique

is a feature detection and tracking algorithm which first locates a CP by examining the

eigenvalues of a 2x2 intensity gradient matrix within a defined neighbourhood, followed

by pursuing the detected feature over time [25]. Given that the elements of the dataset of

interest are still images, the application of KLT in this thesis only focuses on the CP

detection (i.e., without application of tracking). The 2x2 gradient matrix G is given by [26]

,

(,) (,) (,) (,),T
xy xy

u v
G x y I u v I u v z x u y u= − −∑

where the intensity gradient matrix of the gray-level image I is defined as

 (,) (,)(,) ,T
xy

I x y I x yI x y
x y

δ δ
δ δ

=  

And the neighbourhood matrix Z is represented with

1 (,) (0,0),

(,)
0 .

if x y Z
z x y

otherwise
∈

= 


http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.45.5770&rep=rep1&type=pdf
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/proquest1626434562
https://web.yonsei.ac.kr/jksuhr/articles/Kanade-Lucas-Tomasi%20Tracker.pdf

25

A pictorial illustration of the 5x5 neighborhood matrix Z is shown in Figure 14,

where Z(0,0) represents a 5x5 neighborhood matrix, centered at the origin on the x-y axis

(i.e., at (x0=0, y0=0)).

Figure 14. 5x5 neighborhood matrix Z

A discrete approximation can be used to compute the intensity gradient for each

image pixel [27]. Using the 3x3 Sobel operators in the x-direction and y-direction, the 2D

impulse responses hx and hy can be used to efficiently compute the intensity gradient Ix and

Iy for an image [28], as

1 0 1 1 2 1
2 0 2 , 0 0 0 ,
1 0 1 1 0 1

x yh h
− − − −   
   = − =   
   − −   

(,) 2(,),

(,) 2(,),

x x

y y

I x yI conv I h
x

I x yI conv I h
y

δ
δ

δ
δ

= =

= =

where the operation conv2.m performs the two-dimensional convolution of the intensity

levels matrix I with the impulse responses hx and hy , respectively.

https://nrsyed.com/2018/02/18/edge-detection-in-images-how-to-derive-the-sobel-operator/

26

A corner of a 2D image is defined by a locality of intensity changes in both the x-

direction and y-direction, hence the presence of corner points in an image can be estimated

when gradient changes are detected in both directions [29]. The 2x2 gradient matrix G can

be represented by the 2D convolutions between the power of the intensity gradients [30, p.

15], with 5x5 neighborhood matrix Z [31]. A 5x5 neighborhood matrix was chosen in this

study because it can achieve a relatively smooth gradient detection [32] at the points of

intensity changes, and it is not very sensitive to local noise within the neighbourhood [33].

2((,)* (,), (,)) 2((,)* (,), (,))
(,) ,

2((,)* (,), (,)) 2((,)* (,), (,))
x x x y

x y y y

conv I x y I x y Z x y conv I x y I x y Z x y
G x y

conv I x y I x y Z x y conv I x y I x y Z x y
 

=  
 

with Z defined as

1 1 1 1 1
1 1 1 1 1

.1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Z

 
 
 
 =
 
 
  

Using the minimum eigenvalue technique [24] [31], a CP can be said to be detected

at location (x,y) when the eigenvalues of G are larger than a set threshold, where

Λ=eigenvalues of G. The array containing the locations of the corner points CP_location

can be computed using

max min((,)),
_ (,).

if x y threhold
CP location x y

Λ ≥ Λ >
=

Detected CPs (in magenta) using the KLT for the different ship images are

illustrated in Figure 15. The CPs distribution is observed to represents characteristics for

each specific classes of ships from images contained in our dataset. The MATLAB function

GenerateCornerPoints.m for detection of corner points, is provided in Appendix A.

http://www.ijsrp.org/research-paper-0516/ijsrp-p5354.pdf
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/arxiv1808.08186
http://robots.stanford.edu/cs223b04/algo_tracking.pdf
https://www.researchgate.net/publication/223377841_An_automatic_optimum_kernel-size_selection_technique_for_edge_enhancement
https://www.researchgate.net/post/What_is_the_advantage_of_a_5x5_gradient_mask_edge_detector_over_a_3x3_detector
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.45.5770&rep=rep1&type=pdf
http://robots.stanford.edu/cs223b04/algo_tracking.pdf

27

Figure 15. Detected CPs

To quantitatively tabulate the distribution of CPs for the different classes of ships,

the estimated boundaries of the ship structure can be sub-divided into R rows and C

columns of partitions. The number of CPs located within each partition are counted, thus

allowing us to quantitatively tabulate the CPs distribution. Estimated boundaries of the ship

structure segmented into 6x8 partitions is illustrated for one ship image in Figure 16. The

MATLAB function DetectShipAndPartition.m implemented for the estimation of ship

28

structure boundaries of an image, and sub-division of the estimated boundaries into R rows

and C columns of partitions, is provided in Appendix A.

Figure 16. CPs distribution (6x8 partitions)

The count of CPs located within each partition C(r,c) is given by

* , *

(1)* , (1)*
(,) _ (,),

r height c width

n r height m c width
C r c CP location n m

= − = −

= ∑

where r and c represent the row and column positions, respectively, and parameters width

and height are used to compute the number of CPs contained within a given partition. The

array CP_location contains all the detected CPs locations (x,y) in the image. The sum of

the number of CPs located within each partition is computed by the MATLAB function

CountingCPs.m, code implementation details are provided in Appendix A.

29

D. IMAGE COLOR MOMENTS EXTRACTION

Another feature uses the color moments computed on the estimated boundaries of

the ship structures. We take advantage of the fact that ships of the same class predominantly

have similar color coding. For example, warships are typically grey, while cruise ships are

generally white. For this thesis, the higher order moments of the color planes are extracted

as features. The RGB image is vectorized into individual Nx1 vectors, IR, IG, IB, where N

is the product of the image dimension.

The 1st moment is the mean color of the image µ, and defined as [34]

1

1

1

1 ,

1 ,

1 .

i

i

i

N

R R
i
N

G G
i
N

B B
i

I
N

I
N

I
N

µ

µ

µ

=

=

=

=

=

=

∑

∑

∑

The 2nd moment is the standard deviation σ, and given as [35]

2

1

2

1

2

1

1 ,
1

1 ,
1

1 .
1

i

i

i

N

R R R
i

N

G G G
i

N

B B B
i

I
N

I
N

I
N

σ µ

σ µ

σ µ

=

=

=

= −
−

= −
−

= −
−

∑

∑

∑

The 3rd moment is the skewness s, which represents the degree of asymmetry

around the mean value, given as [36]

https://www.mathworks.com/help/matlab/ref/mean.html
https://www.mathworks.com/help/matlab/ref/std.html?s_tid=srchtitle
https://www.mathworks.com/help/stats/skewness.html?s_tid=srchtitle

30

3

1
3

3

1
3

3

1
3

1 ()
,

1 ()
,

1 ()
.

i

i

i

N

R R
i

R
R

N

G G
i

G
G

N

B B
i

B
B

I
Ns

I
Ns

I
Ns

µ

σ

µ

σ

µ

σ

=

=

=

−
=

−
=

−
=

∑

∑

∑

The 4th moment is the kurtosis k which characterizes how outlier-prone the color of

the image is, and can be computed as [37]

4

1
4

4

1
4

4

1
4

1 ()
,

1 ()
,

1 ()
.

i

i

i

N

R R
iR

R
N

G G
iG

G
N

B B
iB

B

I
Nk

I
Nk

I
Nk

µ

σ

µ

σ

µ

σ

=

=

=

−
=

−
=

−
=

∑

∑

∑

The MATLAB function ExtractColorMoments.m for computation of color

moments information of a specified boundaries of an image, is provided in Appendix A.

E. FEATURES SUMMARY

Relevant features are selected as the count of CPs in image partitions and image

color moments. From the count of CPs in each defined partitions of RxC dimension, we

have RxC extracted class features, and there are 12 class features from the extraction of the

image color moments. Therefore, we have (RxC+12) features to apply to the ship

classification stage.

https://www.mathworks.com/help/stats/kurtosis.html?s_tid=srchtitle

31

V. RESULTS AND ANALYSIS

In this chapter, we investigate ship classification under hazy conditions using

Random Forests (RF) classification. Two models are considered: The first model is trained

with the baseline dataset that is comprised of only the haze-free ship images. The second

model is trained with our dataset augmented with synthetic ship images under haze

conditions. The objective is to quantitatively compare the ship classification results

between classifier models that were trained with /and without ship images under haze

conditions. Classification rates are computed using a common test dataset consisting of

flipped haze-free ship images and synthetic hazy ship images, during the testing

phase. This chapter presents the ship classification performance results for these two

considered models.

A. TERMINOLOGY

The terminologies used in this ship classification study includes:

1. Training Sets, Test Set and Models

The baseline images dataset consisting of 6,680 haze-free ship images, is termed

the baseline training set. This baseline training set contains no prior information on ship

images under haze conditions. The Baseline model is created and trained using the baseline

training set.

The synthetic images dataset (total: 33,400 images) includes flipped haze-free ships

images, homogeneous hazy ship images and heterogeneous hazy ship images. The function

cvpartition.m is used to randomly partition the synthetic images dataset into a synthetic

training set and a test set with stratification. A 50/50 ratio is set for partitioning; thus we

have a synthetic training set and a test set each consisting of 16,700 images, respectively.

The Augmented model is created and trained using the combination of the baseline training

set and synthetic training set, which consists of haze-free ship images and ship images

under haze conditions.

32

This test set comprising flipped haze-free ship images and ship images under hazy

conditions will be used for the testing of the Baseline model and Augmented model.

A graphical depiction of the training sets, test set and the models involved, is shown in

Figure 17.

Figure 17. Training sets, test set, and models

2. Class Features

Three different configurations of class features corresponding to three different

image partitions (i.e., 4x3, 6x8, and 8x8), are considered in our study to get CPs features.

In addition, we extract 12 class features from the image higher order color moments (CMs).

The summary of class features for the different configurations is shown in Figure 18.

33

Figure 18. Class features configurations

3. Classification Rate

The success rate of correct classification (or classification rate), used to evaluate

classifier performance, is defined as the average percentages of correctly classified

observations for all classes. A confusion matrix example that displays the total number of

observations in each cell is shown in Figure 19. The rows of the confusion matrix

correspond to the true class, and the columns correspond to the predicted class. Diagonal

and off-diagonal cells correspond to correctly and incorrectly classified observations,

respectively. The row-normalized row summary displays the percentages of correctly

(i.e., column in blue) and incorrectly (i.e., column in beige) classified observations for each

true class. The classification rate of the example in Figure 18 is therefore the average

percentages of 87.9%, 82.4% and 80.9% (i.e., equals to 83.73%).

34

Figure 19. Confusion matrix and success rate example

B. RANDOM FORESTS CLASSIFICATION

Random forests (RF) is a machine learning algorithm which uses ensemble (or

forest) of decision trees for classification and regression [38]. In random forests, the

collection of predictor variables is randomly restricted in each split to form diverse trees

(i.e., the forests). The maximum number of random splits, termed NumMaxSplits, and the

total number of trees, termed NumTrees, are parameters of random forests that affect

classification performance [39]. We thus examine classification rates obtained for various

maximum numbers of random splits and various total numbers of trees to derive the

optimum parameters for final testing. The mathematical representation of the RF

classification is provided in Appendix B.

1. Optimum Parameters

For training, we used the MATLAB function fitcensemble.m to create the Baseline

and Augmented models. These two models were then used with the function predict.m to

compute ship classification rates for the test set. We compare performance rates of

predictions returned by the trained models based on the three different configurations of

class features. We varied the maximum number of splits NumMaxSplits using the values

in the sequence {30,31,...,3m}. m is such that 3m is no greater than n – 1 [40], where n is

equal to the number of observations in the augmented training set; that is, n equals to

https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/cdi_liege_orbi_oai_orbi_ulg_ac_be_2268_170309
https://search-proquest-com.libproxy.nps.edu/docview/614511298?rfr_id=info%3Axri%2Fsid%3Aprimo#s10
https://www.mathworks.com/help/stats/fitcensemble.html

35

(6,680+16,700) 23,380. The values of NumMaxSplits hence consists of

{1,3,9,27,81,243,729,2187,6561,19683}.

Due to time constraint, only three runs were computed for each configuration. The

average classifications rates versus NumMaxSplits is shown in Figure 20, and the detailed

performance results are provided in Appendix C. We observed that the classification rates

remained relatively unchanged at values of NumMaxSplits greater than 2,000 and 6,000 for

the Baseline model and Augmented model, respectively. We also noted that the 4x3

Augmented model has the best performance among the rest, with an average classification

rate of 69.05%.

The total number of trees also affects the performance of the random forests

algorithm, thus we also varied the total numbers of trees NumTrees to examine the models

performances of the three different image partition configurations. A typical total number

of trees to be generated in random forests algorithm ranges under 300 [41]. We varied the

NumTrees to range from 10 to 500 in this study. The classification rates of correct

classifications versus NumTrees is shown in Figure 21. We observed that classification

rates remained relatively unchanged at values of NumTrees greater than 200 for all cases.

The 4x3 Augmented model was also observed to emerge as the best performer

among the rest, consistent with the performance seen in Figure 20. Note the performance

of the Baseline models are largely similar for the three configurations (i.e., 4x3, 6x8, 8x8).

From the findings, we chose the 4x3 configuration with the maximum number of splits

NumMaxSplits equals to 6,561, and total number of trees NumTrees equals to 200, as the

optimum parameters for another test composing 10 independent runs.

In addition, we observed that the image partition configuration which has the least

segments in our tests, provided the best classification rates. We hypothesized that fewer

segments in the image partitions may be less sensitive to orientation changes of images,

hence producing better classification rates. Considering this behavior, we investigated the

2x2 image partition configuration, which has even fewer segments than the 4x3

configuration, to determine if the classification performance peaks somewhere near our

selected 4x3 configuration.

https://www.researchgate.net/post/How_to_determine_the_number_of_trees_to_be_generated_in_Random_Forest_algorithm

36

Figure 20. Classification rates vs. number of maximum splits

Figure 21. Classification rates vs. number of trees

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Num of Splits 10 4

0

20

40

60

80

100

C
la

ss
ifi

ca
tio

n
R

at
e

%

Classification Rate vs Number of Splits (Trees: 200)

Baseline(4x3)

Baseline(6x8)

Baseline(8x8)

Augmented(4x3)

Augmented(6x8)

Augmented(8x8)

X 6561
Y 69.05

0 50 100 150 200 250 300 350 400 450 500

Num of Trees

30

40

50

60

70

C
la

ss
ifi

ca
tio

n
R

at
e

%

Classification Rate vs Number of Trees (MaxSplits= 2187)

Baseline(4x3)

Baseline(6x8)

Baseline(8x8)

Augmented(4x3)

Augmented(6x8)

Augmented(8x8)

X 200
Y 58.27

37

2. Test Results

A separate test consisting of 10 independent runs was conducted using the 4x3 and

2x2 configurations with optimum parameters listed in Table 4.

Table 4. Optimum parameters

Parameters Configuration
4x3 2x2

NumMaxSplits 6,561 6,561
NumTrees 200 200

The performance of the two configurations were computed over 10 independent

runs (i.e., training set and test set are independently generated for each run), and we

observed that the Augmented model for the 4x3 and 2x2 configurations achieved an average

classification rates at about 70% and 65%, respectively, and the Baseline model only

achieved at about 32% and 27% , respectively, listed in Table 5. The detailed results are

provided in Appendix C. Note the close to 40% improvement in classification rate

performance between the Baseline model and the Augmented model for both the 4x3 and

2x2 configurations, tabulated in Table 5. This improvement demonstrated the ability of

using augmented synthetic images to improve ship classification rate performance

Since both the 4x3 Augmented and 2x2 Augmented attained better classification rate

as compared with the 6x8 Augmented and 8x8 Augmented, we can thus infer that fewer

segments used in the image partitioning stage improves classification rates. Collective

results from Figure 20, Figure 21 and Table 5 showed that the 4x3 configuration is still a

better performer than the 2x2 configuration. These results indicate that the optimal number

of segments in the image partitions is closer to the 4x3 configuration.

Table 5. Classification rates results

Run Classification Rate
4x3 Baseline 4x3 Augmented 2x2 Baseline 2x2 Augmented

Average 32.4097 69.7295 27.4707 65.3488
95% C.I. Lower 32.3124 69.6268 27.3832 65.2369
95% C.I. Upper 32.5190 69.8147 27.5597 65.4738

38

3. Classifier Strength

We observed that Classes 1, 3, and 6 (i.e., container ships, cargo ships, and sailing

vessels) have the highest classification rates for the 4x3 and 2x2 Augmented models, as

illustrated by the confusion matrices example shown in Figure 22. The confusion matrices

generated from all tests are provided in Appendix C. Ten independent runs of testing for

these three ship classes using the 4x3 Augmented (best performing) model attained an

average classification rate of about 82%, as listed in Table 6.

Figure 22. Confusion matrices example

Table 6. Classification rates for classes 1,3 and 6 (10 runs)

Classification Rate (Classes: 1, 3, 6 Only)
4x3 Augmented
Class 6 3 1
Average Per Class 82.5340 82.0235 81.9181
Overall Average 82.1586
95% C.I. Lower 82.0702
95% C.I. Upper 82.2506

C. RESULTS SUMMARY

The 4x3 Augmented configuration was identified to be the best performing

configuration in our test, with classification rates performance at close to 70% for eight

ship classes, and at over 80% accuracy for the three ships classes (i.e., container ships,

cargo ships, and sailing vessels).

39

VI. CONCLUSIONS AND FUTURE WORK

This study considered the ship classification problem under hazy conditions. The

lack of readily available real-life data calls for the use of synthetic hazy images to examine

the impact of haze on ship classification. This thesis implements the atmospheric scattering

model to generate a dataset of synthetic hazy images to augment the original dataset

comprising haze-free ship images. Next, it proposes using (1) the count of CPs located

within the image partitions; and (2) the higher order color moments information, as class

features for ship classification. Finally, it demonstrates the ability of using a dataset

augmented with synthetic hazy ship images to improve ship classification rate performance

using RF classification.

Results show that (1) the average ship classification rate is about 40% higher when

the model is trained using a dataset augmented with synthetic hazy ship images; and (2)

the classifier can classify for ship classes such as container ships, cargo ships, and sailing

vessels, with an 80% average accuracy rates.

Considerations for future work could include collecting ship images under real hazy

conditions and validating results obtained in this study using the collected field data. Future

improvements could also include different class features such as characterization of the

ship images into its two-dimensional power spectrum representation, which could

potentially improve classification rates for other ship classes.

40

THIS PAGE INTENTIONALLY LEFT BLANK

41

APPENDIX A. MATLAB CODES

A. TRANSMISSION.M

% Codes in this function are adapted from Pseudo Codes found in

% [15] F. Guo, J. Tang, and H. Peng, “A Markov Random Field Model

% for the Restoration of Foggy Images,” International Journal of

% Advanced Robotic Systems, vol. 11, no. 6, p. 92–,

% Jun. 2014, doi: 10.5772/58674.

% NOTE: This function requires the GCO-v3.0 library,

% Developed by O.Veksler and A. Delong, and

% Source at https://vision.cs.uwaterloo.ca/code/

% Input: RGB image x

% Output: Returns a column vector of all labels.

function Label = transmission(x)

 X = rgb2gray(x);

 g = 1;

 [M,N] = size(X);

 NumSites = N*M;

 NumLabels = 32;

% figure(3*(cnt-1)+1);

% imshow(x);

% text = strcat(‘Original Clear Image (‘,num2str(M),’x’, num2str(N),’)’);

% title(text);

 Data = reshape(X,[],1);

 h = GCO_Create(NumSites,NumLabels);

 % Compute Data Term

 for i=1:NumLabels

 for j = 1:NumSites

 L(i)= (i-1)/(NumLabels-1)*255;

 DataTerm(i,j) = abs(Data(j) - L(i));

 end

 end

 GCO_SetDataCost(h, DataTerm);

 % Compute Smooth Term

 for i=1:NumLabels

 for j = 1:NumLabels

 SmoothTerm(i,j) = g*abs((i)-j);

 end

42

 end

 GCO_SetSmoothCost(h,SmoothTerm);

 GCO_Expansion(h);

 Label = GCO_GetLabeling(h);

 % Show Initial Transmission map

% t = 255 - (Label - 1)*8;

% t = uint8(t);

% I = reshape(t,M,N);

% imshow(I);

% text = strcat(‘Generated Depth Map (‘,num2str(M),’x’, num2str(N),’)’);

% title(text);

end

B. SETHAZE.M

% Date:26-08-2020(DD-MM-YYYY) %

% This function is written by

% TANG JUN WEN (Naval Postgraduate School. CA, Monterey, USA)

% and this is free to use. email: junwen.tang.sn@nps.edu

% Using Atmospheric Scattering Model to Set Haze in Synthetic Image

function [HazyImage, J] = setHaze(x, tx, beta, Lamda, h, nx)

% Input:

% Haze-free RGB image, x

% Label values in transmission map, tx

% Extinction coefficient, beta

% Wavelength, Lamda, equals 1 for hazy and foggy scenes

% Flag, h equals 0 for homogeneous, h = 1 for heterogeneous

% FBM noise image, nx

% Output:

% Rendered RGB synthetic hazy image, HazyImage

% Single dimensional vector of the reshaped RGB image, J

 Airlight = 255; % Global airlight coefficients

 lamda = Lamda;

 hetereogenous = h; % 0 for homogenous, 1 for hetereogenous

 X = double(reshape(x,[],3)); % reshape into 3 vectors, into R,G,B

 tx = exp(-tx*(beta)*Lamda);

 % Constant

 t0 = 0.1;

43

 if hetereogenous == 1

 %tx_lamda = exp(-tx*beta*lamda);

 % Heterogeneous Hazy Image

 max_tx = max(tx,t0);

 J = (X - Airlight).*(max_tx)+ Airlight;

 H = J + nx;

 else

 % Homogeneous Hazy Image

 J = X.*tx;

 H = J + Airlight*(1-tx);

 end

 H = uint8(round(H,0));

 [M,N,D] = size(x);

 % Reshape the RGB vectors into a RGB image of original dimension

 HazyImage = reshape(H,M,N,D);

 % Show Hazy Image

% imshow(HazyImage);

%

% if hetereogenous == 1

% text = strcat(‘Heterogenous Synthetic Hazy Image: Beta=‘,num2str(beta),...

% ‘, Lamda=‘, num2str(lamda));

% else

% text = strcat(‘Homogenous Synthetic Hazy Image: Beta=‘,num2str(beta),...

% ‘, Lamda=‘, num2str(lamda));

% end

% title(text);

end

C. FBM.M

% Date:26-08-2020(DD-MM-YYYY) %

% This function is written by

% TANG JUN WEN (Naval Postgraduate School. CA, Monterey, USA)

% and this is free to use. email: junwen.tang.sn@nps.edu

% Generate Fractional Brown Motion (FBM) Noise Image

function image = FBM(N,M)

% Input: Required dimensions of FBM noise image, NxM

% Output: Returns FBM noise image of NxM dimension, image

% Dimenision of each FBM noise tiles: 256x256

n = 256;

m = 256;

im = zeros(n, m);

44

% Generate FBM tiles with 256 x 256 dimension

im1 = FBM_noise(im);

im2 = FBM_noise(im);

im3 = FBM_noise(im);

im4 = FBM_noise(im);

im5 = FBM_noise(im);

im6 = FBM_noise(im);

im7 = FBM_noise(im);

im8 = FBM_noise(im);

im9 = FBM_noise(im);

im10 = FBM_noise(im);

% Concatenate into 512 x 256

image1a = cat(1,im1,im2);

image2a = cat(1,im3,im4);

image1b = cat(1,im5,im6);

image2b = cat(1,im7,im8);

image3a = cat(1,im1’,im10’);

image3b = cat(1,im3’,im8’);

image4a = cat(1,im2’,im7’);

image4b = cat(1,im4’,im6’);

image5a = cat(1,im9,im10);

image5b = cat(1,im5’,im9’);

% Concatenate into 1024 x 256

image1 = cat(1,image2a,image1b);

image2 = cat(1,image1a,image2b);

image3 = cat(1,image3a,image4b);

image4 = cat(1,image4a,image5b);

image5 = cat(1,image2a,image5a);

image6 = cat(1,image1a,image4b);

image7 = cat(1,image5a,image5b);

image8 = cat(1,image2b,image3b);

% Concatenate into 1024 x 2048 baseline FBM noise image

I = cat(2,image1,image2,image3,image4,image5,image6,image7,image8);

image = imgaussfilt(I, 5);

% Crop FBM baseline noise image to required dimension of NxM

image = image(1:N,1:M); % Output FBM Noise image to required dimensions

end

D. FBM_NOISE.M

% Codes in this function are adapted from

% [16] “Noise Fractals and Clouds « null program.”
% https://nullprogram.com/blog/2007/11/20/ (accessed Jul. 25, 2020).

% Generate FBM image

45

function im = FBM_noise(im)

 [n, m] = size(im);

 i = 0;

 w = sqrt(n*m);

 while w > 3

 i = i + 1;

 d = interp2(randn(n, m), i-1, ‘spline’);

 im = im + i * d(1:n, 1:m);

 w = w - ceil(w/2 - 1);

 end

end

E. GENERATEHAZYIMAGE.M

% Date:26-08-2020(DD-MM-YYYY) %

% This function is written by

% TANG JUN WEN (Naval Postgraduate School. CA, Monterey, USA)

% and this is free to use. email: junwen.tang.sn@nps.edu

% Generate Homogeneous and Heterogeneous Hazy Images

clc;

FBM_image = FBM(1024,2048); % Generate Baseline FBM Noise Image once

for class_num = 1:8

close all;

clearvars -except class_num FBM_image;

folder = ‘C:\Users\admin\Documents\MATLAB\Thesis\Random Forest\Ship Images Database

Flipped & Hazy\’;

 switch class_num

 case 1

 subfolder = ‘W0_1’;

 class_name = ‘Container Ship’;

 case 2

 subfolder = ‘W2_1’;

 class_name = ‘Cruise’;

 case 3

 subfolder = ‘W4_1’;

 class_name = ‘Roro Cargo’;

 case 4

 subfolder = ‘W5_1’;

 class_name = ‘Tug’;

 case 5

 subfolder = ‘W8_1’;

 class_name = ‘Yacht’;

 case 6

 subfolder = ‘W9_1’;

46

 class_name = ‘Sailing Vessel’;

 case 7

 subfolder = ‘W17_1’;

 class_name = ‘Warship’;

 case 8

 subfolder = ‘W22_1’;

 class_name = ‘Fishing Vessel’;

 end

 folder = strcat(folder,subfolder,’\’);

 listing = dir (folder);

 ll = length(listing);

 start = 1;

 limit = ll;

 for ii = start:limit

 f = listing(ii).name;

 [~,filename,ext] = fileparts(f);

 if ext == ‘.jpg’

 file_str = strcat(folder,f);

 x = imread(file_str);

 if ndims(x) == 3 % check if image is RGB, omit if its not

 % Generate FBM Noise Image

 [n,m,~] = size(x);

 FBM_noise = FBM_image(1:m,1:n);

 k = 0.15;

 nx = k* double(reshape(FBM_noise,[],1));

 % Generate transmission map & labels

 Label = transmission(x);

 tx = (double(Label)) / 32;

 beta = 1.96; % extinction coefficient = 1.96 for visibility distance ~2-

4km

 lamda = 1;

 % Generate homogenenous image

 hetereogenous = 0; % 0 for homogenous

 [HazyImage, ~] = setHaze(x,tx,beta,lamda,cnt,hetereogenous, nx);

 savefilename = strcat(folder,filename,’_homo’,ext);

 imwrite(HazyImage,savefilename); % Saving hazy images

 % Generate hetereogenous image

 hetereogenous = 1; %1 for hetereogenous

 [HazyImage, ~] = setHaze(x,tx,beta,lamda,cnt,hetereogenous, nx);

 savefilename = strcat(folder,filename,’_heter’,ext);

 imwrite(HazyImage,savefilename); % Saving hazy images

47

 clear x HazyImage tx Label FBM_noise nx;

 clc;

 end

 end

 end

 fprintf(‘Ended, Class_Num:%d\n’,class_num);

end

F. DETECTSHIPANDPARTITION.M

% Date:26-08-2020(DD-MM-YYYY) %

% This function is written by

% TANG JUN WEN (Naval Postgraduate School. CA, Monterey, USA)

% and this is free to use. email: junwen.tang.sn@nps.edu

% Detect Ship Structure Boundaries & Perform Image Partitioning

% Inputs:

% Original RGB Image = Original_Image

% Intended Number of Horizontal Segments = NumRowSegments

% Intended Number of Vertical Segments = NumColSegments

% Outputs:

% Cropped Image with borders & text at bottom of image = I

% Binary Image of Cropped Image = binaryImage

% Points depicting area of detected ship = FourCorners

% FourCorners = [topRow, bottomRow, leftColumn, rightColumn]

% row_lines = partition horizontal lines indices

% col_lines = partition vertical lines indices

function [I, binaryImage, FourCorners, row_lines, col_lines] = ...

 DetectShipAndPartition (Original_Image, NumRowSegments, NumColSegments)

 conn = 80; % 80 pixels, for exclusion of perimeters with less than 80 pixels of info

 N = NumRowSegments; % Number of Horizontal partition, 3

 M = NumColSegments; % Number of Vertical partition, 4

 crop = 10; % pixels from border to crop, to remove unnecessary borders

 [h,w,~]=size(Original_Image); % w = width, h = height

 crop_rect = [crop crop w-2*crop h-2*crop];

 I = imcrop(Original_Image,crop_rect);

 results = ocr(I);

 %wording = results.WordBoundingBoxes(2:end,:);

 wording = results.WordBoundingBoxes;

 % Cropping words portion at bottom of image

 if ~isnan(wording)

 %fprintf(‘Wordings in Image\n’);

 [h1,w1,~]=size(I); % w = width, h = height

 wording_list = [];

48

 [t,~] = size(wording);

 for k = 1:t

 % Omit cropping if the wording is at first row & wording occurs

 % above 20% from image bottom

 twentypercent = h1 - floor(0.2*h1);

 if ((wording(k,2) ~= 1) && (wording(k,2)> twentypercent))

 wording_list = [wording_list;wording(k,:)];

 end

 end

 if ~isnan(wording_list) % check if there are wordings for cropping

 word_vert = min(wording_list(:,2));

 word_crop_rect = [1 1 w1 word_vert];

 I = imcrop(I,word_crop_rect);

 end

 end

 img = rgb2gray(I);

 BW = edge(img,’Sobel’); % locating edges / lines in gray image

 BW_out = bwareaopen(imfill(BW,’holes’),conn); % fill areas with more than “Conn” of

pixels

 % Finding all the points in images in ‘white’, i.e., lines/edges

 binaryImage = BW_out;

 [rows, columns] = find(binaryImage);

 topRow = min(rows); % Min X-value

 bottomRow = max(rows); % Max X-value

 leftColumn = min(columns);% Min Y-value

 rightColumn = max(columns); % Max Y-value

 % Output

 FourCorners = [topRow, bottomRow, leftColumn, rightColumn];

 % Partition Detected Area in Image into N rows x M coloumns

 col_dimension = bottomRow - topRow;

 row_dimension = rightColumn - leftColumn;

 horizontal_part_width = col_dimension / N;

 vertical_part_width = row_dimension / M;

 for r = 1:N-1

 row_lines(r) = topRow + r*horizontal_part_width;

 end

 for c = 1:M-1

 col_lines(c) = leftColumn + c*vertical_part_width;

 end

end

49

G. GENERATECORNERPOINTS.M

% Date:26-08-2020(DD-MM-YYYY) %

% This function is written by

% TANG JUN WEN (Naval Postgraduate School. CA, Monterey, USA)

% and this is free to use. email: junwen.tang.sn@nps.edu

% Generate corner points in image.

% Input: RGB Image, x

% Output: Image with Corner Points(CPs) inserted, Image_CP

% Output: Computed Corner Points (CPs) in X-Y coordinates.

function [Image_CP,points] = GenerateCornerPoints(x)

 I = rgb2gray(x);

 hx = [-1 0 1;

 -2 0 2;

 -1 0 1];

 hy = [-1 -2 -1;

 0 0 0;

 1 2 1];

 [N,M] = size(I);

 Ix = conv2(I,hx);

 Ix = Ix(2:N+1,2:M+1);

 Iy = conv2(I,hy);

 Iy = Iy(2:N+1,2:M+1);

 W = [1 1 1 1 1;

 1 1 1 1 1;

 1 1 1 1 1;

 1 1 1 1 1;

 1 1 1 1 1];

 Gx = conv2(Ix.*Ix, W);

 Gy = conv2(Iy.*Iy, W);

 Gxy = conv2(Ix.*Iy, W);

 Gx = Gx(3:N+2, 3:M+2);

 Gy = Gy(3:N+2, 3:M+2);

 Gxy = Gxy(3:N+2, 3:M+2);

 for n1 = 1:N

 for n2 = 1:M

 G = [Gx(n1,n2) Gxy(n1,n2);

 Gxy(n1,n2) Gy(n1,n2)];

 lamda(n1,n2) = min(eig(G));

50

 end

 end

 % Set threshold to be 15% of the maximum value from the min eigenvalues

 max_lamda = max(max(lamda));

 threshold = max_lamda*0.15;

 % Locate Corner Points

 points = [];

 for n1 = 1:N

 for n2 = 1:M

 if (lamda(n1,n2)>threshold) && (lamda(n1,n2)<=max_lamda)

 CP = [n2, n1];

 points = [points; CP];

 end

 end

 end

 % Show Images

 Image_CP = insertMarker(x, points,’x’,’color’,’m’,’size’,1);

end

H. COUNTINGCPS.M

% Date:26-08-2020(DD-MM-YYYY) %

% This function is written by

% TANG JUN WEN (Naval Postgraduate School. CA, Monterey, USA)

% and this is free to use. email: junwen.tang.sn@nps.edu

% Count CPs located within partitions

%Inputs:

% CPs = points

% Detected area = topRow, bottomRow, leftColumn, rightColumn

% Partition Rows = row_lines

% Partition columns = col_lines

%Output: Struct data

% data.CPs_partition = [topleft(x,y),bottomright(x,y)] of

% each partition (in sequence from left-to-right, then top-to-bottom)

% data.CPs_index = all indices of CPs within each corresponding partition

% data.CPs_count = number of CPs in each corresponding partition

function data = CountingCPs...

 (points,topRow,bottomRow,leftColumn,rightColumn,...

 row_lines,col_lines)

 % Counting CPs

 row_rng = [topRow, row_lines, bottomRow]; % Y-values

 col_rng = [leftColumn, col_lines, rightColumn]; % X-values

51

 partition_array = [];

 % Building from top to bottom

 for n = 1:length(row_rng)-1

 % Building from left to right

 for m = 1:length(col_rng)-1

 % Coordinates of topleft(x,y) & bottomright(x,y) of partition

 partition = [col_rng(m),row_rng(n),col_rng(m+1),row_rng(n+1)];

 partition_array = [partition_array;partition];

 end

 end

 [K,~] = size(partition_array);

 [P,~] = size(points);

 for k = 1:K % check for all partitions

 CPs_index = [];

 data(k).CPs_partition = partition_array(k,:);

 for p = 1:P % running through all CPs

 % current CP

 coord = [points(p,1),points(p,2)];

 topleft = [partition_array(k,1),partition_array(k,2)];

 bottomright = [partition_array(k,3),partition_array(k,4)];

 % checking if current CP is within current partition

 if ((coord(1)>=topleft(1)) && (coord(2)>=topleft(2))...

 && (coord(1)<bottomright(1)) && (coord(2)<bottomright(2)))

 CPs_index = [CPs_index,p];

 end

 end

 data(k).CPs_index = CPs_index;

 data(k).CPs_count = length(CPs_index);

 end

end

I. EXTRACTCOLORMOMENTS.M

% Date:26-08-2020(DD-MM-YYYY) %

% This function is written by

% TANG JUN WEN (Naval Postgraduate School. CA, Monterey, USA)

% and this is free to use. email: junwen.tang.sn@nps.edu

% Generate corner points in image.

% Extract Higher Order Color Moments of Ship Structure

%Inputs:

% Original Image

% Detected area = topRow, bottomRow, leftColumn, rightColumn

% Partition Rows = row_lines

% Partition columns = col_lines

%Output: Struct colorMoments

52

% colorMoments.mean = [Mean_R, Mean_G, Mean_B]

% colorMoments.var = [Variance_R, Variance_G, Variance_B]

% colorMoments.skewness = [Skewness_R, Skewness_G, Skewness_B]

% colorMoments.kurtosis = [Kurtosis_R, Kurtosis_G, Kurtosis_B]

function colorMoments = ExtractColorMoments (Original_Image, topRow, bottomRow,

leftColumn, rightColumn, row_lines, col_lines)

 I = Original_Image;

 r1 = topRow;

 r2 = bottomRow;

 c1 = leftColumn;

 c2 = rightColumn;

 partition_image = I(r1:r2,c1:c2,:);

% figure;

% imshow(partition_image);

 block = reshape(partition_image,[],3);

 block_double = double(block);

 % Mean values for RGB

 currentMean = mean(block_double);

 % Variance values for RGB

 currentVar = std(block_double);

 % Skewness values for RBG

 currentSkewness = skewness(block_double,1);

 % Bias corrected values for RGB

 currentKurtosis = kurtosis(block_double,0);

 colorMoments.mean = currentMean;

 colorMoments.var = currentVar;

 colorMoments.skewness = currentSkewness;

 colorMoments.kurtosis = currentKurtosis;

end

J. RF50MEAN.M

% Date:26-08-2020(DD-MM-YYYY) %

% This codes are written by

% TANG JUN WEN (Naval Postgraduate School. CA, Monterey, USA)

% and this is free to use. email: junwen.tang.sn@nps.edu

% Compute classification rates for 10 independent runs and

% calculates the average classification rates and 95% confidence level

53

% for 4x3 configuration models

clear all;

clc;

Baseline_Success = [];

Augmented_Success = [];

% Collect success rates for 10 runs

for rr = 1:10

 [meanSuccess, meanSuccess2] = RF50Mean();

 Baseline_Success = [Baseline_Success;meanSuccess];

 Augmented_Success = [Augmented_Success; meanSuccess2];

end

% Average of 10 runs

meanBaseline_Success = mean(Baseline_Success)

meanAugmented_Success = mean(Augmented_Success)

% 95% Confidence Level

ci_aug = bootci(2000,@mean,Augmented_Success)

ci_base = bootci(2000,@mean,Baseline_Success)

%

function [meanSuccess, meanSuccess2] = RF50Mean()

Percent=‘50%: ‘;

N = 4; M = 3;

load(‘C:\Users\admin\Documents\MATLAB\Thesis\Random

Forest\Workspace\N4M3_Baseline_Only_6680.mat’)

load(‘C:\Users\admin\Documents\MATLAB\Thesis\Random

Forest\Workspace\N4M3_Flipped_Hazy_Only_33400.mat’)

%

Xtrain_Baseline = A;

Ytrain_Baseline = B;

cvpart50 = cvpartition(HB,’holdout’,0.5);

Xtrain_50 = HA(training(cvpart50),:);

Ytrain_50 = HB(training(cvpart50),:);

Xtrain_New = [Xtrain_Baseline;Xtrain_50];

Ytrain_New = [Ytrain_Baseline;Ytrain_50];

Xtest_50 = HA(test(cvpart50),:);

Ytest_50 = HB(test(cvpart50),:);

% N4M3 Predictor Estimate

rng(1); % For reproducibility

t = templateTree(‘MaxNumSplits’,6561);

Mdl_50 = fitcensemble(Xtrain_New,Ytrain_New,’Method’,’Bag’,...

54

 ‘NumLearningCycles’,200,’Learners’,t);

Mdl_Baseline = fitcensemble(Xtrain_Baseline,Ytrain_Baseline,’Method’,’Bag’,...

 ‘NumLearningCycles’,200,’Learners’,t);

% N4M3 Confusion Chart for Baseline Model

figure();

Percent=‘50%’;

Ytest_pred_Baseline = predict(Mdl_Baseline,Xtest_50);

cm_Baseline = confusionchart(Ytest_50,Ytest_pred_Baseline,’RowSummary’,’row-

normalized’,’ColumnSummary’,’column-normalized’);

cm =cm_Baseline.NormalizedValues;

diagM = diag(cm);

rowSum = sum(cm,2);

rowpercent = diagM./rowSum;

meanSuccess = mean(rowpercent)*100;

disp = strcat(Percent,’RF Baseline Model: Partitions

(‘,num2str(N),’x’,num2str(M),’),’ ,’MaxSplits:6561, Mean

Success:’,num2str(meanSuccess),’%’);

title(disp);

% Confusion Chart for Augment Model

figure();

Ytest_pred_New = predict(Mdl_50,Xtest_50);

cm_New = confusionchart(Ytest_50,Ytest_pred_New,’RowSummary’,’row-

normalized’,’ColumnSummary’,’column-normalized’);

cm2 =cm_New.NormalizedValues;

diagM2 = diag(cm2);

rowSum2 = sum(cm2,2);

rowpercent2 = diagM2./rowSum2;

meanSuccess2 = mean(rowpercent2)*100;

disp = strcat(Percent,’RF Augmented Model: Partitions (‘,num2str(N),’x’,num2str(M),’), ‘,

‘MaxSplits:6561, Mean Success:’,num2str(meanSuccess2),’%’);

title(disp);

% Sort Classification Rates in Confusion Matrix in Decending Order

cm_Baseline.Normalization = ‘row-normalized’;

sortClasses(cm_Baseline,’descending-diagonal’);

cm_Baseline.Normalization = ‘absolute’;

cm_New.Normalization = ‘row-normalized’;

sortClasses(cm_New,’descending-diagonal’);

cm_New.Normalization = ‘absolute’;

% Clear Unwanted Variables for Storage

clearvars -except meanSuccess meanSuccess2;

end

55

APPENDIX B. RANDOM FORESTS REPRESENTATION

This appendix shows the mathematical representation of the random forests

classification. For further details on random forests algorithm, refer to [42].

A. VARIABLES

The following variables are used:

• Dn is the training set, where Dn = {(X1,Y1),…,(Xn,Yn)},

• n is the size of the training set,

• X is the input random vector,

• Y is the labels vector,

• mn is the classifier trained with Dn,

• M is the number of trees,

• Θ is a distribution of random vector

• θj is a vector of randomly drawn components from Θ with replacement,

• j is an integer, where j=1,2,…,M,

B. CLASSIFICATION

The random forests classifier is acquired through a majority vote, and is given by

[42, p. 9]

, 1 1

11 (; ,) 0.5
(; ,..., ,) .

0

M

n j n
M n M n j

if m x D
Mm x D

otherwise

θ
θ θ =


>= 




∑

https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/cdi_arxiv_primary_1511_05741
https://nps.primo.exlibrisgroup.com/permalink/01NPS_INST/1gqbqb3/cdi_arxiv_primary_1511_05741

56

THIS PAGE INTENTIONALLY LEFT BLANK

57

APPENDIX C. TEST RESULTS

This appendix shows the details of our test results.

A. CLASSIFICATION RATES VS. MAXIMUM NUMBER OF SPLITS

Classification rates results for various values of NumMaxSplits for the Baseline and

Augmented models using the 4x3, 6x8, and 8x8 configurations, as listed in Table 7 to

Table 12.

Table 7. Classification rates vs. NumMaxSplits (4x3 Baseline model)

NumMaxSplits Classification Rates (4x3 Baseline)
Run 1 Run 2 Run 3 Average

1 17.9038 17.8386 17.8038 17.8488
3 19.4039 19.8431 19.4401 19.5624
9 22.5356 22.0322 22.4715 22.3464
27 23.6090 23.4906 23.9835 23.6944
81 25.5124 25.5258 25.6887 25.5757
243 27.3503 27.6172 27.5549 27.5075
729 29.9892 29.9884 29.9508 29.9761
2187 32.4356 32.5673 32.6431 32.5487
6561 32.8655 32.4347 32.9201 32.7401
19683 32.7567 32.7224 32.6397 32.7063

Table 8. Classification rates vs. NumMaxSplits (4x3 Augmented model)

NumMaxSplits Classification Rates (4x3 Augmented)
Run 1 Run 2 Run 3 Average

1 17.4520 17.6417 17.5999 17.5645
3 18.9990 19.3592 19.1342 19.1641
9 22.8990 24.8437 23.7484 23.8304
27 27.0144 27.5420 28.1623 27.5729
81 32.0938 32.6388 33.2653 32.6660
243 36.3662 37.6441 37.8738 37.2947
729 44.2054 45.1723 45.3909 44.9229
2187 56.7003 56.8573 57.7129 57.0902
6561 68.6399 68.6896 69.8142 69.0479
19683 68.8283 68.7895 69.8956 69.1711

58

Table 9. Classification rates vs. NumMaxSplits (6x8 Baseline model)

NumMaxSplits Classification Rates (6x8 Baseline)
Run 1 Run 2 Run 3 Average

1 16.1316 16.1991 16.0408 16.1238
3 19.8715 20.3914 20.3969 20.2199
9 24.0942 24.3974 24.6820 24.3912
27 26.0017 26.7582 26.7978 26.5192
81 27.6440 28.3202 27.9686 27.9776
243 29.4225 30.0610 29.4055 29.6297
729 30.9486 31.1928 30.9102 31.0172
2187 31.9850 32.5427 32.5136 32.3471
6561 32.2083 32.7195 32.0936 32.3405
19683 32.2778 32.1721 31.3497 31.9332

Table 10. Classification rates vs. NumMaxSplits (6x8 Augmented model)

NumMaxSplits Classification Rates (6x8 Augmented)
Run 1 Run 2 Run 3 Average

1 17.7628 18.1385 17.6641 17.8551
3 21.4157 22.0273 21.4153 21.6194
9 24.6488 25.2990 24.6395 24.8624
27 28.3785 28.8549 28.1689 28.4674
81 33.0632 32.3330 32.3103 32.5689
243 37.0746 36.9196 37.0594 37.0179
729 43.7041 43.3386 43.7269 43.5899
2187 53.7327 52.5803 52.8151 53.0427
6561 62.6622 62.1359 62.2069 62.3350
19683 62.6058 61.8908 61.8771 62.1246

59

Table 11. Classification rates vs. NumMaxSplits (8x8 Baseline model)

NumMaxSplits Classification Rates (8x8 Baseline)
Run 1 Run 2 Run 3 Average

1 19.9920 19.7624 19.6965 19.8170
3 21.4902 21.6605 21.8687 21.6731
9 24.3705 23.4309 23.6748 23.8254
27 25.9564 25.2579 25.6076 25.6073
81 28.3662 27.8897 28.4754 28.2438
243 30.3184 29.6362 30.2005 30.0517
729 31.8571 30.7517 31.3772 31.3287
2187 32.2151 31.6541 32.0718 31.9803
6561 31.9828 32.1526 32.1991 32.1115
19683 32.5617 32.0077 32.2345 32.2680

Table 12. Classification rates vs. NumMaxSplits (8x8 Augmented model)

NumMaxSplits Classification Rates (8x8 Augmented)
Run 1 Run 2 Run 3 Average

1 18.4834 18.4939 18.3451 18.4408
3 22.9282 22.9436 20.6255 22.1658
9 25.1384 24.5535 25.4667 25.0529
27 27.8411 27.8149 27.8919 27.8493
81 31.7881 31.6682 32.3194 31.9253
243 35.9558 35.9247 36.4730 36.1178
729 43.1387 42.7503 43.6679 43.1856
2187 53.0255 52.2526 53.3108 52.8630
6561 61.4001 60.7457 61.7346 61.2935
19683 60.8829 60.9646 61.8318 61.2264

60

B. CLASSIFICATION RATES VS. NUMBER OF TREES

Classification rates results for various values of NumTrees for the Baseline and

Augmented models using the 4x3, 6x8, and 8x8 configurations, as listed in Table 13 through

Table 18.

Table 13. Classification rates vs. NumTrees (4x3 Baseline model)

NumTrees Classification Rates (4x3 Baseline)
Run 1 Run 2 Run 3 Average

10 27.8791 28.3209 27.7637 27.9879
50 30.9544 31.8784 31.7095 31.5141
100 32.5096 32.4481 32.0976 32.3518
200 32.1923 33.3772 32.3464 32.6386
300 32.5486 32.7084 32.3349 32.5307
500 32.6009 32.8256 32.7659 32.7308

Table 14. Classification rates vs. NumTrees (4x3 Augmented model)

NumTrees Classification Rates (4x3 Baseline)
Run 1 Run 2 Run 3 Average

10 48.0348 49.6127 49.7942 49.1472
50 55.7382 56.7186 56.3996 56.2855
100 56.7868 57.5240 57.8216 57.3775
200 58.0039 58.5686 58.2314 58.2680
300 58.1648 58.6688 58.4602 58.4313
500 58.1308 58.6174 58.6090 58.4524

61

Table 15. Classification rates vs. NumTrees (6x8 Baseline model)

NumTrees Classification Rates (6x8 Baseline)
Run 1 Run 2 Run 3 Average

10 26.5235 27.6011 26.9870 27.0372
50 31.3486 31.1355 30.7362 31.0734
100 32.2062 32.1085 31.8396 32.0514
200 32.9926 32.4979 32.1584 32.5496
300 33.0560 32.9341 32.6272 32.8724
500 32.7817 32.8806 32.9632 32.8752

Table 16. Classification rates vs. NumTrees (6x8 Augmented model)

NumTrees Classification Rates (6x8 Baseline)
Run 1 Run 2 Run 3 Average

10 44.5495 44.6688 45.5895 44.9359
50 51.2984 52.3137 52.2870 51.9664
100 52.3712 53.6523 52.9231 52.9822
200 52.8980 53.5848 53.8476 53.4435
300 53.2469 54.1889 54.1865 53.8741
500 53.3081 53.9665 54.3984 53.8910

62

Table 17. Classification rates vs. NumTrees (8x8 Baseline model)

NumTrees Classification Rates (8x8 Baseline)
Run 1 Run 2 Run 3 Average

10 26.5034 27.2312 26.4505 26.7284
50 31.4125 30.9257 30.8509 31.0630
100 32.0586 31.4402 32.3097 31.9362
200 32.5453 31.4770 32.1007 32.0410
300 32.6526 32.0549 33.1651 32.6242
500 32.9423 32.3113 32.7355 32.6630

Table 18. Classification rates vs. NumTrees (8x8 Augmented model)

NumTrees Classification Rates (8x8 Baseline)
Run 1 Run 2 Run 3 Average

10 44.1869 45.4754 44.5196 44.7273
50 51.5701 51.9440 51.3877 51.6339
100 52.4426 53.4265 52.6742 52.8478
200 53.3491 54.1040 53.5580 53.6704
300 53.5372 54.3673 53.6775 53.8607
500 53.4567 54.7766 54.0649 54.0994

63

C. TEST RESULTS FOR 4X3 AND 2X2 CONFIGURATION

Classification rates results for all ship classes using the 4x3 and 2x2 configurations,

as listed in Table 19. The results for classes 1, 3, and 6 only are tabulated in Table 20 and

Table 21. The confusion matrices generated from the iterative tests using the 4x3 and 2x2

configurations, are shown in Figure 23 and Figure 24, respectively. The confusion matrices

(for Classes 1,3,6) are shown in Figure 25.

Table 19. Classification rates for all classes (10 runs)

Run Classification Rate
4x3 Baseline 4x3 Augmented 2x2 Baseline 2x2 Augmented

1 32.5372 69.8378 27.5839 65.7286
2 32.4090 69.6105 27.4449 65.2593
3 32.6949 69.6065 27.1784 65.5681
4 32.2558 69.7419 27.3217 65.5215
5 32.4407 69.9280 27.4733 65.4268
6 32.1784 69.8746 27.4180 65.2767
7 32.4178 69.6488 27.4726 65.0384
8 32.6690 69.4171 27.7607 65.2097
9 32.1993 69.8169 27.5007 65.2363
10 32.2947 69.8124 27.5524 65.2227
Average 32.4097 69.7295 27.4707 65.3488
95% C.I. Lower 32.3124 69.6268 27.3832 65.2369
95% C.I. Upper 32.5190 69.8147 27.5597 65.4738

64

Table 20. Average classification rates for classes 1,3,6 only (10 runs)

Run Classification Rate (Classes: 1, 3, 6 Only)
4x3 Baseline 4x3 Augmented

1 58.5228 82.0092
2 59.0838 82.0429
3 59.2173 82.2922
4 59.5443 82.3168
5 59.0809 82.2672
6 58.8555 82.0279
7 59.1970 82.0118
8 59.3180 82.2837
9 58.9767 82.3409
10 58.9974 81.9926
Average 59.0880 82.1586
95% C.I. Lower 58.9337 82.0702
95% C.I. Upper 59.2380 82.2506

Table 21. Classification rates for classes 1,3,6 only

Run Classification Rates 4x3 Augmented
Class 6 Class 3 Class 1

1 85.4886 80.9196 80.2774
2 79.8872 85.8835 81.7010
3 80.8336 80.0606 84.0493
4 86.1303 81.0055 79.7572
5 79.8439 85.7354 80.8336
6 81.0485 80.4508 85.5380
7 86.1303 80.4899 80.2774
8 80.1473 85.1431 80.9626
9 80.4899 79.6272 85.6367
10 85.3405 80.9196 80.1473
Average 82.5340 82.0235 81.9181

65

(a) 4x3 Baseline model – Run 1 (b) 4x3 Augmented model – Run 1

(c) 4x3 Baseline model – Run 2 (d) 4x3 Augmented model – Run 2

(e) 4x3 Baseline model – Run 3 (f) 4x3 Augmented model – Run 3

(g) 4x3 Baseline model – Run 4 (h) 4x3 Augmented model – Run 4

6 7 3 1 4 2 8 5

Predicted Class

6

7

3

1

4

2

8

5

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (4x3),MaxSplits:6561, Mean Success:32.5372%

566

364

350

396

454

354

458

188

823

649

587

447

636

631

612

90

200

854

507

107

320

376

279

77

97

189

569

80

105

164

119

32

14

14

21

415

19

48

29

89

58

97

114

125

467

175

110

45

62

109

130

114

79

480

89

23

55

51

29

49

58

67

304

1481 73.1%

43.9%

36.7%

24.7%

23.9%

21.8%

20.9%

15.2%

26.9%

56.1%

63.3%

75.3%

76.1%

78.2%

79.1%

84.8%

33.5%

66.5%

18.0%

82.0%

31.2%

68.8%

40.6%

59.4%

70.1%

29.9%

37.8%

62.2%

43.3%

56.7%

47.8%

52.2%

6 1 3 4 8 7 2 5

Predicted Class

6

1

3

4

8

7

2

5

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (4x3),MaxSplits:6561, Mean Success:69.8378%

86

51

66

87

88

106

91

72

187

75

142

81

85

118

47

154

83

151

106

149

124

53

48

28

1221

109

66

47

81

70

148

85

116

63

113

131

57

44

98

56

61

127

112

55

79

132

43

91

107

92

54

72

75

72

87

96

112

1251

1618

1676

1672

1567

1268

1398

72.6%

71.8%

70.5%

68.3%

67.6%

65.4%

62.5%

20.1%

27.4%

28.2%

29.5%

31.7%

32.4%

34.6%

37.5%

79.9%

73.8%

26.2%

68.8%

31.2%

67.3%

32.7%

73.9%

26.1%

68.3%

31.7%

69.6%

30.4%

70.0%

30.0%

68.8%

31.2%

6 7 3 1 2 4 8 5

Predicted Class

6

7

3

1

2

4

8

5

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (4x3),MaxSplits:6561, Mean Success:32.409%

560

349

368

446

402

380

443

167

832

686

563

651

480

676

606

93

203

847

475

287

105

326

276

71

84

185

598

107

77

186

108

93

61

95

106

460

117

168

112

15

19

16

19

19

367

42

34

53

52

87

134

104

134

448

103

25

64

63

44

64

50

69

318

1508 74.5%

44.4%

36.4%

25.9%

21.5%

21.2%

19.5%

15.9%

25.5%

55.6%

63.6%

74.1%

78.5%

78.8%

80.5%

84.1%

33.8%

66.2%

17.9%

82.1%

32.4%

67.6%

42.2%

57.8%

38.0%

62.0%

69.1%

30.9%

40.2%

59.8%

45.6%

54.4%

6 3 1 4 7 8 2 5

Predicted Class

6

3

1

4

7

8

2

5

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (4x3),MaxSplits:6561, Mean Success:69.6105%

39

86

56

60

82

84

93

50

159

63

143

136

149

118

75

171

95

84

180

125

107

52

37

47

1208

59

81

45

86

68

79

67

55

1281

60

130

120

52

110

122

124

58

126

123

69

96

77

57

101

124

106

46

64

62

74

89

115

128

1247

1613

1732

1687

1517

1351

74.4%

73.1%

69.7%

68.3%

66.1%

63.2%

62.4%

20.3%

25.6%

26.9%

30.3%

31.7%

33.9%

36.8%

37.6%

79.7%

23.7%

67.9%

32.1%

66.8%

33.2%

74.8%

25.2%

68.9%

31.1%

68.0%

32.0%

68.2%

31.8%

68.3%

31.7%

76.3%

6 7 3 1 4 2 8 5

Predicted Class

6

7

3

1

4

2

8

5

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (4x3),MaxSplits:6561, Mean Success:32.695%

541

325

353

375

421

381

427

188

884

716

564

494

663

683

615

88

187

847

486

118

327

328

296

75

88

208

610

80

117

201

128

17

15

17

22

384

15

37

33

85

57

89

110

106

440

148

109

51

44

80

129

125

105

449

89

20

59

46

33

50

50

68

303

1501 74.1%

47.1%

36.4%

26.4%

22.2%

20.6%

19.6%

15.2%

25.9%

52.9%

63.6%

73.6%

77.8%

79.4%

80.4%

84.9%

34.7%

65.3%

18.4%

81.6%

31.6%

68.4%

40.5%

59.5%

71.1%

28.9%

38.5%

61.5%

41.9%

58.1%

48.2%

51.8%

6 3 1 4 7 8 2 5

Predicted Class

6

3

1

4

7

8

2

5

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (4x3),MaxSplits:6561, Mean Success:69.6066%

36

83

57

58

82

86

84

47

176

71

128

136

159

124

82

174

94

92

183

129

102

51

32

47

1198

60

87

46

85

69

86

70

50

1266

66

125

114

63

114

113

135

59

120

110

64

95

71

56

111

114

120

42

59

52

71

101

106

113

1261

1607

1732

1695

1521

1360

74.4%

73.5%

69.2%

67.5%

66.3%

63.6%

63.0%

20.6%

25.6%

26.5%

30.8%

32.5%

33.7%

36.4%

37.0%

79.4%

23.2%

67.3%

32.7%

66.4%

33.6%

74.6%

25.4%

68.6%

31.4%

68.1%

31.9%

68.3%

31.7%

69.9%

30.1%

76.8%

6 7 3 1 4 2 8 5

Predicted Class

6

7

3

1

4

2

8

5

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (4x3),MaxSplits:6561, Mean Success:32.2559%

548

339

360

382

425

384

422

182

837

698

582

477

657

694

632

95

201

838

482

115

306

317

272

77

95

195

592

83

115

181

109

15

16

20

24

374

27

39

34

94

66

102

106

119

455

173

112

47

57

95

129

127

93

444

104

21

55

41

32

55

60

63

315

1494 73.8%

44.6%

36.0%

25.7%

21.6%

21.3%

19.3%

15.8%

26.2%

55.4%

64.0%

74.3%

78.4%

78.7%

80.7%

84.3%

34.3%

65.7%

17.6%

82.4%

31.9%

68.1%

40.9%

59.1%

68.1%

31.9%

37.1%

62.9%

40.5%

59.5%

49.1%

50.9%

6 3 1 4 7 8 2 5

Predicted Class

6

3

1

4

7

8

2

5

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (4x3),MaxSplits:6561, Mean Success:69.742%

36

90

61

60

83

84

92

53

168

70

140

142

160

115

74

174

91

82

183

128

113

49

32

46

1209

64

88

39

85

62

81

67

46

1284

64

123

119

65

104

114

122

52

129

112

69

107

71

60

102

117

116

39

62

59

73

91

102

112

1248

1614

1732

1692

1516

1363

74.4%

73.3%

69.8%

68.5%

66.1%

63.8%

62.4%

20.3%

25.6%

26.7%

30.2%

31.5%

33.9%

36.2%

37.6%

79.7%

23.9%

67.1%

32.9%

66.7%

33.3%

75.0%

25.0%

69.6%

30.4%

68.5%

31.5%

68.0%

32.0%

69.9%

30.1%

76.1%

66

(i) 4x3 Baseline model – Run 5 (j) 4x3 Augmented model – Run 5

(k) 4x3 Baseline model – Run 6 (l) 4x3 Augmented model – Run 6

(m) 4x3 Baseline model – Run 7 (n) 4x3 Augmented model – Run 7

(o) 4x3 Baseline model – Run 8 (p) 4x3 Augmented model – Run 8

6 7 3 1 4 2 8 5

Predicted Class

6

7

3

1

4

2

8

5

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (4x3),MaxSplits:6561, Mean Success:32.4408%

566

356

370

381

442

377

444

180

882

738

588

492

673

714

651

79

180

823

481

126

304

301

258

77

83

192

591

74

106

190

124

18

16

16

27

375

13

34

33

91

58

85

104

114

444

181

100

44

39

81

117

121

105

446

94

20

51

37

29

49

51

52

296

1516 74.9%

47.0%

35.4%

25.6%

21.7%

20.8%

19.4%

14.8%

25.1%

53.0%

64.6%

74.4%

78.3%

79.2%

80.6%

85.2%

34.1%

65.9%

17.9%

82.1%

32.2%

67.8%

41.1%

58.9%

70.5%

29.5%

37.7%

62.3%

42.6%

57.4%

50.6%

49.4%

6 3 1 4 7 8 2 5

Predicted Class

6

3

1

4

7

8

2

5

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (4x3),MaxSplits:6561, Mean Success:69.9281%

37

87

60

61

81

80

91

48

183

74

130

143

153

122

77

177

96

90

184

122

107

53

43

47

1196

58

83

49

80

71

88

59

47

1293

56

131

106

58

100

114

128

58

130

120

65

97

63

61

99

109

108

38

53

56

70

86

106

115

1266

1615

1733

1698

1533

1358

74.4%

73.6%

69.1%

69.0%

66.8%

63.5%

63.3%

20.2%

25.6%

26.4%

30.9%

31.0%

33.2%

36.5%

36.7%

79.8%

23.5%

67.0%

33.0%

66.6%

33.4%

74.3%

25.7%

69.9%

30.1%

68.4%

31.6%

69.3%

30.7%

70.7%

29.3%

76.5%

6 7 3 1 2 4 8 5

Predicted Class

6

7

3

1

2

4

8

5

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (4x3),MaxSplits:6561, Mean Success:32.1784%

568

351

397

447

395

397

447

198

845

677

569

640

492

675

627

83

192

849

464

305

128

332

277

68

87

205

584

120

77

192

115

88

60

95

113

459

115

160

107

19

19

15

21

18

360

41

36

39

44

89

125

96

117

435

93

22

60

47

34

53

48

63

298

1508 74.5%

45.1%

36.5%

25.3%

21.5%

20.8%

19.0%

14.9%

25.5%

54.9%

63.5%

74.7%

78.5%

79.2%

81.0%

85.1%

33.4%

66.6%

17.9%

82.1%

32.3%

67.7%

40.3%

59.7%

38.3%

61.7%

68.1%

31.9%

41.9%

58.1%

47.7%

52.3%

6 3 1 4 7 8 2 5

Predicted Class

6

3

1

4

7

8

2

5

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (4x3),MaxSplits:6561, Mean Success:69.8746%

41

84

62

59

77

87

92

45

170

69

141

143

152

109

82

165

92

82

172

118

97

49

34

44

1202

60

93

45

87

71

89

67

50

1287

60

127

114

61

107

111

136

57

126

126

66

101

79

53

97

111

109

43

62

58

68

92

107

119

1266

1608

1729

1694

1532

1364

74.3%

73.4%

69.4%

68.6%

66.8%

63.8%

63.3%

20.6%

25.7%

26.6%

30.6%

31.4%

33.2%

36.2%

36.7%

79.4%

23.8%

67.6%

32.4%

67.7%

32.3%

74.5%

25.5%

69.0%

31.0%

67.9%

32.1%

68.9%

31.1%

69.8%

30.2%

76.2%

6 7 3 1 2 4 8 5

Predicted Class

6

7

3

1

2

4

8

5

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (4x3),MaxSplits:6561, Mean Success:32.4178%

560

353

363

441

396

393

447

200

857

704

588

651

479

686

629

81

182

842

490

289

128

310

270

67

89

192

581

107

73

189

112

89

56

89

105

467

110

170

100

17

21

19

26

19

374

36

37

43

50

79

122

108

129

439

101

19

60

50

32

56

43

72

304

1509 74.5%

45.7%

36.2%

25.2%

21.8%

21.6%

19.1%

15.2%

25.5%

54.3%

63.8%

74.8%

78.2%

78.4%

80.9%

84.8%

33.8%

66.2%

17.9%

82.1%

32.5%

67.5%

41.2%

58.8%

39.4%

60.6%

68.1%

31.9%

41.0%

59.0%

47.8%

52.2%

6 3 1 4 7 8 2 5

Predicted Class

6

3

1

4

7

8

2

5

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (4x3),MaxSplits:6561, Mean Success:69.6489%

36

90

58

61

75

92

91

46

177

68

141

142

150

116

76

176

92

81

183

122

105

49

32

49

1200

57

88

45

89

71

83

70

54

1273

57

117

114

60

110

107

127

59

128

111

65

98

74

62

104

123

119

45

59

50

71

99

101

129

1255

1613

1734

1690

1526

1355

74.5%

73.3%

69.3%

67.9%

66.5%

63.4%

62.7%

20.3%

25.5%

26.7%

30.7%

32.1%

33.5%

36.6%

37.2%

79.7%

23.8%

67.4%

32.6%

66.9%

33.1%

74.6%

25.4%

69.2%

30.8%

68.5%

31.5%

67.8%

32.3%

69.4%

30.6%

76.2%

6 7 3 1 4 2 8 5

Predicted Class

6

7

3

1

4

2

8

5

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (4x3),MaxSplits:6561, Mean Success:32.6691%

541

330

353

381

430

377

445

196

848

698

571

491

646

674

627

89

210

863

486

117

306

335

277

65

79

209

611

68

112

193

111

14

19

13

21

377

23

36

38

84

59

80

104

117

460

162

99

44

58

86

120

126

113

448

99

23

61

49

41

55

48

70

304

1510 74.6%

45.2%

37.1%

26.5%

21.8%

21.5%

19.5%

15.2%

25.4%

54.8%

62.9%

73.5%

78.2%

78.5%

80.5%

84.8%

34.6%

65.4%

17.8%

82.2%

32.2%

67.8%

42.2%

57.8%

69.7%

30.3%

39.5%

60.5%

41.0%

59.0%

46.7%

53.3%

6 3 1 4 7 8 2 5

Predicted Class

6

3

1

4

7

8

2

5

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (4x3),MaxSplits:6561, Mean Success:69.4172%

34

81

61

63

79

87

95

51

174

65

139

142

170

115

81

174

96

84

189

126

106

58

33

47

1197

59

85

42

87

66

92

65

51

1271

56

116

117

56

109

126

129

52

122

123

62

104

80

59

113

112

106

45

57

56

74

94

112

117

1251

1606

1725

1678

1520

1358

74.1%

72.7%

69.1%

67.8%

66.2%

63.5%

62.5%

20.7%

25.9%

27.3%

30.9%

32.2%

33.8%

36.5%

37.5%

79.3%

23.7%

66.8%

33.2%

66.2%

33.8%

74.4%

25.6%

69.3%

30.7%

67.9%

32.1%

68.1%

31.9%

69.3%

30.7%

76.3%

67

(q) 4x3 Baseline model – Run 9 (r) 4x3 Augmented model – Run 9

(s) 4x3 Baseline model – Run 10 (t) 4x3 Augmented model – Run 10

Figure 23. 4x3 configuration results (10 runs)

6 7 3 1 2 4 8 5

Predicted Class

6

7

3

1

2

4

8

5

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (4x3),MaxSplits:6561, Mean Success:32.1994%

569

361

370

446

398

392

451

196

818

678

556

632

479

647

618

86

192

839

471

318

106

339

264

62

86

185

605

117

84

189

115

81

65

98

107

454

121

181

114

15

18

17

25

26

366

36

38

56

60

91

134

89

132

448

96

18

67

59

39

56

46

63

304

1511 74.6%

43.6%

36.0%

26.2%

21.2%

21.1%

19.5%

15.2%

25.4%

56.4%

64.0%

73.8%

78.8%

78.9%

80.5%

84.8%

33.6%

66.4%

17.7%

82.3%

32.1%

67.9%

41.9%

58.1%

37.2%

62.8%

67.7%

32.3%

40.5%

59.5%

46.6%

53.4%

6 3 1 4 7 8 2 5

Predicted Class

6

3

1

4

7

8

2

5

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (4x3),MaxSplits:6561, Mean Success:69.8169%

41

83

55

62

74

89

100

46

169

70

132

150

161

117

85

165

92

87

177

119

108

53

34

47

1193

59

84

52

84

61

76

74

54

1274

71

127

108

57

100

103

130

54

123

126

66

102

76

61

105

113

99

40

58

58

77

102

97

109

1258

1617

1752

1697

1529

1358

75.3%

73.6%

68.9%

67.9%

66.6%

63.5%

62.9%

20.1%

24.7%

26.4%

31.1%

32.1%

33.4%

36.5%

37.1%

79.9%

23.8%

67.5%

32.5%

67.1%

32.9%

74.3%

25.7%

69.1%

30.9%

68.8%

31.2%

68.6%

31.4%

69.9%

30.1%

76.2%

6 7 3 1 4 2 8 5

Predicted Class

6

7

3

1

4

2

8

5

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (4x3),MaxSplits:6561, Mean Success:32.2947%

560

330

357

386

437

386

444

185

848

722

580

505

662

665

634

96

194

855

509

124

303

327

277

67

80

181

573

77

108

178

102

15

23

13

22

369

29

44

37

87

64

99

106

105

449

172

106

45

47

87

123

118

97

452

103

17

59

41

37

48

53

71

297

1513 74.7%

45.2%

36.7%

24.8%

21.3%

21.0%

19.7%

14.8%

25.3%

54.8%

63.3%

75.2%

78.7%

79.0%

80.3%

85.1%

34.3%

65.7%

17.7%

82.3%

31.8%

68.2%

41.9%

58.1%

66.8%

33.2%

37.8%

62.2%

42.2%

57.8%

47.7%

52.3%

6 3 1 4 7 8 2 5

Predicted Class

6

3

1

4

7

8

2

5

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (4x3),MaxSplits:6561, Mean Success:69.8124%

35

85

58

53

77

83

89

43

168

66

142

149

144

127

76

177

96

82

170

121

100

52

38

44

1200

56

83

45

85

67

90

60

47

1280

63

131

116

58

109

118

128

61

126

115

69

99

76

59

102

118

109

44

65

57

78

99

104

116

1259

1616

1715

1699

1531

1372

73.7%

73.6%

69.3%

68.3%

66.7%

64.2%

62.9%

20.2%

26.3%

26.4%

30.7%

31.7%

33.3%

35.8%

37.1%

79.8%

22.9%

67.1%

32.9%

67.4%

32.6%

74.9%

25.1%

69.0%

31.0%

68.2%

31.8%

68.5%

31.5%

69.1%

30.9%

77.1%

68

(a) 2x2 Baseline model – Run 1 (b) 2x2 Augmented model – Run 1

(c) 2x2 Baseline model – Run 2 (d) 2x2 Augmented model – Run 2

(e) 2x2 Baseline model – Run 3 (f) 2x2 Augmented model – Run 3

(g) 2x2 Baseline model – Run 4 (h) 2x2 Augmented model – Run 4

6 7 3 1 2 8 5 4

Predicted Class

6

7

3

1

2

8

5

4

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (2x2),MaxSplits:6561, Mean Success:27.584%

662

438

467

563

517

548

446

344

794

914

820

676

698

647

543

91

185

595

190

223

186

146

120

44

61

148

495

110

185

102

80

94

63

95

129

411

195

126

141

44

38

67

110

87

401

95

128

34

55

37

39

44

67

296

48

22

17

34

57

24

46

40

226

1352 66.8%

42.3%

25.6%

21.5%

19.2%

17.5%

14.8%

13.0%

33.2%

57.7%

74.4%

78.5%

80.8%

82.5%

85.2%

87.0%

27.1%

72.9%

14.6%

85.4%

34.3%

65.7%

40.4%

59.6%

32.8%

67.2%

41.3%

58.7%

47.7%

52.3%

48.5%

51.5%

6 3 1 8 7 2 5 4

Predicted Class

6

3

1

8

7

2

5

4

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (2x2),MaxSplits:6561, Mean Success:65.7287%

58

82

94

116

122

115

87

37

138

152

137

147

124

88

75

156

192

69

117

105

132

86

114

138

76

114

112

175

82

96

73

59

1213

132

90

62

67

109

97

108

105

131

85

61

91

83

109

95

113

125

62

80

98

90

64

56

96

978

1555

1624

1598

1491

1337

1227

69.8%

69.3%

65.0%

64.7%

62.5%

61.4%

56.5%

23.2%

30.2%

30.7%

35.0%

35.3%

37.5%

38.6%

43.5%

76.8%

69.8%

30.2%

66.4%

33.6%

65.4%

34.6%

64.7%

35.3%

67.1%

32.9%

65.6%

34.4%

64.4%

35.6%

64.2%

35.8%

6 7 3 1 2 8 5 4

Predicted Class

6

7

3

1

2

8

5

4

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (2x2),MaxSplits:6561, Mean Success:27.445%

716

455

464

574

517

570

461

320

749

899

836

672

712

632

521

84

182

585

200

218

186

141

126

33

61

148

484

116

196

113

105

98

60

89

120

414

174

119

117

50

30

69

109

69

398

87

121

30

57

49

40

47

63

302

54

21

20

34

54

28

49

36

227

1389 68.6%

39.9%

25.1%

21.0%

19.4%

17.3%

15.1%

13.1%

31.4%

60.1%

74.9%

79.0%

80.6%

82.7%

84.9%

86.9%

27.0%

73.0%

14.0%

86.0%

34.0%

66.0%

38.5%

61.5%

34.8%

65.2%

42.7%

57.3%

47.0%

53.0%

48.4%

51.6%

6 3 1 8 7 2 5 4

Predicted Class

6

3

1

8

7

2

5

4

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (2x2),MaxSplits:6561, Mean Success:65.2593%

53

75

93

107

115

112

97

39

145

137

140

161

128

85

70

173

215

74

117

115

137

83

118

146

84

106

124

175

79

91

78

59

1193

144

93

70

87

108

92

106

102

128

84

70

76

79

116

109

119

1203

107

54

77

93

90

66

54

97

977

1543

1632

1599

1479

1322

70.1%

69.3%

64.4%

63.6%

61.8%

60.2%

56.4%

23.8%

29.9%

30.7%

35.6%

36.4%

38.2%

39.8%

43.6%

76.2%

70.3%

29.7%

66.2%

33.8%

64.0%

36.0%

63.9%

36.1%

66.0%

34.0%

65.2%

34.8%

64.0%

36.0%

64.8%

35.2%

6 7 3 1 2 8 5 4

Predicted Class

6

7

3

1

2

8

5

4

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (2x2),MaxSplits:6561, Mean Success:27.1784%

725

447

500

609

531

564

481

322

722

890

817

628

681

624

506

76

173

559

170

209

180

152

115

29

52

150

464

106

170

110

94

97

70

112

141

425

205

120

140

48

51

90

124

83

424

98

127

31

59

44

38

50

56

301

55

24

23

36

53

28

48

31

214

1398 69.0%

38.5%

24.0%

20.1%

19.9%

18.5%

15.0%

12.4%

31.0%

61.5%

76.0%

79.9%

80.1%

81.5%

85.0%

87.6%

26.6%

73.4%

13.9%

86.1%

34.2%

65.8%

39.5%

60.5%

32.4%

67.6%

40.6%

59.4%

47.5%

52.5%

46.8%

53.2%

6 3 1 8 7 2 5 4

Predicted Class

6

3

1

8

7

2

5

4

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (2x2),MaxSplits:6561, Mean Success:65.5681%

53

76

95

105

121

115

90

45

146

141

138

166

136

78

81

171

211

74

118

108

140

76

110

137

87

98

105

170

78

97

87

61

1204

129

85

59

63

117

101

102

106

126

88

66

77

89

107

96

117

118

65

80

95

92

65

59

92

989

1551

1623

1576

1486

1330

1233

69.7%

68.3%

64.7%

64.2%

62.2%

61.7%

57.1%

23.4%

30.3%

31.7%

35.3%

35.8%

37.8%

38.3%

42.9%

76.6%

70.3%

29.7%

65.6%

34.4%

63.6%

36.4%

65.5%

34.5%

66.9%

33.1%

65.4%

34.6%

64.8%

35.2%

64.3%

35.7%

6 7 3 1 2 8 5 4

Predicted Class

6

7

3

1

2

8

5

4

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (2x2),MaxSplits:6561, Mean Success:27.3218%

709

418

471

576

533

577

455

309

748

921

857

657

730

638

524

87

182

594

200

229

183

150

133

42

62

148

465

106

172

102

89

90

60

95

121

420

181

116

132

49

38

77

104

76

400

86

129

32

56

35

37

49

51

293

57

19

20

40

52

25

45

38

213

1397 69.0%

39.9%

25.5%

20.2%

19.6%

17.4%

14.6%

12.3%

31.0%

60.1%

74.5%

79.8%

80.4%

82.6%

85.3%

87.7%

27.2%

72.8%

13.9%

86.1%

33.8%

66.2%

39.2%

60.8%

34.6%

65.4%

41.7%

58.3%

48.0%

52.0%

47.1%

52.9%

6 3 1 7 8 2 5 4

Predicted Class

6

3

1

7

8

2

5

4

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (2x2),MaxSplits:6561, Mean Success:65.5215%

61

78

114

96

116

116

88

45

151

146

145

155

143

81

76

161

69

197

123

97

154

74

96

80

1219

61

149

90

64

93

113

146

75

120

117

165

66

102

102

98

104

120

82

54

79

76

93

109

106

1212

118

64

80

94

61

93

52

105

980

1553

1636

1580

1490

1317

70.3%

68.5%

65.0%

64.9%

61.6%

60.6%

56.6%

23.3%

29.7%

31.5%

35.0%

35.1%

38.4%

39.4%

43.4%

76.7%

69.9%

30.1%

65.4%

34.6%

64.3%

35.7%

66.5%

33.5%

64.3%

35.7%

66.1%

33.9%

65.6%

34.4%

64.1%

35.9%

69

(i) 2x2 Baseline model – Run 5 (j) 2x2 Augmented model – Run 5

(k) 2x2 Baseline model – Run 6 (l) 2x2 Augmented model – Run 6

(m) 2x2 Baseline model – Run 7 (n) 2x2 Augmented model – Run 7

(o) 2x2 Baseline model – Run 8 (p) 2x2 Augmented model – Run 8

6 7 3 1 2 8 5 4

Predicted Class

6

7

3

1

2

8

5

4

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (2x2),MaxSplits:6561, Mean Success:27.4734%

693

423

479

581

504

531

466

328

772

934

847

693

725

663

540

78

165

574

174

202

173

140

99

45

56

146

480

107

183

107

97

99

67

100

119

409

194

122

135

54

45

80

121

86

418

88

126

31

55

39

41

42

57

311

49

22

22

32

46

18

41

38

220

1368 67.6%

41.2%

24.7%

20.8%

19.1%

18.2%

15.6%

12.7%

32.4%

58.8%

75.3%

79.2%

80.9%

81.8%

84.5%

87.3%

27.1%

72.9%

14.0%

86.0%

35.8%

64.2%

39.3%

60.7%

32.9%

67.1%

41.1%

58.9%

49.8%

50.2%

50.1%

49.9%

6 3 1 7 8 2 5 4

Predicted Class

6

3

1

7

8

2

5

4

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (2x2),MaxSplits:6561, Mean Success:65.4269%

59

73

112

96

117

114

95

50

166

136

140

149

128

87

77

172

79

208

133

110

141

68

100

76

1205

66

136

85

56

84

110

147

74

104

115

167

66

115

95

112

104

128

92

64

77

76

102

113

108

116

61

74

92

55

97

56

97

978

1555

1621

1582

1471

1335

1223

69.6%

68.6%

64.3%

64.1%

62.4%

61.2%

56.5%

23.2%

30.4%

31.4%

35.7%

35.9%

37.6%

38.8%

43.5%

76.8%

70.0%

30.0%

65.4%

34.6%

63.2%

36.8%

67.2%

32.8%

64.7%

35.3%

65.2%

34.8%

65.1%

34.9%

64.8%

35.2%

6 7 3 1 2 8 5 4

Predicted Class

6

7

3

1

2

8

5

4

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (2x2),MaxSplits:6561, Mean Success:27.4181%

687

405

479

549

504

548

465

380

808

972

860

699

713

663

522

89

156

564

170

226

168

138

114

38

54

137

489

100

193

102

94

105

69

103

119

409

191

116

143

39

38

73

106

83

425

94

120

39

44

40

35

45

47

306

49

21

19

34

49

27

54

33

225

1314 64.9%

43.1%

24.2%

21.2%

19.1%

18.5%

15.3%

13.0%

35.1%

56.9%

75.8%

78.8%

80.9%

81.5%

84.7%

87.0%

26.5%

73.5%

14.4%

85.6%

34.7%

65.3%

40.5%

59.5%

32.6%

67.4%

43.5%

56.5%

50.6%

49.4%

48.7%

51.3%

6 3 1 8 7 2 5 4

Predicted Class

6

3

1

8

7

2

5

4

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (2x2),MaxSplits:6561, Mean Success:65.2767%

53

77

84

118

125

120

94

45

149

149

148

156

136

92

80

176

204

71

123

101

139

76

108

151

94

104

120

169

74

94

84

61

1185

132

92

58

68

121

96

112

102

121

82

67

71

68

111

95

105

125

65

82

102

95

62

59

85

973

1550

1623

1580

1479

1334

1225

69.7%

68.5%

64.4%

63.2%

62.4%

61.3%

56.2%

23.5%

30.3%

31.5%

35.6%

36.8%

37.6%

38.8%

43.8%

76.5%

69.8%

30.2%

65.0%

35.0%

63.9%

36.1%

64.3%

35.7%

66.6%

33.4%

65.5%

34.5%

65.6%

34.4%

63.9%

36.1%

6 7 3 1 2 8 5 4

Predicted Class

6

7

3

1

2

8

5

4

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (2x2),MaxSplits:6561, Mean Success:27.4726%

694

390

426

577

479

551

442

347

779

953

886

670

754

659

562

89

151

560

174

207

176

132

114

45

60

167

498

112

199

114

90

108

65

91

118

427

173

113

127

48

47

77

120

79

412

94

117

26

62

53

32

49

53

305

54

18

17

37

53

17

49

32

226

1344 66.4%

41.5%

24.1%

21.6%

20.0%

18.0%

15.3%

13.0%

33.6%

58.5%

75.9%

78.4%

80.0%

82.0%

84.8%

87.0%

27.4%

72.6%

13.9%

86.1%

34.9%

65.1%

38.8%

61.2%

34.9%

65.1%

41.4%

58.6%

48.1%

51.9%

50.3%

49.7%

6 3 1 7 8 2 5 4

Predicted Class

6

3

1

7

8

2

5

4

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (2x2),MaxSplits:6561, Mean Success:65.0384%

61

73

119

100

121

120

89

49

163

144

153

165

114

78

77

175

73

192

126

117

143

87

100

80

1200

64

124

97

59

86

112

152

80

109

124

174

66

113

91

96

102

124

89

68

78

85

99

125

112

1219

127

49

67

107

64

96

53

85

973

1543

1622

1556

1463

1328

69.7%

67.4%

64.0%

63.7%

62.1%

61.0%

56.2%

23.8%

30.3%

32.6%

36.0%

36.3%

37.9%

39.0%

43.8%

76.2%

69.3%

30.7%

65.2%

34.8%

63.3%

36.7%

66.3%

33.7%

63.6%

36.4%

66.1%

33.9%

63.7%

36.3%

65.1%

34.9%

6 7 3 1 2 8 5 4

Predicted Class

6

7

3

1

2

8

5

4

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (2x2),MaxSplits:6561, Mean Success:27.7608%

711

455

491

578

483

570

459

318

783

894

785

674

713

643

525

90

168

579

204

217

200

153

118

37

50

141

487

105

187

97

87

109

53

106

132

419

193

111

135

48

46

78

121

80

427

90

132

25

42

37

41

41

40

305

51

23

22

38

46

24

52

31

225

1375 67.9%

41.8%

24.9%

21.1%

19.6%

18.6%

15.3%

13.0%

32.1%

58.2%

75.1%

78.9%

80.4%

81.4%

84.8%

87.0%

26.8%

73.2%

14.7%

85.3%

33.5%

66.5%

40.9%

59.1%

33.3%

66.7%

41.8%

58.2%

52.4%

47.6%

48.8%

51.2%

6 3 1 7 8 2 5 4

Predicted Class

6

3

1

7

8

2

5

4

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (2x2),MaxSplits:6561, Mean Success:65.2097%

57

78

111

97

112

114

90

44

141

135

149

154

127

79

66

165

73

199

122

121

131

83

102

82

1207

66

144

95

62

82

110

136

77

119

117

181

66

126

103

103

92

136

91

73

76

81

107

118

112

1205

126

60

73

98

62

99

56

85

972

1551

1619

1588

1475

1319

69.5%

68.8%

64.4%

64.3%

61.7%

60.3%

56.1%

23.4%

30.5%

31.2%

35.6%

35.7%

38.3%

39.8%

43.9%

76.6%

70.2%

29.8%

66.1%

33.9%

64.4%

35.6%

65.6%

34.4%

64.2%

35.8%

64.8%

35.2%

63.5%

36.5%

64.6%

35.4%

70

(q) 2x2 Baseline model – Run 9 (r) 2x2 Augmented model – Run 9

(s) 2x2 Baseline model – Run 10 (t) 2x2 Augmented model – Run 10

Figure 24. 2x2 configuration results (10 runs)

6 7 3 2 1 8 5 4

Predicted Class

6

7

3

2

1

8

5

4

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (2x2),MaxSplits:6561, Mean Success:27.5007%

687

434

563

497

530

541

452

358

783

897

646

826

691

652

516

92

176

604

242

197

193

150

134

95

61

100

431

115

191

134

127

37

52

153

107

464

195

104

92

53

42

68

77

112

397

84

125

22

55

39

45

45

47

298

58

18

19

33

27

51

51

37

228

1350 66.7%

41.8%

25.9%

20.2%

20.1%

17.3%

14.9%

13.2%

33.3%

58.2%

74.1%

79.8%

79.9%

82.7%

85.1%

86.8%

26.7%

73.3%

14.6%

85.4%

33.8%

66.2%

34.4%

65.6%

38.5%

61.5%

41.4%

58.6%

48.9%

51.1%

49.1%

50.9%

6 3 1 7 8 2 5 4

Predicted Class

6

3

1

7

8

2

5

4

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (2x2),MaxSplits:6561, Mean Success:65.2363%

54

79

110

93

123

118

95

37

155

135

143

170

142

80

79

174

67

212

108

109

143

84

92

76

1219

70

132

91

61

78

115

138

83

116

121

169

69

116

103

102

108

124

76

66

69

89

99

116

111

1207

128

58

79

100

60

92

60

88

980

1554

1629

1567

1461

1318

70.0%

67.9%

65.0%

63.7%

61.6%

60.4%

56.6%

23.3%

30.0%

32.1%

35.0%

36.3%

38.4%

39.6%

43.4%

76.7%

69.8%

30.2%

65.4%

34.6%

63.7%

36.3%

66.8%

33.2%

64.1%

35.9%

65.4%

34.6%

64.0%

36.0%

64.6%

35.4%

6 7 3 1 2 8 5 4

Predicted Class

6

7

3

1

2

8

5

4

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (2x2),MaxSplits:6561, Mean Success:27.5524%

689

428

451

579

492

551

450

348

788

912

825

654

742

655

522

88

165

588

207

237

196

132

132

40

65

157

488

102

180

104

96

97

66

96

136

409

182

127

126

47

31

69

105

90

402

91

125

25

53

43

40

45

55

306

58

20

18

35

55

22

46

34

223

1360 67.2%

42.0%

25.3%

21.2%

19.1%

17.5%

15.3%

12.9%

32.8%

58.0%

74.7%

78.8%

80.9%

82.5%

84.7%

87.1%

27.2%

72.8%

14.5%

85.5%

33.7%

66.3%

39.6%

60.4%

33.0%

67.0%

41.9%

58.1%

49.0%

51.0%

49.2%

50.8%

6 3 1 8 7 2 5 4

Predicted Class

6

3

1

8

7

2

5

4

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (2x2),MaxSplits:6561, Mean Success:65.2227%

56

74

95

115

117

117

93

46

147

155

143

155

120

80

64

171

205

76

117

112

143

87

115

150

86

110

119

165

77

91

79

64

1193

136

96

62

73

108

91

108

105

139

89

59

86

82

111

96

111

1206

122

62

91

100

87

61

53

91

978

1557

1610

1584

1470

1339

69.2%

68.7%

64.1%

63.6%

62.6%

60.3%

56.5%

23.1%

30.8%

31.3%

35.9%

36.4%

37.4%

39.7%

43.5%

76.9%

70.0%

30.0%

65.6%

34.4%

64.1%

35.9%

63.9%

36.1%

66.4%

33.6%

65.3%

34.7%

64.4%

35.6%

64.2%

35.8%

71

 (a) 4x3 Baseline model – Run 1 (b) 4x3 Augmented model – Run 1

(c) 4x3 Baseline model – Run 2 (d) 4x3 Augmented model – Run 2

(e) 4x3 Baseline model – Run 3 (f) 4x3 Augmented model – Run 3

(g) 4x3 Baseline model – Run 4 (h) 4x3 Augmented model – Run 4

6 3 1

Predicted Class

6

3

1

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (4x3),MaxSplits:6561, Mean Success:58.5228%

553

542

248

948

133

402

817

1645

1372 59.0%

35.4%

18.8%

41.0%

64.6%

81.2%

60.0%

40.0%

53.4%

46.6%

60.4%

39.6%

6 3 1

Predicted Class

6

3

1

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (4x3),MaxSplits:6561, Mean Success:82.0093%

105

133

146

322

177

321

1702

1902

1852

16.0%

18.3%

19.7%

84.0%

81.7%

80.3%

12.3% 19.7% 21.2%

87.7% 80.3% 78.8%

6 3 1

Predicted Class

6

3

1

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (4x3),MaxSplits:6561, Mean Success:59.0839%

561

537

225

943

142

381

827

1659

1385 59.5%

35.8%

18.1%

40.5%

64.2%

81.9%

60.2%

39.8%

54.2%

45.8%

61.3%

38.7%

6 3 1

Predicted Class

6

3

1

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (4x3),MaxSplits:6561, Mean Success:82.043%

102

132

132

335

161

344

1733

1881

1840

14.5%

19.2%

20.2%

85.5%

80.8%

79.8%

11.9% 19.9% 21.5%

88.1% 80.1% 78.5%

6 3 1

Predicted Class

6

3

1

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (4x3),MaxSplits:6561, Mean Success:59.2174%

549

537

237

953

134

369

817

1655

1409 60.6%

35.4%

18.3%

39.4%

64.6%

81.7%

60.4%

39.6%

54.2%

45.8%

61.9%

38.1%

6 3 1

Predicted Class

6

3

1

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (4x3),MaxSplits:6561, Mean Success:82.2923%

108

131

138

324

153

335

1735

1884

1852

14.4%

19.0%

19.7%

85.6%

81.0%

80.3%

12.1% 19.7% 20.9%

87.9% 80.3% 79.1%

6 3 1

Predicted Class

6

3

1

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (4x3),MaxSplits:6561, Mean Success:59.5444%

530

520

241

982

117

368

805

1668

1429 61.4%

34.9%

17.7%

38.6%

65.1%

82.3%

61.4%

38.6%

53.9%

46.1%

62.4%

37.6%

6 3 1

Predicted Class

6

3

1

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (4x3),MaxSplits:6561, Mean Success:82.3168%

107

146

133

312

153

337

1740

1883

1849

14.1%

19.1%

19.9%

85.9%

80.9%

80.1%

12.7% 19.1% 20.9%

87.3% 80.9% 79.1%

72

(i) 4x3 Baseline model – Run 5 (j) 4x3 Augmented model – Run 5

(k) 4x3 Baseline model – Run 6 (l) 4x3 Augmented model – Run 6

(m) 4x3 Baseline model – Run 7 (n) 4x3 Augmented model – Run 7

(o) 4x3 Baseline model – Run 8 (p) 4x3 Augmented model – Run 8

6 3 1

Predicted Class

6

3

1

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (4x3),MaxSplits:6561, Mean Success:59.081%

570

540

225

960

122

375

807

1679

1382 59.4%

35.0%

17.1%

40.6%

65.0%

82.9%

60.2%

39.8%

53.8%

46.2%

61.9%

38.1%

6 3 1

Predicted Class

6

3

1

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (4x3),MaxSplits:6561, Mean Success:82.2672%

102

125

139

335

150

340

1737

1885

1847

14.3%

19.0%

19.9%

85.7%

81.0%

80.1%

11.6% 20.1% 21.0%

88.4% 79.9% 79.0%

6 3 1

Predicted Class

6

3

1

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (4x3),MaxSplits:6561, Mean Success:58.8556%

586

545

225

920

129

402

842

1672

1339 57.5%

36.5%

17.5%

42.5%

63.5%

82.5%

59.7%

40.3%

53.9%

46.1%

61.3%

38.7%

6 3 1

Predicted Class

6

3

1

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (4x3),MaxSplits:6561, Mean Success:82.0279%

103

131

138

320

163

351

1725

1873

1856

14.9%

19.5%

19.5%

85.1%

80.5%

80.5%

11.9% 19.6% 21.7%

88.1% 80.4% 78.3%

6 3 1

Predicted Class

6

3

1

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (4x3),MaxSplits:6561, Mean Success:59.197%

560

526

234

953

127

382

828

1665

1385 59.5%

35.9%

17.8%

40.5%

64.1%

82.2%

60.5%

39.5%

53.8%

46.2%

61.9%

38.1%

6 3 1

Predicted Class

6

3

1

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (4x3),MaxSplits:6561, Mean Success:82.0118%

108

138

135

332

159

336

1732

1883

1837

14.5%

19.1%

20.4%

85.5%

80.9%

79.6%

12.4% 19.9% 21.2%

87.6% 80.1% 78.8%

6 3 1

Predicted Class

6

3

1

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (4x3),MaxSplits:6561, Mean Success:59.318%

556

536

227

943

131

381

828

1668

1390 59.7%

35.9%

17.7%

40.3%

64.1%

82.3%

60.4%

39.6%

54.3%

45.7%

61.8%

38.2%

6 3 1

Predicted Class

6

3

1

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (4x3),MaxSplits:6561, Mean Success:82.2838%

104

135

129

329

152

342

1745

1881

1843

13.9%

19.2%

20.1%

86.1%

80.8%

79.9%

12.0% 19.6% 21.1%

88.0% 80.4% 78.9%

73

(q) 4x3 Baseline model – Run 9 (r) 4x3 Augmented model – Run 9

(s) 4x3 Baseline model – Run 10 (t) 4x3 Augmented model – Run 10

Figure 25. 4x3 configuration results for classes 1,3,6 only (10 runs)

6 3 1

Predicted Class

6

3

1

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (4x3),MaxSplits:6561, Mean Success:58.9767%

584

538

227

938

130

381

831

1669

1362 58.5%

36.0%

17.6%

41.5%

64.0%

82.4%

59.8%

40.2%

53.9%

46.1%

61.9%

38.1%

6 3 1

Predicted Class

6

3

1

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (4x3),MaxSplits:6561, Mean Success:82.3409%

103

142

130

323

151

338

1745

1886

1842

13.9%

19.0%

20.2%

86.1%

81.0%

79.8%

12.3% 19.4% 21.0%

87.7% 80.6% 79.0%

6 3 1

Predicted Class

6

3

1

Tr
ue

 C
la

ss

50%RF Baseline Model: Partitions (4x3),MaxSplits:6561, Mean Success:58.9975%

574

528

241

960

119

374

819

1666

1379 59.3%

35.5%

17.8%

40.7%

64.5%

82.2%

60.2%

39.8%

53.4%

46.6%

62.4%

37.6%

6 3 1

Predicted Class

6

3

1

Tr
ue

 C
la

ss

50%RF Augmented Model: Partitions (4x3),MaxSplits:6561, Mean Success:81.9926%

113

128

140

330

157

341

1729

1873

1849

14.7%

19.5%

19.9%

85.3%

80.5%

80.1%

12.2% 20.1% 21.2%

87.8% 79.9% 78.8%

74

THIS PAGE INTENTIONALLY LEFT BLANK

75

LIST OF REFERENCES

[1] Committee on Autonomous Vehicles in Support of Naval Operations, National
Research Council, Division on Engineering and Physical Sciences, Naval Studies
Board, and National Academy of Sciences, Autonomous Vehicles in Support of
Naval Operations. Washington, DC, United States: National Academies Press,
2005.

[2] P. Koopman and M. Wagner, “Autonomous vehicle safety: An interdisciplinary
challenge,” IEEE Intelligent Transportation Systems Magazine, vol. 9, no. 1, pp.
90–96, 2017, doi: 10.1109/MITS.2016.2583491

[3] N. Kalra, “Challenges and approaches to realizing autonomous vehicle safety,”
2017. https://www.rand.org/pubs/testimonies/CT463.html (accessed Aug. 06,
2020)

[4] “Visibility in Singapore drops to as low as 3km on Monday amid hazy conditions:
NEA,” CNA. https://www.channelnewsasia.com/news/singapore/haze-singapore-
visibility-reduced-air-quailty-monday-nea-11934886 (accessed Aug. 06, 2020)

[5] hermes, “Singapore tops list of leading maritime capitals for fourth time,” The
Straits Times, Apr. 11, 2019.
https://www.straitstimes.com/singapore/transport/singapore-tops-list-of-leading-
maritime-capitals-for-fourth-time (accessed Aug. 07, 2020)

[6] F. Guo, J. Tang, and X. Xiao, “Foggy scene rendering based on transmission map
estimation,” International Journal of Computer Games Technology, vol. 2014, no.
2014, p. 13, 2014, doi: 10.1155/2014/308629

[7] E. Ullah, R. Nawaz, and J. Iqbal, “Single image haze removal using improved
dark channel prior,” 2013, pp. 245–248.

[8] R. T. Tan, “Visibility in bad weather from a single image,” 2008, pp. 1–8, doi:
10.1109/CVPR.2008.4587643

[9] Y. Li, S. You, M. S. Brown, and R. T. Tan, “Haze visibility enhancement: A
Survey and quantitative benchmarking,” Computer Vision and Image
Understanding, vol. 165, no. C, pp. 1–16, 2017, doi: 10.1016/j.cviu.2017.09.003

[10] Kaiming He, Jian Sun, and Xiaoou Tang, “Single image haze removal using dark
channel prior,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 33, no. 12, pp. 2341–2353, 2011, doi: 10.1109/TPAMI.2010.168

76

[11] S. Narasimhan and S. Nayar, “Vision and the atmosphere,” International Journal
of Computer Vision, vol. 48, no. 3, pp. 233–254, 2002, doi:
10.1023/A:1016328200723

[12] S. G. Narasimhan and S. K. Nayar, “Contrast restoration of weather degraded
images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
25, no. 6, pp. 713–724, 2003, doi: 10.1109/TPAMI.2003.1201821

[13] “Table 1 : International visibility grades with their medium extinction...,”
ResearchGate. https://www.researchgate.net/figure/International-visibility-
grades-with-their-medium-extinction-coefficients_tbl1_287395953 (accessed
Aug. 22, 2020)

[14] C. O. Ancuti, C. Ancuti, and R. Timofte, “NH-HAZE: An image dehazing
benchmark with non-homogeneous hazy and haze-free images,” 20200507,
Accessed: Aug. 07, 2020. [Online]. Available: http://arxiv.org/abs/2005.03560

[15] F. Guo, J. Tang, and H. Peng, “A Markov random field model for the restoration
of foggy images,” International Journal of Advanced Robotic Systems, vol. 11,
no. 6, 2014, doi: 10.5772/58674

[16] “Noise fractals and clouds « null program.”
https://nullprogram.com/blog/2007/11/20/ (accessed Jul. 25, 2020)

[17] P. Kohli, M. P. Kumar, and P. H. S. Torr, “P3 & beyond: Solving energies with
higher order cliques,” 2007, pp. 1–8, doi: 10.1109/CVPR.2007.383204

[18] P. Carr and R. Hartley, “Improved single image dehazing using geometry,” 2009,
pp. 103–110, doi: 10.1109/DICTA.2009.25

[19] “Computer vision at Waterloo - Code.” Accessed: Jul. 23, 2020. [Online].
Available: https://vision.cs.uwaterloo.ca/code/

[20] “Hazy start to the weekend in Singapore after air quality nears unhealthy levels,”
AsiaOne, Sep. 14, 2019. https://www.asiaone.com/singapore/hazy-start-weekend-
singapore-after-air-quality-nears-unhealthy-levels (accessed Aug. 15, 2020)

[21] “Home - ShipSpotting.com - Ship Photos and Ship Tracker.”
http://www.shipspotting.com/ (accessed Jul. 27, 2020)

[22] “Flip order of elements - MATLAB flip.”
https://www.mathworks.com/help/matlab/ref/flip.html (accessed Jul. 27, 2020)

[23] “Find edges in intensity image - MATLAB edge.”
https://www.mathworks.com/help/images/ref/edge.html (accessed Jul. 27, 2020)

77

[24] C. Tomasi and T. Kanade, “Detection and tracking of point features,”
International Journal of Computer Vision, 1991.

[25] M. Mahesh and M. Subramanyam, “Feature based image mosaic using steerable
filters and Harris corner detector,” International Journal of Image, Graphics and
Signal Processing, vol. 5, no. 6, pp. 9–15, 2013, doi: 10.5815/ijigsp.2013.06.02

[26] J. K. Suhr, “Kanade-Lucas-Tomasi (KLT) feature tracker,” Computer Vision, p.
36, 2009.

[27] “Edge detection in images: how to derive the Sobel operator – Najam R Syed.”
https://nrsyed.com/2018/02/18/edge-detection-in-images-how-to-derive-the-
sobel-operator/ (accessed Aug. 11, 2020)

[28] I. Sobel, “An isotropic 3x3 image gradient operator,” Presentation at Stanford
A.I. Project 1968, Feb. 2014.

[29] B. H. Taher, M. A. H. Hasab, and E. W. Abood, “Corner detection using gradient
and topological properties of digital images,” vol. 6, no. 5, p. 6, 2016.

[30] R. Misra and K. S. Ray, “Dual approach for object tracking based on optical flow
and swarm intelligence,” 20180815, Accessed: Aug. 11, 2020. [Online].
Available: http://arxiv.org/abs/1808.08186

[31] J.-Y. Bouguet, “Pyramidal Implementation of the Lucas Kanade feature tracker
description of the algorithm,” p. 9.

[32] “(PDF) An automatic optimum kernel-size selection technique for edge
enhancement,” ResearchGate.
https://www.researchgate.net/publication/223377841_An_automatic_optimum_ke
rnel-size_selection_technique_for_edge_enhancement (accessed Aug. 15, 2020)

[33] “What is the advantage of a 5x5 gradient mask edge detector over a 3x3
detector?,” ResearchGate.
https://www.researchgate.net/post/What_is_the_advantage_of_a_5x5_gradient_m
ask_edge_detector_over_a_3x3_detector (accessed Aug. 15, 2020)

[34] “Average or mean value of array - MATLAB mean.”
https://www.mathworks.com/help/matlab/ref/mean.html (accessed Aug. 11, 2020)

[35] “Standard deviation - MATLAB std.”
https://www.mathworks.com/help/matlab/ref/std.html?s_tid=srchtitle (accessed
Aug. 11, 2020)

[36] “Skewness - MATLAB skewness.”
https://www.mathworks.com/help/stats/skewness.html?s_tid=srchtitle (accessed
Aug. 11, 2020)

78

[37] “Kurtosis - MATLAB kurtosis.”
https://www.mathworks.com/help/stats/kurtosis.html?s_tid=srchtitle (accessed
Aug. 11, 2020)

[38] G. Louppe, Understanding Random Forests: From Theory to Practice, 2014.

[39] C. Strobl, J. Malley, and G. Tutz, “An introduction to recursive partitioning:
rationale, application, and characteristics of classification and regression trees,
bagging, and random forests,” Psychological Methods, vol. 14, no. 4, pp. 323–
348, 2009, doi: 10.1037/a0016973

[40] “Fit ensemble of learners for classification - MATLAB fitcensemble.”
https://www.mathworks.com/help/stats/fitcensemble.html (accessed Aug. 18,
2020)

[41] “How to determine the number of trees to be generated in Random Forest
algorithm?,” ResearchGate.
https://www.researchgate.net/post/How_to_determine_the_number_of_trees_to_b
e_generated_in_Random_Forest_algorithm (accessed Aug. 18, 2020)

[42] G. Biau and E. Scornet, “A random forest guided tour,” 2015, Accessed: Aug. 20,
2020. [Online]. Available: https://arxiv.org/abs/1511.05741

79

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	20Sep_Tang_Jun Wen_First8
	20Sep_Tang_Jun Wen
	I. introduction
	A. Background
	B. Objectives and Thesis organization

	II. atmospheric scattering model
	A. Introduction to Atmospheric Scattering Models
	B. Transmission Map
	C. Airlight
	D. REndered Hazy Image
	E. Atmospheric Scattering Model Conclusion

	III. Approach of synthetic hazy image rendering
	A. SYNTHeTIC Hazy Images RENDERING Process FLow
	B. Transmission map estimation
	C. Homogeneous hazy image synthesis
	D. Heterogeneous hazy image synthesis
	E. synthetic hazy image rendering Conclusion

	IV. Features for Ship Classification
	A. DataSeT
	B. ship images Pre-processing
	C. Detection And Distribution of Corner Points
	D. Image Color Moments Extraction
	E. Features Summary

	V. Results and Analysis
	A. Terminology
	1. Training Sets, Test Set and Models
	2. Class Features
	3. Classification Rate

	B. Random Forests classification
	1. Optimum Parameters
	2. Test Results
	3. Classifier Strength

	C. Results Summary

	VI. Conclusions and Future Work
	appendix A. MATLAB CODES
	A. transmission.m
	B. sethaze.m
	C. FBM.m
	D. FBM_NOise.m
	E. GenerateHazyimage.m
	F. DetectshipAndPartition.m
	G. GenerateCornerPoints.m
	H. CountingCPs.m
	I. ExtractColorMoments.m
	J. RF50Mean.m

	appendix B. random forests representation
	A. Variables
	B. Classification

	appendix C. test results
	A. Classification Rates vs. Maximum Number of Splits
	B. Classification Rates vs. Number of Trees
	C. Test Results for 4x3 and 2x2 configuration

	List of References
	initial distribution list

