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ABSTRACT

This paper presents a system reliability prediction method suitable for use during
conceptual design, called the conceptual design reliability prediction method (CDRPM).
The CDRPM extends the early design reliability prediction method (EDRPM) by
facilitating parameter characterizations that follow non-normal distributions.
Functional-physical reliability relationships are established through a hierarchical
Bayesian model solved by Markov Chain Monte Carlo (MCMC) sampling and
aggregated using the system’s reliability block diagram (RBD) to assess the likelihood of
candidate architectures meeting a reliability requirement. Reliability predictions based on
different types of failure data, specifically success ratios and failure rates, are compared
herein in a case study of a generic launcher system assessed by the CDRPM. This
research shows the effects of failure data type selection and distribution assumptions on
architecture down-selection, leading to enhanced insight during conceptual design

analysis.
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Executive Summary

The purpose of this research was to develop a reliability prediction methodology suitable for
application during conceptual design to aid in identifying and eliminating unreliable system
configurations from further consideration as the system concept matures. The Conceptual
Design Reliability Prediction Method (CDRPM), developed herein, provides a means to
establish functional-physical reliability relationships which are combined according to
a system’s functional architecture to make a system-level reliability prediction before
a physical architecture is selected. The cumulative distribution function (cdf) of the
system-level prediction distribution is compared to a reliability requirement to identify
functions and component types that are unlikely to meet said requirement. By focusing
on elimination of unreliable solutions, rather than selection of the most reliable ones, the
CDRPM preserves the decision space for trade-offs in other performance metrics evaluated

during an analysis of alternatives (AoA).

Incorporating system reliability as early as possible in the design life cycle mitigates requisite
design changes that are more costly the later they are made [1], [2], [3]. Many reliability
prediction methods currently exist but are ill-suited for application during conceptual design
because they fail to meet four tenets identified for a method applied in this phase of interest.
Most reliability prediction methods (1) rely on a physical architecture, which is not yet
established in the design life cycle, and/or (2) fail to leverage the information that is known,
the functional architecture. Furthermore, failure to (3) capture data uncertainty and failure to
(4) explicitly facilitate a requirement comparison both lead to misinterpretation of results.
One methodology reviewed, the Early Design Reliability Prediction Method (EDRPM)
[3], met all four tenets but relies upon an assumption that the supporting failure data are

normally-distributed to facilitate assessment.

The CDRPM extends the EDRPM by facilitating data characterizations that follow
non-normal distributions. Functional-physical relationships are established in both methods
through a hierarchical Bayesian (HB) model. The CDRPM uses Markov Chain Monte
Carlo (MCMC) sampling to evaluate the joint posterior distribution of the HB model for
each function, enabling the data distribution independence not afforded by the closed-form

solution of the EDRPM. Monte Carlo Simulations (MCSs) from each function’s posterior

XV



distribution are combined according to the system’s reliability block diagram (RBD) to
generate a system-level reliability prediction distribution. The cumulative probability of the
fitted system distribution is evaluated at the requirement to determine the likelihood that the

system will meet or exceed its reliability requirement.

The CDRPM was illustrated through its development using success ratio data for an abstract
system with means that follow beta distributions, demonstrating methodology proof of
concept. The CDRPM was subsequently applied to the same abstract system used in [4],
which required failure rate data that was normally distributed. The accuracy loss presumed
from a simulated approach, the CDRPM, opposed to a deterministic one, the EDRPM,
was evaluated and assessed as insignificant, specifically less than 2%, under most credible
scenarios. A case study of a generic launcher system provided an opportunity to assess
a purposeful system with real-world data, as well as investigate the consequences of data
selection on subsequent predictions. Use of success ratio data and failure rate data for the
exact same parts, from the same publications, yielded different reliability outcomes. For
the assumptions in the case study, success ratio data indicated the likelihood of meeting
the system reliability requirement could be improved by eliminating some component types
from consideration, while the failure rate data indicated all solutions were equally likely to
be successful. More significant than the exact conclusion, the case study demonstrated the
CDRPM is flexible and versatile enough to handle a variety of data types to inform a system

reliability prediction based on its functions.
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CHAPTER 1:

Introduction

The cost and effort required to change a system’s design increase significantly the later the
changes are made in the system’s life cycle. The earliest opportunity to influence a system’s
performance is during conceptual design. Reliability is the specific performance attribute
addressed by this thesis. Reaching a reasonable reliability prediction as soon as possible
mitigates the likelihood of discovering inadequate performance that necessitates costly
design changes later. However, existing methodologies for reliability prediction are ill-suited
for the conceptual design phase. This chapter establishes the context for the significance
of a reliability prediction during conceptual design and includes a broad assessment of the
capability gap in reliability methodologies when applied to this specific phase. How the
engineering community can benefit from addressing the gap with the methodology derived
herein is presented, as well as the author’s personal motivation. The chapter concludes with
the research design, concisely presenting the purpose of this work, five objectives to meet
in order to fulfill that purpose, which serve as the framework for subsequent chapters, and

the research methodology used to achieve those objectives.

1.1 Context

Once a problem is identified, the engineering design process for a new system or
product to rectify that problem commences with conceptual design [1]. From a systems
engineering (SE) perspective, high-level activities during this phase should address life
cycle considerations such as producibility and supportability, not just the performance
necessary to satisfy the immediate stakeholder need, even if the parameters characterizing
those considerations are loosely defined [1], [2]. The physical design, also referred to
as physical architecture, is not defined during the conceptual design phase; conceptual
design focuses on the functions the system must perform to meet its life cycle requirements
(performance and otherwise). It is widely accepted that 70% to 80% of life cycle costs
are determined in the early design phases [1], [3]-[5], especially during conceptual design,

often depicted in a graphic such as Figure 1.1.



100 9%5% —

\ Life Cycle Cost

Determination

Cumulative g0 —
Percent of it

Cost 40 — Cost Reduction

29, / Opportunities

Concept lVllldllll FSD ! Production I Operation & Suppor

3% 12% 35% 50%
TIME

20 —

Figure 1.1. Committed Life Cycle Costs. This specific example was selected
due to the “Cost Reduction Opportunities’ overlaid on the same graph.
Source: [1].

Therefore, it is paramount to incorporate system reliability, one form of a supportability
consideration, in the design as early as possible, consistent with the Department of
Defense (DOD) initiative for Total Life Cycle Systems Management (TLCSM) [6]. If
reliability is unaccounted for in conceptual design, there is a high likelihood of costly

design modifications to subsequently achieve requisite reliability performance.

1.2 Methodology Gap

The classical approach to determine system reliability is to utilize a reliability block diagram
(RBD) that traces the logical dependence of sub-level operations (whether represented as
components or as functions) necessary to achieve a higher-level (system) operation. Often,
the likelihood of successful sub-level operation is given by the failure rates of constituent
components. The logical dependence of operations is informed by one or more failure
and risk assessments such as Failure Mode and Effects Analysis (FMEA), Failure Mode,
Effects, and Criticality Analysis (FMECA), Fault Tree Analysis (FTA), and Probabilistic
Risk Assessment (PRA). Further information on these types of assessments can be found
in [2], [7]-9].

There are a few challenges with using these methods to generate reliability predictions during

the conceptual design phase. The primary challenge with applying an RBD approach is that
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the analysis commonly requires a physical design to support the evaluation; the specific
components in the prescribed architecture dictate which failure rate data to use. FMEA,

FMECA, FTA, and PRA also rely on a physical architecture to facilitate application.

Assessing a system in terms of its functions, rather than its components, is a second
challenge with reliability prediction during conceptual design; this challenge is related to,
but distinctly different from, the first challenge. A number of methods have been developed
in recognition of the shortcomings of the aforementioned “design phase agnostic”” methods
for early design application. Unfortunately, “early design” does not mean the same thing to
all authors, likely because “early” is a non-specific relational term that could be interpreted
as anything prior to “final”’; a wide range of system definition fidelity and maturity may then
be encompassed as early design. However, conceptual design, which occurs relatively early
in a design life cycle, is explicitly affiliated with a certain degree of system definition fidelity
and maturity. In the conceptual design phase, as previously defined in this report, only the
system functions are defined, so the early design reliability approaches that could be applied
to this phase must frame the system in terms of functions and not components. Assuming
the new system will look similar to a related existing one, even if the exact architecture is
unknown, is insufficient, especially for emerging technology, to include novel materials and
manufacturing techniques. In conceptual design, the system functions are known well before
a design alternative is selected, so it is most advantageous to capture the component-failure

to function-failure relationship.

A third challenge is that component failure rate data is typically gathered during tests with
conditions that may or may not reflect the operational conditions of the new system. The
difference in environments could affect the type and frequency of observed failures, so
the uncertainty in the failure estimate data must be captured to meaningfully inform the
prediction. The Challenger disaster in 1986 is a notorious example of how operational
conditions, such as temperature, can drastically affect component functionality [10]. An
assessment activity must capture variability and uncertainty when applying results from

one testing activity in the context of another employment.

A fourth challenge addressed in this research is how to assess a confidence in the reliability
prediction, especially as compared to a reliability requirement for the system. If a reliability

requirement is presented as a percentage, which is typically the case though occasionally it



is in terms of failures per unit time, and the prediction methodology assesses failure by some
other measure, there may be an inconsistent application of findings, ultimately indicating an
unclear methodology intent. Intent and rationale are two aspects that distinguish a method
from a methodology. While the other works may strive to present a method, specifically,
the comparison step enables the prediction approach to directly serve a dual purpose of
design selection. Without facilitating a reliability comparison to a requirement, adding
a performance characterization that does not meaningfully inform selection of a design

solution is not a value-added activity in the conceptual design phase.

The aforementioned challenges have been converted into four tenets for a reliability
prediction method suitable for conceptual design. The first is restrictive, while the others

are prescriptive.

1. Avoid reliance on physical architecture.
2. Evaluate the system in the context of its functions.
3. Capture data uncertainty.

4. Facilitate reliability comparison.

The Early Design Reliability Prediction Method (EDRPM), developed over time with the
most recent publication in 2019 [11]-[13], addresses the four challenges identified above.
It (1) makes no assumptions about the specific physical architecture of the system, (2)
identifies component-to-function relationships leveraging the functional architecture for the
prediction, (3) quantifies data uncertainty, and (4) uses a preset reliability requirement as a
baseline comparison for identification of unreliable designs. However, the method assumes
that component and function failure rate data are normally distributed in order to provide a
closed-form solution to its reliability prediction model. It then leverages the resultant normal
distribution to facilitate the prediction comparison to a requirement. These assumptions
were reasonable to facilitate the initial development of the EDRPM [13] as a methodology,
but reconsideration is necessary for further evolution to expand its applicability. While
the normal distribution is not typically affiliated with modeling reliability since it is
unbounded and a negative reliability is nonsensical, it is possible there are situations
when this consequence is insignificant, and a normal distribution sufficiently represents
the data. However, other distributions that are bounded or partially bounded (greater than

zero) are more likely to appropriately represent reliability-affiliated data such as success



ratios or times to failure, which are naturally bounded or partially bounded. Shifting from the
normality assumption is a significant task because it necessitates changing how the reliability
prediction is mathematically determined, as well as how the prediction is compared to a
system reliability requirement for making quantitatively informed design decisions. The
EDRPM [13] and its future work recommendations were treated as the primary inspiration

for this methodology.

1.3 Motivation

The motivation for addressing this methodology gap is founded in the trends of new system
development. Systems are becoming much more complex; they have more software, more
parts, unique materials, and specialized technology applications. Additionally, the fiscal
and political environments in which they are developed necessitate that they are completed
on shorter timelines with smaller budgets while adhering to more restrictive information
security, disposal, and material-use requirements (among other requirements). Therefore,
the pressure to avoid the consequences of late-in-design changes shown in Figure 1.1 is as

present as ever for all disciplines in the engineering community.

Technology advancements are not limited to the physical systems. Developments in
computing technology have enabled more mathematically intensive and computationally

sophisticated methods to be available to a broader population of engineers.

As an Engineering Duty Officer (EDO), reviewing and refining ways to improve reliability
predictions for enhanced decision making during weapon system development is of personal
interest and professional significance to the author. Beyond the responsibility to follow
published directives such as TLCSM, it is her opinion that EDOs should always strive to be
conscientious stewards of the resources entrusted to them for the advancement of national
defense capabilities. Minimizing time spent considering unreliable design solutions, thus
maximizing the opportunity to optimize other performance characteristics, is part of that

stewardship.

1.4 Research Design
The fundamental intent of this research was to rectify the methodology gap identified in

Section 1.2 for the reasons given in Section 1.3. The way in which that intent was executed is

5



succinctly captured as this research’s purpose, achieved through five contributing objectives
utilizing a mixed research methodology, all of which are presented in the subsections below.

Assumptions and limitations made during the execution of the research design follow.

1.4.1 Research Purpose

The purpose of this research was to develop a reliability prediction methodology, without
assuming a particular data distribution, suitable for application during conceptual design
to aid in identifying and eliminating unreliable system configurations from further

consideration as potential design solutions.

1.4.2 Research Objectives and Methods

The purpose of this research was fulfilled through meeting the five objectives presented in
this section. Qualitative and quantitative research methods were used to address these
objectives, following a mixed empirical and experimental approach. Each objective is

presented with its affiliated research method, as well as the chapter in which it is addressed.

Objective 1

The first objective was to review existing reliability prediction methods specifically intended
for application in early design. Relative strengths and shortcomings were qualitatively
assessed for consideration during the development of the methodology presented in this
work. As primarily a literature review, the approach for this objective was not strictly

classified as either empirical or experimental. Chapter 2 addresses this objective.

Objective 2

The second objective was to develop a methodology for reliability prediction that adheres
to the tenets derived in Section 1.2, incorporates strengths of existing methods where
applicable, and is not data-distribution dependent. An experimental approach was used
to meet this objective through the qualitative aggregation of concepts to develop suitable

methodology. Chapter 3 addresses this objective.



Objective 3

The third objective was to apply the new methodology to a non-specific, abstract example
for illustration of execution. The representative reliability prediction was quantitatively
determined as a continuation of the experimental approach for Objective 2. Chapter 3

addresses this objective.

Objective 4

The fourth objective was to compare the reliability prediction of this method to that
determined by the EDRPM as presented in [13] to serve as a verification for methodology
application. Calculated percent errors in parameter estimates supported a quantitative
comparison and results were qualitatively interpreted as part of an empirical approach.
Chapter 4 addresses this objective.

Objective 5

The fifth objective was to apply the new methodology as a case study for a generic launcher
system. That is, the case study does not represent an existing real-world system but is a
generalized representation of a launcher that may be used for rockets, aerial vehicles, or
missiles. The reliability prediction was assessed using quantitative methods delineated in
the methodology derived in Chapter 3 as part of an empirical approach to addressing the
research’s purpose. Furthermore, the case study is assessed twice using different types
of failure data to qualitatively illustrate how data selection influences system reliability

predictions. Chapter 5 addresses this objective.

1.4.3 Assumptions and Limitations

Many reliability prediction methods intended for early design could feasibly be considered
“early design reliability prediction methods” or “EDRPMSs” but, for this research, all
subsequent references to the EDRPM explicitly and exclusively refer to the collective body

of work developed by O’Halloran et al. in [11]-[13], unless otherwise cited.

For the purpose of this research, the reliability of a system is the probability it will perform
a function without failure. The following terms may be used interchangeably throughout

this work:



* Reliability goal and requirement both convey a higher-level objective the system is
expected to achieve with equal desirability; a goal should not be interpreted as greater
or “better” than a requirement.

* The terms component, candidate solution, and product all represent a unique item
that can satisfy a function.!

* Design solution, design configuration, design alternative all refer to a selection
of components to satisfy all the functions of a system. Feasibility and physical

configuration should not be inferred.?

This research assumes that component performance data can be captured by parametric
distributions. Some of the mathematical concepts applied in this methodology, such
as hierarchical Bayesian (HB) models discussed in Chapter 2, may be appropriate for

non-parametric data, but not as presented in this work.

This methodology is intended for use during conceptual design when only functions are
known. If greater detailed information is available, this approach may not be the best suited
for as accurate a prediction as possible. Related, this methodology is intended for use without
assuming a particular data distribution, namely without assuming a normal distribution. If
normality is assumed, use of this methodology may result in a loss of prediction accuracy.

This particular consequence of application is explored in Chapter 4.

Any similarities between the system used for the case study in Chapter 5 and a real-world
operational system, particularly one utilized by the DOD, is completely unintentional. All

conclusions are for academic illustrative purposes, only.

1.5 Thesis Overview

The engineering community needs a reliability prediction method suitable for use during
conceptual design in order to identify design solutions with unacceptable reliability
performance as early as possible, saving valuable resources. Based on the literature review
of Chapter 2, the author determined only one methodology adheres to the four tenets for

reliability prediction during the phase of interest: the EDRPM. Modifying the mathematical

nterchangeability of component and candidate solution is consistent with the definitions provided in the
EDRPM.
2Consistent with the definitions provided in the EDRPM.



execution of the EDRPM alleviates some of the method’s limitations and simultaneously
provides an opportunity to incorporate some of the strengths of other methods reviewed.
A suitable, versatile methodology to address the prediction capability gap by modifying
the EDRPM to permit application to non-normal data, is developed in Chapter 3. The
generalized form of the EDRPM derived in this work is henceforth referred to as the
Conceptual Design Reliability Prediction Method (CDRPM). The new name was not
intended to suggest original work but was advantageous for two reasons. Firstly, there
are many portions of this paper that compare the differences in application and execution
between the two methods, so a unique identifier to refer to each version aided clarity and
brevity. Secondly, while considering a new moniker, it seemed appropriate to explicitly
express “conceptual design” since the broad interpretation of “early” was a critique of
other methods. Chapter 4 illustrates differences in reliability conclusions drawn using the
CDRPM, a simulation-based method, opposed to using the EDRPM, a deterministic method,
by assessing the same example in [13] by both methods. This second demonstration of
the CDRPM additionally confirms the versatility and data-distribution independence of the
CDRPM. Application to a case study in Chapter 5 validates the method’s utility for assessing
reliability during the conceptual design of a launcher and explores the implications of failure
data selection on prediction outcome. Chapter 6 addresses conclusions and limitations of
the CDRPM. The most notable conclusion is that the methodology works as intended,
mirroring the EDRPM but without underlying data distribution assumptions, while the
greatest limitation is the volume of data required to make a system reliability prediction

distribution.
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CHAPTER 2:
Background and Related Work

This chapter reviews existing methods for early design reliability prediction and assesses the
extent to which they adhere to the early reliability prediction tenets presented in Chapter 1.
A more in-depth review of the EDRPM follows the survey of other methods as it is the only
method that addresses all four tenets and its future work recommendations served as the
primary inspiration for this work. Hierarchical Bayesian models provide a framework for
mathematically relating data and are commonly used in many types of predictions, including
the reliability prediction of the EDRPM. Markov Chain Monte Carlo (MCMC) is a method
or tool to determine the relationships in the hierarchical model by simulation. An HB model
solved by MCMC sampling is utilized by the CDRPM. The use of MCMC was necessary
in this work to alleviate assumptions about failure data distribution that otherwise enable a
closed-form solution, like the normality assumption affords the EDRPM. The mathematical
theory of HB models and MCMC sampling are briefly introduced at the conclusion of this
chapter as related work, while their specific implementation in this work is addressed in
Chapter 3.

2.1 Existing Methods for Reliability Prediction

As alluded to in Chapter 1, some of the most commonly used methods to assess reliability
are not explicitly prohibited from use in early design, but their application is infeasible due
to the lack of system data available in this nascent design phase. Several methodologies
purportedly developed to specifically handle reliability prediction in early design already
exist in the engineering community. Most of these address some of the tenets presented in

Section 1.2, but none addresses all.
The tenets are summarized here:

1. Avoid reliance on physical architecture.
2. Evaluate the system in the context of its functions.
3. Capture data uncertainty.

4. Facilitate reliability comparison.

11



The selection of methodologies presented in this review as related research were
systematically evaluated against the identified tenets; if a method failed to uphold the
first tenet, it was not evaluated for meeting the second. The related works are organized by

the primary tenet they did not meet.

Cheng and Du [14] present an approach to reduce the uncertainty of system reliability
through optimization models but fail to meet tenet (1). The approach challenges the
assumption of independent component failures in a system. This assumption is made when
there is a lack of information to suggest otherwise, which is often the case in early design.
Using a physics-based approach, implicitly for mechanical systems based on failure modes
related to strength, Cheng and Du postulate dependent component failures to identify
narrower bounds of predicted system reliability. While the authors consider their work to be
applicable to “early design” [14], the design phase of concern for this effort does not have a
physical architecture yet; component selection is unknown in conceptual design. This work

is likely more applicable during preliminary design as described in [2].

Bergman and Ringi [15] utilize Bayesian estimation to apply knowledge from similar
systems in non-identical operating environments to influence reliability predictions based
on independent, exponentially distributed component failure rates. Tenet (1) is arguably
met but tenet (2) is not. While different operating environments provide different stressors,
affecting the absolute failure rates of system components, Bergman and Ringi contend that
components maintain the same relative failure rate and use this relative relationship to update
the reliability prediction for the system operating in the conditions of concern [15]. While
the concept of using analogous systems does not explicitly require a physical architecture,
there is an inherent assumption about the design solution in order to identify which systems
to use for comparison. Notwithstanding, the authors do not assess component-to-function

relationships so are not aligned with SE principles for this design stage.

Johnson, Moosman, and Cotter [16] also use analogous systems to inform performance
predictions through an HB model, ultimately failing to meet tenet (2) like the work
in [15]. Hierarchical models allow for pooling of data across a variety of sources and
formally account for the similarity or dissimilarity of the data. An HB model is one of
the most commonly used models to do so, discussed in greater detail in Section 2.3.

The model in [16] accounts for manufacturer experience in a “quality index,” applying

12



greater weight to “experienced” developers than to “inexperienced” developers, as defined
by their own classification scheme. The HB approach in [16] is slightly preferable to
the non-hierarchical Bayesian estimation of [15] because the hierarchical nature avoids
over-fitting the data, protecting for slightly more flexibility in what the design solution
is. However, it is not reasonable to extend reliability performance from any manufacturer,
experienced or inexperienced, to performance predictions for new technology. For example,
the Maneuvering Characteristics Augmentation System (MCAS) on the Boeing 737 Max
built by Boeing Commercial Airlines [17] and missile tube welds by Electric Boat on the
USS Columbia (SSBN 826) [18] are two contemporary examples of seasoned manufacturers
encountering reliability challenges with new technology, or even just new manufacturing
techniques. Had this methodology been used, Boeing and Electric Boat would have been
classified as experienced manufacturers with higher quality indices, resulting in greater
reliability predictions, but the performance of their new technology and technique would

not have been commensurate with a high prediction.

Similarly, Baun [19] used previous “ancestor” designs as reliability benchmarks, failing
tenet (2) as the other comparative methods did. He proposes an evaluation of the changes
from the ancestor designs to the new proposed one, including a quantification of the impact
of those changes on the system reliability, but this evaluation is intended to be executed at the
component level, not the function level, facing the same challenges for implementation as
[16]. While quantifying reliability implications due to differences in operating environments,
manufacturer experience, and design modifications can all enlighten a reliability prediction,
without explicit component-to-function relationships, it becomes unclear which aspects of
a related system are of interest to a truly new complex system when only functions are

known.

An alternative framework presented by Mayda and Choi [20] utilizes random sampling,
specifically Monte Carlo Simulation (MCS), from component-failure to function-failure
relationships to frame system-level reliability requirements as Gaussian probability
distributions. [20] meet tenets (1) and (2), but the implementation of tenet (3) creates a
different related challenge and tenet (4) is plainly omitted. The authors capture system
performance uncertainty through the use of distributions rather than point estimates, which
meets the intent of accounting for data uncertainty, tenet (3). However, doing so in the

performance requirement does not aid in facilitating a quantitatively informed decision
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since there is not a discrete objective, introducing a new design challenge: consideration
of a variable performance threshold. Additionally, variable requirements are contractually

challenging for bidding and delivery.

In “A new Bayesian Network Approach to Reliability modelling” by Marquez et al. [21],
the authors consider Weibull distributions for an HB model, while also addressing the
challenge of discretization of continuous parameters such as component time to failure.
This methodology satisfies all tenets with the exception of tenet (4). The intent behind
Marquez et al.’s algorithm is to alleviate reliance on MCMC to solve HB models for
posterior distributions. MCMC is reviewed in Section 2.3.3, but the crux of their concern is
that MCMC is computationally intensive so, for large complex systems, storing the transition
matrix and state space vectors can be problematic for some computing systems. One issue
with using the algorithm in [21] is that it is not widely published or adopted, whereas
MCMC algorithms have been reviewed and utilized for over a decade, and open-source
software executing MCMC sampling is readily available. Notwithstanding, the resultant
predictions are not meaningfully compared to a system requirement, which could lead to
misinterpretation or misapplication of results as discussed during the initial presentation of
tenet (4) in Section 1.2.

The only methodology reviewed that intentionally included a step to facilitate a reliability
requirement comparison was the EDRPM. This may seem like a trivial step that could
be incorporated into any method, but inclusion focuses the intent of the application.
In a classical progression of systems engineering, a trade-off analysis or analysis of
alternatives (AoA) is conducted to evaluate different design alternatives, ultimately selecting
one to progress to preliminary design [2]. If the way in which the prediction should be
compared to a baseline requirement is not codified, it will likely manifest in a variety
of ways that may, or may not, adhere to any assumptions or limitations in the prediction
development. For example, the EDRPM calculates a system-level design failure rate by
summing the means and variances of the function-level failure distributions, which is valid
because this is a property of normal distributions. Subsequently, the design distribution is
compared to a failure rate goal through a calculation similar to the conversion to a standard
normal or modified signal-to-noise ratio (SNR), where the goal is treated as a cut-off, and
design alternatives with predictions that exceed the failure goal are eliminated. However,

if another method yielded hyperparameters for a different superpopulation, such as a beta,
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the conversion of hyperparameter vectors to a standard normal would be nonsensical. It is
also of note that this step affords the opportunity to clarify application intent. The EDRPM
is not meant to identify the most reliable design—the purpose of the EDRPM is to identify
and eliminate design solutions that are unlikely to meet reliability requirements; other
performance parameters will collectively lead to design selection. Therefore, only retaining
the design alternative that “least exceeded” the failure requirement would be contrary to
the EDRPM’s objective of retaining “decision-making freedom” with respect to reliability
so that the system can be optimized for other cost, schedule, and performance measures.
Including the comparison step in the methodology ensures a consistent, self-contained

approach.

2.2 Early Design Reliability Prediction Method

The EDRPM was developed in direct response to the issues identified in Section 1.2. It posits
that, consistent with SE principles, components can be categorized by the function they are
used to execute. Therefore, an HB model can be constructed of function-specific reliability
(superpopulation, governed by ¢) that encompasses component reliability (population,
governed by 0), supported by failure rate data (evidence, y). Using failure rate data from
multiple sources creates component-level distributions that are industry-agnostic, as well as

function-level distributions that are industry-agnostic and, to an extent, component-agnostic.

A concept coined “frequency weighting” is used to intentionally influence the extent to
which component-level information impacts the function-level posterior, and subsequently
the component-level update. Essentially, frequency weighting is a method to mitigate the
quantity of data over-influencing hierarchical dependencies. The weight reflects the number
of times a component has historically been used to solve a function, influencing the mode(s)
of the function-level distribution. This prevents the distribution from being determined by
data volume. That is, just because there is a lot of data for a certain component type does
not mean it is more likely to be used; alternatively, less data for another component type
does not imply it is less likely to be used. For illustration, commercial use of hard disk
drives (HDDs) began in 1957 [22] while solid state drives (SSDs) were introduced for
some military devices in 1991 but were not available to commercial notebooks as HDD
alternatives until 2006 [23]. Thus, it is reasonable to assume there is significantly more

failure rate data available for a HDD than SSD as mass storage, but it is not reasonable
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to assume that a new system is significantly more likely to use a HDD than SSD, so it is

desirable to increase the relative influence of a SSD on a mass storage function.

In practice, the frequency weight of a particular component is simply the proportion of times
that component has been used for a particular function. For clarity and consistency of terms,
calculation of frequency weights is presented in equations 2.1-2.3. For J components that
could potentially solve a function, Equation 2.1 shows the function-specific frequency vector,
C, which captures all the function-to-component occurrences for candidate components, ¢,
where j = 1, ..., J. Of note, the resource used for finding function-to-component occurrences
for the EDRPM demonstrated in [13] was the Design Engineering Laboratory at Oregon
State University (https://design.engr.oregonstate.edu). The total number of solved function
occurrences, W, is the sum of function-to-component occurrences, shown by Equation 2.2.

Equation 2.3 shows how the frequency weight, w; is calculated for each component.

C= (c1,¢2,...,C5) 2.1)
J
cj=W 2.2)
j=1
C:
w = 23)

A limitation of EDRPM is that it assumes component and function failure rate data are
normally distributed, in order to enable closed-form solutions for the posterior distributions
of the HB model. That is, the relationships in the model can be solved by a set of algebraic
equations. The normality assumptions alleviated the need to solve for the joint posterior
density through simulation. Expressions for the posterior distribution of hyperparameters
in a normal HB model, u and 7, found in [24], were modified by O’Halloran et al.’s concept
of frequency weighting to yield three equations necessary to determine the hyperposterior

distribution.

Equation 2.4 calculates the posterior update to a function’s updated standard deviation, 7,

as a function of evidence y; for a quantity J of independent (exchangeable) component
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(https://design.engr.oregonstate.edu)

groupings, each with a frequency weight of w;.

(a0 |\ /
J e 2(0’]2.+72)
p(rly) < pVWu|| || ——=—= (2.4)

=1 /0']2 + 72

The hyperprior is represented by p(7) and assigned a non-informative uniform distribution.

The error variance, o2

is assumed to be known, with each j group having a sampling
variance of O'J? = 02/J. When y is set to the predicted value, /1, all factors of function mean
cancel in the simplified expression, such that the identity for 7 holds for any value of u.

Equations 2.5 and 2.6 calculate the predicted function mean and mean error, respectively.

J 1 -
j:1m(wj)y.j
a= (2.5)
177 ()
J
J W
vi=))) —1— 2.6
= );012+72 (2.6)

Since frequency weighting was only applied at the function level, though still influenced
the component-level update due to shrinkage in the hierarchical arrangement, component
posterior distributions were determined according to equations found in [24]; they were not
modified for use in the EDRPM. Calculations for the updated component parameters are
not reviewed in this work because their presentation is not germane to appreciating what

the EDRPM developed, or how this work extends principles therein.

The function-level distribution was always normal by model construction so characteristics
of a normal distribution were directly leveraged for the comparison of the prediction to
a baseline requirement. The system-level failure rate for a design alternative, which was
calculated as the sum of the contributing function distributions, was compared to the failure
goal in a modified SNR approach similar to the conversion to a standard normal to compare

a design failure rate to a failure rate goal, shown in equation 2.7.
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= (Fg — Fp)
o

2.7)

For equation 2.7, Fg is the failure goal, Fp is the mean of the system-level failure distribution,
and o is its standard deviation. For reliability requirements framed as a specific percent
likelihood of operation at a specific time, a constant failure rate was assumed. The reliability
for a component at a given time with a constant failure rate is shown in Equation 2.8, where

A is the failure rate in failures per unit time and ¢ is the evaluation period.

R(t)=e M (2.8)

The result of the ratio, z, indicates the likelihood of a design failure rate exceeding the
failure rate goal, that is, the design not meeting a reliability cut off, using standard lookup
tables for small z. Therefore, the normality assumption is fundamentally embedded in how
the EDRPM is executed, driving the equations for determining posterior distributions and
well as the method in which unreliable design alternatives are identified. If component or
function failure data are not known or expected to follow a non-normal distribution, the

validity of applying the EDRPM becomes suspect.

2.3 Hierarchical Bayesian Estimation

The growing prevalence with which HB models are used across a wide range of fields,
including but not limited to engineering, economic forecasting, and meteorological
forecasting, warrants a dedicated discussion to their mathematical foundation and what
makes them powerful tools. The robustness of an HB approach, particularly when applied
to reliability analyses, is not a new revelation. Alex Papadopoulus heralded the strength
of an HB model in 1989 [25]. His demonstration based on exponential failures was
entirely theoretical though, only seeking to quantitatively show that incorporation of prior
information could lead to a more accurate prediction. Widespread adoption was delayed,
however, until modern computers could reasonably handle the potentially computationally

intensive operations affiliated with HB estimation.
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2.3.1 Bayesian Estimation

The major benefit of any Bayesian estimation, sometimes called Bayesian inference, is
that it allows incorporation of different types of information, such as behavior data, expert
opinion, and engineering experience, into one model prediction [16]. Bayesian estimation is
predicated on Bayes theorem, which establishes a relationship between the initial knowledge
(the prior), the knowledge gleaned from observations (the likelihood), and the updated
knowledge (the posterior). For data y generated from a population distribution characterized
by parameter 6, the Bayesian relationship between the prior (p(6)), likelihood (p(y|6)), and
posterior (p(8|y)) distributions is as shown in Equation 2.9. Information such as expert
opinion and engineering experience manifest in the assumptions and distributions selected
for the probabilities involved. The denominator in Equation 2.9 is a normalization factor
most commonly referred to as the “evidence.” Sometimes this distribution is referred to
as the “marginal likelihood.” This factor provides another means for incorporating beliefs

about the population of data without respect to a given parameter.

pyl0)p(6)

pOly) = W)

(2.9)
The next most significant benefit of Bayesian inference is that it does not require assumptions
about sampling intentions or sample sizes; intended comparisons do not require multiple
tests to compute p-values [26]. The posterior distribution produced by Bayesian estimation is
fixed based on the observations, but the nature of the distribution characterizes uncertainty.
For example, rather than constructing multiple comparisons between a null hypothesis
and various alternate hypotheses for hypothesis testing, an equivalent insight can be
gleaned directly from the posterior distribution as-is, without additional manipulation.
The “increased emphasis on interval estimation rather than hypothesis testing” shown by
the applied statistics community [24] indicates that common-sense Bayesian interpretation

of uncertainty is inherently valuable.

2.3.2 Hierarchical Bayesian Models
If the data can be meaningfully grouped to collectively enhance informing individual
predictions, it is better to treat the data hierarchically rather than independently [26]. That

is, instead of applying Bayesian estimation as described in Section 2.3.1 to each parameter
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observation (#) individually, all of the 6’s with their associated data (y) are simultaneously
evaluated. When the parameters are grouped, they are represented as a distribution, opposed
to independent points, where each parameter observation is considered a random sample
from the common parent distribution or “superpopulation” [24]. The parent distribution
forms a higher level in the hierarchy, and the parameters that characterize the parent
distribution are known as “hyperparameters.” For the example presented thus far, this would
be to say that the parameter 6 is drawn from a distribution characterized by parameter ¢. In
this arrangement, there is now a formalized relationship established between the evidence
observations and the parameter (as exists in all Bayesian estimation), as well as a relationship
between the parameter observations and the hyperparameter. The hierarchical relationship
between evidence y, parameter 6, and hyperparameter ¢ is depicted in Figure 2.1. Of note,
0 and ¢ in all discussion thus far, and as intimated in Figure 2.1, are representative of
parameter vectors. For example, ¢ may represent the parameter vector containing («, ) for

a Beta distribution, such that the hierarchy conveys 6; ~ beta(a, ).

a, 3
0, 0 63 .. B0 07
YI Y2 Y3 e e e .. Y10 Y7

Figure 2.1. lllustration of Hierarchical Bayesian Model. Source: [24].

In this case, the joint posterior density is the “updated” probability for the observance of
parameters 6 and ¢, given the observance of data y. Arranging the data in a HB model
is different from pooling all the data into one population, where each y is considered an
identical sample replication from the super population, because of the ability to retain
information at the “intermediate” parameter level. Retaining the group parameter influence
enables insight or “updated knowledge” to be applied back to that level since 6 and ¢ are

estimated simultaneously when determining the joint posterior distribution.
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Furthermore, the hierarchical arrangement avoids over-fitting observable outcomes because
parameter dependence is accounted for in the population distribution’s shape, thus fewer
parameters are required to capture the collective characteristics [24]. The interested reader
can review Section 5.6 of [24] for an explicit comparison of predictions generated when a
collection of data is treated in three different ways: (1) as one pooled population, (2) totally

independent of one another, and (3) in a HB model.

The concept of “exchangeability” is critical to the relationship between parameters
and hyperparameters, and is similar to the independent and identically distributed (iid)
assumption often encountered in random sampling. Parameters (61,...,0; for J observations
of ¢) are exchangeable if the probability of selection from the joint distribution is invariant
to permutations in index (1,...,J) [24]. Essentially, there is no further ordering, grouping,
or means to distinguish between the observations from the distribution. Models for data
observations (yi,....jy, for n observations of 6;) must also be exchangeable for the given
parameter. When exchangeability is maintained, the hierarchical model interprets y ;’s as

random samples from 6;’s, and 6;’s as random samples from ¢.

Although the parameters are considered random samples, the hierarchical relationship
causes the updated superpopulation characterization to influence the update of the
parameters in the middle tier. The nature of this influence is referred to as “shrinkage,” and is
considered a “rational, mathematical consequence of the hierarchical model structure” [26].
Shrinkage refers to the shifting of a posterior toward the closest mode of its parent’s
distribution; it is not necessarily toward the middle of the distribution if the distribution is
multi-modal. Therefore, it is possible to have “outward” shrinkage. Shrinkage is observed
at all levels where there is a parent: parameter 6 will shrink toward hyperparameter ¢,
and any subsequent samples of y will shrink toward the respective 6 parameter. Shrinkage
reinforces why a concept like frequency weighting in the EDRPM, discussed in Section 2.2,
is necessary—so that the modes of a superpopulation for a function are reflective of how

the functions are historically achieved (by a population of components).

The equation for the unnormalized joint posterior density is provided in Equation 2.10,

where p(¢) is the prior distribution of the hyperparameter, the hyperprior; p(6|¢) is the
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population distribution, and the likelihood is as previously presented.

p(0,¢ly) = p(#)p(0|8)p(yl6) (2.10)

The challenge in evaluating the normalized joint posterior is in evaluating the marginal
posterior distribution, p(¢|y). The marginal posterior is determined by the integral shown

in Equation 2.11:
p(@ly) = [ p(0.0l0)d(0) @11)

There are fundamentally three ways to evaluate the marginal posterior distribution, and thus
the joint posterior distribution: algebraic analysis, integration, and simulation. Analysis by
algebraic computation of the conditional probability can be used when the hierarchy is
constructed of conjugate priors, that is, the posterior and prior distribution are the same
“type,’
binomial, Bernoulli, and geometric likelihoods. The normal distribution is particularly

)

and ¢ is known. Examples of conjugate priors include the beta distribution for

unique because “normal begets normal” [27]; a normal prior and posterior yields a normal
likelihood. Often, ¢ is unknown, so integration can be used for conjugate models provided
there is a self-consistent normalizing factor. Otherwise, for non-conjugate HB models and/or
situations when the hierarchy is so complex that determination is analytically intractable,
approximation by simulation is required. MCMC is one method for simulation, discussed

in the following subsection.

2.3.3 Markov Chain Monte Carlo Sampling

MCMC sampling methods are a class of algorithms that provide a way to sample from
any distribution, even if that distribution is only defined up to a factor [28]. In the case
of an HB, the joint posterior distribution is the distribution of interest, defined up to its
normalization factor, the marginal posterior. Two of the most commonly used algorithms
are the Metropolis-Hastings algorithm and the Gibbs Sampler algorithm. Evaluating the
particular implementations and use-cases for these algorithms is beyond the scope of this

work, but at a high-level, both operate similarly.

The idea of MCMC is to approximate sampling from the posterior distribution by simulating

an appropriately constructed Markov chain. A Markov chain can be thought of as a model
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of a system with a number of states, and the likelihood of progressing from one state to
the next is only dependent on the current state. A number of steps are incremented, moving
from state to state based on the transition probabilities of the Markov chain (a “random
walk” [29]). If the walk is sufficiently long, the end state can be treated as a sample from the
stationary distribution from the Markov chain. This is repeated a number of times, varying
the starting point of the “walk” in a random manner (Monte Carlo). The end states of all
the walks are then evaluated in aggregate to determine the stationary distribution, which
conveys the probability of all states at any point in time. An overview of this process is
depicted in Figure 2.2.

Unnormalised distribution Samples Statistics or estimations
whose normalisation factor that can be obtained with MCMC and that can be computed based on
computation is intractable without proceeding to the normalisation the generated samples

Figure 2.2. Illustration of MCMC Overview. Source: [28].

Therefore, the intent for an HB application is to sample from a Markov Chain with a
stationary distribution that reflects the joint posterior distribution, such that when the
samples have converged to the stationary distribution, it estimates the joint posterior
distribution. Sample quality can be influenced by general techniques, including, but not
limited to, slicing and burn-in [28]. Running multiple chains in parallel helps evaluating if
any single chain got “stuck’ and did not fully explore the entire posterior parameter space; if
the chains overlap, it is reasonable to assume they converged to a representative solution, but
if not, at least one got stuck [26]. Another indicator of a chain getting stuck is that the chain
appears “clumpy” where successive steps are near each other. “Near” may be determined
by visual observation or the descriptive statistic of correlation. Correlation also aids in
the determination of convergence, which is subjectively assessed. Graphical evaluation of
parameter samples for transient behavior is the primary means to determine convergence; if

the stationary distribution was achieved, the sample behavior will be constant (no transients).
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2.4 Chapter Summary

This chapter reviewed the suitability of a number of reliability predictions methods and
methodologies, specifically for application in the conceptual design phase, and especially
for an emerging system without a contemporary solution. While each related work had merit
in addressing the challenges affiliated with early reliability prediction to various degrees,
only one method, the EDRPM, addressed all. The biggest limitation of the EDRPM is its
reliance on a normality assumption, which impedes widespread application. A HB is the
right approach to reflect the component-function hierarchical relationship fundamental to
systems engineering principles, but a complex hierarchy necessitates an alternative way to
determine the joint posterior for hyperparameters at the function level. MCMC sampling
permits determination of non-conjugate and analytically intractable posterior distributions.
The next chapter discusses how the CDRPM miirrors the intent of the EDRPM, maintaining a
component-to-function HB model, modified by using MCMC among other mathematically
necessary revisions, to account for potentially non-normal component and function failure

distributions.
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CHAPTER 3:
Conceptual Design Reliability Prediction Method

This chapter presents the steps of the CDRPM, the specific tools used to execute the
methodology, and some of the decision rationale during the development. The overall
sequence of this methodology is essentially the same as that presented for the EDRPM in
[13]. However, execution of the CDRPM necessitated a variety of computing environments
and the transitions between environments indicated natural transitions in the process. The

methodology sequence was therefore organized into steps that followed those transitions.

The first step is to identify the system, in terms of its required functions commensurate
with the level of detail available during conceptual design, and determine the evaluation
criteria that will be used to assess reliability. The second step is to construct an HB model to
mathematically relate the evidence for candidate solutions with system functions. The third
step is to evaluate the HB model to determine posterior reliability estimates. The fourth step
is to combine the reliability estimates according to the system’s RBD based on its functional
architecture to determine a system reliability prediction. The fifth and final step is to evaluate
the system prediction relative to a reliability requirement and determine if particular design
solutions should be eliminated from further consideration due to likelihood of failing to
meet said requirement. These steps are listed in Figure 3.1 with the primary software used

for each indicated in parentheses.

Identify System and Evaluation Criteria (Excel/MATLAB), Section 3.1
Construct HB Model (Stan), Section 3.2

Determine Posteriors (R/RStan), Section 3.3

Determine System Prediction (MATLAB), Section 3.4

Identification of Unreliable Solutions Relative to System Requirement
(Excel/MATLAB), Section 3.5

@ > 2=

Figure 3.1. Steps of CDRPM Sequence

The remainder of this chapter is organized into the steps of the CDRPM. Sections 3.1-3.5

review each step in detail; the specific section affiliated with a step is shown in Figure 3.1.
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To illustrate the execution of the CDRPM, a generic, abstract system is presented during the
system identification portion of the first step and provides the platform for a running example
through the remaining sections. In Chapter 4, the CDRPM is applied to the same abstract
system used to illustrate the EDRPM in [13] for methodology verification. Application to
a second system provided the opportunity to demonstrate flexibility in handling different
types of data, review alternative simulation outcomes, and discuss ways to interpret those
results. Therefore, this chapter focuses on the fundamental concepts of the CDRPM with

implementation variations presented in subsequent chapters.

3.1 Example System Identification

The first step of the CDRPM revolves around data collection. The system’s functional
architecture is reviewed along with the reliability requirement. Components that could
fulfill those functions are identified, the reliability criteria by which they will be evaluated
are established, and the affiliated data is gathered. Any software that can serve as a database,
preferably in a computer-readable format, is acceptable; Microsoft (MS) Excel was the
author’s software of choice. Data manipulation performed prior to model application, such
as frequency weighting discussed in Section 3.3.5, was done in MATLAB as a matter of
preference over manual manipulation within the original database and subsequently treated

as an updated database in the same computer-readable format.

The abstract system used in this chapter to illustrate the execution of the CDRPM must
perform three independent functions, referred to as Function A, Function B, and Function C.
Each function can be performed by a number of component types. Similar to the annotation
used by Gelman et al. in [24] and shown in Figure 2.1, parameters affiliated with component
types are identified with a j subscript where j = 1, ..., J for J total component types per
function. The evidence for each component type consists of the observations of a variety
of specific products or unique components of that type. Observations are identified with
an ij subscript where i = 1,...,I; for I; total observations of a component type j.> The
determination of product-, component-, and function-level posteriors is detailed in Sections

3.2 and 3.3 for Function A only. Function-level posteriors for Function B and Function C

30f note, this subscript index is different from that used during the exchangeability discussion in Section
2.3.2. The letter i was selected for an evidence index, opposed to n, since n and N were both used during data
collection.
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are provided for system-level prediction and evaluation in Sections 3.4 and 3.5. In practice,
and as demonstrated in the case study in Chapter 5, each function should be assessed in the

same manner shown for Function A for a full CDRPM analysis.

For emphasis, system and product are not used interchangeably for the remainder of the
CDRPM discussion. A product refers to a specific instantiation of a component type,
whose reliability is represented at the lowest level of the HB model. The system consists of
the collection of components selected to fulfill a set of requirements, whose reliability is

represented at the highest level of the HB model.

While the nature of a hierarchy based on functional-physical relationships was briefly
introduced in Section 2.2, the following scenario is offered for clarification before continuing
with an abstract example. If Function A was “conjoin two physical entities,” the component
types could be glue, Velcro, tape, and nails, among others, but this list suffices for the
analogy. The evidence for glue would then be observed reliability data for specific glue
products such as Elmer’s School Glue, Gorilla Glue, Loctite Super Glue, etc. The engineer
should use her judgement as to which product test results are included as evidence; the
application may reasonably preclude consideration of a product, such Elmer’s School Glue,
as a candidate solution so its data should not be used to influence the overall glue reliability
or Function A reliability posteriors in the HB model. However, it is a best practice to be

inclusive of candidate solutions so the range of potential components are represented.

3.1.1 Rationale for Example Data Selection

One of the strengths of the CDRPM is that it is not reliant on a particular type of data
distribution because it uses an MCMC solution for HB estimation. As shown in Section
3.2, the construction of the HB model is based on the type of data being assessed. It then
follows that the CDRPM is not reliant on a particular type of reliability data because it can

handle the variety of distributions different data types may necessitate.

Rather than arbitrarily selecting a type of reliability data for the abstract example system,
arguments of other methods reviewed in Chapter 2 inspired an HB model based off of
success ratio data. A success ratio is considered the number of successful trials out of the
number of trials conducted. Therefore, a success ratio is directly representative of reliability

as defined in Chapter 1 and the results can be directly compared to a reliability requirement
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expressed as a percentage without further transformation like through an SNR in [13]. While
Johnson, Moosman, and Carter [16] did not explicitly refer to the data for their model as
“success ratios,” reliability was represented in binomial terms of either success or failure,
providing at least one precedent for using this type of data in an HB model. Bergman and
Ringi’s method in [15] was founded on the acknowledgement that non-identical operating
environments influence the absolute failure rates of system components so using failure
rates from components in environments dissimilar from the one of concern is fundamentally
flawed. Their contention that components maintain the same relative failure rate, regardless
of operating environment, is reflected in the notion that a component has an inherent

likelihood to function—an inherent success ratio.

An alternative argument for using success ratios is to consider why mean time to
failure (MTTF) or mean time between failure (MTBF), both generally referred to as
MTBF henceforth unless otherwise noted, may not be a preferred reliability measure
during conceptual design. Without knowing what the final configuration looks like, it is
difficult-to-impossible to know how often or for how long each component will be required to
operate. When the components’ MTBFs are indiscriminately aggregated for the system-level
prediction, it is assumed that all components operate continuously when the system is in
operation. This is often untrue for complex systems in which subsystems periodically enter
standby states for a given operation. If the types and frequency of failures for a subsystem
is less in a standby state, assuming continuous operation would conservatively contribute
to a failure estimate. However, if the state transition induces component cycling, entering
and exiting a standby state may be a greater component stressor than continuous operation
is. While common data sources such as the Electronic Parts Reliability Data (EPRD) [30]
and Non-electronic Parts Reliability Data (NPRD) [31] often present reliability data with
the number of trials, the specific causes of failure are rarely known, especially not on a
per-trial basis, so even if the operating assumptions could be refined prior to component
aggregation, appropriately refined data is generally not available to support them. Thus, the
accuracy of a prediction made with this type of data is rife with caveats, but the perceived
precision of the observation data may mislead the analyst into being overly confident in
prediction results. Notwithstanding, MTBF is a very common type of reliability data and

may be all this is available to review across multiple products and component types.

All arguments in favor of success ratios aside, this data type was ultimately selected for
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the example in this chapter because normally-distributed MTTF was used in the EDRPM’s
example, which is replicated through the CDRPM in Chapter 4. Selecting a different data
type for this chapter resulted in a different hierarchy of distributions, demonstrating the
flexibility of the CDRPM.

3.1.2 Function A Data

For this example, the generic Function A can be performed by four types of components (J
=4). Component types 1 and 2 are supported by 10 product observations each (11, I = 10),
type 3 by five observations (/3 = 5), and type 4 by seven observations (I = 7). Success
ratios used for product observations were captured as successes and trials rather than just the
resultant ratio to protect for post-estimation analysis. A potential analysis may be evaluating
a posterior result in the context of a product with three successes out of four trials (75%
success ratio) or 3000 successes out of 4000 trials (also a 75% success ratio). The precise

data set used for this example is shown in Table 3.1.

Table 3.1. Example Function A Data Set

i N Type 1 Type 2 Type 3 Type 4

Product |Success (n) [Trials (N)|Ratio |Success (n) | Trials (N) |Ratio|Success (n) | Trials (N) |Ratio | Success (n) | Trials (N) |Ratio
1 140 160 0.88 2 16 0.13 15 50 0.30 1723 2000 | 0.86
2 36 40 0.90 17 20 0.85 290 350 0.83 356 500 0.71
3 67 70 0.96 320 450 0.71 250 500 0.50 250 475 0.53
4 57 60 0.95 49 50 0.98 46 100 0.46 35 70 0.50
5 99 110 0.90 570 600 0.95 4 20 0.20 68 90 0.76
6 1780 1850 |0.96 144 150 0.96 58 60 0.97
7 94 100 0.94 19 23 0.83 75 100 0.75
8 34 35 0.97 28 30 0.93
9 13 15 0.87 4677 5000 |0.94
10 39 40 0.98 71 75 0.95

3.2 Construction of the Hierarchy

The second step of the CDRPM establishes the relationships within the HB model
and implements the model in an MCMC sampler. Stan, an open-source probabilistic
programming software written in C++, is the computing environment used for MCMC
in this work. Once the type of reliability data was selected, distributions were fit or selected

for the hierarchy. Assumptions made in this section are specific to the type of data utilized
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and the distributions selected to represent that data; the assumptions do not necessarily hold
true for all hierarchical models. The rationale for the construction of the HB model used is
presented “bottom-up,” from the discrete evidence to the function-level characterization, in
Subsections 3.2.1-3.2.3; the HB model is presented coherently and graphically in Subsection

3.2.4, with annotations to be read “top-down.”

3.2.1 Individual Product Level

The success ratio, represented as the number of successes n for product i of type j,
n;j, out of the number for trials N for that product, N;;, was assumed to come from a
binomial distribution characterized by 6;;, summarily shown as n;; ~ binomial(Nj;;, 6;;).
Alternatively stated, product ij had an underlying probability of success (reliability) of
6;;. This representation assumed that ¢;; was constant for all trials and that the outcome
of any trial was independent of all other trials. Furthermore, it assumed that the specific
articles of a given product tested in the evidence were representative of the population of
the product considered. If the trials for Product X were performed by articles from a variety
of production lots of Product X, the results were assumed to apply to all lots. However, if
the trials for Product X were only performed by articles from Lot 1, the results should be
applied to Lot 1 only or the engineer may elect to further assume a homogeneous population
of Product X across all lots and apply the data accordingly. The product reliability, 6,;, was
drawn from its component type beta distribution, formally relating the individual product
level to the component level of the hierarchy. This relationship is mathematically represented
by 6;; ~ beta(a;, ;) for component type j by which product i was classified. The beta
distribution describes values in the interval of O to 1, which all success ratios must fall

within, and is commonly used for this sort of application [32].

3.2.2 Component Type Level
A component level beta distribution’s shape parameters, @ and S, are related to the central
tendency and spread parameterization of a beta distribution according to equations 3.1 and

3.2 where u represents the distribution mean and « represents the spread or concentration.

a = UK 3.1

30



B=(1-p« (3.2)

Parameterization by mean and concentration is common in Bayesian estimation [32]. In
the hierarchy for this example, the component means were drawn from the function-level
distribution. A beta distribution was selected for the function level for the same reasons
it was deemed appropriate for the component type level. The concentration parameters
were informed by a vague prior distribution to represent positive real numbers. A gamma
distribution was selected for this purpose. As later demonstrated in Section 3.3.3, posterior
results were insensitive to the shape and rate parameters of the gamma prior. Therefore,
while the HB model permitted a unique gamma prior for each component type, the same
shape parameter, S’, and rate parameter, R’, were used for all component prior gamma

distributions.

3.2.3 Function Level

The relationships at the function level were very similar to those at the component level.
The reliability of a function was assumed to follow a beta distribution, from which the
component level beta distribution means were drawn. The function level parameters were
informed by a beta prior for the mean and a gamma prior for the concentration. All function
prior parameters were defined to be vaguely informative priors. Sensitivity analyses for

these prior parameters are shown in Section 3.3.3.

3.2.4 Hierarchical Model

Presenting the arguments for the relationships in the HB model from the lowest (product)
level to the highest (function) level is rational because the presentation begins with what
is known—the evidence. Once the relationships are established, however, the model is
constructed in most any software from the function level down to the product level, since
the upper level distributions must be defined in order to draw from them for the lower level
distribution parameters. All of the parameters and mathematical relationships presented

thus far in Section 3.2 are summarized in Figure 3.2.
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Function
ua ~ beta(A, B)
k4 ~ gamma(S, R)
where A, B, S, R must be defined up front for function level priors.

ap =paksa  and By = (1 - pa)ka

Component Type
uj ~ beta(aa, Ba)
ki ~ gamma(S’, R")
where S’, R” must be defined up front for component prior(s).

;= MjK; and ,BjZ(l—,uj')Kj

Individual Product
9,']‘ = beta(ozj,,Bj)
n;j ~ binomial(N;j, 0;;)

where n;; is the number of successes out of N;; trials (the evidence) for

product i classified as type j.

Figure 3.2. Mathematical Summary of Hierarchical Model. This framework
was specifically developed for the type of data used to assess the reliability
of Function A.

When Figure 3.2 is read from the top down, the parameter dependencies are readily apparent.
The contents of Figure 3.2 are shown graphically in Figure 3.3. Each solid arrow can be
interpreted as a random draw. For example, 4 is a random draw from the prior function
level beta distribution, defined by beta(A, B). Dotted arrows show relationships to algebraic

transformations (e.g., u4 is part of the calculation to determine a4).
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Figure 3.3. Graphical Summary of Hierarchical Model. Adapted from [26].

3.2.5 Instantiation of the Model in Code

The dual hierarchy presentations, bottom-up and top-down, illustrate the value in
approaching the model from each direction, as well as the complexity involved in
determining posterior distributions for a relatively simple HB model with only three levels.
In practice, the execution of the HB model is more circuitous due to the simultaneous
posterior estimation enabled by MCMC, and the only sequence of significance is the one

specified by the computing environment.

Even for a relatively simple, three-level hierarchy whose base relationships are captured in
10 equations, those in Figure 3.2, the task of programming and assigning data to hierarchical
elements can be extremely tedious. For example, it took approximately 50 lines of code
in Stan to establish an HB model with a significantly reduced subset of the data in Table

3.1, specifically three success ratio observations spread over two component types. The

33



code for this implementation, which served as a proof of concept, is provided in Appendix
A. Labor intensity and propensity for making a transcription error during this step were
identified as limitations of this work, discussed in Chapter 1.5. For enhanced efficiency, the
author collaborated with Samuel Buttrey, an Associate Professor in the Operations Research
Department at Naval Postgraduate School (NPS), to create a script to partially automate
generation of an HB model for Stan for the full Function A data set. The script is shown in

Appendix B.

3.3 Determination of Posteriors

The data of the first step and model of the second step are combined in the third step,
determining the posterior distributions. R was used to assign data to model aspects, initiate
the sampling, and display the MCMC results. RStan was the program, more specifically
the library, that interfaced between R and Stan. Data assignment and sampling initiation
were incorporated in the script contained in Appendix B, with the Stan model captured as a
string rather a separate Stan file (.stan). The comprehensive list of parameters involved in the
posterior estimations based on the data in Table 3.1 applied to the HB model summarized

in Figure 3.2, without frequency weighting, is provided in Appendix C.

Since the individual products’ success ratios were modeled as binomial distributions,
the product-level of the hierarchy also had posterior updates. These estimates, each
representative of a single product, should be interpreted as what the product reliability is
more likely to be based on all the information available, from the overall function as well as
from the other component performances. This is one way in which operating environments,
test conditions, and use-cases level out in an HB model. If a single product of a given type
has a reliability significantly different from its contemporaries, it is unknown whether that
difference is due to a truly significant difference in product design, or just different use
conditions. For example, an electronic widget used in the desert is more likely to fail from
inadequate cooling than one used in the arctic, but if the exact same product is used in both
environments, it is likely to have different a failure rate for each. Without knowing under
what conditions all the products were used, but assuming some relation exists based on the
type of component and function for which it is used, shrinkage of the product-level posterior
towards the component-level posterior is a reasonable manifestation of that relationship. A

granular review of these parameters is beyond the application intent of the CDRPM which

34



is why their posterior updates are provided in Appendix C and not embedded in this chapter.

The posterior parameters of greatest interest, as they most directly relate to the
component-level and function-level beta distributions that will be used for the system
reliability prediction, are the & and 8 parameters for each beta distribution. These parameters
are summarized in Table 3.2.

Table 3.2. Posterior Distribution Parameters

Posterior Distribution Parameters
Distribution a B
Function A || 8.267x107!" | 5.823x107!

Comp Type 1 || 2.377x10° | 4.724x107!
Comp Type 2 || 1.445x10° | 4.743x107!
Comp Type 3 || 9.259x107! | 9.829x10~!
Comp Type 4 || 1.516x10° | 7.315x107!

These are the results from the MCMC evaluation of the Function A
HB model, representing the shape parameters, @ and B, for the beta
distributions at the indicated level in the hierarchy. The MCMC sampling
was initiated on four parallel chains, each with 6,000 iterations and a 2,000
iteration warm up.

3.3.1 Convergence Monitoring

Evaluation of the MCMC sampling for convergence is arguably of greater significance than
the estimated posteriors themselves. Without convergence, the stationary distribution has
not been achieved by the sampling process, thus the resultant distribution does not reflect the
joint posterior distribution and the estimated parameters are relatively meaningless even if
they appear reasonable. Indications of convergence were introduced in Section 2.3.3. There
are a number of ways to monitor for convergence and most are not entirely redundant, so
it is useful to use a variety of methods to build confidence that a stationary distribution
was achieved. The specific methods used for the Function A example in this work are
discussed in the following subsections, but they should not be interpreted as exhaustive or

restrictive. From each perspective reviewed, the MCMC sampling converged to a stationary
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distribution, confirming that it is possible to mathematically relate product, component type,

and function reliability through an HB model.

Pairwise Scatter Plot

One of the graphing options in RStudio is the pairs() plot, which produces a pairwise scatter
plot such as the one in Figure 3.4. Each dot represents a sample during the MCMC execution.
Red dots indicate divergent transitions where the step size between samples likely missed
a small feature in the distribution resulting in a biased estimate and potentially invalid
results [33]. A greater adaptation delta sampling parameter imposes a greater likelihood
of acceptance between steps and can be used to mitigate divergent transitions. Yellow dots
indicate transitions that exceeded the maximum tree depth where the sampler was terminated
prematurely to avoid excessively long execution times [33]. A greater maximum tree depth
sampling parameter permits further exertion before termination. For larger hierarchies,
the fidelity of the plot may make identification of dot color infeasible; this was the case
for the example system and is readily apparent by the fidelity of Figure 3.4. Plotting
fewer parameters at a time in the pairs() environment is helpful, but the most immediate
indication of troublesome transitions, whether divergent or exceeding maximum tree depth,
is a verbal warning printed to the screen. The results for Function A had no such transitions or
printed warnings, indicating that all transitions met tolerances specified during the sampling

initiation.
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Figure 3.4. Pairwise Scatter Plot. A color-coded pairwise scatter plot of
specified parameters in the HB model. Acceptable steps in the Markov
chain are indicated with blue dots, while red and yellow dots indicate
abnormal or unacceptable transitions. All the transitions of this simulation
were acceptable.

Another benefit of the pairs() output is evaluation of the overall distribution of the samples
when using multiple parallel chains, that is, when executing simultaneous simulations. If
the chains executed random walks through the parameter space but sufficiently overlapped,
the resultant estimation will have some sort of central tendency, which is readily observed
by the histograms on the diagonal. If the chains did not overlap, there would be gaps or

multiple modalities in the histograms.

37



Trace Plots

While the histograms show whether or not parallel chains appreciably overlapped, they do
not necessarily indicate whether any or all Markov chain(s) reached a stationary distribution.
The chains may achieve a consensus for a central tendency, but during similar transient
periods. A relatively constant mean and variance of the sample distribution in the trace plot
suggest the chain achieved the stationary distribution. Alternatively stated, if a trace plot for
a parameter over the duration of a sample, excluding any warm-up or burn-in period, shows
transient effects, the chain likely did not resolve to an accurate parameter estimate. Traces
with flat periods indicate stuck chains, which may also appear “clumpy” if the flat periods

are relatively brief so as not to be noticed individually.

All of the trace plots for the beta parameters in Table 3.2 showed relatively constant mean
and variance. Examples of the trace plots for parallel chains of a single parameter are shown

in Figure 3.5. Trace plots for all parameters are included in Appendix C.

‘Trace Plot for Parameter aA.
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Figure 3.5. Parallel Chain Trace Plot. The plot shows the end states achieved
from random sequential random walks. If the stationary distribution is
achieved, there should be little variation (subjectively assessed) in the end
states of each walk, which manifests as a trace plot with relatively constant
mean and variance.
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Correlograms

Correlograms offer another indicator of mixing, which is useful when trace plots such as
those in Figure 3.5 are rather dense. The correlogram shows the autocorrelation between
adjacent steps, or samples, in the sampling process, indicating how much the value of one
step was influenced or related to the value of the previous step. An uncorrelated sample
progression is indicative of achieving a random walk, where a chain is not stuck at a
particular value. All parameters achieved zero or nearly zero correlation, thus effectively
uncorrelated, such that the MCMC sampler behaved as desired. Furthermore, all estimated
parameters achieved nearly zero correlation rather rapidly, suggesting appropriate mixing

and arrival at the stationary distribution.
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Figure 3.6. Correlogram. This plot shows the autocorrelation between steps
during sampling from a Markov chain. The less correlation, the more random
the walk, with zero to low correlation being most desirable.

3.3.2 Posteriors in the Context of Evidence
While not necessary to review prior to proceeding to the system prediction, it can be

beneficial to graph the posterior distribution probability density function (pdf) of each
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component type overlaid on a scatter plot of the respective evidence to verify reasonableness
of the component-level beta distributions. This presentation is similar to that of MCMC
sampling from a distribution in Figure 2.2 except the scatter plot is of evidence and not of
simulation samples. In contrast with a normal distribution, it can be difficult to conceptualize
the shape of a beta distribution from its shape parameters. The y-axis scale is nonsensical
when data is combined in this manner, but graphs generally convey the relationship between

data concentration and the posterior beta characterization.

Component Posteriors Overlaid with Evidence, C = (1,1,1,1)
Component Type 1 Component Type 2
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Figure 3.7. Posteriors with Evidence. The posterior distribution of each
component type is shown with its original evidence to determine if the
distribution generally captures the data concentration.

3.3.3 Prior Distribution Sensitivity Analysis

The HB model was initially run with a prior distribution for the function-level mean of
uas ~ beta(A, B) where A =5 and B = 2. The model was rerun for us ~ beta(0.5,0.5), a
beta distribution with different shape parameters. The pdfs of these prior beta distributions
are shown in Figure 3.8. While they appear significantly different, the primary benefit they
offer to the HB model is that they confine the selection of 14 to the interval of zero to one.
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Figure 3.8. Beta Priors Considered for Sensitivity Analysis. The two
illustrated beta distributions were applied as priors for the function-level
mean, w4, to determine the sensitivity of the HB results on defined prior.

In practice, the posterior estimates were relatively insensitive to the exact characterization of
the beta prior. Percent differences between the a and S estimates for each beta distribution in
the HB model were calculated for the us ~ beta(5,2) and us ~ beta(0.5,0.5) cases. The
parameter estimates and percent differences are shown in Table 3.3. The greatest percent
difference observed was 0.9% for one parameter affiliated with the component type 1 beta
distribution. The resultant pdfs for the component type 1 estimates are shown in Figure
3.9, illustrating that the difference in parameter estimates is essentially indistinguishable
and that a nearly 1% difference is insignificant, as could reasonably be expected. The
results confirmed that a beta distribution is an appropriate vague informative prior for the
function-level mean, applying a natural constraint to the interval of zero to one without

overly influencing the HB estimation.
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Table 3.3. Sensitivity Analysis for Function-Level Beta Prior

Prior beta(A,B) (5,2) (0.5,0.5) % Difference
Beta alpha beta alpha beta alpha beta
Distribution Estimate Estimate Estimate Estimate Estimate Estimate

Function A 0.82666 0.58232 0.82760 0.58140 0.1% 0.2%
Type 1 2.37749 0.47241 2.35562 0.47205 0.9% 0.1%
Type 2 1.44514 0.47434 1.45221 0.47382 0.5% 0.1%
Type 3 0.92592 0.98288 0.92667 0.98211 0.1% 0.1%
Type 4 1.51592 0.73148 1.52065 0.73446 0.3% 0.4%

These are the results from the MCMC evaluation of the Function A HB
model using different beta priors defined the by the indicated parameters.
The results showed the posterior parameter estimations are insensitive to
the specific beta characterization.

Probability Density Functions for Component Type 1 Posterior Estimates

Estimate from beta(5,2) Prior .
Estimate from beta(0.5,0.5) Prior |

o
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Figure 3.9. Component Type 1 Posterior Estimates for Analyzed Beta Priors.
The posterior estimates for component type 1 had the greatest percent
difference due to the different beta priors analyzed but were still essentially
indistinguishable.

The same manner of sensitivity analysis was done for the gamma priors at the component
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level as well as the function level. This analysis demonstrated more variability at the
component-level than that observed for the beta prior analysis, but the function-level
posterior was insensitive to its gamma prior. Therefore, engineering judgement should
be applied when defining the gamma prior distributions’ shape and rate parameters.
Gamma priors that are more likely to yield higher concentrations for the component type
distributions, ks, are recommended to better enable distinguishing between component type
posteriors, while still maintaining a level of data uncertainty due to the probabilistic nature
of the distribution characterization. The greatest difference in posterior estimates observed
during the gamma prior sensitivity analysis was for component type 1. Figure 3.10 illustrates
how a lower concentration prior yielded a “flatter” beta posterior. This tendency was
observed for all component types (but was most exaggerated for type 1) which would make
them less distinguishable from one another if a system-level analysis required granularity
greater than the function-level. The negligible effect on the function-level posterior is also

shown in Figure 3.10.
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Pmbagbil'rty Density Functions for Component Type 1 and Function A with Different Gamma Priors
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Figure 3.10. Posterior Estimates for Analyzed Gamma Priors. The posterior
estimates for function level were essentially indistinguishable for the different
gamma priors analyzed but the component types showed greater sensitivity.
Component type 1 showed the greatest percent difference caused by the

selected gamma prior.

3.3.4 Graphical Presentation of Consolidated Results

Since the MCMC sampling converged to a stationary distribution by all perspectives
reviewed and the prior distribution sensitivity analyses demonstrated reasonable prior
selections, the posterior distribution parameters presented in Table 3.2 were accepted as
valid results for Function A’s reliability hierarchy. The pdfs for all component type and

function posterior distributions are shown in Figure 3.11.
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Posterior Distributions Affiliated with Function A

#  Comp 1, beta(2.38,0.47)
—-— - Comp 2, beta(1.45,0.47)
Comp 3, beta(0.93,0.98)
Comp 4, beta(1.52,0.73)
Function A, beta(0.83,0.58)

¢ =(1,1,11)

0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1
Success Ratio

Figure 3.11. Summary lllustration of Posterior Distributions for Function
A. Precise parameter estimates for the component type and function
distributions are provided in the legend. These results are for an unweighted
case with a frequency vector of C = (1,1, 1, 1).

Since there was no frequency weighting in this case, meaning all types of components
were historically as likely to fulfill the function, the Function A posterior was expected to
appear similar to a median likelihood between the component type reliability distributions.
Before proceeding to a system determination, a discussion of how frequency weighting was

incorporated in the CDRPM is presented in Section 3.3.5.

3.3.5 Frequency Weighting Implementation

Frequency weighting, reflective of the likelihood of a particular type of component to fulfill
the function, is the mathematical implementation of subjective knowledge, such as expert
opinion, to influence the mode(s) of a function’s posterior distribution. In [13], frequency
weighting was applied in equation 2.4 as an exponent to each component type’s argument in
a product, which was effectively a replication of the argument, subsequently scaled back to
the number of unweighted arguments. Since this modification could not be inserted within
the MCMC process, the net effect was achieved by this work through data set manipulation.

Prior to evaluating the posteriors, the evidence was replicated as component type groupings
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according to the frequency vector, C. That is, if X ; represented the full set of observations
for component type j and C = (1,1,4,2), evidence was passed to the MCMC software as
X1, X0, X3, X3, X3, X3, X4, X4 rather than X1, X5, X3, X4 (the equal frequency case). As far as
the MCMC software was concerned, this data represented seven independent distributions
so it generated seven sets of posterior parameters at the component type level. Therefore,
the posterior estimates had to be consolidated back to the appropriate number of component
types post-estimation; the consolidated component-level and product-level estimates were

determined by the arithmetic mean of the replications’ results.

To avoid this expansion and consolidation process affiliated with replicating component
groupings, replicating the observation data within each component type’s data set was
considered. For example, if the unweighted component type 3 had five observations (X3 =
5) with an occurrence frequency of four (c3 = 4), the weighted component type 3 would
have 20 observations (X3 X c3) passed to the MCMC software. The problem with this
approach was twofold: (1) it artificially reduced the uncertainty in the component type
performance and (2) it over-influenced the function-level posterior, significantly affecting
the lesser-weighted component-level posteriors due to shrinkage towards the function-level
mode. Shrinkage, as discussed in Section 2.3.2, is the manifestation of how an upper level in
a hierarchical model influences a lower level posterior by causing the posterior to “shrink”

towards the upper level’s posterior mode.

Examples of data manipulation by replicating observations within a component type,
henceforth referred to as frequency weighting “within type,” and replicating full component
type data sets, referred to as “by type,” are shown in Appendix D. A detailed analysis
of the impact on the function posterior parameter estimates, as well as the impact on
the other component estimates is included. For a summary illustration, Figure 3.12
shows component-level and function-level posteriors for an arbitrary frequency vector,
C = (1,1,4,2), implemented in both manners discussed. The “within type” graph on the
left illustrates the significant influence the component type 3 weighting had on the other
component types; each component is “flatter” like the component type 3 posterior and
noticeably different from the summary of unweighted results in Figure 3.11. The “by type”
graph on the right demonstrates an influence on the function-level posterior to approach the
component type 3 posterior, but the other component types are less influenced (because the

function level is less influenced). Figure 3.13 shows a comparison of just the Function A
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posterior under three circumstances: no frequency weighting, frequency weighting within
type, and frequency weighting by type. Evaluation of the results led to the conclusion that
replication by type is preferable and recommended to implement frequency weighting for

Bayesian estimation by MCMC sampling.

Posterior Distributions Affiliated with Function A, FW within Type - Posterior Distributions Affiliated with Function A, FW by Type

¥ Comp 1, beta(0.53,0.86)

Comp 2, beta(0.51,0.71)
45 Gomp 3, beta(0.75,0.53)
+  Comp4, beta(0.96,0.51)
Function A, beta(0.75,0.75)

#  Comp 1, beta(2.34,0.48)
Comp 2, beta(1.43,0.48)
Comp 3, beta(0.93,0.98)

+ Comp4, beta(1.51,0.74)

Function A, beta(1.01,0.78)

C=(1,142) C=(1,142)

4 7

35 6
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Figure 3.12. Comparison of Overall Effect of Frequency Weighting
Implementation. For the same frequency vector, C = (1,1,4,2), the left
graph shows the effect of the within type approach while the right graph
shows the effect of the by type approach.
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Influence of FW on Function A Posterior

35

c=(1,1,1,1)
C = (1,1,4,2) within Type
i C=(1,1,4,2) by Type

251

0.5

Figure 3.13. Frequency Weighting Implementation Method Influence on
Function Posterior. Function-level posterior results are shown for three cases:
unweighted, weighted with the within type method, and weighted with the
by type method.

3.4 Determination of System Reliability Prediction

The fourth step of the CDRPM is to determine a system reliability prediction by combining
the posterior function-level reliability distributions according to the system’s RBD and
then characterizing the distribution of the system-level prediction. This was accomplished
by conducting an MCS of each function’s posterior distribution and then performing
element-wise operations per the mathematical relationships of the RBD. For the example
system, Function A, Function B, and Function C operated in series. Therefore, element-wise
multiplication of the samples drawn from each function yielded the system’s reliability
prediction distribution. There are other ways to accomplish prediction aggregation for a
series arrangement of conjugate distributions at the function level. However, the MCS
method is applicable for any combination of function-level posterior distributions, as well
as any RBD arrangement. Any computing environment capable of MCS and distribution
fitting is sufficient for this step; MATLAB was used as a matter of preference to generate

the results shown in this section and Section 3.5.
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For purposes of assessing a system reliability prediction, Function B and Function C were
presumed to be characterized by beta distributions with the shape parameters indicated in
Table 3.4. The unweighted posterior distribution parameters for Function A’s HB model are

presented alongside to summarize all the distributions under consideration for this exercise.

Table 3.4. Parameters for All Reliability Distributions Affiliated with the

System
Beta Function A Function B Function C
Distribution al.pha l'feta al.pha I'feta al.pha tteta
Estimate Estimate Estimate Estimate Estimate Estimate

Function 0.83 0.58 2.5 0.4 9.0 2.0
Comp Type 1 2.38 0.47
Comp Type 2 1.45 0.47
Comp Type 3 0.93 0.98
Comp Type 4 1.52 0.73

Function A parameters determined through HB model analysis. Function B
and Function C parameters provided explicitly for CORPM demonstration
efficiency.

The results of 10,000-sample MCSs of each function-level distribution and their
combination to determine the system-level reliability prediction distribution are shown
in Figure 3.14. Each graph within the quad chart shows a 100-bin histogram of sample
results corresponding to success ratios, thus each blue column has a width equivalent to 1%
of reliability performance. The overlaid red lines indication distribution fits of the sample
results, whose parameters were confirmed to match those in Table 3.4 for the three functions.
The red line on the system distribution was produced through a non-parametric fit. The fitted
system-level non-parametric distribution is the primary information carried into the fifth
step of the CDRPM.
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Figure 3.14. System Reliability Prediction Distribution Based on Functions
A, B, and C. These particular results are for a 10,000-sample MCS of each
function, binned into 100 intervals of 1% each, subsequently fitted with an
appropriate distribution shown in red.

3.5 Identification of Unreliable Solutions Relative to

System Requirement
The fifth and final step of the CDRPM compares the system-level reliability prediction
to the reliability requirement and identifies unreliable design solutions that should be
excluded from further consideration during design maturation. For this scenario, the example
system has a reliability requirement of a 70% likelihood of success, that is, a success ratio
of 0.7. Since the system reliability distribution is in terms of success ratios, it directly
represents likelihood of failure. Conversion of failure times using Equation 2.8 to facilitate

comparison with a modified SNR using Equation 2.7, as is done in [13], is not required.*

4If success ratio data was unavailable and the HB model was predicated on a different kind of reliability
data, a conversion to failure likelihood is required.
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Since the posterior distribution from this method directly represents the desired end-state
characteristic, system reliability, the fitted system distribution is converted into a cumulative
distribution function (cdf). The likelihood of meeting the reliability requirement is then the
complement to the cdf of the system distribution evaluated at the requirement. Consistent
with the EDRPM, component-level posterior distributions are substituted for function-level
distributions in the system reliability determination for greater prediction granularity when

a system is unlikely to meet a requirement.

Figure 3.15 illustrates extension of this step to the example system with pseudo-math, a
statement that is representative of the calculation performed. The exact syntax to execute
this step is dependent on the computing environment. The precise likelihood of the example
system meeting the 70% reliability requirement based on the system-level non-parametric

reliability distribution found in Section 3.4 was 15.9%.

Likelihood of System Reliability Meeting 70%
=1 - cdf (fitted_system_distribution,0.7)
=15.9%

Figure 3.15. Calculations for Reliability Requirement Comparison. The
statements are representative of calculations performed. Exact syntax for
the analysis is dependent on the computing environment.

Whether or not a 15.9% likelihood of meeting a requirement is acceptable depends on
the risk posture of the engineer. To reiterate, the intent of the CDRPM is to identify and
eliminate design alternatives that are unreliable, permitting other performance metrics to
determine subsequent down-selection during the AoA. Therefore, relatively liberal (low)
thresholds of acceptability, alternatively, greater risk tolerances, are encouraged so as not to
overly constrain the design solution. If a 15.9% likelihood is acceptable, no further analysis
is required and all candidate solutions progress to the next phase of design maturation. If
it is not acceptable, the likelihood calculation illustrated in Figure 3.15 is repeated for the

function-level distributions rather than the system-level distribution.

It is worth addressing why the function-level reliability distributions are not evaluated

relative to the system requirement before this step in the CDRPM. That is, the fitted
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system distribution is deliberately assessed first. The RBD arrangement determines the
significance of a function’s influence on the system reliability prediction. For example, if
two functions operate in parallel, it may be acceptable for one individual function to be less
than the system requirement depending on the performance of the second function. The finer
component-level assessment would be additional work of limited value and component type
down-selection would unnecessarily constrain the design solution. Similarly, requirement
partitioning, otherwise known as reliability allocation, is not performed for the function-level
analysis; the functions are intentionally compared to the base system-level requirement. This
enables the same calculation to be applicable regardless of the particular function’s role in
the RBD, facilitating more efficient methodology execution and preventing over constraint

of the design space by not imposing additional derived requirements.

For illustration of the CDRPM, 15.9% likelihood is deemed unacceptably low and finer
assessment is desired; Table 3.5 shows the likelihood of each system function meeting the

reliability requirement.

Table 3.5. Function Likelihood of Meeting Reliability Requirement

Likelihood of Meeting 70% Reliability

Function Assessed % Likelihood
Function A 447
Function B 83.8
Function C 84.6

Likelihood percentages were determined in the manner shown in Figure
3.15.

The function that is least likely to meet the system reliability requirement is then replaced
by its component-type distributions in the system-level prediction determination, step 4 of
the CDRPM shown in Section 3.4. Note that this is not a perfect process of elimination. A
function with a higher likelihood, dominated by higher reliability component types, could
mask one unreliable component type whose removal could be sufficient. However, this is
unlikely since the HB model to determine posterior reliability captures uncertainty based

on the preponderance of evidence more than a arithmetic mean does. In this scenario,
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Function A was least likely to meet the reliability requirement, which could have been
qualitatively inferred from the central tendencies of each function’s MCS in Figure 3.14,
though quantitatively confirmed by review of Table 3.5. Therefore, the MCSs of posterior
reliability distributions for the component types in the Function A hierarchy were substituted
for the Function A MCS in the RBD arrangement. Figure 3.16 shows the fitted system
reliability distributions produced by the element-wise combination of Function B and

Function C with component types 1, 2, 3, and 4, respectively.
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Figure 3.16. System Reliability Prediction Distribution Based on Components
Substituted for Function A. These results are for a 10,000-sample MCS of
each function and respective component type, binned into 100 intervals of
1% each, subsequently fitted with an appropriate distribution shown in red.

A qualitative review of the central tendencies of each plot in Figure 3.16 suggests that design
solutions utilizing component type 3 are unlikely to meet the system reliability requirement
since the bulk of its mass is to the left, around lower success ratios. The likelihood for
each configuration to meet the system reliability requirement was calculated and the results

are shown in Table 3.6. The calculations quantitatively confirm that component type 3 is
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unlikely, specifically only 8% likely, to result in a reliable system, that is, one that meets its
reliability requirement. Since an approximately 16% likelihood of meeting the requirement
was unacceptable for the function-level assessment, the impetus for using component types
for a finer assessment, it may be that an 18% likelihood deems component type 4 an

undesirable solution, as well.

Table 3.6. Component Type Likelihood of Meeting Reliability Requirement
Likelihood of Meeting 70% Reliability

Component Assessed % Likelihood
Comp Type 1 33.2
Comp Type 2 26.8
Comp Type 3 8.0
Comp Type 4 18.0

Likelihood percentages were determined in the manner shown in Figure
3.15 with indicated component types substituted for Function A.

Thus, this analysis, with a presumed risk posture, concludes that design solutions utilizing
component type 3 and component type 4 are unlikely to produce a system that meets
its reliability requirement. Therefore, component types 3 and 4 should be removed from
consideration for any configurations that progress through the AoA and any design database
should be updated accordingly. In the event the likelihood of meeting a system reliability
requirement is unacceptable for the remaining components, the engineer should return to
the function-level likelihood assessment and identify the function that is next least likely to
produce a reliable system. That function’s reliability distribution should be replaced with
that of its constituent component types as was demonstrated for Function A, and the process
of elimination would continue. All subsequent analyses should only be inclusive of the
components that were not previously eliminated. That is, for the example system, Function
B had a lower likelihood of meeting the system requirement than Function C. Therefore,
the MCS of Function B’s reliability would be replaced with MCSs of its component types,
and aggregated with Function C and only component types 1 and 2 of Function A since

component types 3 and 4 of Function A were eliminated.
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3.6 Chapter Summary

This chapter presented the five steps of the CDRPM in detail, with execution illustrated
through application to a small generic example system consisting of three abstract functions.
The evidence to support the analysis was based on individual product success ratios which
generalized the failure data in an appropriate manner since little is known about the specific
use of a component during conceptual design and, usually, little is known about the precise
cause of failure in published data. Therefore, it is best to have data that fully encompasses all
possible environments, otherwise one should have data collected in a manner that does not
impose false discrimination due to operating condition influence. This approach preserves
the uncertainty in the data for a more inclusive, realistic reliability characterization at all
levels of an HB model. The methodology illustration was successful in that it demonstrated
it is mathematically possible to meaningfully related component reliability with function
performance, to aggregate component and function reliability to produce a system reliability
prediction, and to evaluate the prediction relative to a requirement. System reliability
predictions were made with increasing configuration specificity to illustrate the process
of identification and elimination of unreliable candidate solutions. This chapter did not,
however, illustrate that the CDRPM can be applied to hierarchies of different sizes or
constructed of different distributions. Furthermore, the CDRPM was ultimately intended to
mirror the EDRPM, but there was no explicit comparison to confirm this intention was met.
Therefore, to verify execution consistency between the CDRPM and EDRPM, as well as
demonstrate the application versatility of the methodology developed herein, the abstract
system presented in [13] is assessed by the CDRPM in Chapter 4.
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CHAPTER 4
Methodology Verification: Comparison to the EDRPM

This chapter serves as verification of the CDRPM. “Verification” and “validation” are
words commonly heard within the SE discipline, often jointly abbreviated as “V&YV,” so the
separate and distinct role of each activity is often muddled. Plainly speaking, verification
asks, “Did I develop the system correctly?” and validation asks, “Did I develop the correct
system?” [34]. Since the CDRPM was intended to serve as a generalized form of the
EDRPM, it should at the very least be able to duplicate the results of a scenario where the
EDRPM was applied. Anticipating some degree of discrepancy due to the CDRPM being a
stochastic method while the EDRPM is deterministic, successful replication would indicate
the CDRPM was developed in the manner intended; thus, successful replication verifies the
CDRPM.

The abstract system used to illustrate the EDRPM’s derivation in [13] was supported by
failure rate data in terms of failures per millions of hours (failures/MHours), which were
assumed to follow normal distributions. Three different frequency weighting cases were
evaluated: an unweighted case where C = (1,1,1,1), a moderately weighted case where
C = (1,1,2,5), and a heavily weighted case where C = (1,1,2,50). Therefore, successful
replication of the findings published in [13] would not only verify the methodology, but
confirm the appropriate frequency weighting implementation method was selected for the
CDRPM, as well as illustrate the flexibility of the CDRPM to accommodate a variety of

data distributions and hierarchical arrangements.

The contents of this chapter are as follows. The nature of the system, specific evidence used
for evaluation, and EDRPM results are presented in the first section. Next, the unweighted
case is evaluated. It was speculated that the scale of the failure data led to convergence errors
during MCMC sampling, but once the scale was modified, utilizing known properties
of the normal distribution, the CDRPM results matched the EDRPM results with less
than 1% error. Percent errors less than 2% were assessed as acceptable, indicative of
successful replication without any significant accuracy loss from the simulation. The
weighted cases are evaluated after the unweighted case, which were replicated with less

success. A detailed review of the EDRPM results revealed an error in the execution of the
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EDRPM. Once rectified with the approval of one of the EDRPM’s authors, the CDRPM
successfully replicated the corrected results from [13]. The chapter concludes with a
summary presentation of findings demonstrating methodology verification and introduces

how Chapter 5 will accomplish validation.

4.1 Abstract Example Used in EDRPM Development

The nature of the abstract system used in [13] is similar to the example system in Chapter 3.
The EDRPM system consists of three functions, designated as Function A, Function B and
Function C, related in an unspecified manner. Only the specific evidence for Function A is
presented in [13] and duplicated in Table 4.1 so this chapter focuses on replication of the
posterior results for this function, rather than replication of the conclusions for the system
as a whole. The data in Table 4.1 is product failure rate evidence categorized into four
generic component types. Each datum represents a mean failure rate that follows a normal

distribution, all of which share an assumed standard deviation of 1.5 failures/MHours.

Table 4.1. EDRPM Function A Evidence. Source: [13].

Evidence (Failures/Mhours)
Comp 1 Comp 2 Comp 3 Comp 4
1.0E-05 3.0E-06 3.0E-06 1.0E-06
9.0E-06 4.0E-06 5.0E-06 2.0E-06
9.0E-06 9.0E-06 3.0E-06 4.0E-06
8.0E-06 5.0E-06 2.0E-06 5.0E-06
7.0E-06 1.0E-06 2.0E-06 4.0E-06

9.0E-06 7.0E-06 na 6.0E-06
1.0E-05 2.0E-06 na 7.0E-06
1.1E-05 4.0E-06 na 5.0E-06
1.2E-05 1.0E-05 na 8.0E-06
8.0E-06 7.0E-06 na 4.0E-06

The units in the title and exponents in the data are likely double-accounting
for evaluation per millions of hours since failure rates per one trillion hours
(e.g., TE-12 failures/hour) would be an extraordinarily low rate. The data
was treated as if the title indicated units of failures/hour.
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The HB model used for this function was a normally-distributed, two-tier hierarchy,
presented in Figure 4.1. The hierarchy is considered two-tier even though there are three
levels of abstraction (product, component type, and function) because the product level in
the EDRPM is not modeled to have a posterior update; only the component type distribution
parameters and function distribution hyperparameters have posterior updates. As a reminder,
“hyper” is essentially synonymous with “parent”; the use of “hyper” was omitted during
the CDRPM discussion in Chapter 3 because use of “parameter,” “hyperparameter,” and
“hyperhyperparameter” seemed unnecessarily cumbersome for a three-tier hierarchy. The
hyperparameters ¢ and 7 represent the mean and standard deviation of the function-level

normal distribution, while 6 represents the component type’s mean.

(u,7) Function level
0, 6, 63 es aas ‘e vo. B0 67 Component level
N1 Y2 Y3 cee ce ce cee Y0 Ym Observed component evidence

Figure 4.1. EDRPM HB Model. Source: [13].

The posterior parameters determined by the closed-form equations of [13] are shown in

Table 4.2. These are the results the CDRPM results were initially compared against.
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Table 4.2. EDRPM Function A Results. Source: [13].

Frequency| Casel Case 2 Case 3
Vector | (1L,LL1) | (1,1,2,5) | (1,1,2,50)

Mean
01 9.2766E-06 | 9.2723E-06 | 9.2711E-06
02 5.2020E-06 | 5.1997E-06 | 5.1965E-06
03 3.0312E-06 | 3.0227E-06 | 3.0202E-06
04 4.6058E-06 | 4.6015E-06 | 4.6002E-06

Function 5.5289E-06 | 4.8359E-06 | 4.6393E-06

4.2 Comparison to Unweighted Case

The CDRPM was first applied to the case with no frequency weighting, where C =
(1,1,1,1). The first obvious issue was that the MCMC sampling would not converge
on the posterior distributions. Adjusting common sampling specifications such as the
warm-up period and number of sampling iterations was ineffective. Modifying more
nuanced execution parameters such as maximum tree depth and adaptation delta were
equally ineffective. The most overt indication of non-convergence was the list of warnings
that printed to the screen upon finishing the sampling cycle. A screenshot of such warnings
is shown in Figure 4.2. This particular list of warnings is meant to be illustrative only;
variations of these warnings, while heeding the recommendations provided, continued to

occur.
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Warning messages:

1: There were 6527 transitions after warmup that exceeded the maximum treedepth. Increase max_treedepth above 12. See
http://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded

2: There were 1 chains where the estimated Bayesian Fraction of Missing Information was low. See
http://mc-stan.org/misc/warnings.html#bfmi-low

3: Examine the pairs() plot to diagnose sampling problems

4: The largest R-hat is 4.12, indicating chains have not mixed.

Running the chains for more iterations may help. See

http://mc-stan.org/misc/warnings.html#r-hat

S5: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.

Running the chains for more iterations may help. See

http://mc-stan.org/misc/warnings.html#bulk-ess

6: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
Running the chains for more iterations may help. See

http://mc-stan.org/misc/warnings.html#tail-ess

Figure 4.2. Example of Non-convergence Warnings. The particular MCMC
execution for this set of warning was specified by the following parameters:
four chains, 2500 iterations/chain, 500 iteration warm-up, no thinning, max
tree depth = 12, adaptation delta = 0.95.

The perspectives suggested for convergence monitoring in Section 3.3.1, namely a pairwise
scatter plot, trace plot, and correlogram, all confirmed the stationary distribution was not
achieved. A review of each is useful and included in this section to illustrate what an
unsuccessful simulation may look like. The figures that follow are from a simulation of two
chains of 6000 iterations each, with a 2000 iteration warm-up, maximum tree depth of 15,
and adaptation delta of 0.99.

The pairwise scatter plot of the hyperparameters, shown in Figure 4.3, shows not only a
lack of a central tendency in the histograms, but non-adjacent binning. This is indicative of
each chain only taking on a single value for the given parameter, though it is possible (while
extremely unlikely) that each chain evenly alternated between the two values. Yellow dots
in the scatter plots of Figure 4.3 indicate where maximum tree depth was exceeded between
samples. Since the chains did not approach a central tendency, they did not converge to an

appropriate stationary distribution.
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Figure 4.3. Non-convergent Pairwise Scatter Plot. Non-adjacent groupings
in the histograms and scatter plots indicate the chains did not converge to
an appropriate stationary distribution.

The interpreted histogram behavior was confirmed in the trace plots of Figure 4.4
for parameters u and 7. Each chain takes on a single value, not only indicating lack
of convergence, but lack of any movement within the parameter space, refuting the
possibility that chains evenly alternated values. Therefore, the sampler’s random walk
for the function-level distribution was stuck at the same starting point. Like the trace plots
reviewed in Chapter 3, the trace plots of the component-level parameters show relatively
constant mean and variance, indicating that a transient was not in progress. However, since
the chains were stuck at the hyperparameter level, little transient would be expected even

with a shorter warm-up period prescribed.
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Figure 4.4. Non-convergent Trace Plots. Non-overlapping traces for u and
7 verify that each chain was stuck at a single value.

The last perspective reviewed to assess the movement of the MCMC, or lack thereof, was
of the parameters’ correlograms shown in Figure 4.5. For ¢ and 7, there is high correlation
(effectively one) for the samples in the chains. The trace plots for the component s in
Figure 4.4 were dense so it was possible there were periods of flat-lined behavior, similar to
behavior observed in Chapter 3. The correlograms for these parameters, however, showed a
very low correlation between subsequent samples, indicating the sampler behaved as desired

(for these parameters).
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Figure 4.5. Non-convergent Correlograms. Low, near-zero correlation for the
component parameters suggest the MCMC sampler behaved as desired for
this level of the hierarchy, but high correlation for the hyperparameters
confirms that each chain was stuck and not sampling appropriately.

Notwithstanding the obvious convergence issues, the results for the posterior component
means, 6, were not dissimilar from the EDRPM’s results for most of the simulation runs.
However, the function means, u, were orders of magnitude different. Occasionally, a
posterior u was conceptually irrational, such as a negative failure rate implying failure
before operation. The posterior estimates from the simulation iteration reviewed in Figures

4.3-4.5 are summarized in Table 4.3.

It was suspected that the order of magnitude of the data was contributing to the errors
encountered, specifically due to the scale of the standard errors of the component
distributions. While the means were on the order of 10~° (due to units of failures/MHours),
the variances were the square of that order of magnitude, or 10!2, which in practice
became 1073, According to the Stan User’s Guide [33], floating-point rounding permits
16-digits of accuracy, which encompassed the range of posterior estimates even with the
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Table 4.3. Posterior Estimates from Non-convergent Simulation

Unweighted, C = (1,1,1,1)

Mean || CDRPM Result | EDRPM Result
0, 9.30x107° 9.2766 x107°
6, 5.20x107° 5.2020 x107°
03 3.00x107° 3.0312 x107°
04 4.60x107° 4.6058 x107°
u -2.24x107! 5.5289 x107°

All parameters have units of failures/MHours. These estimates are
illustrative of numerous simulation attempts that did not converge. While
the 0 posteriors of the CDRPM were often similar, the hyperparameter
posteriors were orders of magnitude different and the CDRPM estimation
of u was occasionally irrational.

nonsensical (unmixed) results. That is, even when the difference between a function-level
mean, u, and component standard error, V. was 12 digits (from 10~ to 10713), there was
still sufficient accuracy for the MCMC random walk to make an appropriate estimate of
the component-level distributions based on the evidence. This offered an explanation as to
why the CDRPM component-level parameters trended with the EDRPM results, while the
function-level hyperparameters did not. Therefore, it was speculated that if the sampling
could begin closer to the true posterior hyperparameters, that is, at least the same relative
order of magnitude, the MCMC would be more likely to achieve convergence and the
CDRPM would produce the same results as the EDRPM.

The Stan Reference Manual [35] stated that the default seed selection for the MCMC
algorithm was randomly generated from a uni form(0.14,7.4) distribution for variables
that were declared to be constrained as positive. This confirmed that the posterior estimates
were orders of magnitude smaller than their initially presumed values. When the seed was
declared in the sampling initiation through a user option, specifically as 1 x 1075, the
simulations were no more successful than the random seed runs. It was speculated that the
errors were likely due to the very small initial step size required to characterize the HB,
which was not an option for user specification. Therefore, in a final attempt to apply the
CDRPM to the EDRPM example system, the data was modified for the tool, rather than the

reverse.
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Based on the known property of how the normal distribution scales, that given X ~ N (u, 02)
and ¢ where ¢ € R, ¢X ~ N(cu, c>0?), the scale of the data in Table 4.1 was modified for
the means to have a base order of 10°. This modification affected the results shown in Table
4.2 in a known, predictable manner, specifically only changing the order of magnitude,
similar to how a unit change from failures/hours to failures/MHours would. After this data
manipulation, convergence was achieved on the first attempt and yielded the posterior means
shown in Table 4.4. Of note, the scaling relationship utilized for data in this example is
only valid for the normal distribution. If other data of a similar order of magnitude has a
non-normal distribution, a different scaling relationship may be required to manipulate it to
a manageable level for the selected computing environment. Thus, the scaling is not a global
solution but sufficient and acceptable for the specific purpose of comparing the CDRPM to
the EDRPM results. Also, the scaling did not irrefutably confirm the speculated cause of

errors encountered, but it increased the confidence with which the rationale was asserted.

The CDRPM results were re-scaled to their original order of magnitude by applying the
reciprocal of the initial modifier and are shown in Table 4.4. Results from the CDRPM and
EDRPM were quantitatively compared through percent errors, treating the EDRPM results
as the “actual” values due to their deterministic nature. The greatest error was 0.58%,
meeting the successful replication criteria of discrepancies not to exceed 2% of EDRPM

results.

Table 4.4. Unweighted Results Comparison

Unweighted, C = (1,1,1,1)

Mean || CDRPM Result | EDRPM Result | % Error
0, 9.2751 x10™ | 9.2766 x107% | -0.02
0, 5.1952 x107® | 5.2020 x107% | -0.13
03 3.0488 x107® | 3.0312 %1076 0.58
04 4.6058 x107% | 4.6058 x107° 0.0
U 5.5060 X107 | 5.5280 x1076 | -0.41

After data scale modification, the CDRPM approach to determining HB

model posteriors yielded results that matched those produced by the
EDRPM.
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The unweighted comparison demonstrated successful posterior estimate replication,
indicating the MCMC sampling approach to evaluating an HB model is reasonable and the
stochastic simulation incurs a very low accuracy penalty. Evaluation of the unweighted case
satisfied the objectives of assessing a different hierarchical arrangement (two-tier instead of
three) founded on a different type of data (failure rate instead of success ratio) with different
data distributions (all normal distributions). However, the concept of frequency weighting
was one of the significant ways the EDRPM modified HB equations for a normal hierarchy
found in [24]. Therefore, the CDRPM had to demonstrate replication of weighted EDRPM

results before claiming it met the intent of being a generalized implementation.

4.3 Comparison to Weighted Cases

Evaluating weighted cases provided the opportunity to see if the frequency weighting
implementation method selected in Chapter 3, that is, by type and not within type, reflected
the closed-form implementation in [13]. The two weighted cases for the abstract system
in [13] are referred by this work as “moderately weighted” (“case 2” in Table 4.2) and
“heavily weighted” (“case 3” in Table 4.2).

4.3.1 Moderately Weighted, C = (1, 1,2, 5)

The moderately weighted case, where C = (1,1,2,5), was evaluated first. The same scaling
technique was applied to achieve convergence to the posterior means shown in Table 4.5.
As with the results of Table 4.4 for C = (1,1,1, 1), posterior means from both methods
were quantitatively compared through a percent error calculation. All the posterior estimates
met the error tolerance except one; the error for component type 3’s mean, 83, exceeded
the acceptance threshold by 0.19%. Otherwise, the errors were small and could reasonably
be attributed to accuracy lost from using a stochastic method opposed to a deterministic
one. Notwithstanding, the overall results were considered inclusive because the threshold
of how many distributions had to meet the 2%-acceptability was never established, though

a preponderance seemed a reasonable caveat.
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Table 4.5. Moderately Weighted Results Comparison

Moderately Weighted, C = (1,1,2,5)

Mean || CDRPM Result | EDRPM Result | % Error
0, 9.2440 x107® | 9.2723 x107% | -0.31
0, 5.1953 x107® | 5.1997 x107% | -0.08
03 3.0890 x10™® | 3.0227 x107° 2.19
04 4.6028 x107% | 4.6015 x107° 0.03
u 4.8495 x107% | 4.8359 x107° 0.28

One CDRPM posterior distribution’s result exceeded the 2% error
acceptance threshold but overall unexpected behavior led to the comparison
being considered inclusive.

The results were additionally considered inconclusive because it was peculiar that the
greatest error was at the component type level and not the function level. Since the frequency
weighting implementation methods evaluated in Section 3.3.5 demonstrated the greatest
influence on the function-level posterior parameters, that was where discrepancies due to
conceptual errors of methodology implementation were expected to be greatest. However,
it was potentially not a coincidence that the greatest error was for the second most weighted
component and that somehow the dominate weighting of component type 4 over-influenced

the net shrinkage that should have occurred within the hierarchy at the component level.

4.3.2 Heavily Weighted, C = (1, 1,2, 50)

The last case to assess from the EDRPM was the heavily weighted scenario, C = (1, 1, 2, 50),
where component type 4 overwhelmingly dominated the historical likelihood of fulfillment.
Even if such a frequency mismatch was unlikely to be encountered in a real world
scenario, its extremity offered insight into methodology behavior which was expected to
be commensurately exaggerated. The CDRPM results after data modification and MCMC
convergence are shown in in Table 4.6. The heavily weighted results did not trend as well
as the other cases; two component-level posteriors did meet the percent error tolerance.
Interestingly, the component-level parameters maintained the same relative order of percent

error. This suggested that errors noted in the moderately weighted case were systemically
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related to the CDRPM implementation and not due to accuracy loss affiliated with a

simulation.

Table 4.6. Heavily Weighted Results Comparison

Heavily Weighted, C = (1,1,2,50)

Mean || CDRPM Result | EDRPM Result | % Error
0, 8.8213 x107® | 9.2711 x10™® | -4.85
0, 5.1434 x107°° | 5.1965 %107 | -1.02
03 3.5211 x107® | 3.0202 x10™° | 16.58
0,4 4.6059 x10™° | 4.6002 x1076 0.12
u 4.6547 x107° | 4.6393 x1076 0.33

CDRPM results suggested the unsatisfactory replication of the EDRPM.

4.4 Error Investigation

The most likely source of error for the weighted cases was the CDRPM frequency weighting
implementation since the magnitude of the error trended with the magnitude of the
component occurrence disparity. The alternative frequency weighting implementation,
“within type” replication, was reconsidered. However, the “by type” implementation
was selected because the within type implementation had a greater influence on the
component-level posteriors, which was occasionally obviously inappropriate. The results in
Tables 4.5 and 4.6 suggested that the CDRPM implementation was already over-influencing
component-level posteriors. Upon closer examination of the heavily weighted EDRPM
results, however, it seemed that they did not demonstrate the shrinkage expected with one
component type so dominate relative to the others. That the component type 1 mean, 81, only
changed in the fourth significant digit, despite being the furthest from the mode determined

by the component type 4 mean, 64, was particularly perplexing.

Shrinkage, discussed in Section 2.3.2, occurs at all levels of a HB model—from a
hyperparameter towards its closest mode and from subordinate parameters towards the
hyperparameter. It is the natural manifestation of relating the levels in the hierarchy. While

the EDRPM function-level mean, u, shrunk towards 64 in the heavily weighted case, the other
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three component types’ means shifted very little towards the now-smaller function mean.
With this notion in mind, the trend of relatively little shrinkage from the EDRPM component
posteriors was observed in the moderately weighted case as well; this is especially notable
when the cases are reviewed side by side in Table 4.2. This observation was consistent
with the recognition of weighted case component-level errors maintaining the same relative
magnitude, but now that trend could be affiliated with a mathematical phenomenon of a

hierarchical model and not necessarily a simulation-related error.

It was hypothesized that the authors of [13] made an inadvertent error during the application
of the EDRPM to the generic function for illustration. The author of this work developed the
script in Appendix E to implement the EDRPM as she understood it from [13]. The results
were different from those in Table 4.2, which was partially expected because execution error
was the hypothesized source of result discrepancy. However, the results did not conclusively
indicate who made an error because it was just as likely for this author’s execution to be
faulted; they only confirmed the values in Table 4.2 should be further interrogated before
quantitatively comparing to the CDRPM.

Bryan O’Halloran, one of the authors of the EDRPM, provided the original MATLAB script
used to generate the results published in [13] to the author of this work. In short, there were
two implementation errors noted in the original script. Details are provided in Appendix E.
The findings were reviewed and discussed with O’Halloran; he agreed with the corrections
suggested. Once the corrections were made, the EDRPM results from the original script

exactly matched the script shown in Appendix E.

All cases were re-evaluated using the corrected EDRPM implementation and an updated
comparison to the CDRPM yielded the results in Table 4.7. Of the 15 parameter
comparisons, only one had an error in excess of 2%. In the heavily weighted case, component
type 3’s mean, 63, was 6.69% larger for the CDRPM than EDRPM, but this was an
improvement to the previously calculated error or 16.58%; the error was less than half
the initial error. The corrected unweighted case results were nearly identical to the initial
results. The calculated errors for the weighted cases were all lower in the comparison to the
corrected EDRPM than to the published EDRPM results. As a reminder, the purpose of the
quantitative comparison was to determine whether or not the CDRPM, a stochastic method,

could satisfactorily generate the same results as the EDRPM, a deterministic method, for a
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hierarchy based on the normal distribution. Therefore, the percent errors are representative

of a loss of accuracy from using a simulation-based method.

Table 4.7. Corrected Comparison of CDRPM and EDRPM

Unweighted, C = (1,1,1,1)
Mean || CDRPM Result | Corrected EDRPM Result | % Error

0, 9.2751 x107° 9.2725 x107° 0.03
0, 5.1952 x107° 5.2024 x107° -0.14
63 3.0488 x107° 3.0366 x107° 0.40
04 4.6058 x107° 4.6068 x107° -0.02
u 5.5060 x107° 5.5296 x107° -0.43

Moderately Weighted, C = (1,1,2,5)
Mean || CDRPM Result | Corrected EDRPM Result | % Error

0, 9.2440 x107° 9.2418 x107° 0.02
0> 5.1953 x107° 5.1953 x107° 0.00
03 3.0890 x1076 3.0474 x1076 1.37
04 4.6028 x1076 4.6031 x1076 -0.01
u 4.84950 x107° 4.8386 x1076 0.22

Heavily Weighted, C = (1,1,2,50)
Mean || CDRPM Result | Corrected EDRPM Result | % Error

0, 8.8213 x1076 8.8320 x1076 -0.12
0, 5.1434 x107° 5.1442 x107° -0.02
03 3.5211 x1076 3.3004 x107° 6.69
04 4.6059 x1076 4.6045 x1076 0.03
u 4.6547 x107° 4.6445 x107° 0.22

CDRPM results were generated by four chains with 6000 iterations each,
a warm-up of 2000 iterations, maximum tree depth of 15, and adaptation
delta of 0.99. EDRPM results were generated using the code in Appendix
E.

Overall, the comparison exercise was considered a successful demonstration of the ability of

the CDRPM to replicate the EDRPM posterior results for a normally-distributed hierarchy.
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The error affiliated with 63 for C = (1, 1,2, 50) was undesirable, but in the context of the
extremity of the case could reasonably be considered acceptable. To reiterate the significance
of the frequency vector, C = (1, 1,2,50) conveys that, based on precedence, component
type 4 is used to fulfill the function 50 times more often than component types 1 or 2, and
25 times more often than component type 3. From equations 2.2 and 2.3, the frequency
weights, which represent historical probabilities of selection, are approximately 1.85%,
1.85%, 3.7%, and 92.6%, respectively. Therefore, the rationale could be that when in very
rare situations, a greater accuracy loss that favors the dominant component characterization
is acceptable. Furthermore, the component-level accuracy loss is completely transparent to
the ultimate outcome of the CDRPM unless the system reliability prediction fails to meet
the requirement, causing the function of concern to be decomposed to the component-level

for re-evaluation.

4.5 Chapter Summary

This chapter reviewed the successful comparison of posterior parameter estimates generated
by the CDRPM to those generated by the EDRPM. Success was determined by percent errors
between the two methods of less than 2%, indicating that use of the stochastic method
incurred an acceptably low accuracy penalty relative to the deterministic method. One
parameter did not meet the threshold in the heavily weighted case, exceeding the threshold
by 4.69%. Such a discrepancy in an extremely rare scenario is recommended to be an
acceptable accuracy loss, handled with consideration in the event the system reliability
prediction is made explicitly with non-dominant distributions from a heavily weighted
function. The comparison demonstrated that, while the CDRPM was created to handle
non-normal distributions, it is still possible to apply the method to normal distributions,
as well as with different types of reliability data. On the whole, this exercise presented
reasonable support for the CDRPM as a generalized form of the EDRPM. Two follow-on
questions arose. First, how does the CDRPM scale to a system using real success ratio data?
Second, is one data type preferable to the other when multiple types are available? That
is, if failure rate data in a normally-distributed hierarchy and success ratio data in an HB
like Chapter 3 are each assessed by the CDRPM, are the conclusions consistent? Chapter 5
explores these questions.
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CHAPTER 5:
Methodology Validation: Case Study for CDRPM

This chapter serves as validation of the CDRPM. Through the examples in Chapter 3 and
Chapter 4, this work demonstrated that it is possible to apply the CDRPM to data from
a range of components to establish functional-physical relationships in system reliability
performance for abstract systems. This case study applies the CDRPM to a coherent,
purposeful system, a generic launcher, using product data from published sources, and
assesses the findings to determine the extent to which the CDRPM addresses the gap
identified in Chapter 2; it evaluates if the “correct system,” or in this case, correct
methodology, was developed. Thus, the case study validates the CDRPM.

Additionally, Chapters 3 and 4 demonstrated the CDRPM has the flexibility to assess
different types of data. This chapter explores the implication of data type selection on
resultant conclusions by using two different data types, success ratios and failure rates, for
the exact same products in the functional arrangement of the case study system. While
time-based failure rate data with a normality assumption lends itself to assessment by the
EDRPM, Chapter 4 demonstrated that CDRPM results are consistent with the EDRPM,
provided there is not large disparity in the component type frequency of occurrence.
Therefore, the CDRPM was applied to both data types for consistency in system reliability
prediction-requirement comparison and presentation of findings, with a presumed negligible
impact of methodology selection on data type evaluation. Success ratio data are fully
assessed first, followed by failure rate data. This chapter concludes with a comparison of
the assessments and postulates scenarios in which use of one type of failure data may be

preferable over another.

5.1 Case Study System and Evaluation Process

The system assessed in this case study is a generalized representation of a projectile
launcher for a non-specific application. The reliability requirements against which the
CDRPM predictions are compared are not intended to reflect real world systems, thus
the conclusions are illustrative only of the methodology application and not of actual

system performance. The component data applied to the CDRPM, however, came directly
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from published commercial sources, namely the NPRD [31] and EPRD [30]. Details of
the launcher’s functional arrangement and supporting data are provided in the following
subsections, fulfilling the activities of CDRPM step 1.

5.1.1 Launcher Functions and Reliability Block Diagram

Whether a launcher is intended for rockets, aerial vehicles, missiles, or other projectiles,
the broad purpose of the system is to impart energy to an object to make it airborne. In
this highly simplified representation, the system must perform three functions to fulfill
its purpose. Foremost, the system must impart sufficient energy of an appropriate type
(electrical, mechanical, etc.) to the object of interest to project it from the launcher; this
function is hereby referred to as Convert Energy. The system must receive energy from
a source, assumed to be electrical in this case, and modify it as necessary for use by the
remainder of the launcher components; this is referred to as Condition Energy. Additionally,
the system must meaningfully relay the received energy input to the components generating

energy output; this function is referred to as Actuate Energy.

A simplified RBD for the launcher is shown in Figure 5.1. The dark gray boxes with solid
outlines represent the functions identified above. The Actuate Energy function is represented
in the system three times to nominally illustrate a safety-related intent with an in-line function
and a reliability-related intent with a pair of parallel functions. For synthesis, a physical
component that could fulfill each function is shown in lighter gray with dotted outlines; this

arrangement is an example of a design alternative or design configuration for the launcher.
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Figure 5.1. Launcher Reliability Block Diagram

For further simplification and brevity, the functions in Figure 5.1 were labeled as Function
A, Function B, and Function C in the manner shown in Figure 5.2. The analysis in the

following sections uses this nomenclature.

Function B

\

Function B FunctionC |— »

A

— »{ Function A
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Function B

4

Figure 5.2. Generic Function Reliability Block Diagram

The system’s reliability, according to its RBD, is represented by the expression below,
equation 5.1. Representing the parallel Function B reliability terms individually, rather than
with an exponent, is a deliberate measure related to execution of CDRPM step 4, addressed
in Sections 5.2.2 and 5.3.2.

Rgys = RaRp(1 - (1 = Rp)(1 - Rp))Rc (5.1

75



5.1.2 Launcher Reliability Requirement

For the purpose of this case study, the launcher system has a reliability requirement of 70%,
alternatively stated as a 30% likelihood of failure during operation. The service life, or
period over which its reliability will be assessed, is 1,200 hours. This time period is not the
same as the system’s MTBF, which, for failure rates on the scale of failures per millions
of hours, leads to MTBFs generally on the scale of millions of hours. The rationale for
a 1,200-hour evaluation was that continuous operation during daylight hours (nominally
12 hours a day) for a quarter calendar year (13 weeks) entails 1,092 hours of operation.
Ideally, a quarterly preventative maintenance task would identify and address system issues
prior to failure. Therefore, the benchmark for evaluation had to be at least 1,092 hours;
an approximate week-long buffer seemed reasonable. The selection of a 70% reliability
threshold was arbitrary. Neither of these requirement aspects are attempting to mimic real

world launcher scenarios and any likeness is coincidental.

5.1.3 Supporting Data

A minimum of two component types were identified to potentially fulfill each function
shown in Figure 5.1. The alternatives were not meant to be all inclusive since this exercise
was focused on data implications and not the explicit predictions produced. Inverters and
transformers were selected as potential physical solutions for the Condition Energy function
with respective historical frequencies captured in the frequency vector C = (1,2). Circuit
breakers, switches, and relays were selected as potential physical solutions for the Actuate
Energy function with frequencies assigned as C = (1,2,3). Lastly, fans, compressors,
and pumps were selected for the Convert Energy function with frequencies assigned as
C = (1,2,1). Physical solutions are henceforth only referred to as component types of
their parent functions with a reference number (the j index presented in Chapter 3) to avoid

specific conclusions from being drawn about the parts’ characteristics during this case study.

The EPRD [30] and NPRD [31] provided all the product evidence. Both publications
are arranged in a similar manner and their use of the word “part” is synonymous with
this work’s use of “product.” Failure rate data for a part, such as a fan, is presented on
three levels, referred to as “summarized,” “roll-up,” and “summary,” from least to most
aggregated, respectively. The summarized level represents “actual data from each data

source” [30], [31]. These failure rates are given in units of failures/MHours and assumed
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normally distributed with a standard deviation of 1.5. Roll-up entries are geometric means
of summarized entries calculated on the basis of quality level (commercial, military, or
industrial) or application environment (e.g., ground, airborne, spaceflight). Summaries are
geometric means of the roll-ups, representing the entire body of data for the given part.
Success ratios are only provided at the summarized level, but aggregated levels are easily
calculated through arithmetic sums of the number of failures and population size tested for

each summarized entry of interest.

At least three product evidence data points were selected for each component type identified.
The complete data set used in this case study is shown in Appendix F. The following
conditions were observed during data selection. These conditions were established to
facilitate the case study comparison of data type implication while recognizing they induced
a non-zero influence on the representativeness of the resultant reliability predictions. Since
the case study launcher was for a non-specific application, prediction consistency was

prioritized over prediction accuracy.

1. Only data with non-zero failures were selected. If none of the tested parts failed, the
failure rate reported was qualified as “less than.” However, there is no way to capture
the qualification in the HB model. If only failure rate data were used for a system
prediction, this aspect could subjectively be captured by recognizing the resultant
prediction would likely be a conservative estimate since actual failure rates were
likely lower than those used. This approach would have confounded the prediction
comparison to that determined by success ratio data. Therefore, discrete failure rates
were selected to facilitate comparison with discrete success ratios.

2. Only data that had a self-consistent population reported was used. For example,
some parts details did not provide any population information, while others reported
a population less than the number of reported failures. It is possible a component
failed, was repaired, and was subsequently retested, repeatedly, but without that
insight explicitly available, the data was excluded from consideration.

3. The highest level of data that met conditions (1) and (2) was used as product evidence.
While this could have meant multiple products, quality levels, and test environments
were represented in the data, they were still a subcategorization of the component

type and therefore consistent with the hierarchical intent.
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5.2 Assessment Using Success Ratios

Evaluation of each launcher function using success ratio data used same HB model
developed in Chapter 3. For concision, as well as to focus on the process of elimination
of unreliable candidate solutions, the posterior results of each function’s HB model are
presented summarily; interim results and convergence illustrations for the parameters of
interest are not shown. That is, Figures 5.3 through 5.5 were produced by executing CDRPM
steps 2 and 3 through code similar to that shown in Appendices B and C for each function

in Figure 5.2.

5.2.1 Function-Level Characterization with Success Ratio Data

The posterior beta distribution parameters affiliated with Function A, supported by two
components with a frequency vector of C = (1,2), are shown in Table 5.1. The pdfs
for these distributions are shown in Figure 5.3. The general shape of the two component
distributions conveys that they are relatively similar and so the encompassing function
distribution is also qualitatively quite similar with an unremarkable frequency weighting

influence.

Table 5.1. Success Ratio Function A Posterior Results

Posterior Distribution Parameters
Distribution a B
Function A 0.8126 | 0.4658

Comp Type Al || 0.9284 | 0.2515

Comp Type A2 || 1.1633 | 0.2066
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Posterior Distributions Affiliated with Function A: Condition Energy
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Figure 5.3. Success Ratio Function A Posterior Distribution. The MCMC
execution for the graphed results was specified by the following parameters:
two chains, 6000 iterations/chain, 2000 iteration warm-up, no thinning, max
tree depth = 10, adaptation delta = 0.95.

The posterior beta distribution parameters affiliated with Function B, supported by three
components with a frequency vector of C = (1,2, 3), are shown in Table 5.2. The pdfs for
these distributions are shown in Figure 5.4. While the three component distributions were
similar, the slightly higher probability of a lower success ratio from component type B3
coupled with highest frequency (c3 = 3) yielded a similar but noticeably different function

posterior.
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Table 5.2. Success Ratio Function B Posterior Results

Posterior Distribution Parameters
Distribution a B
Function B 1.0417 | 0.5427
Comp Type B1 || 1.6712 | 0.3416
Comp Type B2 || 1.1749 | 0.2484
Comp Type B3 || 1.2387 | 0.3211

2 Mm@ C 3
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Figure 5.4. Success Ratio Function B Posterior Distribution. The MCMC
execution for the graphed results was specified by the following parameters:
two chains, 6000 iterations/chain, 2000 iteration warm-up, no thinning, max
tree depth = 10, adaptation delta = 0.95.

The posterior beta distribution parameters affiliated with Function C, supported by three
components with a frequency vector of C = (1,2, 1), are shown in Table 5.3. The pdfs
for these distributions are shown in Figure 5.5. The most notable aspect of this function’s

analysis was that distributions for component types C1 and C2 were nearly identical.
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Table 5.3. Success Ratio Function C Posterior Results

Posterior Distribution Parameters
Distribution a B
Function C 0.9025 | 0.5022

Comp Type C1 || 1.4132 | 0.3500

Comp Type C2 || 1.4311 | 0.3489

Comp Type C3 || 1.6024 | 0.3114

Posterior Distributions Affiliated with Function C: Convert Energy

Comp 1, beta(1.41,0.35)
Comp 2, beta(1.43,0.35) ¢ =(1,21) .
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Figure 5.5. Success Ratio Function C Posterior Distribution. The MCMC
execution for the graphed results was specified by the following parameters:
three chains, 6000 iterations/chain, 2000 iteration warm-up, no thinning,
max tree depth = 12, adaptation delta = 0.95.

5.2.2 System-Level Characterization with Success Ratio Data
In accordance with step 4 of the CDRPM, the function-level posterior reliability distributions
were aggregated by representing each with an MCS and combining the respective sample

iterations according to Equation 5.1. As a reminder, each sample from a function represents
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a unique instantiation of that function. While Function B appears three times in the RBD,
each appearance could be executed by a different component affiliated with Function B.
Therefore, three separate MCSs of Function B were conducted, one for each appearance, to

prevent one instantiation from over-influencing the system iteration’s result.

Consistent with the presentation of Figure 3.14, Figure 5.6 shows the results of
10,000-sample MCSs of each function-level distribution and their combination to determine
the system-level reliability prediction distribution. The higher density of low success ratios at
the system-level, shown in the bottom right quadrant of Figure 5.6, reiterates the significance

of considering each function’s reliability in the context of the system RBD.
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Figure 5.6. Success Ratio System Reliability Prediction Distribution. The
prediction was based on a 10,000-sample MCS of Functions A, B, and C for
each appearance in the RBD, binned into 100 intervals of 1% each, fitted
with an appropriate distribution shown in red.
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5.2.3 Identification of Unreliable Solutions with Success Ratio Data

The fifth step of the CDRPM commenced with calculating the likelihood of meeting
the launcher’s 70% reliability requirement using the cdfs of the function-level posterior
reliability distributions and of the fitted system-level reliability distribution. These results
are shown in Table 5.4. After qualitatively assessing the system-level distribution in
Figure 5.6, the likelihood of the launcher meeting its reliability requirement based on a
physical configuration randomly selected from the design alternatives is unsurprisingly low,

specifically 4.9%.

Table 5.4. Likelihood of Meeting Reliability Requirement Based on Success

Ratio Data
Likelihood of Meeting 70% Reliability
Level Assessed % Likelihood
System 4.9
Function A 51.5
Function B 53.2
Function C 51.8

Of the three functions, Function A had the lowest likelihood of meeting the requirement,
so it was decomposed into its component types first. The MCSs for component type Al
and component type A2 were substituted for that of Function A in Equation 5.1, resulting
in two new system-level reliability prediction distributions. The likelihood calculations for
meeting the system requirement were repeated using the fitted system-level distributions
for a configuration of Function B and Function C with either component type Al or
component type A2. These results are shown in Table 5.5. The likelihood with component
type A2 was marginally better, that is, by approximately 2%, so component type Al was
eliminated from consideration. However, a 10.8% likelihood of meeting the requirement
was still unacceptably low. Therefore, Function C, the second least-likely function to meet

the requirement, was decomposed next.
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Table 5.5. Success Ratio Likelihoods with Function A Components

Likelihood of Meeting 70% Reliability

Component Assessed % Likelihood
Comp Type Al 8.5
Comp Type A2 10.5

Requirement Likelihoods with Function A Components Using Success Ratio
Data. Function-level posterior distributions represented Function B and
Function C.

The MCSs for component types C1, C2, and C3 were substituted for that of Function
C in equation 5.1. Function B was still represented by three independent MCSs at the
function level. Since component type Al was eliminated, the MCS for component type
A2 now singularly represented Function A. The updated likelihoods of meeting the system
requirement based on the fitted distributions of the new configurations are shown in Table
5.6. Since the posterior distributions for component types C1 and C2 were nearly identical,
noted in the discussion of Figure 5.5, it followed that the component types lead to nearly

equal likelihoods of meeting the system reliability requirement.

Table 5.6. Success Ratio Likelihoods with Function C Components

Likelihood of Meeting 70% Reliability

Component Assessed || % Likelihood
Comp Type Cl1 16.5
Comp Type C2 16.7
Comp Type C3 18.4

Requirement Likelihoods with Function C Components Using Success
Ratio Data. The posterior distribution for component type A2 represented
Function A while the function-level posterior distribution represented
Function B.
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While a 2% improvement justified elimination of component type A1l from consideration,
the same argument was not applied to Function C in the interest of preserving design
alternatives. After all, the fundamental intent of the CDRPM was to eliminate unreliable
component solutions and permit other performance metrics to determine selection of the
optimal physical architecture, not to select the most reliable component solution. Rather
than eliminate both C1 and C2 from further consideration for an improvement of less than
2%, all component types were retained as Function C. Further likelihood improvements

were assessed through a decomposition of Function B.

The three Function B instantiations in Equation 5.1 were replaced by three MCSs of
component types B1, B2, and B3, one a type time, to determine a new system prediction
distribution. That is, all of the Function B distributions were replaced by iterations of
component type B1’s distribution for a system prediction based on component type A2, all
component types of Function C, and component type B1. Similar to how Function B was
consciously replicated independently, a number of permutations could have been evaluated
for configurations utilizing different component types affiliated with Function B executing
the different series and parallel Function B elements in the system. The granularity of such
an analysis was speculated to be insignificant to the broader conclusions sought by this
case study, but could be of use in a different scenario. The likelihoods to meet the system
requirement based on component type A2, Function C, and one of Function B’s component

types fulfilling all the Function B tasks, are shown in Table 5.7.

Table 5.7. Success Ratio Likelihoods with Function B Components
Likelihood of Meeting 70% Reliability

Component Assessed % Likelihood
Comp Type Bl 23.0
Comp Type B2 23.7
Comp Type B3 20.8

Requirement Likelihoods with Function B Components Using Success
Ratio Data. The posterior distribution for component type A2 represented
Function A while the function-level posterior distribution represented
Function C.
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Recognizing the magnitude of the difference was relatively small—slightly greater than
2%, component types B1 and B2 were deemed more desirable than B3 due to their greater
likelihood to yield a system that meets its reliability requirement. Once component type B3
was eliminated from further consideration, Function B was reassessed to reflect a random
selection from component type B1 or B2. Rather than re-initiate CDRPM steps 2 and 3 for
an HB model with only two component types, the MCSs for component types B1 and B2
were combined, from which 10,000 samples were randomly selected. This new population
represented the Function B if it were to be executed by component types B1 or B2 only, and
was coined Function B’. Note that by not re-analyzing the HB model, there was still some
influence of component type B3 on the posterior distributions of the other two components
used to determine Function B’. This influence was considered insignificant for the purposes

of determining relative reliability contribution to the system-level prediction.

Assessment of the fitted system reliability prediction distribution generated by combining
the reliability distributions for component type A2, Function B’, and Function C, yielded a
23.49% likelihood of meeting the system requirement. A histogram of the system reliability
prediction with the fitted beta distribution used to facilitate the requirement likelihood

calculation is shown in Figure 5.7.
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Figure 5.7. Success Ratio System Reliability Prediction Distribution,
Semi-Final. The prediction was based on the posterior distributions for
component type A2, Function B’, and Function C.

Out of curiosity, the component type substitution for Function B was re-assessed on the
premise that Function C had been down-selected to component type C3, only. In this
scenario, the likelihoods affiliated with each Function B component type were greater, but
the component types retained their relative rank. The results are shown in Table 5.8, and
the histograms for each combination are shown in Figure 5.8. They affirmed that retaining
solutions to be inclusive in one functional area may influence the absolute system-level
assessment, but should not affect the decisions within another functional area. Subsequently,
the analysis for eliminating B3, thus a system comprised of component type A2, Function
B’, and component type C3, resulted in a 38.7% likelihood of meeting the reliability

requirement.
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Table 5.8. Reassessment of Success Ratio Likelihoods with Function B
Components

Likelihood of Meeting 70% Reliability

Component Assessed % Likelihood
Comp Type B1 38.4
Comp Type B2 39.4
Comp Type B3 34.9

Requirement Likelihoods with Function B Components Using Success
Ratio Data, Reassessed. The posterior distribution for component type A2
represented Function A while the posterior distribution for component type
C3 represented Function C.

System Reliability Prediction Distributions Based on 10,000 Samples with Components Substituted for Function B
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Figure 5.8. Success Ratio System Prediction, Circle Back to Function B.
This analysis assumed Function C was down-selected to component type C3
prior to decomposing Function B into its component types. Component type
B3 was still unfavorable.
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The risk posture of the engineer determines when the identification of unreliable candidate
solutions concludes. In this case, the most reliable design solution, comprised of component
types A2, B2, and C3, only has a 39.4% likelihood of meeting the system-level reliability
requirement of 70%, and a 38.7% if additional decision flexibility is retained for Function B.
It is important the likelihood of meeting the requirement is not confused with the system’s
reliability, that is, the likelihood of the system operating as intended. Further, there is still
a significant amount of decision space to influence the specific design configuration and,
accordingly, the actual system reliability. For example, component type C3 is generally
representative of a pump in this case study; it should be widely accepted that there are many
different kinds of pumps with a wide range of performance characteristics. The CDRPM
is not intended to prescribe a particular pump, only to illustrate that for the affiliated
function, random selection of a pump is more likely to yield a system with an acceptable
reliability than random selection of a compressor or fan. Therefore, for the sake of this case
study, an approximately 40% chance of meeting a system level requirement based on the
success ratio data for the indicated candidate solutions is deemed acceptable. The system
reliability prediction distribution for the final configuration assessed in this case study, using
component type A2, Function B’, and component type C3, resulting in a 38.7% likelihood
of meeting a 70% reliability requirement, is shown in Figure 5.9
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Figure 5.9. Success Ratio System Reliability Prediction Distribution, Final.
After component type B3 was eliminated in the circle-back analysis, the final
configuration recommended based on the success ratio data was a system
utilizing component types A2, either B1 or B2, and C3.

5.3 Assessment Using Time-Based Failure Rates

Evaluation of each launcher function using failure rate data used the same HB model
developed to facilitate the comparison with the EDRPM in Chapter 4. As with the
presentation of findings in Section 5.2, the posterior results are presented summarily. While
different characters were used to represent normal distribution parameters of the different
levels in the hierarchy in Chapter 4, such as u for the function-level normal distribution and
0 for the component-level, all means are represented as ¢ and all standard deviations as o

in this case study.

5.3.1 Function-Level Characterization with Failure Rate Data
The posterior normal distribution parameters affiliated with Function A, supported by two
components with a frequency vector of C = (1,2), are shown in Table 5.9. The pdfs

for these distributions are shown in Figure 5.10. While the tails of the component-level
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distributions illustrate it would be extremely unlikely to encounter a negative failure rate, the
encompassing function-level distribution shows the distinct possibility of a negative failure
rate. Accounting for this behavior is addressed in the MCS representation of Function A,

discussed in Section 5.3.2.

Table 5.9. Failure Rate Function A Posterior Results

Posterior Distribution Parameters

Distribution u (Fail/MHours) | o (Fail/MHours)

Function A 6.8478 3.1812
Comp Type Al 6.2911 0.7500
Comp Type A2 8.4818 0.4500

Posterior Distributions Affiliated with Function A: Condition Energy
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Figure 5.10. Failure Rate Function A Posterior Distribution. The MCMC
execution for the graphed results was specified by the following parameters:
three chains, 6000 iterations/chain, 3000 iteration warm-up, no thinning,
max tree depth = 12, adaptation delta = 0.90.
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The posterior normal distribution parameters affiliated with Function B, supported by three
components with a frequency vector of C= (1,2,3), are shown in Table 5.10. The pdfs for
these distributions are shown in Figure 5.11. The function-level posterior showed an even
greater likelihood of encountering a negative failure rate than Function A, as well as for

component type B2. Accounting for this behavior is addressed in Section 5.3.2.

Table 5.10. Failure Rate Function B Posterior Results

Posterior Distribution Parameters

Distribution u (Fail/MHours) | o (Fail/MHours)

Function B 15.0566 13.6223
Comp Type Bl 15.2490 0.2500
Comp Type B2 3.5588 0.7500
Comp Type B3 23.0351 0.4500

Posterior Distributions Affiliated with Function B: Actuate Energy
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Figure 5.11. Failure Rate Function B Posterior Distribution. The MCMC
execution for the graphed results was specified by the following parameters:
three chains, 6000 iterations/chain, 3000 iteration warm-up, no thinning,
max tree depth = 15, adaptation delta = 0.95.
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The posterior normal distribution parameters affiliated with Function C, supported by three
components with a frequency vector of C= (1,2, 1), are shown in Table 5.11. The pdfs for
these distributions are shown in Figure 5.12. As with the success ratio data, the posterior
distributions for component types C1 and C2 were extremely similar. The potential for

negative failure rates was noted at the function level, as well.

Table 5.11. Failure Rate Function C Posterior Results

Posterior Distribution Parameters

Distribution u (Fail/MHours) | o (Fail/MHours)

Function C 8.5610 10.5525
Comp Type Cl1 6.0473 0.5625
Comp Type C2 5.9051 0.4500
Comp Type C3 16.7972 0.2500

Posterior Distributions Affiliated with Function C: Convert Energy
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Figure 5.12. Failure Rate Function C Posterior Distribution. The MCMC
execution for the graphed results was specified by the following parameters:
three chains, 6000 iterations/chain, 3000 iteration warm-up, no thinning,
max tree depth = 12, adaptation delta = 0.95.
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5.3.2 System-Level Characterization with Failure Rate Data

Rather than performing MCSs of the function-level reliability distributions like in Section
5.2.1, MCSs were performed for the function-level failure rate distributions. Next, a
reliability value was calculated for each sample in a function’s simulation according to
the Equation 2.8, producing 10,000 representations of the function’s reliability, effectively
creating the posterior reliability distribution for the function. These reliability distributions
were then combined in the same manner discussed in Section 5.2.2 to create the system-level

reliability prediction distribution.

The potential to randomly sample a negative failure rate was present for each of the
function-level failure rate posteriors. The posterior normal distributions needed to be
truncated to positive values while ensuring precisely 10,000 samples were available for
subsequent element-wise operations. This was done by first performing a 10,000-sample
MCS of the original posterior distribution. Then the negative rates were identified and
replaced with the results from a new MCS of the original parameters. This cycle was
repeated as many times as necessary until there were 10,000 positive failure rates sampled
from the posterior distribution. Figure 5.13 shows a comparison of the positive samples in
the original MCS in blue and positive samples used for reliability calculations for Function
A in a semi-transparent yellow, thus the samples common to both sample populations appear
green. The code and histogram comparisons for all of the case study functions are contained
in Appendix F.
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Histograms for Positive-Only Failure Rates, Function A
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Figure 5.13. Positive Failure Rate Histograms for Function A. Original
samples are shown in blue while positive samples available for subsequent
analyses are shown in yellow. Green indicates the overlap of the two
classifications, that is, original (blue) positive samples used in subsequent
analyses (yellow). Strictly yellow regions were generated during the additional
sampling cycles; they were not part of the original sample. It took three cycles
of sampling and replacing negative failure rates to achieve a 10,000-sample
population of positive failure rates for this function.

The positive-only samples induced a right-skew to the failure rate population descriptive
statistics (e.g., mean and median), which was unavoidable due to truncation of negative
values. Greater failure rates affiliated with the right skew would result in artificially lower

reliability predictions; this was qualitatively kept in mind during follow-on analysis.

For each positive sampled failure rate, a corresponding reliability was calculated according
to Equation 2.8 using a time of 1,200 hours, the benchmark for the reliability requirement.
The resultant distributions of calculated reliabilities formed the function-level distributions
combined according to the RBD in Figure 5.2 to form a system-level prediction. Function
B was represented by three independent iterations, including complete reiteration of the

cycle process for positive-only samples. Since the period of evaluation, 1,200 hours, was
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so small relative to the failure rate order of magnitude, that is, evaluated per millions of
hours, the reliability distributions were unsurprisingly high. The system-level reliability
prediction distribution is shown in Figure 5.14. Note, this distribution was generated with
the right-skewed failure rates that yielded lower calculated reliabilities; the “true” reliability

predictions would be slightly greater than those shown in the histogram.
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Figure 5.14. Predicted System Reliability Distribution Using Failure Rates.
The prediction was based on 10,000 positive samples from MCSs of each
function’s posterior failure rate distribution, which were converted to a
reliability based on a exponential reliability relationship evaluated at a time
of 1,2000 hours. The results are binned into 100 intervals and fitted with a
non-parametric distribution.

5.3.3 Identification of Unreliable Solutions with Failure Rate Data

A qualitative assessment of Figure 5.14 readily indicated that there was a very high
(arguably certain) likelihood that the system would meet the 70% reliability requirement.
Notwithstanding, the complement of the cdf evaluated at the requirement was calculated for
CDRPM step 5. As expected, all functions, and thus the resultant system, had a 100% chance

of meeting the requirement. These high (certain) likelihoods of meeting the requirement
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indicate that all component types are reasonable design alternatives, as far as system
reliability in concerned, and none are eliminated from consideration moving forward in
the AoA.

5.4 Comparison of Results for Each Data Type

The conclusions in sections 5.2.3 and 5.3.3 clearly demonstrate that the type of failure data
and associated assumptions influence the outcome of the CDRPM. Using success ratios
provided a greater discrimination between functions and component types, leading some
candidate solutions to be eliminated from further consideration. Assumptions affiliated with
success ratios include an inherent success ratio at the product level that is represented by a
binomial distribution, while all component- and function-level distributions are represented
by beta distributions informed by vague beta and gamma priors. Since the success ratio
was considered an inherent property, the evaluation time period for the requirement was
inconsequential. Conversely, using failure rate data indicated that all candidate solutions
were highly likely to produce a design configuration that met the system reliability
requirement for the indicated time frame. This scenario assumed failure rates were normally
distributed at all levels of the HB, informed by a vague uniform prior, and that product
reliability could be expressed by an exponential reliability relationship, which assumes a

constant failure rate.

It is worth repeating that only data with non-zero failures were selected for use in this case
study. Products with zero failures have a success ratio of one under all conditions but their
failure rates are not similarly expressed absolutely; failure rates are qualified as less than the
inverse of the time period tested. This means that introduction of a time-based aspect will
not affect the reliability predictions affiliated with those products when characterized by
success ratios, but failure rates will eventually become significant over time. As mentioned
in Section 5.3.3, the time period assessed in this case study was so small the reliability
reduction implication would not have manifested anyway, but using zero-failure parts would
have increased the reliability predictions assessed by success ratios, very likely leading to
less disparity in the overall conclusions from each data type. That is, using zero-failure
products would have made the success ratio configurations more likely to be reliable, but
would have had very little effect on increasing the reliability predictions assessed by failure

rates over the relatively short time of 1,200 hours.
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There are a number of considerations to keep in mind when selecting a failure data type
and overall approach for using the CDRPM. First of all, the requirement evaluation period
may be much larger, over which the exponential reliability relationship in equation 2.8
will become more significant. Alternatively, the exponential reliability assumption may be
wholly inappropriate and use of a log-normal or Weibull relationship may yield greater
discrimination even for the relatively short time frame. Related, a reasonable representation
of operational life may not exist for an emerging technology and it may be undesirable to
assume one. If using a failure rate data type, all rates must have the same units, such as
failures per hours which used in this case study, failures per cycles, etc., and this type of
data may not be consistently available for all products of interest. However, all products
can be combined using success ratios because the measure of operation is embedded in the

context of its usage.

There are a number of logistical considerations, as well. Success ratio data availability
significantly contributed to the product-level selections that were made to inform the HB
models. For the publications used, many part summaries were missing a population count or
had inconsistent failure-to-population counts, alluded to in Section 5.1.3. Additionally, [30]
and [31] provide failure rates at various summary levels, but failure counts and populations
are only provided at the lowest part level so aggregations had to be manually summed.
While not a complex task, this is much more time-intensive than collecting failure rate data
and may become an unreasonable investment when scaling the method to larger systems.
All of these issues could probably be rectified by referencing the actual data sources, not

just general reference collections like [30] and [31].

5.5 Chapter Summary

This chapter used the CDRPM to form system reliability predictions for a generic launcher
using either success ratio data or failure rate data for a number of products that have
historically been used to fulfill the functions affiliated with the launcher system. The exact
same products were used in each application. As with any decision tool or prediction method,
the nature of the data and affiliated assumptions affected the resultant conclusions. Success
ratios yielded a more conservative prediction, underestimating reliability relative to the
prediction made using failure rates for the designated evaluation period. Notwithstanding,

the system reliability prediction in both scenarios was made without assuming a physical
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architecture by establishing functional-physical reliability relationships, capturing data
uncertainty through prediction distributions rather than point estimates, and facilitated
comparison to a reliability requirement to inform the likelihood of meeting said requirement.
While the notion of a “valid” method is subjectively assessed, the case study scenarios
conformed to the tenets identified in the methodology gap assessment of Section 1.2.
Therefore, the case study increased the confidence with which the CDRPM is asserted as a

valid method to form system reliability predictions during conceptual design.
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CHAPTER 6:

Summary

This chapter reiterates the main conclusions drawn from the preceding chapters, and
highlights more nuanced considerations for CDRPM application. A few conclusions that
may be drawn without appreciation for the assumptions and limitations inherent in the
methodology development are explicitly identified and cautioned against. Limitations based
on CDRPM application and execution experiences during this research are discussed
thereafter. The final section, future work, suggests opportunities to correct or better

understand said limitations to enhance the overall utility of the CDRPM.

6.1 Conclusions

The consolidated body of conclusions from each chapter is as follows. Design changes
are more costly the later they are made in a system’s life cycle so it desirable to identify
physical configurations that are unlikely to meet reliability requirements as soon as possible
(Chapter 1). Many reliability prediction methods exist, but only one methodology reviewed,
the EDRPM, was suitable for application during conceptual design, specifically before a
physical architecture has been selected (Chapter 2). However, the EDRPM relies upon an
assumption of normally-distributed data assessed by an HB model through a closed-form
solution to identify unreliable functions (Chapter 2). The CDRPM was developed as a
generalized form of the EDRPM to facilitate functional-physical relationships using data
characterized by non-normal distributions in an HB model assessed by MCMC simulation
(Chapter 3). Furthermore, MCSs of the functional posterior distributions can be combined
to yield integrated system-level reliability prediction distributions (Chapter 3). Use of the
CDRPM on normally-distributed data, which could otherwise be assessed deterministically
with the EDRPM, does not significantly affect the precision of the posterior parameter
determination (Chapter 4). The CDRPM is flexible enough to assess multiple failure data
types, such as success ratios and failure rates, in different HB arrangements, like two-tier and
three-tier models (Chapters 4 and 5). However, as with any decision tool, the assumptions
inherent with each data type will consequently affect the conclusions from the assessment

so the engineer should deliberately select a data type commensurate with her intentions for
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using the CDRPM’s prediction (Chapter 5).

A number of corollary conclusions are presented for consideration, as well. First, while the
HB models assessed in this work were for conjugate distributions, there is nothing about the
approach, that is, MCMC determination of posterior distributions, that precludes application
to non-conjugate hierarchies. Therefore, the CDRPM is versatile enough to assess any type
of failure data once it is arranged in a functional-physical hierarchy. Second, solving an
HB model by MCMC simulation will always incur some finite accuracy loss relative to
a deterministic solution when available. While this loss is typically inconsequential, it
appears to increase with greater disparity between frequency weights for a given function’s
frequency vector. If the greater accuracy loss is considered unacceptable, a solution could
be to re-evaluate the classification of the component type groupings under their parent
functions. Large frequency disparities may indicate that the component types are historically
used to solve fundamentally different functions and should not be assessed together. Third,
the conclusions from a within-function assessment of component types are independent of
the conclusions from other functions. That is, the elimination of component types in one
functional area does not influence the relative reliability of component types in another
function. While it is recommended to assess the functions in terms of their component
types in order of those functions least likely to meet a system reliability requirement, it is
possible to evaluate the functions in a different order (e.g., in descending order of number
of component types). Assessing the function with the greatest number of component types
affords more opportunities to find reliability improvements, but if it is a highly reliable
function, the assessment would incur the largest time investment possible with potentially
little return. The primary motivation for the systemic process prescribed is efficiency and
repeatability, particularly for larger hierarchies, to reduce waste of an “Easter egg hunt.”
However, if it is desirable to retain greater decision space across all functions, eliminating

one of two candidate solutions, as done in the launcher case study may be counterproductive.

On the other hand, the following conclusions are cautioned against. First, while success
ratios resulted in a lower, more conservative reliability estimate than failure rate data in
the launcher case study, this relationship is not universally true. Products that completed
testing without failure will always have a success ratio of one, but their failure rate will
eventually become significant, regardless of the life expectancy distribution. Therefore,

the time period over which reliability is assessed and the product’s life expectancy
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characterization are integral in determining which type of data will provide a conservative
estimate. Second, the implications of “eliminate from consideration” may be overly harsh.
If the engineer is insistent on a particular component type, the reliability prediction may
indicate that higher fidelity failure information, such as selection of a particular quality
level or operating environment, is necessary. Alternatively, an unreliable disposition can
help inform a make-buy decision. A buy decision would not be strongly supported because
the canvas of products for a component types was summarily deemed unreliable. However,
the engineer must then assess whether or not she has the resources to design and produce a
product substantially more reliable than the majority of her contemporaries before endorsing
a make-decision. Third, if, at the conclusion of the all function-level decompositions, the
resultant system likelihood is still unsatisfactory, it does not imply that the system is destined
to fail to meet its requirement. The scenario is akin to cautiously pursuing a low likelihood of
success, not flagrantly pursuing a certainty of failure, which, depending on the technology

maturity and risk posture of designing organization, may be entirely reasonable.

6.2 Limitations

The biggest limitation of the CDRPM is data availability. Since the premise of the
functional-physical relationships is that the functional posterior distribution represents a
range of component types as possible physical instantiations, exponentially more data
is needed to assess the system reliability prediction than if a single design solution were
assessed. The aggregation at the system-level, through combination of the function MCSs in
accordance with the RBD, is no more complex as long as the function-level distributions are
not decomposed to the component level. This limitation hinders application to complicated
systems with more directly than complex systems. A complicated system with many parts
for broader functions requires a great deal of data for each candidate solution. A complex
system with more advanced parts for fewer specialized functions entails less data. Of course,
complex systems may also have many parts, incurring the data volume challenge. Otherwise,
provided the data is consistently available at the product-level, the CDRPM can be applied

to any type of system, whether mechanical, electrical, control, etc.

A related limitation is the concept of “state space explosion” where the computing
system conducting the MCMC sampling essentially runs out of memory while attempting

to store the transitional steps for posterior distribution characterization [21]. The exact
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threshold at which this would occur, making an MCMC approach no longer viable, is
unknown for the CDRPM. The more complex the functional posterior (i.e., multi-modal
or non-parametric distributions supported by multiple component types), the greater the
computational memory required, thus the greater the likelihood of state space explosion
being realized. Fortunately, the CDRPM applications thus far leverage simple, uni-modal
distributions, namely beta, gamma, binomial, and normal distributions, so the volume of

data necessary remains the primary issue.

A final hindrance to adoption is the number of computing environments utilized for the
execution in this work. It should be stressed that the workflow inefficiencies for transitioning
between environments was minimal relative to the time spent in any one environment
for execution of a particular CDRPM step. Furthermore, many of the transitions could
probably be programmed for automation, particularly for data transfers, once the specific
environments for each task were selected. It was not the intention of this work to prescribe

specific computational tools for execution.

6.3 Future Work

The launcher case study was a relatively small real world system. To better explore the
implications and limitations of data availability, applying the CDRPM to a larger system, that
is, one with more functions and more component types, is recommended for future work.
An assessment with more representative data, specifically that incorporates zero-failure
products and is not limited to products with data consistently available in multiple forms, is
also recommended. The representative data could be further constrained to the appropriate
operating environment, or the hierarchy could be expanded to a fourth tier for operating
conditions or manufacturing quality. For depth rather than breadth, it may be of interest to
further evaluate the case study system with a sensitivity analysis to see when the reliability
predictions from each data type intersect. A final future activity for consideration is to
test the notion that a functional posterior distribution could capture the performance of
an emerging technology not yet developed. A body of products could be assessed in a
functional HB and then classic statistical comparison methods could be used to determine
whether or not the emerging technology, once prototyped, could reasonably belong to the

function’s posterior distribution.
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APPENDIX A:
Initial Stan Model

The code that follows delineates an HB model written for Stan, subsequently referenced in
follow-on code as “example.stan.” This initial model was intended as a proof of concept
before implementing the framework for the full Function A data set of the example system.
The basic aspects of a Stan model, programmed in this order, are the data structure to declare
variables for the known evidence, parameters that are unknown and will be determined by
the estimation, transformed parameters that are partially observed by the estimation, and the
delineation of the hierarchy in a way that resembles that of Figure 3.2. It took approximately
50 lines of code to construct the framework for just the first two observations of component
type 1, and the first observation of component type 2. It is referred to as a “hard-coded”

model because each datum was explicitly declared; vectors and for loops were not utilized.

data {

// Number of trials, Nij
int N11;

int N21;

int N12;

// Number of successes, nij
int nl1;

int n21;

int nl12;

parameters {
// Thetas - theta_ij per component
real<lower=0, upper=1> thetall;
real<lower=0, upper=1> theta2l;
real<lower=0, upper=1> thetal?;

// Component parameters — mu_j and k_j per component beta distribution
real<lower=e, upper=1> mul;

real<lower=0> kil;

real<lower=0, upper=1> mu2;

real<lower=0> k2;

// Function parameters - muA and kA for function beta distribution

real<lower=0, upper=1> muA;
real<lower=0> KA;
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transformed parameters{
// Beta parameters — a_j and b_j per beta distribution
real<lower=0> al;
real<lower=0> bil;
real<lower=0> a2;
real<lower=0> b2;
real<lower=0> aA;
real<lower=0> bA;

al = mulxkl;
bl = (1-mul)=*kl;
a2 = mu2xk2;
b2 = (1-mu2)*k2;
aA = muAxkA;
bA = (1-muA)xkA;
}
model {

muA ~ beta(1,1);

kA ~ gamma(5,5);

mul ~ beta(aA,bA);

mu2 ~ beta(aA,bA);

ki ~ gamma(5,5);

k2 ~ gamma(5,5);

thetall ~ beta(al,bl);
theta2l ~ beta(al,bl);
thetal2 ~ beta(a2,b2);

nll ~ binomial(N11, thetall);
n21 ~ binomial(N21, theta21);
nl2 ~ binomial(N12,thetal2);

The model progressed to the third step of the CDRPM, posterior determination. This step
was initially attempted with MATLAB and MATLABStan to minimize the number of
software programs utilized while executing the methodology. MATLAB was preferable
to R based on the author’s familiarity with each. However, recurrent compilation errors
during the execution of the initial model (example.stan, shown above) led to abandonment
of MATLAB for R which had a more robust user community for troubleshooting this
particular application. RStudio was the specific R platform used. The exact R code written
for data assignment and MCMC sampling initiation to determine the HB posteriors in Stan

follows.

library("rstan")

options(mc.cores = parallel::detectCores())
rstan_options(auto_write = TRUE)
setwd("/Users/bethrajchel/Thesis")
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# Data assignment for declared data structure portion of Stan model
nll <- 140

N11 <- 168

n2l1 <-36

N21 <- 40

nl2 <- 2

N12 <- 16

data_list <- list(nll=nl1l1, N11=N11, n21=n21, N21=N21, nl12=n12, N12=N12)

# Compiling and producing posterior samples from the model.
stan_samples <- stan(file='example.stan', data = data_list)

The simulation yielded favorable results; results were considered favorable simply because
the simulation ran without errors or warnings. Various results presentations were generated

in R with the code below. The graphical outputs follow.

# print results to screen
stan_samples

# plot results with CI bars, CI level at 80%, outer level at 95%
plot(stan_samples, pars = c("muA", "mul", "mu2", "thetall", "theta2l", "thetal2"))

# plot mutligraph
pairs(stan_samples)

# write to multidimension matrix
Samples_matrix <- as.matrix(stan_samples)

Inference for Stan model: 526b65a09a94f5b75e56ceba9efazale.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean  sd 2.5% 25% 50% 75%  97.5% n_eff Rhat
thetall 0.87 0.00 0.03 0.82 0.86 0.88 0.89 0.92 7438 1
thetazl 0.89 0.00 0.05 0.78 .86 0.90 0.93 0.97 7038 1
thetal2 0.14 0.00 0.08 0.02 .08 0.13 0.19 @.34 7339 1
mul 0.65 0.00 0.18 0.24 0.54 .67 0.79 @.93 6726 1
k1 1.18 0.01 0.46 0.47 0.84 1.11 1.46 2.20 6076 1
mu2 0.39 0.00 0.24 0.03 9.19 0.36 0.57 0.90 6035 1
k2 1.07 0.01 0.45 0.37 0.74 1.01 1.32 2.16 6311 1
muA 0.50 0.00 .19 0.15 .37 0.50 0.64 0.86 6195 1
kA 1.19 0.01 0.46 0.46 .84 1.13 1.47 2.24 7033 1
al 0.79 0.01 0.41 0.16 0.48 0.73 1.03 1.75 5827 1
bl 0.39 0.00 .23 0.07 0.22 0.35 0.52 2.93 6390 1
a2 0.40 0.00 0.29 0.03 9.18 0.34 0.56 1.11 5910 1
b2 0.67 0.01 0.42 0.07 .36 0.60 0.91 1.69 5580 1
aA 0.60 0.00 0.33 0.14 9.35 0.54 0.78 1.39 5381 1
bA 0.59 0.00 .33 0.12 0.35 0.54 0.77 1.37 5875 1
lp__ -110.29 .06 2.24 -115.55 -111.53 -109.97 -108.62 -106.96 1529 1

Output from Printing Results to Screen
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While this initial model demonstrated proof of concept for a reasonable hierarchical
arrangement, it immediately demonstrated that the hard-coded approach was inflexible to
changes in database size and highly likely to contain a transcription or subscript error. Since
each “nij” and “Nij” were identified discretely and the product was explicitly assigned to a
component type distribution, each new product would require a minimum of six additional

lines; more component type classifications would incur additional lines as well.

For efficiency, vectors and indexed loops were attempted. Stan has a robust directory of
documentation at https://mc-stan.org/users/documentation/ but the author was not able to
identify a concrete example for indexed for loops at two levels of a three-tier hierarchy.
Incorrectly established precedence resulted in compilation errors when simulation was
initiated, such that even the initial hard-coded three-observation model could not be
duplicated. This prompted the author to collaborate with Samuel Buttrey for the script
shown in Appendix B. Some hard-coding was still required but the script alleviated the
need to explicitly type each datum variable in the model and enabled data assignment by
subscript indices.

109


https://mc-stan.org/users/documentation/

THIS PAGE INTENTIONALLY LEFT BLANK

110



APPENDIX B:
Model Writer Script

Samuel Buttrey, an Associate Professor in the Operations Research Department at NPS,
assisted with the development of a script written in R to partially automate generation of an
HB model as a data string, which significantly reduced the labor involved in defining larger
models for Stan. That is, rather than having a Stan file (.stan) called by the stan() function
in R, like shown in Appendix A, a model string containing the same information was called
instead. Since the model writing script was written in R, the same environment used for
CDRPM step 3, the script consolidates the activities of the second and third step into one
program for model definition, data assignment, and simulation initiation. To reiterate, Stan
is still called from R to execute the Bayesian estimation by MCMC sampling; R is not

performing the sampling.

The script only partially automates model generation because some hard-coding was still
required. The script is structured for four component types with an unlimited number of
product observations of each type; the number of component types is one of the hard-coded
aspects. The evidence is read in from a database in a comma separated value (.csv) format.
Evidence is arranged by column with the explicit headers “Success_j”” and “Trials_j.” Prior
distribution parameters are defined within the script. The model writing script in its entirety

follows.

setwd("/Users/bethrajchel/Thesis")

#

# Start: top function level. Beta and gamma prior parameters for function level: A, B; S, R.

#

beta.params < c(5,2)

gamma.params <- c(2, 2)

# Components istributions, defined by two parameters: gl for S'_j, g2 for R'_j.
# These parameters are put into a data frame.

priors informed by gamma

components <- data.frame (Num = 1:4, gl = ¢(2, 2, 2, 2), g2 = c(2, 2, 2, 2))

# There can be multiple binomials for each component type; one binomial per product. Each binomial
# has an indicator of which component it comes from (j), plus a big N for number
# of trials, and a little n for number of successes, with n < N, each identified by index 1i.

evidence <- read.csv("Data_for_R.csv", header=TRUE)

nl <= na.omit(evidence$Success_1) widgets as element i, success for j=1
N1 <- pa.omit(evidence$Trials_1)
I1 <= nrow(as.array(nl))

; as element i, trials for j=1

2x of 1 for number of widgets when jJ 1
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n2 <- na.omit(evidence$Success_2)
N2 <- na.omit(evidence$Trials_2)
I2 <- nrow(as.array(n2))

n3 <- na.omit(evidence$Success_3)
N3 <- na.omit(evidence$Trials_3)
I3 <~ nrow(as.array(n3))

n4 <- na.omit(evidence$Success_4)
N4 <= na.omit(evidence$Trials_4)
14 <- nrow(as.array(n4))

binoms <- data.frame (Num = rep (1:4, c(I1,12,13,I4)), n = c(n1,n2,n3,n4), N=c(N1,N2,6N3,N&))
HUBRBRBHRRN

theModelWriter <- function (beta, gamma, comp, binom) {
# The data lists the numbers of trials (Nij) and succeses (nij)
binom <- binom[order (binom$Num),] # put in order by Num
# "run length encoding" (rle) tabulates runs in data. This call to sapply
# (inside unlist) generates a 1, 2, ..., number of trials sequence for
# each component, and we tack the component number onto the front.
num.dex <- unique (binom$Num)
num.dex.A <- c(num.dex, "A") # add A on the end
if (any (binom$Num == "A")) stop ("'A' is not a valid component id")
num.rle <- rle (binom$Num)
trial.dex <- paste® (binom$Num, "_",
unlist (sapply (num.rle$lengths, function (t) 1:t)))
n.dex <- paste® ("n_", trial.dex)
N.dex <- paste® ("N_", trial.dex)
data.string <- c("data {",
paste® ("int ", n.dex, ";"),
paste@ ("int ", N.dex, ";"), "}")

*

One theta for each trial, one mu and one k for each component,

# plus the global mu_A, k_A

param.string <- c("parameters {",
paste® ("real<lower=@, upper=1> theta_", trial.dex, ";"),
paste® ("real<lower=e, upper=1> mu_", num.dex.A, ";"),
paste® ("real<lower=@> k_", num.dex.A, ";"), "}")

# One a and one b for each component, plus the global ones...
trans.string <- c("transformed parameters{",

paste® ("real<lower=@> a_", num.dex.A, ";"),
paste® ("real<lower=e> b_", num.dex.A, ";"),

# ...and then use the mu's and k's to construct those...
paste® ("a_", num.dex.A, "=mu_", num.dex.A, "xk_", num.dex.A, ";"),

paste® ("b_", num.dex.A, "=(1-mu_", num.dex.A, ")*xk_",
num.dex.A, ";"), "}")

model.string <- c("model {",
"mu_A ~ beta(1,1);", "k_A ~ gamma(5,5);", # global
paste® ("mu_", num.dex, " ~ beta(a_A,b_A);"),
paste® ("k_", num.dex, " ~ gamma (", comp$gl, ",", comp$g2, ");"),
paste@ ("theta_", trial.dex, " ~ beta (a_",
binom$Num, ", b_", binom$Num, ");"),
pastee ("n_", trial.dex, " ~ binomial (N_", trial.dex,
", theta_", trial.dex, ");"), "}")

final <- ¢ (data.string, param.string, trans.string,
model.string)
return (list (model.string = paste (paste (finmal, collapse="\‘n"), "\n"),
trial.dex = trial.dex))

}
# Use cat() here to make the new-lines print like new-lines
mod <- theModelWriter (beta, gamma, components, binoms)
cat (mod$model.string)
#
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# Create data list with n_xx and N_xx names
#

nxx <- paste®@ ("n_", mod$trial.dex, " = ", binoms$n)

Nxx <- paste® ("N_", mod$trial.dex, " = ", binoms$N)

bigstring <- paste ("list (", paste (nxx, collapse = ","), ",",
paste (Nxx, collapse = ","), ")")

data.list <- eval (parse (text = bigstring))
library (rstan)

options(mc.cores = parallel::detectCores())
rstan_options(auto_write = TRUE)

date ()

stan_samples <- stan(model_code = mod$model.string, data = data.list, iter=6088, chains=4, warmup =288,
control = list(adapt_delta=e.9@))

date ()

The output of this script is the generated data string that represents the HB model passed
to Stan, shown below. There are two minor notes on the subscript annotations in the
model passed to Stan. First, an underscore was added to the ij convention to separate the
indices for programming clarity, e.g., “i_j,” because “113” could otherwise be interpreted
as the eleventh observation of type 3 (i = 11, = 3) or the first observation of type
13 (i = 1,j = 13) for larger models. Second, the variables generated by the string have
subscripts ordered as “j_i,”, which was inconsequential as long as the convention was

maintained throughout the analysis.

daota {

int n_1_1;
int n_1_2;
int n_1_3;
int n_1_4;
int n_1.5;
int n_1_6;
int n_1_7;
int n_1_8;
int n_1_9;
int n_1_10;
int n_2_1;
int n_2_2;
int n_2_3;
int n_2_4;
int n_2_5;
int n_2_6;
int n_2_7;
int n_2_8;
int n_2_9;
int n_2_10;
int n_3_1;
int n_3_2;
int H
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int n_4
int N_1_
int N_1_
int N_1
int N_1
int N_1
int N_1
int N_1_
int N_1
int N_1
int N_1_
int N_2_
int N_2
int N_2_
int N_2
int N_2
int N_2_
int N_2
int N_2
int N_2_
int N_2
int N_3_
int N
int N
int N
int N
int N
int N
N
N
N
N
N

1
1
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1 |
| |
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int
int
int
int
int
}

parameters {
real<lower=0,
real<lower=@,
real<lower=@,
real<lower=@,
real<lower=@,
real<lower=@,
real<lower=@,
real<lower=0,
real<lower=@,
real<lower=@,
real<lower=@,
real<lower=@,
real<lower=0,
real<lower=@,
real<lower=0,
real<lower=@,
real<lower=@,
real<lower=0,
real<lower=0,
real<lower=@,
real<lower=0,
real<lower=0,
real<lower=@,
real<lower=0,
real<lower=@,
real<lower=0,
real<lower=@,
real<lower=0,
real<lower=0,

|
|
SNOoOUnes WNE A WN

upper=1>
upper=1>
upper=1>
upper=1>
upper=1>
upper=1>
upper=1>
upper=1>
upper=1s>
upper=1>
upper=1>
upper=1>
upper=1>
upper=1s>
upper=1>
upper=1>
upper=1>
upper=1>
upper=1>
upper=1>
upper=1>
upper=1>
upper=1>
upper=1>
upper=1>
upper=1>
upper=1>
upper=1>
upper=1>

theta_1.1;
theta_1_2;
theta_1_3;
theta_1_4;
theta_1_5;
theta_1_6;
theta_1_7;
theta_1_8;
theta_1_9;
theta_1_10;
theta_2_1;
theta_2_2;
theta_2_3;
theta_2_4;
theta_2_5;
theta_2_6;
theta_2_7;
theta_2_8§;
theta_2_9;
theta_2_10;
theta_3_1;
theta_3_2;
theta_3_3;
theta_3_4;
theta_3_5;
theta_4_1;
theta_4_2;
theta_4_3;
theta_4_4;
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real<lower=0,
real<lower=@,
real<lower=0,
real<lower=0,
real<lower=0,
real<lower=0,
real<lower=0,
real<lower=0,
real<lower=@>
real<lower=@>
real<lower=0>
real<lower=@>
real<lower=0>

}

upper=1>
upper=1>
upper=1>
upper=1>
upper=1>
upper=1>
upper=1>
uppers=1>
k_1;

k_2;
k_3;
k_4;
k_A;

theta_4_5;
theta_4_6;
theta_4_7;
mu_1;
mu_2;
mu_3;
mu_4;
mu_A;

transformed parameters{

real<lower=0>
real<lower=0>
real<lower=0>
real<lower=0>
real<lower=0>
real<lower=@>
real<lower=0>
real<lower=0>
real<lower=@>
real<lower=0>
a_l=mu_1*k_1;
a_2=mu_2*k_2;
a_3=mu_3*k_3;
a_4=mu_4*k_4;
a_A=mu_A*k_A;

a_l;

[
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b_1=(1-mu_1)*k_1;
b_2=(1-mu_2)*k_2;
b_3=(1-mu_3)*k_3;
b_d4=(1-mu_4)*k_4;
b_A=(1-mu_A)*k_A;

}
model {

mu_A ~ beta(l,
k_A ~ gamma(s,
mu_1l ~ beta(a_
mu_2 ~ beta(a_.
mu_3 ~ beta(a_
mu_4 ~ betaa_

1);
5);
A b_A);
A,b_A);
A,b_A);
A,b_A);

k_1 ~ gamma (2,2);
k_2 ~ gamma (2,2);
k_3 ~ gamma (2,2);
k_4 ~ gamma (2,2);
theta_1_1 ~ beta (a_1, b_1);
theta_1_2 ~ beta (a_1, b_1);
theta_1_3 ~ beta (a_l, b_1);
theta_1_4 ~ beta (a_1l, b_1);
theta_1_5 ~ beta (a_1l, b_1);
theta_1_6 ~ beta (a_l, b_1);
theta_1_7 ~ beta (a_1, b_1);
theta_1_8 ~ beta (a_1, b_1);
theta_1_9 ~ beta (a_1, b_1);
theta_1_1@ ~ beta (a_l, b_1);
theta_2_1 ~ beta (a_2, b_2);
theta_2_2 ~ beta (a_2, b_2);
theta_2_3 ~ beta (a_2, b_2);
theta_2_4 ~ beta (a_2, b_2);
theta_2_5 ~ beta (a_2, b_2);
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theta_2_6 ~ beta (a_2, b_2);
theta_2_7 ~ beta (a_2, b_2);
theta_2_8 ~ beta (a_2, b_2);
theta_2_9 ~ beta (a_2, b_2);
theta_2_1@ ~ beta (a_2, b_2);
theta_3_1 ~ beta (a_3, b_3);
theta_3_2 ~ beta (a_3, b_3);
theta_3_3 ~ beta (a_3, b_3);
theta_3_4 ~ beta (a_3, b_3);
theta_3_5 ~ beta (a_3, b_3);
theta_4_1 ~ beta (a_4, b_4);
theta_4_2 ~ beta (a_4, b_4);
theta_4_3 ~ beta (a_4, b_4);
theta_4_4 ~ beta (a_4, b_4);
theta_4_5 ~ beta (a_4, b_4);
theta_4_6 ~ beta (a_4, b_4);
theta_4_7 ~ beta (a_4, b_4);

n_1_1 ~ binomial (N_1_1, theta_1_1);
n_1_2 ~ binomial (N_1_2, theta_1_2);

n_1_3 ~ binomial (N_1_3, theta_1_3);
n_1_4 ~ binomial (N_1_4, theta_1_4);
n_1_5 ~ binomial (N_1_5, theta_1_5);
n_1_6 ~ binomial (N_1_6, theta_1_6);
n_1_7 ~ binomial (N_1_7, theta_1_7);
n_1_8 ~ binomial (N_1_8, theta_1_8);
n_1_9 ~ binomial (N_1_9, theta_1_9);
n_1_10 ~ binomial (N_1_10, theta_1_10);
n_2_1 ~ binomial (N_2_1, theta_2_1);
n_2_2 ~ binomial (N_2_2, theta_2_2);
n_2_3 ~ binomial (N_2_3, theta_2_3);
n_2_4 ~ binomial (N_2_4, theta_2_4);
n_2_5 ~ binomial (N_2_5, theta_2_5);
n_2_6 ~ binomial (N_2_6, theta_2_6);
n_2_7 ~ binomial (N_2_7, theta_2_7);
n_2_8 ~ binomial (N_2_8, theta_2_8);
n_2_9 ~ binomial (N_2_9, theta_2_9);
n_2_10 ~ binomial (N_2_1@, theta_2_10);
n_3_1 ~ binomial (N_3_1, theta_3_1);
n_3_2 ~ binomial (N_3_2, theta_3_2);
n_3_3 ~ binomial (N_3_3, theta_3_3);
n_3_4 ~ binomial (N_3_4, theta_3_4);
n_3_5 ~ binomial (N_3_5, theta_3_5);
n_4_1 ~ binomial (N_4_1, theta_4_1);
n_4_2 ~ binomial (N_4_2, theta_4_2);
n_4_3 ~ binomial (N_4_3, theta_4_3);
n_4_4 ~ binomial (N_4_4, theta_4_4);
n_4_5 ~ binomial (N_4_5, theta_4_5);
n_4_6 ~ binomial (N_4_6, theta_4_6);
n_4_7 ~ binomial (N_4_7, theta_4_7);
1

A complete discussion of viewing and evaluating the posteriors estimated by the MCMC

sampling is provided in Appendix C.
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APPENDIX C:
Complete Results for Function A Posterior Estimation

There are many ways to review and evaluate the posterior parameters for a HB model
assessed by MCMC. Many software packages for Bayesian estimation have built-in tools
and functions for such tasks. Some of the options available in R through the “bayesplot”
and “rstan” libraries were utilized to review the full Function A estimation result. However,
the majority of the analyses shown in this work were conducted in MATLAB as a matter
of the author’s programming and aesthetic preference. Her code and its affiliated output are

provided in this Appendix.

The R code used to print the MCMC results to the screen and conduct a preliminary
assessment of convergence is shown below, followed by the generated displays. These three
presentations, the (1) results list, (2) results plotted within confidence intervals (CIs), and (3)
pairwise scatter plot, were the same ones used for the assessment of the initial hard-coded
model in Appendix A. The pairwise scatter plot is shown in Figure 3.4 and is not repeated

here.

# print results to screen

stan_samples

# plot results with CI bars

plot(stan_samples, pars = c{"mu_A", "k_A", "a_1", "b_1", "a_2", "b_2", "a_3", "b_3","a_4", "b_&"),
ci_level = @.95, outer_level = 0.999)

# plot mutligraph
pairs(stan_samples, pars = c("mu_A", "k_A", "a_1", "b_1", "a_2", "b_2", "a_3", "b_3","a_4", "b_4"))

# write to multidimension to martix
Samples_matrix <- as.matrix(stan_samples)

# write to file
write.csv(Samples_matrix, file = "A_Data_Stan_.csv")

Inference for Stan model: 2270a50e38abcbf8f50clc5e2c88f212.
4 chains, each with 1ter=6000; warmup=2000; thin=1;
post-warmup draws per chain=4000, total post-warmup draws=16000.

mean se_mean  sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
theta_1_1 0.87 0.00 9.03 0.82 0.86 0.88 0.89 9.92 26551 1
theta_1_2 0.90 0.00 0.05 0.79 0.87 0.90 0.93 0.97 22141 1
theta_1_3 ©.95 0.00 0.03 9.89 0.94 0.9 0.97 0.99 24230 1
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1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0.99 23333
0.95 23340
@.97 25527
@.98 24700
1.00 23203
@.98 23345
1.00 22318
0.41 22879
0.96 25357
@.75 25826
1.00 22354
0.97 24132
©.98 23316
@.94 24266
@.99 24129
0.94 24422
@.98 24290
@.44 24676
@.86 23863
@.54 25538
@.56 22554
@.42 22357
@.88 25843
0.75 23020
@.57 24385
@.62 23704
0.83 23165
0.99 22562
0.83 24727
0.92 16207
0.87 19116
0.72 22556
0.83 20642
0.82 22616
5.42 19882
3.68 20341
3.85 23687
4.39 22473

0.97
0.92
0.97
@.95
0.98
0.92
0.99
0.25
0.90
0.73
@.99
0.96
0.97
0.88
@.96
0.94
@.96
@.35
0.84
@.51
0.49
0.28
0.87
0.73
0.54
.54
0.78
0.98
.78
0.86
0.80
@.57
@.73
0.68
3.49

0.95
0.90
0.96
0.94
0.97
0.88
0.97
0.18
0.85
0.71
0.98
0.95
0.96
0.83
@.93
0.94
0.95
0.31
0.83
0.50
0.46
.22
0.86
0.71
0.53
0.51
0.76
0.96
0.75
0.83
0.75
0.49
0.67
0.59
2.67
1.81
1.78
2.12
1.35
2.20
1.34
0.85
1.41
0.77
0.45
0.45
0.90
0.69
0.54

0.93
0.88
0.96
0.92
0.95
0.82
0.95
0.12
0.80
0.70
0.96
0.94
0.95
@.77
0.90
0.93
0.93
0.26
0.81
0.49
0.43
0.16
0.86
0.70
0.51
0.47
0.73
0.94
0.72
0.78
0.69
0.40
0.60
0.49
2.00

0.88
0.84
0.95
0.88
0.88
0.67
0.90
0.05
0.67
0.67
0.91
0.93
0.92
0.65
0.81
0.93
0.88
0.19
0.79
0.46
0.37
0.08
0.85
0.67
0.48
0.39
0.66
0.89
0.66
0.68
@.56
@.26
@.46
0.31
1.08
0.81
0.69
@.86
0.61
.78
0.51
0.27
@.48
@.27
0.21
0.21
0.28
@.26
0.18

0.00 0.03
0.00 0.03
0.00 0.00
0.00 0.02
0.00 0.03
0.00 0.08
0.00 0.03
0.00 0.09
0.00 0.08
0.00 0.02
0.00 0.01
0.00 0.02
0.00 0.08
.00 0.05
0.00 0.00
0.00 0.03
0.00 0.06
0.00 0.02
0.00 0.02
0.00 0.05
0.00 0.09
0.00 0.01
0.00 0.02
0.00 0.02
0.00 0.06
0.00 0.04
0.00 0.03
0.00 0.04
.00 0.06

0.00 0.02
0.00 0.08
0.00 0.12
0.00 0.10
0.00 0.13
0.01 1.13

0.94
0.90
0.96
0.94
0.96
0.86
0.97
0.19
0.84
0.71
@.97
0.95
0.96
0.82
0.92
0.94
0.94
0.31
0.83
0.50
0.46
0.22
0.86
0.71
0.53
0.51
0.75
0.96
0.75
0.82
0.74
0.49
0.66
0.58
2.83

theta_1_5

theta_1_8

theta_1_9

theta_2_2

theta_2_3

theta_2_5

theta_2_6
theta_Z:lﬂ
theta_3_1

theta_3_4

theta_4_2

theta_4_3

theta_4_5

theta_4_6

theta_4_7

mu

theta_1_10
mu

theta_1_ 4
theta_1_6
theta_1_7
theta_2_1
theta_2_4
theta_2_7
theta_2_8
theta_2_9
theta_3_2
theta_3_3
theta_3_5
theta_4_1
theta_4_4

1
1
1
1
1

2.35
2.36
2.78
1.70
2.95

1.38
1.32
1.60
1.05
1.59
0.99
0.59
1.01
0.56
0.35
0.35
0.63
0.51
0.39

0.01 0.74
0.01 0.82

1.93
1.91
2.26
1.41
2.36
1.45
0.93
1.52
0.83
0.47
0.47
0.98
0.73
0.58

-4451.76

~omM

2.57 23380
4.77 19752

0.91 .91

.20 0.50
0.01 1.04

0.00 0.64
0.00 0.46

1
1
1
1
1
1
1
1
1
1

2.99 19732
2.03 22776
3.21 22006
1.70 21777
9.86 19801
0.85 22667
2.16 23266
1.46 23008
1.20 22585

1.81
1.18
1.92
1.04
0.57
@.57
1.25
.91
0.73

N

0.06 4.75 -4461.89 -4454.79 -4451.43 -4448.39 -4443.40 6495
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Output from Printing Results to Screen

0.00 0.70
0.00 .37
0.00 0.17
0.00 0.17
0.00 0.49
0.90 0.31
.00 0.26
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aA ———
b_A — e ———
a_1 ®
b_1 ———
a2 — e
b_2 —m——
a3 — e ——
b_31 e ——
a_41 —
b_41 e ———
0 1 2 3 4 5

Selected Results with Confidence Intervals from plot() Function

The last two lines of R code above exported the full data set from R, which enabled further
analysis in MATLAB. The full contents of the MATLAB script and the generated content in
published format, follow. A description of the purpose for each section of code is embedded
as a comment within the script section, below the section identifier. Some of the graphs
shown in this appendix duplicate figures in Chapter 3 but are retained here in the published

script.

MATLAB Script Contents

Import Data from R for Analysis

Setup the Import Options and Import the Data

Declare

Extract for Plotting and Print to Screen

Make Chain Assignments

Trace Plots by Parameter - All Chains

Trace Plots by Parameter - Individual Chains
Correlograms

Component Posteriors Overlaid with Evidence Data Points:
Component and Function Posteriors Together:
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Import Data from R for Analysis
filename: /Users/bethrajchel/Thesis/Post_AData_1111.csv

R

This script will import the data from a Stan execution in R, saved to the

R

filename indicated above. This script is explicitly for a the Function A

R

hierarchy (3 levels, 4 component types, components and functions as beta

R

distributions, products as binomials). This script assumes 4 successful

R

chains in Stan.

% Evidence: Full A Data Set
% Priors: A,B = 0.5. S,R =5. S’ ,R'=2.
% C=(1,1,1,D)

Setup the Import Options and Import the Data

This section governs the import of data into the designated format.

opts = delimitedTextImportOptions(“NumVariables”, 54);

% Specify range and delimiter
opts.DatalLines = [2, Inf];

opts.Delimiter = “,”;

% Specify column names and types

opts.VariableNames = [“Varl”, “theta_1_1", “theta_1_2", “theta_1_3",...
“theta_1_4", “theta_1_5", “theta_1_6", “theta_1_7", “theta_1_8",...
“theta_1_9”, “theta_1_10", “theta_2_1”, “theta_2_2”, “theta_2_3”,...
“theta_2_4”, “theta_2_5", “theta_2_6", “theta_2_7”, “theta_2_8",...
“theta_2_9”, “theta_2_10", “theta_3_1", “theta_3_2”, “theta_3_3",...
“theta_3_4", “theta_3_5", “theta_4_1", “theta_4_2", “theta_4_3",...
“theta_4_4", “theta_4_5”, “theta_4_6", “theta_4_7”, “mu_1”, “mu_2”,....
“mu_3”, “mu_4”, “mu_A”, “k_17, “k_2”, “k_3”, “k_4”, “k_A”, “a_1”,...
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“a_2”, "a_3”, “a_4”, "a_A”, “b_1", “b_2", “b_3”, “b_4”, “b_A”, “lp__"];
opts.SelectedVariableNames = [“theta_1_1", “theta_1_2”, “theta_1_3”,...
“theta_1_4”, “theta_1_5", “theta_1_6", “theta_1_7”", “theta_1_8",...
“theta_1_9”, “theta_1_10", “theta_2_1", “theta_2_2”", “theta_2_37,...
“theta_2_4", “theta_2_5", “theta_2_6", “theta_2_7”", “theta_2_8",...
“theta_2_9”, “theta_2_10", “theta_3_1”, “theta_3_2", “theta_3_3"...
, “theta_3_4”", “theta_3_5", “theta_4_1”, “theta_4_2", “theta_4_3"7,...
“theta_4_4", “theta_4_5”", “theta_4_6", “theta_4_7”", “mu_1", “mu_2”,...
“mu_3”, “mu_4”, “mu_A”, “k_17, “k_2”, “k_3”, “k_4”, “k_A”, “a_1”,...
“a_2”, "a_3”, “a_4”, "a_A”, “b_1", “b_2", “b_3”, “b_4”, “b_A”, “lp__"];
opts.VariableTypes = [“string”, “double”, “double”, “double”, “double”,...
“double”, “double”, “double”, “double”, “double”, “double”, “double”,...
“double”, “double”, “double”, “double”, “double”, “double”, “double”,...
“double”, “double”, “double”, “double”, “double”, “double”, “double”,...
“double”, “double”, “double”, “double”, “double”, “double”, “double”,...
“double”, “double”, “double”, “double”, “double”, “double”, “double”,...
“double”, “double”, “double”, “double”, “double”, “double”, “double”,...
“double”, “double”, “double”, “double”, “double”, “double”, “double”];

% Specify file level properties
opts.ExtraColumnsRule = “ignore”;
opts.EmptyLineRule = “read”;

% Specify variable properties
opts = setvaropts(opts, “Varl”, “WhitespaceRule”, “preserve”);
opts = setvaropts(opts, “Varl”, “EmptyFieldRule”, “auto”);

% Import the data (MASTER: A_Data_Stan_1111.csv)
ADataStan = readtable(“/Users/bethrajchel/Thesis/Post_AData_1111.csv”,
opts);

%Clear temporary variables

clear opts

121



Declare
These variables would be established if the read-in occured after running a script for data

manipulation for FW. Declared here again for certainty.

J = 4;
[1,1,1,1];

@)
1]

Extract for Plotting and Print to Screen

Extract parameters of interest from array and print means to screen.

aA = ADataStan{:,47};
bA = ADataStan{:,52};
al = ADataStan{:,43};
a2 = ADataStan{:,44};
a3 = ADataStan{:,45};
a4 = ADataStan{:,46};
bl = ADataStan{:,48};
b2 = ADataStan{:,49};
b3 = ADataStan{:,50};
b4 = ADataStan{:,51};

a_all = {al, a2, a3, a4, aA};
b_all = {bl, b2, b3, b4, bA};
a = cell(1,3+1);
b = cell(1,3+1);

for i = 1l:length(a)
a{i} = mean(a_all{i},’all’);
b{i} = mean(b_all{i},’all’);
end
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cell2mat(a);
cell2mat(b);

o
1

fprintf(’Stan results with frequency (%d %d %d %d):\n’, O

fprintf(’ aA = %d\n bA = %e\n\n’, a(J+1), b(J+1))

for i = 1:J
fprintf(’ a %d
fprintf(’ b %d

end

fprintf(’\n’)

fprintf(’\n’)

%e\n’,i,a(i))
%e\n\n’,1i,b(1))

Stan results with frequency (1 1 1 1):
aA = 8.276042e-01
bA = 5.813961e-01

a1l = 2.355622e+00
b 1 =4.720478e-01

a 2 = 1.452210e+00
b 2 = 4.738155e-01

a 3 = 9.266678e-01
b 3 = 9.821122e-01

a4 =1.520651e+00
b 4 = 7.344584e-01
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Make Chain Assignments

If multiple chains, make chain assignments to plot traces by chain.

move_a = []; move_b = [];
{}; a_chain4 {};
{}; b_chain4 = {};

a_chainl = {}; a_chain2 = {}; a_chain3
b_chainl = {}; b_chain2 = {}; b_chain3

for j = 1:3+1

move_a = a_all{j};

a_chainl{j} = move_a(1:4000);
move_a(4001:8000);
move_a(8001:12000);
a_chain4{j} move_a(12001:16000);
move_b = b_all{j};
b_chainl{j} = move_b(1:4000);
b_chain2{j} move_b(4001:8000);
b_chain3{j} move_b(8001:12000);
b_chain4{j} = move_b(12001:16000);

a_chain2{j}
a_chain3{j}

end

Trace Plots by Parameter - All Chains
Trace plots of chains of a parameter should overlap as an indication of convergence

(achieving stationary distribution).

for j = 1:]
figure
hold on
plot(a_chainl{j})
plot(a_chain2{j})
plot(a_chain3{j})
plot(a_chain4{j})
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end

legend(’Chain 1°, ’Chain 2’, ’Chain 3’, ’Chain 4’)
titlestr = sprintf(’Trace Plot for Parameter a%d’,j);
title(titlestr)

xlabel (’Post Warm-Up Iteration’)

hold off

figure

hold on

plot(b_chainl{j})

plot(b_chain2{j})

plot(b_chain3{j})

plot(b_chain4{j})

legend(’Chain 1°, ’Chain 2’, ’Chain 3’, ’Chain 4’)
titlestr = sprintf(’Trace Plot for Parameter b%d’,j);
title(titlestr)

xlabel (’Post Warm-Up Iteration’)

hold off

figure

hold on

plot(a_chainl{5})

plot(a_chain2{5})

plot(a_chain3{5})

plot(a_chain4{5})

legend(’Chain 1°, ’Chain 2’, ’Chain 3’, ’Chain 4’)
titlestr = sprintf(’Trace Plot for Parameter aA’);
title(titlestr)

xlabel (’Post Warm-Up Iteration’)

hold off

figure

hold on

plot(b_chainl{5})

plot(b_chain2{5})
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plot(b_chain3{5})

plot(b_chain4{5})

legend(’Chain 1’, ’Chain 2’, ’'Chain 3’, ’Chain 4’)
titlestr = sprintf(’Trace Plot for Parameter bA’);
title(titlestr)

xlabel (’Post Warm-Up Iteration’)

hold off

Trace Plot for Parameter al

— Chain 1
——Chan 2
Chan 3
— Chan 4

L] 500 1000 1500 2000 2500 3000 3500 4000
Post Warm-Up Iteration
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Trace Plot for Parameter b1
15

i i I i
L] 500 1000 1500 2000 2500 3000 3500 4000
Post Warm-Up Iteration
Trace Plot for Parameter a2
E —

— Chan 1
—— Chan 2

Chan 3

Post Warm-Up Iteration
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Trace Plot for Parameter b2

L] 500 1000 1500 2000 2500 3000 3500 4000
Post Warm-Up Iteration

Trace Plot for Parameter a3
45 -

— Chan 1
—— Chan 2
4 Chain 3
— Chan 4

a5

L] 500 1000 1500 2000 2500 3000 3500 4000
Post Warm-Up Iteration
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Trace Plot for Parameter b3

45 -
— Chan 1
—— Chan 2
4 Chain 3
——— Chan 4

35

Post Warm-Up Iteration

Trace Plot for Parameter a4

— Chain 1
——Chan 2
Chan 3

L] 500 1000 1500 2000 2500 3000 3500 4000
Post Warm-Up Iteration
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Trace Plot for Parameter bd

a5
— Chain 1
——Chan 2
Chan 3
3r —— Chan 4
25

L] 500 1000 1500 2000 2500 3000 3500 4000
Post Warm-Up Iteration

Trace Plot for Parameter aA

a5
— Chain 1
——Chan 2
Chan 3
ar ——— Chain 4
25

Post Warm-Up Iteration
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Trace Plot for Parameter bA

L] 500 1000 1500 2000 2500 3000 3500 4000
Post Warm-Up Iteration

Trace Plots by Parameter - Individual Chains
Any given chain trace plot should show relatively constant mean and variance (no transient

behavior) as an indication of convergence.

for j = 1:]
figure
hold on
subplot(4,1,1)
plot(a_chain1{j})
title(’Chain 1’)
xlabel (’Post Warm-Up Iteration’)

subplot(4,1,2)

plot(a_chain2{j}, ’color’,’#D95319")
title(’Chain 27)

xlabel (’Post Warm-Up Iteration’)
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subplot(4,1,3)
plot(a_chain3{j}, ’color’, ’#EDB120°)
title(’Chain 37)

xlabel (’Post Warm-Up Iteration’)

subplot(4,1,4)
plot(a_chain4{j}, ’color’, #7E2F8E’)
title(’Chain 4’)

xlabel (’Post Warm-Up Iteration’)

titlestr = sprintf(’Trace Plot for Parameter a%d’,j);
sgtitle(titlestr);
hold off

figure

hold on

subplot(4,1,1)

plot(b_chainl{j})

title(’Chain 17)

xlabel (’Post Warm-Up Iteration’)

subplot(4,1,2)

plot(b_chain2{j}, ’color’,’#D95319")
title(’Chain 2’)

xlabel (’Post Warm-Up Iteration’)

subplot(4,1,3)

plot(b_chain3{j}, ’color’,’#EDB120")
title(’Chain 37)

xlabel (’Post Warm-Up Iteration’)

subplot(4,1,4)
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plot(b_chain4{j}, ’color’,’ #7E2F8E’)
title(’Chain 4’)
xlabel (’Post Warm-Up Iteration’)

titlestr = sprintf(’Trace Plot for Parameter b%d’,j);
sgtitle(titlestr);
hold off

end

figure
hold on
subplot(4,1,1)
plot(a_chainl{5})
title(’Chain 1°)
xlabel (’Post Warm-Up Iteration’)

subplot(4,1,2)

plot(a_chain2{5}, ’color’,’#D95319")
title(’Chain 2’)

xlabel (’Post Warm-Up Iteration’)

subplot(4,1,3)
plot(a_chain3{5}, ’color’, ’#EDB120’)
title(’Chain 3’)

xlabel (’Post Warm-Up Iteration’)

subplot(4,1,4)
plot(a_chain4{5}, ’color’, #7E2F8E’)
title(’Chain 4’)

xlabel (’Post Warm-Up Iteration’)

titlestr = sprintf(’Trace Plot for Parameter bA’);
sgtitle(titlestr)
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hold off

figure

hold on

subplot(4,1,1)

plot(b_chainl{5})

title(’Chain 17)

xlabel (’Post Warm-Up Iteration’)

subplot(4,1,2)

plot(b_chain2{5}, ’color’,’#D95319")
title(’Chain 2’)

xlabel (’Post Warm-Up Iteration’)

subplot(4,1,3)
plot(b_chain3{5}, ’color’, ’#EDB120’)
title(’Chain 37)

xlabel (’Post Warm-Up Iteration’)

subplot(4,1,4)
plot(b_chain4{5}, ’color’,’ #7E2F8E’)
title(’Chain 4’)

xlabel (’Post Warm-Up Iteration’)

titlestr = sprintf(’Trace Plot for Parameter bA’);

sgtitle(titlestr)
hold off
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Trace Plot for Parameter a1
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Trace Plot for Parameter a2
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Trace Plot for Parameter a3
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Trace Plot for Parameter ad
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Trace Plot for Parameter bA
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Correlograms

Generate correlograms for parameters governing function and component posteriors. High
correlation undesirable; low/zero correlation desirable (indicates random walk during
MCMC sampling).

figure;
subplot(2,5,1); autocorr(ad);
axis tight
title(sprintf([’Parameter aA’]));
subplot(2,5,6); autocorr(bi);
axis tight
title(sprintf([’Parameter bA’]));
for j = 1:]
subplot(2,5,j+1)
autocorr(a_all{j});
axis tight
title(sprintf([’Correlogram a%d’],j));
end
for j = 1:]
subplot(2,5, j+6)
autocorr(b_all{j});
axis tight
title(sprintf([’Parameter b%d’]1,j));
end

sgtitle(’Correlograms for Beta Distribution Parameters’);
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Correlograms for Beta Distribution Parameters
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Component Posteriors Overlaid with Evidence Data Points:
Evaluate the posterior distributions of each component in the context of the original evidence

- provides a “gut check™; not part of convergence monitoring.

orig_A_data = readtable(’A_Data.csv’);
X =0:0.01:1;

pd = cell(2,]+1);

for j = 1:3+1
pd{1,j}
pd{2,j}

makedist(’Beta’,’a’,a(j),’b’,b(j));
pdf(pd{1,j},X);

end
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r =
r{1}
r{2}
r{3}
r{4}

for

%

end

cell(1:2);
= sort(rmmissing(orig_A_data{l:end,’Ratio_1"}));
= sort(rmmissing(orig_A_data{l:end,’Ratio_2'}));

sort(rmmissing(orig_A_data{l:end, 'Ratio_3"}));

sort(rmmissing(orig_A_data{l:end,’'Ratio_4’}));

j=1:]
figure
hold on
scatter(r{j},1l:length(r{j}))
z = zeros(l,length(r{j}));
scatter(r{j},z)
plot(X,pd{2,j})
legendstr = sprintf(’Posterior pdf for Component %d’,j);
legend(’Evidence’,legendstr, ’'location’, 'NorthWest’)
xlabel (’Success Ratio’)
ay = gca;
ay.YTickLabel = [];

ts = sprintf(’Characterization and Evidence for Component Type %d’,j);

title(ts)
hold off

figure
subplot(2,2,1)

hold on
scatter(r{1},1:length(r{1}))
z = zeros(l,length(r{1}));
scatter(r{l},z)
plot(X,pd{2,1})
legendstr = sprintf(’Posterior pdf for Component 1’);
legend(’Evidence’,legendstr, ’location’, ’NorthWest’)

xlabel (’Success Ratio’)
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ay = gca;
ay.YTickLabel = [];

titlestr = sprintf(’Component Type 1’);
title(titlestr)

hold off

subplot(2,2,2)

hold on
scatter(r{2},1:length(r{2}))
z = zeros(1l,length(r{2}));
scatter(r{2},z)
plot(X,pd{2,2})
legendstr = sprintf(’Posterior pdf for Component 2’);
legend(’Evidence’,legendstr, ’location’, ’NorthWest’)
xlabel(’Success Ratio’)
ay = gca;
ay.YTickLabel = [];
titlestr = sprintf(’Component Type 2’);
title(titlestr)
hold off

subplot(2,2,3)

hold on
scatter(r{3},1:1length(r{3}))
z = zeros(1l,length(r{3}));
scatter(r{3},z)
plot(X,pd{2,3})
legendstr = sprintf(’Posterior pdf for Component 3’);
legend(’Evidence’,legendstr,’location’, ’NorthWest’)
xlabel(’Success Ratio’)
ay = gca;
ay.YTickLabel = [];
titlestr = sprintf(’Component Type 3’);
title(titlestr)
hold off
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subplot(2,2,4)
hold on

% scatter(r{4},1:1length(r{4}))
z = zeros(l,length(r{4}));
scatter(r{4},z)

plot(X,pd{2,4})
legendstr = sprintf(’Posterior pdf for Component 4’);

legend(’Evidence’,legendstr, ’'location’, 'NorthWest’)
xlabel (’Success Ratio’)

ay = gca;

ay.YTickLabel = [];

titlestr = sprintf(’Component Type 4’);
title(titlestr)

hold off
sgtitle(’Component Posteriors Overlaid with Evidence’);
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Component Posteriors Overlaid with Evidence
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Component and Function Posteriors Together:
Display pdfs of component and function posterior distributions together

str = struct([]);

figure

hold on

plot(X,pd{2,1},’*’)
plot(X,pd{2,2},’-.")
plot(X,pd{2,3})
plot(X,pd{2,4},’.")
plot(X,pd{2,5}, LineWidth’,2)

str = struct([]);
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for i = 1:]
str{i} = ['Comp ’ sprintf(’%d,’,i) ’ beta’ sprintf(’ (%1.2f,%1.2f)’,...
a(i),b())1;
end
str{5} = [’Function A beta’ sprintf(’ (%1.2f,%1.2f)", a(5),b(5))];
leg = legend(str{1},str{2},str{3},str{4},str{5}, location’, ’NorthWest’);
title(’Posterior Distributions Affiliated with Function A’);
annotation(’textbox’,[0.7 0.8 0.2 0.07],’String’,
{[’$$\bar{C}$$ = ’ sprintf(’ (%d,%d,%d,%d)’,C)]1}, interpreter’,’latex’,...
’LineStyle’, ’none’);

xlabel (’Success Ratio’)

hold off
Posterior Distributions Affiliated with Function A
g -
#  Gomp 1, betal? 38 0.47) +
— - Comp 2, bata(l.450.47) 0 =111.1)
& Gomp 3, betaf 53 0.98) \
*  Comp 4, beta(l 52.0.73)
———— Function A betaf0.83,0.58)
? -
1
di A
=L |
_*_I
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APPENDIX D:
Frequency Weighting Implementation

Frequency weighting was a concept introduced in [13] to allow the engineer to subjectively
influence a function-level posterior by accounting for the frequency with which a component
type historically solved a function, thus accounting for the likelihood of a component
type being selected over others. This was done through a discrete modification to the
closed-form calculations in the EDRPM. Since the CDRPM uses MCMC sampling for
Bayesian estimation of the hierarchical posterior parameters, the discrete modification could
not be inserted into the process. Instead, the intent of frequency weighting was accomplished

through data set manipulation by replicating data consistent with the historical frequencies.

Two different approaches to data replication were considered. The “within type” approach
replicated the evidence within the component type, effectively multiplying the number of
data points for a component type while maintaining the same total number of component
types in the hierarchy. The “by type” approach replicated the whole component type
data group, effectively multiplying the number of component types within the hierarchy.
Both approaches were accomplished through MATLAB scripts rather than by manual
manipulation of the original database to reduce the likelihood of errors for large frequencies

and provide flexibility to evaluate different frequency vectors, Cs.

The MATLAB script for the two frequency weighting implementation methods is shown

below in published format.

MATLAB Script Contents

Data Manipulation for FW to be used by R (Function A Analysis)
Set these Parameters and Read in Original Data

FW Implementation: By Type

FW Implementation: Within Type

Data Manipulation for FW to be used by R (Function A Analysis)
MATLAB 2020a
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% This code produces two data sets accordint to two different
% implementation methods for frequency weighting - a manipulation within
% type and a manipulation by type.

% The within type replication requires the user-defined padcat() function
% in the MATLAB path. The function concatenate vectors with different

% lengths by padding with NaN.

clear all, close all

Set these Parameters and Read in Original Data

c=1[1,1,4,2]; % Frequency vector
J = 4; % Original number of component types
evid = readtable(’A_Data.csv’); % Original Data as A_Data.csv

FW Implementation: By Type

typel = table2array(evid(:,1:3));
type2 = table2array(evid(:,4:6));
type3 = table2array(evid(:,7:9));

typed4 = table2array(evid(:,10:12));
repl = [];
rep2 = [];
rep3 = [1];
repd = [];

for i = 1:C(1)
filll = typel;
repl = horzcat(repl,filll);
1= 1+1;

end
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for i = 1:C(2)
fill2 = type2;
rep2 = horzcat(rep2,£fill2);
1= 1i+1;

end

for i = 1:C(3)
fill3 = type3;
rep3 = horzcat(rep3,fill3);
1= 1+1;

end

1:C(4)
filld = type4;
rep4 = horzcat(rep4,filld);

for i

1= 1i+1;

end

rep_data = horzcat(repl,rep2,rep3,repd);

R

Arrange Replicated Data as Table for R
W = sum(C);

i=1;

k = 1;

str = struct([]);
for c = 1:W

str{k} = sprintf(’Success_%d’,i);
str{k+1} = sprintf(’Trials_%d’,i);
str{k+2} = sprintf(’Ratio_%d’,i);
k = k+3;

i = i+1;
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end
R_Data= array2table(rep_data,’VariableNames’,str);
% Write To File - Check name, will overwrite

strl = sprintf(’Data_for_R_%d%d%d%d_by_type.csv’,C);
writetable(R_Data,strl);

FW Implementation: Within Type

raw = struct([]); % initialized for data without NaN
rep = struct([]); % initialized weighted theta matrix
k = 0;
for j = 1:]
for i = 1:3 % for each column of evidence
raw{k+i} = rmmissing(evid{:,k+i}); % data without NaN
fill = ones(size(raw{k+i},1),C(j));
filled = raw{k+i}.*fill;
rep{k+i} = reshape(filled,[],1);
end
k = k+3;
end

weighted = padcat(rep{:});

R_Data2= array2table(weighted, ’VariableNames’,...
evid.Properties.VariableNames);

% Write to File - Check name, will overwrite

str2 = sprintf(’Data_for_R_%d%d%d%d_within_type.csv’,C);
writetable(R_Data2,str2);
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The modified data sets (in .csv format) were then imported into R in the same manner as the
original data set was through a model writing code similar to that shown in Appendix B.
The posteriors of the HB model were assessed for convergence by the same means shown in
Appendix C. Significant aspects relative to frequency weighting implementation are most
evident in the component posteriors with evidence graphs, as well as the component and
function posterior pdf graphs. These graphs are consolidated in this appendix to illustrate

the different implementation methods’ influence on posterior distribution estimation.

The analysis that follows uses the frequency vector C= (1,1,4,2) for Function A defined
in Chapter 3.

The component and function pdf graphs for each method are shown first, with the graph
of unweighted results included as a point of reference. Since component type 3 had the
greatest frequency, it was expected to see the function-level distribution more closely reflect
the type 3 distribution. The within type implementation induced a greater influence on the
function-level distribution than the by type implementation. This is likely because the within
type implementation artificially reduced the variation in the component characterization
since the data points are replicated. (This reduction of uncertainty was an undesirable
consequence since it is unlikely an engineer’s observation data research will always be
exhaustive but was not significant enough to rule out the implementation method on its
own.) The function-level distribution must then closely mirror the weighted component’s
distribution in order for the component type’s more precise parameters to be drawn from it.
Since the function posterior shifted significantly, it induced a greater amount of shrinkage
on the other components, such that all posterior distributions had a greater resemblance of
the most heavily weighted component type. The by type implementation showed the same
trends but to a lesser extent, which suggested that the by type method was preferable so as

to not over influence the hierarchy.
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Posterior Distributions Affiliated with Function A, FW within Type
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A closer look at the component type posteriors overlaid with evidence, the “gut-check”
presentation, illustrated that the within type implementation was inappropriate. The by type
implementation posteriors still reasonably trended with the original evidence. The within
type implementation posteriors, specifically for component types 1 and 2, were so different
from the unweighted case that they did not reflect original data clusters. Frequency weighting

by type was therefore the implementation method selected for the CDRPM.
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APPENDIX E:
Corrected EDRPM Implementation Script

The following script was generated for MATLAB to implement the posterior determination
aspect of the EDRPM for the generic system presented in Chapter 4, originally presented
in [13]. Not only did this script enable the subsequent application of the EDRPM for use in
Chapter 5’s case study, but it verified the scale modification used to manipulate data for the
MCMC tool.

The two specific errors noted in the original script are detailed here and commented in the
actual code. The first was in passing the expected value of 7 from equation 2.4 to equations
2.5 and 2.6. Since equations 2.5 and 2.6 are functions of 7, equation 2.4 could be written
as a very complicated function of 7, as alluded to [24] for the unmodified versions of the
equations (no frequency weighting). Implementing this approach is highly error prone using
symbolic math in a programming language, so the EDRPM prescribes solving equation 2.4
for a range of values and then calculating the expected value of 7. The expected value of T
is then substituted into equations 2.5 and 2.6. In the original script, the last value of 7 from
a for loop for p(t|y) was passed to calculate u and V), rather than the expected value of
7. The second error was that equation 2.6 is for the inverse of V,,, and the “J” modifier for
frequency weighting was inconsistently applied. That is, the equation in the script was the

argument for V,,, not the inverse, but it was multiplied by J -1

MATLAB Contents

Corrected version of EDRPM
Parameters to Set

Data and Early Arithmetic for FW
Bayesian Estimation

Corrected version of EDRPM
This script was developed using MATLAB 2020a and relies on the user-defined function
padcat(), which concatenates vectors with different lengths by padding with NaN. This script

implements the equations in the EDRPM by O’Halloran, et al, for Bayesian estimation of
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reliability posteriors. It also served to verify the effect of the scalar modification of data for

Stan.

clear, close

Parameters to Set

¢ =1[1,1,1,1];
scale = 1E-6;

Data and Early Arithmetic for FW

% Data from EDRPM Table 1, component means in terms of failures/Mhours:

ysl
ys2
ys3
ys4

[10,9,9,8,7,9,10,11,12,8];
[3,4,9,5,1,7,2,4,10,7];
[3,5,3,2,2];
[1,2,4,5,4,6,7,5,8,4];

ys = padcat(ysl,ys2,ys3,ys4);

% Frequency Weighting
W=sum(C) ;

% Count Comp
J=length(Q);

% Data scale manipulation

y = ys.*scale;

SS

1.5*scale;

% As cell arrays...

yb

S =

cell(1,1);

cell(1,1);
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%

%

%
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% FW vector for FW section

% Scale for units

compl
comp?2
comp3

comp4

each row is a component, fills in na

sum of all frequencies

total number of comp for the function

assumed by EDRPM



w = cell(1,3);

%Sample variance (ss), mean (yb), and freuquency weight (w) by comp type
for i = 1:]
yb{i} = mean(y(i,:),’omitnan’);
s{i}
w{i}

ssA2/size(rmmissing(ys(i,:)),2);

C(1)/W;

end

% As numerical arrays...
yb = cell2mat(yb);
cell2mat(s);
cell2mat(w);

=
1]

Bayesian Estimation

% Set up for loop to determine expected value of tau
step = scale/20;

N = scale*100;

pt = 1; % uniform prior of 1

tt = 0;

t2 = [1;

norm = J; % Normalization factor for FW; experimented with during

% error interrogation
% Set to ] for EDRPM equations

% For loop for tau for various values
for t = 0:step:N
tt=tt+1;

NumeratorMuHatA = cell(1,1);
DenominatorMuHatA = cell(1,]);
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VmuA_arg = cell(1,1);

%Estimated function level mean (MuHat) and error (Vmu)
for i = 1:]
NumeratorMuHatA{i} = sum((1l/(s(i)+tA2))*w(i)*yb(i));
DenominatorMuHatA{i} = sum((1l/(s(i)+t*2))*w(i));
(w(i)/(s(1)+t*2));

VmuA_arg{i}
end

NumeratorMuHatA = cell2mat (NumeratorMuHatA);
DenominatorMuHatA = cell2mat(DenominatorMuHatA) ;
VmuA_arg = cell2mat(VmuA_arg);
MuHatA=sum(NumeratorMuHatA) /sum(DenominatorMuHatA) ;
VmuA=1/(norm*sum(VmuA_arg)) ;

Tau_arg = cell(1,1);

for i = 1:3]

Tau_arg{i} = (1/sqrt(s(i)+t*2)*exp(-1*(yb(i)-MuHatA)*2/...

2*(s(D)+t2)))) M (i);

end

Tau_arg = cell2mat(Tau_arg);

ptyA(tt) = pt*sqrt(Vmuld) *(prod(Tau_arg)*norm) ;

t2=[t2;t];
end

% Calculate expected value of tau
ExtA=sum(ptyA*t2)/sum(ptyA);
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% This is the value that should be passed the following equations;
% t2 was instead (the last value from the for loop)

% Used expectued value of tau to calculate mu_hat and V_mu

for i = 1:]
NumeratorMuHatA(i) = sum((1l/(s(i)+ExtAA2))*w(i)*yb(i));
DenominatorMuHatA(i) = sum((1/(s(i)+ExtAr2))*w(i));
VmuA_arg(i) = (w(i)/(s(i)+ExtAAr2));

end

MuHatA=sum(NumeratorMuHatA) /sum(DenominatorMuHatA) ;

VmuA=1/(norm*sum(VmuA_arg)) ;
% This equation was not written as the inverse but the inverse of ]

% (norm in this form) was applied.

% Continue to Component Level for theta (Th) and V_c
Th = cell(1,1);
Ve = cell(1,3);

for i = 1:]
Th{i} ((1/s@@))*yb(i)+(1/ExtAAr2) *MuHatA) /((1/s(i))+(1/ExtAr2));
Ve{i} 1/((1/s(1))+(1/ExtAr2));

end

Th
Vc

cell2mat(Th);
cell2mat(Vc);

fprintf(’Closed form results with frequncies [’)

fprintf(’%d ’, O

fprintf(C’J\t’)

fprintf(’Scale of %1.0e:\n’,scale)

fprintf(’ MuHatA = %4.4e\n ExtA = %4.4e\n VmuA = %4.4e\n’, MuHatA, ExtA, VmuA)
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for i = 1:3]

fprintf(’

end

for i = 1:3]

fprintf(’

end

fprintf(’\n’)

Closed form results with frequncies

MuHatA
ExtA =
VmuA =
Theta
Theta
Theta
Theta
Ve 1
Vc 2
Vc 3
Vc 4

W N =R NN U
1l

N NN

5.
.5326e-06
.7227e-12

5296e-06

9.2725e-06
5.2024e-06
3.0366e-06
4.6068e-06

.2336e-13
.2336e-13
.4348e-13
.2336e-13
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APPENDIX F:
Case Study: Launcher System Reliability Prediction

The complete data set used to facilitate the launcher case study is shown in the table below.

c ID |Publication Label Fa|!ure Rate Total Failed | Total Tested | Total Passed | Success Ratio Source . Reference
(Fail/MHours) (If Less Than Highest Roll Up)

1 Al _|Comp Type 1: Inverter

A1l |Inverter, Power 4.141067 24 48 24| 0.50000 |(Commercial, GF) NPRD-2016
A21 |Inverter, Power, Static, 2.50KVA 6.054747 22 5411 5389| 0.99593 NPRD-2016
A31 |Inverter 7.407239 25 5411 5386 0.99538 |(Military, AC) NPRD-2016
2 A2 |Comp Type 2: Transformer
A12 | Transformer Assembly 19.980291 299 840 541 0.64405  |(Military, N, 800107-000) NPRD-2016
A22 |Transformer Set 1.631133 9 129 120| 0.93023 NPRD-2016
A32 |Transformer Sut bly 0.348281 1 5411 5410| 0.99982 NPRD-2016
A42 |Transformer 15.459774 3 3070 3067 0.99902 |(Military, AIF,18212-000) EPRD-2014
A52 | Transformer, Power 0.395223 6 1401 1395| 0.99572  [(Military, AUF) EPRD-2014

1 Bl |Comp Type 1: Circuit Breaker

B11 |Circuit Breaker, Current Trip 5.264201 42 3200 3158| 0.98688 NPRD-2016
B21 |Circuit Breaker, Current / Voltage Trip 25.028537 27 1250 1223 0.97840 NPRD-2016
B31 |Circuit Breaker, Fixed, NO 0.617280 10 1703 1693| 0.99413 NPRD-2016
B41 |Circuit Breaker, Metal Clad, NO 1.415562 17 124 107| 0.86290 NPRD-2016
BS1 |Circuit Breaker, Molded Case 1.107460 29 3864 3835/ 0.99249 NPRD-2016
B61 |Circuit Breaker, Power Switch 2.159443 76 4104 4028| 0.98148 NPRD-2016
B71 |Circuit Breaker, Trip Free 97.938106 144 555 411 0.74054  |(Military, A) NPRD-2016
B81 |Circuit Breaker, Under Voltage 1.870033 8 350 342 097714 |(Military) NPRD-2016
B91 |Circuit Breaker, Vacuum, NO 1.857448 51 118 67] 0.56780 NPRD-2016
2 B2 |Comp Type 2: Switch
B12 |Switch 9.675859 2 444 442 099550 |(Military, AIA) EPRD-2014
B22 |Switch, Arm and Disarm 0.537599 35 2015 1980| 0.98263 EPRD-2014
B32 |Switch, Electric, Breaker Type, Non-Knife 0.300270 54 1163 1109 0.95357 EPRD-2014
3 B3 [Comp Type 3: Relay
B13 |Relay, Electromagnetic, General Purpose 18.882759 13 538 525| 097584 [(Military) EPRD-2014
B23 |[Relay, Electromechanical, Armature 23.283610 [ 908 902| 0.99339 |(Military) EPRD-2014
B33 |[Relay, Electronic 67.256603 7 13 6| 0.46154 [(Military, A) EPRD-2014
B43 |Relay, Solenoid, Solenoid-Driven 4.140519 64 1234 1170( 0.94814 EPRD-2014

B53 Relai, Time Delai 1.682544 9 384 375/ 0.97656 |(Commercial, GF, 18354-000) [EPRD-2014

1 €1 |Comp Type 1: Fan

C11 |Fan, Axial 2.211246 39 2192 2153  0.98221 |(Unknown, NS) NPRD-2016
C21 |Fan, Blade 6.880370 10 114 104| 0.91228 NPRD-2016
C31 |Fan, Centrifugal 13.880011 20 239 219 0.91632 |(Unknown, GF, 18459-000) [NPRD-2016
C41 |Fan Assembly, Centrifugal 1.158800 5 129 124| 0.96124 NPRD-2016
2 €2 |Comp Type 2: Compressor
C12 |Compressor 10.716847 3 327 324| 0.99083 [(Unknown) NPRD-2016
C22 |Compressor, Air 11.004983 27 129 102 0.79070 |(Military) NPRD-2016
C32 |Compressor, Centrifugal 1.268456 3 129 126| 0.97674 |(Military) NPRD-2016
C42 |Compressor, Rotary 5.243973 135 700] 565 0.80714 NPRD-2016
C52 |Compressor, Assembly 1.228916 3 129 126 0.97674 NPRD-2016
1 C3 |Comp Type 3: Pump
C13 |Pump, Axial 0.422819 1 129 128| 0.99225 NPRD-2016
C23 [Pump, Centrifugal 5.069158 127 1320 1193 0.90379  |(Military, N, 800108-000) NPRD-2016
C33 |Pump, Compressor 30.832536 71 140] 69| 0.49286 NPRD-2016
C43 | Pump, Electric 2.486788 6 129 123| 0.95349 NPRD-2016
€53 |Pump, Fuel 3.756554 22 5411 5389| 0.99593 |(Military, AC) NPRD-2016
€63 |Pump, Hydraulic, Piston, Axial 7.722008 2 28 26| 092857 NPRD-2016
C73 _[Pump, Pneumatic, Air 69.169252 237 2314 2077) 0.89758 NPRD-2016
C83 | Pump, Pressure 0.986149 6 5411 5405| 0.99889 NPRD-2016
€93 |Pump, Rotary 30.858781 11 839 828 0.98689 |(Military, AA) NPRD-2016
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The following code was used to ensure there were 10,000 positive failure rates, only, drawn

from the failure rate posterior distributions to support further analyses.

Ilustration of Positive-Only Failure Rate Samples

Contents

e Function A, Condition, C = (1,2)
e Function B, Actuate, C = (1,2,3)
¢ Function C, Convert, C = (1,2,1)

Function A, Condition, C = (1,2)
Mu, Tau, Theta 1, Theta 2

Cond = [6.84775622884608,3.18116370381325,6.29108939733541,7.48178001049368];

MuA = Cond(1l);

TauA = Cond(2);

sA = normrnd(MuA,TauA, [10000,1]1);
check = find(sA > 0);

posA = sA(check);

fprintf(’Number of positive elements in original: %d\n’, length(check))

use = sA;

neg = find(use < 0);
off = length(neg);
count = 1;

while off ~= 0
replace = normrnd(MuA,TauA, [length(neg),1]);
use(neg) = replace;

neg = find(use < 0);
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off = length(neg);
count = count+1;
end

check2 = find(use > 0);

fprintf(’ Number of positive elements in final: %d\n’,length(check2))
fprintf(’Cycles for to replace: %d\n’,count)

figure

set(gcf, ’WindowState’,’fullscreen’)

subplot(1,2,1)

hold on

histogram(sA, ’BinWidth’, 1)

histogram(posA, 'BinWidth’, 1, ’FaceColor’,’y’)

legend(’Original Samples’,’Original Positive Samples’)

annotation(’textbox’,[0.34 0.82 0.13 0.02],’String’,
{[’Positive Samples = ’ sprintf(’%d’,length(check))]},...
’LineStyle’, ’none’);

ylabel (’Number of Samples’)

xlabel(’Failure Rate [Fail/MHours]’)

title(’Original Sample, Truncated’)

hold off

subplot(1,2,2)

hold on

histogram(sA,’BinWidth’, 1)

histogram(use, ’'BinWidth’,1, ’FaceColor’,’y’)

legend(’Original Samples’,’Positives Samples For R(t)’)

annotation(’textbox’,[0.78 0.82 0.13 0.02],’String’,
{[’Positive Samples for R(t) = ’ sprintf(’%d’,length(check2))]},
’LineStyle’, ’none’);

annotation(’textbox’,[0.78 0.8 0.13 0.02],’String’,
{[’Cycles Required = ’ sprintf(’%d’,count)]},
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’LineStyle’, ’none’);
ylabel (’Number of Samples’)
xlabel(’Failure Rate [Fail/MHours]’)
title(’Sample and Replace Until Only Positive’)
hold off

sgtitle(’Histograms for Positive-Only Failure Rates, Function A’)

Number of positive elements in original: 9829
Number of positive elements in final: 10000

Cycles for to replace: 3

Histograms for Positive-Only Failure Rates, Function A

Original Sample, Truncated Sample and Replace Until Only Positive
1400 -

[ Original Sampiea R ongnal Sampiss
|— Origmai Positve Sampies —Jrostives Sampies For Ay

Positive Sampies = 9820

Positiva Samples for Al = 10000
Cyoles Requiad =3

Number of Samples
Number of Samples

5 10 5 5 ) 5 10
Failure Rate (Fai MHours] Failure Rate [FailMHours]

Function B, Actuate, C = (1,2,3)
Mu, Tau, Thetal, Theta2, Theta 3

Act = [15.0566069450050,13.6223233917751,15.2489807461578, ...
3.55877735964277,23.0351290938322];
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MuB = Act(1l);

TauB = Act(2);

sB = normrnd(MuB, TauB, [10000,1]);
check = find(sB > 0);

posB = sB(check);

fprintf(’Number of positive elements in original: %d\n’, length(check))

use = sB;

neg = find(use < 0);
off = length(neg);
count = 1;

while off ~= 0
replace = normrnd(MuB,TauB, [length(neg),1]);
use(neg) = replace;

find(use < 0);

length(neg);

neg
off

count = count+1;

end

check2 = find(use > 0);

fprintf(’Number of positive elements in final: %d\n’,length(check2))
fprintf(’Cycles for to replace: %d\n’,count)

figure

set(gcf, 'WindowState’,’fullscreen’)
subplot(1,2,1)

hold on

histogram(sB, ’BinWidth’, 1)
histogram(posB, 'BinWidth’, 1, ’FaceColor’,’y’)
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legend(’Original Samples’,’Original Positive Samples’)

annotation(’textbox’,[0.34 0.82 0.13 0.02],’String’,
{[’Positive Samples = ’ sprintf(’%d’,length(check))]},...
’LineStyle’, ’none’);

ylabel (' Number of Samples’)

xlabel(’Failure Rate [Fail/MHours]’)

title(’Original Sample, Truncated’)

hold off

subplot(1,2,2)

hold on

histogram(sB, 'BinWidth’, 1)

histogram(use, 'BinWidth’, 1, ’FaceColor’,’y’)

legend(’Original Samples’,’Positives Samples For R(t)’)

annotation(’textbox’,[0.78 0.82 0.13 0.02],’String’,
{[’Positive Samples for R(t) = ' sprintf(’%d’,length(check2))]},’ ’LineStyle’, 'no;

annotation(’textbox’,[0.78 0.8 0.13 0.02],’String’,

{[’Cycles Required = sprintf(’%d’ ,count)]},’LineStyle’, ’none’);
ylabel (' Number of Samples’)

xlabel(’Failure Rate [Fail/MHours]’)

title(’Sample and Replace Until Only Positive’)

hold off

sgtitle(’Histograms for Positive-Only Failure Rates, Function B’)

Number of positive elements in original: 8623
Number of positive elements in final: 10000

Cycles for to replace: 6
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Histograms for Positive-Only Failure Rates, Function B
Original Sample, Truncated Sample and Replace Until Only Positive
e

T ongra sampes

[ JPostives Sampiea For At

Number of Samples
Nurmber of Samples

)

w20 a0 0 20 a0
Failure Rate [Fal MHours] Failure Rate [FailMHours]

Function C, Convert, C = (1,2,1)
Mu, Tau, Thetal, Theta2, Theta 3

Conv = [8.56099537402864,10.5525194141036,6.04729258406312, ...
5.90510504277764,16.7971826736931];

MuC = Conv(1l);

TauC = Conv(2);

sC = normrnd (MuC, TauC, [10000,1]);
check = find(sC > 0);

posC = sC(check);

fprintf(’Number of positive elements in original: %d\n’, length(check))

use = s(;
neg = find(use < 0);
off = length(neg);
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count = 1;
while off ~= 0
replace = normrnd(MuC,TauC, [length(neg),1]);
use(neg) = replace;
neg = find(use < 0);
off = length(neg);
count = count+1;

end

check2 = find(use > 0);

fprintf(’Number of positive elements in final: %d\n’,length(check2))
fprintf(’Cycles for to replace: %d\n’,count)

figure

set(gcf, 'WindowState’,’fullscreen’)

subplot(1,2,1)

hold on

histogram(sC, ’BinWidth’, 1)

histogram(posC, 'BinWidth’, 1, ’FaceColor’,’y’)

legend(’Original Samples’,’Original Positive Samples’)

annotation(’textbox’,[0.34 0.82 0.13 0.02],’String’,
{[’Positive Samples = ’ sprintf(’%d’,length(check))]},...
’LineStyle’, 'none’);

ylabel (’Number of Samples’)

xlabel(’Failure Rate [Fail/MHours]’)

title(’Original Sample, Truncated’)

hold off

subplot(1,2,2)

hold on

histogram(sC, ’BinWidth’, 1)

histogram(use, ’BinWidth’,1, ’FaceColor’,’y’)
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legend(’Original Samples’,’Positives Samples For R(t)’)
annotation(’textbox’,[0.78 0.82 0.13 0.02],’String’,
{[’Positive Samples for R(t) = ’ sprintf(’%d’,length(check2))]1},
’LineStyle’, ’none’);
annotation(’textbox’,[0.78 0.8 0.13 0.02], 'String’,
{[’Cycles Required = ’ sprintf(’%d’,count)]},’LineStyle’, ’none’);
ylabel (’Number of Samples’)
xlabel(’Failure Rate [Fail/MHours]’)
title(’Sample and Replace Until Only Positive’)
hold off
sgtitle(’Histograms for Positive-Only Failure Rates, Function C’)

Number of positive elements in original: 7903
Number of positive elements in final: 10000

Cycles for to replace: 6

Histograms for Positive-Only Failure Rates, Function C
Original Sample, Truncated o ‘Sample and Replace Until Only Positive

Number of Samples
g
Number of Samples
8

o 10 20 o 10 20
Failura Rate (Fai MHours] Failure Rate [FallMHours]
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