
 

NAVAL 
POSTGRADUATE 

SCHOOL 

MONTEREY, CALIFORNIA 

THESIS 
 

AUTONOMOUS INTERIOR MAPPING ROBOT 
UTILIZING LIDAR LOCALIZATION AND MAPPING 

by 

Jameson S. Payne 

September 2020 

Thesis Advisor: Xiaoping Yun 
Second Reader: James Calusdian 

 

Approved for public release. Distribution is unlimited. 



THIS PAGE INTENTIONALLY LEFT BLANK 



 REPORT DOCUMENTATION PAGE  Form Approved OMB 
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of 
information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2020

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
AUTONOMOUS INTERIOR MAPPING ROBOT UTILIZING LIDAR
LOCALIZATION AND MAPPING

5. FUNDING NUMBERS

6. AUTHOR(S) Jameson S. Payne

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE 
A

13. ABSTRACT (maximum 200 words)
Combat actions are planned based on the best available information. In nearly all situations, significant 

uncertainty about the combat environment exists. This uncertainty contributes largely to friendly and 
non-combatant casualties. At the tactical level, operators are often required to enter hostile-occupied 
buildings without knowledge of the building layout. Military operators have begun to use robots to assist in 
missions of this type. In general, currently fielded robots lack autonomy and the ability to disseminate an 
accurate map, on-site, in real time. The purpose of this thesis is to examine the feasibility of an autonomous 
robot that can localize and build accurate 3D maps using only light detection and ranging (LIDAR). To 
accomplish this, a robot equipped with only LIDAR and a control algorithm for LIDAR localization and 
mapping (LLAM) were developed. Trials were then developed to determine if LLAM is a feasible model for 
interior 3D mapping. Navigation was accomplished using a potential field model adapted from previous 
work combined with the Hybrid A* search algorithm. Mapping and localization were conducted using the 
iterative closest point and normal distribution transform methods of point cloud registration. 
Experimentation revealed that LLAM is a feasible method for interior 3D mapping in real time. Further 
development of the algorithm may make fielding a LIDAR-equipped mapping robot possible with current 
mobile computing technology. 

14. SUBJECT TERMS
autonomous, robotics, light detection and ranging, LIDAR, LIDAR localization and
mapping, LLAM

15. NUMBER OF
PAGES

137
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18

i 



THIS PAGE INTENTIONALLY LEFT BLANK 

ii 



Approved for public release. Distribution is unlimited. 

AUTONOMOUS INTERIOR MAPPING ROBOT UTILIZING LIDAR 
LOCALIZATION AND MAPPING 

Jameson S. Payne 
Major, United States Marine Corps 

BSME, Washington State University, 2008 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 

from the 

NAVAL POSTGRADUATE SCHOOL 
September 2020 

Approved by: Xiaoping Yun 
 Advisor 

 James Calusdian 
 Second Reader 

 Douglas J. Fouts 
 Chair, Department of Electrical and Computer Engineering 

iii 



THIS PAGE INTENTIONALLY LEFT BLANK 

iv 



ABSTRACT 

 Combat actions are planned based on the best available information. In nearly all 

situations, significant uncertainty about the combat environment exists. This uncertainty 

contributes largely to friendly and non-combatant casualties. At the tactical level, 

operators are often required to enter hostile-occupied buildings without knowledge of the 

building layout. Military operators have begun to use robots to assist in missions of this 

type. In general, currently fielded robots lack autonomy and the ability to disseminate an 

accurate map, on-site, in real time. The purpose of this thesis is to examine the feasibility 

of an autonomous robot that can localize and build accurate 3D maps using only light 

detection and ranging (LIDAR). To accomplish this, a robot equipped with only LIDAR 

and a control algorithm for LIDAR localization and mapping (LLAM) were developed. 

Trials were then developed to determine if LLAM is a feasible model for interior 3D 

mapping. Navigation was accomplished using a potential field model adapted from 

previous work combined with the Hybrid A* search algorithm. Mapping and localization 

were conducted using the iterative closest point and normal distribution transform 

methods of point cloud registration. Experimentation revealed that LLAM is a feasible 

method for interior 3D mapping in real time. Further development of the algorithm may 

make fielding a LIDAR-equipped mapping robot possible with current mobile computing 

technology. 
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I. INTRODUCTION 

The use of light detection and ranging (LIDAR) for mapping and obstacle 

avoidance in autonomous ground vehicles is an active area of study. The accuracy, 

precision, responsiveness, and continuously decreasing cost of LIDAR makes it attractive 

as a solution for creating detailed, highly accurate maps. The use of LIDAR in autonomous 

localization is a newer, less developed area of study but shows promise for the future of 

autonomous vehicles. 

Recently, commercially available LIDAR systems have significantly dropped in 

cost and increased in resolution. Velodyne, for example, produces a commercially 

available LIDAR that can produce as many as 4.8 million 3D points per second with return 

ranges up to 245 m [1]. This level of resolution can produce highly detailed 3D models; 

however, computer processing of a point cloud that large can create significant problems. 

The overwhelming amount of data generated by 3D LIDAR systems creates a bottleneck 

that makes localization and mapping in real time challenging. LIDAR-based localization 

and mapping has a wide range of uses today. In most applications, LIDAR is primarily 

used to build a map. LIDAR-based localization is typically combined with other sensors to 

estimate the position and orientation, or pose, of a robot. Frequently, LIDAR-based 

localization and mapping is done in post-collection processing. During collection of 

LIDAR data, the robot or autonomous vehicle is localized by a suite of other sensors. After 

it has run its intended trajectory, the data is then processed to create a three-dimensional 

map. This model works well for many industrial applications; however, it requires larger, 

heavier, more complex robots that are not well suited for military ground reconnaissance 

purposes. This thesis examines the applicability of LIDAR-based localization and mapping 

to military operations, the motivation, related work, and purpose of this research are 

outlined in this chapter.  

A. MOTIVATION 

Infantrymen and special operators are often required to enter hostile buildings with 

no prior knowledge of the building layout. Typically, hostile actors inside the building 
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know the layout and thus have a tactical advantage. The author, as an infantry officer and 

expeditionary ground reconnaissance officer has encountered this problem firsthand 

without a suitable solution available. Recently, infantry, SOF, and reconnaissance units 

have fielded various robots such as the Recon Scout XT depicted in Figure 1. These robots 

are controlled by a human that receives feedback from an onboard camera to the handheld 

remote control. The video is valuable in identifying hostile actors and occasionally booby 

traps, but there is no residual map. Frequently these recon robots need to be employed 

when a small unit is tactically distributed in such a manner that only the operator and 

perhaps the unit commander can view the video feed. Communicating the layout of a 

building by voice can be difficult and ineffective. As small tablet devices become more 

widely proliferated among tactical operators, ideally, a robot could build a map and 

transmit it instantly to all operators on-scene for increased situational awareness. 

 
Figure 1. ReconRobotics’ Recon Scout XT Throwable Robot. Source: [2].  

As the field of autonomous robotics continues to advance, a technological solution 

to this problem is becoming more feasible. LIDAR is widely used in remote sensing, 

autonomous driving, and robotics. However, further research needs to be conducted into how 

this technology can be adapted to benefit the tactical-level warfighter. This work aims to 

examine whether LIDAR can be used effectively on a small mobile robot to improve 

situational awareness from a tactical perspective. Specifically, whether a robot can 
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autonomously map the interior of rooms using only LIDAR without additional sensors, such 

as inertial measurement units, GPS, monocular or stereo cameras, wheel encoders, etc. 

Utilizing a single LIDAR sensor for both localization and mapping is a relatively 

new approach to solving the simultaneous localization and mapping (SLAM) problem in 

autonomous robotics. Multiple sensors add weight and complexity to a robot. Tactical level 

operators need lightweight, simple, and resilient gear that will function in austere 

conditions. Additionally, the majority of research in the field of LIDAR localization and 

mapping (LLAM), sometimes called LIDAR odometry and mapping (LOAM), is primarily 

focused on increasing the resolution of a 3D map and reducing drift of the robot, usually 

with the trajectory of the robot being controlled by a human. Tactical-level operators do 

not need a highly detailed interior map; a quickly developed map with limited resolution 

that can be built on-scene autonomously would be more beneficial. This research seeks to 

determine whether current technology is sufficient to develop that capability. 

B. RELATED WORK 

This research falls under a larger autonomous robotics project conducted within the 

Electrical and Computer Engineering Department at the Naval Postgraduate School. The 

goal of this larger umbrella project is to create a robot capable of autonomous navigation 

from any location on campus to any other location on campus regardless of the terrain, 

structures, or obstacles encountered. Hagardine [3] developed algorithms to avoid both 

static and moving obstacles using a single 2D LIDAR in an unstructured outdoor 

environment. Similarly, in [4], Miyakawa used downward-looking LIDAR to avoid low-

profile obstacles and a sensor suite including optical flow sensors and GNSS/INS to 

localize the robot. Lebrun [5] expanded on the work of Hagardine by integrating visual 

classification of obstacles from camera data and the random forest machine-learning 

algorithm. Finally, Magee [6] examined autonomous navigation through convolutional 

neural network image classification. In her work, she used a SLAM map collected from 

2D LIDAR for waypoint generation. All of these theses contributed to this research to some 

degree, much of these previous works have been adapted for the purpose of LLAM, 

particularly obstacle detection and avoidance algorithms.  
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Outside of Naval Postgraduate School, significant work has been done in both 

academia and industry on the use of LIDAR in autonomous robotics. Moosmann and Stiller 

[7] developed an LLAM model that was effective in building a 3D map despite high sensor 

noise. In [8], Zhang and Singh introduced a real-time mapping and localization algorithm 

using at 2D Hokuyo UTM-30LX laser scanner, which was mounted to a motor that rotated 

the entire LIDAR unit about an axis orthogonal to the laser scan axis of rotation. This 

allowed them to generate a 3D point cloud from a 2D LIDAR. This method was interesting 

but complicated due to the constant two-axis rotation, which can cause poor point cloud 

registration. Ji et al. [9] introduced loop-closure correction to LOAM based on point cloud 

segmentation and random forest algorithm classification; this represented a complete 

LLAM solution to solve the SLAM problem. Loop-closure is a necessary step for large-

scale or highly accurate mapping; however, as will be discussed later, it may not be 

necessary for tactical level operations.  

Lightweight and ground-optimized LOAM was introduced in [10] for ground 

vehicles on variable terrain. This framework introduced the novel concept of segmenting a 

point cloud and obtaining one part of the required transformations from planar features, 

and another part from edge features. This allowed for a six degrees of freedom (DoF) model 

while reducing the workload for the robot onboard computer. In [11], Lin and Zhang 

develop a method for scan matching for limited field of view (FoV) LIDARs with non-

repetitive scanning patterns. All of these works introduced novel concepts, but in all cases, 

the LIDAR system was mounted to a vehicle or robot with the trajectory being pre-planned 

or controlled remotely by a human, or in some cases, such as in [11], actually attached to 

a computer carried by a human. These works did not solve the tactical on-site 

reconnaissance problem addressed here. Additionally, although they successfully 

demonstrated that LLAM can be carried out accurately in real-time, to include loop-closure 

based drift correction, they did not seek to conduct mapping of an unknown area fully 

autonomously. In order to operate autonomously, the robot must be able to localize and 

map, in addition to numerous other processes including obstacle detection and avoidance, 

incrementally re-planned exploration, waypoint planning, and route optimization. All of 
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these processes require additional computational power on a mobile robot, which may 

exceed the limits of current mobile computing technology. 

C. PURPOSE AND GOAL 

The purpose of this research is to examine the feasibility of a LIDAR-only based 

autonomous mobile robot and its capacity for scanning rooms in a tactical environment. 

Most of industry and academia are currently focused on the development of highly 

accurate, detailed, large-scale, and semi-autonomous LLAM capability. This research, on 

the other hand, focuses on the development of a rapid, efficient, limited-scale, fully-

autonomous capability. This includes examining not only the methods of LIDAR scan 

matching, route planning, obstacle avoidance, and frontier exploration, but also their 

integration. It also requires an examination of the map resolution that is required for tactical 

level planning and the most effective method of visually displaying the 3D interior of 

rooms.  

The goal is to construct a robot that can successfully map the interior of rooms 

autonomously and in real time. For this project, a ground vehicle was used for 

experimentation. However, as the future of this technology likely involves an aerial robot, 

such as a LIDAR-equipped drone, the goal included development of a six DoF model that 

could be easily adapted to an aerial robot.  

The rest of this thesis is organized as follows. The hardware and software used for 

the construction of two LLAM robots is discussed in Chapter II. The theory of LLAM, 

methods of LIDAR scan matching, and map-making techniques are examined in Chapter 

III. The design of the robots and the control algorithms implemented in this work are 

detailed in Chapter IV. Results of experimentation on these robots are examined in Chapter 

V and conclusions on the feasibility of LLAM for tactical applications are discussed in 

Chapter VI.  
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II. HARDWARE AND SOFTWARE DESCRIPTION   

A. HARDWARE 

The hardware used in this thesis research consisted of an indoor two-wheeled 

mobile robot, a 2D LIDAR system, a 3D time-of-flight (ToF) camera, an onboard 

computer, and a laptop or desktop computer. This robot was used previously in [6]; in this 

work it was adapted to carry a 3D ToF camera. 

1. Omron Adept MobileRobots Pioneer 3-DX (P3-DX) 

The base robot used was an Omron Adept MobileRobots Pioneer 3-DX, as seen in 

Figure 2. It is a two-wheeled robot with a third caster, allowing it to remain balanced. 

According to [12], it operates with a two-motor differential drive and encoders with 33,500 

counts/rotation each. It also has a 16-sensor sonar array, as well as front and rear bumpers. 

The P3-DX has a maximum translational speed of 1.4 m/s and a maximum rotational speed 

of 300 deg/s, but in experimentation, those speeds were limited to no more than 0.4 m/s 

and 40 deg/s for safety and to ensure that the robot did not outpace the LLAM algorithm. 

The robot has a minimum turn radius of zero m, and a swing radius of 26.7 cm, which is 

well suited for indoor exploration. However, with a ground clearance of only six cm, it 

cannot overcome many obstacles that it cannot circumvent [12].  

In this work, the P3-DX was modified to carry a Hokuyo UTM-30LX scanning 

laser range finder (2D LIDAR), PMD Pico monstar 3D ToF Camera, and a SlimPRO 

SP675SP Mini PC or Dell Latitude 3560 Laptop.  
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Figure 2. Omron Adept MobileRobots Pioneer 3-DX. Source: [13] 

2. PMD Technologies CamBoard Pico monstar 

The Pico monstar, shown in Figure 3, is a 3D Time-of-Flight (ToF) camera also 

known as a scanner-less LIDAR. According to [14], it operates with four 805 nm 

modulated IR lasers, which are transmitted from the camera, reflected off surfaces, and 

received by a 3D imager that measures the phase shift between the transmitted and received 

laser pulse. Then the sensor firmware calculates the distance to the point of reflection. This 

system has a maximum range of approximately 6 m and a field of view of 100° × 85° 

corresponding to a 352 × 287 (≈100,000 pixels) image. Each frame returned includes XYZ 

cartesian coordinates in meters, an integer grayscale value (0 to 255), which indicates the 

intensity of the laser return, and an integer depth confidence value (0 to 255). In this thesis, 

only the XYZ coordinates and the depth confidence value were used; however, the 

grayscale value does provide the ability to do image analysis on a flat grayscale image of 

a scene and could prove useful in future research. 
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Figure 3. PMD Technologies PMD Pico monstar 3D Camera. Source: [14]. 

The system is capable of capturing up to 60 fps; however, increased framerate 

reduces range significantly, and in this work, the maximum framerate was limited to 10 

fps. The depth resolution of the camera varies both with framerate and with distance. 

According to the manufacturer, it is less than or equal to 1% of the distance from 1–6 m at 

5 fps [14]. Conveniently, this camera can be powered entirely from the USB 3.0 connection 

and does not require an additional power source. For experimentation, the Pico monstar 

was mounted on the front of the robot for obstacle avoidance and to build a 3D interior 

map. The limited field of view (FoV) and range were not ideal for interior mapping, and 

thus it was combined with the Hokuyo 2D LIDAR, which was used primarily for 

navigation.  

3. Hokuyo UTM-30LX 

The Hokuyo UTM-30LX seen in Figure 4 is a 2D laser range scanner with an FoV 

of 270° and a range of approximately 30 m, but in some conditions up to 60 m. It operates 

with a spinning IR laser at a wavelength of 905 nm. With an angular resolution of 0.25°, 

the scanner can return 1080 points per scan, and with its extended range, it frequently does 

return 1080 useable points in an indoor environment. The accuracy of the UTM-30LX is 

±30 mm up to 10 m, and ±50 mm between 10 m and 30 m. This LIDAR can return scans 

at 25 ms/scan or 40 Hz [15]. 
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Figure 4. Hokuyo UTM-30LX Scanning Laser Range Finder. Source: [15]. 

The FoV and range of the Pico monstar is limited. In even moderately sized rooms, 

such as the ECE Control Systems Laboratory, the robot could travel sufficiently far from 

the walls or workbenches that the Pico monstar would not return enough valid points in 

each scan. This led to scan matching degeneration and ultimately a loss of localization, 

further discussed in Chapter V. The long range, relative accuracy, and high scan rate of the 

Hokuyo made it a good solution in the absence of a 3D spinning LIDAR. During 

experimentation, the Hokuyo was used in tandem with the Pico monstar, with the Hokuyo 

collecting accurate range and angle data for pose estimation, and the Pico monstar 

collecting 3D data for more robust obstacle avoidance and to map in 3D. 

4. Dell Latitude 3050 Laptop 

For experimentation purposes, two robots were constructed. The first robot (Robot 

1) used a Dell Latitude 3050 laptop as an on-board processing unit. The Dell laptop 

contained an Intel i3-5005U 2.00 GHz CPU, and 16 GB RAM. It ran Windows 10 and 

MATLAB 2019b. During experimentation with Robot 1, the Dell Laptop was mounted on 

top of the robot and processed all localization, mapping, navigation, and obstacle avoidance 

algorithms on board. This laptop was powered by its internal battery.  
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5. SlimPRO SP675P i7 Mini PC 

The second robot constructed (Robot 2) had identical hardware to the first robot 

with one exception; the Dell laptop was replaced with a SlimPRO SP675P Mini PC. 

According to the manufacturer, it has a 3rd generation Intel i7 Core mobile CPU, 8GB 

RAM, and has dimensions of 5.75”(W) × 10.0”(D) × 1.65”(H). The SlimPRO has one 

Gigabit LAN port, four USB 3.0 ports, and two USB 2.0 ports to connect sensors and other 

peripheral devices. It runs on 12V/60W DC power supplied from the robot battery [32]. 

The SlimPRO operated with Linux Ubuntu 18.04.4 and Robot Operating System (ROS) 

Melodic. The SlimPRO computer was used for retrieving LIDAR data from the Hokuyo 

and PMD Pico monstar, processing 2D laser scan transformations, obstacle avoidance, and 

navigation. Due to its limited computational power, 3D point cloud registration and 3D 

map building were performed on a Dell desktop computer. 

6. Dell Optiplex 7040 Desktop 

The SlimPRO on Robot 2 communicated with a Dell Optiplex 7040 Desktop 

computer running the 3D point cloud registration and 3D map building algorithms. This 

communication with the SlimPRO was conducted wirelessly using ROS and 802.11 

protocol. This computer hardware included a 3.2 GHz Intel Core i5-6500 CPU, and 8 GB 

RAM. It ran Windows 10 and MATLAB 2019b. The desktop received both 2D pose 

information and 3D LIDAR data and registered that data for map building in 3D. More 

powerful miniature computers exist that could likely handle 3D point cloud processing 

onboard the robot; however, this architecture had several advantages. First, it split the 

computational cost of autonomous interior mapping between two computers, speeding up 

the robot. More importantly, from a tactical perspective, an autonomous mapping robot 

could be captured or disabled by the enemy while mapping. If map data were stored only 

on the robot, no map would exist for the operators. Transmitting data and building the map 

in parallel on another machine allows the operator to get a partial map of an interior space, 

even if the robot is disabled prematurely.  



12 

B. SOFTWARE 

A wide variety of software exists for the control of autonomous robots. Each 

programming language and software interface has its own benefits and shortfalls. This 

work was primarily done in MATLAB for several reasons. First, previous ECE thesis work 

described in Chapter I was coded in MATLAB; significant pieces of that work could be 

easily adapted for this thesis without being reinvented. Second, MATLAB includes 

packages and toolboxes that support many of the functions required in a robust fashion, 

without the need to develop these from scratch. These qualities make MATLAB ideal for 

prototyping and development especially if it is an individual or small group project such 

as a thesis. Additional software used in this research include, PMD Royale software and 

ROS, which are detailed in subsequent sections.  

1. MATLAB 

For this work, the algorithms developed for robot control were coded in MathWorks 

MATLAB Releases 2019b and 2020a. MATLAB is a programming language built for 

scientists and engineers using a matrix-based method of computational mathematics [17]. 

MATLAB includes many packages and toolboxes that have robustly built functions to 

simplify programming. This work makes use of the Robotics Systems, ROS, Computer 

Vision, Image Processing, Navigation, and Mapping Toolboxes. All MATLAB scripts for 

this thesis are included in the appendices. MATLAB also includes the ability to run ROS 

services and nodes from computers running a Windows operating system. ROS itself is 

written for Linux. However, utilizing the ROS toolbox in MATLAB allowed the robot 

mapping algorithm to split the computational workload between the onboard computer 

(Linux) and another Windows-based computer, already discussed. 

2. Royale Software Suite 

The Royale Software Suite is a software development kit (SDK) that is included 

with the purchase of a Pico monstar 3D camera. The Royale software contains a tool to 

visualize 3D data called the Royale Viewer (version 3.23.0.86 was used). It also contains 

tools to support interactivity with the camera through C++, C, Python, OpenCV, OpenNI2, 

MATLAB, ROS, and DotNet [18]. In this work, the MATLAB wrapper was used to 
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interact with the camera in the MATLAB environment. This wrapper contained the 

necessary dynamic link libraries (*.dll), as well as MATLAB class definitions and 

functions to use the camera in the MATLAB environment. It contained functions to set 

parameters for the camera, trigger it to capture, and retrieve data. Parameters that can be 

set for the camera include frame rate, exposure mode, exposure time, trigger mode, filter 

levels, etc. [19]. The camera comes with nine preset modes for different applications, such 

as hand gesture recognition, 3D object scanning, or room scanning [19]. 

 
Figure 5. Royale Viewer Point Cloud Visualization Software 

The Royale Viewer, as seen in Figure 5, allows the user to test the preset modes 

and adjust the majority of camera parameters using slider bars. This is particularly useful 

for fine tuning camera settings that correspond to a specific application or environment and 

was used to test a number of different camera configurations. When the right camera 

parameters are found, those values can then be coded into the MATLAB environment to 

be set each time the camera is initialized. Additionally, the Royale Viewer allows the user 

to record a 3D stream from the camera in a single file.  
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3. Robot Operating System (ROS) 

ROS is an open-source framework for programming robots built in Linux 

environments. It includes various tools and packages that can simplify the complex task of 

controlling robots [24]. In this research, ROS Melodic Morenia was used to establish a 

network from the Linux Ubuntu 18.04.4 SlimPRO PC. This ROS network interfaced with 

MATLAB and allowed for the combination of data retrieved from the 2D and 3D LIDAR 

sensors. The only ROS package used that was not included in the MATLAB ROS toolbox 

was the urg_node package for communicating with the Hokuyo LIDAR. The ROS package 

built for communication with the PMD Pico monstar has not been maintained for newer 

distributions of Ubuntu or ROS, thus that sensor was interfaced with MATLAB directly 

using the Royale SDK. 
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III. LOCALIZATION AND MAPPING 

Simultaneous localization and mapping (SLAM) is a process by which a robot maps 

the surrounding environment using various types of sensors while simultaneously 

estimating the robot position within that environment [20]. Many methods exist for SLAM, 

including an increasing number based on LIDAR. LIDAR-based SLAM is essentially a 

scan-matching problem where laser scans, either 2D or 3D, are taken sequentially while 

the robot is in motion. These scans, often called point clouds, are then compared to one 

another in a process known as registration. Registering two sequential point clouds 

provides a geometrical transform that can be applied to one point cloud in order to make it 

match the other point cloud. This transform can be used to estimate the relative movement 

of the robot [20]. As new point clouds are received and are registered, the incoming point 

cloud is transformed by the accumulated transformations of the point cloud registrations 

before it and added to the map. Several methods exist for registration and mapping, and 

three of those methods will be discussed in this chapter. 

A. REFERENCE FRAMES 

The robot uses several reference frames for localization and mapping. Some of the 

reference frames are static and others move. Additionally, each of the sensors operates in 

a different reference frame, which must be transformed to a common reference frame to be 

integrated.  

The primary fixed reference frame is the {WORLD} frame. The {WORLD} frame 

is a right-handed cartesian coordinate system with the X-direction forward from the 

rotational center of the robot. The origin of the {WORLD} frame is where the rotational 

center of the robot lies when it is initialized.  

The primary moving reference is the {ROBOT} frame. It is a right-handed cartesian 

coordinate system with the origin at the center of the robot rotational axis (Z-axis) and the 

X-direction forward. When the robot is initialized, the {ROBOT} frame and {WORLD} 

frame are the same until the robot moves. Six DoF and three DoF {ROBOT} frames were 

considered in this work. Throughout experimentation, the origin of the {ROBOT} frame 
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translated and rotated in the X-Y plane only because the P3-DX is a ground mobile robot 

not capable of negotiating stairs, and the interior of the test spaces was flat without ramps. 

In effect, all experimentation had three DoF. However, throughout this work when the 

{ROBOT} frame is labeled as three DoF, that means that it was coded in software to only 

consider three DoF, X-Y translation, and Z rotation (Yaw).  

When the {ROBOT} frame is labeled six DoF, the LLAM code was written to 

consider translation in all three axial directions, as well as the other two rotational 

components (pitch and roll). This was done both to examine the increased computational 

cost of six DoF and also because follow-on research should attempt to apply LLAM to an 

aerial robot with six DoF.  

The {PICO} frame of reference is a moving frame specific to the Pico monstar 

sensor. Point clouds returned from the Pico monstar are in a right-handed cartesian 

coordinate system with the Z-axis forward, Y-axis down, and X-axis right with respect to 

the camera lens when it is mounted upright. The origin being at the center of the camera 

lens.  

The {HOKUYO} frame is a 2D cartesian frame of reference with the origin at the 

center of the Hokuyo sensor. The X-axis is forward, and the Y-axis is left. The rotation of 

the {HOKUYO} frame is fixed to the rotation of the {ROBOT} frame.  The {HOKUYO} 

frame is essentially the X-Y plane of the {ROBOT} frame translated in the X and Z 

directions. The Hokuyo sensor returns laser readings in both polar and cartesian 

coordinates. Both formats are used throughout the robot programming. However, since the 

conversion between the two formats is simple and occurs in the local reference frame of 

the sensor, only the cartesian values are referenced in the {HOKUYO} frame for 

consistency.  

In this work, the reference frame is denoted by a leading superscript before the 

variable. In the case of transformations between reference frames, the reference frame 

being transformed is denoted by a leading subscript. For example, the transformation T that 

maps a point x (XYZ coordinates) from the {ROBOT} frame to the {WORLD} frame of 

reference is denoted 
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 w w R
Rx T x= . (1) 

B. POINT CLOUD REGISTRATION 

Many 3D models are built using 3D scanning processes, such as LIDAR; however, 

in many situations, it is only possible to collect a partial scan from any one perspective. In 

order to create a complete 3D model, the collection of partial scans must be combined into 

one scan [21]. This process is called registration and is applied to both point cloud and 

mesh-based 3D models. It typically involves three steps. First, correspondence is found 

between points in consecutive scans. Next, from these point correspondences, a 

transformation is calculated that will minimize the distance between corresponding points. 

Finally, transformed point clouds are merged into a single point cloud representing a 

complete model [21]. Numerous methods for point cloud registration exist, and many 

variations of each method have been developed to suit particular applications. In this thesis, 

we will examine three common methods of point cloud registration: Iterative Closest Point 

(ICP), Coherent Point Drift (CPD), and Normal Distribution Transform (NDT). 

Registration returns either 2D or 3D transformations. Three parameters are used in 

2D transformation: the translational parameters tx and ty and the rotational angle parameter 

ϕ. Collectively, the three parameters are written into a vector p as 

 [ ]x yp t t φ= . (2) 

Two-dimensional transformation is given by [22] 

 cos sin
( , )

sin cos
x

y

t
T p x x

t
φ φ
φ φ

−   
= +   
   

, (3) 

where x is the two-dimensional point being transformed. 

In this work, all 2D transformations occurred in the {ROBOT} frame or the X-Y 

plane of the {WORLD} frame, and thus the rotational parameter ϕ is positive in the 

counter-clockwise direction. 
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Three-dimensional transformations are defined by a 3×3 rotation matrix, which is 

a combination of rotations about each reference axis, as well as a 3×1 translation vector. 

There are six parameters for a 3D transformation, 

 [ , , , , , ]x y z x y zp t t t φ φ φ= , (4) 

where the three values of t represent the translation in each dimension and the three values 

of ϕ represent the rotation around each reference axis. The 3D transformation is then given 

by [22] 
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y z y z y x

x z x y z x z x y z x y y

x z x y z x y z x z x y z

t
T p x x t

t

 −  
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   − +   

, (5) 

where c represents cosϕ and s represents sinϕ, the subscript of c or s determining which 

value of ϕ to use.  

Transformations can be rigid, non-rigid, or affine. A rigid transformation preserves 

the shape and size of objects in the scene, applying the same transformation to all points. 

An affine transformation allows for shearing and changes of scale, as well as the translation 

and rotation of points from a rigid transformation [27]. The Pico monstar has a short range 

and high capture speed. At the low speeds, such as in this work, there is little motion blur 

in each frame, and thus rigid transformations are preferred. Non-rigid transformations 

allow the shape of objects to change, points are transformed differently using a 

displacement field [27]. Non-rigid transformations were not used in this LLAM algorithm. 

1. Iterative Closest Point Method 

Iterative Closest Point is a popular approach to point cloud registration and used in 

many applications of LLAM including those in [8], [9],[10],[11], and others. ICP is based 

on two assumptions: first that consecutively scanned point clouds are of the same 

environment, and second that they are not too far apart [21]. The first assumption is fairly 

obvious as there would be little point in matching scans of two different environments. The 

second is not as intuitive but is important as it is often the cause of matching degeneration 
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discussed later. The problem is essentially to estimate the rigid transformation that will 

map one point cloud to another. The ICP algorithm does this as follows [21,22]: 

1. Given two consecutive sets of points in three-dimensional space. 

2. For all the points in the first set, find the closest point in the second set. 

3. Find the rigid transformation that minimizes the distance between the 

points in the first set and the corresponding points in the second set. 

4. Apply the transformation to the points in the second set. 

5. Iterate until convergence is found.  

Convergence is typically considered to be reached when the closest point 

correspondences from step 2 do not change [21]. In [21], Bærentzen et al. provide a more 

in-depth explanation of how the rotational and translational components of the 

transformation are estimated. Several problems exist with the ICP algorithm. First, both 

point clouds may not have the same number of points, thus correspondences between points 

are not necessarily unique, and some points may remain unpaired [22]. Second, the 

assumption from initialization is that the closest point is the corresponding point, which 

may not be true. However, it is among the most popular algorithms because it still returns 

good results and is less computationally expensive than other methods [21, 22].  



20 

 
Figure 6. Four Iterations of The ICP Algorithm Aligning Red Points to Blue 

Points, the Correspondences Depicted as Green Lines. Source: [21]. 

A visual depiction of ICP is seen in Figure 6. In the first iteration, correspondence 

is found between the points in the red set and the closest points in the blue set. A 

transformation is calculated that maps the blue points closer to the red points. In the second 

iteration many of the point correspondences do not change, however, a few different 

correspondences are established. The transformation process is repeated. Examining the 

third and fourth iterations of the algorithm, it can be seen that none of the point 

correspondences change, this is typically considered convergence and terminates the 

algorithm [21].  

Most ICP algorithms implement a k-dimensional tree (KD tree) searcher to improve 

the efficiency of finding point correspondences. A KD tree is a geometric data structure 

for organizing multi-dimensional points into a searchable tree. It is the most popular 
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structure for searching ranges and nearest neighbors [23]. The KD tree begins with a root 

cell, which contains all the data in the set. It is then created by finding the median value 

along one dimension of the tree and splitting the point data into partitions with a hyperplane 

perpendicular to the axis being considered. Points on either side of the hyperplane are 

partitioned by the value of the considered dimension such that larger values fall on one side 

of the plane (right for example), smaller values on the other (left). Partitioning is repeated 

along the other dimensions creating new levels of the tree. When the last dimension is 

considered, the algorithm then returns to the first dimension and further partitions data 

within each of the existing partitions. This continues recursively until only single points 

remain in each partition [23]. The construct makes searching a KD tree for points within a 

specific range or nearest neighbors simple and efficient [23]. 

 
Figure 7. Two-Dimensional KD Tree Example. Source: [24]. 

The construction of a simple two-dimensional KD tree is depicted in Figure 7. First, 

the root node is established based on the median value of the first coordinate. Points with 

smaller first coordinates (horizontal axis) are sorted to the left, larger to the right, creating 

two child nodes. Then each of those child nodes is partitioned along the second dimension 

(vertical axis) according to the median value of the second coordinate in each child. This 
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example arrives at one remaining point, the leaf, after two partitions and thus completes 

the KD tree. The KD tree is a convenient data structure for both range and nearest neighbor 

searches. Range searches are useful in segmenting LIDAR point clouds. Nearest neighbor 

KD tree searches are useful in quickly finding nearest point correspondences for ICP.  

2. Normal Distribution Transform Method 

The Normal Distributions Transform (NDT) Method was initially proposed in [25] 

as a two-dimensional point registration method. In [26], it was extended to three-

dimensional point clouds. Both 2D and 3D NDT registration techniques are used in this 

work and briefly summarized in this section.  

The premise of NDT is relatively simple. Instead of trying to find correspondences 

between individual closest points, the scan is divided into equal-sized cells, similar to an 

occupancy map. If a cell contains at least three points, it is assigned a normal distribution. 

The algorithm then matches consecutive scans by comparing the normal distributions 

assigned to each cell.  

In two-dimensional NDT, after the map is subdivided into cells, the points in each 

cell are collected into a set. The mean of that set is calculated as is the covariance matrix. 

The probability of measuring a sample at a specific point contained in the cell is then 

modeled as a normal distribution.  

Additional details on discretization and dealing with nearly singular covariance 

matrices are included in [25]. In two-dimensional NDT registration, three parameters must 

be estimated for a transform, they are X and Y translations, and a rotation. The NDT 

algorithm proceeds as follows [25]: 

1. Given two sequential scans in two-dimensional space. 

2. Divide the scans into cells of equal size. 

3. Assign a normal distribution to each cell of the first scan.  

4. Input an estimate for the transformation parameters, this can be done using 

other sensor data or as zero.  
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5. In the second scan, map each point into the coordinate frame of the first 

scan using the parameters estimate. 

6. Calculate the normal distributions of the mapped points.  

7. Calculate a score for the transformation parameters by evaluating the 

normal distribution at each mapped point and summing the results.  

8. Calculate a new parameter estimate using Newton’s algorithm. 

9. Iterate until convergence is found.  

Three-dimensional NDT is similar to 2D; however, the space is partitioned into 

voxels instead of cells [26]. Additionally, the transformation consists of six parameters, 

three translational parameters and three rotational parameters. Discrete 3D points are 

typically stored in an octree. An octree is a data structure similar to a KD tree, however 

each node has eight children instead of two, each node represents a partition of the 3D 

space and it is built recursively similar to KD trees.  

NDT is a fast algorithm but slower than ICP. It is, however, more robust to outliers 

and can be useful for moving object filtering [27]. 

3. Coherent Point Drift Method 

Coherent Point Drift Method (CPD) is a method that uses the Gaussian Mixture 

Model (GMM) centroids to compute a transform. CPD is a global and robust registration 

method that can produce a rigid, affine, or non-rigid transformation. A detailed explanation 

can be found in [28].  

 The benefit of CPD is that it does not rely on an initial transform estimate, such as 

ICP or NDT [27, 28]. In general, it is a more accurate registration method than ICP [28]; 

however, it is considerably more computationally expensive and is the slowest of the three 

algorithms discussed here [27]. This algorithm is included in the MATLAB Computer 

Vision Toolbox and was considered for its accuracy. It performed far too slow for an 

autonomous robot to map in real time and thus was not included in development beyond 

the initial comparison. 
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4. Comparison and Selection of a Registration Method 

The Computer Vision Toolbox includes functions for point cloud registration using 

the ICP (3D), NDT (2D & 3D), and CPD (3D) algorithms. To compare the performance of 

the algorithms several scripts were written. These scripts registered and built LIDAR point 

cloud maps. The registration comparison script used point cloud data from the popular 

KITTI Vision Benchmark Suite [29]. This benchmark is used in nearly all of the referenced 

works for comparison of LIDAR and visual odometry methods. For comparison here, the 

first 245 point cloud frames from the 00 segment were used, these frames covered about 

180 m of outdoor street scene including two roughly 90° turns. The benchmark suite 

provides numerous datasets. For comparison here, the ground truth data and LIDAR point 

clouds from the Velodyne HDL-64E Laser Scanner were used.  

Output of the comparison script can be seen in Table 1, and mean values are taken 

from 10 iterations of each registration script running on a desktop computer with a 3.6 GHz 

AMD Ryzen 5 CPU and 16 GB RAM. The ICP algorithm was by far the fastest method of 

point cloud registration, more than five times faster than NDT, and seven times faster than 

CPD. 

Table 1. Comparison of Point Cloud Registration Methods 

 ICP NDT CPD 
Mean Rate (Hz) 4.1792 0.8154 0.5650 

 

An example 3D map generated from the ICP script is seen in Figure 8. All three 

maps from the three methods considered were relatively similar. In all three methods, the 

algorithm had difficulty detecting the gradual incline of the terrain, and thus the ground 

truth track diverges up from the estimated track. Use of feature point extraction or loop 

closure methods as in [8],[9], and others could be used to correct this.  
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Figure 8. Three-Dimensional Map of KITTI Benchmark Suite Data 

Generated using ICP.  

In the case of both the KITTI Benchmark Suite and the robot constructed for this 

work, the 3D LIDAR is mounted on top of the platform roughly parallel to the ground 

plane. Therefore, estimating rotation between LIDAR scans is primarily a rotation about 

the Z-Axis (Yaw). 
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Figure 9. ICP Comparison of Yaw from KITTI Dataset 

 
Figure 10. NDT Comparison of Yaw from KITTI Dataset 
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Figure 11. CPD Comparison of Yaw from KITTI Dataset 

Yaw and error in yaw are depicted in Figures 9,10, and 11 for the ICP, NDT, and 

CPD algorithms, respectively. These figures show how the estimated orientation tracks the 

ground truth orientation as well as the error between the two tracks. The NDT and CPD 

algorithms have very similar errors between the estimated and ground truth yaw. Maximum 

errors for both occur during the second turn, 13.9° and 13.8° errors for NDT and CPD, 

respectively. The ICP algorithm does not track the ground truth data as closely and has a 

slightly higher error of 15.3° during the second turn. 

In the context of this work, speed is the most important parameter under evaluation. 

Both NDT and CPD performed slightly better in estimating orientation; however, they did 

so at a much slower rate. Without drift correction, all three algorithms drifted significantly 

over the course of 180 m. For the application under investigation in this work, the KITTI 

maps generated (roughly 200 m × 300 m) are much larger than the type of targets of 

interest. On a smaller scale, the estimated position drift from ground truth is less significant 

and could be ignored in the interest of saving computational processes that would slow 

down the LLAM algorithm.  
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The iterative closest point method was selected for 3D point cloud registration for 

this work. However, NDT proved both accurate, and extremely fast in 2D. With that 

knowledge, an ICP algorithm assisted by an initial transform from 2D NDT was developed.   

C. POINT CLOUD MERGING AND MAP BUILDING 

Creating a map from point cloud frames is essentially a process of applying a 

transformation to each successive scan to align the point clouds, then combining the point 

clouds into a map. In this work, transformed point clouds are denoted  

 w R w
k k R kP P T= , (6) 

where wPk is the XYZ point cloud of the kth frame in the {WORLD} reference. RPk is the 

kth point cloud in the {ROBOT} reference. The kth point cloud in the {ROBOT} frame is 

transformed into the {WORLD} frame by the absolute transformation w
R kT . 

To simplify calculations, the translational and rotational components are combined 

in a MATLAB object resembling a homogenous transformation matrix  
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where R is the 3×3 rotation matrix as previously described and the values of t are the 

translations along their respective axes. In this form, the accumulated absolute 

transformation for each successive point cloud can be denoted 
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where w
R kT  is the absolute transformation that maps the kth point cloud from the {ROBOT} 

frame into the {WORLD} frame. 1k

k

R
R kT−  is the transform that maps the current point cloud 

in the {ROBOT} frame to the previous point cloud in the {ROBOT} frame. This value is 

the output of the ICP algorithm and also represents the pose of the robot relative to the last 
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calculated pose. 1
w
R kT −  is the absolute transform that mapped the previously scanned point 

cloud from the {ROBOT} frame into the {WORLD} frame.  

Using this method, as a scan is acquired, it is registered to the previous scan yielding 

a relative transform, that relative transform is multiplied by the absolute transform from all 

previous scans, then the point cloud is rotated and translated by the updated absolute 

transform to be added to the map.  

Map building can be accomplished in many ways. In [11], for example, the map is 

built only out of edge and planar feature points saved after extraction from the raw point 

cloud. This has the benefit of increasing the speed of that algorithm to 20 Hz, but reduces 

the density of the point cloud map [11]. In [8], Zhang and Singh employ a method in which 

the registration algorithm is running at a higher frequency than the mapping algorithm, 

then the map is downsized using a voxel grid filter to evenly distribute points within the 

map.  

In this thesis, a simple but effective approach is taken. First, a plane is fit to points 

in a point cloud where the normal vector of the plane is a unit vector in the +Z direction, 

the indices of those points are segmented and removed from the point cloud and the 

remaining outliers are stored in a temporary point cloud. This removes the ground plane 

from the scanned point cloud and assists both the accuracy and speed of the ICP algorithm. 

The temporary point cloud is then registered to the previous temporary point cloud to yield 

the relative transform, which is in turn multiplied by the accumulated absolute 

transformation. The absolute transformation for that scan, and the original point cloud 

(including the ground plane) are then stored in an object to be compiled into a map later. 

Each scan is down sampled independently using a grid average method which divides the 

point cloud into voxels and merges points within the box into a single point, averaging the 

point normals.  

When the robot has run its course, the object storing the point clouds and their 

associated transforms is then compiled into a map based on a specified voxel grid size to 

ensure even point distribution. Noise is then removed from the final map using a nearest-

neighbors approach as in [30].  
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D. LOOP-CLOSURE AND DRIFT CORRECTION 

Loop-closure is the recognition of re-observed places in SLAM [9]. In LIDAR 

based SLAM, small errors in the point cloud transformations gradually accumulate and 

cause the robot pose estimate to drift from the ground truth pose. This is often corrected 

using loop-closure and back-end optimization, which recalculates the trajectory when a 

loop-closure is detected and corrects drift [9].  

Various methods have been developed for loop closure. In this work, 2D NDT loop 

closure was attempted using the Hokuyo sensor. MATLAB includes a SLAM package that 

can support LIDAR data. This package was used to compute 2D pose estimates from the 

Hokuyo data, probabilistic occupancy maps, and loop closures. Additionally, when loop 

closures are detected, pose optimization can be performed to recalculate pose estimates and 

rebuild the map correcting for drift. In early experimentation, these functions were 

integrated into the robot LLAM algorithm. However, on further evaluation, they were 

removed for several reasons.  

First, loop-closure detection was too computationally expensive to run in real time 

on the robot. In order to search for loop-closures, the robot had to stop at intermediate 

waypoints and compute whether a loop-closure was present. Second, after significant 

experimentation, a loop closure was never detected. This was not a problem with the 

algorithm, but rather in the employment of the robot. The robot developed here, is designed 

from a tactical perspective. The purpose of building a map is not to examine every unknown 

space or create a highly detailed and accurate map. The purpose here is to collect a suitable 

map as quickly and efficiently as possible. Therefore, the robot never revisited previous 

locations, it was not programmed to do that, and therefore did not detect loop-closures. 

Similarly, loop-closure in 3D as in [9] was not examined as the robot was unlikely to return 

to a previously visited location. Furthermore, the limited FoV of the Pico monstar make 

detecting previously visited locations in 3D extremely difficult as the robot must be in both 

the same position and also have a similar orientation.  

Finally, within the bounds of the ECE Control Systems Laboratory and adjacent 

spaces, the robot did not drift significantly enough to be identified without additional 
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sensors estimating the pose. That is, the map was accurate enough that a human operator 

could not distinguish it visibly from the scene it was representing. Also, the error in pose 

was not significant enough to cause the robot to miss waypoints. The obstacle avoidance 

algorithm ran every loop iteration and computed steering parameters off every local frame. 

Thus, drift from the ground truth pose would not contribute to a collision of the robot and 

any obstacle in the environment. As the tactical premise of this robot involved revisiting 

locations as infrequently as possible, loop-closure based drift correction was determined to 

be unnecessary. Development of a loop-closure detection algorithm that is triggered only 

when the robot must return to a previously visited location, such as entering a room with 

only one exit, is left to future work.  
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IV. ROBOT CONTROL SCHEME 

A. OVERVIEW 

As discussed in Chapter II, two robots were constructed. Both robots used the same 

P3-DX base robot, Pico monstar 3D LIDAR, and Hokuyo 2D LIDAR. The first robot 

(Robot 1) carried a Windows OS Dell laptop attached to the top of the robot as seen in 

Figure 12. On the second robot (Robot 2), the Dell laptop was replaced with the SlimPRO 

computer communicating wirelessly to the Dell desktop. Robot 1 was constructed while 

attempting to solve a Linux compatibility issue with the Pico monstar MATLAB wrapper. 

This compatibility issue initially prevented it from interfacing with the Linux based 

SlimPRO computer.  

The design of Robot 1 did not satisfy the tactical military intent of this work. It 

could only partially answer the central question of whether a 3D mapping robot can use 

only LIDAR in real time. Since no deployable, tactical sized robot would carry a full-size 

laptop as a processing unit, Robot 1 would not be satisfactory. However, some valuable 

insights were gained from the development of this robot and are worth examining. 

The laptop carried on Robot 1was far more powerful than the SlimPRO and allowed 

for the testing of several SLAM algorithms that were not included on Robot 2. First, the 

more powerful computer allowed for six DoF point cloud registration to run at nearly 10 

Hz when assisted by an initial 2D NDT registration from the Hokuyo. Secondly, on-board 

occupancy map building, Hybrid A*Search route planning, loop-closure detection, and 

frontier search were implemented. Even with the more powerful computer, the occupancy 

map building and loop-closure detection required the robot to stop at intermediate 

waypoints for times ranging between 10–60 seconds in order to run through the algorithms.  
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Figure 12. Robot 1 

Several important things were learned from experimentation with Robot 1. First, 

loop-closure is not necessary in the type of small interior spaces that are targeted in this 

work. Second, for a ground mobile robot, 3D registration was significantly slower than 2D 

registration but returned results that were minimally more accurate. That is, for the tactical 

operator, the distortion in the map between 2D registration and the more accurate 3D 

registration was not distinguishable. Furthermore, the 2D registration was perfectly 

satisfactory for the robot to navigate successfully and avoid obstacles.  

Finally, as previously mentioned, an architecture in which all data is processed on-

board the robot is ill suited for tactical situations. If the building is occupied by hostile 

actors, the robot is unlikely to emerge. In this case, the map would be lost. If the robot 

transmits the relevant map-making data and it is disabled prematurely, at least a partial map 

can be constructed on a remote computer. The LLAM algorithm developed for Robot 1 is 

depicted in Figure 13.  
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Figure 13. Robot 1 LIDAR Localization and Mapping Algorithm 

 
Figure 14. Robot 2 

The hardware of Robot 2 is shown in Figure 14, while the design architecture is 

illustrated in Figures 15 and 16. The onboard SlimPRO retrieves 2D and 3D LIDAR data 

from the sensors. It uses the 2D data for pose estimation and navigation. The 2D and 3D 
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LIDAR data is combined for obstacle avoidance, and the 3D point cloud data along with 

the 2D pose estimate are transmitted to the remote computer for map building.  

 
Figure 15. Robot 2 ROS Architecture 

 
Figure 16. Robot 2 LIDAR Localization and Mapping Algorithm 
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B. OBSTACLE AVOIDANCE 

In this work, an artificial potential field model for obstacle avoidance was used. 

The algorithm is similar to those used in [3],[4], and [5], but in this case, was adapted to 

three dimensions. The model assigns an attractive potential between the robot and the goal, 

and it computes a repulsive potential to obstacles that it senses through LIDAR returns. It 

then calculates the potential field as the sum of the attractive and repulsive potentials. The 

negative gradient of the potential field yields a force vector that draws the robot closer to 

the goal while simultaneously avoiding obstacles along the path. 

1. Attractive Force 

Implementation of the attractive force matches that of [33] adapted to the Hokuyo 

LIDAR system. The attractive potential Uatt is defined as  
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where q represents the XY coordinates of the current pose, and qgoal represents the XY 

coordinates of the goal pose, both in the {WORLD} frame. The terms ξ and ρ are constants, 

ξ being a constant coefficient and ρ being a constant distance. This creates an attractive 

potential that is conic shaped when the robot is at least ρ distance from the goal, and 

parabolic in shape when it is closer [33].  

The attractive force w
attF is given by the negative gradient of the attractive potential 

as [33] 
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2. Repulsive Forces 

The repulsive potential is generated by LIDAR returns from obstacles within the 

LIDAR field of view. Each LIDAR return represents a repulsive potential of the form [33] 
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where di is the range measurement taken from an individual LIDAR return,  dc is a constant 

cutoff distance, and η is a constant coefficient.  

The repulsive force from a single LIDAR return is then given in the {ROBOT} 

frame by [33]  
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where ni is a unit vector in the direction (angle γ) of the laser return referenced to the 

{ROBOT} frame. In this form, the repulsive force is inversely proportional to the distance 

from the obstacle when it is inside the cutoff distance and zero if it is beyond the cutoff 

distance. The unit vector ni is defined as 

 cos
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γ
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 

. (13) 

The Hokuyo LIDAR data is initially referenced with respect to the LIDAR 

{HOKUYO} frame in cartesian coordinates. It is translated to the {ROBOT} frame simply 

by subtracting a translation thx, the distance from the LIDAR center to the center of the 

robot. Thus, an individual point Hpi is mapped from the {HOKUYO} frame to the 

{ROBOT} frame as 
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The values of di and γi from Equations (12) and (13) can then be calculated as 

   R
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The total repulsive force is simply the sum of the repulsive forces calculated from 

the individual LIDAR returns [33] 
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In this case, N is the number of LIDAR returns within the cutoff distance and varies 

greatly based on the environment. The Hokuyo LIDAR typically returns points for nearly 

all of the laser shots (1080). However, to shorten the iterative loop, values beyond the 

cutoff distance are simply omitted rather than summing zero vectors, as in Equation (12).  

Finally, the total force in the {ROBOT} frame R
totalF is calculated by adding the 

total repulsive force and the attractive force [33]  
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The attractive force, which was calculated in the {WORLD} frame, must be 

transformed to the {ROBOT} frame using the 2D rotation matrix [33] 
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where θ is the angle between the X-Axis of the {ROBOT} frame and the X-Axis of the 

{WORLD} frame, which is simply the third parameter of the 2D pose of the robot 

determined from NDT scan matching.  

The forward velocity and rotational velocity of the robot are then calculated as 

 ,
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fwd f x totalV K f= , (20) 
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where Kf and Kr are constant gains associated with the forward and rotational velocities 

and tuned during experimentation. The rotational and forward velocity commands are then 

sent from the on board computer to the robot by serial connection using the p3_setRotVel() 

and p3_setTransVel() functions included in Appendix C. 

3. Adaptation to Three Dimensions 

In this work, the combination of 2D and 3D LIDAR allowed for the robot to sense 

obstacles in three dimensions. Previous thesis work done by Miyakawa in [4] used a second 

2D Hokuyo LIDAR to sense low profile obstacles in front of the robot. That LIDAR had a 

fixed angle at which it was declined, and thus could only see a fixed distance ahead of the 

robot. In this case, the 3D LIDAR allowed the robot to sense obstacles five to six meters 

ahead of it and begin adjusting the trajectory via the artificial potential field algorithm to 

avoid the obstacle smoothly. 

Additionally, the model presented in [4] could only sense low profile obstacles on 

the ground, such as stairs or other obstructions below the horizontal plane of the second 

Hokuyo LIDAR, which could lead to the robot planning a route underneath an object 

without sufficient clearance for the sensors and other hardware mounted on top of the robot. 

In contrast, the Pico monstar LIDAR can sense obstacles from ground level to the ceiling 

of an interior space at comparatively high resolution to the Hokuyo. This allowed for the 
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potential field algorithm to be assisted by repulsive forces that did not lie in the plane of 

the Hokuyo LIDAR. 

For this work, the 3D point cloud returned from the Pico monstar was sent to the 

potential field algorithm. It was then cropped to only include points that lay in the vertical 

(Z) dimension between 0.07 m and 0.45 m. The first constraint being the clearance of the 

robot, the second being the top of the Pico monstar sensor.  

Since the ground mobile robot can only move in three DoF, considering repulsive 

forces in three dimensions would not be useful as the vertical component of those repulsive 

forces would not contribute to the output steering commands. Instead, the X and Y 

coordinates of any 3D LIDAR return within the previously described height bounds were 

added to the array of returns from the Hokuyo LIDAR. This essentially compressed the 

third (Z) dimension of the 3D LIDAR returns down into the XY plane of the {HOKUYO} 

frame.  

When compressing the 3D LIDAR returns into an array of two-dimensional 

coordinates, it is possible to have duplicate 2D points. Summing of the repulsive vectors 

based off these duplicate points will create a total repulsive force that has a much larger 

magnitude than it should to accurately avoid the obstacle. Essentially, the potential field 

algorithm calculates a larger obstacle than is actually present. In order to correct this, 3D 

LIDAR data was first divided into bins corresponding to the angular resolution of the 

Hokuyo LIDAR. From those bins, only one point from the 3D LIDAR return was selected 

to be added to the 2D LIDAR data. This simple yet effective method removed the need for 

comparative loops to determine if two nearby points were different enough to significantly 

affect the repulsive potentials. Additionally, it weighted the 3D point returns equally with 

the 2D point returns removing an additional tuning requirement for the algorithm. 

C. NAVIGATION  

Several methods of navigation were used throughout development of the robots for 

this work. First, pre-determined waypoints were used both with a Hybrid A* Search 

algorithm and with a pure pursuit algorithm. Second, a frontier search algorithm was 

developed to find unexplored areas of the map without any pre-determined waypoints. 
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1. Pure Pursuit 

During pure pursuit navigation, the robot has a known goal or list of goals and 

attempts to take the most direct route to the goal while avoiding intermediate obstacles. 

This method has disadvantages when combined with potential field-based navigation. 

While attempting to reach the goal, the robot can encounter a local minimum in the 

potential field and become trapped, as described in [3]. If the robot becomes trapped in a 

local minimum, an additional set of control logic is required to help it escape and continue 

moving towards the goal. Previous thesis work, such as [4] and [5], used wall following 

and terrain following modes of escaping local minima. For this work, the primary purpose 

was to determine if the robot could conduct 3D SLAM in real time. During 

experimentation, the robot was positioned within the laboratory space such that it had 

obstacles, but not the kind that would create local minima in the potential field. For 

example, obstacles that are concave U-shaped from the perspective of the robot, or interior 

corners between the robot and the goal can create local minima. Instead, while using pure 

pursuit navigation, obstacles were limited to objects such as road cones, paint buckets, 

chairs, outside corners, etc. Robot 2 only implemented pure pursuit navigation during 

experimentation. 

2. Hybrid A* Search 

The MATLAB Navigation Toolbox includes various path planning algorithms. 

Included in the toolbox is a Hybrid A* Search algorithm based on the work in [34]. This 

algorithm was implemented on Robot 1 both with pre-determined waypoints and a frontier 

search algorithm. The Hybrid A* Search algorithm works by discretizing the known 

obstacles in the environment into an occupancy map and searching based off motion 

primitives specific to the robot [34]. An occupancy map divides the known environment 

into cells and assigns a tag to the cell as either “occupied,” “unoccupied,” or “unknown.” 

MATLAB has several tools for generating occupancy maps. In this work, the MATLAB 

SLAM algorithm was used to compute 2D NDT transforms of successive Hokuyo laser 

scans, then combine them into a map. The world pose of the robot was added to a pose 

graph, and the ternary occupancy map was then built from the SLAM map. 
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Figure 17. Robot 1 SLAM Map (Spanagel Hall Laboratory 521) 

The pink points in Figure 17 are discrete laser returns from the Hokuyo sensor and 

the blue track is the trajectory of the robot computed from the transformations of successive 

laser scans. An occupancy map of the lab environment computed from this SLAM map is 

shown in Figure 18. 
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Figure 18. Robot 1 Occupancy Map (Spanagel Hall Laboratory 521)  

The LIDAR data from the SLAM map is then divided into cells and labeled 

accordingly. The white cells in Figure 18 correspond to space that is known to be 

unoccupied by obstacles. Black cells correspond to known occupied space, and the gray 

cells represent unknown space that the robot has not yet explored or cannot see.  

The Hybrid A* Search algorithm proceeds from this point with the current pose of 

the robot, the maneuver capabilities of the robot, and the occupancy map as inputs. The 

algorithm calculates the paths possible to reach adjacent cells terminating in a node, then 

from those nodes calculates the next set of possible paths. In contrast to the standard A* 

Search, Hybrid A* Search takes into account nonholonomic constraints of the robot, such 

as turning radius [34]. An example is shown in Figure 19.  
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Figure 19. A* Search versus Hybrid A* Search. Source: [34] 

The algorithm then uses a cost function to compute the least costly route to the goal. 

Figure 20 illustrates an example of the Hybrid A* Search algorithm as it calculates all the 

possible nodes from each previous node and selects the least costly path. Many of the nodes 

terminate because of the nonholonomic constraints of the robot. 

 
Figure 20. Example Implementation of Hybrid A* Search Algorithm in 

MATLAB. Source: [35] 
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In this work, Robot 1 utilized the MATLAB Hybrid A* Search algorithm to find 

and plan paths. The calculated nodes of the path were set as intermediate waypoints and 

the robot traveled to them utilizing the potential field algorithm to negotiate any dynamic 

or previously unidentified obstacles. This implementation was fairly effective; however, it 

was ultimately not included on Robot 2. The primary issue was the time required to build 

the SLAM map and occupancy map, as inputs for the Hybrid A* Search algorithm. In most 

cases, MATLAB does not allow multiple processes to run simultaneously. The sequential 

nature of the script meant that LIDAR scans were not being received while the necessary 

path planning was occurring. If the robot remained in motion, scan matching would 

degenerate and the robot would lose localization, a problem further discussed in Chapter 

V. In order to prevent this, the robot came to a stop for the necessary amount of time to 

build the SLAM and occupancy maps and plan an obstacle-free path. Typically, this stop 

was between 10 and 60 seconds. This method was implemented on Robot 1, which had a 

full-size laptop attached in place of the SlimPRO. If implemented on Robot 2, the delays 

would have been more significant. Thus, building the on-board maps and planning the route 

as simultaneous processes are left to further work, likely requiring migration to a different 

programming language.  

3. Frontier Search 

In order to truly explore a new environment, a robot must be able to determine what 

parts of the immediate environment have not been explored. Once unexplored areas of the 

map have been identified, one must be selected based on specified criteria for exploration. 

The robot should then use already existing knowledge of obstacles, as well as the current 

pose information to plan a path to explore the frontier. There are many ways to achieve this 

and many criteria by which the robot can select a frontier. MATLAB does not include any 

frontier search or exploration algorithms, but one was created for this work using image 

processing techniques.  
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Figure 21. Frontier Search Algorithm 

A flow chart of frontier search algorithm is depicted in Figure 21. The algorithm 

takes as inputs the current pose of the robot and the ternary occupancy map that was 

compiled when the robot stopped at the initial goal. It formats the occupancy map, as seen 

in Figure 22, as a gray scale image and uses a Canny edge detector algorithm to find the 

pixels in which there is a transition from between white, gray, and black. These edges 

however indicate a transition between the three colors present in the gray scale image. 

Frontiers are the transition between known unoccupied space (white) and unknown space 

(gray) only. The transition from known occupied space (black) to known unoccupied space 

(white) is of no interest when searching for frontiers. In order to remove those edges, a 

convolution filter is run to identify all the edge pixels that are a transition from known 

unoccupied space to unknown space only.  
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Figure 22. Example Initial Ternary Occupancy Map 

(Spanagel Hall Laboratory 521) 

The remaining edges are then saved in a binary image as frontier pixels. If multiple 

frontier pixels are adjacent to one another, those pixels are grouped together as being 

connected and the group is saved as a frontier. An example of connected frontier pixels 

which are saved in a binary image is depicted in Figure 23. 
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Figure 23. Example of Remaining Frontier Pixels 

(Spanagel Hall Laboratory 521) 

The connected frontiers are then inscribed with ellipses as seen in Figure 24. The 

parameters of each ellipse are saved in a data structure, which is sorted from the largest 

area to the smallest area. In order to be a valid state for the Hybrid A* Search algorithm, 

the centroid of the ellipse cannot be used as a goal because it may lie in unknown space. 

To find a valid goal, the algorithm selects the points that lie on the ellipse and are known 

to be cells of unoccupied space. Using these points, it computes the Euclidean norm from 

the current robot pose to each point. The ellipse point with the minimum distance is selected 

as a temporary goal. It is mapped from image coordinates back into world coordinates and 

sent to the Hybrid A* Search algorithm. If a valid path is found, that temporary goal is 

assigned as the robot goal and the LLAM algorithm continues. If a valid path is not found, 

the frontier search algorithm selects the next largest ellipse and repeats the process until a 

valid path is found. If no valid paths are found and the area of the remaining ellipses is less 

than three pixels (occupancy map cells), the algorithm terminates, and the robot has 

completed exploration.  
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Figure 24. Example of Ellipses Inscribing Connected Frontiers 

(Spanagel Hall Laboratory 521) 

This algorithm was successfully employed on Robot 1 and ran relatively fast after 

the already discussed time delay required to build the occupancy map. Depending on the 

amount of unexplored area remaining in the laboratory, it took between 0.3 and 3 seconds 

to find a viable path. One major disadvantage of this algorithm is that it always seeks the 

largest frontier first. In some cases that causes the robot to wander around the test space, 

back tracking already traveled space several times. On the other hand, using the closest 

unexplored frontier is less effective because it can be very small and not significant in the 

overall map. Additionally, some frontiers cannot be reached to be explored due to 

obstacles. As the Hybrid A* Search algorithm does not incrementally re-plan the route 

while the robot is moving, the robot can become trapped in a point where a previously 

unrevealed obstacle is preventing forward progress due to potential field obstacle 

avoidance algorithm, which is running in stride as part of the LLAM algorithm. That is, 

the robot could not see an obstacle when the route was planned to the frontier, but upon 

trying to travel that route, it encountered an obstacle. The Hybrid A* algorithm will not re-

run until it reaches the goal, but the potential field algorithm will not let it continue on that 

route and reach the goal. This is another instance of the local minima problem already 

discussed.  
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Although the frontier search algorithm, as presented, can run fast enough to be 

incorporated in real-time LLAM, it relies on the occupancy map as an input. For reasons 

already discussed, that did not prove feasible. Thus, the frontier search was not included 

when transitioning to Robot 2. It is included here because this novel approach shows some 

promise for future development. If a faster occupancy map method, local minima escape 

logic, or a different obstacle avoidance model can be implemented, it may prove useful for 

indoor exploration. 

D. MAP BUILDING 

1. ROS Network and Point Cloud Transmission 

When Robot 2 was transitioned to the wireless ROS network, it was confirmed that 

point cloud messages are too large to be transmitted and collected in real time. If the Robot 

mapping algorithm is running faster than approximately 1 Hz, point cloud messages can 

be lost or received out of sync with pose messages. This was expected due to the size of 

3D point clouds. However, significant overlap in the 3D point clouds meant that not every 

point cloud must be received in order to build an accurate map. In this work, every tenth 

3D point cloud was transmitted with the corresponding 2D pose estimate.  

Additionally, it was discovered that organized 3D point cloud data could be 

transmitted more efficiently using a three-channel ROS image message 

sensor_msgs/Image instead of the more common sensor_msgs/PointCloud2 message. The 

organized point cloud is retrieved from the Pico monstar sensor in a format resembling a 

single floating-point precision three-channel image. Therefore, the image message could 

be written directly from the received data without reformatting. Two-dimensional pose 

estimates were sent as geometry_msgs/PoseStamped messages, which include a header that 

can contain a frame ID number. Two methods of building the map on the remote desktop 

computer were implemented and are described in subsequent sections. 

2. Two-Dimensional Transformation Method 

The first method utilized two-dimensional scan data received from the Hokuyo 

LIDAR. This 2D data was immediately registered using NDT registration to calculate a 
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relative transformation. The absolute transformation accumulated as described previously, 

then describes the 2D pose of the robot. With the exception of vibration, the roll and pitch 

of the LIDAR sensors on the robot are constrained. The only significant orientation 

changes occur about the Z-Axis in the {ROBOT} frame. One method of constructing the 

3D map is simply create a 3D transformation using the absolute transformation of the robot 

in 2D. Given the 2D {WORLD} pose of the robot 

 [ ]w
k k k kp x y θ= , (22) 

the 3D transformation to the {WORLD} frame can be computed as 
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where zPMD is the fixed height of the 3D Pico monstar LIDAR sensor. Each successive 3D 

LIDAR point cloud is then transformed by the corresponding {WORLD} transformation, 

which was calculated only from the data returned by the 2D Hokuyo sensor. The resulting 

transformed point clouds can then be merged together to form a map. The final map is 

down sampled using a voxel grid filter. 

This method is beneficial because it is much faster than performing iterative closest 

point registration in three dimensions. Additionally, it relies on 2D transformations that are 

already computed as part of the navigation algorithm. On the other hand, it assumes that 

the pitch and roll of the robot are constrained and is therefore only applicable to ground 

mobile robots with three DoF operating on flat surfaces. In this work, vibration and small 

deviations in the floor were not accounted for or corrected. Therefore, this method yielded 

a slightly less accurate map than using 3D ICP.  

3. Three-Dimensional Transformation Method 

The second method used in this work utilized the 3D transformations computed 

from the ICP algorithm. Both methods used the same point cloud and 2D pose information 
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received on the remote desktop computer, and therefore they could both be run on the same 

data set for comparison.  

Normally, ICP scan matching involves calculating a relative transformation 

between two successive scans, accumulating the relative transformations into an absolute 

transformation, and finally transforming the point clouds by this absolute transformation. 

In this case, every tenth scan was received, and although the point clouds had sufficient 

overlap to prevent gaps in the map, they lacked enough overlap to make ICP reliable. In 

order to correct this problem, the 3D ICP algorithm was assisted by an initial transform 

from the 2D pose estimates. Each of the 3D point clouds received by the remote desktop 

was transformed by the accompanying 2D transformation just as in the previous method.  

Each transformed point cloud had the ground plane segmented by fitting a plane 

with a normal unit vector in the positive Z direction. The outlier points were then stored in 

a temporary point cloud that was sent to the ICP algorithm. The ICP algorithm returned a 

transformation similar to (23) but including the smaller rotations about the X and Y axes 

in the {ROBOT} frame. These relative transformations were accumulated into an absolute 

transformation for each point cloud that would map them into the {WORLD} frame. The 

original point clouds (transformed by 2D pose but including ground plane) were then 

transformed by the 3D transformation calculated from ICP. The resulting transformed 3D 

point clouds were then merged into a map in the same fashion as the 2D transformation 

method.  

This method created a slightly more accurate map at the cost of speed. Both 

methods relied on the data transmitted over the ROS network, which was saved to hard 

disk on the remote computer.  
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V. RESULTS 

This chapter examines the results from several experiments conducted with Robot 

1 and Robot 2. Throughout development, many experiments were conducted to test LLAM 

methods and tune parameters. Included in this chapter is a brief description of the 

development of the LLAM algorithms for each robot, as well as an examination of the 

performance of the final version of each algorithm.  Localization, map building, and speed 

are the primary areas of interest here. Additionally, an examination of map interpretability 

is included. Several conclusions are drawn from the results presented in this chapter, the 

most important of which are further discussed in Chapter VI.  

A. LOCALIZATION 

Initially, Robot 1 was localized using 3D point clouds from the Pico monstar sensor. 

This method provided for localization of the robot assuming six DoF using the iterative 

closest point method. The ICP algorithm was fast enough to run in real-time at 

approximately 10 Hz using the mounted full-size laptop. The primary problem encountered 

was matching degeneration due to the limited field of view and range of the Pico monstar 

sensor. The sensor, although relatively accurate for the size and cost, is not well suited for 

mapping applications. The manufacturer advertises it for 3D scanning of objects, gesture 

recognition, and similar activities in which it is primarily static, looking at objects that are 

placed intentionally within the FoV. For room scanning and autonomous navigation, the 

sensor has a relatively limited range and often cannot see far enough to accurately sense 

walls or other objects in the room. Although the sensor can return points up to six meters, 

many of those points are of low confidence, or with noise. When filtered, the effective 

range of the sensor is closer to three meters, depending on a number of environmental 

factors. In order to avoid matching degeneration, the algorithm was adjusted to use the 2D 

Hokuyo LIDAR data as a primary means of localization, and the 3D LIDAR data for map 

building and obstacle avoidance. This combined 2D and 3D implementation was used on 

the final version of Robot 1 and on Robot 2.  
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1. Matching Degeneration 

In this work, the LLAM algorithm was structured around matching of consecutive 

scans. As discussed in Chapter III, the iterative closest point method relies on finding 

correspondences between points and computing the relative transform between point 

clouds. Therefore, if two point clouds do not contain a sufficient amount of corresponding 

points, the algorithm either fails to converge, or it returns a transform that maps points 

incorrectly to the previous point cloud. If the SLAM method involved multiple sensors to 

estimate pose, the scan matching may be assisted by an initial transform computed from 

other sensor data. In this case, the central question was to determine if it could be done 

quickly and efficiently without additional sensors.  

An example of matching degeneration is seen in Figure 25. Shown in the figure are 

two consecutive experiments with Robot 1 executing a 90-degree left turn in the same 

portion of Spanagel Hall 521. This experiment was conducted without the use of the 2D 

Hokuyo LIDAR. Additionally, the other navigation methods were disabled as a loss of 

localization would cause Robot 1 to wander erratically. In this case, the robot was 

programmed only to travel several meters, turn left, and continue traveling roughly five 

meters. Between the two experiments, the translational and rotational speeds of the robot 

were increased in order to cause the robot to outpace the ICP algorithm. 
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Figure 25. Example of Matching Degeneration 

The white circles depict the estimated 3D position and the red vector arrows 

contained within each circle represent the estimated orientation. In the case on the left, the 

robot made the corner while accurately localizing using 3D ICP. In the case on the right, 

the robot was unable to match sequential scans even though the trajectory was nearly 

identical. It can be seen that the LLAM algorithm lost the ability to both localize the robot 

accurately and build an accurate map. In the LLAM algorithm developed for this work, 

once localization is lost it cannot be recovered without loop-closure.  

In order to limit the loss of localization associated with the short range of the Pico 

monstar, the 2D Hokuyo LIDAR was utilized. The Hokuyo LIDAR can return accurate 

points from anywhere in the laboratory space with a 270° FoV, which makes it far less 

prone to matching degeneration. A map of the laboratory space created after inclusion of 

the Hokuyo LIDAR data is seen in Figure 26.  
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Figure 26. 3D Map of Spanagel 521 Laboratory Space Using 3D and 2D 

LIDAR Data 

It can be seen from Figure 26 that the 3D map closely resembles the interior 

laboratory space complete with work benches and chairs. The colormap corresponds to 

height in the vertical dimension with blue depicting zero m (ground plane) in the 

{WORLD} frame. As the height increases, the colormap transitions to green, then to 

yellow at the ceiling. The ceiling plane in this figure is removed so that the contents of the 

room can be viewed. The outline of the work benches is clearly visible. However, because 

the 3D LIDAR was mounted at a similar height to the workbenches, the planar surface of 

the benches was not fully visible to the LIDAR. Black corresponds to space that was not 

mapped by the 3D LIDAR. The 3D portion of the map is limited by the FoV of the Pico 

monstar. For comparison, an overlaid 2D SLAM map (pink) generated from the Hokuyo 

LIDAR during the same experiment is seen in Figure 27. Although the robot could sense 
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the entirety of the space using the 2D LIDAR, the limited FoV of the Pico monstar meant 

that only a portion of it was mapped in three dimensions.  

 
Figure 27. 3D Map of Spanagel 521 Top Down View Overlaid with 2D 

Hokuyo SLAM Map 

In order to build a full 3D map, another more powerful 3D LIDAR must be 

acquired. Spinning 3D LIDARs, such as the Velodyne used in the KITTI data discussed in 

Chapter III, are commercially available and necessary for continued development of a 3D 

autonomous mapping robot. Additionally, point cloud returns from these 3D spinning 

LIDARS are formatted in laser lines; 2D navigation provided by the Hokuyo in this work, 

could still be accomplished using a single laser line from a 3D spinning LIDAR. 
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2. Accuracy on a Closed Loop 

As the robot is not equipped with sensors other than the two LIDAR units, 

determining the accuracy of localization is difficult. From visual inspection of the 2D and 

3D maps compared with the environment, it can be seen that the map is relatively accurate. 

Certainly from a tactical perspective, this map would be useful to an operator.  

In order to determine values for drift and localization error, Robot 2 was given a 

set of waypoints that terminated at the point from which the robot was initialized, w(0,0). 

In this experiment, the robot traveled the intended trajectory, and when it reached the final 

waypoint ceased movement. From that point, distance to the robot center was measured 

from a marked point on the floor where the robot was initialized. The last calculated pose 

estimate was retrieved from the robot memory and compared to the measured point, as seen 

in Table 2. 

Table 2. Closed Loop Test Data 

Measured XY 

Final Position (m) 

Estimate XY Final 

Position (m) 

Final Position  

Error (m) 

Trajectory Length 

(m) 

Position Error (%) 

w(0.56, 0.30) w(0.2490, 0.1096) 0.365 17.09 2.14 

 

In this experiment, the robot drifted 2.14%, which is similar to the drift seen in the 

data output from the KITTI Benchmark test algorithm. The robot was programmed to 

consider a waypoint reached when it was within 0.30 m of the intended waypoint. This 

prevented the potential field algorithm from trying to make velocity adjustments that were 

too small for the robot to execute when near to the goal. As implemented in this work, the 

drift of the robot does not contribute to a likelihood that it will collide with obstacles. 

Obstacle are detected, and steering commands are updated every iteration of the LLAM 

algorithm. Therefore, drift will only affect the generation of an accurate map. 
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3. Algorithm Speed 

During mapping experiments, the speed of the LLAM algorithm was not rate 

controlled. Instead the algorithm was run at maximum speed. This meant that each iteration 

of the algorithm varied in duration. Since pose estimates were not being calculated 

kinematically from other sensors, the elapsed time between laser scans was not important 

so long as the algorithm ran sufficiently fast to avoid matching degeneration. 

Consequently, the speed of the algorithm varied greatly from one iteration to the next and 

from one trajectory to the next. In general, the LLAM algorithm on Robot 2 ran between 5 

and 10 Hz, occasionally exceeding 10 Hz, but rarely performing below 5 Hz. This proved 

an acceptable speed given that the robot forward velocity was limited to 0.4 m/s. The actual 

speed of the robot was updated every iteration of the LLAM algorithm by the output of the 

potential field model. In most cases it had a forward velocity of around 0.25 m/s depending 

on the distance to the goal and the obstacles sensed in the environment.  

Transmitting 3D point clouds wirelessly using IEEE 2.4 GHz 802.11n protocol 

proved to be the largest bottleneck. Prior to constructing Robot 2, an experiment was 

conducted to transmit 3D point clouds from the Pico monstar sensor attached to the 

SlimPRO, to the desktop computer for map building. During this experiment, the robot was 

not moving and none of the navigation or obstacle avoidance algorithms were running. The 

SlimPRO was only retrieving data from the Pico monstar at a rate of 10 Hz, formatting the 

ROS message, and sending it over the ROS network. In this case, the algorithm was rate 

controlled to 10 Hz to ensure that the variable being measured was transmission time over 

the ROS network. As suspected, 3D point cloud messages could not be transmitted at 10 

Hz over the ROS network. Initially, the point clouds were received at roughly 0.5 Hz on 

the desktop computer. Changing the format of the ROS message, as discussed in Chapter 

IV, increased this speed to a more consistent 1 Hz.  

Actual data rates over the wireless connection averaged between 8 Mbps and 10 

Mbps. After removing intensity and depth confidence data, the size of 3D point clouds 

varied based on the number of laser returns, between roughly 5 Mbit and 10 Mbit. The 

802.11n protocol should be able to support much higher data rates than were observed in 

this experiment, which would allow faster real-time transmission of point cloud data. The 
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actual cause of the slow network data rate is beyond the scope of this work but is important 

to note for future investigation. 

Attempting to solve the transmission delay issue using a buffer was attempted. 

However, as the rate of collection outpaced the rate of transmission by a factor of 5 to 10, 

the buffer inevitably filled up. Continuously increasing the size of the buffer only took 

memory resources away from other elements of the LLAM algorithm. As the maximum 

speed of the LLAM algorithm was roughly 10 times the rate of transmission, transmitting 

only every 10th point cloud was the method selected to avoid an excessive backlog. 

Without the use of a buffer, occasionally 3D point cloud messages and 2D pose 

estimates would be transmitted out of sync. One message or the other having been 

overwritten before transmission. Certainly, an algorithm could be written to run on the 

robot end to correct this, but it would slow the rate of the LLAM algorithm. Instead, if the 

LLAM algorithm overwrote either a pose message or point cloud message before 

transmission, both messages would be transmitted anyway with a frame ID appended to 

the header. On the remote computer end, the frame IDs would be compared, and 

mismatched messages would be discarded. This solution had the effect of occasionally 

recording only the 20th or 30th scan from the robot, but so long as the message frame IDs 

matched, the 2D pose estimate could be used to transform the 3D point cloud for map 

making without significant loss to the map. 

B. MAP BUILDING 

1. Map Accuracy and Interpretability  

In general, the accuracy of a map is absolute. The error in the map being the 

difference between the environment that the map depicts and the environment as it actually 

exists. For the application of this work, it was decided from the beginning that the absolute 

accuracy of the map is less important than the speed at which it is acquired. In a tactical 

setting, such as on-site raid planning, any map that is not misleading is better than no map 

at all. With that in mind, the goal of this research was not to create a highly detailed map 

that was accurate within the tolerances of the LIDAR sensors. Instead, it was to determine 

if LLAM is a suitable method for building a hasty map that can be easily interpreted by a 
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human operator. In that respect, the accuracy of the map was primarily determined by 

visual inspection. If the map resembled the environment it was compiled to represent and 

it was interpretable to a person, it was considered a successful employment of LLAM.  

The map depicted in Figure 28 was compiled from data collected by Robot 2 during 

the closed loop experiment. It is important to note that human experimentation was not 

included in this work. Therefore, the interpretability of the map is subject to a preexisting 

understanding of the environment. Throughout experimentation the robot had to be placed 

in the laboratory and it was not allowed to operate unsupervised for safety reasons. Thus, 

the operator already understood what the environment looked like and could correlate that 

understanding to the map that the robot produced. 

 
Figure 28. 3D Map of Spanagel 521 from Robot 2 Closed Loop Experiment 

Interior spaces, such as those depicted in this chapter, are difficult to view from an 

exterior perspective. If the map is complete, it includes walls, a ceiling plane, a ground 

plane, and typically the room is fully enclosed. In order to interpret the map without trying 

to view the contents of a room through the walls or ceiling, a portion of the map must be 



64 

removed, or the map program must have the ability to render a view from “inside” the 

room. In this work, the ceiling plane was removed from all maps so that the contents of the 

room could be viewed from an exterior perspective. Additionally, the points were color 

mapped corresponding to distance in the vertical dimension. The maps produced here are 

still somewhat hard to interpret without a preexisting understanding of the environment. 

That is partially due to the laboratory equipment present that is not common to most rooms; 

however, discrete point cloud maps may not be the best solution for an easily interpretable 

map.  

One solution is to create a user interface so that the map can be explored 

interactively. An example of this is seen in Figure 29, where the point cloud map was 

loaded into Unreal Engine 4 and compiled into a third person video game. This allows the 

user to explore the map in a more familiar and interpretable way. The creation of a third 

person video game type interface was done separately from the LLAM algorithm. It is 

included for demonstration only, and as a consideration for another avenue for future 

development. It was not scripted into the LLAM algorithm or interfaced with the robot. 

 
Figure 29. Example of a User Interface that Allows Map Exploration 
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2. Comparison of 2D and 3D Transformation Methods 

As discussed in Chapter IV, the map can be compiled using the 2D transformations 

computed from NDT scan registration, or the 2D transformations can be used as initial 

transformations for 3D ICP point cloud registration. For comparison, both methods were 

used on the data collected from the Robot 2 closed loop experiment. As can be seen in 

Figure 30, with a ground mobile robot having three DoF, very little difference is detectable 

in the map. The image on the left was compiled from the 2D NDT transformations, the 

image on the right was compiled from the 3D ICP transforms. The times to compile the 

maps were 0.495 s and 6.06 s for the 2D and 3D transformation methods, respectively. 

Although the 2D transformation method was more than 12 times faster, the duration of six 

seconds for the 3D method is sufficient to meet the tactical requirements here. Thus, either 

method works with a robot constrained to three DoF. 

 
Figure 30. Comparison of 2D (left) and 3D (right) Transformation Methods of 

Map Building 

Careful inspection reveals that the 3D transformation method yields a map with 

slightly more distinguishable objects. The general accuracy of the maps, however, cannot 

be differentiated without very close comparison. In either case, objects are difficult to 

distinguish from a fixed exterior perspective. Thus, an ability to explore the map 

interactively is necessary, as discussed in the preceding section. 
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C. OBSTACLE AVOIDANCE AND ROUTE PLANNING 

The potential field model of obstacle avoidance proved successful in the laboratory 

environment when the experiments were constructed to minimize the likelihood of 

encountering a local minimum. Previous NPS thesis work integrated local minima escape 

methods that were not included in this work. These methods would have expanded the 

capability of the robot; however, the potential field model has limitations that may make 

another obstacle avoidance model preferable for this application. For example, the Hokuyo 

LIDAR has a fixed angular resolution. At certain distances slim obstacles, such as table 

legs, may fall in between the laser shots from the Hokuyo LIDAR. Since the 3D LIDAR 

returns were sorted into angle bins corresponding to the angular resolution of the Hokuyo 

LIDAR, the 3D returns did not always assist the robot in detecting these obstacles until 

they were relatively close.  

Although the robot did not fail to detect and avoid slim obstacles prior to collision, 

it frequently detected them at a close range where it could not correct the trajectory without 

slowing down significantly. Given the 0.25° angular resolution of the Hokuyo, the LIDAR 

should be able to detect most of the table legs (several centimeters wide) at a range of 

several meters. In practice however, it frequently did not detect them until it was within 

one meter.  

 In general, it is not advantageous to use the maximum range of the Hokuyo LIDAR 

for potential field calculations. Assigning repulsive forces to obstacles that are very far 

away creates a more complicated potential field and requires significant tuning of the gains 

in order to make the robot reach the goal. However, the extended range of the Hokuyo 

LIDAR, or a 3D spinning LIDAR if equipped, gives the robot the ability to sense obstacles 

far away. If a different obstacle avoidance model were implemented, such as an occupancy 

map-based planning algorithm, the robot would be able to plan routes out to the extent of 

the LIDAR range. Combined with a frontier search algorithm, the robot could then explore 

an interior space more efficiently. This model, however, would be susceptible to drift in a 

way that the potential field model, as implemented here, is not. If the pose estimate of the 

robot drifted from the actual pose significantly, the robot could collide with obstacles. This 
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implementation would require loop-closure or some other method of iterative pose 

refinement.  

In this work, a hybrid model of potential field obstacle avoidance and occupancy 

map-based planning was implemented on Robot 1. The potential field algorithm ensured 

that the robot did not collide with obstacles due to drift, and the occupancy map-based 

Hybrid A* Search planned a route to the next goal. This model allowed the robot to plan a 

route based on all the known obstacles detected from any previous pose of the robot. It 

proved effective as a navigation and obstacle avoidance method but suffered from the long 

pauses required to build the occupancy map, as previously described. The SLAM and 

occupancy map building algorithms used in this work were included in the MATLAB 

Computer Vision and Navigation Toolboxes and are not necessarily optimized for speed 

or autonomous robotics. Programming similar algorithms optimized for speed was not 

examined in this work, and consequently Hybrid A* Search planning was not included on 

Robot 2. However, if combined with pose refinement, occupancy map-based planning may 

prove more flexible and efficient than the potential field model used here.  

Furthermore, the constrained degrees of freedom and relatively slow movement of 

the ground mobile robot allowed the dynamics to be simplified to translational and 

rotational velocity commands sent to the robot. If LLAM is extended to flying robots, 

operating at faster speeds, and considering higher order dynamics, the method implemented 

here will need to be reexamined.  

Finally, the Hybrid A* Search algorithm did not have the ability to incrementally 

re-plan the route while the robot was in motion. If a previously unidentified obstacle was 

encountered, the robot relied solely on the potential field model to avoid it. This made it 

susceptible to the local minima problem. If an escape method was implemented, the robot 

would still need to stop and re-plan the route once the local minimum was escaped. D* 

Search for example, includes the ability to incrementally re-plan a route using a similar 

occupancy grid and cost map approach [22]. Implementation using D* Search, or another 

similar method, could alleviate susceptibility to the local minima problem and remove the 

need for escape methods. 
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VI. CONCLUSIONS 

This thesis research developed two robots capable of localizing and mapping using 

LIDAR sensors only. Each robot operated differently providing valuable insights into 

LLAM as a means for tactical mapping, as well as future development required to make 

this a feasible military capability. This chapter includes conclusions drawn from 

experimentation and recommendations for future work.  

A. ASSESSMENT OF GOALS 

1. Feasibility of LLAM for Autonomous Interior Mapping 

LIDAR localization and mapping is a feasible method of generating three-

dimensional interior maps in a tactical setting. It can be performed in real-time with current 

mobile computing resources. With further development, LLAM could be implemented in 

military operations successfully. Significant further development is needed to make this a 

technology capable of fielding. However, the concept is sound based on current computer 

technology, and advances in computer technology will make it even more feasible in the 

future. 

The inability of LIDAR to detect transparent windows is an issue that may make a 

purely LLAM enabled robot insufficient for tactical operations. In this work, none of the 

windows in the test spaces extended to the floor. A flying robot, however, would not be 

able to detect the windows solely with LIDAR and would likely try to fly through windows, 

perceiving them as unoccupied space, and the area beyond them as unexplored space. An 

additional sensor may be required to prevent this.  

Many commercially available LIDAR sensors now include an IMU built into the 

LIDAR unit itself. As the IMU is already a component of the LIDAR, future research in 

LIDAR mapping should seek to use IMU data to assist in point cloud registration and pose 

estimation. The initial assertion in this thesis was that the inclusion of additional sensors 

increases weight, complexity, power requirements, and data processing requirements. This 

makes additional sensors less than desirable for tactical applications. As the commercial 

LIDAR market begins including IMUs, and in some cases color imagery, into a single 
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sensor of similar size and weight, it only makes sense to utilize the provided data for 

improved localization and mapping.  

2. Adequate Resolution 

Determining an adequate resolution for useable tactical maps is both subjective and 

variable based on the environment. Throughout experimentation, the majority of final maps 

were downsampled using a three cm voxel grid filter. This parameter was adjusted through 

experimentation. The resulting resolution was sufficient to build an interpretable map. In 

most cases, common objects such as computer monitors, chairs, and work benches were 

easily distinguishable. Other, less common objects, such as torsion plants and other robots, 

were difficult to distinguish. In most cases, increasing map resolution assisted in 

identifying these less-familiar objects. However, creating extremely dense point clouds 

made the maps less interpretable. Partial transparency in the map creates contrast, which 

makes the objects in the scene more visible. Thus, a point exists where increasing point 

cloud density decreases map interpretability. Through experimentation, the 

aforementioned values were determined to be optimal for the test spaces. In a more 

common environment, such as a house, a lower resolution may be perfectly acceptable to 

distinguish common appliances and household items.  

The gradient colormap used to distinguish elevation in the processed maps was 

acceptable. However, when viewed from an exterior perspective, it can be difficult to 

differentiate small objects. For example, an object on a table could be difficult to 

distinguish from the table itself. This is because the color value was based on elevation, 

and because the object and table had similar elevations, they had similar colors as well. If 

the map was rendered with a light source that cast shadows, such as in Figure 29, objects 

may be easier to distinguish. Creating a mesh-based map from the point cloud may also be 

a suitable solution. 

3. Obstacle Detection and Autonomous Navigation 

Robot 1 combined LLAM with obstacle detection and navigation effectively to a 

certain degree. The robot required long pauses at each waypoint to compile the SLAM and 

occupancy maps, as well as run the frontier search and Hybrid A* Search algorithms. The 
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frontier search and Hyrbird A* Search algorithms contributed negligibly to those pauses. 

Those algorithms could likely be performed on the move if the required occupancy map 

input could also be built on the move. This is an area that requires further development. 

However, there is no evidence to suggest that the occupancy map process cannot be 

optimized for speed and incorporated in real-time. This further development is a necessary 

requirement for tactical employment. 

4. Map Visualization Method 

A color-mapped discrete point cloud provides a map that is acceptable but 

suboptimal. It is certainly better than no map at all. However, it does not depict an 

environment as humans see it. Several commercially available LIDARs have the ability to 

assign an RGB color to each returned point. This allows the discrete point cloud to be 

colorized in a similar way to an image and makes the map much easier to interpret.  

As already discussed, an exterior viewpoint creates a problem where a portion of a 

room needs to be removed in order to discern what is inside. In an experimental 

environment, it is fairly simple to determine which wall or ceiling plane to remove in order 

to view the interior. In a totally unknown structure, it would likely be much more difficult 

to understand. For example, if the robot were to map the entirety of a multiple story 

building with interior spaces that did not border exterior walls, the map would need to be 

partitioned multiple times to view all of the space from an exterior perspective. In this 

respect, an interactive map would be far more useful. For many years, the video game 

industry has been creating explorable, easily interpretable 3D maps. Additionally, nearly 

all service-age adults grew up in a time when 3D video games were widely accessible. A 

similar map interface to video games would be a logical and easily achievable method for 

visualizing 3D maps.  

B. LIMITATIONS 

1. Hardware 

Robot 1 and Robot 2 were both constructed with materials already on hand within 

the ECE Control Systems laboratory. Although these materials proved sufficient, none of 
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them are on the cutting edge of technology, and they have a number of limitations that 

newer technologies do not. First, the PMD Pico monstar LIDAR is not ideal for 

autonomous interior mapping as it has a short range and limited field of view. A 3D 

spinning LIDAR would provide longer range, a larger FoV, and more accurate localization 

and mapping. It would also remove the reliance on the 2D Hokuyo LIDAR for navigation.  

Similarly, the full-size laptop mounted on Robot 1 could perform six DoF LLAM 

in real-time but struggled to build an occupancy map and plan a route fast enough for 

tactical applications. Since the SlimPRO had less computing power than the laptop, a 

simplified three DoF localization method was used on Robot 2. Additionally, the Hybrid 

A* Search and frontier search algorithms were not included. Neither the laptop nor the 

SlimPRO represent what is currently commercially available in terms of performance. A 

more powerful on-board computer would be beneficial to future LLAM research and 

development.   

Wireless transmission of point cloud data was a significant bottleneck. As it was 

necessary for other devices to be using the laboratory wireless router, it is possible that 

bandwidth was limited by other experiments and network traffic. Future research should 

attempt to identify a suitable network protocol for wireless point cloud transmission. 

Perhaps newer IEEE 802.11xx protocols, new router hardware, or creation of an Ad Hoc 

network would solve this problem. The proliferation of 5G technology may provide another 

avenue that is worth examining.  

2. Software 

MATLAB is an exceptionally useful tool for prototyping; however, it is not 

optimized for speed. In fact, MATLAB has a built-in coder tool to convert MATLAB code 

to C or C++ to speed up slow algorithms [36]. MATLAB was the language selected for 

this work for several reasons. First, MATLAB was used for previous NPS theses on the 

topic of autonomous robotics. A portion of the code written for those works could be easily 

adapted for use here. Second, MATLAB includes numerous functions and toolboxes that 

assist in development and analysis. Finally, MATLAB allows for the integration of 

Windows OS computers with ROS, which was beneficial in the development of Robot 2.  
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Since LLAM requires significant computational power and memory resources, 

another programming language, such as C or C++, is preferable. Additionally, these 

languages allow specific processes to be multithreaded. In [11], Lin and Zhang divided a 

received point cloud into three subframes and matched them independently with the global 

map, each through a dedicated CPU core. The Loam_livox algorithm in [11] was written 

in C++ and designed specifically to operate on multicore processors, achieving a real-time 

speed of 20 Hz.   

The LLAM algorithm developed here can be further optimized for speed while still 

running in the MATLAB environment. However, various open source libraries for point 

cloud processing already exist. For Example, Point Cloud Library (PCL) is a free C++ 

library of point cloud and image processing algorithms, many of which are similar to those 

used in this work. It includes algorithms for filters, registration, KD tree/octree 

construction, feature extraction, etc. [37]. According to Rusu and Cousins, PCL is written 

for efficiency and performance on modern CPUs, and it is also integrated with ROS [37]. 

Point Cloud Library, or other similar C/C++ based projects, could provide a better 

development environment than MATLAB for future work in LLAM.  

C. FUTURE WORK 

Simultaneous localization and mapping is a continuously evolving field with 

significant advances occurring frequently. LIDAR based SLAM is a newer branch of the 

SLAM problem with significant space for future work. Included here are recommendations 

for future work utilizing the LLAM algorithm. These areas for future work are not all 

encompassing but are focused on the practical military applications of LLAM. 

1. Algorithm Optimization and Hardware Upgrade 

Upgrading the robot used in this thesis by incorporating a spinning 3D LIDAR and 

removing the 2D Hokuyo LIDAR is a logical next step. The methods contained herein 

should work with a 3D spinning LIDAR; however, this would require significant rewriting 

of the code included in the appendices. Additionally, much effort was taken to optimize 

the LLAM algorithm and included functions. Certainly, the algorithm can still be improved 

by converting functions to C++, experimenting with function ordering, etc.  
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Due to the slow movement speed of the robot, the effects of motion blur within a 

3D point cloud were considered negligible. Upgrading the equipment and improving the 

speed of the algorithm would allow the robot to move faster and will require a method to 

compensate for motion blur.   

Loop-closure was attempted but found unnecessary and removed. The small-scale 

nature of the map environments combined with a generally one-way path meant that the 

robot was unlikely to revisit a specific location. In many cases, such as travelling down a 

hallway, it is obvious from the pose estimate and trajectory that the robot is unlikely to 

close a loop. In these cases, continuously running loop-closure queries wastes 

computational power. However, loop-closure allows for drift correction and pose 

refinement. Future work should develop a method to search for loop-closures triggered by 

specific circumstances. For example, a loop-closure query may be executed when the robot 

exits a room from the same door it used to enter. 

2. Point Cloud Registration 

This work utilized a successive scan matching method based on iterative closest 

point and normal distribution transform methods. Many other techniques exist that were 

not examined here, some of which may be superior for this application. Additionally, a 

new, novel method of point cloud registration could be developed specifically for the small 

scale, high speed, tactical nature of the problem here. The combination of neural networks 

or other machine learning algorithms and point cloud data would be similarly useful for 

this application. For instance, semantic segmentation could be used to identify both 

obstacles to the robot, and threats to the operators who will presumably enter the building. 

It could also be used to segment dynamic obstacles, which was a limitation of the LLAM 

algorithm and occasionally caused matching degeneration. 

3. Obstacle Avoidance and Navigation Model 

In this work, the limitations on autonomy were primarily due to the models selected 

for obstacle avoidance and navigation. Robot 1 could function nearly autonomously but at 

a slow speed. Robot 2 required pre-planned waypoints, but it operated without stopping 

and could transmit point clouds wirelessly. Tactical employment of a similar robot would 
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require characteristics of both Robot 1 and Robot 2. The Robot 1 LLAM algorithm utilized 

a hybrid potential field and occupancy map model for obstacle avoidance and navigation. 

The potential field calculated steering commands to avoid obstacles, and the occupancy 

map informed the route planning and frontier search algorithms. Future work should seek 

to develop a combined model for navigation and obstacle avoidance that can incrementally 

re-plan the route while in motion.  

4. Map Building and Human Interactivity 

The interpretability of maps presented here was subject to a preexisting 

understanding of the environment being mapped. Although less technical in nature, in order 

to develop this technology as a fieldable capability, further research needs to be conducted 

on human subjects. Human experimentation should include methods for visualizing the 

map as well as user input interfaces. Additionally, in combat operations a threshold exists 

where the size, weight, and complexity of a system can become as important as the 

capabilities of the system. That is, if the system is large, heavy, or difficult to use, it can 

become a distraction from the mission at hand. In these cases, typically the system is left 

behind. In the worst cases, distraction from the situation can endanger the operator or 

military unit. Careful consideration, supported by human subject research, must be given 

to the usability of a tactical interior mapping robot. Such a robot must meet the needs of 

the military operator without becoming burdensome.  

5. Adaptation to a Flying Robot 

For tactical purposes, a ground mobile robot has obvious limitations. A flying robot, 

such as a quadcopter drone, can avoid ground obstacles easily and seems to be a preferable 

solution. Additionally, a flying robot could provide a more complete map than a ground 

mobile robot as it can change elevation to inspect the top of objects that are not be visible 

from the ground. A six-DoF model similar to that developed for Robot 1, could account 

for the pitch, roll, and vertical translation of a flying robot. However, research needs to be 

conducted into the dynamics of a flying robot and how those dynamics effect LLAM. In 

this work, the slow speeds of the robot allowed the dynamics to be approximated as a series 
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of step inputs. If the robot changed speed, it did so relatively quickly and the acceleration 

was neglected. This simplified model will not likely work for a flying robot.  
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APPENDIX A. ROBOT 2  

A. MASTER.M 

%Master.m collects data, runs the obstacle avoidance and navigation 
%scripts, and transmits 2D poses and 3D point clouds via the ROS 
network  
%to the remote computer running Listener.m. This script should be  
%initialized via SSH from the remote computer after launching the  
%ROS Core and Hokuyo node from the terminal.  
%Instructions are included in Listener.m. 
  
clearvars; clc; close all; 
addpath('/home/ecejames/Jameson_Thesis/myMatlab') 
  
%% Abort Callback used to break loop if the robot malfunctions 
%This only functions if the GUI is running  on MobaXTerm.  
%To abort: Press 'a' on the keyboard.  
  
stringInput = 'x'; 
h_fig =figure; 
  
%% Initialize PMD Pico Monstar 
cameraDevice = initializePMD(); 
  
%% Connect to Robot 
p3_connector_Payne('/dev/ttyUSB0'); 
disp('Connected to Robot'); 
pause(0.8); 
  
%% Initialize Nodes, Subscribers, and Publishers,  
% and wait for other Machine to connect 
  
%Initialize node 
rosinit('localhost','NodeName','slimPRO') 
  
%Initialize Publishers and Subscribers 
PMDPub = rospublisher('/scan3D','sensor_msgs/Image'); 
PMDSub = rossubscriber('/scan3D','sensor_msgs/Image'); 
HkPub = rospublisher('/scan','sensor_msgs/LaserScan'); 
HkSub = rossubscriber('/scan','sensor_msgs/LaserScan'); 
RobotPosePub = rospublisher('/pose','geometry_msgs/PoseStamped'); 
  
  
%Wait for remote machine to connect to ROS network.  
disp('Waiting for Other Machine to Connect...') 
while true 
    ls = rosnode('list'); 
    if any(contains(ls,'/windows_machine'))    
        disp('Other Machine Connected') 
        break %If rosnode list contains /windows_machine, break 
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    end 
end 
  
%% Initialize script variables and containers 
%Variables 
rng(0); 
navMode = 0;    
maxScans = 1000; 
  
%Preplanned goals (# of Sp521 floor tiles) 
goalMat = [11 -1; 13 0; 12 2; 10 2; 0 0];    
goalMat = goalMat.*610;     %Convert floor tile distance to mm 
sz = size(goalMat); 
numWaypoints =sz(1); 
minDepthConfidence = 155; 
hkOffset =-0.1; 
PMDOffset =-0.16;  
PMD_height =0.435; 
R = [ 0 -1 0; 0 0 -1; 1 0 0 ]; 
PMDtrans = rigid3d(R,[PMDOffset,0,PMD_height]);  
  
%Navigaion parameters 
global goalTolerance 
goalTolerance = 300; 
transVel = 100;     %Initial translational velocity for frame 1 
wayPointInc = 1; 
waypointCurrent = goalMat(wayPointInc,:); 
wayPointReached = false; 
  
  
%Containers and Objects 
PMDScans = cell(maxScans,1); 
HkScans = cell(maxScans,1); 
Hkpgraph = poseGraph; 
  
  
%% Run loop for collection and transmission of data,  
% navigation and obstacle avoidance 
pause(8); 
  
i = 1; 
while (i < maxScans) && (p3_getBumpersClear) 
    ratetic = tic; 
     
    %Retrieve Hokuyo Scans, store as laser scan, and ROSMsg 
    Hmsg = receive(HkSub); 
    hkCart = readCartesian(Hmsg); 
    hkCart = hkCart + [hkOffset 0]; 
    HkScans{i} = lidarScan(hkCart); 
     
    if i == 1 
        %Retrieve, Preprocess, PointCloud Object, and ROSmsg PMD data. 
        PMDdata = cameraDevice.getData(); 
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        [PMDCloud,PMDImage] = 
processPMD(PMDdata,i,PMDPub,minDepthConfidence,PMDtrans); 
        % PMDScans{i} = PMDCloud; %uncomment to store point clouds in 
        % SlimPRO memory (optional) 
        PoseMsg = createROSpose([0 0 0],i,RobotPosePub); 
        send(PMDPub,PMDImage) 
        send(RobotPosePub,PoseMsg) 
        disp('sent') 
        p3_setTransVel(transVel); 
         
        %Run every iteration that is not evenly divisible by 10, this 
allows 
        %the PMDprocess function to skip computations if the frame 
        %is not going to be transmitted. 
    elseif ~rem(i,10) == 0 
        %Retrieve, Preprocess, PointCloud Object, and ROSmsg PMD data. 
        PMDdata = cameraDevice.getData(); 
        [PMDCloud] = 
processPMD(PMDdata,i,PMDPub,minDepthConfidence,PMDtrans); 
        %PMDScans{i} = PMDCloud; 
         
        %Get Relative Pose 
        relPose = matchScans(HkScans{i},HkScans{i-1}); 
         
        %Add relative pose to pgraph and retrieve world pose for 
navigation 
        addRelativePose(Hkpgraph,relPose); 
        poseList = nodes(Hkpgraph); 
        poseCurrent = poseList(end,:); 
         
        %Otherwise, send every tenth scan and pose to the desktop. 
    elseif rem(i,10) == 0 
        %Retrieve, Preprocess, PointCloud Object, and ROSmsg PMD data. 
        PMDdata = cameraDevice.getData(); 
        [PMDCloud,PMDImage] = 
processPMD(PMDdata,i,PMDPub,minDepthConfidence,PMDtrans); 
        %PMDScans{i} = PMDCloud; 
         
        %Get Relative Pose 
        relPose = matchScans(HkScans{i},HkScans{i-1}); 
         
        %Add relative pose to pgraph and retrieve world pose for 
navigation 
        addRelativePose(Hkpgraph,relPose); 
        poseList = nodes(Hkpgraph); 
        poseCurrent = poseList(end,:); 
         
        %Create ROS pose message 
        PoseMsg = createROSpose(poseCurrent,i,RobotPosePub); 
        send(PMDPub,PMDImage) 
        send(RobotPosePub,PoseMsg) 
        disp('sent') 
    end 
     



80 

     
    if i > 1 
        %Obstacle Detection and navigation 
        
[fwdVel,rotVel,Frep_r,Fatt_r]=potentialField(poseCurrent,PMDCloud,HkSca
ns{i},waypointCurrent,navMode); 
        p3_setTransVel(fwdVel); 
        p3_setRotVel(rotVel); 
         
        %Check if waypoint Reached 
        wayPointReached = p3_goalReached(poseCurrent,waypointCurrent); 
        if (wayPointReached == true) 
            if (wayPointInc < numWaypoints) 
                wayPointInc = wayPointInc + 1; 
            else 
                p3_setTransVel(0); 
                p3_setRotVel(0); 
                break 
            end 
        end 
    end 
    waypointCurrent = goalMat(wayPointInc,:); 
     
    t = toc(ratetic); 
    ratestr = sprintf('Frame = %i,  Rate = %.3f (Hz)',i,1/t); 
    disp(ratestr); 
    i = i+1; 
     
    %Check for Abort 
    drawnow 
    set(h_fig,'KeyPressFcn',@(H,E) 
assignin('base','stringInput',E.Key)); 
    if strcmp(stringInput,'a') 
        disp('Aborted'); 
        break 
    end 
     
    %Check to ensure remote computer is connected 
    ls = rosnode('list'); 
    if ~any(contains(ls,'/windows_machine')) 
        break %break if /windows_machine disconnects 
    end 
end %while loop 
  
%% Disconnect PMD Pico Monstar 
  
close all 
cameraDevice.stopCapture(); 
disp('PMD Pico Monstar Disconnected'); 
  
%Close serial connections and destroy objects 
shutDownAll; 
clear PMDPub PMDSub HkPub HkSub RobotPosePub cameraDevice 
save('P3_data.mat') 
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%% Supporting Functions 
function poseMsg = createROSpose(poseCurrent,i,RobotPosePub) 
%This function creates a pose message from the Hokuyo LIDAR data 
HkHeight = 0.33; 
poseMsg = rosmessage(RobotPosePub); 
poseMsg.Pose.Position.X = poseCurrent(1); 
poseMsg.Pose.Position.Y = poseCurrent(2); 
poseMsg.Pose.Position.Z = HkHeight; 
quat = eul2quat([poseCurrent(3) 0 0]); 
poseMsg.Pose.Orientation.W = quat(1); 
poseMsg.Pose.Orientation.X = quat(2); 
poseMsg.Pose.Orientation.Y = quat(3); 
poseMsg.Pose.Orientation.Z = quat(4); 
poseMsg.Header.FrameId = num2str(i); 
end 
  
function [PMDCloud,PMDImage] = 
processPMD(PMDdata,i,PMDPub,minDepthConfidence,PMDtrans) 
%This function preprocesses 3D LIDAR data removing invalid points. If 
there 
%is one output argument it only processes the lidar data, if there are 
two 
%output arguments it also creates the ROS image message for 
transmission to 
%the remote computer.  
switch nargout 
    case 1    
        %Preprocess 3D lidar data 
        x = PMDdata.x; y=PMDdata.y; z=PMDdata.z; depth = 
single(PMDdata.depthConfidence); 
        pointsToKeep = depth > minDepthConfidence; 
        x = x(pointsToKeep); y = y(pointsToKeep); z = z(pointsToKeep); 
        organizedPoints = cat(3,x,y,z); 
         
        %Rotate and translate point cloud to robot frame 
        PMDCloud = pointCloud(organizedPoints); 
        PMDCloud = pctransform(PMDCloud,PMDtrans); 
    case 2 
        %Preprocess 3D lidar data 
        x = PMDdata.x; y=PMDdata.y; z=PMDdata.z; depth = 
single(PMDdata.depthConfidence); 
        pointsToKeep = depth > minDepthConfidence; 
        x = x(pointsToKeep); y = y(pointsToKeep); z = z(pointsToKeep); 
        organizedPoints = cat(3,x,y,z); 
         
        %Write ROS message 
        PMDImage = rosmessage(PMDPub); 
        PMDImage.Encoding = '32fc3'; %Single floating point 3 channel 
image 
        writeImage(PMDImage,organizedPoints); 
        PMDImage.Header.FrameId = num2str(i); 
         
        %Rotate and translate point cloud to robot frame 
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        PMDCloud = pointCloud(organizedPoints); 
        PMDCloud = pctransform(PMDCloud,PMDtrans); 
end      
end 
  
  
  
function goalReached = p3_goalReached(poseCurrent,goal) 
%This function determines if the robot has reached the current goal. 
global goalTolerance 
  
%Pull Data from Current Pose and store in local variables 
worldXCurrent=poseCurrent(1)*1000; 
worldYCurrent=poseCurrent(2)*1000; 
worldXGoal=goal(1); 
worldYGoal=goal(2); 
  
%Calculate Distance to Target Point 
worldDist=sqrt((worldXCurrent-worldXGoal)^2+(worldYCurrent-
worldYGoal)^2); 
  
if worldDist>goalTolerance 
    goalReached = false; 
else 
    goalReached = true; 
end 
  
end 
  
function cameraDevice = initializePMD() 
%This function initializes the PMD Pico monstar LIDAR. It is adapted 
from 
%the manufacturers MATLAB SDK example scripts and written as a local 
%function. Through experimentation the preset "use case 2" provided 
similar results to 
%those achieved varying the camera parameters individually to perceive 
the 
%lab environement. Other use cases are detailed in the PMD Pico monstar 
%documentation. Parameters can also be set individually using the 
object 
%methods (not documented for MATLAB, see classdef provided in SDK), 
however the preset use cases are 
%recommended.  
  
   % retrieve royale version information 
    royaleVersion = royale.getVersion(); 
    fprintf('* royale version: %s\n',royaleVersion); 
     
    % the camera manager will query for a connected camera 
    manager = royale.CameraManager(); 
    camlist = manager.getConnectedCameraList(); 
     
    fprintf('* Cameras found: %d\n',numel(camlist)); 
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    cellfun(@(cameraId)... 
        fprintf('    %s\n',cameraId),... 
        camlist); 
     
    if (~isempty(camlist)) 
        % this represents the main camera device object 
        cameraDevice = manager.createCamera(camlist{1}); 
    else 
        error(['Please make sure that a supported camera is plugged in, 
all drivers are ',... 
            'installed, and you have proper USB permission']); 
    end 
     
    % the camera device is now available and CameraManager can be 
deallocated here 
    delete(manager); 
     
    % IMPORTANT: call the initialize method before working with the 
camera device 
    cameraDevice.initialize(); 
     
    % retrieve valid use cases 
    UseCases=cameraDevice.getUseCases(); 
    fprintf('Use cases: %d\n',numel(UseCases)); 
    fprintf('    %s\n',UseCases{:}); 
    fprintf('====================================\n');   
    if (numel(UseCases) == 0) 
        error('No use case available'); 
    end 
    UseCase=UseCases{2}; 
    cameraDevice.setUseCase(UseCase); 
    cameraDevice.startCapture(); 
end 
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B. LISTENER.M 

%Listener.m establishes a ROS node on a remote windows computer and 
%subscribes to ROS image messages (PMD 3D point clouds), as well as ROS 
%pose messages sent from Master.m running on the robot on-board 
computer. 
%This script collect data and saves it to a .mat file to be processed 
with 
%one of the map building scripts.  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%Insructions:  
% 1. Open MobaXterm or PuTTY and connect to 192.168.0.9 
username:ecejames 
% 2. $tmux 
% 3. $roscore ctrl+b then % 
% 4. $rosrun urg_node urg_node ctrl+b then % 
% 5. $matlab -nodisplay -nosplash -nodesktop 
% 6. >>Master.m 
% 7. Run this script in MATLAB 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
  
clearvars; clc; close all 
  
%Preallocate cell arrays for messages 
maxFrames = 1000; 
PMDMessages= cell(maxFrames,1); 
poseMessages=cell(maxFrames,1); 
  
%Connect to ROS master already running on SlimPRO 
rosinit('192.168.0.9','NodeName','/windows_machine'); 
  
%Initialize subscribers 
PMDSub = rossubscriber('/scan3D','sensor_msgs/Image','BufferSize',3); 
RobotPoseSub = 
rossubscriber('/pose','geometry_msgs/PoseStamped','BufferSize',11); 
  
%Ensure all nodes are active 
disp('ROS Node List:') 
rosnode list 
disp('ROS Topic List:') 
rostopic list 
  
%Run while loop until robot stops sending messages 
i=1;    %increment 
while true 
    rateTimer = tic; 
    try 
        waitTimer = tic; 
         
        %Receive ROS Messages 
        poseMsg = receive(RobotPoseSub,30);  
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        PMDMsg = receive(PMDSub,30); 
         
        %Extract Frame ID from header 
        poseFrame = str2num(poseMsg.Header.FrameId); 
        PMDFrame = str2num(PMDMsg.Header.FrameId); 
        tWait = toc(waitTimer); 
    catch ME 
        %Error handling to prevent return if timeout occurs 
        disp('ROS Message Timeout') 
        if ~strcmp(ME.identifier,'MATLAB:undefinedVarOrClass') 
            disp(ME.message); 
        end 
        break    
    end 
     
    %Store Messages in cell array indexed by frame ID 
    PMDMessages{PMDFrame} = PMDMsg; 
    poseMessages{poseFrame} = poseMsg; 
    %Print incoming data rate (Hz) 
    t=toc(rateTimer); 
    ratestr = fprintf('Frame = %i, Rate = %f (Hz), ROS Wait Time = %f 
(s)\n',i,1/t,tWait); 
    i = i+1;    
end 
  
%Disconnect from ROS network 
rosshutdown 
disp('ROS Shutdown'); 
clear PMDPub PMDSub RobotPoseSub 
  
%If messages were received save in .mat file.  
if ~isempty(PMDMessages) && ~isempty(poseMessages) 
    save('P3_output.mat'); 
end 
 

C. MAPBUILDER.M 

%mapBuilder.m builds a 3D map from the messages stored from Listener.m. 
%This script uses the 2D transformation method (3 DoF) and does not 
%register point clouds using 3D ICP. 
  
%% Check if workspace is loaded 
clearvars; 
if ~exist('PMDMessages','var') || ~exist('poseMessages','var') 
    load('P3_output.mat'); 
end 
  
%% Initialize Variables and Containters 
vSet = pcviewset; 
PMD_height = 0.435; 
PMDOffset = -0.16; 
R = rotx(90)*rotz(90); 
trans = [PMDOffset 0 PMD_height]; 
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PMDtrans = rigid3d(R,trans); 
  
%% Find and remove empty cells from saved messages 
  
%Find Empty cells 
PMDidx = find(cellfun(@isempty,PMDMessages)); 
poseidx = find(cellfun(@isempty,poseMessages)); 
  
%Remove empty cells 
PMDMessages(PMDidx) = []; 
poseMessages(poseidx) =[]; 
  
%% Remove Frames with mismatched Ids 
  
%Extract PMD frame ids and save in numeric vector 
PMDFrameIds = []; 
for i = 1:length(PMDMessages) 
    PMDFrameIds(i) = str2num(PMDMessages{i}.Header.FrameId); 
end 
  
%Extract pose frame ids and save in numeric vector 
poseFrameIds =[]; 
for i = 1:length(PMDMessages) 
    poseFrameIds(i) = str2num(poseMessages{i}.Header.FrameId); 
end 
  
%Compare and adjust frame id vectors so they are the same. 
poseFrameIds = poseFrameIds(ismember(poseFrameIds,PMDFrameIds)); 
PMDFrameIds = PMDFrameIds(ismember(PMDFrameIds,poseFrameIds)); 
  
%Remove frames from cell array that do not match 
updateLength = length(PMDFrameIds); 
for i = 1:updateLength 
    localFrameId = str2num(PMDMessages{i}.Header.FrameId); 
    if ~any(PMDFrameIds == localFrameId) 
        PMDMessages(i) = []; 
    end 
    updateLength=length(PMDMessages); 
end 
for i = 1:updateLength 
    localFrameId = str2num(poseMessages{i}.Header.FrameId); 
    if any(poseFrameIds == localFrameId) 
    else 
        poseMessages(i) = []; 
    end 
    updateLength=length(poseMessages); 
end 
  
  
  
  
%% Read remaining messages with matching frame Ids 
idx = length(PMDMessages); 
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ptCloud = cell(idx,1); 
wPose2D = NaN(idx,3); 
  
for k = 1:idx 
    %Read PMD messages and rotate to world coordinate frame. 
    PMDMsg = PMDMessages{k}; 
    PMDImage = readImage(PMDMsg); 
    PMDCloud = pointCloud(PMDImage(:,:,1:3)); 
    PMDCloud = pctransform(PMDCloud,PMDtrans); 
    ptCloud{k} = PMDCloud; 
     
    %Convert quat Pose to 2D Pose and store 
    poseMsg = poseMessages{k}; 
    Eul = quat2eul([poseMsg.Pose.Orientation.W 
poseMsg.Pose.Orientation.X poseMsg.Pose.Orientation.Y 
poseMsg.Pose.Orientation.Z]); 
    theta = Eul(1);     
    absPose2D = [poseMsg.Pose.Position.X poseMsg.Pose.Position.Y 
theta]; 
    wPose2D(k,:) = absPose2D; 
end 
  
  
%% Compute transforms from 2D data and add to viewset object 
tic 
absTform = rigid3d; 
for i = 1: length(ptCloud) 
    trans = [wPose2D(i,1) wPose2D(i,2) PMD_height]; 
    rot = rotz(-rad2deg(wPose2D(i,3))); 
    absTform = rigid3d(rot,trans); 
    vSet = addView(vSet,i,absTform,"PointCloud",ptCloud{i}); 
     
end 
  
%% Build Map and view 
gridSize =0.03;  
ptCloudMap = helperBuildMapFromViewset(vSet, gridSize); 
toc 
figure 
pcshow(pcdenoise(ptCloudMap)) 
hold on 
scatter3(wPose2D(:,1),wPose2D(:,2),PMD_height*ones(length(wPose2D),1)); 
hold off 
xlabel('x');ylabel('y');zlabel('z'); 
  
%% Optional: Save Data 
saveInput = input('Save Data (y/n)?\n','s'); 
if strcmp(saveInput,'y') || strcmp(saveInput,'Y') 
    name = input('Enter File Name:\n','s'); 
    fileName = sprintf('%s.mat',name); 
    save(fileName); 
end 
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%% Supporting Functions 
  
  
function ptCloudMap = helperBuildMapFromViewset(vSet, gridSize) 
%This function is adapted from a function included in MATLAB R2020a 
example 
%BuildAMapFromLidarDataUsingSLAMExample.m. It utilizes point cloud 
viewsets 
%instead of the pcmerge.m function included in earlier work.  
  
numViews = vSet.NumViews; 
  
% Extract point cloud views and absolute transformations from view set.  
ptClouds  = vSet.Views.PointCloud; 
absTforms = vSet.Views.AbsolutePose; 
  
% Make point clouds unorganized 
for n = 1 : numViews 
    ptClouds(n) = removeInvalidPoints(ptClouds(n)); 
end 
  
% Preallocate map points 
totalNumPoints = sum([ptClouds.Count]); 
mapPoints = zeros(totalNumPoints, 3, 'like', ptClouds(1).Location); 
  
pointIndex = 1; 
for n = 1 : numViews 
    % Transform points to reference frame of first point cloud 
    ptCloud = pctransform(ptClouds(n), absTforms(n)); 
     
    % Accumulate map points 
    count = ptCloud.Count; 
    mapPoints(pointIndex:pointIndex+count-1, :) = ptCloud.Location; 
     
    pointIndex = pointIndex + count; 
end 
  
% Downsample points using voxel grid filter to the requested resolution 
ptCloudMap = pcdownsample(pointCloud(mapPoints), 'gridAverage', 
gridSize); 
end 
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D. MAPBUILDER3D.M 

 %mapBuilder3d.m builds a 3D map from the messages stored from 
Listener.m. 
%This script uses the 3D transformation method (6 DoF). First the 
%2D pose is used to initially transform each point cloud. Then 3D ICP 
%registration is used to calculate another transform to refine the map. 
  
  
  
%% Check if workspace is loaded 
clearvars; 
if ~exist('PMDMessages','var') || ~exist('poseMessages','var') 
    load('P3_output.mat'); 
end 
  
%% Initialize Variables and Containters 
vSet = pcviewset; 
PMD_height = 0.435; 
PMDOffset = -0.16; 
R = rotx(90)*rotz(90); 
trans = [PMDOffset 0 PMD_height]; 
PMDtrans = rigid3d(R,trans); 
%% Find and remove empty cells from saved messages 
%Find Empty cells 
PMDidx = find(cellfun(@isempty,PMDMessages)); 
poseidx = find(cellfun(@isempty,poseMessages)); 
  
  
%Remove empty cells 
PMDMessages(PMDidx) = []; 
poseMessages(poseidx) =[]; 
  
%% Remove Frames with mismatched Ids 
%Extract PMD frame ids and save in numeric vector 
PMDFrameIds = []; 
for i = 1:length(PMDMessages) 
    PMDFrameIds(i) = str2num(PMDMessages{i}.Header.FrameId); 
end 
%Extract pose frame ids and save in numeric vector 
poseFrameIds =[]; 
for i = 1:length(poseMessages) 
    poseFrameIds(i) = str2num(poseMessages{i}.Header.FrameId); 
end 
  
  
  
  
%Compare and adjust frame id vectors so they are the same. 
poseFrameIds = poseFrameIds(ismember(poseFrameIds,PMDFrameIds)); 
PMDFrameIds = PMDFrameIds(ismember(PMDFrameIds,poseFrameIds)); 
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%Remove frames from cell array that do not match 
updateLength = length(PMDFrameIds); 
for i = 1:updateLength 
    localFrameId = str2num(PMDMessages{i}.Header.FrameId); 
    if ~any(PMDFrameIds == localFrameId) 
        PMDMessages(i) = []; 
    end 
    updateLength=length(PMDMessages); 
end 
for i = 1:updateLength 
    localFrameId = str2num(poseMessages{i}.Header.FrameId); 
    if any(poseFrameIds == localFrameId) 
    else 
        poseMessages(i) = []; 
    end 
    updateLength=length(poseMessages); 
end 
  
%% Read remaining messages with matching frame Ids 
idx = length(PMDMessages); 
ptCloud = cell(idx,1); 
  
  
for k = 1:idx 
    %Read PMD messages and rotate to world coordinate frame. 
    PMDMsg = PMDMessages{k}; 
    PMDImage = readImage(PMDMsg); 
    PMDCloud = pointCloud(PMDImage(:,:,1:3)); 
    PMDCloud = pctransform(PMDCloud,PMDtrans); 
    ptCloud{k} = PMDCloud; 
     
    %Convert quat Pose to 2D relative Pose 
    poseMsg = poseMessages{k}; 
    Eul = quat2eul([poseMsg.Pose.Orientation.W 
poseMsg.Pose.Orientation.X poseMsg.Pose.Orientation.Y 
poseMsg.Pose.Orientation.Z]); 
    theta = Eul(1); 
    wPose2D(k,:) = [poseMsg.Pose.Position.X poseMsg.Pose.Position.Y 
theta]; 
     
end 
  
%% Compute  initial transforms from 2D data 
tic 
initTform = rigid3d; 
initialTransforms = cell(length(ptCloud),1); 
for i = 1: length(ptCloud) 
    if i == 1 
        trans =[0 0 0]; 
    else 
        trans = [wPose2D(i,1) wPose2D(i,2) 0]; 
    end 
    rot = rotz(-rad2deg(wPose2D(i,3))); 
    initTform = rigid3d(rot,trans); 
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    initialTransforms{i} = initTform; 
end 
  
  
%% Transform point clouds using 2D data 
  
ptCloudInitTform =cell(length(ptCloud),1); 
for n = 1: length(ptCloud) 
    if n == 1 
        ptCloudInitTFrom{n} = ptCloud{n}; 
    end 
     
   ptCloudInitTform{n} =pctransform(ptCloud{n},initialTransforms{n}); 
end 
  
%% Find relative transform using icp and add to vSet 
relTform= rigid3d; 
absTform = rigid3d; 
  
for k = 1:length(ptCloudInitTform) 
    if k == 1 
        vSet = 
addView(vSet,k,initialTransforms{k},"PointCloud",ptCloudInitTform{k}); 
        absTform = rigid3d(initialTransforms{k}.T); 
    else 
        prevPC = ptCloudInitTform{k-1}; 
        [~,~,outliers] = pcfitplane(prevPC,.1,[0 0 1],15); 
        prevPC = select(prevPC,outliers,'OutputSize','full'); 
         
        currentPC = ptCloudInitTform{k}; 
        [~,~,outliers] = pcfitplane(currentPC,.1,[0 0 1],15); 
        currentPC = select(currentPC,outliers,'OutputSize','full'); 
         
        relTform = 
pcregistericp(currentPC,prevPC,'Metric','pointToPoint','Extrapolate',tr
ue); 
        absTform = rigid3d(absTform.T * relTform.T); 
        vSet = 
addView(vSet,k,absTform,"PointCloud",ptCloudInitTform{k});    
    end 
end 
  
  
  
%% Build Map and view 
gridSize =0.03;  
ptCloudMap = helperBuildMapFromViewset(vSet, gridSize); 
toc 
pcshow(pcdenoise(ptCloudMap)); 
hold on 
scatter3(wPose2D(:,1),wPose2D(:,2),PMD_height*ones(length(wPose2D),1)); 
hold off 
xlabel('x');ylabel('y');zlabel('z'); 
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%% Optional: Save Data 
saveInput = input('Save Data (y/n)?\n','s'); 
if strcmp(saveInput,'y') || strcmp(saveInput,'Y') 
    name = input('Enter File Name:\n','s'); 
    fileName = sprintf('%s.mat',name); 
    save(fileName); 
end 
  
  
%% Supporting Functions 
  
  
function ptCloudMap = helperBuildMapFromViewset(vSet, gridSize) 
%This function is adapted from a function included in MATLAB R2020a 
example 
%BuildAMapFromLidarDataUsingSLAMExample.m. It utilizes point cloud 
viewsets 
%instead of the pcmerge.m function included in earlier work.  
  
numViews = vSet.NumViews; 
  
% Extract point cloud views and absolute transformations from view set.  
ptClouds  = vSet.Views.PointCloud; 
absTforms = vSet.Views.AbsolutePose; 
  
% Make point clouds unorganized 
for n = 1 : numViews 
    ptClouds(n) = removeInvalidPoints(ptClouds(n)); 
end 
  
% Preallocate map points 
totalNumPoints = sum([ptClouds.Count]); 
mapPoints = zeros(totalNumPoints, 3, 'like', ptClouds(1).Location); 
  
pointIndex = 1; 
for n = 1 : numViews 
    % Transform points to reference frame of first point cloud 
   % ptCloud = pctransform(ptClouds(n), absTforms(n)); 
    ptCloud = ptClouds(n); 
    % Accumulate map points 
    count = ptCloud.Count; 
    mapPoints(pointIndex:pointIndex+count-1, :) = ptCloud.Location; 
     
    pointIndex = pointIndex + count; 
end 
  
% Downsample points using voxel grid filter to the requested resolution 
ptCloudMap = pcdownsample(pointCloud(mapPoints), 'gridAverage', 
gridSize); 
end 
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APPENDIX B. ROBOT 1 

A. ROBOT_1_LLAM.M 

%Robot_1_LLAM.m is the full LLAM algorithm written to control Robot 1.  
%It was not fully debugged or checked for error handling prior to the 
%construction of Robot 2, however it had several succesful trials. 
Goals are frontier points selected from CannyFrontiers.m, waypoints are 
the intermediate points along the path that are output from the Hybrid 
A* Search algorithm. 
  
clear 
clc 
close all 
addpath 'C:\Users\localadmin\OneDrive - Naval Postgraduate 
School\NPS\Thesis\MATLAB Code\myMatlab' 
  
%% Navigation Parameters 
goal=[4;0 ].*610; 
waypointCurrent=goal; 
global goalTolerance 
goalTolerance =300; 
goalReached = false; 
numGoalsReached = 0; 
numWaypointsReached = 0; 
maxGoals = 3; 
  
  
  
%% Connect to Robot 
p3_connector_Payne('Com8'); 
disp('Connected to Robot') 
pause(0.8) 
  
%% Connect to Hokuyo LIDAR via usb 
%Open Connection To Hokoyu 
  
hokoyuAttempt=0; 
hokoyuConnected=0; 
while hokoyuAttempt<3 && hokoyuConnected == 0 
    try 
    s='Com7'; 
    t=serial(s,'InputBufferSize',5000); 
    fopen(t); 
    fprintf(t,'BM\n'); % measurement state 
    pause(0.1) 
    data = fread(t,t.BytesAvailable);  
    fprintf(t,'II\n'); % information 
    pause(0.1) 
    data = fread(t,t.BytesAvailable); 
    char(data') 
    hokoyuConnected == 1; 
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    catch ME 
        disp(['ID: ', ME.identifier]) 
        warning('Trying to Connect to Hokuyo Again') 
        hokoyuAttempt=hokpyuAttempt + 1; 
    end 
end 
  
disp('Connected to Hokuyo') 
pause(0.8) 
  
%Connect to PMD Monstar 
%See initialization local function in Master.m 
[cameraDevice, camlist, manager,ExposureMode]=Initialize(); 
cameraDevice.startCapture(); 
disp('Connected to PMD Pico Monstar') 
  
%Monstar Parameters 
sensor_height = 0.435; 
world_rotation_matrix=affine3d([0    -1     0   0; 
                                 0     0    -1   0; 
                                 1     0     0   0; 
                                 0     0     sensor_height   1;]); 
%Monstar Depth Confidence 
depth_confidence=155; 
  
%Hokoyu Parameters 
start=0; 
stop=1080; 
skip=0; 
res=0.25;        %URG-30LX-EW 
angleVector=((res*start:res:stop*res)-135)'.*pi/180; 
minScanRange = 0.3; 
  
 %Pose graph Parameters 
pGraph2d=poseGraph; 
  
  
  
%Create SLAM Object 
MaxFrames = 500; 
maxRange = 25; % meters 
resolution = 10; % cells per meter 
slamObj = lidarSLAM(resolution,maxRange); 
slamObj.LoopClosureThreshold = 100; 
slamObj.LoopClosureSearchRadius = 3; 
  
  
  
%Create Occupancy Map 
width = 30; 
height = 30; 
occMap=occupancyMap(width,height,resolution); 
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%Create goal and route validator 
global validator 
validator=validatorOccupancyMap; 
  
global planner 
planner=plannerHybridAStar(validator); 
  
  
  
  
  
  
tic 
i=0; 
scans=cell(1,MaxFrames); 
scans3d=cell(1,MaxFrames); 
lastAddIndex=1; 
  
while p3_getBumpersClear  & i<MaxFrames & numGoalsReached<=maxGoals 
    i=i+1 
    %Get 2d Lidar Data 
    rangeVector= utmGetScan(t,start,stop); 
    scan2d=LidarScan2d_fun(rangeVector,angleVector,minScanRange); 
%Create Lidar Scan for mapping 
    scans{i}=scan2d; %Save for Map Building 
     
    %Get 3d Lidar Data 
    data=cameraDevice.getData(); 
    depdata=single(data.depthConfidence(:)); 
    points=[data.x(:) data.y(:) data.z(:) depdata]; 
    idx = points(:,4)>depth_confidence;  
    points((idx==false),:)=[]; 
    points(:,4)=[]; 
    lidar_pc=pctransform(pointCloud(points),world_rotation_matrix); 
    scans3d{i}=lidar_pc;    
  
    if i >= 2 
        if i == 2 
            p3_setTransVel(400); 
        end     
        relPose=matchScans(scans{i-1},scans{i});      
        distanceMoved=norm(relPose); 
        addRelativePose(pGraph2d,-relPose); 
        if distanceMoved>0.03        
            poses=nodes(pGraph2d); 
            poseCurrent=poses(end,:); 
            waypointReached = 
p3_goalReached(poseCurrent,waypointCurrent); 
             
            %Initial Goal check, compute map and find next goal 
            if waypointReached == true && numGoalsReached == 0 
                p3_setTransVel(0); 
                p3_setRotVel(0); 
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                for j=lastAddIndex:10:i 
                    addScan(slamObj,scans{j}); 
                    [scansSLAM,poses] = scansAndPoses(slamObj); 
                    occMap = 
buildMap(scansSLAM,poses,resolution,maxRange); 
                    lastAddIndex = i; 
                     
                end     
                [refpath,isValid]=CannyFrontiers(occMap,poseCurrent); 
                if isValid == false 
                    break 
                end 
                 
                waypoints=refpath.States(1:end,1:2); 
                goal=waypoints(end,:); 
                numGoalsReached = numGoalsReached + 1; 
                numWaypointsReached = 1; 
                waypointCurrent=waypoints(numWaypointsReached,1:2); 
                 
            %Perform at intermediate waypoints 
            elseif waypointReached == true && 
numWaypointsReached<length(waypoints) 
                numWaypointsReached = numWaypointsReached + 1; 
                waypointCurrent=waypoints(numWaypointsReached,1:2); 
                 
            %Perform if last waypoint is the goal 
            elseif waypointReached == true  
                p3_setTransVel(0); 
                p3_setRotVel(0); 
                numGoalsReached= numGoalsReached + 1; 
                    for j=lastAddIndex:10:i 
                    addScan(slamObj,scans{j}); 
                    [scansSLAM,poses] = scansAndPoses(slamObj); 
                    occMap = 
buildMap(scansSLAM,poses,resolution,maxRange); 
                    lastAddIndex = i; 
                     
                    end    
                [refpath,isValid] = CannyFrontiers(occMap,poseCurrent); 
                if isValid == false 
                    break 
                end 
                waypoints=refpath.States(1:end,1:2); 
                goal=waypoints(end,:); 
            end 
            
[fwdVel,rotVel]=potentialField(poseCurrent,lidar_pc,scan2d,waypointCurr
ent); 
            p3_setTransVel(fwdVel); 
            p3_setRotVel(rotVel); 
        end  
    end 
end 
 %End while loop 
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time=toc;     
  
%%%%Close Hokoyu LIDAR%%%%%%% 
utmClose(t); 
disp('Hokoyu Disconnected') 
%%%%%Disconnect from robot%%%%%% 
p3_stopRobot; 
p3_disconnector; 
%%%%%%Disconnect from Pico Monstar%%%%%%% 
cameraDevice.stopCapture(); 
disp('PMD Pico Monstar Disconnected') 
fprintf('Capture Speed = %.3f (Hz)\n',i/time); 
  
  
  
%Uncomment to show occupancy map and overlaid 2D trajectory 
figure 
show(occMap) 
title('Occupancy Map of Lab') 
hold on 
show(pGraph2d) 
hold off 
  
%Build 3D map using 2D transformation method 
merGridStep = 0.01; 
ZregionLimits = [-.2,2.2]; 
accumTform=affine3d; 
tform=affine3d; 
k=sum(~cellfun(@isempty,scans3d),2); 
tformout=cell(1,k); 
transforms=nodes(pGraph2d); 
tic 
  
for index=2:k 
    if index==2 
       moving=pcdownsample(scans3d{index},'gridAverage',0.05); 
  
       tform.T=[cos(transforms(index,3)), -sin(transforms(index,3)), 0, 
transforms(index,1); 
                sin(transforms(index,3)), cos(transforms(index,3)), 0, 
transforms(index,2); 
                0                          0                        1   
0; 
                0                          0                        0   
1]'; 
       aligned=pctransform(moving,tform); 
       scene=pcmerge(scans3d{index-1},aligned,merGridStep); 
                 
       accumTform=tform; 
    elseif index>2  
  
        moving=pcdownsample(scans3d{index},'gridAverage',0.05); 
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         tform.T=[cos(transforms(index,3)), -sin(transforms(index,3)), 
0, transforms(index,1); 
                sin(transforms(index,3)), cos(transforms(index,3)), 0, 
transforms(index,2); 
                0                          0                        1   
0; 
                0                          0                        0   
1]'; 
        accumTform=affine3d(tform.T*accumTform.T); 
        aligned=pctransform(moving,tform); 
        scene=pcmerge(scene,aligned,merGridStep); 
    end 
end 
  
  
  
  
timeToRender=toc; 
  
%Display 3D map 
fprintf('Time to render = %.3f seconds\n',timeToRender); 
ind=scene.Location(:,3)>ZregionLimits(1)&scene.Location(:,3)<ZregionLim
its(2); 
ptCloudCut=select(scene,ind,'OutputSize','Full'); 
pcshow(ptCloudCut); 
hold on 
show(slamObj); 
title('Map of Lab') 
xlabel('X'); 
ylabel('Y'); 
hold off 
  
  
  

B. CANNYFRONTIERS.M 

function [refpath,isValid] = CannyFrontiers(occMap,poseCurrent) 
%CannyFrontiers.m formats an occupancy map as a binary image. Detects 
edges using Canny edge detection. Detects frontiers using a 
convolutional filter. Then plans a route using Hybrid A* Search. 
  
global validator 
global planner 
  
% Create temporary occ map so we do not inflate the original 
tempOccMap=occupancyMap(occMap); 
inflate(tempOccMap,0.1) 
  
% %Create validator Object 
validator.Map=tempOccMap; 
planner.MinTurningRadius=1.3; 
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%Create ternary matrix from occupancy map and run Canny edge detection 
A = occupancyMatrix(occMap,'ternary'); 
Aprime =A ==0; 
BW = edge(Aprime,'Canny'); 
  
%Find Indices of edges 
[r,c]=find(BW==1); 
  
%initialize variables for loop 
indices=[]; 
out=[]; 
  
%Check edges to see which pixels are unoccupied and adjacent to uknown 
%using convolution filter 
for ix = 1:length(r) 
    if A(r(ix),c(ix)) == 0 
    B=zeros(size(A)); 
    B(r(ix),c(ix))=1; 
    out=A(conv2(B,[1 1 1;1,0,1;1,1,1],'same')>0); 
    end 
     
    if any(out<0) 
        indices(ix,:)=[r(ix),c(ix)]; 
    end 
  
end 
indices=indices(indices~=0); 
indices=reshape(indices,[length(indices)/2,2]); 
  
%Create an image of only the frontier edges 
frontiers=zeros(size(A)); 
for i=1:length(indices) 
    j=indices(i,1); 
    k=indices(i,2); 
    frontiers(j,k)=1; 
end 
  
  
%Create world reference object 
imSize=size(frontiers); 
xWorldlimits=occMap.XWorldLimits; 
yWorldlimits=occMap.YWorldLimits; 
R=imref2d(imSize,xWorldlimits,yWorldlimits); 
  
frontiers=flipud(frontiers); %Needed for intrinsicToWorld to not flip y 
values 
cc=bwconncomp(frontiers);   %Find connected components in frontiers 
%Get stats on frontier ellipses 
stats = 
regionprops('table',cc,'Area','Centroid','MajorAxisLength','MinorAxisLe
ngth','Orientation'); 
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stats=flipud(sortrows(stats)); 
  
isValid = false; 
frontierArea=1000; %initialize with large value 
t = linspace(0,2*pi,48); %Parameter for inscribing ellipse 
  
while isValid == false & frontierArea > 3 
    inc = 1; 
     
    %Inscribe ellipse 
    a = stats.MajorAxisLength(inc)/2; 
    b = stats.MinorAxisLength(inc)/2; 
    Xc = stats.Centroid(inc,1); 
    Yc = stats.Centroid(inc,2); 
    phi = deg2rad(-stats.Orientation(inc)); 
    x = Xc + a*cos(t)*cos(phi) - b*sin(t)*sin(phi); 
    y = Yc + a*cos(t)*sin(phi) + b*sin(t)*cos(phi); 
    [xEllipse,yEllipse]=intrinsicToWorld(R,x,y); 
     
%Check validity of points on ellipse with Hybrid A* validator 
    validCandidates=[]; 
    for ix=1:length(xEllipse) 
        goalCandidate=[xEllipse(ix) yEllipse(ix)]; 
        goalCandidateVec=goalCandidate-[poseCurrent(1) poseCurrent(2)]; 
        thetaCandidate=atan2(goalCandidateVec(2),goalCandidateVec(1)); 
        goalCandidate=[goalCandidate thetaCandidate]; 
        candidateValid=isStateValid(validator,goalCandidate); 
        if candidateValid == true 
            validCandidates=[validCandidates goalCandidate']; 
        end 
    end 
    if isempty(validCandidates) 
        break 
    end 
    %Calculate distances to valid ellipse points 
    distances=vecnorm(validCandidates(1:2,:)-[poseCurrent(1) 
poseCurrent(2)]'); 
    goal=validCandidates(:,find(distances==min(distances)))'; 
    isValid = isStateValid(validator,goal); 
    inc = inc + 1; 
end 
  
if isValid == false 
    warning('No Valid Frontier Found') 
    refpath=0; 
else 
    try 
        refpath=plan(planner,poseCurrent,goal); 
        figure 
        show(planner); 
         
    catch ME 
        refpath = 0; 
        isValid = false; 
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        disp(['ID: ', ME.identifier]) 
        warning('No Valid Path Found') 
    end 
end 
  
  
  
  
  
%Optional: plot frontier ellipses on binary frontier image 
  
%Uncomment to show frontier ellipses in a figure 
% figure 
% imshow(frontiers); 
% sz=size(stats); 
% t = linspace(0,2*pi,50); 
% hold on 
% for k = 1:sz(1) 
%     a = stats.MajorAxisLength(k)/2; 
%     b = stats.MinorAxisLength(k)/2; 
%     Xc = stats.Centroid(k,1); 
%     Yc = stats.Centroid(k,2); 
%     phi = deg2rad(-stats.Orientation(k)); 
%     x = Xc + a*cos(t)*cos(phi) - b*sin(t)*sin(phi); 
%     y = Yc + a*cos(t)*sin(phi) + b*sin(t)*cos(phi); 
%     plot(x,y,'r','Linewidth',1) 
% end 
% hold off 
  
%Optional: Uncomment to plot selected frontier 
% figure 
% imshow(frontiers) 
% hold on 
%  
% a=stats.MajorAxisLength(maxRegionidx)/2; 
% b = stats.MinorAxisLength(maxRegionidx)/2; 
% Xc = stats.Centroid(maxRegionidx,1); 
% Yc = stats.Centroid(maxRegionidx,2); 
% phi = deg2rad(-stats.Orientation(maxRegionidx)); 
% x = Xc + a*cos(t)*cos(phi) - b*sin(t)*sin(phi); 
% y = Yc + a*cos(t)*sin(phi) + b*sin(t)*cos(phi); 
% plot(x,y,'r','Linewidth',1) 
%  
%  
% hold off 
  
%Uncomment to show extrema on occMap 
% figure 
% show(occMap) 
% hold on 
% plot(xWorldExtrema,yWorldExtrema,'+') 
% hold off 
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APPENDIX C. POTENTIAL FIELD MODEL AND SERIAL 
COMMUNICATIONS 

A. POTENTIALFIELD.M 

function 
[fwdVel,rotVel,Frep_r,Fatt_r]=potentialField(poseCurrent,scan3d,scan2d,
goal,mode) 
  
%potentialField.m calculates the potential field, attractive and 
%repulsive forces, and steering commands for the robot. The function 
%returns the forward and rotational velocities which are then sent to 
p3_setTransVel.m 
%and p3_setRotVel.m. This script is adapted from SONAR to 2D and 3D 
%LIDAR based on the method in: 
%X. Yun and K. Tan, “A Wall-Following Method for Escaping Local Minima 
in Potential Field Based Motion Planning,”  
%in 1997 8th International Conference on Advanced Robotics.  
%Proceedings. ICAR’97, pp. 421–426, Jul. 1997.  
  
%Local variables for input arguments 
qGoal=goal.'; 
q=[poseCurrent(1); poseCurrent(2)].*1000; 
theta= poseCurrent(3); 
  
%Potential Field Calculations 
RHO = 500;          % use with attractive force 
ZETA =  3.2;        % use with attractive force 
ETA = 4000;         % constant coefficient 
sensX = 1;          % sensitivity for transVel 
sensY = 15;         % sensitivity for rotVel 
dC = 3000;          % cut-off distance   
  
%Find 3D Points that fall within height of robot and sensors 
ind = (0.07<scan3d.Location(:,3)) & (scan3d.Location(:,3)<0.75); 
ind=find(ind); 
slice3d=select(scan3d,ind,'OutputSize','full'); 
xyCoords=[slice3d.Location(:,1), slice3d.Location(:,2)]'.*1000; 
  
%Convert from robot coordinates to polar coordinates 
lidarRanges=vecnorm(xyCoords); 
gamma=atan2(xyCoords(2,:),xyCoords(1,:))'.*1000; 
gammaBins=deg2rad([50; 40; 30; 20; 10; 0; -10; -20; -30; -40; -50]); 
dev=deg2rad(0.25); 
gammaSaved=[]; 
rangeSaved=[]; 
  
%Compress 3D points into 2D Hokuyo plane, save only one point in each 
angle 
%bin 
for i=1:length(gammaBins) 
    idx= gammaBins(i)-dev<=gamma & gamma<=gammaBins(i)+dev; 
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    if ~numel(idx) >= 2 
        idx = idx(1:2); 
    end 
    gammaTemp=gamma(idx)'; 
    rangeTemp=lidarRanges(idx); 
    gammaSaved=horzcat(gammaSaved, gammaTemp); 
    rangeSaved=horzcat(rangeSaved, rangeTemp); 
end 
gamma=gammaSaved; 
lidarRanges=rangeSaved; 
  
%Convert m to mm and combine 2D and 3D data 
ranges2d=scan2d.Ranges'.*1000; 
angles2d=scan2d.Angles'; 
lidarRanges=[lidarRanges ranges2d]; 
gamma=[gamma angles2d]; 
  
  
  
% compute the ATTRACTIVE FORCE in Robot-coords, 
if(norm(q-qGoal) <= RHO) 
    Fatt_w = -ZETA*(q-qGoal); 
else 
    Fatt_w = -ZETA*RHO * (q-qGoal)/norm(q-qGoal); 
end 
  
% transform Fatt_w to Fatt_r 
Tw2r = [cos(theta) sin(theta); -sin(theta) cos(theta)]; 
Fatt_r = Tw2r * Fatt_w;  % use this later in eq. 7 
  
  
Frep_r = [0;0]; 
for ix = 1:length(lidarRanges) 
    if(lidarRanges(ix) <= dC) 
        Rs2r = [cos(gamma(ix))   -sin(gamma(ix));  % sensor to robot 
frame 
            sin(gamma(ix))      cos(gamma(ix))]; 
        ni = Rs2r * [lidarRanges(ix);0]  ; 
        di = lidarRanges(ix); 
        Frep_r = -ETA * (1/di - 1/dC)*... 
            ni./di + Frep_r; 
         
    end 
end 
  
%Sum attractive and repulsive forces and compute steering commands 
Ftotal_r = Frep_r + Fatt_r;     
fwdVel = sensX * Ftotal_r(1); 
dir = atan2(Ftotal_r(2),Ftotal_r(1)); 
rotVel = sensY * dir; 
  
%These parameters are optional and can be adjusted based on the 
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%environment. In some cases having the robot turn slowly or not move in 
a 
%backward direction is beneficial to avoiding a local minimum or 
matching 
%degeneration. RECOMMENDED: limit forward velocity to less than 500 
mm/s. 
if dir > pi/2 || dir< -pi/2  
    %Limits the robot turning to quickly  
    %if the goal is more than 90deg from current heading 
    if fwdVel>0 
        fwdVel=40; 
    elseif fwdVel<0 
        fwdVel=-40;  
    end 
     
    if rotVel>0 
        rotVel=10; 
    elseif rotVel<0 
        rotVel=-10; 
    end 
else 
    %If the goal within 90deg of current heading, limits maximum 
velocities 
    if fwdVel > 225 
        fwdVel = 225; 
    end 
     
    if rotVel > 40 
        rotVel = 40; 
    end 
end 
  
  

B. P3_CONNECTOR.M 

function p3_connector(comString) 
% p3_connector initializes the connection to the robot. This script was 
% adapted from one written by Dr. James Calusdian, NPS ECE dept. 
% p3_connector(comString) opens the communication with either the real 
% robot or MobileSim.  To connect to the actual robot the input 
%parameter comString must be set equal to 'Com1' or appropriate com 
%port. To connect to MobileSim, comString must be set to 'MobileSim'.   
% Also see p3_disconnector for additional information. 
  
% in case we have some ports open from previous failed connections 
if ~isempty(instrfindall) 
    delete(instrfindall); 
end 
  
if ~isempty(timerfindall) 
    delete(timerfindall) 
end 
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global robotConnector; 
global SIP_HANDLER; 
global PULSE; 
  
% first define the sync bytes that we need to use 
SYNC0 = uint8([250 251 3 0 0 0]); 
SYNC1 = uint8([250 251 3 1 0 1]); 
SYNC2 = uint8([250 251 3 2 0 2]); 
START_SERVER = uint8([250 251 3 1 0 1]); 
ENABLE_MOTORS = uint8([250 251 6 4 59 1 0 5 59]); 
  
  
% also define the constants and variables we need 
syncState = 0;  % switch parameter 
sync0Lock = 0;  % case parameter 
sync1Lock = 1;  % case parameter 
sync2Lock = 2;  % case parameter 
syncLock012 = false; % overall sync status  
tryCounter = 0;      % number of attempts to communicate 
MAX_TRIES = 3;       % number of times to try synching up with robot 
  
  
  
% determine what type of input we have 
if nargin==0 
   s1 = sprintf('p3_connector FAIL!  Must provide an input parameter'); 
   s2 = sprintf('Exiting connector function.\n'); 
   disp(s1); 
   disp(s2); 
   return; 
else 
    if strcmp(comString, 'MobileSim') 
        s = sprintf('Connecting to MobileSim...'); 
        disp(s); 
        % define our tcip connection 
        robotConnector = tcpip('localhost',8101);  % connecto to 
MobileSim 
        %set(robotConnector,'Terminator',''); 
        fopen(robotConnector);      % open the connection 
    
    elseif strcmp(comString, comString) 
        s = sprintf('Connecting to real robot on Com1...'); 
        disp(s); 
        % establish serial connection to the real robot... 
        robotConnector = serial(comString,'BaudRate',9600); 
        fopen(robotConnector);   
         
    else 
        s1 = sprintf('Input parameter not recognized'); 
        s2 = sprintf('Exiting p3_connector function.\n'); 
        disp(s1); 
        disp(s2); 
        return; 
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    end         
end 
  
  
% send and verify our syncronization packets 
while( ~syncLock012 ) 
     
 switch syncState 
     
     case sync0Lock 
         s = sprintf('Sending Sync0'); 
         disp(s); 
        fwrite(robotConnector, SYNC0);  
        [response, counts] = fread(robotConnector, [1 6],'uint8'); 
        if isequaln(response, SYNC0) 
            syncState = sync1Lock; 
            s = sprintf('Sync0 acknowledged\n'); 
            disp(s); 
          
        else 
            if tryCounter < MAX_TRIES 
                syncState = sync0Lock; 
                syncLock012 = false; 
                tryCounter = tryCounter + 1; 
                s = sprintf('Sync0 fail.   Sending Sync0 again\n'); 
                disp(s); 
            else 
                syncLock012 = true;  % set to TRUE to get out of while-
loop 
                s = sprintf('Sync0 fail. Max tries exceeded\nClosing 
local port\n'); 
                disp(s); 
                fclose(robotConnector); 
            end 
             
        end 
         
     case sync1Lock 
         s = sprintf('Sending Sync1'); 
         disp(s); 
         fwrite(robotConnector, SYNC1); 
         [response, counts] = fread(robotConnector, [1 6], 'uint8'); 
         if isequaln(response, SYNC1) 
            syncState = sync2Lock; 
            s = sprintf('Sync1 acknowledged\n'); 
            disp(s); 
            syncLock012 = false; 
             
         else 
            if tryCounter < MAX_TRIES 
                syncState = sync1Lock; 
                syncLock012 = false; 
                tryCounter = tryCounter + 1; 
                s = sprintf('Sync1 fail.   Sending Sync1 again\n'); 
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                disp(s); 
            else 
                syncLock012 = true;  % set to TRUE to get out of while-
loop 
                s = sprintf('Sync1 fail. Max tries exceeded\nClosing 
local port\n'); 
                disp(s); 
                fclose(robotConnector); 
            end 
         end 
         
     case sync2Lock 
         s = sprintf('Sending Sync2'); 
         disp(s); 
         fwrite(robotConnector, SYNC2);pause(0.8); 
         bytesAvail = robotConnector.BytesAvailable; 
         [response, counts] = fread(robotConnector, [1 
bytesAvail],'uint8');               
         s = sprintf('Connected to %s\n',response(3:end-3)); 
         disp(s); 
          
         % send the OPEN command to start up server 
         fwrite(robotConnector, START_SERVER); 
          
         % start up heartbeat timer 
         p3_heartbeatTimer; 
         answer = PULSE.Running; 
         s = sprintf('Heartbeat timer is %s\n',answer); 
         disp(s); 
          
         % start the SIP handler (timer) to read packets 
         p3_SIP_Timer; 
         answer = SIP_HANDLER.Running; 
         s = sprintf('SIP Handler is %s\n',answer); 
         disp(s); 
          
         % send command 4 to enable the motors 
         fwrite(robotConnector, ENABLE_MOTORS); pause(0.8) 
          
         % break out of this loop 
         syncLock012 = true; 
             
     
     
 end  % switch-case 
  
end  % while 
  
  
pause(5);   % wait a few seconds for everything to sync up 
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C. P3_DISCONNECTOR.M 

function p3_disconnector 
% P3_DISCONNECTOR disconnects from the robot or MobileSim. This script 
% was written by Dr. James Calusdian, NPS ECE Department. 
% This function disconnects from the robot by stopping the SIP handler, 
% stopping the PULSE timer, and closing the robotConnector object.  No 
%input or output parameters are required for this function.  Also see 
%p3_connector.   
  
global robotConnector; 
global SIP_HANDLER; 
global PULSE; 
global myTestData; 
  
% first define the sync bytes that we need to use 
CLOSE_CONNECTION = uint8([250 251 3 2 0 2]); 
  
  
% stop processing the SIP packets 
s = sprintf('Stopping the SIP handler...'); 
disp(s); 
stop(SIP_HANDLER); 
answer = SIP_HANDLER.Running; 
s = sprintf('SIP Handler is %s\n',answer); 
disp(s); 
delete(SIP_HANDLER); 
%save('testData.mat','myTestData'); 
  
% stop the heartbeat, which was started with p3_heartbeatTimer. 
s = sprintf('Stopping PULSE heartbeat...'); 
disp(s); 
stop(PULSE); 
answer = PULSE.Running; 
s = sprintf('Pulse heartbeat is %s\n',answer); 
disp(s); 
delete(PULSE); 
  
  
% close the robot connection 
s = sprintf('Closing robot connection'); 
disp(s); 
fwrite(robotConnector,CLOSE_CONNECTION); pause(0.8); 
fclose(robotConnector); 
delete(robotConnector); 
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D. P3_GETBUMPERSCLEAR.M 

function [bumpersClear] = p3_getBumpersClear 
%P3_GETBUMPERSCLEAR returns true if ALL bumpers clear, false otherwise. 
%This script was written by Dr. James Calusdian NPS ECE Department. 
  
global SIPdata; 
HEADER_BYTE0 = uint8(250); 
HEADER_BYTE1 = uint8(251); 
  
% if we have the SIPdata available, we can pull out the battery 
voltage. 
% First, let's double check that we have the right data 
if SIPdata(1) == HEADER_BYTE0 
    if SIPdata(2) == HEADER_BYTE1 
        bumperStatus = make16(SIPdata(17),SIPdata(16)); 
         
       if bumperStatus 
           bumpersClear = false; 
           disp('Bumper hit!'); 
       else 
           bumpersClear = true; 
           %disp('TRUE'); 
       end 
    end 
end 
  
 

E. P3_SETROTVEL.M 

function p3_setRotVel(rotVel) 
%P3_SETROTVEL causes the robot to rotate ccw(+) or cw(-) at specified 
%deg/sec.p3_setRotVel(rotVel) causes the robot to rotate with the 
%angular velocity specified in rotVel (deg/second).  A (+) rotVel 
%produces a CCW rotation, and a (-) rotVel produces a CW rotation, as 
%viewed from the top of the robot.   
%This function was written by Dr. James Calusdian, NPS ECE Department. 
%See ARCOS command 9 in Operations Manual, pp 31. 
  
global robotConnector; 
HEADER_BYTE0 = uint8(250); 
HEADER_BYTE1 = uint8(251); 
commandNumber = uint8(9); 
  
% construct the command to rotate 
if rotVel < 0 
    argType = uint8(27);    % negative 
else 
    argType = uint8(59);   % positive 
end 
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% convert "rotVel" into two bytes of uint8 
temp = uint16(abs(rotVel)); 
[MSB, LSB]=split16(temp); 
  
% next construct the command packet 
command = uint8([commandNumber argType LSB MSB ]); 
byteCount = uint8(length(command) + 2);  % include 2 checkSum bytes 
[chkMSB, chkLSB] = checksum4p3(command); 
setRotCommand = uint8([HEADER_BYTE0 HEADER_BYTE1 byteCount command 
chkMSB chkLSB]); 
  
% send everything to the robot 
fwrite(robotConnector, setRotCommand); 
 

F. P3_SETTRANSVEL.M 

function p3_seTransVel(transVel) 
%P3_SETTRANSVEL sets the translational velocity for the robot. 
%p3_setTransVel(transVel) causes the robot to move forward (+) or  
%backward (-) at the speed of "transVel" mm/sec.  
%This function was written by Dr. James Calusdian, NPS ECE Department. 
%See ARCOS command 11 in Operations Manual, pp 31. 
  
global robotConnector; 
HEADER_BYTE0 = uint8(250); 
HEADER_BYTE1 = uint8(251); 
commandNumber = uint8(11); 
  
% construct the command to translate 
if transVel < 0 
    argType = uint8(27);    % negative 
else 
    argType = uint8(59);   % positive 
end 
  
% convert "transVel" into two bytes of uint8 
temp = uint16(abs(transVel)); 
[MSB, LSB]=split16(temp); 
  
% next construct the command packet 
command = uint8([commandNumber argType LSB MSB ]); 
byteCount = uint8(length(command) + 2);  % include 2 checkSum bytes 
[chkMSB, chkLSB] = checksum4p3(command); 
translateCommand = uint8([HEADER_BYTE0 HEADER_BYTE1 byteCount command 
chkMSB chkLSB]); 
  
% send everything to the robot 
fwrite(robotConnector, translateCommand); 
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