

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

AUTONOMOUS INTERIOR MAPPING ROBOT
UTILIZING LIDAR LOCALIZATION AND MAPPING

by

Jameson S. Payne

September 2020

Thesis Advisor: Xiaoping Yun
Second Reader: James Calusdian

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2020

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
AUTONOMOUS INTERIOR MAPPING ROBOT UTILIZING LIDAR
LOCALIZATION AND MAPPING

5. FUNDING NUMBERS

6. AUTHOR(S) Jameson S. Payne

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
Combat actions are planned based on the best available information. In nearly all situations, significant

uncertainty about the combat environment exists. This uncertainty contributes largely to friendly and
non-combatant casualties. At the tactical level, operators are often required to enter hostile-occupied
buildings without knowledge of the building layout. Military operators have begun to use robots to assist in
missions of this type. In general, currently fielded robots lack autonomy and the ability to disseminate an
accurate map, on-site, in real time. The purpose of this thesis is to examine the feasibility of an autonomous
robot that can localize and build accurate 3D maps using only light detection and ranging (LIDAR). To
accomplish this, a robot equipped with only LIDAR and a control algorithm for LIDAR localization and
mapping (LLAM) were developed. Trials were then developed to determine if LLAM is a feasible model for
interior 3D mapping. Navigation was accomplished using a potential field model adapted from previous
work combined with the Hybrid A* search algorithm. Mapping and localization were conducted using the
iterative closest point and normal distribution transform methods of point cloud registration.
Experimentation revealed that LLAM is a feasible method for interior 3D mapping in real time. Further
development of the algorithm may make fielding a LIDAR-equipped mapping robot possible with current
mobile computing technology.

14. SUBJECT TERMS
autonomous, robotics, light detection and ranging, LIDAR, LIDAR localization and
mapping, LLAM

15. NUMBER OF
PAGES

137
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

AUTONOMOUS INTERIOR MAPPING ROBOT UTILIZING LIDAR
LOCALIZATION AND MAPPING

Jameson S. Payne
Major, United States Marine Corps

BSME, Washington State University, 2008

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2020

Approved by: Xiaoping Yun
 Advisor

 James Calusdian
 Second Reader

 Douglas J. Fouts
 Chair, Department of Electrical and Computer Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 Combat actions are planned based on the best available information. In nearly all

situations, significant uncertainty about the combat environment exists. This uncertainty

contributes largely to friendly and non-combatant casualties. At the tactical level,

operators are often required to enter hostile-occupied buildings without knowledge of the

building layout. Military operators have begun to use robots to assist in missions of this

type. In general, currently fielded robots lack autonomy and the ability to disseminate an

accurate map, on-site, in real time. The purpose of this thesis is to examine the feasibility

of an autonomous robot that can localize and build accurate 3D maps using only light

detection and ranging (LIDAR). To accomplish this, a robot equipped with only LIDAR

and a control algorithm for LIDAR localization and mapping (LLAM) were developed.

Trials were then developed to determine if LLAM is a feasible model for interior 3D

mapping. Navigation was accomplished using a potential field model adapted from

previous work combined with the Hybrid A* search algorithm. Mapping and localization

were conducted using the iterative closest point and normal distribution transform

methods of point cloud registration. Experimentation revealed that LLAM is a feasible

method for interior 3D mapping in real time. Further development of the algorithm may

make fielding a LIDAR-equipped mapping robot possible with current mobile computing

technology.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. RELATED WORK ..3
C. PURPOSE AND GOAL ..5

II. HARDWARE AND SOFTWARE DESCRIPTION ...7
A. HARDWARE ...7

1. Omron Adept MobileRobots Pioneer 3-DX (P3-DX)7
2. PMD Technologies CamBoard Pico monstar8
3. Hokuyo UTM-30LX ...9
4. Dell Latitude 3050 Laptop ..10
5. SlimPRO SP675P i7 Mini PC..11
6. Dell Optiplex 7040 Desktop ...11

B. SOFTWARE ...12
1. MATLAB ..12
2. Royale Software Suite ..12
3. Robot Operating System (ROS) ...14

III. LOCALIZATION AND MAPPING ..15
A. REFERENCE FRAMES ...15
B. POINT CLOUD REGISTRATION ...17

1. Iterative Closest Point Method ...18
2. Normal Distribution Transform Method...................................22
3. Coherent Point Drift Method ..23
4. Comparison and Selection of a Registration Method24

C. POINT CLOUD MERGING AND MAP BUILDING28
D. LOOP-CLOSURE AND DRIFT CORRECTION30

IV. ROBOT CONTROL SCHEME..33
A. OVERVIEW ...33
B. OBSTACLE AVOIDANCE ..37

1. Attractive Force ...37
2. Repulsive Forces...38
3. Adaptation to Three Dimensions ..40

C. NAVIGATION ...41
1. Pure Pursuit ..42
2. Hybrid A* Search ..42

viii

3. Frontier Search ..46
D. MAP BUILDING ...51

1. ROS Network and Point Cloud Transmission51
2. Two-Dimensional Transformation Method51
3. Three-Dimensional Transformation Method52

V. RESULTS ...55
A. LOCALIZATION ..55

1. Matching Degeneration ...56
2. Accuracy on a Closed Loop ...60
3. Algorithm Speed...61

B. MAP BUILDING ...62
1. Map Accuracy and Interpretability ...62
2. Comparison of 2D and 3D Transformation Methods65

C. OBSTACLE AVOIDANCE AND ROUTE PLANNING66

VI. CONCLUSIONS ..69
A. ASSESSMENT OF GOALS ...69

1. Feasibility of LLAM for Autonomous Interior Mapping69
2. Adequate Resolution ..70
3. Obstacle Detection and Autonomous Navigation70
4. Map Visualization Method ..71

B. LIMITATIONS ..71
1. Hardware ..71
2. Software ..72

C. FUTURE WORK ...73
1. Algorithm Optimization and Hardware Upgrade73
2. Point Cloud Registration ...74
3. Obstacle Avoidance and Navigation Model74
4. Map Building and Human Interactivity75
5. Adaptation to a Flying Robot..75

APPENDIX A. ROBOT 2..77
A. MASTER.M ..77
B. LISTENER.M...84
C. MAPBUILDER.M ...85
D. MAPBUILDER3D.M...89

APPENDIX B. ROBOT 1 ..93
A. ROBOT_1_LLAM.M ..93

ix

B. CANNYFRONTIERS.M ...98

APPENDIX C. POTENTIAL FIELD MODEL AND SERIAL
COMMUNICATIONS ..103
A. POTENTIALFIELD.M ...103
B. P3_CONNECTOR.M ..105
C. P3_DISCONNECTOR.M ..109
D. P3_GETBUMPERSCLEAR.M ..110
E. P3_SETROTVEL.M ..110
F. P3_SETTRANSVEL.M ...111

LIST OF REFERENCES ..113

INITIAL DISTRIBUTION LIST ...117

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF FIGURES

Figure 1. ReconRobotics’ Recon Scout XT Throwable Robot. Source: [2].2

Figure 2. Omron Adept MobileRobots Pioneer 3-DX. Source: [13]8

Figure 3. PMD Technologies PMD Pico monstar 3D Camera. Source: [14].9

Figure 4. Hokuyo UTM-30LX Scanning Laser Range Finder. Source: [15].10

Figure 5. Royale Viewer Point Cloud Visualization Software13

Figure 6. Four Iterations of The ICP Algorithm Aligning Red Points to Blue
Points, the Correspondences Depicted as Green Lines. Source: [21].20

Figure 7. Two-Dimensional KD Tree Example. Source: [24].21

Figure 8. Three-Dimensional Map of KITTI Benchmark Suite Data Generated
using ICP. ...25

Figure 9. ICP Comparison of Yaw from KITTI Dataset ...26

Figure 10. NDT Comparison of Yaw from KITTI Dataset ...26

Figure 11. CPD Comparison of Yaw from KITTI Dataset ...27

Figure 12. Robot 1 ...34

Figure 13. Robot 1 LIDAR Localization and Mapping Algorithm35

Figure 14. Robot 2 ...35

Figure 15. Robot 2 ROS Architecture ...36

Figure 16. Robot 2 LIDAR Localization and Mapping Algorithm36

Figure 17. Robot 1 SLAM Map (Spanagel Hall Laboratory 521)43

Figure 18. Robot 1 Occupancy Map (Spanagel Hall Laboratory 521)44

Figure 19. A* Search versus Hybrid A* Search. Source: [34]45

Figure 20. Example Implementation of Hybrid A* Search Algorithm in
MATLAB. Source: [35] ...45

Figure 21. Frontier Search Algorithm ...47

xii

Figure 22. Example Initial Ternary Occupancy Map (Spanagel Hall Laboratory
521) ..48

Figure 23. Example of Remaining Frontier Pixels (Spanagel Hall Laboratory
521) ..49

Figure 24. Example of Ellipses Inscribing Connected Frontiers (Spanagel Hall
Laboratory 521) ...50

Figure 25. Example of Matching Degeneration ..57

Figure 26. 3D Map of Spanagel 521 Laboratory Space Using 3D and 2D
LIDAR Data ...58

Figure 27. 3D Map of Spanagel 521 Top Down View Overlaid with 2D
Hokuyo SLAM Map ..59

Figure 28. 3D Map of Spanagel 521 from Robot 2 Closed Loop Experiment............63

Figure 29. Example of a User Interface that Allows Map Exploration64

Figure 30. Comparison of 2D (left) and 3D (right) Transformation Methods of
Map Building ...65

xiii

LIST OF TABLES

Table 1. Comparison of Point Cloud Registration Methods24

Table 2. Closed Loop Test Data...60

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

LIST OF ACRONYMS AND ABBREVIATIONS

CPD Coherent Point Drift
DoF Degree of Freedom
FoV Field of View
GNSS Global Navigation Satellite System
GNSS/INS GNSS-Inertial Navigation System
ICP Iterative Closest Point
IMU Inertial Measurement Unit
LIDAR Light Detection and Ranging
LLAM LIDAR Localization and Mapping
LOAM LIDAR Odometry and Mapping
NDT Normal Distribution Transform
SDK Software Development Kit
ROS Robot Operating System
SOF Special Operations Forces
ToF Time-of-Flight

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

ACKNOWLEDGMENTS

I would like to thank my advisors, Dr. Xiaoping Yun and Dr. James Calusdian. Dr.

Yun, for your exceptional instruction throughout my graduate-level courses, which is the

reason I became interested in this topic. Furthermore, your guidance during research has

been incredibly valuable. You granted me the latitude to explore the subject as I saw fit

and the guidance required to achieve something useful. Dr. Calusdian, I cannot begin to

enumerate all the problems you helped me solve, or the ideas you provided. Your patience

and genuine concern for the education of your students was apparent from the first course

I took at NPS. I am grateful to both of you for your hard work and outstanding instruction.

I would also like to thank my family. To my wife, Jessica, you are everything to

me. You are the reason I chose to pursue engineering after a decade in combat arms, a

decision that I am grateful for every day. You have stood by me through the weekends of

math and studying, and provided more support than you know. You are a wonderful wife

and mother, and I love you very much.

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

The use of light detection and ranging (LIDAR) for mapping and obstacle

avoidance in autonomous ground vehicles is an active area of study. The accuracy,

precision, responsiveness, and continuously decreasing cost of LIDAR makes it attractive

as a solution for creating detailed, highly accurate maps. The use of LIDAR in autonomous

localization is a newer, less developed area of study but shows promise for the future of

autonomous vehicles.

Recently, commercially available LIDAR systems have significantly dropped in

cost and increased in resolution. Velodyne, for example, produces a commercially

available LIDAR that can produce as many as 4.8 million 3D points per second with return

ranges up to 245 m [1]. This level of resolution can produce highly detailed 3D models;

however, computer processing of a point cloud that large can create significant problems.

The overwhelming amount of data generated by 3D LIDAR systems creates a bottleneck

that makes localization and mapping in real time challenging. LIDAR-based localization

and mapping has a wide range of uses today. In most applications, LIDAR is primarily

used to build a map. LIDAR-based localization is typically combined with other sensors to

estimate the position and orientation, or pose, of a robot. Frequently, LIDAR-based

localization and mapping is done in post-collection processing. During collection of

LIDAR data, the robot or autonomous vehicle is localized by a suite of other sensors. After

it has run its intended trajectory, the data is then processed to create a three-dimensional

map. This model works well for many industrial applications; however, it requires larger,

heavier, more complex robots that are not well suited for military ground reconnaissance

purposes. This thesis examines the applicability of LIDAR-based localization and mapping

to military operations, the motivation, related work, and purpose of this research are

outlined in this chapter.

A. MOTIVATION

Infantrymen and special operators are often required to enter hostile buildings with

no prior knowledge of the building layout. Typically, hostile actors inside the building

2

know the layout and thus have a tactical advantage. The author, as an infantry officer and

expeditionary ground reconnaissance officer has encountered this problem firsthand

without a suitable solution available. Recently, infantry, SOF, and reconnaissance units

have fielded various robots such as the Recon Scout XT depicted in Figure 1. These robots

are controlled by a human that receives feedback from an onboard camera to the handheld

remote control. The video is valuable in identifying hostile actors and occasionally booby

traps, but there is no residual map. Frequently these recon robots need to be employed

when a small unit is tactically distributed in such a manner that only the operator and

perhaps the unit commander can view the video feed. Communicating the layout of a

building by voice can be difficult and ineffective. As small tablet devices become more

widely proliferated among tactical operators, ideally, a robot could build a map and

transmit it instantly to all operators on-scene for increased situational awareness.

Figure 1. ReconRobotics’ Recon Scout XT Throwable Robot. Source: [2].

As the field of autonomous robotics continues to advance, a technological solution

to this problem is becoming more feasible. LIDAR is widely used in remote sensing,

autonomous driving, and robotics. However, further research needs to be conducted into how

this technology can be adapted to benefit the tactical-level warfighter. This work aims to

examine whether LIDAR can be used effectively on a small mobile robot to improve

situational awareness from a tactical perspective. Specifically, whether a robot can

3

autonomously map the interior of rooms using only LIDAR without additional sensors, such

as inertial measurement units, GPS, monocular or stereo cameras, wheel encoders, etc.

Utilizing a single LIDAR sensor for both localization and mapping is a relatively

new approach to solving the simultaneous localization and mapping (SLAM) problem in

autonomous robotics. Multiple sensors add weight and complexity to a robot. Tactical level

operators need lightweight, simple, and resilient gear that will function in austere

conditions. Additionally, the majority of research in the field of LIDAR localization and

mapping (LLAM), sometimes called LIDAR odometry and mapping (LOAM), is primarily

focused on increasing the resolution of a 3D map and reducing drift of the robot, usually

with the trajectory of the robot being controlled by a human. Tactical-level operators do

not need a highly detailed interior map; a quickly developed map with limited resolution

that can be built on-scene autonomously would be more beneficial. This research seeks to

determine whether current technology is sufficient to develop that capability.

B. RELATED WORK

This research falls under a larger autonomous robotics project conducted within the

Electrical and Computer Engineering Department at the Naval Postgraduate School. The

goal of this larger umbrella project is to create a robot capable of autonomous navigation

from any location on campus to any other location on campus regardless of the terrain,

structures, or obstacles encountered. Hagardine [3] developed algorithms to avoid both

static and moving obstacles using a single 2D LIDAR in an unstructured outdoor

environment. Similarly, in [4], Miyakawa used downward-looking LIDAR to avoid low-

profile obstacles and a sensor suite including optical flow sensors and GNSS/INS to

localize the robot. Lebrun [5] expanded on the work of Hagardine by integrating visual

classification of obstacles from camera data and the random forest machine-learning

algorithm. Finally, Magee [6] examined autonomous navigation through convolutional

neural network image classification. In her work, she used a SLAM map collected from

2D LIDAR for waypoint generation. All of these theses contributed to this research to some

degree, much of these previous works have been adapted for the purpose of LLAM,

particularly obstacle detection and avoidance algorithms.

4

Outside of Naval Postgraduate School, significant work has been done in both

academia and industry on the use of LIDAR in autonomous robotics. Moosmann and Stiller

[7] developed an LLAM model that was effective in building a 3D map despite high sensor

noise. In [8], Zhang and Singh introduced a real-time mapping and localization algorithm

using at 2D Hokuyo UTM-30LX laser scanner, which was mounted to a motor that rotated

the entire LIDAR unit about an axis orthogonal to the laser scan axis of rotation. This

allowed them to generate a 3D point cloud from a 2D LIDAR. This method was interesting

but complicated due to the constant two-axis rotation, which can cause poor point cloud

registration. Ji et al. [9] introduced loop-closure correction to LOAM based on point cloud

segmentation and random forest algorithm classification; this represented a complete

LLAM solution to solve the SLAM problem. Loop-closure is a necessary step for large-

scale or highly accurate mapping; however, as will be discussed later, it may not be

necessary for tactical level operations.

Lightweight and ground-optimized LOAM was introduced in [10] for ground

vehicles on variable terrain. This framework introduced the novel concept of segmenting a

point cloud and obtaining one part of the required transformations from planar features,

and another part from edge features. This allowed for a six degrees of freedom (DoF) model

while reducing the workload for the robot onboard computer. In [11], Lin and Zhang

develop a method for scan matching for limited field of view (FoV) LIDARs with non-

repetitive scanning patterns. All of these works introduced novel concepts, but in all cases,

the LIDAR system was mounted to a vehicle or robot with the trajectory being pre-planned

or controlled remotely by a human, or in some cases, such as in [11], actually attached to

a computer carried by a human. These works did not solve the tactical on-site

reconnaissance problem addressed here. Additionally, although they successfully

demonstrated that LLAM can be carried out accurately in real-time, to include loop-closure

based drift correction, they did not seek to conduct mapping of an unknown area fully

autonomously. In order to operate autonomously, the robot must be able to localize and

map, in addition to numerous other processes including obstacle detection and avoidance,

incrementally re-planned exploration, waypoint planning, and route optimization. All of

5

these processes require additional computational power on a mobile robot, which may

exceed the limits of current mobile computing technology.

C. PURPOSE AND GOAL

The purpose of this research is to examine the feasibility of a LIDAR-only based

autonomous mobile robot and its capacity for scanning rooms in a tactical environment.

Most of industry and academia are currently focused on the development of highly

accurate, detailed, large-scale, and semi-autonomous LLAM capability. This research, on

the other hand, focuses on the development of a rapid, efficient, limited-scale, fully-

autonomous capability. This includes examining not only the methods of LIDAR scan

matching, route planning, obstacle avoidance, and frontier exploration, but also their

integration. It also requires an examination of the map resolution that is required for tactical

level planning and the most effective method of visually displaying the 3D interior of

rooms.

The goal is to construct a robot that can successfully map the interior of rooms

autonomously and in real time. For this project, a ground vehicle was used for

experimentation. However, as the future of this technology likely involves an aerial robot,

such as a LIDAR-equipped drone, the goal included development of a six DoF model that

could be easily adapted to an aerial robot.

The rest of this thesis is organized as follows. The hardware and software used for

the construction of two LLAM robots is discussed in Chapter II. The theory of LLAM,

methods of LIDAR scan matching, and map-making techniques are examined in Chapter

III. The design of the robots and the control algorithms implemented in this work are

detailed in Chapter IV. Results of experimentation on these robots are examined in Chapter

V and conclusions on the feasibility of LLAM for tactical applications are discussed in

Chapter VI.

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. HARDWARE AND SOFTWARE DESCRIPTION

A. HARDWARE

The hardware used in this thesis research consisted of an indoor two-wheeled

mobile robot, a 2D LIDAR system, a 3D time-of-flight (ToF) camera, an onboard

computer, and a laptop or desktop computer. This robot was used previously in [6]; in this

work it was adapted to carry a 3D ToF camera.

1. Omron Adept MobileRobots Pioneer 3-DX (P3-DX)

The base robot used was an Omron Adept MobileRobots Pioneer 3-DX, as seen in

Figure 2. It is a two-wheeled robot with a third caster, allowing it to remain balanced.

According to [12], it operates with a two-motor differential drive and encoders with 33,500

counts/rotation each. It also has a 16-sensor sonar array, as well as front and rear bumpers.

The P3-DX has a maximum translational speed of 1.4 m/s and a maximum rotational speed

of 300 deg/s, but in experimentation, those speeds were limited to no more than 0.4 m/s

and 40 deg/s for safety and to ensure that the robot did not outpace the LLAM algorithm.

The robot has a minimum turn radius of zero m, and a swing radius of 26.7 cm, which is

well suited for indoor exploration. However, with a ground clearance of only six cm, it

cannot overcome many obstacles that it cannot circumvent [12].

In this work, the P3-DX was modified to carry a Hokuyo UTM-30LX scanning

laser range finder (2D LIDAR), PMD Pico monstar 3D ToF Camera, and a SlimPRO

SP675SP Mini PC or Dell Latitude 3560 Laptop.

8

Figure 2. Omron Adept MobileRobots Pioneer 3-DX. Source: [13]

2. PMD Technologies CamBoard Pico monstar

The Pico monstar, shown in Figure 3, is a 3D Time-of-Flight (ToF) camera also

known as a scanner-less LIDAR. According to [14], it operates with four 805 nm

modulated IR lasers, which are transmitted from the camera, reflected off surfaces, and

received by a 3D imager that measures the phase shift between the transmitted and received

laser pulse. Then the sensor firmware calculates the distance to the point of reflection. This

system has a maximum range of approximately 6 m and a field of view of 100° × 85°

corresponding to a 352 × 287 (≈100,000 pixels) image. Each frame returned includes XYZ

cartesian coordinates in meters, an integer grayscale value (0 to 255), which indicates the

intensity of the laser return, and an integer depth confidence value (0 to 255). In this thesis,

only the XYZ coordinates and the depth confidence value were used; however, the

grayscale value does provide the ability to do image analysis on a flat grayscale image of

a scene and could prove useful in future research.

9

Figure 3. PMD Technologies PMD Pico monstar 3D Camera. Source: [14].

The system is capable of capturing up to 60 fps; however, increased framerate

reduces range significantly, and in this work, the maximum framerate was limited to 10

fps. The depth resolution of the camera varies both with framerate and with distance.

According to the manufacturer, it is less than or equal to 1% of the distance from 1–6 m at

5 fps [14]. Conveniently, this camera can be powered entirely from the USB 3.0 connection

and does not require an additional power source. For experimentation, the Pico monstar

was mounted on the front of the robot for obstacle avoidance and to build a 3D interior

map. The limited field of view (FoV) and range were not ideal for interior mapping, and

thus it was combined with the Hokuyo 2D LIDAR, which was used primarily for

navigation.

3. Hokuyo UTM-30LX

The Hokuyo UTM-30LX seen in Figure 4 is a 2D laser range scanner with an FoV

of 270° and a range of approximately 30 m, but in some conditions up to 60 m. It operates

with a spinning IR laser at a wavelength of 905 nm. With an angular resolution of 0.25°,

the scanner can return 1080 points per scan, and with its extended range, it frequently does

return 1080 useable points in an indoor environment. The accuracy of the UTM-30LX is

±30 mm up to 10 m, and ±50 mm between 10 m and 30 m. This LIDAR can return scans

at 25 ms/scan or 40 Hz [15].

10

Figure 4. Hokuyo UTM-30LX Scanning Laser Range Finder. Source: [15].

The FoV and range of the Pico monstar is limited. In even moderately sized rooms,

such as the ECE Control Systems Laboratory, the robot could travel sufficiently far from

the walls or workbenches that the Pico monstar would not return enough valid points in

each scan. This led to scan matching degeneration and ultimately a loss of localization,

further discussed in Chapter V. The long range, relative accuracy, and high scan rate of the

Hokuyo made it a good solution in the absence of a 3D spinning LIDAR. During

experimentation, the Hokuyo was used in tandem with the Pico monstar, with the Hokuyo

collecting accurate range and angle data for pose estimation, and the Pico monstar

collecting 3D data for more robust obstacle avoidance and to map in 3D.

4. Dell Latitude 3050 Laptop

For experimentation purposes, two robots were constructed. The first robot (Robot

1) used a Dell Latitude 3050 laptop as an on-board processing unit. The Dell laptop

contained an Intel i3-5005U 2.00 GHz CPU, and 16 GB RAM. It ran Windows 10 and

MATLAB 2019b. During experimentation with Robot 1, the Dell Laptop was mounted on

top of the robot and processed all localization, mapping, navigation, and obstacle avoidance

algorithms on board. This laptop was powered by its internal battery.

11

5. SlimPRO SP675P i7 Mini PC

The second robot constructed (Robot 2) had identical hardware to the first robot

with one exception; the Dell laptop was replaced with a SlimPRO SP675P Mini PC.

According to the manufacturer, it has a 3rd generation Intel i7 Core mobile CPU, 8GB

RAM, and has dimensions of 5.75”(W) × 10.0”(D) × 1.65”(H). The SlimPRO has one

Gigabit LAN port, four USB 3.0 ports, and two USB 2.0 ports to connect sensors and other

peripheral devices. It runs on 12V/60W DC power supplied from the robot battery [32].

The SlimPRO operated with Linux Ubuntu 18.04.4 and Robot Operating System (ROS)

Melodic. The SlimPRO computer was used for retrieving LIDAR data from the Hokuyo

and PMD Pico monstar, processing 2D laser scan transformations, obstacle avoidance, and

navigation. Due to its limited computational power, 3D point cloud registration and 3D

map building were performed on a Dell desktop computer.

6. Dell Optiplex 7040 Desktop

The SlimPRO on Robot 2 communicated with a Dell Optiplex 7040 Desktop

computer running the 3D point cloud registration and 3D map building algorithms. This

communication with the SlimPRO was conducted wirelessly using ROS and 802.11

protocol. This computer hardware included a 3.2 GHz Intel Core i5-6500 CPU, and 8 GB

RAM. It ran Windows 10 and MATLAB 2019b. The desktop received both 2D pose

information and 3D LIDAR data and registered that data for map building in 3D. More

powerful miniature computers exist that could likely handle 3D point cloud processing

onboard the robot; however, this architecture had several advantages. First, it split the

computational cost of autonomous interior mapping between two computers, speeding up

the robot. More importantly, from a tactical perspective, an autonomous mapping robot

could be captured or disabled by the enemy while mapping. If map data were stored only

on the robot, no map would exist for the operators. Transmitting data and building the map

in parallel on another machine allows the operator to get a partial map of an interior space,

even if the robot is disabled prematurely.

12

B. SOFTWARE

A wide variety of software exists for the control of autonomous robots. Each

programming language and software interface has its own benefits and shortfalls. This

work was primarily done in MATLAB for several reasons. First, previous ECE thesis work

described in Chapter I was coded in MATLAB; significant pieces of that work could be

easily adapted for this thesis without being reinvented. Second, MATLAB includes

packages and toolboxes that support many of the functions required in a robust fashion,

without the need to develop these from scratch. These qualities make MATLAB ideal for

prototyping and development especially if it is an individual or small group project such

as a thesis. Additional software used in this research include, PMD Royale software and

ROS, which are detailed in subsequent sections.

1. MATLAB

For this work, the algorithms developed for robot control were coded in MathWorks

MATLAB Releases 2019b and 2020a. MATLAB is a programming language built for

scientists and engineers using a matrix-based method of computational mathematics [17].

MATLAB includes many packages and toolboxes that have robustly built functions to

simplify programming. This work makes use of the Robotics Systems, ROS, Computer

Vision, Image Processing, Navigation, and Mapping Toolboxes. All MATLAB scripts for

this thesis are included in the appendices. MATLAB also includes the ability to run ROS

services and nodes from computers running a Windows operating system. ROS itself is

written for Linux. However, utilizing the ROS toolbox in MATLAB allowed the robot

mapping algorithm to split the computational workload between the onboard computer

(Linux) and another Windows-based computer, already discussed.

2. Royale Software Suite

The Royale Software Suite is a software development kit (SDK) that is included

with the purchase of a Pico monstar 3D camera. The Royale software contains a tool to

visualize 3D data called the Royale Viewer (version 3.23.0.86 was used). It also contains

tools to support interactivity with the camera through C++, C, Python, OpenCV, OpenNI2,

MATLAB, ROS, and DotNet [18]. In this work, the MATLAB wrapper was used to

13

interact with the camera in the MATLAB environment. This wrapper contained the

necessary dynamic link libraries (*.dll), as well as MATLAB class definitions and

functions to use the camera in the MATLAB environment. It contained functions to set

parameters for the camera, trigger it to capture, and retrieve data. Parameters that can be

set for the camera include frame rate, exposure mode, exposure time, trigger mode, filter

levels, etc. [19]. The camera comes with nine preset modes for different applications, such

as hand gesture recognition, 3D object scanning, or room scanning [19].

Figure 5. Royale Viewer Point Cloud Visualization Software

The Royale Viewer, as seen in Figure 5, allows the user to test the preset modes

and adjust the majority of camera parameters using slider bars. This is particularly useful

for fine tuning camera settings that correspond to a specific application or environment and

was used to test a number of different camera configurations. When the right camera

parameters are found, those values can then be coded into the MATLAB environment to

be set each time the camera is initialized. Additionally, the Royale Viewer allows the user

to record a 3D stream from the camera in a single file.

14

3. Robot Operating System (ROS)

ROS is an open-source framework for programming robots built in Linux

environments. It includes various tools and packages that can simplify the complex task of

controlling robots [24]. In this research, ROS Melodic Morenia was used to establish a

network from the Linux Ubuntu 18.04.4 SlimPRO PC. This ROS network interfaced with

MATLAB and allowed for the combination of data retrieved from the 2D and 3D LIDAR

sensors. The only ROS package used that was not included in the MATLAB ROS toolbox

was the urg_node package for communicating with the Hokuyo LIDAR. The ROS package

built for communication with the PMD Pico monstar has not been maintained for newer

distributions of Ubuntu or ROS, thus that sensor was interfaced with MATLAB directly

using the Royale SDK.

15

III. LOCALIZATION AND MAPPING

Simultaneous localization and mapping (SLAM) is a process by which a robot maps

the surrounding environment using various types of sensors while simultaneously

estimating the robot position within that environment [20]. Many methods exist for SLAM,

including an increasing number based on LIDAR. LIDAR-based SLAM is essentially a

scan-matching problem where laser scans, either 2D or 3D, are taken sequentially while

the robot is in motion. These scans, often called point clouds, are then compared to one

another in a process known as registration. Registering two sequential point clouds

provides a geometrical transform that can be applied to one point cloud in order to make it

match the other point cloud. This transform can be used to estimate the relative movement

of the robot [20]. As new point clouds are received and are registered, the incoming point

cloud is transformed by the accumulated transformations of the point cloud registrations

before it and added to the map. Several methods exist for registration and mapping, and

three of those methods will be discussed in this chapter.

A. REFERENCE FRAMES

The robot uses several reference frames for localization and mapping. Some of the

reference frames are static and others move. Additionally, each of the sensors operates in

a different reference frame, which must be transformed to a common reference frame to be

integrated.

The primary fixed reference frame is the {WORLD} frame. The {WORLD} frame

is a right-handed cartesian coordinate system with the X-direction forward from the

rotational center of the robot. The origin of the {WORLD} frame is where the rotational

center of the robot lies when it is initialized.

The primary moving reference is the {ROBOT} frame. It is a right-handed cartesian

coordinate system with the origin at the center of the robot rotational axis (Z-axis) and the

X-direction forward. When the robot is initialized, the {ROBOT} frame and {WORLD}

frame are the same until the robot moves. Six DoF and three DoF {ROBOT} frames were

considered in this work. Throughout experimentation, the origin of the {ROBOT} frame

16

translated and rotated in the X-Y plane only because the P3-DX is a ground mobile robot

not capable of negotiating stairs, and the interior of the test spaces was flat without ramps.

In effect, all experimentation had three DoF. However, throughout this work when the

{ROBOT} frame is labeled as three DoF, that means that it was coded in software to only

consider three DoF, X-Y translation, and Z rotation (Yaw).

When the {ROBOT} frame is labeled six DoF, the LLAM code was written to

consider translation in all three axial directions, as well as the other two rotational

components (pitch and roll). This was done both to examine the increased computational

cost of six DoF and also because follow-on research should attempt to apply LLAM to an

aerial robot with six DoF.

The {PICO} frame of reference is a moving frame specific to the Pico monstar

sensor. Point clouds returned from the Pico monstar are in a right-handed cartesian

coordinate system with the Z-axis forward, Y-axis down, and X-axis right with respect to

the camera lens when it is mounted upright. The origin being at the center of the camera

lens.

The {HOKUYO} frame is a 2D cartesian frame of reference with the origin at the

center of the Hokuyo sensor. The X-axis is forward, and the Y-axis is left. The rotation of

the {HOKUYO} frame is fixed to the rotation of the {ROBOT} frame. The {HOKUYO}

frame is essentially the X-Y plane of the {ROBOT} frame translated in the X and Z

directions. The Hokuyo sensor returns laser readings in both polar and cartesian

coordinates. Both formats are used throughout the robot programming. However, since the

conversion between the two formats is simple and occurs in the local reference frame of

the sensor, only the cartesian values are referenced in the {HOKUYO} frame for

consistency.

In this work, the reference frame is denoted by a leading superscript before the

variable. In the case of transformations between reference frames, the reference frame

being transformed is denoted by a leading subscript. For example, the transformation T that

maps a point x (XYZ coordinates) from the {ROBOT} frame to the {WORLD} frame of

reference is denoted

17

 w w R
Rx T x= . (1)

B. POINT CLOUD REGISTRATION

Many 3D models are built using 3D scanning processes, such as LIDAR; however,

in many situations, it is only possible to collect a partial scan from any one perspective. In

order to create a complete 3D model, the collection of partial scans must be combined into

one scan [21]. This process is called registration and is applied to both point cloud and

mesh-based 3D models. It typically involves three steps. First, correspondence is found

between points in consecutive scans. Next, from these point correspondences, a

transformation is calculated that will minimize the distance between corresponding points.

Finally, transformed point clouds are merged into a single point cloud representing a

complete model [21]. Numerous methods for point cloud registration exist, and many

variations of each method have been developed to suit particular applications. In this thesis,

we will examine three common methods of point cloud registration: Iterative Closest Point

(ICP), Coherent Point Drift (CPD), and Normal Distribution Transform (NDT).

Registration returns either 2D or 3D transformations. Three parameters are used in

2D transformation: the translational parameters tx and ty and the rotational angle parameter

ϕ. Collectively, the three parameters are written into a vector p as

 []x yp t t φ= . (2)

Two-dimensional transformation is given by [22]

 cos sin
(,)

sin cos
x

y

t
T p x x

t
φ φ
φ φ

−   
= +   
   

, (3)

where x is the two-dimensional point being transformed.

In this work, all 2D transformations occurred in the {ROBOT} frame or the X-Y

plane of the {WORLD} frame, and thus the rotational parameter ϕ is positive in the

counter-clockwise direction.

18

Three-dimensional transformations are defined by a 3×3 rotation matrix, which is

a combination of rotations about each reference axis, as well as a 3×1 translation vector.

There are six parameters for a 3D transformation,

 [, , , , ,]x y z x y zp t t t φ φ φ= , (4)

where the three values of t represent the translation in each dimension and the three values

of ϕ represent the rotation around each reference axis. The 3D transformation is then given

by [22]

c c c s s

(,) c s s s c c c s s s s c
s s c s c c s s s c c c

y z y z y x

x z x y z x z x y z x y y

x z x y z x y z x z x y z

t
T p x x t

t

 −  
   = + − − +   
   − +   

, (5)

where c represents cosϕ and s represents sinϕ, the subscript of c or s determining which

value of ϕ to use.

Transformations can be rigid, non-rigid, or affine. A rigid transformation preserves

the shape and size of objects in the scene, applying the same transformation to all points.

An affine transformation allows for shearing and changes of scale, as well as the translation

and rotation of points from a rigid transformation [27]. The Pico monstar has a short range

and high capture speed. At the low speeds, such as in this work, there is little motion blur

in each frame, and thus rigid transformations are preferred. Non-rigid transformations

allow the shape of objects to change, points are transformed differently using a

displacement field [27]. Non-rigid transformations were not used in this LLAM algorithm.

1. Iterative Closest Point Method

Iterative Closest Point is a popular approach to point cloud registration and used in

many applications of LLAM including those in [8], [9],[10],[11], and others. ICP is based

on two assumptions: first that consecutively scanned point clouds are of the same

environment, and second that they are not too far apart [21]. The first assumption is fairly

obvious as there would be little point in matching scans of two different environments. The

second is not as intuitive but is important as it is often the cause of matching degeneration

19

discussed later. The problem is essentially to estimate the rigid transformation that will

map one point cloud to another. The ICP algorithm does this as follows [21,22]:

1. Given two consecutive sets of points in three-dimensional space.

2. For all the points in the first set, find the closest point in the second set.

3. Find the rigid transformation that minimizes the distance between the

points in the first set and the corresponding points in the second set.

4. Apply the transformation to the points in the second set.

5. Iterate until convergence is found.

Convergence is typically considered to be reached when the closest point

correspondences from step 2 do not change [21]. In [21], Bærentzen et al. provide a more

in-depth explanation of how the rotational and translational components of the

transformation are estimated. Several problems exist with the ICP algorithm. First, both

point clouds may not have the same number of points, thus correspondences between points

are not necessarily unique, and some points may remain unpaired [22]. Second, the

assumption from initialization is that the closest point is the corresponding point, which

may not be true. However, it is among the most popular algorithms because it still returns

good results and is less computationally expensive than other methods [21, 22].

20

Figure 6. Four Iterations of The ICP Algorithm Aligning Red Points to Blue

Points, the Correspondences Depicted as Green Lines. Source: [21].

A visual depiction of ICP is seen in Figure 6. In the first iteration, correspondence

is found between the points in the red set and the closest points in the blue set. A

transformation is calculated that maps the blue points closer to the red points. In the second

iteration many of the point correspondences do not change, however, a few different

correspondences are established. The transformation process is repeated. Examining the

third and fourth iterations of the algorithm, it can be seen that none of the point

correspondences change, this is typically considered convergence and terminates the

algorithm [21].

Most ICP algorithms implement a k-dimensional tree (KD tree) searcher to improve

the efficiency of finding point correspondences. A KD tree is a geometric data structure

for organizing multi-dimensional points into a searchable tree. It is the most popular

21

structure for searching ranges and nearest neighbors [23]. The KD tree begins with a root

cell, which contains all the data in the set. It is then created by finding the median value

along one dimension of the tree and splitting the point data into partitions with a hyperplane

perpendicular to the axis being considered. Points on either side of the hyperplane are

partitioned by the value of the considered dimension such that larger values fall on one side

of the plane (right for example), smaller values on the other (left). Partitioning is repeated

along the other dimensions creating new levels of the tree. When the last dimension is

considered, the algorithm then returns to the first dimension and further partitions data

within each of the existing partitions. This continues recursively until only single points

remain in each partition [23]. The construct makes searching a KD tree for points within a

specific range or nearest neighbors simple and efficient [23].

Figure 7. Two-Dimensional KD Tree Example. Source: [24].

The construction of a simple two-dimensional KD tree is depicted in Figure 7. First,

the root node is established based on the median value of the first coordinate. Points with

smaller first coordinates (horizontal axis) are sorted to the left, larger to the right, creating

two child nodes. Then each of those child nodes is partitioned along the second dimension

(vertical axis) according to the median value of the second coordinate in each child. This

22

example arrives at one remaining point, the leaf, after two partitions and thus completes

the KD tree. The KD tree is a convenient data structure for both range and nearest neighbor

searches. Range searches are useful in segmenting LIDAR point clouds. Nearest neighbor

KD tree searches are useful in quickly finding nearest point correspondences for ICP.

2. Normal Distribution Transform Method

The Normal Distributions Transform (NDT) Method was initially proposed in [25]

as a two-dimensional point registration method. In [26], it was extended to three-

dimensional point clouds. Both 2D and 3D NDT registration techniques are used in this

work and briefly summarized in this section.

The premise of NDT is relatively simple. Instead of trying to find correspondences

between individual closest points, the scan is divided into equal-sized cells, similar to an

occupancy map. If a cell contains at least three points, it is assigned a normal distribution.

The algorithm then matches consecutive scans by comparing the normal distributions

assigned to each cell.

In two-dimensional NDT, after the map is subdivided into cells, the points in each

cell are collected into a set. The mean of that set is calculated as is the covariance matrix.

The probability of measuring a sample at a specific point contained in the cell is then

modeled as a normal distribution.

Additional details on discretization and dealing with nearly singular covariance

matrices are included in [25]. In two-dimensional NDT registration, three parameters must

be estimated for a transform, they are X and Y translations, and a rotation. The NDT

algorithm proceeds as follows [25]:

1. Given two sequential scans in two-dimensional space.

2. Divide the scans into cells of equal size.

3. Assign a normal distribution to each cell of the first scan.

4. Input an estimate for the transformation parameters, this can be done using

other sensor data or as zero.

23

5. In the second scan, map each point into the coordinate frame of the first

scan using the parameters estimate.

6. Calculate the normal distributions of the mapped points.

7. Calculate a score for the transformation parameters by evaluating the

normal distribution at each mapped point and summing the results.

8. Calculate a new parameter estimate using Newton’s algorithm.

9. Iterate until convergence is found.

Three-dimensional NDT is similar to 2D; however, the space is partitioned into

voxels instead of cells [26]. Additionally, the transformation consists of six parameters,

three translational parameters and three rotational parameters. Discrete 3D points are

typically stored in an octree. An octree is a data structure similar to a KD tree, however

each node has eight children instead of two, each node represents a partition of the 3D

space and it is built recursively similar to KD trees.

NDT is a fast algorithm but slower than ICP. It is, however, more robust to outliers

and can be useful for moving object filtering [27].

3. Coherent Point Drift Method

Coherent Point Drift Method (CPD) is a method that uses the Gaussian Mixture

Model (GMM) centroids to compute a transform. CPD is a global and robust registration

method that can produce a rigid, affine, or non-rigid transformation. A detailed explanation

can be found in [28].

 The benefit of CPD is that it does not rely on an initial transform estimate, such as

ICP or NDT [27, 28]. In general, it is a more accurate registration method than ICP [28];

however, it is considerably more computationally expensive and is the slowest of the three

algorithms discussed here [27]. This algorithm is included in the MATLAB Computer

Vision Toolbox and was considered for its accuracy. It performed far too slow for an

autonomous robot to map in real time and thus was not included in development beyond

the initial comparison.

24

4. Comparison and Selection of a Registration Method

The Computer Vision Toolbox includes functions for point cloud registration using

the ICP (3D), NDT (2D & 3D), and CPD (3D) algorithms. To compare the performance of

the algorithms several scripts were written. These scripts registered and built LIDAR point

cloud maps. The registration comparison script used point cloud data from the popular

KITTI Vision Benchmark Suite [29]. This benchmark is used in nearly all of the referenced

works for comparison of LIDAR and visual odometry methods. For comparison here, the

first 245 point cloud frames from the 00 segment were used, these frames covered about

180 m of outdoor street scene including two roughly 90° turns. The benchmark suite

provides numerous datasets. For comparison here, the ground truth data and LIDAR point

clouds from the Velodyne HDL-64E Laser Scanner were used.

Output of the comparison script can be seen in Table 1, and mean values are taken

from 10 iterations of each registration script running on a desktop computer with a 3.6 GHz

AMD Ryzen 5 CPU and 16 GB RAM. The ICP algorithm was by far the fastest method of

point cloud registration, more than five times faster than NDT, and seven times faster than

CPD.

Table 1. Comparison of Point Cloud Registration Methods

 ICP NDT CPD
Mean Rate (Hz) 4.1792 0.8154 0.5650

An example 3D map generated from the ICP script is seen in Figure 8. All three

maps from the three methods considered were relatively similar. In all three methods, the

algorithm had difficulty detecting the gradual incline of the terrain, and thus the ground

truth track diverges up from the estimated track. Use of feature point extraction or loop

closure methods as in [8],[9], and others could be used to correct this.

25

Figure 8. Three-Dimensional Map of KITTI Benchmark Suite Data

Generated using ICP.

In the case of both the KITTI Benchmark Suite and the robot constructed for this

work, the 3D LIDAR is mounted on top of the platform roughly parallel to the ground

plane. Therefore, estimating rotation between LIDAR scans is primarily a rotation about

the Z-Axis (Yaw).

26

Figure 9. ICP Comparison of Yaw from KITTI Dataset

Figure 10. NDT Comparison of Yaw from KITTI Dataset

27

Figure 11. CPD Comparison of Yaw from KITTI Dataset

Yaw and error in yaw are depicted in Figures 9,10, and 11 for the ICP, NDT, and

CPD algorithms, respectively. These figures show how the estimated orientation tracks the

ground truth orientation as well as the error between the two tracks. The NDT and CPD

algorithms have very similar errors between the estimated and ground truth yaw. Maximum

errors for both occur during the second turn, 13.9° and 13.8° errors for NDT and CPD,

respectively. The ICP algorithm does not track the ground truth data as closely and has a

slightly higher error of 15.3° during the second turn.

In the context of this work, speed is the most important parameter under evaluation.

Both NDT and CPD performed slightly better in estimating orientation; however, they did

so at a much slower rate. Without drift correction, all three algorithms drifted significantly

over the course of 180 m. For the application under investigation in this work, the KITTI

maps generated (roughly 200 m × 300 m) are much larger than the type of targets of

interest. On a smaller scale, the estimated position drift from ground truth is less significant

and could be ignored in the interest of saving computational processes that would slow

down the LLAM algorithm.

28

The iterative closest point method was selected for 3D point cloud registration for

this work. However, NDT proved both accurate, and extremely fast in 2D. With that

knowledge, an ICP algorithm assisted by an initial transform from 2D NDT was developed.

C. POINT CLOUD MERGING AND MAP BUILDING

Creating a map from point cloud frames is essentially a process of applying a

transformation to each successive scan to align the point clouds, then combining the point

clouds into a map. In this work, transformed point clouds are denoted

 w R w
k k R kP P T= , (6)

where wPk is the XYZ point cloud of the kth frame in the {WORLD} reference. RPk is the

kth point cloud in the {ROBOT} reference. The kth point cloud in the {ROBOT} frame is

transformed into the {WORLD} frame by the absolute transformation w
R kT .

To simplify calculations, the translational and rotational components are combined

in a MATLAB object resembling a homogenous transformation matrix

0
0
0
1

T

x y z

R
T

t t t

 
 
 =
 
 
  

, (7)

where R is the 3×3 rotation matrix as previously described and the values of t are the

translations along their respective axes. In this form, the accumulated absolute

transformation for each successive point cloud can be denoted

1

1
k

k

Rw w
R k R k R kT T T−

−= , (8)

where w
R kT is the absolute transformation that maps the kth point cloud from the {ROBOT}

frame into the {WORLD} frame. 1k

k

R
R kT− is the transform that maps the current point cloud

in the {ROBOT} frame to the previous point cloud in the {ROBOT} frame. This value is

the output of the ICP algorithm and also represents the pose of the robot relative to the last

29

calculated pose. 1
w
R kT − is the absolute transform that mapped the previously scanned point

cloud from the {ROBOT} frame into the {WORLD} frame.

Using this method, as a scan is acquired, it is registered to the previous scan yielding

a relative transform, that relative transform is multiplied by the absolute transform from all

previous scans, then the point cloud is rotated and translated by the updated absolute

transform to be added to the map.

Map building can be accomplished in many ways. In [11], for example, the map is

built only out of edge and planar feature points saved after extraction from the raw point

cloud. This has the benefit of increasing the speed of that algorithm to 20 Hz, but reduces

the density of the point cloud map [11]. In [8], Zhang and Singh employ a method in which

the registration algorithm is running at a higher frequency than the mapping algorithm,

then the map is downsized using a voxel grid filter to evenly distribute points within the

map.

In this thesis, a simple but effective approach is taken. First, a plane is fit to points

in a point cloud where the normal vector of the plane is a unit vector in the +Z direction,

the indices of those points are segmented and removed from the point cloud and the

remaining outliers are stored in a temporary point cloud. This removes the ground plane

from the scanned point cloud and assists both the accuracy and speed of the ICP algorithm.

The temporary point cloud is then registered to the previous temporary point cloud to yield

the relative transform, which is in turn multiplied by the accumulated absolute

transformation. The absolute transformation for that scan, and the original point cloud

(including the ground plane) are then stored in an object to be compiled into a map later.

Each scan is down sampled independently using a grid average method which divides the

point cloud into voxels and merges points within the box into a single point, averaging the

point normals.

When the robot has run its course, the object storing the point clouds and their

associated transforms is then compiled into a map based on a specified voxel grid size to

ensure even point distribution. Noise is then removed from the final map using a nearest-

neighbors approach as in [30].

30

D. LOOP-CLOSURE AND DRIFT CORRECTION

Loop-closure is the recognition of re-observed places in SLAM [9]. In LIDAR

based SLAM, small errors in the point cloud transformations gradually accumulate and

cause the robot pose estimate to drift from the ground truth pose. This is often corrected

using loop-closure and back-end optimization, which recalculates the trajectory when a

loop-closure is detected and corrects drift [9].

Various methods have been developed for loop closure. In this work, 2D NDT loop

closure was attempted using the Hokuyo sensor. MATLAB includes a SLAM package that

can support LIDAR data. This package was used to compute 2D pose estimates from the

Hokuyo data, probabilistic occupancy maps, and loop closures. Additionally, when loop

closures are detected, pose optimization can be performed to recalculate pose estimates and

rebuild the map correcting for drift. In early experimentation, these functions were

integrated into the robot LLAM algorithm. However, on further evaluation, they were

removed for several reasons.

First, loop-closure detection was too computationally expensive to run in real time

on the robot. In order to search for loop-closures, the robot had to stop at intermediate

waypoints and compute whether a loop-closure was present. Second, after significant

experimentation, a loop closure was never detected. This was not a problem with the

algorithm, but rather in the employment of the robot. The robot developed here, is designed

from a tactical perspective. The purpose of building a map is not to examine every unknown

space or create a highly detailed and accurate map. The purpose here is to collect a suitable

map as quickly and efficiently as possible. Therefore, the robot never revisited previous

locations, it was not programmed to do that, and therefore did not detect loop-closures.

Similarly, loop-closure in 3D as in [9] was not examined as the robot was unlikely to return

to a previously visited location. Furthermore, the limited FoV of the Pico monstar make

detecting previously visited locations in 3D extremely difficult as the robot must be in both

the same position and also have a similar orientation.

Finally, within the bounds of the ECE Control Systems Laboratory and adjacent

spaces, the robot did not drift significantly enough to be identified without additional

31

sensors estimating the pose. That is, the map was accurate enough that a human operator

could not distinguish it visibly from the scene it was representing. Also, the error in pose

was not significant enough to cause the robot to miss waypoints. The obstacle avoidance

algorithm ran every loop iteration and computed steering parameters off every local frame.

Thus, drift from the ground truth pose would not contribute to a collision of the robot and

any obstacle in the environment. As the tactical premise of this robot involved revisiting

locations as infrequently as possible, loop-closure based drift correction was determined to

be unnecessary. Development of a loop-closure detection algorithm that is triggered only

when the robot must return to a previously visited location, such as entering a room with

only one exit, is left to future work.

32

THIS PAGE INTENTIONALLY LEFT BLANK

33

IV. ROBOT CONTROL SCHEME

A. OVERVIEW

As discussed in Chapter II, two robots were constructed. Both robots used the same

P3-DX base robot, Pico monstar 3D LIDAR, and Hokuyo 2D LIDAR. The first robot

(Robot 1) carried a Windows OS Dell laptop attached to the top of the robot as seen in

Figure 12. On the second robot (Robot 2), the Dell laptop was replaced with the SlimPRO

computer communicating wirelessly to the Dell desktop. Robot 1 was constructed while

attempting to solve a Linux compatibility issue with the Pico monstar MATLAB wrapper.

This compatibility issue initially prevented it from interfacing with the Linux based

SlimPRO computer.

The design of Robot 1 did not satisfy the tactical military intent of this work. It

could only partially answer the central question of whether a 3D mapping robot can use

only LIDAR in real time. Since no deployable, tactical sized robot would carry a full-size

laptop as a processing unit, Robot 1 would not be satisfactory. However, some valuable

insights were gained from the development of this robot and are worth examining.

The laptop carried on Robot 1was far more powerful than the SlimPRO and allowed

for the testing of several SLAM algorithms that were not included on Robot 2. First, the

more powerful computer allowed for six DoF point cloud registration to run at nearly 10

Hz when assisted by an initial 2D NDT registration from the Hokuyo. Secondly, on-board

occupancy map building, Hybrid A*Search route planning, loop-closure detection, and

frontier search were implemented. Even with the more powerful computer, the occupancy

map building and loop-closure detection required the robot to stop at intermediate

waypoints for times ranging between 10–60 seconds in order to run through the algorithms.

34

Figure 12. Robot 1

Several important things were learned from experimentation with Robot 1. First,

loop-closure is not necessary in the type of small interior spaces that are targeted in this

work. Second, for a ground mobile robot, 3D registration was significantly slower than 2D

registration but returned results that were minimally more accurate. That is, for the tactical

operator, the distortion in the map between 2D registration and the more accurate 3D

registration was not distinguishable. Furthermore, the 2D registration was perfectly

satisfactory for the robot to navigate successfully and avoid obstacles.

Finally, as previously mentioned, an architecture in which all data is processed on-

board the robot is ill suited for tactical situations. If the building is occupied by hostile

actors, the robot is unlikely to emerge. In this case, the map would be lost. If the robot

transmits the relevant map-making data and it is disabled prematurely, at least a partial map

can be constructed on a remote computer. The LLAM algorithm developed for Robot 1 is

depicted in Figure 13.

35

Figure 13. Robot 1 LIDAR Localization and Mapping Algorithm

Figure 14. Robot 2

The hardware of Robot 2 is shown in Figure 14, while the design architecture is

illustrated in Figures 15 and 16. The onboard SlimPRO retrieves 2D and 3D LIDAR data

from the sensors. It uses the 2D data for pose estimation and navigation. The 2D and 3D

36

LIDAR data is combined for obstacle avoidance, and the 3D point cloud data along with

the 2D pose estimate are transmitted to the remote computer for map building.

Figure 15. Robot 2 ROS Architecture

Figure 16. Robot 2 LIDAR Localization and Mapping Algorithm

37

B. OBSTACLE AVOIDANCE

In this work, an artificial potential field model for obstacle avoidance was used.

The algorithm is similar to those used in [3],[4], and [5], but in this case, was adapted to

three dimensions. The model assigns an attractive potential between the robot and the goal,

and it computes a repulsive potential to obstacles that it senses through LIDAR returns. It

then calculates the potential field as the sum of the attractive and repulsive potentials. The

negative gradient of the potential field yields a force vector that draws the robot closer to

the goal while simultaneously avoiding obstacles along the path.

1. Attractive Force

Implementation of the attractive force matches that of [33] adapted to the Hokuyo

LIDAR system. The attractive potential Uatt is defined as

21 , if
2

, if

goal goal
att

goal goal

q q q q
U

q q q q

ξ ρ

ξρ ρ

 − − ≤= 
 − − >

, (9)

where q represents the XY coordinates of the current pose, and qgoal represents the XY

coordinates of the goal pose, both in the {WORLD} frame. The terms ξ and ρ are constants,

ξ being a constant coefficient and ρ being a constant distance. This creates an attractive

potential that is conic shaped when the robot is at least ρ distance from the goal, and

parabolic in shape when it is closer [33].

The attractive force w
attF is given by the negative gradient of the attractive potential

as [33]

(), if

()
, if

goal goal
w att

att goal
goal

goal

q q q q
UF q q

q q q
q q

ξ ρ

ξρ ρ

 − − − ≤
∂ = − = −∂ − − > −

. (10)

38

2. Repulsive Forces

The repulsive potential is generated by LIDAR returns from obstacles within the

LIDAR field of view. Each LIDAR return represents a repulsive potential of the form [33]

2

,

1 1 1 , if
2
0, if

i c
rep i i c

i c

d d
U d d

d d

η
  
 − ≤ =   
 >

, (11)

where di is the range measurement taken from an individual LIDAR return, dc is a constant

cutoff distance, and η is a constant coefficient.

The repulsive force from a single LIDAR return is then given in the {ROBOT}

frame by [33]

 ,

1 1 , if

0, if

i
i cR

rep i i c i

i c

n d d
F d d d

d d

η
  
− − ≤  =   
 >

, (12)

where ni is a unit vector in the direction (angle γ) of the laser return referenced to the

{ROBOT} frame. In this form, the repulsive force is inversely proportional to the distance

from the obstacle when it is inside the cutoff distance and zero if it is beyond the cutoff

distance. The unit vector ni is defined as

 cos
sin

i
i

i

n
γ
γ

 
=  
 

. (13)

The Hokuyo LIDAR data is initially referenced with respect to the LIDAR

{HOKUYO} frame in cartesian coordinates. It is translated to the {ROBOT} frame simply

by subtracting a translation thx, the distance from the LIDAR center to the center of the

robot. Thus, an individual point Hpi is mapped from the {HOKUYO} frame to the

{ROBOT} frame as

39

 [,] [,] [,0]R R R H H
i i i i i hxp x y x y t= = + . (14)

The values of di and γi from Equations (12) and (13) can then be calculated as

 R
i id p= , (15)

and

 arctan
R

i
i R

i

y
x

γ
 

=  
 

. (16)

The total repulsive force is simply the sum of the repulsive forces calculated from

the individual LIDAR returns [33]

 ,
1

N
R R

rep rep i
i

F F
=

=∑ . (17)

In this case, N is the number of LIDAR returns within the cutoff distance and varies

greatly based on the environment. The Hokuyo LIDAR typically returns points for nearly

all of the laser shots (1080). However, to shorten the iterative loop, values beyond the

cutoff distance are simply omitted rather than summing zero vectors, as in Equation (12).

Finally, the total force in the {ROBOT} frame R
totalF is calculated by adding the

total repulsive force and the attractive force [33]

 , ,[,] ()R R R R R w
total x total y total rep w attF f f F T Fθ= = + . (18)

The attractive force, which was calculated in the {WORLD} frame, must be

transformed to the {ROBOT} frame using the 2D rotation matrix [33]

cos sin

()
sin cos

R
wT

θ θ
θ

θ θ
 

=  − 
 (19)

40

where θ is the angle between the X-Axis of the {ROBOT} frame and the X-Axis of the

{WORLD} frame, which is simply the third parameter of the 2D pose of the robot

determined from NDT scan matching.

The forward velocity and rotational velocity of the robot are then calculated as

 ,
R

fwd f x totalV K f= , (20)

and

 ,

,

arctan
R

y total
rot r R

x total

f
V K

f
 

=   
 

. (21)

where Kf and Kr are constant gains associated with the forward and rotational velocities

and tuned during experimentation. The rotational and forward velocity commands are then

sent from the on board computer to the robot by serial connection using the p3_setRotVel()

and p3_setTransVel() functions included in Appendix C.

3. Adaptation to Three Dimensions

In this work, the combination of 2D and 3D LIDAR allowed for the robot to sense

obstacles in three dimensions. Previous thesis work done by Miyakawa in [4] used a second

2D Hokuyo LIDAR to sense low profile obstacles in front of the robot. That LIDAR had a

fixed angle at which it was declined, and thus could only see a fixed distance ahead of the

robot. In this case, the 3D LIDAR allowed the robot to sense obstacles five to six meters

ahead of it and begin adjusting the trajectory via the artificial potential field algorithm to

avoid the obstacle smoothly.

Additionally, the model presented in [4] could only sense low profile obstacles on

the ground, such as stairs or other obstructions below the horizontal plane of the second

Hokuyo LIDAR, which could lead to the robot planning a route underneath an object

without sufficient clearance for the sensors and other hardware mounted on top of the robot.

In contrast, the Pico monstar LIDAR can sense obstacles from ground level to the ceiling

of an interior space at comparatively high resolution to the Hokuyo. This allowed for the

41

potential field algorithm to be assisted by repulsive forces that did not lie in the plane of

the Hokuyo LIDAR.

For this work, the 3D point cloud returned from the Pico monstar was sent to the

potential field algorithm. It was then cropped to only include points that lay in the vertical

(Z) dimension between 0.07 m and 0.45 m. The first constraint being the clearance of the

robot, the second being the top of the Pico monstar sensor.

Since the ground mobile robot can only move in three DoF, considering repulsive

forces in three dimensions would not be useful as the vertical component of those repulsive

forces would not contribute to the output steering commands. Instead, the X and Y

coordinates of any 3D LIDAR return within the previously described height bounds were

added to the array of returns from the Hokuyo LIDAR. This essentially compressed the

third (Z) dimension of the 3D LIDAR returns down into the XY plane of the {HOKUYO}

frame.

When compressing the 3D LIDAR returns into an array of two-dimensional

coordinates, it is possible to have duplicate 2D points. Summing of the repulsive vectors

based off these duplicate points will create a total repulsive force that has a much larger

magnitude than it should to accurately avoid the obstacle. Essentially, the potential field

algorithm calculates a larger obstacle than is actually present. In order to correct this, 3D

LIDAR data was first divided into bins corresponding to the angular resolution of the

Hokuyo LIDAR. From those bins, only one point from the 3D LIDAR return was selected

to be added to the 2D LIDAR data. This simple yet effective method removed the need for

comparative loops to determine if two nearby points were different enough to significantly

affect the repulsive potentials. Additionally, it weighted the 3D point returns equally with

the 2D point returns removing an additional tuning requirement for the algorithm.

C. NAVIGATION

Several methods of navigation were used throughout development of the robots for

this work. First, pre-determined waypoints were used both with a Hybrid A* Search

algorithm and with a pure pursuit algorithm. Second, a frontier search algorithm was

developed to find unexplored areas of the map without any pre-determined waypoints.

42

1. Pure Pursuit

During pure pursuit navigation, the robot has a known goal or list of goals and

attempts to take the most direct route to the goal while avoiding intermediate obstacles.

This method has disadvantages when combined with potential field-based navigation.

While attempting to reach the goal, the robot can encounter a local minimum in the

potential field and become trapped, as described in [3]. If the robot becomes trapped in a

local minimum, an additional set of control logic is required to help it escape and continue

moving towards the goal. Previous thesis work, such as [4] and [5], used wall following

and terrain following modes of escaping local minima. For this work, the primary purpose

was to determine if the robot could conduct 3D SLAM in real time. During

experimentation, the robot was positioned within the laboratory space such that it had

obstacles, but not the kind that would create local minima in the potential field. For

example, obstacles that are concave U-shaped from the perspective of the robot, or interior

corners between the robot and the goal can create local minima. Instead, while using pure

pursuit navigation, obstacles were limited to objects such as road cones, paint buckets,

chairs, outside corners, etc. Robot 2 only implemented pure pursuit navigation during

experimentation.

2. Hybrid A* Search

The MATLAB Navigation Toolbox includes various path planning algorithms.

Included in the toolbox is a Hybrid A* Search algorithm based on the work in [34]. This

algorithm was implemented on Robot 1 both with pre-determined waypoints and a frontier

search algorithm. The Hybrid A* Search algorithm works by discretizing the known

obstacles in the environment into an occupancy map and searching based off motion

primitives specific to the robot [34]. An occupancy map divides the known environment

into cells and assigns a tag to the cell as either “occupied,” “unoccupied,” or “unknown.”

MATLAB has several tools for generating occupancy maps. In this work, the MATLAB

SLAM algorithm was used to compute 2D NDT transforms of successive Hokuyo laser

scans, then combine them into a map. The world pose of the robot was added to a pose

graph, and the ternary occupancy map was then built from the SLAM map.

43

Figure 17. Robot 1 SLAM Map (Spanagel Hall Laboratory 521)

The pink points in Figure 17 are discrete laser returns from the Hokuyo sensor and

the blue track is the trajectory of the robot computed from the transformations of successive

laser scans. An occupancy map of the lab environment computed from this SLAM map is

shown in Figure 18.

44

Figure 18. Robot 1 Occupancy Map (Spanagel Hall Laboratory 521)

The LIDAR data from the SLAM map is then divided into cells and labeled

accordingly. The white cells in Figure 18 correspond to space that is known to be

unoccupied by obstacles. Black cells correspond to known occupied space, and the gray

cells represent unknown space that the robot has not yet explored or cannot see.

The Hybrid A* Search algorithm proceeds from this point with the current pose of

the robot, the maneuver capabilities of the robot, and the occupancy map as inputs. The

algorithm calculates the paths possible to reach adjacent cells terminating in a node, then

from those nodes calculates the next set of possible paths. In contrast to the standard A*

Search, Hybrid A* Search takes into account nonholonomic constraints of the robot, such

as turning radius [34]. An example is shown in Figure 19.

45

Figure 19. A* Search versus Hybrid A* Search. Source: [34]

The algorithm then uses a cost function to compute the least costly route to the goal.

Figure 20 illustrates an example of the Hybrid A* Search algorithm as it calculates all the

possible nodes from each previous node and selects the least costly path. Many of the nodes

terminate because of the nonholonomic constraints of the robot.

Figure 20. Example Implementation of Hybrid A* Search Algorithm in

MATLAB. Source: [35]

46

In this work, Robot 1 utilized the MATLAB Hybrid A* Search algorithm to find

and plan paths. The calculated nodes of the path were set as intermediate waypoints and

the robot traveled to them utilizing the potential field algorithm to negotiate any dynamic

or previously unidentified obstacles. This implementation was fairly effective; however, it

was ultimately not included on Robot 2. The primary issue was the time required to build

the SLAM map and occupancy map, as inputs for the Hybrid A* Search algorithm. In most

cases, MATLAB does not allow multiple processes to run simultaneously. The sequential

nature of the script meant that LIDAR scans were not being received while the necessary

path planning was occurring. If the robot remained in motion, scan matching would

degenerate and the robot would lose localization, a problem further discussed in Chapter

V. In order to prevent this, the robot came to a stop for the necessary amount of time to

build the SLAM and occupancy maps and plan an obstacle-free path. Typically, this stop

was between 10 and 60 seconds. This method was implemented on Robot 1, which had a

full-size laptop attached in place of the SlimPRO. If implemented on Robot 2, the delays

would have been more significant. Thus, building the on-board maps and planning the route

as simultaneous processes are left to further work, likely requiring migration to a different

programming language.

3. Frontier Search

In order to truly explore a new environment, a robot must be able to determine what

parts of the immediate environment have not been explored. Once unexplored areas of the

map have been identified, one must be selected based on specified criteria for exploration.

The robot should then use already existing knowledge of obstacles, as well as the current

pose information to plan a path to explore the frontier. There are many ways to achieve this

and many criteria by which the robot can select a frontier. MATLAB does not include any

frontier search or exploration algorithms, but one was created for this work using image

processing techniques.

47

Figure 21. Frontier Search Algorithm

A flow chart of frontier search algorithm is depicted in Figure 21. The algorithm

takes as inputs the current pose of the robot and the ternary occupancy map that was

compiled when the robot stopped at the initial goal. It formats the occupancy map, as seen

in Figure 22, as a gray scale image and uses a Canny edge detector algorithm to find the

pixels in which there is a transition from between white, gray, and black. These edges

however indicate a transition between the three colors present in the gray scale image.

Frontiers are the transition between known unoccupied space (white) and unknown space

(gray) only. The transition from known occupied space (black) to known unoccupied space

(white) is of no interest when searching for frontiers. In order to remove those edges, a

convolution filter is run to identify all the edge pixels that are a transition from known

unoccupied space to unknown space only.

48

Figure 22. Example Initial Ternary Occupancy Map

(Spanagel Hall Laboratory 521)

The remaining edges are then saved in a binary image as frontier pixels. If multiple

frontier pixels are adjacent to one another, those pixels are grouped together as being

connected and the group is saved as a frontier. An example of connected frontier pixels

which are saved in a binary image is depicted in Figure 23.

49

Figure 23. Example of Remaining Frontier Pixels

(Spanagel Hall Laboratory 521)

The connected frontiers are then inscribed with ellipses as seen in Figure 24. The

parameters of each ellipse are saved in a data structure, which is sorted from the largest

area to the smallest area. In order to be a valid state for the Hybrid A* Search algorithm,

the centroid of the ellipse cannot be used as a goal because it may lie in unknown space.

To find a valid goal, the algorithm selects the points that lie on the ellipse and are known

to be cells of unoccupied space. Using these points, it computes the Euclidean norm from

the current robot pose to each point. The ellipse point with the minimum distance is selected

as a temporary goal. It is mapped from image coordinates back into world coordinates and

sent to the Hybrid A* Search algorithm. If a valid path is found, that temporary goal is

assigned as the robot goal and the LLAM algorithm continues. If a valid path is not found,

the frontier search algorithm selects the next largest ellipse and repeats the process until a

valid path is found. If no valid paths are found and the area of the remaining ellipses is less

than three pixels (occupancy map cells), the algorithm terminates, and the robot has

completed exploration.

50

Figure 24. Example of Ellipses Inscribing Connected Frontiers

(Spanagel Hall Laboratory 521)

This algorithm was successfully employed on Robot 1 and ran relatively fast after

the already discussed time delay required to build the occupancy map. Depending on the

amount of unexplored area remaining in the laboratory, it took between 0.3 and 3 seconds

to find a viable path. One major disadvantage of this algorithm is that it always seeks the

largest frontier first. In some cases that causes the robot to wander around the test space,

back tracking already traveled space several times. On the other hand, using the closest

unexplored frontier is less effective because it can be very small and not significant in the

overall map. Additionally, some frontiers cannot be reached to be explored due to

obstacles. As the Hybrid A* Search algorithm does not incrementally re-plan the route

while the robot is moving, the robot can become trapped in a point where a previously

unrevealed obstacle is preventing forward progress due to potential field obstacle

avoidance algorithm, which is running in stride as part of the LLAM algorithm. That is,

the robot could not see an obstacle when the route was planned to the frontier, but upon

trying to travel that route, it encountered an obstacle. The Hybrid A* algorithm will not re-

run until it reaches the goal, but the potential field algorithm will not let it continue on that

route and reach the goal. This is another instance of the local minima problem already

discussed.

51

Although the frontier search algorithm, as presented, can run fast enough to be

incorporated in real-time LLAM, it relies on the occupancy map as an input. For reasons

already discussed, that did not prove feasible. Thus, the frontier search was not included

when transitioning to Robot 2. It is included here because this novel approach shows some

promise for future development. If a faster occupancy map method, local minima escape

logic, or a different obstacle avoidance model can be implemented, it may prove useful for

indoor exploration.

D. MAP BUILDING

1. ROS Network and Point Cloud Transmission

When Robot 2 was transitioned to the wireless ROS network, it was confirmed that

point cloud messages are too large to be transmitted and collected in real time. If the Robot

mapping algorithm is running faster than approximately 1 Hz, point cloud messages can

be lost or received out of sync with pose messages. This was expected due to the size of

3D point clouds. However, significant overlap in the 3D point clouds meant that not every

point cloud must be received in order to build an accurate map. In this work, every tenth

3D point cloud was transmitted with the corresponding 2D pose estimate.

Additionally, it was discovered that organized 3D point cloud data could be

transmitted more efficiently using a three-channel ROS image message

sensor_msgs/Image instead of the more common sensor_msgs/PointCloud2 message. The

organized point cloud is retrieved from the Pico monstar sensor in a format resembling a

single floating-point precision three-channel image. Therefore, the image message could

be written directly from the received data without reformatting. Two-dimensional pose

estimates were sent as geometry_msgs/PoseStamped messages, which include a header that

can contain a frame ID number. Two methods of building the map on the remote desktop

computer were implemented and are described in subsequent sections.

2. Two-Dimensional Transformation Method

The first method utilized two-dimensional scan data received from the Hokuyo

LIDAR. This 2D data was immediately registered using NDT registration to calculate a

52

relative transformation. The absolute transformation accumulated as described previously,

then describes the 2D pose of the robot. With the exception of vibration, the roll and pitch

of the LIDAR sensors on the robot are constrained. The only significant orientation

changes occur about the Z-Axis in the {ROBOT} frame. One method of constructing the

3D map is simply create a 3D transformation using the absolute transformation of the robot

in 2D. Given the 2D {WORLD} pose of the robot

 []w
k k k kp x y θ= , (22)

the 3D transformation to the {WORLD} frame can be computed as

cos sin 0 0
sin cos 0 0

0 0 1 0
1

k k

k kw
R k

k k PMD

T

x y z

θ θ
θ θ

− 
 
 =
 
 
 

, (23)

where zPMD is the fixed height of the 3D Pico monstar LIDAR sensor. Each successive 3D

LIDAR point cloud is then transformed by the corresponding {WORLD} transformation,

which was calculated only from the data returned by the 2D Hokuyo sensor. The resulting

transformed point clouds can then be merged together to form a map. The final map is

down sampled using a voxel grid filter.

This method is beneficial because it is much faster than performing iterative closest

point registration in three dimensions. Additionally, it relies on 2D transformations that are

already computed as part of the navigation algorithm. On the other hand, it assumes that

the pitch and roll of the robot are constrained and is therefore only applicable to ground

mobile robots with three DoF operating on flat surfaces. In this work, vibration and small

deviations in the floor were not accounted for or corrected. Therefore, this method yielded

a slightly less accurate map than using 3D ICP.

3. Three-Dimensional Transformation Method

The second method used in this work utilized the 3D transformations computed

from the ICP algorithm. Both methods used the same point cloud and 2D pose information

53

received on the remote desktop computer, and therefore they could both be run on the same

data set for comparison.

Normally, ICP scan matching involves calculating a relative transformation

between two successive scans, accumulating the relative transformations into an absolute

transformation, and finally transforming the point clouds by this absolute transformation.

In this case, every tenth scan was received, and although the point clouds had sufficient

overlap to prevent gaps in the map, they lacked enough overlap to make ICP reliable. In

order to correct this problem, the 3D ICP algorithm was assisted by an initial transform

from the 2D pose estimates. Each of the 3D point clouds received by the remote desktop

was transformed by the accompanying 2D transformation just as in the previous method.

Each transformed point cloud had the ground plane segmented by fitting a plane

with a normal unit vector in the positive Z direction. The outlier points were then stored in

a temporary point cloud that was sent to the ICP algorithm. The ICP algorithm returned a

transformation similar to (23) but including the smaller rotations about the X and Y axes

in the {ROBOT} frame. These relative transformations were accumulated into an absolute

transformation for each point cloud that would map them into the {WORLD} frame. The

original point clouds (transformed by 2D pose but including ground plane) were then

transformed by the 3D transformation calculated from ICP. The resulting transformed 3D

point clouds were then merged into a map in the same fashion as the 2D transformation

method.

This method created a slightly more accurate map at the cost of speed. Both

methods relied on the data transmitted over the ROS network, which was saved to hard

disk on the remote computer.

54

THIS PAGE INTENTIONALLY LEFT BLANK

55

V. RESULTS

This chapter examines the results from several experiments conducted with Robot

1 and Robot 2. Throughout development, many experiments were conducted to test LLAM

methods and tune parameters. Included in this chapter is a brief description of the

development of the LLAM algorithms for each robot, as well as an examination of the

performance of the final version of each algorithm. Localization, map building, and speed

are the primary areas of interest here. Additionally, an examination of map interpretability

is included. Several conclusions are drawn from the results presented in this chapter, the

most important of which are further discussed in Chapter VI.

A. LOCALIZATION

Initially, Robot 1 was localized using 3D point clouds from the Pico monstar sensor.

This method provided for localization of the robot assuming six DoF using the iterative

closest point method. The ICP algorithm was fast enough to run in real-time at

approximately 10 Hz using the mounted full-size laptop. The primary problem encountered

was matching degeneration due to the limited field of view and range of the Pico monstar

sensor. The sensor, although relatively accurate for the size and cost, is not well suited for

mapping applications. The manufacturer advertises it for 3D scanning of objects, gesture

recognition, and similar activities in which it is primarily static, looking at objects that are

placed intentionally within the FoV. For room scanning and autonomous navigation, the

sensor has a relatively limited range and often cannot see far enough to accurately sense

walls or other objects in the room. Although the sensor can return points up to six meters,

many of those points are of low confidence, or with noise. When filtered, the effective

range of the sensor is closer to three meters, depending on a number of environmental

factors. In order to avoid matching degeneration, the algorithm was adjusted to use the 2D

Hokuyo LIDAR data as a primary means of localization, and the 3D LIDAR data for map

building and obstacle avoidance. This combined 2D and 3D implementation was used on

the final version of Robot 1 and on Robot 2.

56

1. Matching Degeneration

In this work, the LLAM algorithm was structured around matching of consecutive

scans. As discussed in Chapter III, the iterative closest point method relies on finding

correspondences between points and computing the relative transform between point

clouds. Therefore, if two point clouds do not contain a sufficient amount of corresponding

points, the algorithm either fails to converge, or it returns a transform that maps points

incorrectly to the previous point cloud. If the SLAM method involved multiple sensors to

estimate pose, the scan matching may be assisted by an initial transform computed from

other sensor data. In this case, the central question was to determine if it could be done

quickly and efficiently without additional sensors.

An example of matching degeneration is seen in Figure 25. Shown in the figure are

two consecutive experiments with Robot 1 executing a 90-degree left turn in the same

portion of Spanagel Hall 521. This experiment was conducted without the use of the 2D

Hokuyo LIDAR. Additionally, the other navigation methods were disabled as a loss of

localization would cause Robot 1 to wander erratically. In this case, the robot was

programmed only to travel several meters, turn left, and continue traveling roughly five

meters. Between the two experiments, the translational and rotational speeds of the robot

were increased in order to cause the robot to outpace the ICP algorithm.

57

Figure 25. Example of Matching Degeneration

The white circles depict the estimated 3D position and the red vector arrows

contained within each circle represent the estimated orientation. In the case on the left, the

robot made the corner while accurately localizing using 3D ICP. In the case on the right,

the robot was unable to match sequential scans even though the trajectory was nearly

identical. It can be seen that the LLAM algorithm lost the ability to both localize the robot

accurately and build an accurate map. In the LLAM algorithm developed for this work,

once localization is lost it cannot be recovered without loop-closure.

In order to limit the loss of localization associated with the short range of the Pico

monstar, the 2D Hokuyo LIDAR was utilized. The Hokuyo LIDAR can return accurate

points from anywhere in the laboratory space with a 270° FoV, which makes it far less

prone to matching degeneration. A map of the laboratory space created after inclusion of

the Hokuyo LIDAR data is seen in Figure 26.

58

Figure 26. 3D Map of Spanagel 521 Laboratory Space Using 3D and 2D

LIDAR Data

It can be seen from Figure 26 that the 3D map closely resembles the interior

laboratory space complete with work benches and chairs. The colormap corresponds to

height in the vertical dimension with blue depicting zero m (ground plane) in the

{WORLD} frame. As the height increases, the colormap transitions to green, then to

yellow at the ceiling. The ceiling plane in this figure is removed so that the contents of the

room can be viewed. The outline of the work benches is clearly visible. However, because

the 3D LIDAR was mounted at a similar height to the workbenches, the planar surface of

the benches was not fully visible to the LIDAR. Black corresponds to space that was not

mapped by the 3D LIDAR. The 3D portion of the map is limited by the FoV of the Pico

monstar. For comparison, an overlaid 2D SLAM map (pink) generated from the Hokuyo

LIDAR during the same experiment is seen in Figure 27. Although the robot could sense

59

the entirety of the space using the 2D LIDAR, the limited FoV of the Pico monstar meant

that only a portion of it was mapped in three dimensions.

Figure 27. 3D Map of Spanagel 521 Top Down View Overlaid with 2D

Hokuyo SLAM Map

In order to build a full 3D map, another more powerful 3D LIDAR must be

acquired. Spinning 3D LIDARs, such as the Velodyne used in the KITTI data discussed in

Chapter III, are commercially available and necessary for continued development of a 3D

autonomous mapping robot. Additionally, point cloud returns from these 3D spinning

LIDARS are formatted in laser lines; 2D navigation provided by the Hokuyo in this work,

could still be accomplished using a single laser line from a 3D spinning LIDAR.

60

2. Accuracy on a Closed Loop

As the robot is not equipped with sensors other than the two LIDAR units,

determining the accuracy of localization is difficult. From visual inspection of the 2D and

3D maps compared with the environment, it can be seen that the map is relatively accurate.

Certainly from a tactical perspective, this map would be useful to an operator.

In order to determine values for drift and localization error, Robot 2 was given a

set of waypoints that terminated at the point from which the robot was initialized, w(0,0).

In this experiment, the robot traveled the intended trajectory, and when it reached the final

waypoint ceased movement. From that point, distance to the robot center was measured

from a marked point on the floor where the robot was initialized. The last calculated pose

estimate was retrieved from the robot memory and compared to the measured point, as seen

in Table 2.

Table 2. Closed Loop Test Data

Measured XY

Final Position (m)

Estimate XY Final

Position (m)

Final Position

Error (m)

Trajectory Length

(m)

Position Error (%)

w(0.56, 0.30) w(0.2490, 0.1096) 0.365 17.09 2.14

In this experiment, the robot drifted 2.14%, which is similar to the drift seen in the

data output from the KITTI Benchmark test algorithm. The robot was programmed to

consider a waypoint reached when it was within 0.30 m of the intended waypoint. This

prevented the potential field algorithm from trying to make velocity adjustments that were

too small for the robot to execute when near to the goal. As implemented in this work, the

drift of the robot does not contribute to a likelihood that it will collide with obstacles.

Obstacle are detected, and steering commands are updated every iteration of the LLAM

algorithm. Therefore, drift will only affect the generation of an accurate map.

61

3. Algorithm Speed

During mapping experiments, the speed of the LLAM algorithm was not rate

controlled. Instead the algorithm was run at maximum speed. This meant that each iteration

of the algorithm varied in duration. Since pose estimates were not being calculated

kinematically from other sensors, the elapsed time between laser scans was not important

so long as the algorithm ran sufficiently fast to avoid matching degeneration.

Consequently, the speed of the algorithm varied greatly from one iteration to the next and

from one trajectory to the next. In general, the LLAM algorithm on Robot 2 ran between 5

and 10 Hz, occasionally exceeding 10 Hz, but rarely performing below 5 Hz. This proved

an acceptable speed given that the robot forward velocity was limited to 0.4 m/s. The actual

speed of the robot was updated every iteration of the LLAM algorithm by the output of the

potential field model. In most cases it had a forward velocity of around 0.25 m/s depending

on the distance to the goal and the obstacles sensed in the environment.

Transmitting 3D point clouds wirelessly using IEEE 2.4 GHz 802.11n protocol

proved to be the largest bottleneck. Prior to constructing Robot 2, an experiment was

conducted to transmit 3D point clouds from the Pico monstar sensor attached to the

SlimPRO, to the desktop computer for map building. During this experiment, the robot was

not moving and none of the navigation or obstacle avoidance algorithms were running. The

SlimPRO was only retrieving data from the Pico monstar at a rate of 10 Hz, formatting the

ROS message, and sending it over the ROS network. In this case, the algorithm was rate

controlled to 10 Hz to ensure that the variable being measured was transmission time over

the ROS network. As suspected, 3D point cloud messages could not be transmitted at 10

Hz over the ROS network. Initially, the point clouds were received at roughly 0.5 Hz on

the desktop computer. Changing the format of the ROS message, as discussed in Chapter

IV, increased this speed to a more consistent 1 Hz.

Actual data rates over the wireless connection averaged between 8 Mbps and 10

Mbps. After removing intensity and depth confidence data, the size of 3D point clouds

varied based on the number of laser returns, between roughly 5 Mbit and 10 Mbit. The

802.11n protocol should be able to support much higher data rates than were observed in

this experiment, which would allow faster real-time transmission of point cloud data. The

62

actual cause of the slow network data rate is beyond the scope of this work but is important

to note for future investigation.

Attempting to solve the transmission delay issue using a buffer was attempted.

However, as the rate of collection outpaced the rate of transmission by a factor of 5 to 10,

the buffer inevitably filled up. Continuously increasing the size of the buffer only took

memory resources away from other elements of the LLAM algorithm. As the maximum

speed of the LLAM algorithm was roughly 10 times the rate of transmission, transmitting

only every 10th point cloud was the method selected to avoid an excessive backlog.

Without the use of a buffer, occasionally 3D point cloud messages and 2D pose

estimates would be transmitted out of sync. One message or the other having been

overwritten before transmission. Certainly, an algorithm could be written to run on the

robot end to correct this, but it would slow the rate of the LLAM algorithm. Instead, if the

LLAM algorithm overwrote either a pose message or point cloud message before

transmission, both messages would be transmitted anyway with a frame ID appended to

the header. On the remote computer end, the frame IDs would be compared, and

mismatched messages would be discarded. This solution had the effect of occasionally

recording only the 20th or 30th scan from the robot, but so long as the message frame IDs

matched, the 2D pose estimate could be used to transform the 3D point cloud for map

making without significant loss to the map.

B. MAP BUILDING

1. Map Accuracy and Interpretability

In general, the accuracy of a map is absolute. The error in the map being the

difference between the environment that the map depicts and the environment as it actually

exists. For the application of this work, it was decided from the beginning that the absolute

accuracy of the map is less important than the speed at which it is acquired. In a tactical

setting, such as on-site raid planning, any map that is not misleading is better than no map

at all. With that in mind, the goal of this research was not to create a highly detailed map

that was accurate within the tolerances of the LIDAR sensors. Instead, it was to determine

if LLAM is a suitable method for building a hasty map that can be easily interpreted by a

63

human operator. In that respect, the accuracy of the map was primarily determined by

visual inspection. If the map resembled the environment it was compiled to represent and

it was interpretable to a person, it was considered a successful employment of LLAM.

The map depicted in Figure 28 was compiled from data collected by Robot 2 during

the closed loop experiment. It is important to note that human experimentation was not

included in this work. Therefore, the interpretability of the map is subject to a preexisting

understanding of the environment. Throughout experimentation the robot had to be placed

in the laboratory and it was not allowed to operate unsupervised for safety reasons. Thus,

the operator already understood what the environment looked like and could correlate that

understanding to the map that the robot produced.

Figure 28. 3D Map of Spanagel 521 from Robot 2 Closed Loop Experiment

Interior spaces, such as those depicted in this chapter, are difficult to view from an

exterior perspective. If the map is complete, it includes walls, a ceiling plane, a ground

plane, and typically the room is fully enclosed. In order to interpret the map without trying

to view the contents of a room through the walls or ceiling, a portion of the map must be

64

removed, or the map program must have the ability to render a view from “inside” the

room. In this work, the ceiling plane was removed from all maps so that the contents of the

room could be viewed from an exterior perspective. Additionally, the points were color

mapped corresponding to distance in the vertical dimension. The maps produced here are

still somewhat hard to interpret without a preexisting understanding of the environment.

That is partially due to the laboratory equipment present that is not common to most rooms;

however, discrete point cloud maps may not be the best solution for an easily interpretable

map.

One solution is to create a user interface so that the map can be explored

interactively. An example of this is seen in Figure 29, where the point cloud map was

loaded into Unreal Engine 4 and compiled into a third person video game. This allows the

user to explore the map in a more familiar and interpretable way. The creation of a third

person video game type interface was done separately from the LLAM algorithm. It is

included for demonstration only, and as a consideration for another avenue for future

development. It was not scripted into the LLAM algorithm or interfaced with the robot.

Figure 29. Example of a User Interface that Allows Map Exploration

65

2. Comparison of 2D and 3D Transformation Methods

As discussed in Chapter IV, the map can be compiled using the 2D transformations

computed from NDT scan registration, or the 2D transformations can be used as initial

transformations for 3D ICP point cloud registration. For comparison, both methods were

used on the data collected from the Robot 2 closed loop experiment. As can be seen in

Figure 30, with a ground mobile robot having three DoF, very little difference is detectable

in the map. The image on the left was compiled from the 2D NDT transformations, the

image on the right was compiled from the 3D ICP transforms. The times to compile the

maps were 0.495 s and 6.06 s for the 2D and 3D transformation methods, respectively.

Although the 2D transformation method was more than 12 times faster, the duration of six

seconds for the 3D method is sufficient to meet the tactical requirements here. Thus, either

method works with a robot constrained to three DoF.

Figure 30. Comparison of 2D (left) and 3D (right) Transformation Methods of

Map Building

Careful inspection reveals that the 3D transformation method yields a map with

slightly more distinguishable objects. The general accuracy of the maps, however, cannot

be differentiated without very close comparison. In either case, objects are difficult to

distinguish from a fixed exterior perspective. Thus, an ability to explore the map

interactively is necessary, as discussed in the preceding section.

66

C. OBSTACLE AVOIDANCE AND ROUTE PLANNING

The potential field model of obstacle avoidance proved successful in the laboratory

environment when the experiments were constructed to minimize the likelihood of

encountering a local minimum. Previous NPS thesis work integrated local minima escape

methods that were not included in this work. These methods would have expanded the

capability of the robot; however, the potential field model has limitations that may make

another obstacle avoidance model preferable for this application. For example, the Hokuyo

LIDAR has a fixed angular resolution. At certain distances slim obstacles, such as table

legs, may fall in between the laser shots from the Hokuyo LIDAR. Since the 3D LIDAR

returns were sorted into angle bins corresponding to the angular resolution of the Hokuyo

LIDAR, the 3D returns did not always assist the robot in detecting these obstacles until

they were relatively close.

Although the robot did not fail to detect and avoid slim obstacles prior to collision,

it frequently detected them at a close range where it could not correct the trajectory without

slowing down significantly. Given the 0.25° angular resolution of the Hokuyo, the LIDAR

should be able to detect most of the table legs (several centimeters wide) at a range of

several meters. In practice however, it frequently did not detect them until it was within

one meter.

 In general, it is not advantageous to use the maximum range of the Hokuyo LIDAR

for potential field calculations. Assigning repulsive forces to obstacles that are very far

away creates a more complicated potential field and requires significant tuning of the gains

in order to make the robot reach the goal. However, the extended range of the Hokuyo

LIDAR, or a 3D spinning LIDAR if equipped, gives the robot the ability to sense obstacles

far away. If a different obstacle avoidance model were implemented, such as an occupancy

map-based planning algorithm, the robot would be able to plan routes out to the extent of

the LIDAR range. Combined with a frontier search algorithm, the robot could then explore

an interior space more efficiently. This model, however, would be susceptible to drift in a

way that the potential field model, as implemented here, is not. If the pose estimate of the

robot drifted from the actual pose significantly, the robot could collide with obstacles. This

67

implementation would require loop-closure or some other method of iterative pose

refinement.

In this work, a hybrid model of potential field obstacle avoidance and occupancy

map-based planning was implemented on Robot 1. The potential field algorithm ensured

that the robot did not collide with obstacles due to drift, and the occupancy map-based

Hybrid A* Search planned a route to the next goal. This model allowed the robot to plan a

route based on all the known obstacles detected from any previous pose of the robot. It

proved effective as a navigation and obstacle avoidance method but suffered from the long

pauses required to build the occupancy map, as previously described. The SLAM and

occupancy map building algorithms used in this work were included in the MATLAB

Computer Vision and Navigation Toolboxes and are not necessarily optimized for speed

or autonomous robotics. Programming similar algorithms optimized for speed was not

examined in this work, and consequently Hybrid A* Search planning was not included on

Robot 2. However, if combined with pose refinement, occupancy map-based planning may

prove more flexible and efficient than the potential field model used here.

Furthermore, the constrained degrees of freedom and relatively slow movement of

the ground mobile robot allowed the dynamics to be simplified to translational and

rotational velocity commands sent to the robot. If LLAM is extended to flying robots,

operating at faster speeds, and considering higher order dynamics, the method implemented

here will need to be reexamined.

Finally, the Hybrid A* Search algorithm did not have the ability to incrementally

re-plan the route while the robot was in motion. If a previously unidentified obstacle was

encountered, the robot relied solely on the potential field model to avoid it. This made it

susceptible to the local minima problem. If an escape method was implemented, the robot

would still need to stop and re-plan the route once the local minimum was escaped. D*

Search for example, includes the ability to incrementally re-plan a route using a similar

occupancy grid and cost map approach [22]. Implementation using D* Search, or another

similar method, could alleviate susceptibility to the local minima problem and remove the

need for escape methods.

68

THIS PAGE INTENTIONALLY LEFT BLANK

69

VI. CONCLUSIONS

This thesis research developed two robots capable of localizing and mapping using

LIDAR sensors only. Each robot operated differently providing valuable insights into

LLAM as a means for tactical mapping, as well as future development required to make

this a feasible military capability. This chapter includes conclusions drawn from

experimentation and recommendations for future work.

A. ASSESSMENT OF GOALS

1. Feasibility of LLAM for Autonomous Interior Mapping

LIDAR localization and mapping is a feasible method of generating three-

dimensional interior maps in a tactical setting. It can be performed in real-time with current

mobile computing resources. With further development, LLAM could be implemented in

military operations successfully. Significant further development is needed to make this a

technology capable of fielding. However, the concept is sound based on current computer

technology, and advances in computer technology will make it even more feasible in the

future.

The inability of LIDAR to detect transparent windows is an issue that may make a

purely LLAM enabled robot insufficient for tactical operations. In this work, none of the

windows in the test spaces extended to the floor. A flying robot, however, would not be

able to detect the windows solely with LIDAR and would likely try to fly through windows,

perceiving them as unoccupied space, and the area beyond them as unexplored space. An

additional sensor may be required to prevent this.

Many commercially available LIDAR sensors now include an IMU built into the

LIDAR unit itself. As the IMU is already a component of the LIDAR, future research in

LIDAR mapping should seek to use IMU data to assist in point cloud registration and pose

estimation. The initial assertion in this thesis was that the inclusion of additional sensors

increases weight, complexity, power requirements, and data processing requirements. This

makes additional sensors less than desirable for tactical applications. As the commercial

LIDAR market begins including IMUs, and in some cases color imagery, into a single

70

sensor of similar size and weight, it only makes sense to utilize the provided data for

improved localization and mapping.

2. Adequate Resolution

Determining an adequate resolution for useable tactical maps is both subjective and

variable based on the environment. Throughout experimentation, the majority of final maps

were downsampled using a three cm voxel grid filter. This parameter was adjusted through

experimentation. The resulting resolution was sufficient to build an interpretable map. In

most cases, common objects such as computer monitors, chairs, and work benches were

easily distinguishable. Other, less common objects, such as torsion plants and other robots,

were difficult to distinguish. In most cases, increasing map resolution assisted in

identifying these less-familiar objects. However, creating extremely dense point clouds

made the maps less interpretable. Partial transparency in the map creates contrast, which

makes the objects in the scene more visible. Thus, a point exists where increasing point

cloud density decreases map interpretability. Through experimentation, the

aforementioned values were determined to be optimal for the test spaces. In a more

common environment, such as a house, a lower resolution may be perfectly acceptable to

distinguish common appliances and household items.

The gradient colormap used to distinguish elevation in the processed maps was

acceptable. However, when viewed from an exterior perspective, it can be difficult to

differentiate small objects. For example, an object on a table could be difficult to

distinguish from the table itself. This is because the color value was based on elevation,

and because the object and table had similar elevations, they had similar colors as well. If

the map was rendered with a light source that cast shadows, such as in Figure 29, objects

may be easier to distinguish. Creating a mesh-based map from the point cloud may also be

a suitable solution.

3. Obstacle Detection and Autonomous Navigation

Robot 1 combined LLAM with obstacle detection and navigation effectively to a

certain degree. The robot required long pauses at each waypoint to compile the SLAM and

occupancy maps, as well as run the frontier search and Hybrid A* Search algorithms. The

71

frontier search and Hyrbird A* Search algorithms contributed negligibly to those pauses.

Those algorithms could likely be performed on the move if the required occupancy map

input could also be built on the move. This is an area that requires further development.

However, there is no evidence to suggest that the occupancy map process cannot be

optimized for speed and incorporated in real-time. This further development is a necessary

requirement for tactical employment.

4. Map Visualization Method

A color-mapped discrete point cloud provides a map that is acceptable but

suboptimal. It is certainly better than no map at all. However, it does not depict an

environment as humans see it. Several commercially available LIDARs have the ability to

assign an RGB color to each returned point. This allows the discrete point cloud to be

colorized in a similar way to an image and makes the map much easier to interpret.

As already discussed, an exterior viewpoint creates a problem where a portion of a

room needs to be removed in order to discern what is inside. In an experimental

environment, it is fairly simple to determine which wall or ceiling plane to remove in order

to view the interior. In a totally unknown structure, it would likely be much more difficult

to understand. For example, if the robot were to map the entirety of a multiple story

building with interior spaces that did not border exterior walls, the map would need to be

partitioned multiple times to view all of the space from an exterior perspective. In this

respect, an interactive map would be far more useful. For many years, the video game

industry has been creating explorable, easily interpretable 3D maps. Additionally, nearly

all service-age adults grew up in a time when 3D video games were widely accessible. A

similar map interface to video games would be a logical and easily achievable method for

visualizing 3D maps.

B. LIMITATIONS

1. Hardware

Robot 1 and Robot 2 were both constructed with materials already on hand within

the ECE Control Systems laboratory. Although these materials proved sufficient, none of

72

them are on the cutting edge of technology, and they have a number of limitations that

newer technologies do not. First, the PMD Pico monstar LIDAR is not ideal for

autonomous interior mapping as it has a short range and limited field of view. A 3D

spinning LIDAR would provide longer range, a larger FoV, and more accurate localization

and mapping. It would also remove the reliance on the 2D Hokuyo LIDAR for navigation.

Similarly, the full-size laptop mounted on Robot 1 could perform six DoF LLAM

in real-time but struggled to build an occupancy map and plan a route fast enough for

tactical applications. Since the SlimPRO had less computing power than the laptop, a

simplified three DoF localization method was used on Robot 2. Additionally, the Hybrid

A* Search and frontier search algorithms were not included. Neither the laptop nor the

SlimPRO represent what is currently commercially available in terms of performance. A

more powerful on-board computer would be beneficial to future LLAM research and

development.

Wireless transmission of point cloud data was a significant bottleneck. As it was

necessary for other devices to be using the laboratory wireless router, it is possible that

bandwidth was limited by other experiments and network traffic. Future research should

attempt to identify a suitable network protocol for wireless point cloud transmission.

Perhaps newer IEEE 802.11xx protocols, new router hardware, or creation of an Ad Hoc

network would solve this problem. The proliferation of 5G technology may provide another

avenue that is worth examining.

2. Software

MATLAB is an exceptionally useful tool for prototyping; however, it is not

optimized for speed. In fact, MATLAB has a built-in coder tool to convert MATLAB code

to C or C++ to speed up slow algorithms [36]. MATLAB was the language selected for

this work for several reasons. First, MATLAB was used for previous NPS theses on the

topic of autonomous robotics. A portion of the code written for those works could be easily

adapted for use here. Second, MATLAB includes numerous functions and toolboxes that

assist in development and analysis. Finally, MATLAB allows for the integration of

Windows OS computers with ROS, which was beneficial in the development of Robot 2.

73

Since LLAM requires significant computational power and memory resources,

another programming language, such as C or C++, is preferable. Additionally, these

languages allow specific processes to be multithreaded. In [11], Lin and Zhang divided a

received point cloud into three subframes and matched them independently with the global

map, each through a dedicated CPU core. The Loam_livox algorithm in [11] was written

in C++ and designed specifically to operate on multicore processors, achieving a real-time

speed of 20 Hz.

The LLAM algorithm developed here can be further optimized for speed while still

running in the MATLAB environment. However, various open source libraries for point

cloud processing already exist. For Example, Point Cloud Library (PCL) is a free C++

library of point cloud and image processing algorithms, many of which are similar to those

used in this work. It includes algorithms for filters, registration, KD tree/octree

construction, feature extraction, etc. [37]. According to Rusu and Cousins, PCL is written

for efficiency and performance on modern CPUs, and it is also integrated with ROS [37].

Point Cloud Library, or other similar C/C++ based projects, could provide a better

development environment than MATLAB for future work in LLAM.

C. FUTURE WORK

Simultaneous localization and mapping is a continuously evolving field with

significant advances occurring frequently. LIDAR based SLAM is a newer branch of the

SLAM problem with significant space for future work. Included here are recommendations

for future work utilizing the LLAM algorithm. These areas for future work are not all

encompassing but are focused on the practical military applications of LLAM.

1. Algorithm Optimization and Hardware Upgrade

Upgrading the robot used in this thesis by incorporating a spinning 3D LIDAR and

removing the 2D Hokuyo LIDAR is a logical next step. The methods contained herein

should work with a 3D spinning LIDAR; however, this would require significant rewriting

of the code included in the appendices. Additionally, much effort was taken to optimize

the LLAM algorithm and included functions. Certainly, the algorithm can still be improved

by converting functions to C++, experimenting with function ordering, etc.

74

Due to the slow movement speed of the robot, the effects of motion blur within a

3D point cloud were considered negligible. Upgrading the equipment and improving the

speed of the algorithm would allow the robot to move faster and will require a method to

compensate for motion blur.

Loop-closure was attempted but found unnecessary and removed. The small-scale

nature of the map environments combined with a generally one-way path meant that the

robot was unlikely to revisit a specific location. In many cases, such as travelling down a

hallway, it is obvious from the pose estimate and trajectory that the robot is unlikely to

close a loop. In these cases, continuously running loop-closure queries wastes

computational power. However, loop-closure allows for drift correction and pose

refinement. Future work should develop a method to search for loop-closures triggered by

specific circumstances. For example, a loop-closure query may be executed when the robot

exits a room from the same door it used to enter.

2. Point Cloud Registration

This work utilized a successive scan matching method based on iterative closest

point and normal distribution transform methods. Many other techniques exist that were

not examined here, some of which may be superior for this application. Additionally, a

new, novel method of point cloud registration could be developed specifically for the small

scale, high speed, tactical nature of the problem here. The combination of neural networks

or other machine learning algorithms and point cloud data would be similarly useful for

this application. For instance, semantic segmentation could be used to identify both

obstacles to the robot, and threats to the operators who will presumably enter the building.

It could also be used to segment dynamic obstacles, which was a limitation of the LLAM

algorithm and occasionally caused matching degeneration.

3. Obstacle Avoidance and Navigation Model

In this work, the limitations on autonomy were primarily due to the models selected

for obstacle avoidance and navigation. Robot 1 could function nearly autonomously but at

a slow speed. Robot 2 required pre-planned waypoints, but it operated without stopping

and could transmit point clouds wirelessly. Tactical employment of a similar robot would

75

require characteristics of both Robot 1 and Robot 2. The Robot 1 LLAM algorithm utilized

a hybrid potential field and occupancy map model for obstacle avoidance and navigation.

The potential field calculated steering commands to avoid obstacles, and the occupancy

map informed the route planning and frontier search algorithms. Future work should seek

to develop a combined model for navigation and obstacle avoidance that can incrementally

re-plan the route while in motion.

4. Map Building and Human Interactivity

The interpretability of maps presented here was subject to a preexisting

understanding of the environment being mapped. Although less technical in nature, in order

to develop this technology as a fieldable capability, further research needs to be conducted

on human subjects. Human experimentation should include methods for visualizing the

map as well as user input interfaces. Additionally, in combat operations a threshold exists

where the size, weight, and complexity of a system can become as important as the

capabilities of the system. That is, if the system is large, heavy, or difficult to use, it can

become a distraction from the mission at hand. In these cases, typically the system is left

behind. In the worst cases, distraction from the situation can endanger the operator or

military unit. Careful consideration, supported by human subject research, must be given

to the usability of a tactical interior mapping robot. Such a robot must meet the needs of

the military operator without becoming burdensome.

5. Adaptation to a Flying Robot

For tactical purposes, a ground mobile robot has obvious limitations. A flying robot,

such as a quadcopter drone, can avoid ground obstacles easily and seems to be a preferable

solution. Additionally, a flying robot could provide a more complete map than a ground

mobile robot as it can change elevation to inspect the top of objects that are not be visible

from the ground. A six-DoF model similar to that developed for Robot 1, could account

for the pitch, roll, and vertical translation of a flying robot. However, research needs to be

conducted into the dynamics of a flying robot and how those dynamics effect LLAM. In

this work, the slow speeds of the robot allowed the dynamics to be approximated as a series

76

of step inputs. If the robot changed speed, it did so relatively quickly and the acceleration

was neglected. This simplified model will not likely work for a flying robot.

77

APPENDIX A. ROBOT 2

A. MASTER.M

%Master.m collects data, runs the obstacle avoidance and navigation
%scripts, and transmits 2D poses and 3D point clouds via the ROS
network
%to the remote computer running Listener.m. This script should be
%initialized via SSH from the remote computer after launching the
%ROS Core and Hokuyo node from the terminal.
%Instructions are included in Listener.m.

clearvars; clc; close all;
addpath('/home/ecejames/Jameson_Thesis/myMatlab')

%% Abort Callback used to break loop if the robot malfunctions
%This only functions if the GUI is running on MobaXTerm.
%To abort: Press 'a' on the keyboard.

stringInput = 'x';
h_fig =figure;

%% Initialize PMD Pico Monstar
cameraDevice = initializePMD();

%% Connect to Robot
p3_connector_Payne('/dev/ttyUSB0');
disp('Connected to Robot');
pause(0.8);

%% Initialize Nodes, Subscribers, and Publishers,
% and wait for other Machine to connect

%Initialize node
rosinit('localhost','NodeName','slimPRO')

%Initialize Publishers and Subscribers
PMDPub = rospublisher('/scan3D','sensor_msgs/Image');
PMDSub = rossubscriber('/scan3D','sensor_msgs/Image');
HkPub = rospublisher('/scan','sensor_msgs/LaserScan');
HkSub = rossubscriber('/scan','sensor_msgs/LaserScan');
RobotPosePub = rospublisher('/pose','geometry_msgs/PoseStamped');

%Wait for remote machine to connect to ROS network.
disp('Waiting for Other Machine to Connect...')
while true
 ls = rosnode('list');
 if any(contains(ls,'/windows_machine'))
 disp('Other Machine Connected')
 break %If rosnode list contains /windows_machine, break

78

 end
end

%% Initialize script variables and containers
%Variables
rng(0);
navMode = 0;
maxScans = 1000;

%Preplanned goals (# of Sp521 floor tiles)
goalMat = [11 -1; 13 0; 12 2; 10 2; 0 0];
goalMat = goalMat.*610; %Convert floor tile distance to mm
sz = size(goalMat);
numWaypoints =sz(1);
minDepthConfidence = 155;
hkOffset =-0.1;
PMDOffset =-0.16;
PMD_height =0.435;
R = [0 -1 0; 0 0 -1; 1 0 0];
PMDtrans = rigid3d(R,[PMDOffset,0,PMD_height]);

%Navigaion parameters
global goalTolerance
goalTolerance = 300;
transVel = 100; %Initial translational velocity for frame 1
wayPointInc = 1;
waypointCurrent = goalMat(wayPointInc,:);
wayPointReached = false;

%Containers and Objects
PMDScans = cell(maxScans,1);
HkScans = cell(maxScans,1);
Hkpgraph = poseGraph;

%% Run loop for collection and transmission of data,
% navigation and obstacle avoidance
pause(8);

i = 1;
while (i < maxScans) && (p3_getBumpersClear)
 ratetic = tic;

 %Retrieve Hokuyo Scans, store as laser scan, and ROSMsg
 Hmsg = receive(HkSub);
 hkCart = readCartesian(Hmsg);
 hkCart = hkCart + [hkOffset 0];
 HkScans{i} = lidarScan(hkCart);

 if i == 1
 %Retrieve, Preprocess, PointCloud Object, and ROSmsg PMD data.
 PMDdata = cameraDevice.getData();

79

 [PMDCloud,PMDImage] =
processPMD(PMDdata,i,PMDPub,minDepthConfidence,PMDtrans);
 % PMDScans{i} = PMDCloud; %uncomment to store point clouds in
 % SlimPRO memory (optional)
 PoseMsg = createROSpose([0 0 0],i,RobotPosePub);
 send(PMDPub,PMDImage)
 send(RobotPosePub,PoseMsg)
 disp('sent')
 p3_setTransVel(transVel);

 %Run every iteration that is not evenly divisible by 10, this
allows
 %the PMDprocess function to skip computations if the frame
 %is not going to be transmitted.
 elseif ~rem(i,10) == 0
 %Retrieve, Preprocess, PointCloud Object, and ROSmsg PMD data.
 PMDdata = cameraDevice.getData();
 [PMDCloud] =
processPMD(PMDdata,i,PMDPub,minDepthConfidence,PMDtrans);
 %PMDScans{i} = PMDCloud;

 %Get Relative Pose
 relPose = matchScans(HkScans{i},HkScans{i-1});

 %Add relative pose to pgraph and retrieve world pose for
navigation
 addRelativePose(Hkpgraph,relPose);
 poseList = nodes(Hkpgraph);
 poseCurrent = poseList(end,:);

 %Otherwise, send every tenth scan and pose to the desktop.
 elseif rem(i,10) == 0
 %Retrieve, Preprocess, PointCloud Object, and ROSmsg PMD data.
 PMDdata = cameraDevice.getData();
 [PMDCloud,PMDImage] =
processPMD(PMDdata,i,PMDPub,minDepthConfidence,PMDtrans);
 %PMDScans{i} = PMDCloud;

 %Get Relative Pose
 relPose = matchScans(HkScans{i},HkScans{i-1});

 %Add relative pose to pgraph and retrieve world pose for
navigation
 addRelativePose(Hkpgraph,relPose);
 poseList = nodes(Hkpgraph);
 poseCurrent = poseList(end,:);

 %Create ROS pose message
 PoseMsg = createROSpose(poseCurrent,i,RobotPosePub);
 send(PMDPub,PMDImage)
 send(RobotPosePub,PoseMsg)
 disp('sent')
 end

80

 if i > 1
 %Obstacle Detection and navigation

[fwdVel,rotVel,Frep_r,Fatt_r]=potentialField(poseCurrent,PMDCloud,HkSca
ns{i},waypointCurrent,navMode);
 p3_setTransVel(fwdVel);
 p3_setRotVel(rotVel);

 %Check if waypoint Reached
 wayPointReached = p3_goalReached(poseCurrent,waypointCurrent);
 if (wayPointReached == true)
 if (wayPointInc < numWaypoints)
 wayPointInc = wayPointInc + 1;
 else
 p3_setTransVel(0);
 p3_setRotVel(0);
 break
 end
 end
 end
 waypointCurrent = goalMat(wayPointInc,:);

 t = toc(ratetic);
 ratestr = sprintf('Frame = %i, Rate = %.3f (Hz)',i,1/t);
 disp(ratestr);
 i = i+1;

 %Check for Abort
 drawnow
 set(h_fig,'KeyPressFcn',@(H,E)
assignin('base','stringInput',E.Key));
 if strcmp(stringInput,'a')
 disp('Aborted');
 break
 end

 %Check to ensure remote computer is connected
 ls = rosnode('list');
 if ~any(contains(ls,'/windows_machine'))
 break %break if /windows_machine disconnects
 end
end %while loop

%% Disconnect PMD Pico Monstar

close all
cameraDevice.stopCapture();
disp('PMD Pico Monstar Disconnected');

%Close serial connections and destroy objects
shutDownAll;
clear PMDPub PMDSub HkPub HkSub RobotPosePub cameraDevice
save('P3_data.mat')

81

%% Supporting Functions
function poseMsg = createROSpose(poseCurrent,i,RobotPosePub)
%This function creates a pose message from the Hokuyo LIDAR data
HkHeight = 0.33;
poseMsg = rosmessage(RobotPosePub);
poseMsg.Pose.Position.X = poseCurrent(1);
poseMsg.Pose.Position.Y = poseCurrent(2);
poseMsg.Pose.Position.Z = HkHeight;
quat = eul2quat([poseCurrent(3) 0 0]);
poseMsg.Pose.Orientation.W = quat(1);
poseMsg.Pose.Orientation.X = quat(2);
poseMsg.Pose.Orientation.Y = quat(3);
poseMsg.Pose.Orientation.Z = quat(4);
poseMsg.Header.FrameId = num2str(i);
end

function [PMDCloud,PMDImage] =
processPMD(PMDdata,i,PMDPub,minDepthConfidence,PMDtrans)
%This function preprocesses 3D LIDAR data removing invalid points. If
there
%is one output argument it only processes the lidar data, if there are
two
%output arguments it also creates the ROS image message for
transmission to
%the remote computer.
switch nargout
 case 1
 %Preprocess 3D lidar data
 x = PMDdata.x; y=PMDdata.y; z=PMDdata.z; depth =
single(PMDdata.depthConfidence);
 pointsToKeep = depth > minDepthConfidence;
 x = x(pointsToKeep); y = y(pointsToKeep); z = z(pointsToKeep);
 organizedPoints = cat(3,x,y,z);

 %Rotate and translate point cloud to robot frame
 PMDCloud = pointCloud(organizedPoints);
 PMDCloud = pctransform(PMDCloud,PMDtrans);
 case 2
 %Preprocess 3D lidar data
 x = PMDdata.x; y=PMDdata.y; z=PMDdata.z; depth =
single(PMDdata.depthConfidence);
 pointsToKeep = depth > minDepthConfidence;
 x = x(pointsToKeep); y = y(pointsToKeep); z = z(pointsToKeep);
 organizedPoints = cat(3,x,y,z);

 %Write ROS message
 PMDImage = rosmessage(PMDPub);
 PMDImage.Encoding = '32fc3'; %Single floating point 3 channel
image
 writeImage(PMDImage,organizedPoints);
 PMDImage.Header.FrameId = num2str(i);

 %Rotate and translate point cloud to robot frame

82

 PMDCloud = pointCloud(organizedPoints);
 PMDCloud = pctransform(PMDCloud,PMDtrans);
end
end

function goalReached = p3_goalReached(poseCurrent,goal)
%This function determines if the robot has reached the current goal.
global goalTolerance

%Pull Data from Current Pose and store in local variables
worldXCurrent=poseCurrent(1)*1000;
worldYCurrent=poseCurrent(2)*1000;
worldXGoal=goal(1);
worldYGoal=goal(2);

%Calculate Distance to Target Point
worldDist=sqrt((worldXCurrent-worldXGoal)^2+(worldYCurrent-
worldYGoal)^2);

if worldDist>goalTolerance
 goalReached = false;
else
 goalReached = true;
end

end

function cameraDevice = initializePMD()
%This function initializes the PMD Pico monstar LIDAR. It is adapted
from
%the manufacturers MATLAB SDK example scripts and written as a local
%function. Through experimentation the preset "use case 2" provided
similar results to
%those achieved varying the camera parameters individually to perceive
the
%lab environement. Other use cases are detailed in the PMD Pico monstar
%documentation. Parameters can also be set individually using the
object
%methods (not documented for MATLAB, see classdef provided in SDK),
however the preset use cases are
%recommended.

 % retrieve royale version information
 royaleVersion = royale.getVersion();
 fprintf('* royale version: %s\n',royaleVersion);

 % the camera manager will query for a connected camera
 manager = royale.CameraManager();
 camlist = manager.getConnectedCameraList();

 fprintf('* Cameras found: %d\n',numel(camlist));

83

 cellfun(@(cameraId)...
 fprintf(' %s\n',cameraId),...
 camlist);

 if (~isempty(camlist))
 % this represents the main camera device object
 cameraDevice = manager.createCamera(camlist{1});
 else
 error(['Please make sure that a supported camera is plugged in,
all drivers are ',...
 'installed, and you have proper USB permission']);
 end

 % the camera device is now available and CameraManager can be
deallocated here
 delete(manager);

 % IMPORTANT: call the initialize method before working with the
camera device
 cameraDevice.initialize();

 % retrieve valid use cases
 UseCases=cameraDevice.getUseCases();
 fprintf('Use cases: %d\n',numel(UseCases));
 fprintf(' %s\n',UseCases{:});
 fprintf('====================================\n');
 if (numel(UseCases) == 0)
 error('No use case available');
 end
 UseCase=UseCases{2};
 cameraDevice.setUseCase(UseCase);
 cameraDevice.startCapture();
end

84

B. LISTENER.M

%Listener.m establishes a ROS node on a remote windows computer and
%subscribes to ROS image messages (PMD 3D point clouds), as well as ROS
%pose messages sent from Master.m running on the robot on-board
computer.
%This script collect data and saves it to a .mat file to be processed
with
%one of the map building scripts.

%%%
%%%
%Insructions:
% 1. Open MobaXterm or PuTTY and connect to 192.168.0.9
username:ecejames
% 2. $tmux
% 3. $roscore ctrl+b then %
% 4. $rosrun urg_node urg_node ctrl+b then %
% 5. $matlab -nodisplay -nosplash -nodesktop
% 6. >>Master.m
% 7. Run this script in MATLAB
%%%
%%%

clearvars; clc; close all

%Preallocate cell arrays for messages
maxFrames = 1000;
PMDMessages= cell(maxFrames,1);
poseMessages=cell(maxFrames,1);

%Connect to ROS master already running on SlimPRO
rosinit('192.168.0.9','NodeName','/windows_machine');

%Initialize subscribers
PMDSub = rossubscriber('/scan3D','sensor_msgs/Image','BufferSize',3);
RobotPoseSub =
rossubscriber('/pose','geometry_msgs/PoseStamped','BufferSize',11);

%Ensure all nodes are active
disp('ROS Node List:')
rosnode list
disp('ROS Topic List:')
rostopic list

%Run while loop until robot stops sending messages
i=1; %increment
while true
 rateTimer = tic;
 try
 waitTimer = tic;

 %Receive ROS Messages
 poseMsg = receive(RobotPoseSub,30);

85

 PMDMsg = receive(PMDSub,30);

 %Extract Frame ID from header
 poseFrame = str2num(poseMsg.Header.FrameId);
 PMDFrame = str2num(PMDMsg.Header.FrameId);
 tWait = toc(waitTimer);
 catch ME
 %Error handling to prevent return if timeout occurs
 disp('ROS Message Timeout')
 if ~strcmp(ME.identifier,'MATLAB:undefinedVarOrClass')
 disp(ME.message);
 end
 break
 end

 %Store Messages in cell array indexed by frame ID
 PMDMessages{PMDFrame} = PMDMsg;
 poseMessages{poseFrame} = poseMsg;
 %Print incoming data rate (Hz)
 t=toc(rateTimer);
 ratestr = fprintf('Frame = %i, Rate = %f (Hz), ROS Wait Time = %f
(s)\n',i,1/t,tWait);
 i = i+1;
end

%Disconnect from ROS network
rosshutdown
disp('ROS Shutdown');
clear PMDPub PMDSub RobotPoseSub

%If messages were received save in .mat file.
if ~isempty(PMDMessages) && ~isempty(poseMessages)
 save('P3_output.mat');
end

C. MAPBUILDER.M

%mapBuilder.m builds a 3D map from the messages stored from Listener.m.
%This script uses the 2D transformation method (3 DoF) and does not
%register point clouds using 3D ICP.

%% Check if workspace is loaded
clearvars;
if ~exist('PMDMessages','var') || ~exist('poseMessages','var')
 load('P3_output.mat');
end

%% Initialize Variables and Containters
vSet = pcviewset;
PMD_height = 0.435;
PMDOffset = -0.16;
R = rotx(90)*rotz(90);
trans = [PMDOffset 0 PMD_height];

86

PMDtrans = rigid3d(R,trans);

%% Find and remove empty cells from saved messages

%Find Empty cells
PMDidx = find(cellfun(@isempty,PMDMessages));
poseidx = find(cellfun(@isempty,poseMessages));

%Remove empty cells
PMDMessages(PMDidx) = [];
poseMessages(poseidx) =[];

%% Remove Frames with mismatched Ids

%Extract PMD frame ids and save in numeric vector
PMDFrameIds = [];
for i = 1:length(PMDMessages)
 PMDFrameIds(i) = str2num(PMDMessages{i}.Header.FrameId);
end

%Extract pose frame ids and save in numeric vector
poseFrameIds =[];
for i = 1:length(PMDMessages)
 poseFrameIds(i) = str2num(poseMessages{i}.Header.FrameId);
end

%Compare and adjust frame id vectors so they are the same.
poseFrameIds = poseFrameIds(ismember(poseFrameIds,PMDFrameIds));
PMDFrameIds = PMDFrameIds(ismember(PMDFrameIds,poseFrameIds));

%Remove frames from cell array that do not match
updateLength = length(PMDFrameIds);
for i = 1:updateLength
 localFrameId = str2num(PMDMessages{i}.Header.FrameId);
 if ~any(PMDFrameIds == localFrameId)
 PMDMessages(i) = [];
 end
 updateLength=length(PMDMessages);
end
for i = 1:updateLength
 localFrameId = str2num(poseMessages{i}.Header.FrameId);
 if any(poseFrameIds == localFrameId)
 else
 poseMessages(i) = [];
 end
 updateLength=length(poseMessages);
end

%% Read remaining messages with matching frame Ids
idx = length(PMDMessages);

87

ptCloud = cell(idx,1);
wPose2D = NaN(idx,3);

for k = 1:idx
 %Read PMD messages and rotate to world coordinate frame.
 PMDMsg = PMDMessages{k};
 PMDImage = readImage(PMDMsg);
 PMDCloud = pointCloud(PMDImage(:,:,1:3));
 PMDCloud = pctransform(PMDCloud,PMDtrans);
 ptCloud{k} = PMDCloud;

 %Convert quat Pose to 2D Pose and store
 poseMsg = poseMessages{k};
 Eul = quat2eul([poseMsg.Pose.Orientation.W
poseMsg.Pose.Orientation.X poseMsg.Pose.Orientation.Y
poseMsg.Pose.Orientation.Z]);
 theta = Eul(1);
 absPose2D = [poseMsg.Pose.Position.X poseMsg.Pose.Position.Y
theta];
 wPose2D(k,:) = absPose2D;
end

%% Compute transforms from 2D data and add to viewset object
tic
absTform = rigid3d;
for i = 1: length(ptCloud)
 trans = [wPose2D(i,1) wPose2D(i,2) PMD_height];
 rot = rotz(-rad2deg(wPose2D(i,3)));
 absTform = rigid3d(rot,trans);
 vSet = addView(vSet,i,absTform,"PointCloud",ptCloud{i});

end

%% Build Map and view
gridSize =0.03;
ptCloudMap = helperBuildMapFromViewset(vSet, gridSize);
toc
figure
pcshow(pcdenoise(ptCloudMap))
hold on
scatter3(wPose2D(:,1),wPose2D(:,2),PMD_height*ones(length(wPose2D),1));
hold off
xlabel('x');ylabel('y');zlabel('z');

%% Optional: Save Data
saveInput = input('Save Data (y/n)?\n','s');
if strcmp(saveInput,'y') || strcmp(saveInput,'Y')
 name = input('Enter File Name:\n','s');
 fileName = sprintf('%s.mat',name);
 save(fileName);
end

88

%% Supporting Functions

function ptCloudMap = helperBuildMapFromViewset(vSet, gridSize)
%This function is adapted from a function included in MATLAB R2020a
example
%BuildAMapFromLidarDataUsingSLAMExample.m. It utilizes point cloud
viewsets
%instead of the pcmerge.m function included in earlier work.

numViews = vSet.NumViews;

% Extract point cloud views and absolute transformations from view set.
ptClouds = vSet.Views.PointCloud;
absTforms = vSet.Views.AbsolutePose;

% Make point clouds unorganized
for n = 1 : numViews
 ptClouds(n) = removeInvalidPoints(ptClouds(n));
end

% Preallocate map points
totalNumPoints = sum([ptClouds.Count]);
mapPoints = zeros(totalNumPoints, 3, 'like', ptClouds(1).Location);

pointIndex = 1;
for n = 1 : numViews
 % Transform points to reference frame of first point cloud
 ptCloud = pctransform(ptClouds(n), absTforms(n));

 % Accumulate map points
 count = ptCloud.Count;
 mapPoints(pointIndex:pointIndex+count-1, :) = ptCloud.Location;

 pointIndex = pointIndex + count;
end

% Downsample points using voxel grid filter to the requested resolution
ptCloudMap = pcdownsample(pointCloud(mapPoints), 'gridAverage',
gridSize);
end

89

D. MAPBUILDER3D.M

 %mapBuilder3d.m builds a 3D map from the messages stored from
Listener.m.
%This script uses the 3D transformation method (6 DoF). First the
%2D pose is used to initially transform each point cloud. Then 3D ICP
%registration is used to calculate another transform to refine the map.

%% Check if workspace is loaded
clearvars;
if ~exist('PMDMessages','var') || ~exist('poseMessages','var')
 load('P3_output.mat');
end

%% Initialize Variables and Containters
vSet = pcviewset;
PMD_height = 0.435;
PMDOffset = -0.16;
R = rotx(90)*rotz(90);
trans = [PMDOffset 0 PMD_height];
PMDtrans = rigid3d(R,trans);
%% Find and remove empty cells from saved messages
%Find Empty cells
PMDidx = find(cellfun(@isempty,PMDMessages));
poseidx = find(cellfun(@isempty,poseMessages));

%Remove empty cells
PMDMessages(PMDidx) = [];
poseMessages(poseidx) =[];

%% Remove Frames with mismatched Ids
%Extract PMD frame ids and save in numeric vector
PMDFrameIds = [];
for i = 1:length(PMDMessages)
 PMDFrameIds(i) = str2num(PMDMessages{i}.Header.FrameId);
end
%Extract pose frame ids and save in numeric vector
poseFrameIds =[];
for i = 1:length(poseMessages)
 poseFrameIds(i) = str2num(poseMessages{i}.Header.FrameId);
end

%Compare and adjust frame id vectors so they are the same.
poseFrameIds = poseFrameIds(ismember(poseFrameIds,PMDFrameIds));
PMDFrameIds = PMDFrameIds(ismember(PMDFrameIds,poseFrameIds));

90

%Remove frames from cell array that do not match
updateLength = length(PMDFrameIds);
for i = 1:updateLength
 localFrameId = str2num(PMDMessages{i}.Header.FrameId);
 if ~any(PMDFrameIds == localFrameId)
 PMDMessages(i) = [];
 end
 updateLength=length(PMDMessages);
end
for i = 1:updateLength
 localFrameId = str2num(poseMessages{i}.Header.FrameId);
 if any(poseFrameIds == localFrameId)
 else
 poseMessages(i) = [];
 end
 updateLength=length(poseMessages);
end

%% Read remaining messages with matching frame Ids
idx = length(PMDMessages);
ptCloud = cell(idx,1);

for k = 1:idx
 %Read PMD messages and rotate to world coordinate frame.
 PMDMsg = PMDMessages{k};
 PMDImage = readImage(PMDMsg);
 PMDCloud = pointCloud(PMDImage(:,:,1:3));
 PMDCloud = pctransform(PMDCloud,PMDtrans);
 ptCloud{k} = PMDCloud;

 %Convert quat Pose to 2D relative Pose
 poseMsg = poseMessages{k};
 Eul = quat2eul([poseMsg.Pose.Orientation.W
poseMsg.Pose.Orientation.X poseMsg.Pose.Orientation.Y
poseMsg.Pose.Orientation.Z]);
 theta = Eul(1);
 wPose2D(k,:) = [poseMsg.Pose.Position.X poseMsg.Pose.Position.Y
theta];

end

%% Compute initial transforms from 2D data
tic
initTform = rigid3d;
initialTransforms = cell(length(ptCloud),1);
for i = 1: length(ptCloud)
 if i == 1
 trans =[0 0 0];
 else
 trans = [wPose2D(i,1) wPose2D(i,2) 0];
 end
 rot = rotz(-rad2deg(wPose2D(i,3)));
 initTform = rigid3d(rot,trans);

91

 initialTransforms{i} = initTform;
end

%% Transform point clouds using 2D data

ptCloudInitTform =cell(length(ptCloud),1);
for n = 1: length(ptCloud)
 if n == 1
 ptCloudInitTFrom{n} = ptCloud{n};
 end

 ptCloudInitTform{n} =pctransform(ptCloud{n},initialTransforms{n});
end

%% Find relative transform using icp and add to vSet
relTform= rigid3d;
absTform = rigid3d;

for k = 1:length(ptCloudInitTform)
 if k == 1
 vSet =
addView(vSet,k,initialTransforms{k},"PointCloud",ptCloudInitTform{k});
 absTform = rigid3d(initialTransforms{k}.T);
 else
 prevPC = ptCloudInitTform{k-1};
 [~,~,outliers] = pcfitplane(prevPC,.1,[0 0 1],15);
 prevPC = select(prevPC,outliers,'OutputSize','full');

 currentPC = ptCloudInitTform{k};
 [~,~,outliers] = pcfitplane(currentPC,.1,[0 0 1],15);
 currentPC = select(currentPC,outliers,'OutputSize','full');

 relTform =
pcregistericp(currentPC,prevPC,'Metric','pointToPoint','Extrapolate',tr
ue);
 absTform = rigid3d(absTform.T * relTform.T);
 vSet =
addView(vSet,k,absTform,"PointCloud",ptCloudInitTform{k});
 end
end

%% Build Map and view
gridSize =0.03;
ptCloudMap = helperBuildMapFromViewset(vSet, gridSize);
toc
pcshow(pcdenoise(ptCloudMap));
hold on
scatter3(wPose2D(:,1),wPose2D(:,2),PMD_height*ones(length(wPose2D),1));
hold off
xlabel('x');ylabel('y');zlabel('z');

92

%% Optional: Save Data
saveInput = input('Save Data (y/n)?\n','s');
if strcmp(saveInput,'y') || strcmp(saveInput,'Y')
 name = input('Enter File Name:\n','s');
 fileName = sprintf('%s.mat',name);
 save(fileName);
end

%% Supporting Functions

function ptCloudMap = helperBuildMapFromViewset(vSet, gridSize)
%This function is adapted from a function included in MATLAB R2020a
example
%BuildAMapFromLidarDataUsingSLAMExample.m. It utilizes point cloud
viewsets
%instead of the pcmerge.m function included in earlier work.

numViews = vSet.NumViews;

% Extract point cloud views and absolute transformations from view set.
ptClouds = vSet.Views.PointCloud;
absTforms = vSet.Views.AbsolutePose;

% Make point clouds unorganized
for n = 1 : numViews
 ptClouds(n) = removeInvalidPoints(ptClouds(n));
end

% Preallocate map points
totalNumPoints = sum([ptClouds.Count]);
mapPoints = zeros(totalNumPoints, 3, 'like', ptClouds(1).Location);

pointIndex = 1;
for n = 1 : numViews
 % Transform points to reference frame of first point cloud
 % ptCloud = pctransform(ptClouds(n), absTforms(n));
 ptCloud = ptClouds(n);
 % Accumulate map points
 count = ptCloud.Count;
 mapPoints(pointIndex:pointIndex+count-1, :) = ptCloud.Location;

 pointIndex = pointIndex + count;
end

% Downsample points using voxel grid filter to the requested resolution
ptCloudMap = pcdownsample(pointCloud(mapPoints), 'gridAverage',
gridSize);
end

93

APPENDIX B. ROBOT 1

A. ROBOT_1_LLAM.M

%Robot_1_LLAM.m is the full LLAM algorithm written to control Robot 1.
%It was not fully debugged or checked for error handling prior to the
%construction of Robot 2, however it had several succesful trials.
Goals are frontier points selected from CannyFrontiers.m, waypoints are
the intermediate points along the path that are output from the Hybrid
A* Search algorithm.

clear
clc
close all
addpath 'C:\Users\localadmin\OneDrive - Naval Postgraduate
School\NPS\Thesis\MATLAB Code\myMatlab'

%% Navigation Parameters
goal=[4;0].*610;
waypointCurrent=goal;
global goalTolerance
goalTolerance =300;
goalReached = false;
numGoalsReached = 0;
numWaypointsReached = 0;
maxGoals = 3;

%% Connect to Robot
p3_connector_Payne('Com8');
disp('Connected to Robot')
pause(0.8)

%% Connect to Hokuyo LIDAR via usb
%Open Connection To Hokoyu

hokoyuAttempt=0;
hokoyuConnected=0;
while hokoyuAttempt<3 && hokoyuConnected == 0
 try
 s='Com7';
 t=serial(s,'InputBufferSize',5000);
 fopen(t);
 fprintf(t,'BM\n'); % measurement state
 pause(0.1)
 data = fread(t,t.BytesAvailable);
 fprintf(t,'II\n'); % information
 pause(0.1)
 data = fread(t,t.BytesAvailable);
 char(data')
 hokoyuConnected == 1;

94

 catch ME
 disp(['ID: ', ME.identifier])
 warning('Trying to Connect to Hokuyo Again')
 hokoyuAttempt=hokpyuAttempt + 1;
 end
end

disp('Connected to Hokuyo')
pause(0.8)

%Connect to PMD Monstar
%See initialization local function in Master.m
[cameraDevice, camlist, manager,ExposureMode]=Initialize();
cameraDevice.startCapture();
disp('Connected to PMD Pico Monstar')

%Monstar Parameters
sensor_height = 0.435;
world_rotation_matrix=affine3d([0 -1 0 0;
 0 0 -1 0;
 1 0 0 0;
 0 0 sensor_height 1;]);
%Monstar Depth Confidence
depth_confidence=155;

%Hokoyu Parameters
start=0;
stop=1080;
skip=0;
res=0.25; %URG-30LX-EW
angleVector=((res*start:res:stop*res)-135)'.*pi/180;
minScanRange = 0.3;

 %Pose graph Parameters
pGraph2d=poseGraph;

%Create SLAM Object
MaxFrames = 500;
maxRange = 25; % meters
resolution = 10; % cells per meter
slamObj = lidarSLAM(resolution,maxRange);
slamObj.LoopClosureThreshold = 100;
slamObj.LoopClosureSearchRadius = 3;

%Create Occupancy Map
width = 30;
height = 30;
occMap=occupancyMap(width,height,resolution);

95

%Create goal and route validator
global validator
validator=validatorOccupancyMap;

global planner
planner=plannerHybridAStar(validator);

tic
i=0;
scans=cell(1,MaxFrames);
scans3d=cell(1,MaxFrames);
lastAddIndex=1;

while p3_getBumpersClear & i<MaxFrames & numGoalsReached<=maxGoals
 i=i+1
 %Get 2d Lidar Data
 rangeVector= utmGetScan(t,start,stop);
 scan2d=LidarScan2d_fun(rangeVector,angleVector,minScanRange);
%Create Lidar Scan for mapping
 scans{i}=scan2d; %Save for Map Building

 %Get 3d Lidar Data
 data=cameraDevice.getData();
 depdata=single(data.depthConfidence(:));
 points=[data.x(:) data.y(:) data.z(:) depdata];
 idx = points(:,4)>depth_confidence;
 points((idx==false),:)=[];
 points(:,4)=[];
 lidar_pc=pctransform(pointCloud(points),world_rotation_matrix);
 scans3d{i}=lidar_pc;

 if i >= 2
 if i == 2
 p3_setTransVel(400);
 end
 relPose=matchScans(scans{i-1},scans{i});
 distanceMoved=norm(relPose);
 addRelativePose(pGraph2d,-relPose);
 if distanceMoved>0.03
 poses=nodes(pGraph2d);
 poseCurrent=poses(end,:);
 waypointReached =
p3_goalReached(poseCurrent,waypointCurrent);

 %Initial Goal check, compute map and find next goal
 if waypointReached == true && numGoalsReached == 0
 p3_setTransVel(0);
 p3_setRotVel(0);

96

 for j=lastAddIndex:10:i
 addScan(slamObj,scans{j});
 [scansSLAM,poses] = scansAndPoses(slamObj);
 occMap =
buildMap(scansSLAM,poses,resolution,maxRange);
 lastAddIndex = i;

 end
 [refpath,isValid]=CannyFrontiers(occMap,poseCurrent);
 if isValid == false
 break
 end

 waypoints=refpath.States(1:end,1:2);
 goal=waypoints(end,:);
 numGoalsReached = numGoalsReached + 1;
 numWaypointsReached = 1;
 waypointCurrent=waypoints(numWaypointsReached,1:2);

 %Perform at intermediate waypoints
 elseif waypointReached == true &&
numWaypointsReached<length(waypoints)
 numWaypointsReached = numWaypointsReached + 1;
 waypointCurrent=waypoints(numWaypointsReached,1:2);

 %Perform if last waypoint is the goal
 elseif waypointReached == true
 p3_setTransVel(0);
 p3_setRotVel(0);
 numGoalsReached= numGoalsReached + 1;
 for j=lastAddIndex:10:i
 addScan(slamObj,scans{j});
 [scansSLAM,poses] = scansAndPoses(slamObj);
 occMap =
buildMap(scansSLAM,poses,resolution,maxRange);
 lastAddIndex = i;

 end
 [refpath,isValid] = CannyFrontiers(occMap,poseCurrent);
 if isValid == false
 break
 end
 waypoints=refpath.States(1:end,1:2);
 goal=waypoints(end,:);
 end

[fwdVel,rotVel]=potentialField(poseCurrent,lidar_pc,scan2d,waypointCurr
ent);
 p3_setTransVel(fwdVel);
 p3_setRotVel(rotVel);
 end
 end
end
 %End while loop

97

time=toc;

%%%%Close Hokoyu LIDAR%%%%%%%
utmClose(t);
disp('Hokoyu Disconnected')
%%%%%Disconnect from robot%%%%%%
p3_stopRobot;
p3_disconnector;
%%%%%%Disconnect from Pico Monstar%%%%%%%
cameraDevice.stopCapture();
disp('PMD Pico Monstar Disconnected')
fprintf('Capture Speed = %.3f (Hz)\n',i/time);

%Uncomment to show occupancy map and overlaid 2D trajectory
figure
show(occMap)
title('Occupancy Map of Lab')
hold on
show(pGraph2d)
hold off

%Build 3D map using 2D transformation method
merGridStep = 0.01;
ZregionLimits = [-.2,2.2];
accumTform=affine3d;
tform=affine3d;
k=sum(~cellfun(@isempty,scans3d),2);
tformout=cell(1,k);
transforms=nodes(pGraph2d);
tic

for index=2:k
 if index==2
 moving=pcdownsample(scans3d{index},'gridAverage',0.05);

 tform.T=[cos(transforms(index,3)), -sin(transforms(index,3)), 0,
transforms(index,1);
 sin(transforms(index,3)), cos(transforms(index,3)), 0,
transforms(index,2);
 0 0 1
0;
 0 0 0
1]';
 aligned=pctransform(moving,tform);
 scene=pcmerge(scans3d{index-1},aligned,merGridStep);

 accumTform=tform;
 elseif index>2

 moving=pcdownsample(scans3d{index},'gridAverage',0.05);

98

 tform.T=[cos(transforms(index,3)), -sin(transforms(index,3)),
0, transforms(index,1);
 sin(transforms(index,3)), cos(transforms(index,3)), 0,
transforms(index,2);
 0 0 1
0;
 0 0 0
1]';
 accumTform=affine3d(tform.T*accumTform.T);
 aligned=pctransform(moving,tform);
 scene=pcmerge(scene,aligned,merGridStep);
 end
end

timeToRender=toc;

%Display 3D map
fprintf('Time to render = %.3f seconds\n',timeToRender);
ind=scene.Location(:,3)>ZregionLimits(1)&scene.Location(:,3)<ZregionLim
its(2);
ptCloudCut=select(scene,ind,'OutputSize','Full');
pcshow(ptCloudCut);
hold on
show(slamObj);
title('Map of Lab')
xlabel('X');
ylabel('Y');
hold off

B. CANNYFRONTIERS.M

function [refpath,isValid] = CannyFrontiers(occMap,poseCurrent)
%CannyFrontiers.m formats an occupancy map as a binary image. Detects
edges using Canny edge detection. Detects frontiers using a
convolutional filter. Then plans a route using Hybrid A* Search.

global validator
global planner

% Create temporary occ map so we do not inflate the original
tempOccMap=occupancyMap(occMap);
inflate(tempOccMap,0.1)

% %Create validator Object
validator.Map=tempOccMap;
planner.MinTurningRadius=1.3;

99

%Create ternary matrix from occupancy map and run Canny edge detection
A = occupancyMatrix(occMap,'ternary');
Aprime =A ==0;
BW = edge(Aprime,'Canny');

%Find Indices of edges
[r,c]=find(BW==1);

%initialize variables for loop
indices=[];
out=[];

%Check edges to see which pixels are unoccupied and adjacent to uknown
%using convolution filter
for ix = 1:length(r)
 if A(r(ix),c(ix)) == 0
 B=zeros(size(A));
 B(r(ix),c(ix))=1;
 out=A(conv2(B,[1 1 1;1,0,1;1,1,1],'same')>0);
 end

 if any(out<0)
 indices(ix,:)=[r(ix),c(ix)];
 end

end
indices=indices(indices~=0);
indices=reshape(indices,[length(indices)/2,2]);

%Create an image of only the frontier edges
frontiers=zeros(size(A));
for i=1:length(indices)
 j=indices(i,1);
 k=indices(i,2);
 frontiers(j,k)=1;
end

%Create world reference object
imSize=size(frontiers);
xWorldlimits=occMap.XWorldLimits;
yWorldlimits=occMap.YWorldLimits;
R=imref2d(imSize,xWorldlimits,yWorldlimits);

frontiers=flipud(frontiers); %Needed for intrinsicToWorld to not flip y
values
cc=bwconncomp(frontiers); %Find connected components in frontiers
%Get stats on frontier ellipses
stats =
regionprops('table',cc,'Area','Centroid','MajorAxisLength','MinorAxisLe
ngth','Orientation');

100

stats=flipud(sortrows(stats));

isValid = false;
frontierArea=1000; %initialize with large value
t = linspace(0,2*pi,48); %Parameter for inscribing ellipse

while isValid == false & frontierArea > 3
 inc = 1;

 %Inscribe ellipse
 a = stats.MajorAxisLength(inc)/2;
 b = stats.MinorAxisLength(inc)/2;
 Xc = stats.Centroid(inc,1);
 Yc = stats.Centroid(inc,2);
 phi = deg2rad(-stats.Orientation(inc));
 x = Xc + a*cos(t)*cos(phi) - b*sin(t)*sin(phi);
 y = Yc + a*cos(t)*sin(phi) + b*sin(t)*cos(phi);
 [xEllipse,yEllipse]=intrinsicToWorld(R,x,y);

%Check validity of points on ellipse with Hybrid A* validator
 validCandidates=[];
 for ix=1:length(xEllipse)
 goalCandidate=[xEllipse(ix) yEllipse(ix)];
 goalCandidateVec=goalCandidate-[poseCurrent(1) poseCurrent(2)];
 thetaCandidate=atan2(goalCandidateVec(2),goalCandidateVec(1));
 goalCandidate=[goalCandidate thetaCandidate];
 candidateValid=isStateValid(validator,goalCandidate);
 if candidateValid == true
 validCandidates=[validCandidates goalCandidate'];
 end
 end
 if isempty(validCandidates)
 break
 end
 %Calculate distances to valid ellipse points
 distances=vecnorm(validCandidates(1:2,:)-[poseCurrent(1)
poseCurrent(2)]');
 goal=validCandidates(:,find(distances==min(distances)))';
 isValid = isStateValid(validator,goal);
 inc = inc + 1;
end

if isValid == false
 warning('No Valid Frontier Found')
 refpath=0;
else
 try
 refpath=plan(planner,poseCurrent,goal);
 figure
 show(planner);

 catch ME
 refpath = 0;
 isValid = false;

101

 disp(['ID: ', ME.identifier])
 warning('No Valid Path Found')
 end
end

%Optional: plot frontier ellipses on binary frontier image

%Uncomment to show frontier ellipses in a figure
% figure
% imshow(frontiers);
% sz=size(stats);
% t = linspace(0,2*pi,50);
% hold on
% for k = 1:sz(1)
% a = stats.MajorAxisLength(k)/2;
% b = stats.MinorAxisLength(k)/2;
% Xc = stats.Centroid(k,1);
% Yc = stats.Centroid(k,2);
% phi = deg2rad(-stats.Orientation(k));
% x = Xc + a*cos(t)*cos(phi) - b*sin(t)*sin(phi);
% y = Yc + a*cos(t)*sin(phi) + b*sin(t)*cos(phi);
% plot(x,y,'r','Linewidth',1)
% end
% hold off

%Optional: Uncomment to plot selected frontier
% figure
% imshow(frontiers)
% hold on
%
% a=stats.MajorAxisLength(maxRegionidx)/2;
% b = stats.MinorAxisLength(maxRegionidx)/2;
% Xc = stats.Centroid(maxRegionidx,1);
% Yc = stats.Centroid(maxRegionidx,2);
% phi = deg2rad(-stats.Orientation(maxRegionidx));
% x = Xc + a*cos(t)*cos(phi) - b*sin(t)*sin(phi);
% y = Yc + a*cos(t)*sin(phi) + b*sin(t)*cos(phi);
% plot(x,y,'r','Linewidth',1)
%
%
% hold off

%Uncomment to show extrema on occMap
% figure
% show(occMap)
% hold on
% plot(xWorldExtrema,yWorldExtrema,'+')
% hold off

102

THIS PAGE INTENTIONALLY LEFT BLANK

103

APPENDIX C. POTENTIAL FIELD MODEL AND SERIAL
COMMUNICATIONS

A. POTENTIALFIELD.M

function
[fwdVel,rotVel,Frep_r,Fatt_r]=potentialField(poseCurrent,scan3d,scan2d,
goal,mode)

%potentialField.m calculates the potential field, attractive and
%repulsive forces, and steering commands for the robot. The function
%returns the forward and rotational velocities which are then sent to
p3_setTransVel.m
%and p3_setRotVel.m. This script is adapted from SONAR to 2D and 3D
%LIDAR based on the method in:
%X. Yun and K. Tan, “A Wall-Following Method for Escaping Local Minima
in Potential Field Based Motion Planning,”
%in 1997 8th International Conference on Advanced Robotics.
%Proceedings. ICAR’97, pp. 421–426, Jul. 1997.

%Local variables for input arguments
qGoal=goal.';
q=[poseCurrent(1); poseCurrent(2)].*1000;
theta= poseCurrent(3);

%Potential Field Calculations
RHO = 500; % use with attractive force
ZETA = 3.2; % use with attractive force
ETA = 4000; % constant coefficient
sensX = 1; % sensitivity for transVel
sensY = 15; % sensitivity for rotVel
dC = 3000; % cut-off distance

%Find 3D Points that fall within height of robot and sensors
ind = (0.07<scan3d.Location(:,3)) & (scan3d.Location(:,3)<0.75);
ind=find(ind);
slice3d=select(scan3d,ind,'OutputSize','full');
xyCoords=[slice3d.Location(:,1), slice3d.Location(:,2)]'.*1000;

%Convert from robot coordinates to polar coordinates
lidarRanges=vecnorm(xyCoords);
gamma=atan2(xyCoords(2,:),xyCoords(1,:))'.*1000;
gammaBins=deg2rad([50; 40; 30; 20; 10; 0; -10; -20; -30; -40; -50]);
dev=deg2rad(0.25);
gammaSaved=[];
rangeSaved=[];

%Compress 3D points into 2D Hokuyo plane, save only one point in each
angle
%bin
for i=1:length(gammaBins)
 idx= gammaBins(i)-dev<=gamma & gamma<=gammaBins(i)+dev;

104

 if ~numel(idx) >= 2
 idx = idx(1:2);
 end
 gammaTemp=gamma(idx)';
 rangeTemp=lidarRanges(idx);
 gammaSaved=horzcat(gammaSaved, gammaTemp);
 rangeSaved=horzcat(rangeSaved, rangeTemp);
end
gamma=gammaSaved;
lidarRanges=rangeSaved;

%Convert m to mm and combine 2D and 3D data
ranges2d=scan2d.Ranges'.*1000;
angles2d=scan2d.Angles';
lidarRanges=[lidarRanges ranges2d];
gamma=[gamma angles2d];

% compute the ATTRACTIVE FORCE in Robot-coords,
if(norm(q-qGoal) <= RHO)
 Fatt_w = -ZETA*(q-qGoal);
else
 Fatt_w = -ZETA*RHO * (q-qGoal)/norm(q-qGoal);
end

% transform Fatt_w to Fatt_r
Tw2r = [cos(theta) sin(theta); -sin(theta) cos(theta)];
Fatt_r = Tw2r * Fatt_w; % use this later in eq. 7

Frep_r = [0;0];
for ix = 1:length(lidarRanges)
 if(lidarRanges(ix) <= dC)
 Rs2r = [cos(gamma(ix)) -sin(gamma(ix)); % sensor to robot
frame
 sin(gamma(ix)) cos(gamma(ix))];
 ni = Rs2r * [lidarRanges(ix);0] ;
 di = lidarRanges(ix);
 Frep_r = -ETA * (1/di - 1/dC)*...
 ni./di + Frep_r;

 end
end

%Sum attractive and repulsive forces and compute steering commands
Ftotal_r = Frep_r + Fatt_r;
fwdVel = sensX * Ftotal_r(1);
dir = atan2(Ftotal_r(2),Ftotal_r(1));
rotVel = sensY * dir;

%These parameters are optional and can be adjusted based on the

105

%environment. In some cases having the robot turn slowly or not move in
a
%backward direction is beneficial to avoiding a local minimum or
matching
%degeneration. RECOMMENDED: limit forward velocity to less than 500
mm/s.
if dir > pi/2 || dir< -pi/2
 %Limits the robot turning to quickly
 %if the goal is more than 90deg from current heading
 if fwdVel>0
 fwdVel=40;
 elseif fwdVel<0
 fwdVel=-40;
 end

 if rotVel>0
 rotVel=10;
 elseif rotVel<0
 rotVel=-10;
 end
else
 %If the goal within 90deg of current heading, limits maximum
velocities
 if fwdVel > 225
 fwdVel = 225;
 end

 if rotVel > 40
 rotVel = 40;
 end
end

B. P3_CONNECTOR.M

function p3_connector(comString)
% p3_connector initializes the connection to the robot. This script was
% adapted from one written by Dr. James Calusdian, NPS ECE dept.
% p3_connector(comString) opens the communication with either the real
% robot or MobileSim. To connect to the actual robot the input
%parameter comString must be set equal to 'Com1' or appropriate com
%port. To connect to MobileSim, comString must be set to 'MobileSim'.
% Also see p3_disconnector for additional information.

% in case we have some ports open from previous failed connections
if ~isempty(instrfindall)
 delete(instrfindall);
end

if ~isempty(timerfindall)
 delete(timerfindall)
end

106

global robotConnector;
global SIP_HANDLER;
global PULSE;

% first define the sync bytes that we need to use
SYNC0 = uint8([250 251 3 0 0 0]);
SYNC1 = uint8([250 251 3 1 0 1]);
SYNC2 = uint8([250 251 3 2 0 2]);
START_SERVER = uint8([250 251 3 1 0 1]);
ENABLE_MOTORS = uint8([250 251 6 4 59 1 0 5 59]);

% also define the constants and variables we need
syncState = 0; % switch parameter
sync0Lock = 0; % case parameter
sync1Lock = 1; % case parameter
sync2Lock = 2; % case parameter
syncLock012 = false; % overall sync status
tryCounter = 0; % number of attempts to communicate
MAX_TRIES = 3; % number of times to try synching up with robot

% determine what type of input we have
if nargin==0
 s1 = sprintf('p3_connector FAIL! Must provide an input parameter');
 s2 = sprintf('Exiting connector function.\n');
 disp(s1);
 disp(s2);
 return;
else
 if strcmp(comString, 'MobileSim')
 s = sprintf('Connecting to MobileSim...');
 disp(s);
 % define our tcip connection
 robotConnector = tcpip('localhost',8101); % connecto to
MobileSim
 %set(robotConnector,'Terminator','');
 fopen(robotConnector); % open the connection

 elseif strcmp(comString, comString)
 s = sprintf('Connecting to real robot on Com1...');
 disp(s);
 % establish serial connection to the real robot...
 robotConnector = serial(comString,'BaudRate',9600);
 fopen(robotConnector);

 else
 s1 = sprintf('Input parameter not recognized');
 s2 = sprintf('Exiting p3_connector function.\n');
 disp(s1);
 disp(s2);
 return;

107

 end
end

% send and verify our syncronization packets
while(~syncLock012)

 switch syncState

 case sync0Lock
 s = sprintf('Sending Sync0');
 disp(s);
 fwrite(robotConnector, SYNC0);
 [response, counts] = fread(robotConnector, [1 6],'uint8');
 if isequaln(response, SYNC0)
 syncState = sync1Lock;
 s = sprintf('Sync0 acknowledged\n');
 disp(s);

 else
 if tryCounter < MAX_TRIES
 syncState = sync0Lock;
 syncLock012 = false;
 tryCounter = tryCounter + 1;
 s = sprintf('Sync0 fail. Sending Sync0 again\n');
 disp(s);
 else
 syncLock012 = true; % set to TRUE to get out of while-
loop
 s = sprintf('Sync0 fail. Max tries exceeded\nClosing
local port\n');
 disp(s);
 fclose(robotConnector);
 end

 end

 case sync1Lock
 s = sprintf('Sending Sync1');
 disp(s);
 fwrite(robotConnector, SYNC1);
 [response, counts] = fread(robotConnector, [1 6], 'uint8');
 if isequaln(response, SYNC1)
 syncState = sync2Lock;
 s = sprintf('Sync1 acknowledged\n');
 disp(s);
 syncLock012 = false;

 else
 if tryCounter < MAX_TRIES
 syncState = sync1Lock;
 syncLock012 = false;
 tryCounter = tryCounter + 1;
 s = sprintf('Sync1 fail. Sending Sync1 again\n');

108

 disp(s);
 else
 syncLock012 = true; % set to TRUE to get out of while-
loop
 s = sprintf('Sync1 fail. Max tries exceeded\nClosing
local port\n');
 disp(s);
 fclose(robotConnector);
 end
 end

 case sync2Lock
 s = sprintf('Sending Sync2');
 disp(s);
 fwrite(robotConnector, SYNC2);pause(0.8);
 bytesAvail = robotConnector.BytesAvailable;
 [response, counts] = fread(robotConnector, [1
bytesAvail],'uint8');
 s = sprintf('Connected to %s\n',response(3:end-3));
 disp(s);

 % send the OPEN command to start up server
 fwrite(robotConnector, START_SERVER);

 % start up heartbeat timer
 p3_heartbeatTimer;
 answer = PULSE.Running;
 s = sprintf('Heartbeat timer is %s\n',answer);
 disp(s);

 % start the SIP handler (timer) to read packets
 p3_SIP_Timer;
 answer = SIP_HANDLER.Running;
 s = sprintf('SIP Handler is %s\n',answer);
 disp(s);

 % send command 4 to enable the motors
 fwrite(robotConnector, ENABLE_MOTORS); pause(0.8)

 % break out of this loop
 syncLock012 = true;

 end % switch-case

end % while

pause(5); % wait a few seconds for everything to sync up

109

C. P3_DISCONNECTOR.M

function p3_disconnector
% P3_DISCONNECTOR disconnects from the robot or MobileSim. This script
% was written by Dr. James Calusdian, NPS ECE Department.
% This function disconnects from the robot by stopping the SIP handler,
% stopping the PULSE timer, and closing the robotConnector object. No
%input or output parameters are required for this function. Also see
%p3_connector.

global robotConnector;
global SIP_HANDLER;
global PULSE;
global myTestData;

% first define the sync bytes that we need to use
CLOSE_CONNECTION = uint8([250 251 3 2 0 2]);

% stop processing the SIP packets
s = sprintf('Stopping the SIP handler...');
disp(s);
stop(SIP_HANDLER);
answer = SIP_HANDLER.Running;
s = sprintf('SIP Handler is %s\n',answer);
disp(s);
delete(SIP_HANDLER);
%save('testData.mat','myTestData');

% stop the heartbeat, which was started with p3_heartbeatTimer.
s = sprintf('Stopping PULSE heartbeat...');
disp(s);
stop(PULSE);
answer = PULSE.Running;
s = sprintf('Pulse heartbeat is %s\n',answer);
disp(s);
delete(PULSE);

% close the robot connection
s = sprintf('Closing robot connection');
disp(s);
fwrite(robotConnector,CLOSE_CONNECTION); pause(0.8);
fclose(robotConnector);
delete(robotConnector);

110

D. P3_GETBUMPERSCLEAR.M

function [bumpersClear] = p3_getBumpersClear
%P3_GETBUMPERSCLEAR returns true if ALL bumpers clear, false otherwise.
%This script was written by Dr. James Calusdian NPS ECE Department.

global SIPdata;
HEADER_BYTE0 = uint8(250);
HEADER_BYTE1 = uint8(251);

% if we have the SIPdata available, we can pull out the battery
voltage.
% First, let's double check that we have the right data
if SIPdata(1) == HEADER_BYTE0
 if SIPdata(2) == HEADER_BYTE1
 bumperStatus = make16(SIPdata(17),SIPdata(16));

 if bumperStatus
 bumpersClear = false;
 disp('Bumper hit!');
 else
 bumpersClear = true;
 %disp('TRUE');
 end
 end
end

E. P3_SETROTVEL.M

function p3_setRotVel(rotVel)
%P3_SETROTVEL causes the robot to rotate ccw(+) or cw(-) at specified
%deg/sec.p3_setRotVel(rotVel) causes the robot to rotate with the
%angular velocity specified in rotVel (deg/second). A (+) rotVel
%produces a CCW rotation, and a (-) rotVel produces a CW rotation, as
%viewed from the top of the robot.
%This function was written by Dr. James Calusdian, NPS ECE Department.
%See ARCOS command 9 in Operations Manual, pp 31.

global robotConnector;
HEADER_BYTE0 = uint8(250);
HEADER_BYTE1 = uint8(251);
commandNumber = uint8(9);

% construct the command to rotate
if rotVel < 0
 argType = uint8(27); % negative
else
 argType = uint8(59); % positive
end

111

% convert "rotVel" into two bytes of uint8
temp = uint16(abs(rotVel));
[MSB, LSB]=split16(temp);

% next construct the command packet
command = uint8([commandNumber argType LSB MSB]);
byteCount = uint8(length(command) + 2); % include 2 checkSum bytes
[chkMSB, chkLSB] = checksum4p3(command);
setRotCommand = uint8([HEADER_BYTE0 HEADER_BYTE1 byteCount command
chkMSB chkLSB]);

% send everything to the robot
fwrite(robotConnector, setRotCommand);

F. P3_SETTRANSVEL.M

function p3_seTransVel(transVel)
%P3_SETTRANSVEL sets the translational velocity for the robot.
%p3_setTransVel(transVel) causes the robot to move forward (+) or
%backward (-) at the speed of "transVel" mm/sec.
%This function was written by Dr. James Calusdian, NPS ECE Department.
%See ARCOS command 11 in Operations Manual, pp 31.

global robotConnector;
HEADER_BYTE0 = uint8(250);
HEADER_BYTE1 = uint8(251);
commandNumber = uint8(11);

% construct the command to translate
if transVel < 0
 argType = uint8(27); % negative
else
 argType = uint8(59); % positive
end

% convert "transVel" into two bytes of uint8
temp = uint16(abs(transVel));
[MSB, LSB]=split16(temp);

% next construct the command packet
command = uint8([commandNumber argType LSB MSB]);
byteCount = uint8(length(command) + 2); % include 2 checkSum bytes
[chkMSB, chkLSB] = checksum4p3(command);
translateCommand = uint8([HEADER_BYTE0 HEADER_BYTE1 byteCount command
chkMSB chkLSB]);

% send everything to the robot
fwrite(robotConnector, translateCommand);

112

THIS PAGE INTENTIONALLY LEFT BLANK

113

LIST OF REFERENCES

[1] Velodyne Lidar, “Alpha Prime,” Alpha Prime Lidar Data Sheet, 2019.

[2] ReconRobotics, “Legacy Products,” [Online]. Available:
https://reconrobotics.com/products/legacy-products/ [Accessed: May 20, 2020].

[3] C. S. Hargadine, “Mobile robot navigation and obstacle avoidance in unstructured
outdoor environments,” M.S. thesis, Dept. Elect. and Comp. Eng., NPS,
Monterey, CA, USA, 2017. [Online]. Available:
http://hdl.handle.net/10945/56937

[4] A. S. Miyakawa, “Autonomous ground vehicle low-profile obstacle avoidance
using 2D LIDAR,” M.S. thesis, Dept. Elect. And Comp. Eng., NPS, Monterey,
CA, USA, 2019.[Online]. Available: http://hdl.handle.net/10945/63486

[5] C. Lebrun, “Vision-based terrain classification and learning to improve
autonomous ground vehicle navigation in outdoor environments,” M.S. thesis,
Dept. Elect. and Comp. Eng., NPS, Monterey, CA, USA, 2019. [Online].
Available: http://hdl.handle.net/10945/63474

[6] A. Magee, “Place-based navigation for autonomous vehicles with deep learning
neural networks,” M.S. thesis, Dept. Elect. and Comp. Eng., NPS, Monterey, CA,
USA, 2019. [Online]. Available: http://hdl.handle.net/10945/64012

[7] F. Moosmann and C. Stiller, “Velodyne SLAM,” in 2011 IEEE Intelligent
Vehicles Symposium (IV), Jun. 2011, pp. 393–398.

[8] J. Zhang and S. Singh, “LOAM: Lidar Odometry and Mapping in Real-time,”
presented at the Robotics: Science and Systems 2014, Jul. 2014.

[9] X. Ji, L. Zuo, C. Zhang, and Y. Liu, “LLOAM: LiDAR odometry and mapping
with loop-closure detection based correction,” in 2019 IEEE International
Conference on Mechatronics and Automation (ICMA), Aug. 2019, pp. 2475–
2480.

[10] T. Shan and B. Englot, “LeGO-LOAM: Lightweight and ground-optimized
LiDAR odometry and Mapping on Variable Terrain,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Oct. 2018,
pp. 4758–4765.

[11] J. Lin and F. Zhang, “Loam_livox: A fast, robust, high-precision LiDAR
odometry and mapping package for LiDARs of small FoV,” Sep. 2019, Accessed:
Oct. 08, 2019. [Online]. Available: http://arxiv.org/abs/1909.06700.

[12] MobileRobots Inc., Pioneer 3 Operations Manual, MobileRobots Inc, 2008.

http://hdl.handle.net/10945/56937
http://hdl.handle.net/10945/63486
http://hdl.handle.net/10945/63474
http://hdl.handle.net/10945/64012
http://arxiv.org/abs/1909.06700

114

[13] Adept Technology Inc., “Pioneer 3-DX,” Pioneer 3-DX Data Sheet, 2011.

[14] PMD Technologies AG., “High-End Development Kit CamBoard pico monster,”
CamBoard pico monster Data Sheet, 2018.

[15] Hokuyo, “UTM-30LX.” Accessed May 20, 2020. [Online]. Available:
https://www.hokuyo-aut.jp/search/single.php?serial=169

[16] S. Fotiadis, “Hokuyo UTM-30-LX-EW for MATLAB,” MATLAB Central File
Exchange. Available:
https://www.mathworks.com/matlabcentral/fileexchange/37613-hokuyo-utm-30-
lx-ew-for-matlab, Retrieved May 20, 2020.

[17] MathWorks, “What is MATLAB,” Accessed: May 20, 2020. [Online]. Available:
https://www.mathworks.com/discovery/what-is-matlab.html

[18] PMD Technologies AG., “picofamily,” 2020. Accessed May 20, 2020 [Online].
Available: https://pmdtec.com/picofamily/

[19] PMD Technologies AG., CamBoard pico monstar Getting Started, PMD
Technologies AG, 2017.

[20] C. Debeunne and D. Vivet, “A review of visual-lidar fusion based simultaneous
localization and mapping,” Sensors, vol. 20, no. 7, p. 2068, Apr. 2020.

[21] J. A. Bærentzen, J. Gravesen, F. Anton, and H. Aanæs, Guide to Computational
Geometry Processing. London: Springer London, 2012.

[22] P. Corke, Robotics, Vision and Control. Berlin Heidelberg: Springer-Verlag,
2013.

[23] S. Saha and S. K. Shukla, Advanced Data Structures: Theory and Applications.
Boca Raton: Taylor & Francis, 2019.

[24] P. Ullrich and C. Zarzycki, “TempestExtremes: A framework for scale-insensitive
pointwise feature tracking on unstructured grids,” In Geoscientific Model
Development, vol 10, no. 3, Mar., pp. 1069–1090, 2007.

[25] P. Biber and W. Strasser, “The normal distributions transform: a new approach to
laser scan matching,” in Proceedings 2003 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), Oct. 2003,
vol. 3, pp. 2743–2748.

[26] M. Magnusson, The Three-Dimensional Normal-Distributions Transform an
Efficient Representation for Registration, Surface Analysis, and Loop Detection.
Örebro: Örebro universitet, 2009.

https://www.hokuyo-aut.jp/search/single.php?serial=169
https://www.mathworks.com/matlabcentral/fileexchange/37613-hokuyo-utm-30-lx-ew-for-matlab
https://www.mathworks.com/matlabcentral/fileexchange/37613-hokuyo-utm-30-lx-ew-for-matlab
https://www.mathworks.com/discovery/what-is-matlab.html
https://pmdtec.com/picofamily/

115

[27] MathWorks, “Point Cloud Registration Overview,” Accessed: May 20, 2020.
[Online]. Available: https://www.mathworks.com/help/vision/ug/point-cloud-
registration-workflow.html

[28] A. Myronenko and X. Song, “Point Set Registration: Coherent Point Drift,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 12, pp.
2262–2275, Dec. 2010.

[29] A. Geiger, P. Lenz, and R Urtasun, “Are we ready for autonomous driving? The
kitti vision benchmark suite,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2012, pp. 3354–3361.

[30] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz, “Towards 3D
point cloud based object maps for household environments,” Robotics and
Autonomous Systems, vol. 56, no. 11, pp. 927–941, Nov. 2008.

[31] ROS, “About ROS.” Accessed July 15, 2020. [Online]. Available:
http://www.ros.org/about-ros/

[32] CappuccinoPC, “SlimPRO SP675P Mini PC.” Accessed 20 July, 2020. [Online].
Available: https://www.cappuccinopc.com/slimpro-sp675p.asp

[33] X. Yun and K. Tan, “A wall-following method for escaping local minima in
potential field based motion planning,” in 1997 8th International Conference on
Advanced Robotics. Proceedings. ICAR’97, pp. 421–426, Jul. 1997.

[34] P. Jenko, T. Emter, C. W. Frey, T. Kopfstedt, and A. Beutel. “Applications of
hybrid a* to an autonomous mobile robot for path planning in unstructured
outdoor environments.” in ROBOTIK 2012: 7th German Conference on Robotics.
Pp 1–6. 2012.

[35] MathWorks, “plannerHybridAStar,” Accessed: August 6, 2020. [Online].
Available: https://www.mathworks.com/help/nav/ref/plannerhybridastar.html

[36] MathWorks, “Accelerating MATLAB Algorithms and Applications,” Accessed:
August 28, 2020. [Online]. Available:
https://www.mathworks.com/company/newsletters/articles/accelerating-matlab-
algorithms-and-applications.html?CCode

[37] R. B. Rusu and S. Cousins, “3D is here: point cloud library (PCL),” in 2011 IEEE
International Conference on Robotics and Automation, May 2011, pp. 1–4.

https://www.mathworks.com/help/vision/ug/point-cloud-registration-workflow.html
https://www.mathworks.com/help/vision/ug/point-cloud-registration-workflow.html
http://www.ros.org/about-ros/
https://www.cappuccinopc.com/slimpro-sp675p.asp
https://www.mathworks.com/help/nav/ref/plannerhybridastar.html
https://www.mathworks.com/company/newsletters/articles/accelerating-matlab-algorithms-and-applications.html?CCode
https://www.mathworks.com/company/newsletters/articles/accelerating-matlab-algorithms-and-applications.html?CCode

116

THIS PAGE INTENTIONALLY LEFT BLANK

117

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	20Sep_Payne_Jameson_First8
	20Sep_Payne_Jameson
	I. Introduction
	A. Motivation
	B. Related Work
	C. Purpose and Goal

	II. Hardware and Software description
	A. HARDWARE
	1. Omron Adept MobileRobots Pioneer 3-DX (P3-DX)
	2. PMD Technologies CamBoard Pico monstar
	3. Hokuyo UTM-30LX
	4. Dell Latitude 3050 Laptop
	5. SlimPRO SP675P i7 Mini PC
	6. Dell Optiplex 7040 Desktop

	B. SOFTWARE
	1. MATLAB
	2. Royale Software Suite
	3. Robot Operating System (ROS)

	III. LOCALIZATION AND MAPPING
	A. REFERENCE FRAMES
	B. POINT CLOUD REGISTRATION
	1. Iterative Closest Point Method
	2. Normal Distribution Transform Method
	3. Coherent Point Drift Method
	4. Comparison and Selection of a Registration Method

	C. POINT CLOUD MERGING AND MAP BUILDING
	D. LOOP-CLOSURE AND DRIFT CORRECTION

	IV. ROBOT CONTROL SCHEME
	A. OVERVIEW
	B. OBSTACLE AVOIDANCE
	1. Attractive Force
	2. Repulsive Forces
	3. Adaptation to Three Dimensions

	C. NAVIGATION
	1. Pure Pursuit
	2. Hybrid A* Search
	3. Frontier Search

	D. MAP BUILDING
	1. ROS Network and Point Cloud Transmission
	2. Two-Dimensional Transformation Method
	3. Three-Dimensional Transformation Method

	V. RESULTS
	A. LOCALIZATION
	1. Matching Degeneration
	2. Accuracy on a Closed Loop
	3. Algorithm Speed

	B. MAP BUILDING
	1. Map Accuracy and Interpretability
	2. Comparison of 2D and 3D Transformation Methods

	C. OBSTACLE AVOIDANCE AND ROUTE PLANNING

	VI. CONCLUSIONS
	A. ASSESSMENT OF GOALS
	1. Feasibility of LLAM for Autonomous Interior Mapping
	2. Adequate Resolution
	3. Obstacle Detection and Autonomous Navigation
	4. Map Visualization Method

	B. LIMITATIONS
	1. Hardware
	2. Software

	C. FUTURE WORK
	1. Algorithm Optimization and Hardware Upgrade
	2. Point Cloud Registration
	3. Obstacle Avoidance and Navigation Model
	4. Map Building and Human Interactivity
	5. Adaptation to a Flying Robot

	APPENDIX A. ROBOT 2
	A. MASTER.M
	B. LISTENER.M
	C. MAPBUILDER.M
	D. MAPBUILDER3D.M

	APPENDIX B. ROBOT 1
	A. ROBOT_1_LLAM.M
	B. CANNYFRONTIERS.M

	APPENDIX C. POTENTIAL FIELD MODEL AND SERIAL COMMUNICATIONS
	A. POTENTIALFIELD.M
	B. P3_CONNECTOR.M
	C. P3_DISCONNECTOR.M
	D. P3_GETBUMPERSCLEAR.M
	E. P3_SETROTVEL.M
	F. P3_SETTRANSVEL.M

	List of References
	initial distribution list

