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ABSTRACT 

 The military has recognized the need for automated decision aids to support battle 

management as warfighters become overwhelmed by shorter decision cycles, greater 

amounts of data, and more technology systems to manage. To date, much emphasis has 

focused on data acquisition, data fusion, and data analytics for gaining situational 

awareness in the battle space. However, a new frontier and opportunity exists for using 

this data to develop decision options and predict the consequences of military courses of 

action. This project studied the application of artificial intelligence (AI) to improve battle 

management decisions in the time-sensitive air and missile defense (AMD) environment. 

Specifically, this project studied current and future AI applications to the AMD kill chain 

with a model-based systems engineering (MBSE) approach. The team modeled the AMD 

kill chain by allocating time to the various kill chain functions and decisions, based on 

the time afforded by the incoming AMD threat. The team used simulations to analyze and 

demonstrate the use of automation in the kill chain functions to expedite decisions and 

improve AMD battle management. 
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EXECUTIVE SUMMARY 

As current trends in Naval Warfare shift toward automated combat weapons 

systems, the U.S. Navy is focusing its strategies toward artificial intelligence (AI) 

capabilities that reduce the time a warfighter needs to act decisively. This systems 

engineering (SE) project represented the human-AI decision process using John Boyd’s 

concept of observe, orient, decide, and act (OODA) and the Marine Corps Planning Process 

(MCPP) (Angerman 2004; U.S. Department of the Navy 2016). The Air and Missile 

Defense (AMD) kill chain was represented with a simplification of Joint targeting doctrine, 

JP 3-60 (Joint Chiefs of Staff 2018). Increased levels of automation for operational 

activities within the kill chain process were demonstrated to significantly reduce the 

execution timeframe, which, if further developed and fielded, will provide Sailors and 

Marines a tactical advantage in air defense. Expediting the kill chain through the use of 

expert systems and AI will greatly shorten engagement times effectively expanding the 

battle space.  

This project developed the AI for Air and Missile Defense (AI-AMD) architecture 

which was designed to improve warfighting decisions by prioritizing threats and acting 

upon them with minimal input from human users. The project focused on understanding 

and evaluating the Air Missile Defense (AMD) kill chain by identifying steps in the process 

that can be executed faster using AI-AMD. The project team identified and evaluated risks 

associated with AI-AMD levels of automation as applied to the various steps in the kill 

chain process. The team performed a modeling and simulation (M&S) analysis to compare 

the kill chain at low levels of automation (“without” AI) with the kill chain at high levels 

of automation (“with” AI), by assessing improvements based on time saved. The team 

developed concepts for highly automated AI-AMD decision aid operational capabilities 

based on the M&S analysis and identified existing and future AI methods with potential 

application to the future AI-AMD architecture. 

The team conducted an architecture analysis following the Department of Defense 

Architectural Framework (DODAF) to determine operational activities of AI-AMD. The 

team applied a model-based systems engineering (MBSE) approach using the SE tool 



xxii 

Innoslate to develop the conceptual architecture. The architectural analysis combined blue 

force (BLUFOR) air defense sensors, weaponry, and the Joint network to create an OV-

5b/6c action diagram that depicts the AI-AMD decision aid outputs working in conjunction 

with JP 3-60 Joint Targeting process steps to neutralize enemy threats (Joint Chiefs of Staff 

2018). To complete its mission, the BLUFOR system of systems (SoS) executes 36 

operational activities: 17 decision points internal to AI-AMD and 19 functions of external 

systems (including sensor actions and network communication). The team analyzed the 

results of the architectural analysis using a design of experiment (DOE), discrete event, 

and stochastic simulation that revealed that high-stress AMD scenarios during the targeting 

process require full levels of automation while low-stress AMD scenarios require minimum 

levels of automation. The team developed a decision risk matrix that showed that risks 

involved with high-stress scenarios can be lowered with full levels of automation. The risk 

assessment for each of the 17 steps in the targeting process were categorized into four 

categories: low, moderate-low, moderate, and high. The team developed an associated risk 

value to make the risk assessment determination. The team leveraged Parasuraman’s levels 

of automation (levels 1-10) to perform the risk assessment which associated decision risk 

with the levels of automation for individual steps within the targeting process 

(Parasuraman, Sheridan, and Wickens 2000). The team developed and employed a utility 

curve to assist in determining the time savings for each level of automation. For example, 

greater time savings were associated with higher levels of automation. 

The project focused on single threat engagements to understand the AI-AMD 

timing in the kill chain process. The team conducted M&S analyses to demonstrate the 

capabilities of the AI-AMD architecture. The team performed a discrete event simulation 

using the Innoslate MBSE tool and Microsoft Excel. The team used Excel to evaluate the 

meta-model prior to investing heavily in the action diagrams. The primary focus of the 

simulation was to establish the timing performance of AI-AMD at various stress levels 

such as low, moderate, and high. The secondary goal was to develop the model as a 

deliverable design tool to be used at NPS for future studies. The team selected three 

representative engagements from open source threat data: a low-stress scenario (with a 

58.65-minute timeline), a moderate-stress scenario (with a 9.72-minute timeline), and a 



xxiii 

high-stress scenario (with a 1.51-minute timeline). The results of the team’s M&S analysis 

revealed that human-only decision making (level of automation 1) in the low-stress 

scenario resulted in a 100% successful AMD kill rate against enemy threats with a fly-in 

time of 58 minutes or higher. For the moderate threat scenario (representing AI-AMD with 

various levels of automation (e.g., 6 through 10) for each operational activity decision 

node), the data results of 1,000 stochastic runs showed an average of 8.08 minutes of 

completion time for all engagements. When the AI-AMD system was set with the higher 

levels of automation, the system was successful in its AMD defense in the moderate threat 

scenario. The decomposed timeline for the high-stress scenario allowed for 0.09 minutes 

per operational activity decision node. The team set the AI-AMD system to AI-only 

decision making (level of automation 10) for the high-stress scenario. The results from the 

high-stress scenario indicated potential success against enemy threats given level 10 

automation. The team conducted a sensitivity analysis to explore the impact of alternative 

underlying representative distributions (baseline, symmetric variable spread, and highly 

skewed). While changes in distribution shape did impact results, in every case, success 

within the high-stress scenario only occurred with AI-enabled savings greater than 97%.  

This project investigated how AI methods can apply to AMD decision making to 

increase levels of automation and reduce the execution time of a human-AI team (an AI-

enabled decision aid). The team analyzed the AMD kill chain from the top down: from 

OODA to find, fix, track, target, engage, and assess (F2T2EA). The team identified 17 key 

decision points where increased levels of automation can improve the speed of AMD 

decision-making. The potential levels of automation were balanced against risks associated 

with each of the various steps. The team used M&S to evaluate the timeliness of decisions 

made within the AI-AMD system at low levels of automation (“without” AI) through high 

levels of automation (“with” AI). The resulting high-level capabilities of the AI-AMD 

conceptual architecture were documented with recommendations for stakeholder 

consideration as the system technologies mature. The team identified existing and future 

AI methods and their potential applications to the AMD kill chain. The team has identified 

the need for future iterations of AI-AMD to study more complex situations with multiple 

threats and engagement across the entire battlefield.  



xxiv 

References 

Angerman, William S. 2004. “Coming Full Circle with Boyd’s OODA Loop 
Ideas: An Analysis of Innovation Diffusion and Evolution.” Master’s 
thesis, Air Force Institute of Technology.  
https://apps.dtic.mil/dtic/tr/fulltext/u2/a425228.pdf. 

 
Joint Chiefs of Staff. 2018. Joint Targeting. JP 3-60. Washington, DC: Joint Chiefs of 

Staff. https://jdeis.js.mil/jdeis/new_pubs/jp3_60.pdf. 
 
Parasuraman, R, T. B. Sheridan, and C. D. Wickens. 2000. “A Model for Types and 

Levels of Human Interaction with Automation.” IEEE Transactions on Systems, 
Man, and Cybernetics—Part A: Systems and Humans 30, no 3 (May): 286–97. 
https://doi.org/10.1109/3468.844354. 

 
U.S. Department of the Navy. 2016. Marine Corps Planning Process. MCWP 5-10. 

Washington, DC: Department of the Navy. 
https://www.marines.mil/Portals/1/Publications/MCWP%205-
10%20FRMLY%20MCWP%205-1.pdf?ver=2017-08-28-140131-227. 

 
 

  



xxv 

ACKNOWLEDGMENTS 

In the hope that the conceptual architecture design herein reduces lives lost on the 

battlefield and at sea, we dedicate this project to the personnel of the United States Armed 

Forces. We would like to acknowledge the Office of the Chief of Naval Operations 

(OPNAV) N2/N6 and Naval Air Systems Command (NAVAIR) Weapons Division for 

identifying the strategic importance this project could have for our forces and affording us 

the opportunity to explore its potential. The team would like to recognize the advisors, 

stakeholders, and professors at the Naval Postgraduate School (NPS); their knowledge and 

support helped guide this project to success. We appreciate our supervisors and co-workers 

who facilitated the balancing of this milestone with organizational needs. Lastly, our team 

would like to deeply thank our families who patiently supported our efforts through the 

many long days and nights, allowing us to achieve this prestigious goal. 

  



xxvi 

THIS PAGE INTENTIONALLY LEFT BLANK 



1 

I. INTRODUCTION 

A. STATEMENT OF NEED 

The U.S. military has recognized the need for automated decision aids to support 

battle management as warfighters become overwhelmed with shorter decision cycles, 

greater amounts of data, and more technology systems to manage (Galdorisi 2019). To 

date, much emphasis has focused on data acquisition, data fusion, and data analytics for 

gaining situational awareness in the battle space. However, a new frontier and opportunity 

exists for using this data to develop decision options and predict the consequences of a 

military course of action (COA). This project studied the application of artificial 

intelligence (AI) and cognitive analytics to improve situational awareness and battle 

management decisions in the air and missile defense (AMD) domain using Boyd’s observe, 

orient, decide, act (OODA) loop. 

AI technology has the potential to improve warfighting decisions by prioritizing 

threats and operational missions; determining COAs based on distributed warfare 

capabilities and their expected performance; and incorporating predictions of 

consequences into the decision loop (Cronk 2019). AI predictive analytic methods could 

form the basis of a near-real-time war-gaming capability to support military tactical 

operations as well as bridge the gap between the planning and tactical domains. This study 

developed decision aid capabilities at various levels of automation for conceptual AI-

enabled battle management tools. The team studied existing and future AI methods with 

decision-making application including machine learning, deep learning, cognitive 

processing, and intelligent data analytics. To create system-level architectures for use in 

this engineering project, the team drew upon the general knowledge of sensors, air defense 

systems, the human cognitive / decision-making processes, and the respective performance 

of each system of systems (SoS) element. The team developed a conceptual decision agent 

system, referred to as artificial intelligence for air and missile defense (AI-AMD), 

throughout this document. 
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1. Problem Statement 

There is a need for warfighter decisions to be made faster during AMD operations. 

The AMD mission space is a complex and time-sensitive arena that requires decisions to 

be made much faster than when employing traditional methods against advanced threats. 

Untimely decisions can mean catastrophic results if the threats are not fully addressed. 

Another area of concern is the limitation on the number of blue force weapons available 

and the cost of those weapons. With a limited quantity of weapons, decisions and COAs 

must be made to most effectively and efficiently resolve the threat. The complex battlefield 

also includes various blue force assets that must be fully coordinated during AMD 

operations to account for potential friendly fire accidents. Decision making involves a wide 

range of data that is a combination of known and unknown information, information 

overload, incomplete data, erroneous sensor data, terrain or environmental limitations, and 

coordination among various blue force assets in a multi-domain scenario. Each of these 

data sources continuously evolves throughout the kill chain and it is important to also be 

aware that the advanced enemy threat is constantly modifying its COAs as new information 

becomes available. All of these factors led the team to understand how automated decision 

aids and AI methods can best support and improve AMD decisions.  

2. Project Objectives 

This project investigated how AI methods can apply to AMD decision making by 

reducing the execution time of a human-AI team (termed an AI-enabled decision aid). The 

team leveraged the metrics by which decisions are evaluated to develop conceptual 

architectures for AI-AMD. 

The team developed the following project objectives: 

• understand and evaluate the AMD kill chain to identify steps in the 

process that can be executed faster using AI-AMD 

• determine risks associated with AI-AMD levels of automation as applied 

to the various steps in the kill chain process 
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• utilize modeling and simulation (M&S) to compare the kill chain at low 

levels of automation (“without” AI) through high levels of automation 

(“with” AI), and assess improvements based on time saved. 

• develop high level decision aid operational capabilities from the M&S 

analysis for AI-AMD and conceptual designs for AI-enabled decision 

superiority 

• identify existing and future AI methods and apply them to the AI-AMD 

kill chain. 

B. BACKGROUND AND PROBLEM MOTIVATION 

The U.S. Department of Defense (DOD) seeks intelligent machines to enable 

smarter decision-making capabilities for troops in dynamic combat environments. These 

capabilities will reduce processing time to “decide faster” by taking advantage of the digital 

battlefield (Pomerleau 2017). The DOD continues to improve upon its ability to collect 

data and the next logical step is to process the data to provide near real time COAs to the 

operator. This will reduce the cognitive burden on the operator and eliminate mundane 

tasks that can be automated. The DOD emphasizes multi-domain operations (MDO) with 

the ability to intelligently integrate air, land, sea, and dismount using AI to reduce the kill-

chain timeline (U.S. Army Training and Doctrine Command [TRADOC] 2018). 

AMD scenarios are of particular interest due to the wide variety of threat 

characteristics (e.g., tactics, speed, maneuverability, and explosive yield). Per the summary 

of the 2018 National Defense Strategy regarding missile defense and Joint lethality in 

contested environments, “Investments will focus on layered missile defenses and 

disruptive capabilities for both theater missile threats and North Korean ballistic missile 

threats…The Joint Force must be able to strike diverse targets inside adversary air and 

missile defense networks to destroy mobile power-projection platforms. This will include 

capabilities to enhance close combat lethality in complex terrain” (U.S. Department of 

Defense [DOD] 2018, 6). 



4 

The motivation for this project was to apply systems engineering (SE) best practices 

to understand how increased automation and the application of AI can improve AMD 

decision-making. The team developed an architecture, framework, and model for analyzing 

proposed AI-AMD implementation strategies. The project’s stakeholders included the 

Office of the Chief of Naval Operations (OPNAV) N2/N6 (focusing on the use of AI for 

air and missile defense applications) and Naval Air Systems Command (NAVAIR) 

Weapons Division (researching the use of AI for automated decision aids for weapon 

engagements). In a more global sense, the U.S. National Defense Strategy (2018) 

recognizes the need for AI to compete with near-term competitors who are making 

significant investments in modernizing their military including the realm of AI. 

Consequently, the DOD launched its Artificial Intelligence Strategy “to adopt AI to 

maintain its strategic position to prevail on future battlefields and safeguard a free and open 

international order” (Cronk 2019). Therefore, the DOD has a vested interest to develop the 

next generation AI throughout all military branches as an overarching stakeholder. 

C. PROJECT PLAN AND DELIVERABLES 

1. Work Plan 

As this project occurred early in the AI-AMD system life cycle (within the 

conceptual system engineering design phase, prior to preliminary design), the team’s initial 

task was to create a methodology to support the development of operational system 

capabilities. To do so, the team leveraged a framework presented by Blanchard and 

Fabrycky (2011) (refer to Figure 1). The project need was identified by the stakeholders 

for an approach to support battle management decisions involving many technological 

systems, large amounts of data, and short timelines. The team performed quantitative and 

qualitative analysis to develop the representative AMD concept of operations (CONOPS) 

and to synthesize several alternative conceptual AI-AMD architectures. The team modeled 

these architectures and ran simulations to facilitate a comparative analysis of capability. 

The team evaluated results, developed key lessons learned, and fed these results back into 

the iterative process as appropriate.  



5 

 
 Conceptual Systems Engineering Design Process. 

Adapted from Blanchard and Fabrycky (2011, 103). 

Figure 2 illustrates a harmonized development process within systems engineering: 

“system design requires both integration and iteration” (Blanchard and Fabrycky 2011, 41). 

These steps of synthesis, analysis, and evaluation were the feedback relationships across 

major elements of conceptual system architecting and formed the basis for comparison of 

potential functional architectures. Outcomes of this portion of the process fed detailed 

functional analysis and set the foundation for preliminary design baselines in follow-on 

stages of AI-AMD system development. The stakeholders may choose to reuse the 

resulting M&S tool with data reflecting their specific combat-oriented scenarios to generate 

additional unique requirements. 

 
 SE Harmonized Development Process. 

Adapted from Blanchard and Fabrycky (2011, 43). 

An implied goal of this project was to develop potential architectures for an AI-

AMD system to inform system capabilities by reducing the time it takes for AMD 

execution. To achieve this deliverable, the project activities with defined inputs, 



6 

constraints, outputs, and mechanisms (ICOM) were derived from the conceptual SE design 

process elements. The project activities are illustrated in Figure 3. 

 
 AI-AMD Project Activities ICOM 

2. Project Milestones and Timeline 

The project milestones for the team are shown in Table 1. The winter quarter 

focused on understanding the problem, preparation for the first in progress review (IPR), 

Chapter I, and an outline of the report. The spring quarter focused on an expanded literature 

review, architecture analysis, Chapter II, and the second IPR. The summer quarter focused 

on the design of experiments (DOE), M&S, analysis, and finalizing the project report. 
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Table 1. Project Milestones 
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The timeline for the project can be seen in Figure 4. The project began in January 

2020 starting with initial investigation and project refinement and concluded in September 

2020 with the completion of this document. 

 
 Project Timeline 

3. Team Structure 

Table 2 outlines the team members supporting the project, the roles of each 

member, and their respective organizations. The team consisted of a diverse group of 

engineers who provided a wide range of expertise in the systems engineering field and 

specialty areas. Roles included team lead, systems engineering lead, chief editor, and 

architecture lead; all conducted supporting analysis. 
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Table 2. Project Team Membership 

Team Member Role Organization 
J. Isaac Jones Team 

Leader 
Mechanical engineer and data scientist at the 
Combat Capabilities Development Command 
(CCDC) Data and Analysis Center (DAC) in 
Aberdeen Proving Ground, MD 

Russell Kress Systems 
Engineering 
Lead 

Mechanical engineer and senior test manager at 
the Army Evaluation Center (AEC) in Aberdeen 
Proving Ground, MD 

William Newmeyer Chief 
Editor 

Quick Response Branch Chief at the CCDC 
Command, Control, Communications, 
Computers, Cyber, Intelligence, Surveillance 
and Reconnaissance (C5ISR) Center Night 
Vision and Electronic Sensors Directorate 
(NVESD) in Fort Belvoir, VA 

Capt Adam Rahman Architecture 
Lead 

Communications Officer, Marine Wing 
Communications Squadron-38, Marine Air 
Control Group-38, 3rd Marine Air Wing, United 
States Marine Corps 

 

4. Team Roles 

Figure 5 depicts the organizational structure for the team along with specific 

responsibilities for each member of the group. The team recognized that all members were 

critical to executing this project involving analysis, M&S, and documentation. 

 
 Team Roles 
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D. BENEFIT OF THE STUDY 

The DOD seeks to use AI capabilities to increase the operational effectiveness of 

the military by addressing critical challenges that the United States is facing in today’s 

modern combat scenarios. Per the DOD AI strategy, the key areas of AI applications are to 

“improve situational awareness and decision-making,” “increase safety of operating 

equipment,” “implement predictive maintenance and supply,” and “streamline business 

processes” (Cronk 2019). 

The U.S. Navy is addressing how to utilize its collected data and to pursue the next 

logical progression of analyzing the data to inform decisions. In an article from the U.S. 

Naval Institute, “the Navy knows it needs big data, artificial intelligence, and machine 

learning, but it still is grappling with what it wants AI to do. This must change if the Navy 

is going to reap the benefits of these emerging technologies” (Galdorisi 2019). To achieve 

this goal, The Navy established A Design for Maintaining Maritime Superiority 2.0 which 

outlines a line of effort (LOE) to achieve high velocity outcomes (Office of the Chief of 

Naval Operations [OPNAV] 2018). To prioritize the LOE, the U.S. Navy focused “efforts 

for fielding AI/ML algorithms on areas that most enhance warfighting, training, and 

corporate decisions,” and prioritizing the top five problems that each wish to resolve 

(OPNAV 2018, 11).  

For the Navy, automated machines using AI will help reduce manpower 

requirements, increase operational effectiveness, and help maintain maritime superiority. 

The Navy has recognized the need for automated decision aids to support battle 

management as warfighters become overwhelmed with shorter decision cycles, greater 

amounts of data, and more technology systems to manage. The U.S. Navy Center for 

Applied Research in Artificial Intelligence (NCARAI) has active research groups in 

“adaptive systems, intelligent systems, interactive systems, and perceptual systems” to 

meet the need for AI (NCARAI 2020). The results of this project can be used by the Navy 

to inform future requirements as AI system development continues. 
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E. REVIEW OF PRIOR WORK 

AI and automated information management has been a DOD goal dating back to 

the 1970s (Government Accountability Office [GAO] 1981). Tasks to collect, process, 

analyze, exchange, and transform data into information, including methods of AI, are areas 

of ongoing research. However, with the growing emphasis on the DOD’s utilization of AI 

comes a growing public concern for empowering computers to fight our wars. Concerns 

include soft sciences (ethics and trustworthiness) alongside traditional hard sciences 

(algorithm development and implementation).  

State-of-the-art implementations include improving the rate of the Warfighter’s 

ability to learn and to train (Army Research Lab 2018), decision-making frameworks for 

casualty care (Wong 2019), and data gathering and reasoning systems for making 

recommendations in near real time (Pomerleau 2017). Investigations conducted to date 

revealed several DOD projects including the Army’s Project Convergence and Advanced 

Targeting and Lethality Automated System (ATLAS) as well as the Air Force’s Project 

Maven. In the recently published Department of Defense Artificial Intelligence Strategy, 

the Joint Artificial Intelligence Center (JAIC) has been defined as the focal point for AI, 

providing the mission, vision, and coordination of AI related efforts (Cronk 2019). 

Additionally, the U.S. Air Force is pursuing a Joint All-Domain Command and Control 

(JADC2) whose “fundamental premise is to evolve from today’s highly centralized and 

outdated command and control architecture to a more distributed system that connects 

every sensor to every shooter and blends artificial Intelligence (AI) with human judgment 

to accelerate decision making” (Birch 2020). During the review of prior work, the team 

determined an opportunity exists to reduce the overall kill chain timeline by increasing the 

level of automation. 

F. SCOPE, DEFINITIONS, AND CONSTRAINTS 

1. Scope 

Using the OODA loop, the team used time as the primary metric to determine if an 

AI-AMD system could allow the operator to observe faster, orient faster, decide faster, and 

act faster. In a complex battlespace against an advanced threat, greater amounts of data will 
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need to be analyzed, but the decision cycles will become shorter. The need highlights that 

an AI-AMD system must be trustworthy and provide understandable guidance to the 

operator in order to reduce the time required to engage. Mission success is timely defeat of 

threats across an operational scenario with multiple potential threats. Figure 6 depicts the 

Operational View (OV-1) high-level graphic of the AMD operation with AI-AMD 

performing the OODA loop.  

 
 OV-1 High-Level Operational Concept Graphic. 

Adapted from Skidmore (2012, 3). 

2. Definitions 

There are several key terms used throughout this project that can be interpreted in 

various ways. To ensure that the reader understands the team’s interpretation, the following 

key terms have been defined. These key terms were derived from multiple sources. 

• An algorithm is “a procedure for solving a mathematical problem in a 

finite number of steps” (Merriam-Webster 2020). 
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• “Automated Decision Aid or battle management aid (BMA) is a device 

that uses AI method to improve process speed of large amounts of data to 

improve tactical knowledge” (Johnson, forthcoming). 

• Automation is a “device or system that accomplishes (partially or fully) a 

function that was previously, or conceivably could be, carried out 

(partially or fully) by a human operator” (Parasuraman, Sheridan, and 

Wickens 2000). 

• Artificial Intelligence is “the ability of machines to perform tasks that 

normally require human intelligence—for example, recognizing patterns, 

learning from experience, drawing conclusions, making predictions, or 

taking action—whether digitally or as the smart software behind 

autonomous physical systems” (DOD 2018). 

• Data Fusion Information Group (DFIG) model is the Joint Directors of the 

Laboratories (JDL) information fusion model outlining six different levels 

of data fusion; Level 0 Data Assessment, Level 1—Object Assessment, 

Level 2—Situation Assessment, Level 3—Impact Assessment, Level 4—

Process Refinement, Level 5—User Refinement, and Level 6 Mission 

Management (Blasch 2015). 

• Expert systems are AI systems that use reasoning to solve complex 

problems (Nikolopoulos 1997). 

• Levels of automation characterize human interaction “from fully manual 

to fully automatic” (Parasuraman, Sheridan, and Wickens 2000). 

• ICOM refers to inputs, controls, outputs, and mechanism. It is used to 

generate the OV-5b operational activity model. 

• Marine Corps Planning Process (MCPP) is a planning process used by all 

command echelons for military planning and operations (U.S. Department 

of the Navy [USN] 2016). 
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• Machine learning is one critical component of artificial intelligence 

wherein a computer system can adapt and improve on its own without 

human correction (Salazar 2018). 

• Predictive analytics is a capability that can take into account possible 

consequences and effects into the process of decision making (Johnson, 

forthcoming). 

3. Assumptions and Constraints 

The project focuses on the AMD operations based on Joint Targeting Joint 

Publication (JP) 3–60 (Joint Chiefs of Staff 2013) kill chain for an efficient Human-AI 

cooperation and execution. In order to set the scope of the project several assumptions and 

constraints were generated and used throughout the modeling and analysis. These 

assumptions and constraints were used to simplify calculations in determining threat 

timelines and blue force timelines. A summary of assumptions and constraints follows: 

 

• Detection capabilities for Blue Force (BLUFOR) were assumed to be 

100% accurate at maximum effective range. 

• Threats from Red Force (REDFOR) and defeat mechanisms for BLUFOR 

were assumed to follow a linear trajectory. 

• Speed was assumed to be constant. 

• Distance was assumed linear. 

• Maximum operational range was assumed to be constant. 

• Defeat speeds for BLUFOR were assumed to be constant. 

• Network latency was assumed to be 250 milliseconds for each message 

crossing the network (send and receive). 
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• BLUFOR engagement reaction time was assumed to be 1 second (i.e., the 

weapon system fires against the threat within 1 second after receiving 

orders). 

• Detection probability was assumed to be 100% at maximum effective 

range. 

• Sensors were assumed to be local to the BLUFOR defeat mechanisms. 

• Utility curve was assumed to be consistent across all AI steps in the kill-

chain. 

• Automation levels 1–3 and levels 8–10 were assumed to provide marginal 

changes in utility with a linear rate of change between levels 3–8. 

• Hypersonic and cruise missile threats were far more challenging than 

enemy drone threats due to speed of the threat and associated time to 

respond.  
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II. LITERATURE REVIEW 

In order to adequately understand the AMD decision-making process and 

operational context, a literature review was conducted focusing on four main areas of 

interest to include psychology of decision making, the tactical planning process, blue force 

sensor performance, and artificial intelligence techniques. Each of these areas were then 

used to further refine constraints, assumptions, M&S parameters, and the overall kill-chain 

timeline. The following sub-sections detail the literature review and how the information 

was used for the project. 

A. PSYCHOLOGY OF DECISION MAKING 

In proposing AI-enabled systems, numerous research papers initially present the 

role of the machine as a supplement to the human element. Elsewhere, human behaviors 

were considered in the development frameworks for classifying various decision strategies 

and characteristics, in terms of both outcome and process metrics, with potential 

applications in designing decisions support systems (Riedl, Brandstätter, and Roithmayr 

2008). Decision making has been modeled from an outcome-oriented multi-attribute 

evaluation perspective (Chen 2010), and “net benefit” methods of evaluating decisions in 

balance of risks and benefits have been presented (Vickers and Elkin 2006). Likewise, to 

begin the process of developing an AI architecture for an AMD decision support 

application, this project also started with consideration of the human decision-making 

process.  

The use of human system interface (HSI) methodologies can drive reductions in the 

manning requirements of a fire control system by broadening the mission concept and 

extending the use of automation in the total fire control system and not just the human 

interface with the weapons (Kennedy, Thomas, and Green 2004). Additionally, the authors 

provide simplifying assumptions for hostility posture driving levels of automation. Several 

levels of functional flow and decomposition of OODA are presented through six major 

functions: 1) search, 2) detect, 3) track, 4) classify, 5) resolve, and 6) shoot. Multiple 

references to Parasuraman, Sheridan, and Wickens (2000) exist for the foundations of ten 
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levels of automation and associated risks regarding mental workload, situational 

awareness, complacency, and skill degradation. Parasuraman, Sheridan, and Wickens 

(2000) proposed that automation can be applied to four broad classes of functions, as shown 

in Figure 7. The team also recognize that the four broad functions are analogous to the 

OODA loop commonly used by DOD personnel across all U.S. military Services. 

 
 Examples of Systems with Different Levels of Automation. 
Source: Parasuraman, Sheridan, and Wickens (2000, Figure 2). 

In A Model for Types and Levels of Human Interaction with Automation, the authors 

provided a framework for answering the question “which system functions should be 

automated and to what extent?” (Parasuraman, Sheridan, and Wickens 2000). It is notable 

that automation does not just augment human decision making, but it actually changes the 

decision-making process. These 10 levels of automation are listed in Table 3. The authors’ 

examples include “an air defense operator given various sensor readings who has to decide 

whether to shoot down a potentially hostile enemy aircraft” (2000). This example has a 

direct application to the AI-AMD problem set, and the team used the levels of automation 

to define the appropriate levels of automation within the AMD kill chain. 
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Table 3. Levels of Automation. Source: Parasuraman, Sheridan, 
and Wickens (2000, Table 1). 

 
 

Furthermore, the four categories of functions referenced in Figure 7 can be 

simplified to represent human cognitive decision-making processes, as depicted in Figure 

8. There are many similarities across the many references consulted for this project: 

• Sensory processing  

• Acquisition and registration from multiple sources 

• Information acquisition function 

• “Observe” phase 

• Perception/working memory  

• Conscious perception/manipulation of information 

• Information analysis function 

• “Orient” phase 

• Decision making 

• Decisions based on cognitive processing 
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• Decision and action selection function 

• “Decide” phase 

• Response Selection 

• Implementation of response 

• Action implementation function 

• Similar to “Act” Phase 

 
 Simplified Human Cognitive Process for Decision Making. 

Source: Parasuraman, Sheridan, and Wickens (2000, Figure 1). 

This project used Parasuraman’s 10 levels of automation as a guide to aid in  

the determination of what functions should be automated and to what extent. This project 

also used this framework with an emphasis on human performance consequences  

(mental workload, situational awareness, complacency, and skill degradation) as well as 

decision/action consequences (reliability and costs of decisions/action outcomes). Figure 9 

illustrates this decision framework flow chart used to guide the team in determining the 

appropriate levels of automation within the kill chain. 



21 

 
 Flow Chart Application of the Mode of Types and Levels of 

Automation. Source: Parasuraman, Sheridan, and Wickens (2000, Figure 3). 

Authors Save, Feuerberg, and Avia (2012), in citing several flight crew and air 

traffic control examples where historic taxonomies fall short of full characterization, 

further developed the four functions (information acquisition, information analysis, 

decision and action selection, action implementation—herein analogously “OODA”) by 

utilizing the 10 levels of automation from Parasuraman, Sheridan, and Wickens (2000). 

Owing to prior human-based psychological factors, “[other] authors (Hollnagel 1999) have 

clarified that the decision on what to automate cannot be based simply on a ‘Function 

allocation by substitution’. This approach was applied in the past also by means of the so-

called MABA-MABA lists (Men are better at—Machines are better at) (Fitts 1951)” (Save, 



22 

Feuerberg, and Avia 2012). This led to the development of their 26-element level of 

automation taxonomy (LOAT) matrix; three principles are provided: 

• An automated system cannot have one “overall” level of 
automation. In other words, a statement about a level of 
automation for a system always refers to a specific function being 
supported; 

• One automated system can support more than one function, each 
having a different level of automation; 

• The description of each automation level follows the reasoning that 
automation is addressed in relation to human performance, i.e., the 
automation being analyzed is not just a technical improvement but 
has an impact on how the human is supported in his/her task 
accomplishment. (Save, Feuerberg, and Avia 2012) 

In Situation Awareness, Mental Workload, and Trust in Automation: Viable, 

Empirically Supported Cognitive Engineering Constructs (Parasuraman, Sheridan, and 

Wickens 2008), the authors identify three main research areas of decision making over the 

preceding three decades: situational awareness (SA), mental workload, and trust. Empirical 

data behind these three areas is provided in lieu of qualitative analysis. Comparisons of 

learning about decision making to human factors engineering techniques are made (Fitts’ 

Law, stimulus-response compatibility, visual search models, and crossover model for 

tracking performance). In attempting to solve human factors engineering problems for 

automated systems, the authors counter the argument that these three areas are “folk 

psychology” as claimed by previous articles (Parasuraman, Sheridan, and Wickens 2008).  

A key ability of SA is to diagnose different operator states and responses. The 

author states, “SA represents a continuous diagnosis of the state of a dynamic world. As 

such, there is ‘ground truth’ against which its accuracy can be assessed” (Parasuraman, 

Sheridan, and Wickens 2008). The authors go on to discuss the difference between SA and 

choice, where SA has ground truth and choice does not. Choices are made based on the 

diagnosis of the consequence of each of the potential choices. Therefore, choices vary from 

person to person. It is important to also understand that SA is not performance. For 

example, auto-pilot works well when the route is followed but may not work that well for 
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emergency rerouting. Supporting SA is essential to the performance characteristics. There 

are three levels of SA: 

• Level 1—seeking information 

• Level 2—integrating information 

• Level 3—predicting outcomes 

Mental workload is defined as “the relation between the function relating the mental 

resources demanded by a task and those resources available to be supplied by the human 

operator” (Parasuraman, Sheridan, and Wickens 2008). Many parallels exist between SA 

and mental workload. Neither are measures of performance or knowledge (e.g., two people 

performing the same task can have same outcome, but one may have more attention left 

for follow-on tasks than the other). The diagnosis of excess cognitive workload will suggest 

different COAs. 

Misuse and disuse of automation is a result of operator trust. There were many 

empirical data references in the literature review on modeling the psychological decision-

making model and finding balance between trust, misuse, disuse, and overuse. High false 

alarm rates lead to disuse, high levels of trust leading to overreliance, so finding the right 

balance of AI is critical. This project leveraged the article’s many different references to 

empirical data sources for SA, workload, and trust to characterize the architecture of the 

AI-AMD decision support aid. 

B. TACTICAL PLANNING PROCESS, KILL CHAIN, AND BATTLEFIELD 
MANAGEMENT 

In the NPS capstone, Artificial Intelligence Applications for Solving Combat 

Identification Problems Concerning Unknown Unknowns (2019), Wood describes the 

implementation of AI at the different levels of war and the methodology used at different 

levels of implementation for sea-based warfare (Wood 2019). At the lowest level, ship-

based implementation represents the tactical equivalent of ground warfare. Within the ship-

based level: 
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The amount of information collected from on-board sensors provides an 
opportunity to better manage and quickly CID potential targets and develop 
data to help find unknown-unknowns. AI integrated into the combat system 
may also add automation alleviating the demands placed on crews and 
offering better and more timely decision making. (Wood 2019, 30)  

However, due to limitations of current systems, the Aegis Weapon System (AWS) as an 

example, only allows for the data to be available for a limited time on an operator’s display 

as long as the target falls within the sensor ranges of the system. 

The Naval Task Forces represent the operational level of AI implementation, 

designed to inform decision makers of known threats in the area of operations while 

limiting the space of unknown-unknowns. The ability to integrate and share data of the 

battlespace helps create a single integrated common tactical picture (CTP) that extends the 

usage of resources efficiently and decreases accidental civilian engagements. Due to 

differences among the classes of ships and the technological hardware capability, AI 

implementation is limited at the Task Force level. However, with hardware and software 

modernizations within the aging ships, fused AI implementations provide a potential 

solution to the problem. From a prior NPS capstone, “The Navy is already developing and 

implementing a program known as cooperative engagement capability (CEC) to similarly 

integrate data shared via datalinks into a single CTP” (Wood 2019, 35). This will allow for 

the efficient use of AI implementation across the Task Force to be integrated into a single-

source CTP available for all sea and land-based assets.  

The highest level is cloud-based AI systems on shore-based network infrastructure 

that will be implemented at all levels. This will allow for all levels to view the same 

information from multiple different locations. However, due to datalink capabilities and 

limited bandwidth within different classes of ships, at this time, cloud-based AI systems 

are not the most efficient systems for AI implementation. A great number of technological 

advances will be needed in tactical clouds and cloud computing algorithms to support AI 

implementation for combat identification of the unknown-unknowns.  

AI implementation at the Task Force based level of war is best suited for strategic 

thinking skills that incorporate the OODA loop created by John Boyd. The execution of 

military missions starts at up front with decision makers creating COAs for the commander 



25 

to implement in the battlespace. The team reviewed the tactical planning process from the 

Marine Corps, the Army, the Navy, and the Joint Planning Process. The Marine Corps 

Planning Process (MCPP) is used by Marines at all echelons of command to conduct range 

of military operations. Based on the operational view and project objectives, it was 

determined that the MCPP would be the most suitable doctrine for the project, as shown in 

Figure 10. It is the fundamental responsibility of decision makers to design a well-executed 

plan that not only conveys the commander’s intent, but also receives guidance from the 

Commander at all phases. The MCPP uses the fundamental idea of the OODA loop to 

design a framework for solving a problem, developing COAs, war gaming the desired 

COAs, and transitioning into implementing the commander’s intent.  

 
 Marine Corps Planning Process. 

Source: USN (2016, Figure 1–1). 

Within the overall design framework, COA development based on the OODA loop 

process becomes integral to the planning process. COA development is designed to be a 

top-down planning process, while creating an operational battlespace that incorporates the 

idea of a single-battle concept with an integrated planning process. The MCPP framework 

is a crucial part of AI implementation. Therefore, in a Task Force based AI implementation, 

it is imperative that the human process of the OODA loop reduces the time required to 

generate desired courses of action that will aid the joint target cycle.  
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The AI implementation within the joint targeting cycle can be achieved through 

systematic joint processes with human-machine interaction that uses the OODA process in 

a cooperative manner. In the research paper “Interactive OODA Processes for Operational 

Joint Human-Machine Intelligence” Blaha (2018) proposes an effective human-machine 

teaming effort to create a joint decision-action process using a human-machine OODA 

technique. The author states: 

For human and machine OODA loops acting as a team through concurrent 
processes, communication between the two processes is critical for each 
agent providing input to the other. Communication from the other agent 
constitutes one of the inputs to the human or machines Observe stage of 
processing. That is, it behaves as just one of the many potential input 
streams within the Outside Information observations. (Blaha 2018, 3–12) 

Characterizing and conceptualizing the OODA framework provides a key strategic 

advantage for systematically outpacing the decision-making processes of an adversary or 

threat. Current OODA concepts have framed cognitive decision processes in support of 

agile and competitive warfighters and human-centric operations. As noted in Interactive 

OODA Process for Operational Joint Human-Machine Intelligence, “future military 

decision making based on human-machine teaming relies on technology and interaction 

concepts that support joint human-machine intelligence, not just human capabilities. This 

requires new OODA concepts” (Baha 2018). In addition to the traditional human-centric 

OODA loop Figure 11, the author defines a machine-centric OODA loop Figure 12 with 

notable similarities. The author considers  

how advances in artificial intelligence and cognitive modeling can be 
integrated within the machine-orient stage, providing the machine a unique 
advantage over humans in that the machine can integrate a level of 
understanding and prediction about human operators together with 
predictions about machine behaviors and data analytics. (Blaha 2018) 

Recognizing this, the author proposes an augmented, joint human-machine teaming OODA 

loop in Figure 13. 
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 Human Centric OODA Loop. Source: Blaha (2018, Figure 1). 

 
 Machine Centric OODA Loop. Source: Blaha (2018, Figure 2). 
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 Joint Human and Machine Teaming OODA Loop. 

Source: Blaha (2018, Figure 3). 

As the project integrated the OODA loop process into automated battle 

management aid, it was imperative that the human-machine concept was present for all 

decision-making outcomes. From Task Force based operations, it is crucial to implement 

the AI in the appropriate kill chain process directed by the JP 3-60. As targets come in all 

shapes, size, and numbers; the design of the AI within the project focuses on deliberate 

targeting (planned) and dynamic targeting (targets of opportunity) based on time sensitive 

targets and component critical targets with the commander’s end state and objectives. 

Based on the targeting steps depicted in Figure 14, the AI OODA process focused on step 

1–4. During these steps, the targeting acquired through on-board sensors are able to provide 

the AI with sufficient information to allow for machine learning and cognitive processes 

to decipher targets and provide the user with possible COAs to engage the enemy targets. 
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 Joint Targeting Steps. Source: Joint Chiefs of Staff 

(2018, Figure II-10). 

C. SENSORS, RESOURCE MANAGEMENT, AND DATA FUSION 

1. Blue Force Sensor Systems and Characteristics 

Sensor capabilities are a critical component of the AMD operation. There are 

various sensor modalities each capable of detecting, recognizing, and identifying targets of 

interest. Examples of sensors include radars, infrared sensors, multi-spectral sensors, 

acoustic sensors, and radio frequency sensors. Each of these sensors have their own unique 

performance characteristics, detect, identify, and recognize probabilities, and modeling 

characteristics. Some environmental considerations that need to be accounted for include 

time of day, time of year, starlight, moonlight, spectrum interference, and terrain features 

that play a significant role in adequately defining the performance of the sensor. These 

types of sensors form the basis of the U.S. AMD system portfolio. 

United States AMD capabilities consist of a layered approach across multi-domains, the 

DOD services, and the U.S. Missile Defense Agency (MDA). Navy AMD systems include 

the AWS and Phalanx Close-In Weapons System (CIWS). The AWS uses an automated 

control system to detect, track, and engage the targets using a high-powered radar called 
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the AN/SPY capable of detecting over 100 targets simultaneously (USN 2019). The 

Phalanx CIWS provides a similar capability, but for close-in targets as a last line of defense 

with an effective range of just under a mile and an estimated six seconds to engage the 

target (Hutchison 2017). The Army also has a significant land-based AMD capability with 

an Integrated Air and Missile Defense (IAMD) effort that seeks to integrate sensors, 

launchers, missiles, and control systems using a set of standard interfaces and networks 

(U.S. Department of the Army [USA] 2020). Examples of Army land based systems 

include close combat systems such as the Tube-launched, Optically-tracked, Wireless-

guided (TOW) systems, cruise missile defense systems such as the Sentinel radar and 

Stinger systems for short to medium range defense, counter-rocket, artillery, mortar  

(C-RAM) systems such as the Land-based Phalanx Weapon System (LPWS) and the 

AN/TPQ series of radars, and lower-tier capabilities such as the Patriot system for high-

value assets (USA 2020). The MDA also has a layered sensor network for detecting and 

tracking threat missiles through a Ballistic Missile Defense System (BMDS) (Missile 

Defense Agency [MDA] 2020). These sensors include the Upgraded Early Warning Radars 

(UEWR) for long range coverage managed by the U.S. Air Force, the Cobra Dane radar 

for mid-course tracking managed by the Air Force, Sea-Based X-Band Radar for wide area 

early warning detection over the ocean, and the Space Tracking and Surveillance System 

(STSS) satellite constellations using visible and infrared sensors to detect threats (Missile 

Defense Agency 2020). In addition, there are also Joint Attack Munition Systems (JAMS) 

designed across services, platforms, and coalitions for use on aviation platforms. Some 

examples include the Hydra rockets, Hellfire missiles, and the JAGM air-to-ground 

weapon system (USA 2020). 

By understanding the capabilities that exist today, the team was able to better 

develop architectures that can be used to augment the various systems and aid in the 

decision-making process. The team recognizes that the physics of sensor performance 

plays a significant role in AMD operations. Rather than address time savings associated 

specifically with sensor performance, the project focuses on the role that AI plays in 

improving AMD decision making in a multi-domain, highly complex battlespace. M&S of 

the architectures normalized the sensor performance characteristics to constrain the scope 
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of the project but allows for advanced M&S specifically for the sensors to be added in the 

future. With many sensors and systems across services and coalition partners capable of 

detecting and defeating enemy threats each with their own specific mission areas, AI can 

be used to make efficient and intelligent COAs in a SoS construct to reduce the overall kill 

chain timeline. 

2. Sensor Data Fusion 

The Joint Directors of the Laboratories (JDL) created the Defense Fusion 

Information Guide (DFIG) as a means to standardize on the definitions of data fusion. The 

DFIG defines six different levels of data fusion consisting of level 0—Data Assessment, 

Level 1—Object Assessment, Level 2—Situation Assessment, Level 3—Impact 

Assessment, Level 4—Process Refinement, Level 5—User Refinement, and Level 6 

Mission Management (Blasch 2015). These levels can be mapped to the various steps in 

the kill chain as well as the OODA loop and each step can independently have a different 

level of data fusion based on the situation and risk associated with the decision. To assist 

with defining the levels of data fusion within the kill chain, first it was critical to understand 

how the kill chain currently functions and how the operators perform each function in the 

process. From there, the team used existing research on data fusion support to decision 

making to address system level data fusion and SoS level data fusion (Paradis, Breton, Elm, 

and Potter 2002). There are certain tasks within the kill chain that, under most 

circumstances, should not be automated due to the risks involved without a human in the 

loop. However, suppose a Navy ship is under fire from multiple enemy missiles. If time is 

critical, the decision aid may be allowed to decide to engage those threats without a human 

in the decision loop as a last resort method once certain predefined gates are reached 

without operator involvement. Comparisons of the various data fusion frameworks can be 

found in Table 4, Table 5, and Table 6.  

 



32 

Table 4. Imperfect Data Fusion Frameworks. 
Source: Khaleghi et al. (2010, Table 1). 

 

Table 5. Correlated Data Fusion Methods. 
Source: Khaleghi et al. (2010, Table 2). 

 

Table 6. Inconsistent Data Fusion Methodologies. 
Source: Khaleghi et al. (2010, Table 3). 
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D. AUTOMATION AND ARTIFICIAL INTELLIGENCE TECHNIQUES 

Automation and AI often go hand in hand. AI is a higher order domain of 

automation where automation refers to the concept of mimicking the human thought 

process and rational action. Stuart Russell and Peter Norvig (2015) provide many 

additional definitions of AI, shown in Figure 15. 

 
 Artificial Intelligence Definitions. Source: Russell and 

Norvig (2015, Figure 1.1). 

AI applications in the DOD look to expedite information, increase situational 

awareness, and aid in decision making. AI development started post-World War II when 

Warren McCulloch and Walter Pitts proposed a model of artificial neurons characterized 

by a switch being either on or off (Russell and Norvig 2015). DOD’s work on automation 

dates back to projects like Battlefield Exploitation and Target Acquisition (BETA) (GAO 

1981) and Army Tactical Command and Control System (ATCCS) (GAO 1990).  

In its inception, automation has mainly applied to the dull, dirty, and dangerous 

jobs to allow humans to work on safer and more complex tasks. Advancements in 

computing power has opened the door to developing algorithms to model more complex 

tasks. The DOD is investing in such technologies to assist in various applications on the 
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battlefield. Automation can come in various forms: from simple items such as a toaster, to 

robots in factories, autonomous automobiles, and game winning artificial intelligence. As 

described earlier in Table 3, automation can be described in 10 levels and the levels dictate 

the ratio of control between machine and human operator. 

1. Algorithms and Machine Learning 

Algorithms are key to computer logic. These are essential mathematical models 

processing inputs into a desired output. While traditionally programmed and iterated by 

humans, automation has been applied in the form of machine learning. Machine learning 

is essentially the automation of algorithm development. Concepts such as neural networks 

are built to statically break down data and develop or train a model from the data fed into 

the system. Machine learning can occur at various levels from supervised (where humans 

assist in feeding the data and running the iterations) to levels of no supervision (where raw 

data can be fed and the network self-iterates to construct the algorithm).  

While machine learning looks to use computational power to accelerate algorithm 

development, there can be some difficulties such as developing bias based on the limitation 

on the input data, collecting and preprocessing data, running hundreds to thousands of 

iterations, and having the computational power to produce. Trust and transparency must  

be considered when accepting an AI-AMD decision. Often the final product does not 

contain the details behind the algorithms’ determination (Zhao and Flenner 2019). The 

methods and theories that guide development of these algorithms is a critical component 

of machine learning. 

2. Data Fusion, Decision Theory, and Predictive Analytics 

Predictive analytics is a means to evaluation COAs. The DOD currently employs 

two generations of analytics which are descriptive and diagnostic. Descriptive analytics 

can be used to provide hindsight to better understand what has happened. Diagnostic 

analytics look to provide insight into events that occurred. The next generation of analytics 

is predictive analytics. Predictive analytics takes what we have learned from the past to 

provide foresight into what will likely happen, as depicted in Figure 16. 
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 Hindsight, Insight, and Foresight Analytical Value to the 

Warfighter. Source: Booze Allen Hamilton (2017, 3). 

There are several AI techniques that were reviewed to support this project including 

predictive analytics, decision theory, Bayesian networks, game theory, and decision theory. 

Predictive analytics has the potential to assist in automated decision aids by providing 

second and third order effects to COAs. These COAs assist development of military 

wargaming to determine effects and responses. Predictive analytics have the ability to 

expedite this process in Naval planning (Johnson, forthcoming). Bayesian networks are a 

type of graphical statistics model; these networks are good for reviewing the probabilities 

of the relations of contributing factors to an event (Johnson, forthcoming). Many reasoning 

methods are carried out using a Bayesian network. A belief network is a type of Bayesian 

network that captures uncertainty to carry out a sensitivity analysis (Ang 2004). Decision 

Theory is a framework for decision made under uncertainty, built on utility theory (Russell 

and Norvig 2015). It provides a method for selecting actions based on desired outcomes 

(Johnson, forthcoming). Game Theory is an evolution on decision theory with multiple 

agents where the relationship between the actions of players effect the others (Russell and 

Norvig 2015). Game theory is broken down further into descriptive and normative 

interpretations. Description focus on the adversary’s response while normative looks more 

at the optimal action the player should make.  

The program BETA, which was mentioned earlier, was a project that collected data 

from a set of ground station sensors, processed the data autonomously, and displayed the 

data on a central terminal. Poor performance led to the cancellation of the project around 

1980 (GAO 1981). Another project mentioned, ATCCS, was an attempt at a decision aid 

with the Army, however the network bandwidth and its large size made the system 
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unusable (GAO 1990). Data collection methods have advanced over the last few decades 

and now is the time to apply advances in the AI domain to provide automated decision aids 

to the Warfighter.  

The DOD is collecting more data than ever before that can be used to feed and to 

train machine learning processes to develop defense algorithms. Those same sensors, 

combined with data fusion, will help create models of the enemy, the blue forces, and the 

operating environment. Methods in decision theory will create COAs based on these 

models, and predictive analytics will look at the 2nd- and 3rd-order effects. These AI 

methods and concepts can be used to develop AI-AMD systems to provide optimized, 

prioritized COAs for warfighters and commanders to accelerate and improve the kill chain 

to expand the battlespace. A sampling of the various methods obtained from the literature 

review are listed in Table 7. 

  



37 

Table 7. AI Methods 

Methods Description 

Theories 

Probability Theory Considers the actions degree of belief (Russell 
and Norvig 2015) 

Utility Theory Considers agents degree of usefulness (Russell 
and Norvig 2015) 

Decision Theory Considers both probability and utility (Russell 
and Norvig 2015) 

Game Theory Described rational behavior of multiple agents in 
the same situation (Russell and Norvig 2015) 

Data 
Analytics 

Descriptive Analytics Analytics that provide hindsight into what 
happened (BAH 2017) 

Diagnostic Analytics Analytics that provide insight into why it 
happened (BAH 2017) 

Predictive Analytics Analytics that provide foresight into what will 
likely happen (BAH 2017) 

Reasoning 

Deductive Reasoning Reasoning based on known premises (BAH 
2017) 

Inductive Reasoning Reasoning based of patterns for uncertain 
inferences (BAH 2017) 

Spatial Reasoning Reasoning Used to navigate the world (Russell 
and Norvig 2015) 

Evidential Reasoning Fusion of uncertain and ambiguous data 
(Khaleghi et al. 2010) 

Case-based Reasoning Recall similar cases from experience (Hopgood, 
2016) 

Fuzzy Reasoning Intuitive approach to vague data (Khaleghi et al., 
2010) 

Other 

Event Procedure Based on criteria selection, a triggered event 
occurs automatically 

Templating Filling Based on decisions selected, a form can be 
autopopulated 
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III. AI-AMD ARCHITECTURE AND KILL CHAIN 
ANALYTICAL FRAMEWORK 

This chapter presents the AI-AMD systems architecture and kill chain analytical 

framework. The team conducted a model-based systems engineering (MBSE) analysis to 

understand how a future automated decision aid capability could support AMD systems. 

The team used a SE tool called Innoslate to conduct the MBSE analysis and capture 

architectural models based on the DOD Architectural Framework (DODAF). The team 

analyzed AMD systems from an operational viewpoint and a systems viewpoint to 

understand how an AI-AMD decision aid might function operationally and to understand 

its system characteristics, properties, boundaries, and interactions.  

This chapter also contains the team’s analytical framework for studying kill chain 

automation. As AMD is a time-critical mission, the team studied AMD kill chain functions 

in terms of timing to understand how much time it takes to perform each function. The 

team developed an analytical framework for studying the AMD kill chain based on the 

operational scenario (threat timeline), the level of automation for making kill chain 

decisions, and the risk associated with automation level. The team’s AI-AMD architectural 

models and kill chain analytical framework as presented in this chapter support the team’s 

M&S analysis presented in Chapter IV.  

A. AI-AMD ARCHITECTURE 

To support future AI-AMD program developments, the team pursued an MBSE 

approach for defining the overall architecture. Major contributors to AMD mission success 

are external to the AI-AMD decision aid; these include BLUFOR sensors, air defense 

weaponry, and the network. The AI-AMD decision aid is a system within the larger AMD 

SoS context, as described in Figure 17. The derived models for describing the desired SoS 

capabilities ensure the resulting system will meet stakeholder needs. Using Innoslate to 

ensure concordance throughout MBSE development, the team produced operational 

viewpoints (OV) and systems viewpoints (SV). These DODAF views are depicted in the 

following sub-chapters.  
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 AI-AMD Context Diagram. Adapted from Skidmore (2012, 3). 

1. Operational Viewpoint 

To begin the architectural framework process, the team generated the OV. This 

conceptualizes the operational need, decomposes the need into actions, and illustrates 

communication exchanges and relationships. The OVs used for this project are shown in 

Table 8. 
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Table 8. DODAF OVs. Source: DODAF v2.02, DOD (2020). 

Model Description 
OV-1: High-Level 
Operational Concept Diagram 

The high-level graphical/textual description of the 
operational concept 

OV-6c: Event-Trace 
Description 

One of three models used to describe operational 
activity. It traces actions in a scenario or sequence 

OV-5a: Operational Activity 
Decomposition Tree 

The capabilities and operational activities organized in 
a hierarchal structure 

OV-5b: Operational Activity 
Model 

The context of capabilities and operational activities 
with their relationships among activities, inputs, and 
outputs 

OV-5b/6c: Action Diagram Combination diagram illustrating operational activities 
(including inputs & outputs) within a scenario or 
sequence of events 

 

a. OV-1: High-Level Concept 

The OV-1 is a visualization of the AI-AMD CONOPS within the mission context, 

illustrating the basic premise of the operational need. From this, stakeholders can share a 

vision of the system and begin deriving capabilities. The OV-1 depicting the AI-AMD 

decision aid (as part of a larger SoS including sensors, weapons, and network) was 

originally presented in Figure 6 to define the scope of this project. What is shown is a range 

of possibilities in the AI-AMD mission: multiple threat types, various air defense (AD) 

assets, numerous sensor capabilities, and a network to support the sharing of information. 

The OODA process is overlaid over the AMD mission. Whether human only, AI only, or 

AI-human team, the OODA process is used independent of scenario. However, the level of 

automation will drive time savings associated with the engagement timeline.  

b. OV-6c: Operational Scenarios 

From the concept depicted in the OV-1, the team selected an AMD scenario, and 

defined the sequence of actions that each agent performs during this scenario. The scenario 

is intended to include the planned sequence of events in addition to variations that capture 

other actions that may need to be performed. For the AMD mission, the typical scenario 

includes an incoming threat (hostile aircraft, drone, or missile), followed by its detection 

by BLUFOR sensors and a BLUFOR weapon engagement response. The team focused on 
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a single AMD threat, but notes that more complex AMD scenarios for future consideration 

include multiple threats, failed engagements, and system or network failures.  

The team developed an OV-6c (an Event Trace Description) to capture the AMD 

operational scenario. This OV-6c operational scenario is presented in Figure 18. It 

illustrates the AMD scenario based on JP 3-60 Joint Targeting. The purpose of the event 

trace is to depict the agents (AI-AMD decision aid, blue forces, red threat, sensors, and 

network) in the AMD scenario and their actions as they occur. It is a useful visual timeline 

to gain stakeholder agreement with the modeled scenario. 

The engagement starts with the red threat launching an attack against BLUFOR 

assets. The BLUFOR are unaware of the threat until the BLUFOR sensors detect the 

incoming missile and provide the sensor detection data through the network to the AI-

AMD decision aid. The AI-AMD decision aid then requests further information from the 

BLUFOR sensors through the network and the sensors send their updated detection 

information back to the AI-AMD decision aid. At this point, the AI-AMD confirms a valid 

detection and requests the BLUFOR sensors update the target track. The AI-AMD must 

determine available BLUFOR assets and ensure that there are no BLUFOR friendly forces 

within the area of operations and requests status and location of known forces. Once the 

AI-AMD can de-conflict the area, orders are issued and passed through the network along 

with fire command to the BLUFOR defeat mechanism. The BLUFOR then engage the 

threat, followed by an assessment of the engagement. If the red threat has not been defeated, 

the AI-AMD can re-issue an attack command, and the BLUFOR engages again. The OV-

6c demonstrates the importance of the network as it is the only direct connection that the 

AI-AMD has with the BLUFOR. 
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 OV-6c: AI-AMD Event Trace for Single Engagement 
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c. OV-5a: Operational Activity Decomposition Tree 

The operational activities of the AI-enabled AMD system are allocated to higher 

level functions from the JP 3-60 find, fix, track, target, engage, assess (F2T2EA) process. 

The team selected 17 critical functions of the JP 3-60 process for the AI-AMD system that 

encompass the main tasks of the F2T2EA kill chain; these 17 functions can be found in 

Table 9. The team developed an activity decomposition tree or OV-5a that depicts the 

operational scenario from the OV-6c sequence diagram in a hierarchical function diagram 

format. The OV-5a is depicted in both Figure 19 (the internal capabilities decomposition) 

and Figure 20 (the external system decomposition). Subsequent sections will further define 

how these functions were selected using a mapping of the JP 3-60 to OV-5b/6c action 

diagram, which can be found in Chapter III Section A.1.e. 

Table 9. F2T2EA Functions 

OODA F2T2EA Functions 

Observe 

Find 
Collects Data 

Initial Detection 
Identifies Emerging Target 

Fix 

Request Further Information 
Classifies Target 
Locates Target 

Validates Detection 

Orient Track 
Update Target Track 

Validates Target 
Assess Blue Proximity 

Decide Target 
Nominate Engagement Options 

Prioritize Target 
Select Attack Option 

Act 
Engage 

Issue Orders 
Attack Target 

Assess 
Assess Status of Target 

Authorize Re-attack 
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 OV-5a: AI-AMD Operational Activity Decomposition—

Internal Capabilities 
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 OV-5a: AI-AMD Operational Activity Decomposition—

External Systems 

F2T2EA functions are labeled to identify their relationship to the OODA loop (see 

the six primary activities in Figure 19. The find and fix steps were allocated to the observe 

phase, the track step was allocated to the orient phase, the target step was allocated to the 

decide phase, and the engage and assess steps were allocated to the act phase. The OV-5a 

captures the external agents of the SoS (i.e., BLUFOR sensors, weapons, and network) as 

well as the REDFOR threat (see the four external agents depicted in Figure 20. In total, 

each of the 17 steps or functions identified for the AI, human, or AI-human team have been 
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decomposed using the F2T2EA to OODA loop mapping. Stakeholders should review the 

JP 3-60 related functions to determine their level of agreement with the intended mission 

set for AMD operations. This would also be an opportunity to identify potential mission 

overlap and/or competing resource constraints. 

d. OV-5b: Operational Activity Model 

The OV-5b activity model builds upon the relationship defined in the OV-5a to 

bring in the ICOM that are required to support each action. The top-level activities of the 

AI-AMD decision aid and external agents are shown in Figure 21. Also defined are the 

input and outputs of each action, the controls that trigger or limit functionality, and the 

mechanisms that enable the function. At this phase of the AI-AMD life cycle, only generic 

mechanisms were assigned to the actions; with continued maturity, specified systems, 

subsystems, or assemblies will be developed to perform the operational activities. It is 

important to note this view demonstrates how the AI-AMD system communicates with 

other SoS elements only via the network. Furthermore, it can be clearly seen how critical 

the network is for each of the SoS elements; it is the central hub for all operational 

activities. Greater detail can be seen at the next level of decomposition in Figure 22. 
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 OV-5b: AI-AMD Operational Model 

The operational activities of the AI-AMD decision aid were further defined on the 

OV-5b depicted in Figure 22. The same ICOM processes were maintained in the model 

through concordance. Here, the team focused on the AI-AMD system and its detailed 

connections to external systems. Again, the system was seen to be completely dependent 

on the network to send and receive data for informing decisions and issuing engagement 

commands. Concordance ensured the identified mechanisms performing these activities 

are the same at both high-level and low-level decomposition. 
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 OV-5b: Decomposed AI-AMD Operational Activity Model 

e. OV-5b/6c: Action Diagram 

The OV-5b/6c integrates the operational activity model and the event trace diagram 

into a combined action diagram displaying the input/output (I/O) of the activity model and 

the sequence of events to demonstrate the relationships for a particular scenario. The OV-

5b/6c served as the primary simulation tool for the team. Using the Innoslate MBSE tool, 

stochastic distributions for function durations were added to each step to turn the OV-5b/6c 

into a discrete event simulation. The simulation and analysis are captured in Chapter IV. 

Figure 23 shows the AI-AMD top-level activities alongside the external agents. 

Exchanges of energy, matter, and information are triggers (depicted as green boxes) or 

controls for enabling actions such as sensor data or requests for information. Outputs of 

AI-AMD decision aid activities pass as inputs (gray boxes) into each F2T2EA step. 

Subsequent figures focus on each slice of the action diagram; there are many loops within 

the F2T2EA where external information is gathered and the decision aid is updated. 
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 OV-5b/6c: AI-AMD Action Diagram 
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Starting on the left side of the OV-5b/6c in Figure 23, Figure 24 focuses on the 

initial engagement and the find step. The action diagram is initiated when the REDFOR 

launches an attack. The BLUFOR are unable to detect the threat until the threat crosses a 

detection boundary where the BLUFOR sensors are able to detect the threat that is triggered 

by a “signature” detection. Depicted on the graphic with a red circle, is the fly-in of the red 

threat. This was added to the OV-5b/6c to track the fly-in time of the REDFOR against the 

BLUFOR to assess success in defeating the threat. The simulation also contains a 

“resource” which was added to allow the Innoslate model to run the discrete event 

simulation. Once the REDFOR crosses the detection boundary, the model moves through 

four parallel systems: the AI-AMD system at the top, the external joint network system 

below that, the external BLUFOR system (defeat mechanism) below that, and the external 

sensor system (detection mechanism) below that. The find step starts when the BLUFOR 

sensors detect the threat and provide the sensor data to the network as annotated by the 

“raw data” trigger. The network then passes that data to the AI-AMD system which 

identifies a “potential target” output into the next step, fix. 

 
 OV-5b/6c: Red Attack and Find (Observe) 
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The next OV-5b/6c action diagram is for the fix step found in Figure 25. The fix 

step starts when the “potential target” trigger from the previous find step enters the AI-

AMD decision aid. The decision aid then requests more information through the network 

using an “info request” trigger to the sensors using a “passed info” trigger. The sensors 

then update their information and pass that to the network through an “updated info” 

trigger. Once the network successfully passes the information to the AI-AMD decision add 

through a “passed info” trigger, a “valid detection” output to the next step, track, is made. 

The fix step is a loop where the AI-AMD system is continuously updating the decision aid 

based on sensor data. 

 
 OV-5b/6c: Fix (Observe) 
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The next step in the F2T2EA kill chain is the track step found in Figure 26. The 

track step performs two key functions: to update sensor detection tracks and to determine 

BLUFOR defeat capabilities based on the target track. The track step is initiated when a 

“valid detection” trigger is sent to the AI-AMD decision aid. The decision aid then sends 

a “track request” through the network. The network then sends the “passed track” request 

to the sensors and also sends a “BLUFOR ping” to the BLUFOR assets to determine 

location and status of available assets. The sensors then send an “updated track” to the 

network, and the network sends the “passed track” to the AI-AMD system. There are 

several feedback loops between the track and target steps that feed information back into 

the AI-AMD decision aid for sensor detection tracks and BLUFOR location data. Location 

data from the target step using the trigger “passed location” is used by the track step to 

update the “target window.” The “target window” is then outputted from the track step into 

the next step, target. 

 
 OV-5b/6c: Track (Orient) 
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The next step is the target step found in Figure 27. The target step is initiated when 

the AI-AMD system takes in the “target window” from the track step. The AI-AMD 

decision aid accepts the BLUFOR location and status from the network using the trigger 

“passed status” which is sent from the BLUFOR assets using the trigger “location & 

status.” This information is then used by the AI-AMD system to generate COAs, select an 

engagement, and send a “final targeting” trigger to the next step, engage. 

 
 OV-5b/6c: Target (Decide) 

The next step in the kill chain is the engage step found in Figure 28. The engage 

step includes issuing of the orders and sending the fire command to the BLUFOR systems. 

The engage step initiates when the “final targeting” trigger from the target step is passed 

into the AI-AMD. The AI-AMD system then issues the orders and the fire command to the 

network using the triggers “orders” and “fire command,” respectively. The orders are then 

sent to the BLUFOR assets using the trigger “passed orders” and once the fire command is 
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received by the BLUFOR using the trigger “passed fire command,” the BLUFOR shoots 

the threat. An output of the AI-AMD decision aid called “engagement control” is then sent 

to the next step, assess. 

 
 OV-5b/6c: Engage (Act) 

The final step in the kill chain is the assess step found in Figure 29. The assess step 

starts when the “engagement control” trigger from the engage step is passed into the AI-

AMD system. The assess step makes a target assessment using data from the sensors and 

if the threat is not defeated, authorizes re-attack. Data from the BLUFOR sensors is sent to 

the network using the trigger “target assessment,” which is then sent to the AI-AMD using 

the trigger “passed assessment.” The AI-AMD system then authorizes a re-attack by using 

the trigger “re-attack command,” which is then sent to the BLUFOR defeat mechanisms to 

shoot the threat again. The simulation resolves with a sync of the parallel actions to 
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determine if the BLUFOR was able to defeat the REDFOR fly-in within the engagement 

timeline; in other words, if BLUFOR completes all operational activities before REDFOR 

completes fly-in and destroys blue, the SoS achieved mission success. 

 
 OV-5b/6c: Assess (Act) and Resolve Simulation 

f. JP 3-60 to OV-5b/6c Mapping 

Leveraging the high level OV-5b/6c for the AI-AMD system in the previous 

section, the team then decomposed each of the F2T2EA AI-enabled decision aid actions 

into lower level actions. In order to do so, a review of the JP 3-60 targeting doctrine flow 

charts was reviewed to assess the applicability to the AMD mission. Figure 30 shows the 

find step JP 3-60 to OV-5b/6c mapping. The team simplified the find step into three 

serialized actions; collect data, accept initial detection, and identify emerging threat. The 
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“sensor data” trigger is used as an input to the collect data step and the find step concludes 

by outputting a “potential target” trigger to the next step, fix. 

 
 OV-5b/6c: Mapping the Find Step. JP 3-60 (left). Innoslate Model (right). 

Adapted from Joint Chiefs of Staff (2018, Figure II-11). 

Mapping the fix step from JP 3-60 to the model can be found in Figure 31. The fix 

step was simplified to four actions; request further information, classify target, locate 

target, and validate detection. The classify target and locate target actions are done in 

parallel. Several triggers exist in the model including accepting the AI-AMD “potential 

target” from the find step and the “passed info” from the sensors which is used to both 

classify and locate the target. The step concludes with an output of “valid detection” which 

is used by the AI-AMD system in the next step, track. 



58 

 
 OV-5b/6c: Mapping the Fix Step. JP 3-60 (left). Innoslate Model (right). 

Adapted from Joint Chiefs of Staff (2018, Figure II-13). 

The track step JP 3-60 to OV-5b/6c actions can be found in Figure 32. This step 

was simplified to include three actions; request updated target track, validate target, and 

assess blue proximity. The validate target and assess blue proximity are conducted in 

parallel. The simulation starts with the “valid detection” output from the fix step. Once the 

valid detection is received, the AI-AMD sends a “track request” trigger to the sensors. The 

“passed track” is then used in the validate target action and the “passed location” is used 

to assess blue proximity. The AI-AMD uses the BLUFOR proximity and the valid target 

to determine the time and location required to respond as annotated by the “target window” 

output. 
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 OV-5b/6c: Mapping the Track Step. JP 3-60 (left). Innoslate Model (right). 

Adapted from Joint Chiefs of Staff (2018, Figure II-14). 

Mapping the target step to the OV-5b/6c can be found in Figure 33. The target step 

is simplified to contain three actions: nominate engagement options, prioritize targets, and 

select attack option(s). These three actions are executed in series. The simulation starts 

with the “target window” from the track step. Nomination of engagement options is 

triggered by “passed status” from the BLUFOR defeat mechanisms. The step concludes 

with a “final targeting” output passed to the next step, engage. 
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 OV-5b/6c: Mapping the Target Step. JP 3-60 (left). Innoslate Model (right). 

Adapted from Joint Chiefs of Staff (2018, Figure II-15). 

The engage step JP 3-60 to OV-5b/6c can be found in Figure 34. The engage step 

has two actions that are conducted in series; issue orders and send fire command. The step 

initiates using the “final targeting” trigger from the previous step, target. The issues are 

passed to the BLUFOR systems using the “orders trigger.” The AI-AMD then send the 

“fire command” to the BLUFOR systems which execute the engagement. The simulation 

concludes with an “engagement control” trigger that will be passed into the final step in 

the kill chain, assess. 
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 OV-5b/6c: Mapping the Engage Step. JP 3-60 (left). Innoslate Model (right). 

Adapted from Joint Chiefs of Staff (2018, Figure II-16). 

JP 3-60 does not contain a flow chart process for the assessment phase. The actions 

for the assessment step were derived from reviewing the publication and assessing which 

key actions were best represented within the step. JP 3-60 states: 

During the assess step, initial assessment of the physical or functional status 
of the target takes place. For attacks in the physical environment, the 
assessment confirms impact of the weapon on the target and makes an initial 
estimate of the damage. For nonlethal weapons, the initial assessment 
attempts to detect changes in functionality indicating a successful 
engagement. (Joint Chiefs of Staff 2013, II-30) 

From this information, the assess step was simplified to include two actions that 

occur in series; assess target status and authorize re-attack. The step starts with the AI-

AMD system receiving the “engagement control” trigger from the engage step. The 

“passed assessment” trigger is then received from the BLUFOR sensors via the network. 

If the REDFOR is not defeated, a re-attack is authorized, and the AI-AMD decision aid 

sends the “re-attack command” to the BLUFOR to initiate a follow-on engagement. The 

assess step concludes AI-AMD activities within the OV-5b/6c action diagram. 
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 Mapping the Assess Step 

2. System Architecture Viewpoint 

The system architecture view defines the system’s design. The system’s view 

identifies the interfaces, interconnections, and relationships in a SoS construct. The team 

identified two key SVs to model which are the SV-1 system interface description and the 

SV-3 systems-systems matrix. A description of these views can be found in Table 10. The 

team used the SV-1 and the SV-3 to describe the relationships between the AI-AMD 

internal components and its external systems. 

Table 10. DODAF SVs Source: DODAF v2.02, DOD (2020). 

Model Description 
SV-1 Systems Interface Description The identification of systems, system items, and their 

interconnections 
SV-3 Systems-Systems Matrix The relationships among systems in a given Architectural 

Description. It can be designed to show relationships of 
interest 

 

a. SV-1: Systems Interface Description 

The SV-1 brings together the mechanisms listed in the OV-5b and provides 

interfaces to create the basic system and sub-system architecture. The systems and sub-

systems are presented along with the interfaces between the sub-systems in order to 

establish conduits between the systems. The SV-1 becomes the base architecture to begin 

more detailed design of the system in the next phase of the life cycle as hardware and 
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software configuration items and sub-assemblies become more defined. A high level of 

dependence on the network is observed in the SoS view illustrated in Figure 36. The 

internal connections are anticipated to be serial as depicted in Figure 37. AI-AMD 

stakeholders should work with external system stakeholders (particularly the network) to 

ensure effective SoS communications. Future life cycle development should determine the 

impact of failures with this sub-system series arrangement. With this current arrangement, 

reliability will determine AI-AMD operations since a failure early in the system prevents 

downstream activities. 

 
 AI-AMD SoS Interface Diagram 

 
 AI-AMD System Internal Interface Diagram 
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b. SV-3: Systems-Systems Matrix 

After the SV-1 was generated to show the connections between the subsystems, the 

SV-3 was created to define the exchanges between assets. Figure 38 presents the 

relationship between the AI-AMD system and external elements of the SoS. This N2 

diagram depicts connections and directionality of systems’ interfaces. Concordance 

ensures the mechanisms identified earlier in the OV-5b and SV-1 are the same as shown 

here in the matrix view. Once again, the AI-AMD system interfaces with four external 

agents. The strong dependency on the network can be seen again, as the network provides 

the critical conduit of information to and from the AI-AMD decision aid. As the AI-AMD 

system life cycle develops, stakeholders should revisit the SoS interfaces. Additional 

decomposition at the sub-system level may be helpful as technologies mature. 

 
 AI-AMD Systems-Systems Matrix 
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B. AI-AMD KILL CHAIN ANALYTICAL FRAMEWORK 

This section presents the team’s findings regarding the AI-AMD mission timeline 

and the resultant representative scenarios. The team explored response times available 

given several notional REDFOR AMD threats and BLUFOR assets. These scenario 

timelines were decomposed and allocated to determine needed AI-AMD capabilities at the 

operational activity level (i.e., the amount of time it would take for the BLUFOR to 

implement the kill chain functions to defend against AMD threats). The team reviewed 

open source data to gather this information but acknowledges that there are potentially 

many other threats and BLUFOR assets available. 

This section also contains a description of the AI-AMD kill chain analytical 

framework that was developed by the team. The team studied AMD kill chain functions 

and identified 17 functions that require decisions. The team studied the application of AI 

and higher levels of automation for each of the 17 kill chain functions with a focus on the 

potential for improving the AMD timeline. The team developed a method for analyzing the 

risk associated with automating kill chain functions. 

1. Red Force Threats 

AMD is composed of various threats derived from many of the U.S. adversaries 

looking to undermine U.S. interests abroad. The team reviewed open source threat data 

available to derive the threat timeline. Though the scope of the adversarial threat list can 

come from numerous different opponents and modalities, the project focused on three main 

countries that possess the greatest risk as a near peer threat to the U.S. national security 

interests which are China, Russia, and Iran. As near peers have continuously closed the gap 

between U.S. military superiority, the ability for the AI to neutralize threats in a timely 

manner has become extremely imperative. Therefore, the project focuses on the air missile 

threats that can result in an engagement timeline ranging from a few minutes to a few hours. 

It is assumed that airborne threats such as fixed wing aircrafts, and rotary aircrafts will be 

neutralized by BLUFOR using fixed wing aircrafts with long range capabilities. Therefore, 

enemy air missile and unmanned aerial vehicle (UAV) threats were the main focus of study 
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in this project. One will quickly see that the air missile threat is far more demanding than 

the UAV threat due to the velocity of the missile and associated time to respond. 

In Table 11, the open source missile threats from China, Russia, and Iran are 

selected as the focus of research for the project. These threats provide the data required to 

successfully run the model to determine the capabilities of the AI. By dividing the 

operational range in kilometers by the velocity in kilometers per minute, the associated 

timeline of the red threat from launch to impact can be calculated. The range in time for a 

threat such as the WZ-8 drone is 72.89 minutes whereas the threat for a short-range 3M-54 

Kalibr missile is only 3.11 minutes. It is also important to note the variations in speed of 

the potential threats. Hypersonic missiles such as the DF-17 capable of traveling 2,500 km 

in 12.15 minutes poses a significant threat and the need for the decision aid to mitigate the 

threat in a short period of time. 

Table 11. Red Force Threats 

Red Force Operational 
Range (km) 

Velocity 
(kpm) 

Time 
(minutes) 

DF-21D Hypersonic (China)a 12,000 205.80 58.31 
DF-17 Hypersonic (China)b 2,500 205.80 12.15 

WZ-8 Drone (China)c 6,000 82.32 72.89 
P-270 Moskit (Russia)d 250 61.75 4.05 
BrahMos-11 (Russia)e 600 144.07 4.16 
3M-54 Kalibr (Russia)f 50 16.08 3.11 

Khaliij Fars (Iran)g 300 61.73 4.86 
Shahed-129 Drone (Iran)h 170 2.92 58.29 

aSource: Webb (2017); bSource: Missile Defense Project (2020); cSource: Chan (2020); dSource: 
Missile Defense Advocacy Alliance [MDAA] (2018a); eSource: MDAA (2018b); fSource: 
MDAA (2017); gSource: Roblin (2019); hSource: Military Factory (2019). 

 

2. Blue Force Detection Sensors 

Using a similar approach to the REDFOR threat, an open source review of available 

BLUFOR detection sensors was conducted. During AMD operations, the timeline to 

respond to the threat starts with the initial detection. As depicted by the OV-1 diagram  
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in Figure 6, the AI capability must support MDO leveraging sensors and systems on  

land, sea, air, and space through a joint network. As such, it is important to delineate  

the BLUFOR detection capabilities specific to each branch. Each of the BLUFOR  

detection assets as depicted in Table 12 is based on the current military hardware from an 

open source review that is fielded by the U.S. Navy/Marine Corps, U.S. Army, and Missile 

Defense Agency. 

Table 12. Blue Force Detection Capabilities 

Blue Force Detection Assets Detection 
Range (Km) 

Navy Aegis Weapon System (AWS) / AN/SPY-1 Radara 310 

Army 

Sentinel Radarb 75 
AN/TPQ-53 (replacement for AN/TPQ-36)c 20 

AN/TPQ-50 Light-weight Counter Mortar Radar (LCMR)d 10 
Patriot Systeme 100 

Terminal High Altitude Area Defense (THAAD)f 1000 
Missile 
Defense 
Agency 

Upgraded Early Warning Radars (UEWR)g 4828 
Cobra Dane Radarh 3218 

Sea-based X-band Radari 4023 
 aSource: MDAA (2018d); bSource: USA (n.d.c); cSource: USA (n.d.b); dSource: USA (n.d.a);  

eSource: Army Technology (n.d.a); fSource: MDAA (2019); gSource: MDA (2016a); 
hSource: MDA (2016b); iSource: MDA (2016c). 

 

3. Blue Force Kinetic Capabilities 

The DOD has various kinetic and directed energy weapons that are configured to 

support the AMD mission. The blue force missile capabilities provide the AI with courses 

of action to neutralize oncoming enemy air threats. Using a similar approach to red threat 

data and blue force detection sensors, an open source material review of Navy, Marine, and 

Army defeat assets was conducted. Using the velocity of the blue force kinetic asset and 

the range, a timeline to defeat the red threat can be calculated. Table 13 depicts the standard 

missile capabilities of each branch that was selected for this project. 
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Table 13. Blue Force Defeat Assets 

Blue Force Defeat Assets Maximum Effective 
Range (km) 

Velocity 
(kpm) 

Navy 

Standard Missile (SM) 2a 167 72.02 
SM 3b 2,500 270.00 

Phalanx Close-in Weapons System 
(CIWS) / M-61A1 Gatling Gunc 5.48 66.77 

Marines Tomahawk Missiled 1,600 14.67 

Army 
Stinger Systemse 8 41.17 

MM-104F Patriot system (PAC 3)f 20 83.33 
THAADg 200 168.00 

aSource: Berger (2016); bSource: Johnson-Freese and Savelsberg (2013); cSource: MDAA (2018c); 
dSource: USN (2018); eSource: Army Technology (n.d.b); fSource: Defense World (2018). 

 

4. AMD Timeline 

Leveraging the data in the previous sections for REDFOR threats, BLUFOR 

detection sensors, and BLUFOR kinetic capabilities, the data was organized to determine  

the various timelines and scenarios. The data was then binned into clusters and performance 

outliers could be identified. Figure 39 is a summary of the calculated timelines. 

  
 Threat Timelines 



69 

The top rows of Figure 39 depict the various red threats, operational ranges, 

velocities, and timelines based on the maximum range of the threat which was previously 

shown in Table 11. From there, each BLUFOR detection capability as previously 

referenced in Table 12 was used to determine the associated time to respond against each 

of the red threats. The logic behind the timeline was calculated by comparing the maximum 

BLUFOR detection range to the maximum red threat operational range. Since the AI-AMD 

system cannot process the data until a detection is made, the timeline started at the 

maximum detection range of the BLUFOR detection asset. However, if the red threat 

maximum operational range was less than the BLUFOR detection range, then the timeline 

was initiated at the red threat maximum operational range. Using the statistics package in 

Microsoft Excel, the associated timings were separated into quartiles as depicted in the 

legend.  

Further analysis of the data revealed several scenarios where the timeline was too 

low to respond to the threat. The Army’s AN/TPQ-53 and AN/TPQ-50 sensors with a 20 

km and 10 km detection range, respectively, resulted in timelines well below one minute 

to respond to the threat. As a result, both of these BLUFOR assets were eliminated from 

consideration as a viable option. To characterize the needed capability trade space, three 

scenarios were selected from the data. A “low-stress” scenario using an MDA UEWR 

detection against a WZ-8 Drone resulting in a 58.7-minute timeline, a “moderate-stress” 

scenario using an MDA UEWR detection against a DF-21D resulting in a 9.72-minute 

timeline, and a “high-stress” scenario using a Navy AWS detection against a DF-17 

hypersonic missile threat resulting in a 1.5-minute scenario. Figure 40 depicts the filtering 

of the data and the scenarios selected are indicated with dotted circles. 
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 Filtering the Threat Timelines 

The team used these timelines to benchmark the AI-AMD performance to represent 

a human making all decisions with no assistance from the computer versus a fully 

automated computer decision. With established “low-stress” and “high-stress” scenario 

timelines, levels of automation for each of the 17 steps in the F2T2EA targeting process 

were determined by inspection. The low-stress scenario was used to represent the human 

making all decisions, level of automation 1. The high-stress scenario depicted in the 

previous section was used to represent the fully autonomous computer decisions, level of 

automation 10. The benchmarked timelines were then decomposed to each AI-AMD 

operational activity (i.e., equally distributed across the 17 steps). A graphic can be seen in 

Figure 41; this spreadsheet model illustrates one approach of aggregating the expected 

value of operational activity times into a simple total AI-AMD capability. However, the 

AI-AMD capability timelines are unforgiving; if one activity runs long, the other activities 

must either react faster or fail to defend the scenario. 
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 Benchmarking AI-AMD Performance 

5. Decision Risk 

For other timelines, such as the “moderate-stress” scenario, decision risk informs 

an appropriate level or automation for each of the steps using the DOD Risk Issues and 

Opportunities Guide (DOD 2017) as well as the National Aeronautics and Space 

Administration (NASA) Guidelines for Risk Management (NASA 2017). The risk matrix 

used for the analysis can be found in Figure 42. Using the risk matrix, risk likelihood and 

consequence determinations were correlated to a risk value which the team used to 

quantitatively provide an assessment of risk. 
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 Risk Matrix Source: NASA (2017, Figure 4–5)  

The risk assessment for each of the 17 steps in the F2T2EA process were binned 

into four categories; low, moderate-low, moderate, and high. An associated risk value  

was used to make the risk assessment determination. Leveraging Parasuraman’s levels  

of automation depicted in Table 3, the risk assessment was correlated to an appropriate 

level of automation for each individual step. The risk assessment criteria can be found in 

Table 14. 

Table 14. Risk Assessment Criteria 

 

Color
Risk 

Assessment
Risk Value

Level of 
Automation

Green Low < 6 10

Green Moderate-Low < 12 7

Yellow Moderate < 20 5

Red High < 26 3
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Each step in the F2T2EA kill-chain used by the team was then assigned a 

likelihood/consequence risk rating, associated risk value, and level of automation. A 

summary of the risk ratings using the DOD risk cube can be found in Figure 43; the 

complete description and rationale can be found in Table 15. 

 
 F2T2EA Risk Summary 

5

4 Select Attack Options

3 Validates Target Attack Target Authorize Reattack Assess Blue Proximity

2 Initial Detection Assess Status of Target Validates Detection Prioritize Target

1 Collects Data
Request Further Information

Identifies Emerging 
Target

Update Target Track
Nominate Engagement Options

Issue Orders

Classify Target
Locate Target

1 2 3 4 5
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AI Risk Ratings

Consequence
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Table 15. Risk Assessment and Rationale 

 
 

The team then used an automation action selection utility curve to perform 

quantitative analysis on the AI time savings associated with the level of automation. The 

OODA F2T2EA Action
Risk 

Rating
Risk 

Assessment
Risk 

Value
Level of 

Automation Risk Rationale

Collects Data 1-1 Low 1 10

Sensors collecting data can be fully autonomouse at litte to no risk to the user. Sensor data 
collection is assumped to be various sensor modalities searching the field of view for 
potential threats. As a result, full automation level 10 is recommend and a 1-1 rating has 
been assigned since the likihood and consequence of  autonomouse data collection having 
an adver affect on operation is very low.

Initial Detection 2-1 Low 2 10

Initial detection is assumed to refer to the point at which autonomous data collection 
detects an emerging tarted. This step is assumed to be low risk to the user. As a result, full 
automation level 10 is recommended and a  2-1 rating has been assigned since the liklihood 
of a false detection may be higher, but the consequence is considered to be low due to the 
various follow-on steps in the kill chain.

Identifies Emerging Target 1-2 Low 3 10

Identifying emerging targets is assumed to mean sensor detections that are starting to form 
a pattern or demonstrate ill-intent. As a result, full automation level 10 is recommended 
and a rating of 1-3 is assigned because the liklihood of a blue force sensor with a high 
probability of detection, falsely identifying a threat is low, but the consequence is a 
medium. There are many other steps in the kill chain through the fix and track phase that 
further burn down the risk of fully automating this step.

Request Futher Information 1-1 Low 1 10

The request for further information phase is assumed to be the command and control 
station requesting more information from the sensors on the emerging threat. As a result, 
full automation is recommended and a rating of  1-1 has been assigned since the liklihood 
and consequence associate with this informaiton is low. 

Classifies Target 1-4 Moderate-Low 8 7

The classify targeting step is assumed to be the passing of the emerging threat through a 
threat classification library. This classification of the threat is rated as a 1-4 because the risk 
of falsely classifying the threat could have a significant consequence. As a result, level of 
automation 7 is suggested, which represents the AI automatically classifying the threat and 
then informing the operator of the classification.

Locates Target 1-4 Moderate-Low 8 7

Similar to classification of the target, incorrectly locating the target could have catestrophic 
results when it comes to position, navigation, and timing. As a result, level of automation 7 
is suggested, which represents the AI automatically locating and then informing the 
operator of the location and a rating of 1-4 has been assigned.

Validates Detection 2-3 Moderate-Low 11 7

Validating detection step is the checks and balances between finding the emerging target 
and determining that the target is a threat. It uses the initial detection, further information, 
classification, and location to validate the threat. As a result, level 7 automation is 
suggested which represents the AI automatically validating the threat and informing the 
operator of the validation.

Update Target Track 1-3 Low 5 10

Updating the target track is assumed to have passed the prior gates established and the 
sensors are simply providing updated information on the threat as new detections and 
locations are established. As a result, a full automation level 10 is recommend and a risk 
rating of 1-2 has been assigned.

Validates Target 1-4 Moderate-Low 8 7

The validate target step is assumed to represent the target tracks and validated detections 
corresponding to a threat against blue forces. Since this step results in a high degree of 
follow-on tasks where false alarms should be extremely minimal, an automation of level 7 
and a risk rating of 1-4 has been established. This corresponds to the AI automatically 
validating and the operating being informed of the validated target.

Assess Blue Proximity 3-5 High 21 3

Assessing blue proximity for a potential engagement against the threat is a high risk 
operation. Miscalcuation or misinformation will have catastrophic results to blue forces. As 
a result, this step is considered to be high risk, a level of automation of 3 establishd, and a 
risk rating of 3-5. This corresponds to the AI providing COAs, but the operator making the 
decision.

Nominate Engagement Options 1-3 Low 5 10

The nomination of engagement options is assumed to be low risk because the step is purely 
nominating engagement options not executing the options. It is assumed that the operator 
would want this step to be as quick as possible to reduce the timeline. As a result, this step 
is considered to be low risk with recommended full level of automation of level 10 and a 
risk rating of 1-3.

Prioritize Target 2-4 Moderate 14 5

The prioritization of the target is a critical step in the kill chain where the operator should 
select the prioritization that the AI presents. As a result, automation level 5 is recommend 
at a risk rating of 2-3

Select Attack Option 4-4 High 22 3

Selecting the attack options is a critical step in the kill chain where the operator should 
make the decision based on the COAs that the AI provides. As a result, a level of 
automation of 3 is recommended and a risk rating of 4-4 has been established.

Issue Orders 1-3 Low 5 10

The issuing of the orders is assumed to be a medium-low risk because the operator has 
already selected the attack options and all of the previous steps in the kill chain. As a result, 
a level of automation of 7 is recommended corresponding to the AI issuing the orders and 
informing the operator and a risk rating of 1-3.

Attack Target 3-3 Moderate 15 5

Attacking the target is considered to be a medium risk where the operator should be 
informed of the COA and select the attack. As a result, a level of automation of 5 is 
recommended and a risk rating of 3-3 has been established.

Assess Status of Target 2-2 Moderate-Low 7 7

Assessing the status of the target by the AI is considered to be a medium-low risk because 
the assessment from the AI does not result in action. It is assumed that the AI would inform 
the operator of the status and the operator would determine a COA. As a result, a level of 
automation of 7 is recommended and a risk rating of 2-2 has been established.

Authorize Reattack 3-4 Moderate 19 5

Reauthorizing the attack will require the operator to select the attack option. As a result, 
the level of automation is recommended to be 5 where the operator selects the AI COA and 
a risk rating of 3-4.

Act

Engage

Assess

Observe

Find

Fix

Orient Track

Decide Target
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descriptive levels described by Parasuraman were translated into a numeric utility curve as 

depicted in as depicted in Figure 44. Again referencing the levels of automation, the team 

observed low automation / AI utilization for levels 1, 2, and 3. Similarly, the team observed 

high levels of automation / AI utilization for levels 8, 9, and 10. A linear change in 

automation / AI utilization was assumed from levels 3 to 8. Additionally, it is observed the 

utility curve describes the trend in AI-enabled time savings associated with each level of 

automation. The higher the level of automation, the higher the time savings. It is 

recommended that the utility curve be reviewed with the stakeholders to fully capture the 

utility of automation. 

 
 Utility Curve 

The risk assessment was used to set the initial conditions for the levels of 

automation as depicted in Table 15. The allocated operational activity times from the 

benchmarked scenarios were used to transform the utility curve into timing estimates. For 

example, level of automation 1 was set to 3.43 minutes, level of automation 10 was set to 

0.09 minutes, and expected values for intermediate levels followed shape of the utility 
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curve (e.g., level of automation 7 was found to be 0.86 minutes). Using the risk informed 

levels of automation and the utility curve, the team was able to estimate resulting timelines 

for AI-AMD capabilities. Unfortunately, as seen in Figure 45, the levels of automation 

selected on the basis of risk were not successful in responding within the moderate-stress 

scenario timeline and increased automation is required. This is of importance because it 

means that a higher risk tolerance is likely needed to adequately respond to the threat. 

Chapter IV describes how the team analyzed this using modeling and simulation for the 

low-stress, high-stress, and moderate-stress scenarios at the determined higher levels of 

automation.  

 
 Determining AI-AMD Operational Capabilities 
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IV. ANALYSIS AND AI APPLICATIONS 

This chapter presents the capabilities of the AI-AMD system as characterized by 

analysis of M&S results. The Innoslate MBSE tool facilitated the execution of the team’s 

analyses of scenarios previously described. The team performed a design of experiments 

(DOE) to gain insight into the breadth of possible AI-AMD capabilities and to identify 

which grouping of operation activities had the strongest influence on the AI-AMD timing 

outcome. The team also conducted a sensitivity analysis to explore the impact of alternative 

underlying representative distributions (baseline, symmetric variable spread, and highly 

skewed). The findings of the M&S analysis were documented and interpreted by the team.  

This chapter also contains the team’s identified AI techniques with application to 

the AI-AMD system. The team documented the relationships of the AI-AMD system, the 

operational activities, risks, and uncertainties associated with these techniques. The team 

discussed implications of these techniques to increasing levels of automation. An 

acknowledgement of differences between current and future AI methods was provided. 

The team’s M&S analyses and AI applications presented in this chapter support the team’s 

conclusions and suggestions for future work presented in Chapter V.  

A. MODELING AND SIMULATION 

Modeling and simulation is an effective method for visualizing and analyzing 

conceptual designs. The team modeled the AI-AMD system architecture described in 

Chapter III and used the kill chain analytical framework’s derived timing to simulate the 

kill chain with AI-AMD low, moderate, and high levels of automation. The team analyzed 

data produced in the simulations to draw conclusions on AI-AMD conceptual design 

capabilities.  

1. Purpose 

Creating a simulation served two purposes. The first purpose was to demonstrate a 

gain in efficiency and time reduction, with the introduction of AI-AMD increased 

automation into the kill chain. This was accomplished by comparing human versus AI-
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enabled performance in the low-stress and moderate- to high-stress scenarios. The second 

purpose was to create a tool that future stakeholders can adjust to reflect their specific 

scenario data to further define requirements of AI-AMD development. 

a. Scenarios 

The OV-5b/6c action diagram showed the potential for automated processes and 

decisions to accelerate the kill chain. The M&S analysis was based on a single threat 

engagement. Three scenarios were created from quartiles of Figure 40. A low-stress 

scenario was selected to be the human only scenario, where current capabilities were 

assumed to successfully complete the kill chain. The second scenario was a moderate-stress 

scenario. Here, a faster threat launched from a closer position dictated a shorter time for 

the SoS to respond. Lastly, a high-stress scenario was simulated using the fastest open 

source threat. During this scenario, the time to respond was significantly shorter than the 

response time for the low- or moderate-stress scenarios. 

b. Tools 

The team used several modeling and simulation tools to analyze AI-AMD 

capabilities. The team used Innoslate (from Spec Innovation) to create the DODAF views 

and to maintain concordance between the views using the Life Cycle Modeling Language 

(LML). In addition to supporting the team’s creation of the views created in Chapter III, 

the team used Innoslate’s discrete modeling capabilities. The team used Innoslate to assign 

time durations to the OV-5b/6c Action Diagram and used this model to run simple 

sequences. Innoslate’s MBSE environment facilitated time savings that was leveraged 

elsewhere in the project (e.g., preparing for IPRs, constructing the DOE, and conducting 

sensitivity analysis). The team used the statistical analysis tool Minitab to support the 

teams’ DOE. The team used Excel to build a meta-model for refining the OV-5b/6c initial 

timing, for executing the sensitivity analysis, and for creating many report graphics. 

c. Assumptions and Constraints 

In order to keep the project unclassified, many assumptions were made to constrain 

the simulations. Although uncertainty exists in the probability of detection and the 
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probability of kill for AMD missions, the team assigned 100% for both probabilities and 

held these values constant for all threat scenarios in order to compare different AI-AMD 

levels of automation. Although real AMD threats vary in their abilities to maneuver (i.e., 

drones and hypersonic missiles have vastly different kinematics), the model assumed that 

threats followed a linear inbound path with constant speed. Network latency was assumed 

to be 250 milliseconds for each message crossing the network (send and receive). Similarly, 

BLUFOR engagement reaction time was assumed to be 1 second (i.e., the weapon system 

fires against the threat within 1 second after receiving orders). In aggregate, the model 

assumed that BLUFOR external systems contributed approximately 0.10 minutes of total 

delay. Lastly, with no data indicating otherwise, the model applied a single utility curve to 

all steps in the kill chain. 

d. Capabilities 

The team used Excel to create a meta-model to evaluate timing and sequencing 

before investing heavily in the action diagram. The meta-model also provided a means of 

comparison for the initial results for error checking and to determine acceptability. The 

team used Innoslate to model the architecture and run single discrete event simulations, as 

well as Monte Carlo simulations to test the sequencing and performance of the model. The 

team acknowledged Innoslate’s inability to run multiple engagements and simulate failed 

engagements. The team recommends future analysis to study multiple concurrent 

engagements to explore how AMD missions may benefit from an AI-AMD approach. 

2. Model Description 

The model was based on the description presented in Chapter III Section A.1.e: 

information was collected from the various sensors, passed back and forth from AI-AMD 

across the network, and orders were sent to the air defense (AD) assets to engage. The 

model ran the inbound threat timing in parallel with these BLUFOR activities to see if a 

defeat occurred first. This model and sequence remained the same for the three scenarios. 

The timing of the various AI-AMD steps (actions) were adjusted in each scenario. The 

model’s decision timing was derived from Figure 23, as described in Chapter III. Network 

latency and sensor timing were assumed to be 250 milliseconds, and AD weapon 
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engagements were assumed to occur within 1 second. Timing was applied to each 

operational activity the BLUFOR systems in the model including both internal (17 decision 

steps) and external (19 BLUFOR actions and 4 threat actions). To allow for variation about 

the most likely value, the model used triangular distributions with ±10% for maximum and 

minimum values. Initially, the team tested each scenario as a discrete event simulation to 

check model functionality, sequencing, and confirm event timing. Next, the team 

performed a Monte Carlo simulation of 1,000 runs. The team used Innoslate’s timing tree 

map and bar chart to display the results and extracted additional data to determine the 

quantity of replications where the AI-AMD SoS was successful against the threat. 

a. Low-Stress Scenario 

The low-stress scenario represented the AMD decision timing for human-only 

decision-making “without” AI (level of automation 1). The team selected the Chinese WZ-

8 drone as the threat and the UEWR as the BLUFOR detection sensor to derive a most 

likely inbound threat timing of 58.65 minutes. The model allocated this time allotment 

equally among each of the AI-AMD 17 decision steps, allowing 3.45 minutes per decision. 

b. Moderate-Stress Scenario 

The moderate-stress scenario represented an AI assisted AI-AMD system in which 

the levels of automation were informed by the risk assessment and meta-model results 

described in Chapter III Section B.5. The model kept the human decision-maker in the 

AMD decision loop, but AI-AMD automated many of the lower risk decisions such as 

detection and status updates. High risk actions such as selecting the COA for engagement 

required human input. For this scenario, the team selected the Chinese DF-21D hypersonic 

missile as the threat and the UEWR as the BLUFOR detection sensor to derive a most 

likely inbound threat timing of 9.72 minutes. The model allocated this time allotment to 

each of the AI-AMD 17 decision steps as determined from the utility curve (potential time 

savings as a function of planned level of automation) described in Chapter III Section B. 

Therefore, the timing of the individual steps varied according to the team’s kill chain 

analytical framework.  
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c. High-Stress Scenario 

The high-stress scenario represented a fully automated AI-AMD “with” AI; 

therefore, the model implemented level 10 automation for each of the 17 kill chain steps. 

In other words, this scenario removed the human as a decision-maker in the AMD kill 

chain. The team selected the Chinese DF-17 hypersonic missile as the high-speed threat 

and a medium range sensor for the BLUFOR detection. This produced a most likely 

inbound threat timing of 1.51 minutes. The model allocated this time allotment equally 

among each of the AI-AMD 17 kill chain decision steps, allowing 0.09 minutes per task.  

B. DESIGN OF EXPERIMENTS 

The team initially described the system operational activities at the highest level as 

an “OODA loop” (observe, orient, decide, and act). By leveraging the Joint targeting 

doctrine of JP 3-60, these high-level activities were decomposed into the middle tier of 

F2T2EA (find, fix, track, target, engage, and assess). Recall also, the further decomposition 

to the lowest level herein, a simplification of JP 3-60, as described in Chapter III. This 

project relied on time (as in time taken to sense, decide on the course of action, and respond 

to the red threat) to be the primary measure for characterizing the capabilities of the AMD 

mission. Operational activity timing, being the adjustable parameter considered in the 

model, varied throughout the 17 kill chain tasks; however, total AMD response time (in 

aggregate) was the determinate of mission success. The team conducted a DOE at the 

“OODA” level to assess the effects of AI-AMD timing input parameters on the overall 

mission.  

1. DOE Analysis 

The team selected Minitab statistical data analysis tool to perform the DOE and 

used Minitab’s built-in features for the full factorial approach including setup and analysis. 

Due to the complexity of a full-factorial analysis with 17 factors (217 would be 

overwhelmingly cumbersome), the team decided to evaluate at the OODA level, with four 

factors (analysis of 24 elements is more presentable for decision makers). To characterize 

the effects of high-level operational activities, the team aggregated the decomposed high-
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stress scenario allocations of Figure 41 for resultant timing. The team conducted a two-

level analysis with ±10% of the operational activity expected value set for high and low 

input parameters. Resultant estimates for the AI-AMD system timing DOE response are 

shown in Table 16. 

Table 16. DOE Response Table 

 
 

The unforgiving nature of the timeline dictated by the threat was observed from 

these DOE response measures. If one OODA element was over budget, it was difficult for 

AI-AMD to defeat the high stress, 1.51-minute timeline. The DOE was also interpreted 

with a Pareto effects chart and timing contour plot described in the follow subsections. 

2. Pareto Effects Chart and Contour Plots 

The team conducted a Pareto analysis with the DOE timing estimates. This gave 

the team insight into the operational activities generating the greatest effects on the output 

of the model. The OODA Pareto Chart is shown in Figure 46. The Pareto Chart showed 

that the “observe” step provoked the strongest effects on timing within the kill chain; 

therefore, it became a primary candidate for high levels of automation. This correlated well 

with the team’s risk analysis in Chapter IV Section B, in which high levels of automation 
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were assigned to low decision risk kill chain functions for expediting the targeting process. 

Based on the series design of the AI-AMD architecture, combinations of factors (at second 

order or higher) did not produce effects. 

 
 AI-AMD OODA Pareto Chart 

The main effects plot for timing, in Figure 47, provided another view. The slope of 

the line of each Minitab plot indicated the strength of the relationship between resultant 

timing and the plotted factor. This figure compared the range of variations in AI-AMD 

timing to the ±10% expected value for each operational activity; “observe” was again seen 

to produce the strongest effect. 

Term

ABC
ACD
BCD

AC
BC

ABCD
AD
BD
CD

ABD
AB

C
B
D
A

0.140.120.100.080.060.040.020.00

A Observe
B Orient
C Decide
D Act

Factor Name

Effect

Pareto Chart of the Effects
(response is Timing, α = 0.05)
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 AI-AMD OODA Main Effects Plot for Timing 

Minitab contour plots helped visualize the contributions of each operational activity 

to the overall timing. The impact of variability in each step contributed to the understanding 

of AI-AMD system performance. AI-AMD contour plots are shown in Figure 48. Recall, 

for the high-stress scenario, the threat dictated a timeline of 1.51 minutes. Performing the 

DOE generated a range of potential successful solutions (as illustrated by the two lightest 

shaded contours). Additionally, it was again noted that AI-AMD capability timelines were 

unforgiving; the contours indicated regions where if one activity ran long, the other 

activities were unable to compensate, and the BLUFOR failed to defend the scenario. 

 
 AI-AMD OODA Contour Plots 
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C. SENSITIVITY ANALYSIS 

As stated previously, one objective of this project was to utilize M&S to compare 

the kill chain at low levels of automation (“without” AI) with high levels of automation 

(“with” AI). The general lack of openly available performance data limited the ability of 

the team to determine specific decision time estimates; however, the team was able to use 

top-down timeline decomposition to generate the needed benchmarking and assumptions. 

The operational activity timing distributions were estimated based on the assumption of a 

known functional form (triangular of most likely, ±10%). As described in Pledger’s PhD 

dissertation, when the shape of the underlying distributions is unknown, one must also 

consider alternative forms (Pledger 1970). Therefore, it is important to recognize that the 

operational capabilities demonstrated by the M&S may be sensitive to the choice of 

underlying probability distributions. The team utilized a numeric spreadsheet model to 

explore the resulting capability estimates for three distinct input distributions (alternative 

forms).  

1. Numeric Estimation 

The initial conditions for the spreadsheet model were selected to reflect the range 

of performance from the low- to high-stress scenarios. Recall the low-stress threat timeline 

(of 58.65 minutes) was decomposed to AI-AMD level of automation 1 operational 

activities (3.45 minutes each). Similarly, the high-stress threat timeline (of 1.51 minutes) 

was decomposed to AI-AMD level of automation 10 operational activities (0.09 minutes 

each). Boundaries for a representative triangular distribution were selected with the 

traditional engineering ± 10% rule of thumb. Figure 49 provides a visual guide for the three 

distinct input distributions explored for the sensitivity analysis: baseline, symmetric 

variable spread, and highly skewed. 
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 Sensitivity Analysis Distributions 

The baseline triangular distribution assumed a range of most likely operational 

activities times varied from 0.03–3.42 minutes. Relative to the level of automation 1 case, 

this generated a most likely AI-enabled time savings from 1% to 99%, respectively. The 

symmetric variable spread triangular distribution also provided a broad range of most likely 

input values; however, instead of the fixed ± 10%, the boundaries were varied from 10% 

to 90%. As seen in Figure 49, the worst case represented an instance where there was no 

savings; AI-enabled time was actually increased by 83.26% over the level of automation 1 

operational activities time of 3.45 minutes. As noted by Pledger, the underlying form of 

the distribution may not be known. The team explored this possibility with the highly 

skewed triangular distribution; the level of automation 10 operational activity time was 

fixed at a most likely of 0.09 minutes (with a 0.08-minute minimum, a 97.69% savings), 

but the maximum time varied from 0.10-3.42 minutes (AI-enabled savings from 97% down 

to 1%, respectively). 

2. Results 

The team used the numeric spreadsheet model to conduct a Monte Carlo experiment 

for the three sensitivity analysis distributions (with 1,000 replications each). The resulting 

capability estimates are depicted in Figure 50. As indicated by the sensitivity analysis, the 

overall AI-AMD capability was impacted by the shape of the underlying distributions 

representing the operational activities. The results of the baseline Monte Carlo indicated 

the AI-AMD system (under the conditions and assumptions represented during this project) 
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would provide sufficient capability against the low-stress threat. As the threat level 

increased, the needed AI-enabled savings also increased. Against the high-stress threat, 

success was only observed at AI-enabled savings above approximately 97%. The results 

of the symmetric variable spread Monte Carlo were similar; however, a broad spread in 

variability was observed in the results. This was attributable to the wider variability in each 

of the AI-AMD operational activities during this set of replications. Because the skewed 

distribution held the operational activities at a most likely time of 0.09 minutes, this set of 

Monte Carlo replications predicted the best AI-AMD system performance. Note again, 

successful system capability against high-stress threats remained observable only at the 

highest levels of automation. As the AI-AMD system matures, it is recommended for 

stakeholders to consider data collection efforts for characterizing the timing attributes of 

each operational activity. Stakeholders should note that robust statistical representation of 

the system functions will improve understanding of future AI-AMD operations. 

 
 Sensitivity Analysis Capability Estimates 
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D. SIMULATION ANALYSIS 

The primary goal of the M&S was to compare the kill chain at low levels of 

automation (“without” AI) through high levels of automation (“with” AI), and assess 

improvements based on time saved. From this M&S, the team described high level decision 

aid operational capabilities for AI-AMD and illustrated conceptual designs for AI-enabled 

decision superiority. A secondary goal was to ensure the model was a properly functioning 

design tool as a deliverable for the project. For each previously described scenario, the 

respective triangular distributions were input into the OV-5b/6c action diagram. The action 

diagram contained 17 decomposed AI-AMD actions (with 5 represented when allocated at 

higher level), 10 network actions, 5 sensor actions, 4 BLUFOR actions, and 4 threat 

actions. Only the 17 internal AI-AMD actions and threat “fly-in” action were varied 

between the scenarios as AI-AMD was not optimized to reduce the action timing of the 

external agents (e.g., network latency and sensor performance). The architecture (i.e., 

sequence and control) was also unchanged, as the information exchanged remained the 

same. 

Innoslate produced a Gantt chart on the timing of each event for visualizing the 

results in sequence and gaining a sense of the duration of each action. From there a Monte 

Carlo simulation was produced and 1,000 iterations were performed. Innoslate produced a 

bar chart to show a distribution of the overall timing for the kill chain through the iterations. 

Lastly, an action report was produced with specific timing, in milliseconds, for each of the 

actions in each run. 

1. Low-Stress Scenario: Human Decision Making 

The low-stress scenario represented the human only decision timing “without” AI 

(level of automation 1). Early warning threat detection provided nearly an hour before the 

threat reached the target. Each decision node completed, and there was minimal external 

system latency; as a result, the Monte Carlo analysis indicated the human defeated the 

threat every time. Keep in mind, for this project the probability of detection and successful 

kill was held at 100%. Figure 51 shows a distribution of the overall timing of the 

engagement. Because the sequence was complete before the threat fly-in finishes, the threat 
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timing was not produced. For this scenario the most likely fly-in timing was 58 minutes. 

As seen in Figure 51, the sequence was completed in less than 58 minutes in all cases. 

 
 AI-AMD Low-Stress Monte Carlo Timing Bar Chart 

2. Moderate-Stress Scenario 1: AI-AMD Assisted Decision Making 

The moderate-stress scenario represented an AI assisted AI-AMD system in which 

the levels of automation were informed by the risk assessment and meta-model results from 

Chapter III Section B.5. It was similar to the low-stress model, but the AI-AMD timing 

distributions and threat “fly-in” times were adjusted; all other actions were unchanged. The 

meta-model predicted that levels of automation selected on the basis of risk alone would 

be insufficient to defeat the threat. Within the discrete even simulation, the team confirmed 
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those levels of automation were not adequate for AI-AMD to successfully complete the 

engagement. Using the Gantt chart, Figure 52, the need to accept more risk at higher levels 

of automation was clear. After running the Monte Carlo, each of the 1,000 replications 

ended during the attack selection as the threat hit the target (a 0% success rate). The team 

revisited the performance table, Figure 45, to increase the level of automation of 6 of the 

17 actions. 

 
 AI-AMD Moderate-Stress Gantt Chart 

3. Moderate Stress Scenario 2: AI-AMD Assisted Decision Making 

As listed in Figure 45, to defeat the moderate-stress threat, there was a needed 

increase in levels of automation associated with multiple operational activities (i.e., “assess 

blue proximity,” “prioritize target,” “select attack option,” “attack target,” “assess status of 

target,” and “authorize re-attack”). A range of adjustments were made, from lower levels 
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of automation (level 3 to 7) up to higher levels of automation (level 6 to 10). Timing 

distributions were recreated and loaded into the model. The discrete simulation showed 

promise with AI-AMD completing the engagement. With these adjustments in level of 

automation, the AI-AMD SoS demonstrated a 100% success rate across all 1,000 Monte 

Carlo replications. Figure 53 is the overall timing distribution for the kill chain moderate-

stress scenario. Again, because the AI-AMD SoS completed the engagement before the 

missile fly-in the threat timing was not captured (the threat was destroyed). Recall from 

Chapter III Section B.4, the moderate-stress threat most likely time was 9.7 minutes. As 

shown in the bar chart, AI-AMD completed all engagements in less time.  

 
 AI-AMD Moderate-Stress Monte Carlo Timing Bar Chart 

4. High Stress Scenario: AI-AMD Fully Automated Decision Making 

The high-stress scenario represented a fully automated AI-AMD “with” AI; level 

of automation 10 was implemented for each of the 17 decision steps. The high-speed threat 
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against medium range detection produced a most likely inbound threat timing of 1.51 

minutes, producing a very short engagement duration and therefore a small window to 

complete the targeting process. With AI-AMD at level of automation 10, the initial discrete 

event showed promise. Out of the 1,000 Monte Carlo replications, 165 runs resulted in the 

threat arriving before the engagement process could be complete; however, the AI-AMD 

SoS defeated the threat in 835 instances (an 83.5% success rate). The high-stress scenario 

bar chart is shown in Figure 54; it does not report the replications where AI-AMD failed 

to defeat the threat. 

 
 AI-AMD High-Stress Monte Carlo Timing Bar Chart 

E. SIMULATION FINDINGS 

Automating decisions through use of AI showed promise for reducing the kill chain 

timeline and opened current AD assets to a wider range of threats. The AI-AMD SoS was 

very successful in simulated engagements; however, this may be due to the open source 
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data and project assumptions. For certain threats, the necessary levels of automation may 

exceed doctrinal risk limitations. Similarly, there may exist threats and engagement 

conditions that defeat even the highest levels of automation. Stakeholders are encouraged 

to consider the project methods and utility curve implementation for applicability during 

future program development; there may be upper limits imposed beyond the high-stress 

scenario where lengthier decisions were eclipsed by the faster threats. 

In Chapter V, the team suggests obtaining specific threat performance, sensor 

capabilities, and decision timing to refine the model. The model allowed for adjustability 

for those refinements and functionality to further enhance the AI-AMD decision aid. Threat 

and sensor inputs can be changed to the particular threats being pursued along with AD 

engagement assets. The tree maps and Gantt charts helped create a visual on the actions 

with significant impact on timing. This can create focal points for ongoing system design 

to determine where the most gains can be found. Additional data should be gathered to 

characterize system performance distributions; the shape of the underlying distribution was 

observed to directly impact AI-AMD system capability. Overall, the MBSE representation 

of the AI-AMD SoS showed promise in assisting further development. 

F. AI METHODS AND TECHNIQUES 

Each of the AI-AMD kill chain steps is unique. Within decomposed context, the 

team reviewed each operational activity to understand the functions and uncertainty 

associated with the action. From that, a comparison was made with various algorithms and 

logic methods designed to replicate human cognitive behaviors and decisions. As observed 

in the literature review, various methods and algorithms have been designed for decision 

applications such as simple “go” versus “no go” situations, search engines, and games like 

chess. This section identifies existing and future AI methods and suggests applications 

within the AI-AMD kill chain. 

1. Action Inputs / Outputs 

In Chapter II, the team explored the F2T2EA process, sensors, and AI. Here, the 

team looked at combining techniques described in that section with the AI-AMD 

architecture. There were 17 actions identified in the OV-5a for a human or AI-enabled 
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machine to conduct in during the AMD sequence. These steps are shown in Table 17 along 

with prescribed methodologies for performance of the actions. 

Table 17. AI-Enabled Kill Chain Methods 
Process Action Method of Automation/AI Description 
Find 
(Observe) 

Collect Data Data Management Preprocessing and storing data 
Accept Initial Detection Data Fusion/Fuzzy 

Reasoning 
Fuse vague data to detect an 
anomaly 

Identify Emerging Threat Case-based Reasoning Retrieve similar cases 
Fix 
(Observe) 

Request Further 
Information 

Event Procedure Auto executes when triggered 
(emerged target) 

Classify Target Decision Theory/Evidential 
Reasoning 

Decide on target from data 
mining knowledge base 

Locate Target Spatial Reasoning  Monitors the target in space 
and time 

Validate Detection Predictive Analytics Predicts trajectory of threat 
Track 
(Orient) 

Request Updated Target 
Track 

Event Procedure Auto execute request once 
detection is validated 

Validate Target Target Coordinate 
Mensuration (TCM) 
Validation 

Provide precision coordinates 
meeting requirements of AD 
system 

Assess Blue Proximity Data Fusion/Forward 
Chaining 

Combine location data with AD 
capabilities data 

Target 
(Decide) 

Nominate Engagement 
Options 

Utility Theory/Predictive 
Analytics/Forward Chaining 

Assesses utility (capability) and 
readiness 

Prioritize Targets Decision Theory Assesses both probability and 
utility of threat knowledge 

Select Attack Option(s) Decision Theory Assesses both probability and 
utility of COAs 

Engage 
(Act) 

Issue Orders Event Procedure/Template 
Filling 

Auto executes when triggered 
and auto-populate fields 

Send Fire Command Event Procedure Auto executes when triggered 
(attack order) 

Assess 
(Act) 

Assess Target Status Predictive Analytics/Spatial 
Reasoning  

Monitors and projects threat 
and AD asset 

Authorize Re-attack Event Procedure Auto executes when triggered 
(failed engagement) 

The first step in defining the AI methods to automate decisions was to understand 

the inputs and outputs of each action. The JP 3-60 defines inputs for each of the activities 

and these inputs were reviewed in the creation of the OV-5b. From there, those capabilities 

were compared with the capabilities of the various methods of AI and expert systems to 

determine the most viable method to execute the task. Many algorithms based on various 

types of reasoning and theory have been developed to tackle specific tasks. Each built 

around the level of uncertainty from the known and unknown data presented. So, the 
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second step was to look at the level of uncertainty for each action. This was closely tied to 

the level of risk assigned in Chapter III.  

2. Action Uncertainty 

Table 18 lists the 17 actions again, showing levels of uncertainty assessed for each 

step. Considerations for the knowns and unknowns are set around the type of data collected, 

the domain of operation, and the risk of the decision. 

Table 18. AI-AMD Actions Level of Uncertainty 
Action Uncertainty Knowns Unknowns Risk 
Collect Data Low Operational Status N/A Low 
Accept Initial 
Detection 

Low Target Data N/A Low 

Identify Emerging 
Threat 

Low Target Data N/A Low 

Request Further 
Information 

Low Emerging Threat Present N/A Low 

Classify Target Mild Target Data 
Threat Data 

Unavailable Non-
Threat Data 

Moderate-
Low 

Locate Target Low Target Data N/A Moderate-
Low 

Validate Detection Low Target Data  Moderate-
Low 

Request Updated 
Target Track 

Low Target Present N/A Low 

Validate Target Mild Target Data, Threat Data Unavailable Non-
Threat Data 

Moderate-
Low 

Assess Blue Proximity Mild Location, Capabilities Readiness High 
Nominate 
Engagement Options 

Low Location, Capabilities Readiness Low 

Prioritize Targets Low Target Data Threat Success Moderate 
Select Attack 
Option(s) 

Mild Target Data 
Threat Data 

Responsiveness High 

Issue Orders Low Form and Procedures N/A Low 
Send Fire Command Low Threat Success Moderate 
Assess Target Status Low Target Data N/A Moderate-

Low 
Authorize Re-attack Low Target Data 

Threat Data 
Responsiveness Moderate 
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3. Methods of Automation 

The team compared the levels of uncertainty and I/O for the actions with methods 

from Table 18. Many actions were relatively simple; these were assigned high levels of 

automation, as shown in Chapter III. Actions such as collect data, initial detection, locate 

target, issue orders, and send fire command can be triggered by outputs of prior actions. 

The data collected can be assigned meta-data, organized, and stored for future retrieval. 

Orders can be auto-populated to expedite their creation. 

Data fusion methods can be employed in instances where the sensor data is merged 

to create a COP of the target and battlespace. Forward chaining, fuzzy reasoning, and case-

based reasoning can be used to compare changes in the dynamic environmental to locate 

and identify targets and air defense assets. 

In an operational AMD scenario the first critical action is to identify and classify 

an emerging threat to ensure that it is indeed a threat. Here, an expert system can be 

employed to use decision theory with evidential reasoning to take the target data and 

compare the data with the knowledge based on threats. This can then be used to correlate 

a match. Faster threats like missiles will be easier to identify over slower moving aircraft 

which can be confused with commercial types. However, with faster threats comes shorter 

timelines to respond. 

The second critical step in an AMD scenario is to understand the COP of AD assets 

and readiness. Sensor data can locate the assets and additional sensors can be employed to 

help assess readiness based on system operating statuses (e.g., round count). Data fusion 

and forward chaining can help create this picture. 

After a COP is created on the AD assets, COAs must be developed and nominated. 

The knowledge based on each system’s capabilities can be used as assets in utility theory 

to determine the best capability against the threat. Predictive analytics can look forward to 

assessing success rates based on the location and readiness of each asset compared to the 

incoming threat. From there, forward chaining can weigh the values of the COAs to 

nominate an engagement. 
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Finally, spatial reasoning can be used to continue to monitor the threat and AD 

engagement to assess success. If the BLUFOR systems fail to defeat the threat, the AI-

AMD can initiate a re-attack, if time allows. Predictive analytics can be used again to 

predict a failed engagement to start the re-attack action sooner to increase the success rate. 

4. Current versus Future AI-AMD 

The methods described above focus on current capabilities in expert system type 

algorithms. Algorithms of this type would likely be manually produced initially, but could 

be developed by ML through training with field data. ML requires time and processing 

power to implement. A centralized AI system may not be feasible, potential compounding 

network traffic and latency issues can reduce the timing efficiencies gained. 

A future iteration of AI-AMD, 10+ years down the road, might look different. 

When techniques in AI are refined, more readily available, and accepted for use on more 

complex tasks, higher levels of automation for AMD may be achieved. Future AI-AMD 

systems incorporating ML will likely require that the information it gathers be stored so it 

can refine its decision-making algorithms. Most likely sensors will continue to improve 

and increase in number in the future, providing an even more detailed and complete COP 

of the battlespace, providing more knowledge of both blue and red forces.  This will 

increase a future AI-AMD system’s awareness of the battlefield, with awareness being the 

highest form of AI (Blasch eta all, 2019). More sophisticated AD assets will be increasingly 

digitized so readiness can be better assessed logistically and operationally. AI-AMD may 

even suggest or command movement of AD for better coverage. The system may include 

in its recommended COAs, warning systems to abandon positions. As processing power 

continues to shrink in footprint and cost, more complex decision aids may be implemented 

to increase accuracy and reduce time in future iterations of an AI-AMD SoS. 
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V. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

As current trends in naval warfare shift toward automated combat weapons 

systems, the U.S. Navy is focusing its strategies toward AI capabilities that reduce the time 

a warfighter needs to act decisively. This project represented the human-AI decision 

process (as informed by MCPP) through a decomposition of OODA and F2T2EA to the 

operational activity level. Increased levels of automation for operational activities within 

the kill-chain process were demonstrated to significantly reduce the timeline; which, if 

further developed and fielded, will provide Sailors and Marines a tactical advantage in air 

defense. Expediting the kill chain through use of expert system and AI has the ability to 

greatly shorten engagement times effectively expanding the battle space.  

The AI-AMD architecture is designed to improve warfighting decisions by 

prioritizing threats and acting upon them with minimal input from human users. Therefore, 

the project objectives focused on understanding and evaluating the AMD kill chain to 

identify steps in the process that can be executed faster using AI-AMD, determining risks 

associated with AI-AMD levels of automation as applied to the various steps in the kill 

chain process, utilizing M&S to compare the kill chain at low levels of automation 

(“without” AI) through high levels of automation (“with” AI), assessing improvements 

based on time saved, developing high level decision aid operational capabilities from the 

M&S analysis for AI-AMD and conceptual designs for AI-enabled decision superiority, 

and identifying existing and future AI methods and apply them to the AI-AMD kill chain. 

The conceptual architecture of the system was developed with a MBSE approach 

using the SE tool Innoslate. The DODAF architectural analysis combined BLUFOR air 

defense sensors, weaponry, and the Joint network to create a depiction of the AI-AMD SoS 

for neutralizing enemy threats. The results of an architectural analysis using a DOE, 

discrete event, and stochastic simulation showed an 83.5% success rate within high-stress 

scenarios (at level of automation 10—fully automated) while low-stress scenarios were 

shown in the model to be 100% successful (at level of automation 1—fully manual). 
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The team developed a kill chain analytical framework to understand and model the 

risks associated with the automation of kill chain functions. The risk assessments for each 

of the 17 steps in the targeting process were categorized into four categories; low, 

moderate-low, moderate, and high. Leveraging Parasuraman’s levels of automation, a risk 

assessment was conducted for individual steps within the targeting process to determine an 

acceptable level of automation. The team developed and employed a utility curve to assist 

in determining the time savings for each level of automation. For example, AI-enabled 

greater time savings was associated with higher levels of automation. 

A sensitivity analysis was conducted to explore the impact of alternative underlying 

representative distributions (baseline, symmetric variable spread, and highly skewed). 

While changes in distribution shape did impact result, in every case, success within the 

high-stress scenario only occurred with AI-enabled savings greater than 97%.  

This project investigated how AI methods could apply to AMD decision making to 

increase levels of automation and reduce the execution time of a human-AI team (an AI-

enabled decision aid). Each of 17 key decision points was analyzed to identify where AI-

AMD could increase levels of automation and improve speed. The potential levels of 

automation were balanced against risks associated with each of the various steps. The 

developed conceptual architecture was exercised within M&S to evaluate the timeliness of 

decisions made within the AI-AMD system at low levels of automation (“without” AI) 

through high levels of automation (“with” AI). The resulting high-level capabilities of the 

AI-AMD conceptual architecture were documented with recommendations for stakeholder 

consideration as the system technologies mature. Several existing and future AI methods 

and their applications to the AI-AMD kill chain were also studied. The team recommends 

that future iterations of AI-AMD studies look at more complex situations with multiple 

threats and engagement across the entire battlefield. 

B. CONTRIBUTIONS 

The team successfully met the objectives of the project. Three key deliverables 

were created: a systems architecture for AI-AMD, an AI-AMD analysis methodology with 

tool set, and a list of preliminary AI kill chain enabling methods to execute a future AMD 
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mission set. The project objectives defined in Chapter I focus on the methodology of 

applying AI methods to AMD decisions in order to reduce the human-AI execution time. 

Within the objectives, the goals were to identify the AMD kill chain with improved AI 

decision aids, assign various levels of automation to steps within the kill chain process, 

compare and contrast the human versus machine execution time using modeling and 

simulation, and develop decision aid operational capabilities that assist the human-machine 

decision-making skills to support a faster AMD operation. The following sections review 

the objectives and the work performed within the project. 

1. Understand and Evaluate the AMD Kill Chain 

The objective to understand and evaluate the AMD kill chain to identify steps in 

the process that can be improved using AI automated decision aids was successfully met 

through an extensive literature review of the AMD operation. Focusing on JP 3-60, the 

F2T2EA kill chain process was mapped to the OODA loop. As defined by the OV-5b/6c 

diagram in Figure 23, the six F2T2EA steps help identify the process that can be improved 

using AI automated decision aids. The team then decomposed the F2T2EA functions of 

joint targeting and chose steps in the process that more closely aligned to the AMD 

operation, which resulted in 17 critical actions. The team then used DODAF modeling 

operational and system views to create the architecture of the AI-AMD representative 

system. These architectures create the baseline for system design of AI-AMD and will help 

drive the automated decision aid design process. 

2. Determine Levels of Automation within the Kill Chain 

The objective to determine which levels of automation can be applied to the various 

steps in the kill chain process was met through a literature review on the various levels of 

automation and applying those levels of automation to the 17 steps in the kill chain. The 

levels of automation were derived using Parasuraman, Sheridan, and Wickens’s (2000) 

research on the ten levels of automation. Level one being strictly human and level ten being 

strictly AI. These levels were then correlated to a risk assessment for each of the 17 steps 

in the kill chain. The acceptable level of risk determined the appropriate level of 

automation. For example, assessing blue force proximity is a critical action due to the 
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necessity of ensuring friendly forces are not within range of the BLUFOR defeat 

mechanisms, which could result in catastrophic consequences. As a result, a low level of 

automation was assigned to this particular step. The same methodology was conducted 

throughout the kill chain to assign appropriate levels of automation. 

3. Perform Modeling and Simulation to Compare Scenarios 

The objective to utilize M&S to compare the kill chain “with” and “without” AI 

and assess improvements based on time saved, improvement of decisions, improvement of 

outcomes, and probability of defeating enemy threats was met through the use of the 

Innoslate model and DOE. A utility curve was derived to estimate time savings, and a DOE 

was constructed to assess the varying times of the input factors. Lastly, a model linked to 

the DODAF architectural views through concordance of Innoslate was created to run 

simulations. The simulations were used to compare human timing with AI assisted and AI 

performed automation. Using the REDFOR threats and BLUFOR kinetic capabilities, a 

utility curve was created to determine the capabilities of the AI in low- and high-stress 

scenarios. The low-stress scenarios required minimum automation while high-stress 

scenarios required maximum levels of automation to gain an efficiency when the kill chain 

is automated. The risk summary supplemented the utility curve in depicting the AI-enabled 

time savings associated with each level of automation. 

4. Develop High-Level Capabilities from Modeling and Simulation 

The objective to develop high-level decision aid operational capabilities from the 

M&S analysis for AI to support AMD and conceptual designs for AI-enabled decision 

superiority was met through the M&S of various scenarios within AMD. Focusing on the 

missile threat, the team chose a low-, moderate-, and high-stress scenario based upon open 

source data on REDFOR threats, BLUFOR detection sensors, and BLUFOR defeat 

mechanisms. The threat scenarios were used to determine capabilities of the AI-AMD 

system and requirements of the system in order to successfully defeat the threat. The team 

observed that human timing was not adequate to defeat higher-stress threats. Additionally, 

timing based upon the risk assessment was unsuccessful in defeating the moderate-stress 

missile threat without increases several levels of automation. In the event of high-stress 
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scenarios, the AI-AMD must take full advantage of automation, regardless of risk factors, 

in order to be successful. AMD is a complex mission set and understanding that mission 

set is key to building the system architecture.  

5. Identify AI Methods 

The objective to identify existing and future AI methods that can be applied to the 

decision aid for application within the kill chain using the M&S results was met through 

an extensive literature review of current and future AI methods. Determining areas to 

automate is only a portion of the design process. The next phase is implementation and 

development of the AI to perform the necessary functions. The team examined many 

techniques in expert systems, automation, and AI to assess methods to perform the various 

decision steps in the kill chain. The team utilized the risk assessment along with evaluating 

task uncertainty to compare which techniques and methods were best suited to perform 

functions or make decisions. It is recommended that the AI methods identified be used to 

build the AI-AMD decision aid. 

C. POTENTIAL BENEFITS 

Automation has been used to replicate human behavior and functions for years. 

With the advent of AI, the potential to bring higher levels of automation to daily life has 

increased tremendously. The ability to consistently replicate cognitive processes to assist 

or take over decisions will be able to expedite processes. The ability to apply decision-

making abilities to machines in the AMD domain will increase efficiency and effectiveness 

of the AMD mission. Decisions will no longer become human limited, but machine limited. 

Investing in ML processes can help mature decision-making algorithms as more data is 

ingested during the training process. Refined algorithms will increase accuracy, efficiency 

and effectiveness. Increases in automation should reduce manpower as well freeing 

operators up for other tasks and potentially reducing the number of men and women in 

harm’s way.  
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D. FUTURE WORK 

Leveraging AI for AMD is a broad domain which required the team to use 

assumptions and constraints to set boundaries for the project. The team has taken a high-

level approach, and additional work is required to improve the decision aid. Suggested 

future work includes using real-world data for human timing, further refining the AI-AMD 

utility curves for the AI-AMD time savings, capturing in-depth COA recommendations 

based on stakeholder input, considering logistics implications, modeling advanced threats 

and enemy tactics, techniques, and procedures (TTPs), and assessing external system 

impacts on the AI-AMD such as network latency and sensor detections. 

1. AMD Human Decision-Making Timing 

AMD requirements must be defined by the stakeholders upfront during the initial 

system development process. Additionally, the AI-AMD architectural model can be refined 

to reflect a more precise and accurate representation with real-world data. The efficiency 

and effectiveness of the model can greatly improve with real-time user data and accurate 

engagement times for missiles. A classified discussion can generate actual enemy missile 

engagement timelines, which can then be inputted into the model to further refine the 

system requirements. It is the team’s recommendation that an in-depth discussion on AMD 

timelines without AI be conducted with the stakeholder in order to accurately reflect real 

world scenarios. The steps in the AMD kill-chain should be reviewed with the stakeholder 

in order to fully capture the human decision-making timeline without AI. The team 

simplified the kill-chain timeline in the JP 3-60 joint targeting publication to 17 critical 

functions. These functions will need to be vetted with AMD TTPs to ensure that all steps 

and associated engagement timelines are captured. 

Furthermore, automating the kill chain will require an acceptable level of trust. The 

capabilities and limitations of the operator’s ability to perform each task must be 

understood in order to promote trust in the AI decision aid. The Rasmussen Skill Rule 

Knowledge Framework can be used to determine the cognitive task analysis (CTA) and 

cognitive work analysis (CWA) for the F2T2EA human decision-making timeline in order 

to define which tasks in the kill chain could be automated (Paradis, Breton, Elm, and Potter 
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2002). Too much automation can result in an overreliance on the AI decision aid whereas 

not enough automation can result in an unsuccessful mission. Finding the acceptable 

balance between trust and level of automation is a critical step in defining the AI-AMD 

decision aid. 

2. Refining Utility Curves and Risk Assessments 

The team, absent of real world data, chose to represent the level of automation and 

associated time savings through a single utility curve as shown in Figure 44. This single 

utility curve applies to each of the 17 steps in the kill-chain. The team recognizes that this 

assumption is an oversimplification of the complex AMD operation. It is recommended 

that a utility curve is created for each of the steps in the AMD kill-chain that fully captures 

the timing and associated time savings of varying the automation for that particular step. 

In addition, it is recommended that a user defined risk assessment and risk rating be 

assigned to each of the kill-chain steps. The risk assessment will drive the acceptable level 

of automation and associated utility in automating that task. 

3. Simulating Multiple Engagements 

AI-AMD described in this project demonstrates that automated decision aids can 

increase the speed of the AMD mission and allow the user to decide faster. Future 

engagements may find AD systems engaging a multitude of incoming threats. Increasing 

the number of incoming enemy threats will add additional strain to the AI-AMD decision 

aid and COA recommendations. It is critical to understand the capabilities, limitations, and 

sensitivities of the system to understand its full scope. It is recommended that a user 

working group be conducted to capture scenarios and vignettes of the AMD operations 

where the AI-AMD decision aid system applies. More scenarios and greater detail will 

further improve the decision-making and AI/ML learning algorithms to account for as 

many potential scenarios as possible. Simulating the environment and collecting data on 

scenarios will further refine requirements of AI-AMD. 
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4. Refine Threat Models 

To simplify the timing calculations as described in Chapter III, the team chose to 

model the inbound threat linearly by dividing the range by the speed in order to calculate 

a time component. The team recognizes that this is an over-simplification of the trajectory 

of both the REDFOR and BLUFOR missiles. The REDFOR threats identified in Table 11, 

the BLUFOR detection sensors in Table 12, and the BLUFOR defeat assets in Table 13 

have a complex trajectory and physics that must be fully defined in order to capture the 

engagement timeline appropriately. Refining the model of the inboard threats will provide 

more accurate timing when applied to the AI-AMD models. 

The threat environment should also be taken into consideration. Russell and Norvig 

(2015) describe multiple properties of the task environment to consider when working with 

various computational methods. Using these properties against the kill chain tasks will help 

determine optimal theories to apply to the decision aid. Table 19 shows the seven 

characteristics to consider for the task environment. 

Table 19. Characteristic Considerations for the Task Environment. Adapted 
from Russel and Norvig (2015, Figure 2.6). 

Characteristic Values Considerations 

Observable Fully 
Observable 

Partially 
Observable Sensors have access to complete state? 

Agents Single Agent Multi-Agent Number of agents involved? 

Deterministic Deterministic Stochastic Is the next state completely 
determined by the next agent action? 

Episodic Episodic Sequential Can the action effect all future states? 

Static Static Dynamic Can the environment change while the 
agent is deliberating? 

Discrete Discrete Continuous Is there a finite number of states? 
Known Known Unknown What are the unknowns? 

 

5. Expanding the Target Set 

AI-AMD replicated not only the AMD mission, but the JP 3-60 targeting process. 

This allows the AI-AMD to also defeat other target types represented within the JP 3-60 
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doctrine such as COAs when engaging time sensitive targets (TSTs), high value targets 

(HVTs), and high priority targets (HPTs). Similarly, monitoring the BLUFOR through 

programs such as Blue Force Tracker (BFT) will further refine the AI-AMD COA engine. 

Varying the types of engagements to not only type of potential target, but also classification 

of the target will create an increased complexity to the OV-5b/6c action diagram. However, 

this increased complexity will also allow for a higher fidelity of real-world representation, 

encompassing different engagements. Updating algorithms to detect other threat signatures 

as aided target recognition (AiTR) development continues, allows AI-AMD to expand its 

utility. 

6. Applying AI-AMD at Additional Operational Levels 

The targeting process and ability to generate COAs could be applied at various 

operational echelons. The team chose to focus on the Navy Task Force level for 

implementing the AI-AMD. However, AI-AMD could easily be applied at lower or at 

higher echelons. It is likely that the AI-AMD is a layered AI/ML approach with varying 

levels of AI at different echelons. Applying the AI-AMD to the strategic level can become 

an automated decision aid for senior leaders. It is recommended that the echelon 

application be reviewed to ensure that the AI-AMD is located within the appropriate level. 

If the AI-AMD is determined to be better suited as a layered approach, target handoff, 

coordination, and synchronization will become essential components for de-conflicting 

control  

7. Logistics Applications 

The team chose timing as a critical focus area of the project. However, there is also 

a logistical component to the decision aid that must be explored. Assessing items such as 

the quantity of BLUFOR assets, location of BLUFOR assets, logistical hubs, re-supply 

routes, cost of BLUFOR weapons, availability of assets in inventory, manufacturing 

capability of those assets, and funding available to restore stock are all potential logistical 

questions that could be used to generate the most informed decision. A thorough review of 

the AI-AMD sub-system components should be reviewed to ensure adequate availability 

and reliability is achieved along with appropriate level of redundancy. It is recommended 
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that detailed logistics, reliability, availability, maintainability, supply chain, and 

manufacturability of BLUFOR assets be reviewed and applied to the AI-AMD decision 

aid.  

8. Network Capability and Robustness 

Current ML processes require a significant amount of computer power. If ML is 

utilized within the kill chain, the ML processing may not be capable of being collocated 

with the BLUFOR within the named area of interest (NAI). If the AI-AMD is separated 

from the BLUFOR NAI, it is assumed that this will increase network utilization and 

latency. The team assumed network timing based on the circumference of the Earth and 

the speed of light. Specific system position will determine specific timing for network 

communication. Having the timing association with network traffic will further refine the 

AI-AMD model and thereby AI-AMD network requirements.  

AI-AMD is network centric, which means that the decision aid relies on external 

systems to perform its mission of sending and receiving data to the appropriate channels. 

The decision aid receives data to process for the decision, disseminates the data, and 

recommends a decision. Future design work will need to ensure a robust and secure 

network that can operate without a large amount of latency. A network study on the 

required sensitivity, bandwidth, redundancy, message traffic, protocols, and network 

infrastructure is recommended to fully capture the AI-AMD reliance on the external 

network. The external network will then drive the requirements for the AI-AMD and 

further define the timeline required to make a decision. Additionally, the network 

capability must have interoperability within joint services, multinational allied forces, and 

supporting MDO cross-platform operations. As the network capability is a key component 

of the decision aid model, future work is recommended to determine the integration 

required to incorporate the latest network hardware and software into the AI-AMD decision 

aid and integration required to incorporate the next generation of telecommunications and 

network infrastructure. 
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