
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS

CASE STUDY OF SOFTWARE DEVELOPMENT
IN THE DOD

by

Amy Hsu and Robert Patterson

September 2020

Thesis Advisor: Glenn R. Cook
Second Reader: Thomas J. Housel

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2020

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
CASE STUDY OF SOFTWARE DEVELOPMENT IN THE DOD

5. FUNDING NUMBERS

6. AUTHOR(S) Amy Hsu and Robert Patterson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
The Department of Defense (DOD) and its components have been pushing to consolidate their

information technology infrastructure in order to reduce cost and waste of unused resources and increase
the efficiency, effectiveness, and security of the infrastructure. Technology Services Organization
(TSO), a Marine Corps unit, recently migrated its software development environment from the
Marine Corps Worldwide (MCW) network to the Marine Corps Enterprise Network (MCEN),
where software development is restrictive. Now TSO is setting its sights on optimizing its
development process and eventually transitioning to DevSecOps and the cloud. This case study
explored the software development methodology and environments of similar organizations within the
DOD and examined how TSO might improve software development performance metrics and proceed to
a DevSecOps environment. Two of the three organizations interviewed employ agile and pseudo-agile
methodologies, and the third is in the process of transitioning to DevSecOps. Organizations familiar with
agile methodologies are best suited for the transition but will still face challenges. Management and
DevSecOps teams can overcome these challenges by focusing on their people, processes, and tools.

14. SUBJECT TERMS
software development, code migration, cloud migration, DevSecOps, case study,
Technology Services Organization, TSO, Marine Corps Worldwide, MCW, Department of
Defense, DOD

15. NUMBER OF
PAGES

83
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

CASE STUDY OF SOFTWARE DEVELOPMENT IN THE DOD

Amy Hsu
Captain, United States Marine Corps

BS, University of California - Davis, 2009

Robert Patterson
Captain, United States Marine Corps

BS, U.S. Naval Academy, 2014

Submitted in partial fulfillment of the
requirements for the degrees of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

and

MASTER OF BUSINESS ADMINISTRATION

from the

NAVAL POSTGRADUATE SCHOOL
September 2020

Approved by: Glenn R. Cook
Advisor

Thomas J. Housel
Second Reader

Thomas J. Housel
Chair, Department of Information Sciences

Glenn R. Cook
Academic Associate, Graduate School of Defense Management

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

The Department of Defense (DOD) and its components have been pushing to

consolidate their information technology infrastructure in order to reduce cost and waste

of unused resources and increase the efficiency, effectiveness, and security of

the infrastructure. Technology Services Organization (TSO), a Marine Corps unit,

recently migrated its software development environment from the Marine Corps

Worldwide (MCW) network to the Marine Corps Enterprise Network (MCEN),

where software development is restrictive. Now TSO is setting its sights on

optimizing its development process and eventually transitioning to DevSecOps and the

cloud. This case study explored the software development methodology and

environments of similar organizations within the DOD and examined how TSO might

improve software development performance metrics and proceed to a DevSecOps

environment. Two of the three organizations interviewed employ agile and pseudo-

agile methodologies, and the third is in the process of transitioning to DevSecOps.

Organizations familiar with agile methodologies are best suited for the transition but

will still face challenges. Management and DevSecOps teams can overcome these

challenges by focusing on their people, processes, and tools.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. PROBLEM STATEMENT ...2
C. PURPOSE STATEMENT ...2
D. RESEARCH QUESTIONS ...3
E. RESEARCH METHODS ..3
F. PROPOSED DATA, OBSERVATION, AND ANALYSIS

METHODS ...4
G. POTENTIAL BENEFITS AND LIMITATIONS4
H. ORGANIZATION OF THE THESIS ..4

II. LITERATURE REVIEW ...7
A. INTRODUCTION..7
B. STATE OF DOD’S SOFTWARE DEVELOPMENT

CAPABILITIES ...7
C. DOD MODERNIZATION ..8

1. Waterfall ...11
2. Agile ...12
3. Extreme Programming ..13
4. Scrum ..17
5. DevSecOps ..20

D. SOFTWARE DEVELOPMENT TOOLS ...28
E. PERFORMANCE METRICS OF SOFTWARE

DEVELOPMENT ..29
F. ORGANIC DEVELOPMENT ..31
G. CLOUD MIGRATION ..33

1. Policies and Directives ...33
2. Cloud Characteristics and Benefits ..33
3. Cloud Service Models ..34
4. Cloud Deployment Models ..36
5. Cloud Migration Models ...37

H. SOFTWARE DEVELOPMENT IN THE CLOUD
ENVIRONMENT ...38
1. Benefits and Challenges ...38
2. Agile Development in the Cloud ...39

I. SUMMARY ..39

viii

III. RESEARCH METHODS ..41
A. INTRODUCTION..41
B. RESEARCH METHOD ..41

1. Case Study ..41
2. Semi-structured Interview Questions ..42

C. SUMMARY OF PLACES INTERVIEWED...44
1. Marine Corps Technology Services Organization (TSO)44
2. Navy Supply Systems Command Business Systems

Center (NAVSUP BSC) ...44
3. Defense Manpower Data Center (DMDC)45

IV. ANALYSIS ...47
A. INTRODUCTION..47
B. INTERVIEWEE RESPONSES ..47

1. TSO..47
2. NAVSUP BSC...49
3. DMDC ...50

C. DISCUSSION ...50
1. Implementation Requirements for DevSecOps51
2. Challenges and Limitations ...54
3. Available Options ...54
4. DevSecOps and the Cloud ...55

D. SUMMARY ..55

V. CONCLUSIONS AND RECOMMENDATIONS ...57
A. CONCLUSIONS ..57
B. FINDINGS AND RECOMMENDATIONS ..58
C. RECOMMENDATIONS FOR FUTURE RESEARCH.......................58

1. Combat Systems ...59
2. Mainframes ...59
3. Culture ..59
4. Talent Pool ..59
5. Acquisition Process ..60

LIST OF REFERENCES ..61

INITIAL DISTRIBUTION LIST ...67

ix

LIST OF FIGURES

Figure 1. DOD Line of Code Progression. Source: DOD (2018c)............................10

Figure 2. Waterfall Process. Source: Pace (2019). ..11

Figure 3. Improved Extreme Programming Cycle. Source: Anderson et al.
(2000). ..15

Figure 4. Scrum Process Graphic. Source: Scrum Process (2009).19

Figure 5. DevSecOps Process. Source: DOD (2019). ...22

Figure 6. Shift-left Mentality. Source: DevOps for Dummies (2015).23

Figure 7. Containers versus virtualization. Source: Docker (2020).25

Figure 8. Sustained Competitive Advantage Map. Source: Byrd (2001).32

Figure 9. Cloud Service Models. Source: Hou (n.d.). ...35

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF ACRONYMS AND ABBREVIATIONS

ADTE Application Development and Test Environment
AI artificial intelligence
ATO authority to operate
CaaS container as a service
CI continuous integration
CD continuous delivery
CFD cumulative flow diagram
DaaS data as a service
DIB Defense Innovation Board
DOD Department of Defense
DMDC Defense Manpower Data Center
DSO development, security, operations
ERP enterprise resource planning
ESD Enterprise Services Division
FY fiscal year
HR human resources
IaaS infrastructure as a service
IDE integrated development environment
IS information systems
ISSE Information Systems Security Engineer
ISSO Information Systems Security Officer
ISSM Information Systems Security Manager
IT information technology
JEDI Joint Enterprise Defense Infrastructure
NDAA National Defense Authorization Act
NAVSUP BSC Navy Supply Systems Command Business Systems Center
MCFIAS Marine Corps Financial Integrated Analysis System
MCIPPS Marine Corps Integrated Pay and Personnel Systems
MCTFS Marine Corps Total Force Systems
MARFORCYBER Marine Forces Cyber

xii

MCBOSS Marine Corps Business Operations Support System
MCEN Marine Corps Enterprise Network
MCW Marine Corps Worldwide
MTTR mean-time-to-recover
MVP minimum viable product
PaaS platform as a service
SaaS software as a service
SABRS Standard Accounting, Budgeting and Reporting System
SAT system acceptance testing
SIT system integration testing
SDLC software development life cycle
SSMS SQL Server Management Studio
TSO Technology Services Organization
UAT user acceptance testing
USMC United States Marine Corps
VDI virtual desktop infrastructure
XP Extreme Programming

xiii

ACKNOWLEDGMENTS

We express our gratitude to the staff of the Department of Information Sciences

and the Graduate School of Defense Management. Their expertise and student-first

attitude made this a rewarding experience. Thank you to our advisors for the support,

patience, and commitment during the unorthodox events of completing this thesis. We

would like to thank the interviewees from TSO, NAVSUP BSC, and DMDC for taking

the time to help us learn about the software development process in their organization.

We would also like to thank our Marine Corps friends, Captains Chew and Hutcheon,

for helping us on the topic of DevSecOps.

Rob would like to thank his wife for her support and behind-the-scenes hard work

that allowed him to successfully complete the demands of the last two years.

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. BACKGROUND

Technology Services Organization (TSO) is a Marine Corps unit equipped with an

in-house software development team. According to the orientation given to the authors,

TSO is tasked with the mission to provide “development, production and sustainment

support of enterprise-level military pay, accounting, personnel and financial management

information technology (IT) systems for the Marine Corps, Department of Navy and other

Department of Defense components, services and agencies. Utilizing industry standards

and innovative technologies, TSO delivers secure, auditable, and proficient capabilities to

its stakeholders” (TSO, PowerPoint slides from meeting, February 11, 2020). For TSO to

provide quality development, production, and sustainment support, it requires a software

development environment with access to an array of tools and resources. Access to these

tools and resources can become problematic with ever-increasing cybersecurity threats and

corresponding cybersecurity policies and network requirements.

Prior to September 2019, TSO operated within the Marine Corps Worldwide

(MCW) network. The MCW network allowed the developers at TSO the leeway to use a

wide array of tools and resources, but as a result of the continued efforts to consolidate IT

infrastructures as directed by the Secretary of Defense in August of 2010 and in accordance

with Marine Forces Cyber (MARFORCYBER) Operations Order 18–0001, TSO was

directed to migrate to Marine Corps Enterprise Network (MCEN) NLT 30 September 2019.

The MCEN is the Marine Corps’ all-encompassing network composed of “people,

processes, logical and physical infrastructure, architecture, topology and Cyberspace

Operations” (United States Marine Corps [USMC] 2011, under “What is it?”). Prior to

TSO’s migration to MCEN, MCEN’s policy did not allow for software development and

testing, thus presented a major obstacle for TSO’s day to day operation. TSO overcame

this obstacle by creating an Application Development and Test Environment (ADTE) on a

virtual desktop infrastructure (VDI), accessible from MCEN. As TSO worked through the

obstacles of migrating to MCEN, it sets its sight forward to evolve with a landscape driven

2

by the requirements for faster and more secure software, as well as the Department of

Defense’s (DOD) directive to move into the clouds. This case study intends to analyze the

software development environment at TSO and determine the changes necessary for its

eventual migration to DevSecOps and the cloud.

B. PROBLEM STATEMENT

The problem is that the DOD is behind the curve on software development. The

method for developing and acquiring software is outdated in many DOD organizations.

This is a problem because the older development methods are too slow at adapting

warfighters’ needs while maintaining a high level of security. Metrics from the private

sector are showing high performing software developers have a low change lead rate and

high deployment frequency. These developers achieve these metrics by using DevOps and

DevSecOps. Having a low change lead rate and high deployment frequency are ever more

important for the DOD to support its warfighters, and to defend itself from being out cycled

by its competitors and adversaries. DOD organizations, such as TSO, cannot achieve these

metrics with their current software development method.

C. PURPOSE STATEMENT

The purpose of this research is to conduct a comprehensive examination of options

TSO can adopt to improve its software development performance metrics, such as reducing

its change lead rate and increasing its deployment frequency, and eventually transition to

a DevSecOps environment. It is important for DOD organizations to improve their software

development performance metrics to meet the operational demands of today’s warfighters.

This research will analyze how similar software development units across the Department

of Defense develop their software products and the feasibility of TSO to adopt different

approaches in order to improve their own development process. Due to the reliance of

software in the DOD, this will provide TSO with alternate development methods that

improve deployment frequency and functionality while maintaining security. Additionally,

this research will look ahead for an optimal way to migrate the existing software

development environment to the cloud.

3

D. RESEARCH QUESTIONS

This thesis seeks to answer the following questions:

• How could TSO go from a multitude of approaches to DevSecOps?

• How will the transition to DevSecOps impact the software developers at

TSO to continue to develop critical software securely and efficiently?

• How do similar software development activities within the Department of

Defense develop software and might the Marine Corps consider similar

approaches?

• What is the optimal way to migrate the existing software development

environment to the cloud, and continue to allow access to the requisite

software development tools?

E. RESEARCH METHODS

This research is a qualitative case study relying on a review of select DOD

organizations’ software development methods through interviews and site visits. First, this

research will begin with a review of the literature about software development and cloud

computing, to include migration methods that might a provide a framework for the

interview questions. Using information from the literature, we will develop and modify our

interview questions to gather perspectives and best practices amongst the organizations

interviewed. Interviews will be conducted with developers and managers that are involved

with the day-to-day tasks of development.

The authors expected to conduct site visits and interact with the developers face to

face in order to complete a robust analysis and provide worthwhile recommendations to

TSO. However, only one site visit was conducted at TSO before COVID-19 unexpectedly

halted all travel. The authors interviewed the remaining two organizations through multiple

meetings conducted via phone calls and/or videoconference, in addition to email

correspondence.

4

F. PROPOSED DATA, OBSERVATION, AND ANALYSIS METHODS

Data will be limited to available government publications on software development

and cybersecurity prior to interviews and site visits with various DOD organizations that

conduct software development. Interviews and site visits are intended to provide the

authors with an accurate visualization of the development environment and processes

employed by each of the visited organizations. Information on the development

environment and processes including tools, resources, policies, and regulations will be

collected and analyzed against existing literature and current industry practice.

G. POTENTIAL BENEFITS AND LIMITATIONS

This research is beneficial in providing an analysis on the differences in current

software development environments employed by DOD organizations, with a focus on the

processes and tools used at these organizations. Access to DOD organizations’ internal

cybersecurity policies, processes, and regulations may be a limitation to the research. The

findings from the case studies will form recommendations aimed to improve TSO’s

software development performance metrics and the rate it can develop secure software.

H. ORGANIZATION OF THE THESIS

Chapter II is a literature review of topics relevant to this case study. The literature

review covers the following topics: the state of DOD’s software development capabilities,

DOD modernization, software development methodologies, organic development,

software development tools, software development performance metrics, cloud migration,

and software development in the cloud environment.

Chapter III contains the research methods and a summary of organizations that were

interviewed. The organizations interviewed were: Marine Corps Technology Services

Organization (TSO), Navy Supply Systems Command Business Systems Center

(NAVSUP BSC), and Defense Manpower Data Center (DMDC).

Chapter IV contains the summarized interview responses from the three

organizations, an analysis of similarities and differences amongst the organizations, and a

5

discussion of how TSO can adopt DevSecOps and improve its development performance

metrics in order to develop secure software, faster.

Chapter V provides a summary of the research, conclusions, and recommendations

for TSO to go forward with their software development optimization and migration of their

development environment to the cloud. The chapter concludes with recommendations for

future research.

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. LITERATURE REVIEW

A. INTRODUCTION

Software is everywhere in the Department of Defense (DOD). In today’s

environment, software is the mission-critical item in many of our systems, both weapons

and business alike (Defense Innovation Board [DIB], 2019). It is no longer only an enabler

of the Department’s hardware components. Currently, America’s adversaries are

developing and deploying their software-enabled capabilities faster and more efficiently

than us. The DOD must be able to adapt, respond, develop, and protect our most vital

software-defined capabilities better than its adversaries or else secede its military

advantages.

This chapter describes a few of the many software methodologies, tools and

metrics, the advantages of organic development, and the benefits of cloud migration that

could advance the DOD’s ability to develop and deploy superior and more secure software.

B. STATE OF DOD’S SOFTWARE DEVELOPMENT CAPABILITIES

The DOD is heavily reliant on software and as the landscape of warfare changes,

so must the DOD’s ability to rapidly code, refine, deploy and monitor all software, but

especially the most mission critical. Software is vitally important for the DOD’s combat

and mission systems, as well as an essential component to the department’s business and

enterprise activities that ensure it can effectively function (DIB, 2019). All the systems

must work in harmony in order to ensure transactions are made that enable the acquisition

of updated weapons and equipment, validate that personnel are paid and arrive to a theatre

on time, as well as keep all of the records and personal data safe.

The software landscape has changed drastically, and the DOD must recognize the

urgency to adapt to that change. The current procurement process treats software programs

like hardware programs but that is no longer acceptable as it cannot produce the timely

delivery of much-needed software capabilities (DIB, 2019). A study conducted by the

Defense Innovation Board (2019), titled the Software Is Never Done Refactoring the

Acquisition Code for Competitive Advantage decomposed the Department’s software and

8

systems into three broad operational categories in order to highlight that not all systems are

the same and they must be optimized accordingly. The board (2019) categorized them as

Enterprise Systems, Business Systems and Combat Systems. Enterprise Systems are DOD-

level systems that are very large-scale and must maintain large amounts of records and

interface with multiple other systems (DIB, 2019). They include email systems, accounting

systems and travel and human resource (HR) systems (DIB, 2019). Business systems are

essentially the same but are differentiated by scale. Business systems operate at the service

level (DIB, 2019). They need to be interoperable with other DOD systems, but each service

can customize them to fit their needs. Examples include logistics systems, software

development environments, or HR and financial systems (DIB, 2019). The third is the

combat systems. While slightly different from the first two, based on the reliance of

enterprise and business systems software, attacks on those systems can cripple the

department or service component’s combat systems as well (DIB, 2019).

Due to the close integration of all the systems and the reliance on software,

Department and the Services must modernize its software development practices. In recent

years, leadership has focused on these efforts and is transitioning to more adaptive and

faster software development acquisition and development methods. As threats evolve, so

must the Department’s ability to respond to them. There is evidence that China expects to

be the world leader in Artificial Intelligence (AI) by 2030 and is very concerned with

cybersecurity and focused on becoming the world leader in both (Webster et al., 2017).

These indicate the focus on software by the Nation’s most capable adversaries and

emphasizes the importance of improving the DOD’s software capabilities as the foundation

of other critical developments like machine learning and more intensive computing

initiatives.

C. DOD MODERNIZATION

Ellen Lord, the Under Secretary of Defense for Acquisition and Sustainment said

that software is the thread that runs through all our programs and that the DOD must shift

its approach towards software development (Kelman, 2018). Agile and DevSecOps

facilitate getting software to the fleet quickly and securely. Ellen Lord said,

9

I believe we are at an inflection point in terms of doing things differently.
We are pivoting from the traditional waterfall software development
methodology to agile and DevOps. So, we are coding every day, testing
every night. (Kelman, 2018)

The DOD has investigated the best software development practices for years with

little improvement in the practices used by the DOD. However, in recent years, there has

been a strong focus on modernization. The Fiscal Year (FY) 2018 National Defense

Authorization Act (NDAA) directed the Secretary of Defense to task the Defense

Innovation Board “to undertake a study on streamlining software development and

acquisition regulations” (DIB, 2019). Most recently, the Department launched a joint

program with the Under Secretary of Defense (Acquisition and Sustainment), the DOD

CIO, the Air Force, DISA and the Services called the DOD Enterprise DevSecOps

Initiative (Air Force, n.d.). As the lead on this initiative, the Air Force launched multiple

software factories in Colorado, Boston (called Kessel Run), and throughout the United

States in order to provide tools, platforms, and services to revolutionize software

development within the DOD.

The DOD will benefit from the ability to develop software quickly and internally

since software powers all our systems. It is not only a vital part of our business systems,

but it is ingrained in our command and control, aircraft, and weapons. While developing

software is not a core competency of the military, the functions that IT and software provide

are critical to the DOD’s core competencies. Software is a key enabler to maintain the

United States military’s competitive advantage over our adversaries, whether it is the

software-intensive F-35 or less intensive manpower applications.

Software is the foundation for DOD’s competitive advantage and that gap is

shrinking as countries like Russia and China pour money into the quests for technological

advantages. The United States military’s technological advantages define its competitive

advantage throughout the world. Figure 1 demonstrates the rise of software in DOD’s

aircraft. This same graph could apply to the business and enterprise systems. The internal

development of software and utilizing partnerships with industry, like Kessel Run, will

maintain this competitive advantage. The IS infrastructure flexibility being the ability to

make existing, new and packaged software applications come together successfully (Byrd

10

et al., 2004). Software provides the instructions to applications that input, process, store

and control the activities of the information systems (IS).

Figure 1. DOD Line of Code Progression. Source: DOD (2018c).

SOFTWARE DEVELOPMENT METHODOLOGIES

There is a multitude of different software development methodologies. The DOD

recognizes that the waterfall method is not compatible with all software. It is a suitable

method for acquiring large programs, like ships and vehicles, that have a defined criterion

from the beginning that is unlikely to change. As far back as the 1980s, the DOD has

initiated research projects into how to adjust software acquisitions, as well as implement

better software development methods. Until recently, these studies lacked action. Industry

adopted agile approaches many years ago and companies like Amazon, Facebook, and

Netflix have reaped the benefits of fewer defects, faster delivery and lower costs (Rigby et

al., 2018). A study conducted by the Standish Group of IT projects between 2013 and 2017

11

found that Agile projects were about twice as likely to succeed and one-third as likely to

fail as Waterfall projects (Mersino, 2018).

1. Waterfall

The Waterfall methodology is the traditional software development methodology

that follows a sequential process (Mahalakshmi & Sundararajan, 2013). It was adopted

from the traditional hardware strategies adopted in the 1970s (Ragunath et al., 2010).

Ironically, the waterfall process in software development was an idea from William Royce

about how it is a flawed software development process (Ragunath et al., 2010). Generically,

it is a sequential five-step process. The five steps are plan, build, test, review, and deploy.

Figure 2. Waterfall Process. Source: Pace (2019).

The planning phase begins with requirements gathering. When the requirements are

unlikely to change and clearly defined, the waterfall method is preferred. It is fairly

resource light and easier to implement due to its sequential nature (Mahalakshmi &

Sundararajan, 2013).

Due to the linear sequentially, the requirements phase must be robust in order to

account for all the necessary features since changes are not accepted in the waterfall process

(Mahalakshmi & Sundararajan, 2013). Some testing happens after each phase; however,

the robust testing does not happen until the fourth phase since working software is not

produced until late in the life cycle (Ragunath et al., 2010). This is problematic since costly

and repairable errors that happen early are not caught until near the end (Mahalakshmi &

Sundararajan, 2013). It also adds a high amount of risk and uncertainty (Ragunath et al.,

2010). As a project progresses without testing and with possible bugs, it makes it more

12

difficult and costlier to find and fix since it was programmed potentially months before it

was identified. Not to mention, if not all the defects are found, users are left with a faulty

product and must endure long cycle time to receive an updated, coherent, and capable

product. Sequential phases provided little room for customer feedback, which is the

advertised improvement of agile methodologies.

2. Agile

In 2001, a group of 17 software developers collaborated in Utah to write the Agile

Manifesto (Beck et al., 2001). It defined four values and 12 principles that encompassed a

new way of developing software (Beck et al., 2001). It focused on the customer’s needs as

well as the ability to accept changes to requirements and delivering working software (Beck

et al., 2001). It attempted to create a new development method that replaced the waterfall

method’s shortcomings. The values of the Agile Manifesto are:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan (Beck et al., 2001)

The Agile Methodology relies on an iterative approach that delivers usable software

to the customer to provide feedback in order to incrementally deploy the application (Beck

et al., 2001). It deploys completed code in iterations then applies customer feedback for

the next iteration. In Agile, communication with the customer is key as they provide often

and frequent feedback to the developers (Beck et al., 2001). It is a more responsive

development methodology that allows the organization to maintain relevance in a

constantly changing IT environment. In conjunction with the four values, these initial

twelve principles started the Agile movement (Beck et al., 2001):

1. [The] highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

13

5. Build projects around motivated individuals. Give them the environment
and support they need and trust them to get the job done.

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The sponsors,

developers, and users should be able to maintain a constant pace
indefinitely.

9. Continuous attention to technical excellence and good design enhances
agility.

10. Simplicity--the art of maximizing the amount of work not done--is
essential.

11. The best architectures, requirements, and designs emerge from self-
organizing teams.

12. At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

The Agile values and principles can be applied to many different organizations.

They are appropriate guiding lights for general customer interactions and all business;

however, their focus is on software. To that end, it is important to note that the Agile

method is not the ideal method for software in all cases. Every software organization must

evaluate themselves and understand their abilities in order to determine the right software

development methodology for their service or application and their organization.

3. Extreme Programming

Extreme programming (XP) is one of the most popular agile methods. XP aims to

produce higher quality software and a higher quality of life for the development team

(Agile Alliance, n.d.). It focuses on the roles of customer, manager and programmer and

outlines responsibilities for each of them (Anderson et al., 2001). The values of simplicity,

communication, feedback, and courage are the foundation for the way the “XP Teams”

conduct their work.

a. The XP Team

The XP team consists of the customer, the programmer, and the manager. The

customer describes the user stories, the priority of work, and determines the criteria for

acceptance. The preference is that the customer is on-site so that issues are resolved quickly

and with less ambiguity. The customer can be one individual or a team of people. It is just

14

critical that they have an in-depth knowledge of the future system and its expected

functionalities.

The programmers analyze, design, test, program, and integrate the system

(Anderson et al., 2001). The XP programmers’ job is to transform the user stories into one

coherent, functional program that meets the customers’ business needs and values

(Anderson et al., 2001). A user story is essentially a requirement written in natural language

of what the customer expects the system to do. The programmers write the code in pairs

from the same machine in order to develop more code of better quality. This also allows

them to switch off when one programmer gets tired and ensures that two people understand

the code for a specific story.

The manager’s function is to eliminate distractions for the programmers and very

focused on the management of the project (Anderson, 2001). This person facilitates formal

engagements between the customer and programmers in order to provide status updates,

bring in new user stories, and manage relationships between the programmers working

together, and the teams. This role is vitally important for the maintenance of the computers,

the updates to the systems, and effectively designing the workspace. Ultimately, the

manager coordinates activities, reports results, and always removes obstacles (Anderson,

2001).

b. How XP Works

XP relies heavily on customer involvement. The customer writes the user stories

that define business value and then the programmer builds that. In a user story, the customer

explains the features and functionality they want the system to accomplish. One of the key

tenants of XP is communication so the process is a little more sophisticated. The customer

defines value, then the programmer estimates the cost of the work which allows the

customer to determine the appropriate action before the programmer begins coding that

story (Anderson et al., 2001). The customers and programmers are highly dependent on

each other.

15

Figure 3. Improved Extreme Programming Cycle. Source: Anderson

et al. (2000).

XP functions on two sprints to deliver a minimum viable product. After the above

analysis of the entire project, the customer determines the most valuable features to be

developed first. The programmers decompose the chosen stories into tasks and develop test

cases in order to determine completion. The stories consist of two weeks, so the

programmer has control over the scope and that timeline allows the programmer to make

accurate estimates of completion (Anderson et al., 2000). This is in line with the principles

of communication, simplicity, and feedback.

By incorporating testing into the process early it ensures the programmers

remember the work they did and can quickly fix any problems. This provides immediate

feedback and serves as a progress report. The important measure is not how many stories

are complete but rather how many are functioning and passed testing. At the end of the

two-week iterations, functioning code is released in order to give the customer a useful

subset of the overall product (Anderson et al., 2000). This is assisted by continuous

integration. As code passes testing, it is integrated early and often in order to avoid a large

integration of all the programmer’s code, but also to ensure everyone is working on the

most recent code.

c. Principles

For practitioners looking to implement XP, the rules are simply stated in twelve

rules (Beck, 1999).

16

1. The planning game: At the start of each iteration, customers, managers,

and developers meet to flesh out, estimate, and prioritize requirements for

the next release. The requirements are called “user stories” and are

captured on “story cards” in a language understandable by all parties.

2. Small releases: An initial version of the system is put into production after

the first few iterations. Subsequently, working versions are put into

production anywhere from every few days to every few weeks.

3. Metaphor: Customers, managers, and developers construct a metaphor, or

set of metaphors after which to model the system.

4. Simple design: Developers are urged to keep design as simple as possible,

“say everything once and only once.”

5. Tests: Developers work test-first; that is, they write acceptance tests for

their code before they write the code itself. Customers write functional

tests for each iteration and at the end of each iteration, all tests should run.

6. Refactoring: As developers work, the design should be evolved to keep it

as simple as possible.

7. Pair programming: Two developers sitting at the same machine write all

code.

8. Continuous integration: Developers integrate new code into the system as

often as possible. All functional tests must still pass after integration or the

new code is discarded.

9. Collective ownership: The code is owned by all developers, and they may

make changes anywhere in the code at any time they feel necessary.

10. On-site customer: A customer always works with the development team to

answer questions, perform acceptance tests, and ensure that development

is progressing as expected.

11. 40-hour weeks: Requirements should be selected for each iteration such

that developers do not need to put in overtime.

17

12. Open workspace: Developers work in a common workspace set up with

individual workstations around the periphery and common development

machines in the center.

4. Scrum

Scrum is another agile framework within which people address complex adaptive

problems, while productively and creatively delivering products of the highest possible

value (Schwaber & Sutherland, 2017). First described in 1996, even before the Agile

Manifesto, it adopts its name from Rugby. Scrum is based on empiricism, or that

knowledge comes from experience and making decisions based on what is known

(Schwaber & Sutherland, 2017).

Three pillars lay the foundation for the Scrum teams. The three pillars are

transparency, inspection, and adaptation. Transparency is ensuring all observers share a

common understanding throughout the project that includes using a common language and

understanding the end state (Schwaber & Sutherland, 2017). Inspection is frequent and

deliberate in order to detect undesirable variances (Schwaber & Sutherland, 2017).

Adaption is quickly adjusting errors in order to decrease the chance of further deviating

from the intended outcome. Scrum team members are encouraged to live by the five Scrum

values of commitment, courage, focus, openness, and respect.

a. Scrum Artifacts

In order to make sense of the team composition and how the Scrum works, it is

important to understand some of the “Scrum” specific terms.

• Product Backlog: An ordered list of everything that is known to be needed

in the product. The requirements that are initially known and best

understood become the earliest project developments. It evolves as the

project evolves. The product backlog lists all the features, functions,

requirements, enhancements and fixes that must be made for future

releases. Multiple teams work on one product backlog.

18

• Sprint Backlog: Are subsets of the Product Backlog that are selected for a

specific Sprint. It includes a plan to deliver the product increment and the

work necessary to deliver a finished increment.

• Sprint: This is the heart of the Scrum. It is a one-month or less period that

a releasable product increment is created. Sprints are continuous and are

composed of an ecosystem of Sprint specific tasks, like sprint planning,

Daily Scrums, Sprint reviews and the sprint retrospective. During the

Sprint, no changes are made that might affect the sprint goal. Changes are

generally saved for a later sprint.

• Daily Scrum: A 15-minute meeting at the beginning of every day that

outlines the Development Team plans for the next 24-hours and highlights

what was accomplished the day before (Schwaber & Sutherland, 2017).

b. The Scrum Team

The Scrum Team consists of a Product Owner, the Development Team, and a

Scrum Master. These are cross-functional teams that are self-sufficient. The Product Owner

is responsible for managing the Product Backlog and prioritizing the items within it

(Schwaber & Southerland, 2017). The Development Team is composed of the

professionals who deliver the work at the end of each Sprint. The Development Team self-

organizes into teams to accomplish the coding, testing, and business analysis (Schwaber &

Sutherland, 2017). A team size between four and eight members is preferred. The Scrum

Masters are responsible for the success of all the other teams by coordinating actions and

increasing the efficiency, effectiveness, and productivity of the other two teams.

c. How Scrum Works

During the Daily Scrum, the Development Team reviews progress and determines

its goal for the day (Schwaber & Sutherland, 2017). All the requirements and features start

in the Product Backlog until Sprint Planning. During Sprint Planning, which is a maximum

of eight hours, the Scrum Team determines the functionality that will result from the

upcoming Sprint and how they are going to accomplish the work. As specific features are

19

selected for the upcoming iteration, they are placed in the Sprint Backlog and assigned to

a team. Then during the Sprint, the Development Team completes its incremental

contribution to the final product.

Figure 4. Scrum Process Graphic. Source: Scrum Process (2009).

At the end of a Sprint, a Sprint Review is held to inspect the increment and adjust

the Product Backlog (Schwaber & Sutherland, 2017). This informal meeting is to discuss

lessons learned, readjust the target delivery dates if necessary, and review the way forward.

The outcome is an adjusted Product Backlog to prepare for the next Sprint Planning

meeting/Sprint (Schwaber & Sutherland, 2017). The Sprint Review is boxed by a

maximum duration of four hours. A Sprint Retrospective occurs in order to inspect intra-

team dynamics, such as relationships, process, and tools in order to improve for next time.

This is a formal event that lasts no longer than three hours (Schwaber & Sutherland, 2017).

Scrum is very timeline oriented. All the meetings have maximum duration times.

Even once the Sprint begins, its duration is fixed and cannot be shortened or lengthened

(Schwaber & Sutherland, 2017). Scrum strives to create regularity and to minimize the

need for meetings (Schwaber & Sutherland, 2017). When the meetings have reached the

end of their utility and the intent of the meeting is achieved it should end so that there is no

waste in the process (Schwaber & Sutherland, 2017).

20

5. DevSecOps

In recent years, DevSecOps is one of the most highly adopted software

development methodologies, a truncation of development, security, and operations. The

term first appeared in a blog by a Gartner vice president, Neil MacDonald. He stated that

the root cause of most of the downtime in the system is due to breakdowns in

communication and process errors between the development, operations, and security

teams (MacDonald, 2012). The overarching idea behind this method is to balance the need

for speed and agility with the need to protect critical assets, applications, and services

(MacDonald, 2012). Security tends to pull in the opposite direction of speed and agility so

DevSecOps seeks to build it into every stage and incorporate it into the framework itself

(Winder, 2018). There is not one single definition of DevOps; however, the authors of

What is DevOps? from Amazon Web Services (n.d.) defined it as

DevOps is the combination of cultural philosophies, practices, and tools that
increases an organization’s ability to deliver applications and services at
high velocity: evolving and improving products at a faster pace than
organizations using traditional software development and infrastructure
management processes.

DevSecOps is one of the more challenging methodologies to implement due to the

significant cultural shift it requires. DevSecOps is not simply adopting a different method,

as in adopting scrum from waterfall. It involves members from the development security,

and operations teams to create one team with a focus on security early and often. This new

dynamic adds complexity to the transition due to the new interpersonal interactions

between the members. Generally, friction occurs with DevSecOps because the security

team often says “No,” due to security concerns, the operations team strives for stability and

are reluctant to make changes, and the development team desires to code fast and deploy

frequently to satisfy customer needs (Carter, 2017). The culture must transition to one that

is characterized by a high degree of collaboration across roles and that is focused on

business objectives instead of departmental objectives (Coyne & Sharma, 2015). A primary

focus must be on the social engineering aspect and creating teams that will work well

together (Coyne & Sharma, 2015).

21

DevSecOps is incorporating security into the software development life cycle from

the requirements gathering phase. This type of DevOps requires secure coding practice and

security testing from the beginning of the life cycle in order to build it into the application.

A prevalent bad practice is “testing in security” by adjusting the code if it fails a specific

test (H. Pace, PowerPoint slides, 2019). DevSecOps makes security the responsibility of

the development team and the operations team, not just the security team.

DevSecOps attempts to cover for the shortfalls of the traditional and well-

established methodologies. According to Francis Raynaud, a leader of DevSecOps and the

founder of the DevSecCon, the traditional methods treat security like “a bolt on” at the end

when the product is close to delivery (Carter, 2017). DevSecOps is about teaching coders

to code securely instead of merging security into already developed code (Carter, 2017).

As new systems are developed, security is often misunderstood or ignored for more high-

profile requirements like system availability or the correctness of software systems (Cois,

2014). In a DevSecOps software development life cycle, security is a fundamental

requirement from the beginning (Cois, 2014).

a. How DevSecOps Works

Organizations that implement DevSecOps are relying on individuals to create

cross-functional teams that work closely together to develop their product and removing

silos. DevSecOps creates a shift towards “collaboration between development, quality

assurance, and operations” (Ebert et al., 2016). Amazon Web Services (n.d.) described how

DevSecOps work as:

Under a DevOps model, development and operations teams are no longer
“siloed.” Sometimes, these two teams are merged into a single team where
the engineers work across the entire application life cycle, from
development and test to deployment to operations, and develop a range of
skills not limited to a single function.

The DevSecOps software life cycle is comprised of nine steps as opposed to the

traditional five steps of requirements gathering, design, coding, testing, and

implementation. The DevSecOps approach is phased between plan, develop, build, test,

release, deliver, deploy, operate, and monitor (DOD, 2019). This is through a fully

22

automated process or semi-automated process in order to allow continuous integration and

continuous delivery (CI/CD) (DOD, 2019). Continuous integration is the practice of

merging the developers’ code into the main branch or a central repository after which build

and tests are run, whereas continuous delivery is ensuring the code is ready for release at

any time (Pittet, n.d.). These are not linear steps but rather in parallel or simultaneously

accomplished through the build process. DevSecOps strives to test and integrate the

software early and often. With more frequent releases, DevSecOps is adaptable and can

fluidly adjust based on customer feedback between iterations as necessary.

Figure 5. DevSecOps Process. Source: DOD (2019).

DevSecOps relies on heavily automated techniques to implement, maintain, and

monitor the status of the project. Automation during the build and release stages is

important as it minimizes human interaction with the software that might cause avoidable

errors (Cois, 2014). In contrast to the traditional, siloed environments of the past,

DevSecOps leverages CI/CD. Continuous integration (CI) is the process of building and

testing software continuously and each time a change is made (Cois, 2014). Continuous

deployment (CD) is an uninterrupted process that deploys live software to the production

environment (Cois, 2014). Instead of developers releasing software on a schedule or during

assigned product release dates, the software is now deployed continuously as part of the

process.

23

One of the goals of DevSecOps is to react quickly and make changes more rapidly,

which amplifies the customer feedback loop (Coyne & Sharma, 2015). When all the

systems involved in DevSecOps work in concert with each other it provides the

stakeholders and customers continuous, real-time information on the status of the project

(Cois, 2014). To support this communication, DevSecOps releases a minimum viable

product (MVP) which is the first point at which the code can do useful work and when

feedback is gathered in order to support the refinement of certain features (DIB, 2019). An

example of an MVP might be 25% of the fully completed application that contains 80% of

the features. This provides the customer with a functioning application to request updates

or approve the current design. Coyne and Sharma (2015) identified the feedback loop as

one of the principles of DevSecOps and in order to successfully react, organizations must

have a responsive feedback mechanism and then learn rapidly in order to improve the next

iteration. This idea is consistent with the Agile Manifesto principle of more information,

more often will lead to better project outcomes (Cois, 2014).

The release of the MVP is the first time the new feature will interact with the current

environment. In the traditional method by waiting until the end to implement the complete

package of software, there are fewer options to reiterate and deploy an improved package.

This problem is enhanced when security is bolted on at the end instead of thoughtfully

incorporated throughout the life cycle. DevSecOps combats this through the “shift-left”

principle.

Figure 6. Shift-left Mentality. Source: DevOps for Dummies (2015).

24

One DevSecOps principle is to develop and test against production-like systems.

This is the “shift-left mentality” which moves operations earlier in the development life

cycle (Coyne & Sharma, 2015). For development and quality assurance, the goal of “shift-

left” is to test early and often through automation in order to identify issues before

deployment. By shifting left, the application is tested in a similar environment and the

delivery process is validated upfront (Coyne & Sharma, 2015). For the operations staff, the

shift-left principle allows them to observe how the environment supports the application

and fine tune the environment to better support it. Continuous deployment supports the

shift-left principle by eliminating surprises for the operations team by providing

predictable, low-risk releases of validated highly-quality software (Cois, 2014). Containers

and microservices facilitate the “shift-left” mantra by providing more reliable code through

smaller scale iterations and a consistent software environment throughout the SDLC.

b. DevSecOps Tools

DevSecOps provides solutions for many of the shortcomings of traditional software

development approaches but it requires specific procedures in order to be successful. Due

to the error-prone nature of manual processes in addition to the waste and delayed

responses, an organization must commit to the automation required in DevSecOps (IBM,

2013). Automation enables the CI/CD pipeline that provides DevSecOps it’s speed and

agility.

One such tool is the use of containers. Containers solve the issue of getting the

software to run reliably between computing environments, for example, from the staging

environment into production (Rubens, 2017). A CIO article (2013) explains how containers

solve this issue:

Put simply, a container consists of an entire runtime environment: an
application, plus all its dependencies, libraries and other binaries, and
configuration files needed to run it, bundled into one package. By
containerizing the application platform and its dependencies, differences in
OS distributions and underlying infrastructure are abstracted away.

Containers provide a consistent environment from testing to final production and

deployment (Surianarayanan et al., 2020). Containers are similar to virtualization;

25

however, virtualization is “heavier” as it contains a guest operating system (OS).

Contrasted with virtualization, containers are more lightweight and use fewer resources

(Rubens, 2013). Another benefit of containerization is that it allows for greater modularity

(Rubens, 2013). An entire application does not need to be run in one container. It can be

split into modules that are easier to manage since each module is relatively simple and the

changes can be made without rebuilding the entire application (Rubens, 2013). This is

called the microservices approach.

Figure 7. Containers versus virtualization. Source: Docker (2020).

In 2011, Martin Fowler documented the term “microservices (Surianarayanan et

al., 2020). According to Fowler, microservices consist of “suites of independently

deployable services” organized “around business capability and automated deployment”

(Surianarayanan et al., 2020 p. 30). The main goal of the microservices architecture (MSA)

is “to achieve easy maintenance, quick software development with frequent deployment,

short development cycles, and continuous delivery” (Surianarayanan et al., 2020, pp. 36–

37). Further, microservices are small applications that can be deployed, scaled, and tested

independently and they are usually organized around a single business activity (Thones,

2015). Microservices are an enabler of DevSecOps.

Deploying software is a modular approach in contrast to a monolithic architecture

where all the features are deployed as one component. The main idea is that an application

that is partitioned into smaller microservices is easier to build and maintain

26

(Surianarayanan et al., 2020, p. 33). In the preceding years of the MSA, many applications

were growing too large and were unable to be improved easily or at all. Additionally, the

more modular approach is necessary for DevSecOps because it allows for smooth

automated testing and continuous delivery (Thones, 2015). With the MSA, teams can make

updates on the same application but on different functions without coordinating as closely

due to the self-deployable nature of MSA. In the traditional monolithic method, although

teams work on different functions, they are not all independent and they require close

coordination (Surianarayanan et al., 2020, p. 37). A change in a monolithic application

cannot go to deployment until all teams are ready due to the tight coupling among modules

(Surianarayanan et al., 2020, p. 37). This inhibits automated testing and CI/CD. However,

with a modular microservice approach, one team’s work on a function does not affect the

other functions within the same application. This allows that portion of the application to

move throughout the SDLC when it is ready. Another benefit of the MSA is that the

application code is more reliable since it is independent and not reliant on another team’s

input (Surianarayanan et al., 2020, p. 38). This provides less chance for human error or

faulty compatibility during code mergers.

The previously discussed containers and container orchestration are one of the key

enablers of the MSA. As mentioned, virtual machines are “heavy,” so as opposed to using

them, containers are a suitable choice since they are “light.” (Surianarayanan et al., 2020,

pp. 38–39). The container’s small size, in addition to the guideline of one microservice per

container, means that deployment time will take only a few seconds since they both

consume fewer resources (Surianarayanan et al., 2020, p. 39-41). Their small size also

makes them suitable to be deployed over cloud resources (Surianarayanan et al., 2020, p.

41). Microservices enable cloud adoption using containers since they can both scale

up/down easily at the service level to make them more responsive (Surianarayanan et al.,

2020, p. 56). Combined with event-driven computing, the idea that resources need to scale

based upon an event, potentially an influx of customers on a site, the cloud and

microservices combination can quickly provision and adjust the appropriate amount of

resources (Surianarayanan et al., 2020, p. 56). The independent scaling of individual

microservices also make it appropriate for developing web applications (Surianarayanan et

27

al., 2020, p. 56). This combination of microservices and containers provide an appropriate

style for developing agile and secure applications with DevSecOps (Surianarayanan et al.,

2020).

MSA is not a panacea for all software development organizations and must still be

investigated in order to determine if it is the right approach. While it can enhance an

organization’s ability to transition to DSO, there are also drawbacks that limit its utility.

By nature of employing microservices, it breaks down a larger application into smaller

components, which adds complexity in the form of managing many different microservices

(Surianarayanan et al., 2020, p. 45). The ease of building a less complex monolithic

application into smaller pieces inherently adds more “pieces” one must maintain. Although

they are easier to update and deploy, the developers must be cognizant of the services’

ability to interact with all the other possible configurations and services (Surianarayanan

et al., 2020, p. 45). These unforeseen and untested configurations add vulnerabilities.

Although, the code is more reliable due to fewer developers working together on it, when

the entire application comes together it may create opportunities to penetrate the system

(Surianarayanan et al., 2020, p. 45).

There are trade-offs to employing a microservice architecture, especially for older

organizations that must refactor their legacy applications. However, there is an increasing

demand to become agile and to release continuously and deploy frequently. Due to some

of the drawbacks mentioned previously, implementing MSA adds significant overhead and

operational complexity at a service level, vice developer level. At the developer level, it is

advantageous since there is increased freedom and ability to deploy independent of other

teams (Surianarayanan et al., 2020, p. 37). Developers can also mix languages and

frameworks, however, when an interconnection is necessary, the problem becomes

complex and expensive to integrate one service with another (Surianarayanan et al., 2020,

p. 58). It involves significant overhead and planning. MSA involves a high-speed network

since the service will have strong boundaries between services. Monolithic applications are

tightly coupled so the performance will be better in low bandwidth, high latency networks

(Surianarayanan et al., 2020, p. 57). A specific concern to an organization that relies on

databases, is that they must be decentralized databases in order to effectively employ

28

microservices due to the independence of the services and the strong boundaries between

them (Surianarayanan et al., 2020, p. 57). It will take time to update all the databases unlike

in monolithic applications where a change in a database is reflected across the application

immediately (Surianarayanan et al., 2020, p. 57). Due to the nature of these problems, the

expertise of management is important. The authors of the book, Essentials of Microservice

Architecture recommend a DevOps culture due to the new skills and tools needed that

involve reliance on automation and collaboration between the developers and security and

operations personnel.

D. SOFTWARE DEVELOPMENT TOOLS

This section will provide a brief overview of the basic content creation tools used

in software development.

• Integrated development environment (IDE) is the content creation tool

developers spend most of their time with. It is a software application that

consists of a suite of different functions such as source code editor,

debugger, and compiler. Some IDEs are catered to specific programming

languages. Examples of IDEs include Visual Studio, Eclipse, and IntelliJ

IDEA.

• Version control tool is used to track and document changes to the source

code. It is a must for developers working in teams to ensure developers are

working on the same version of the code. Commonly used version control

software includes Git, GitLab SCM, and Apache Subversion.

• Configuration management tool is like version control except it is used to

track and document software builds along with changes to the

development environment. It is used to ensure consistent deployment.

Automated configuration management is an essential tool to form a CI/CD

pipeline for DevOps and DevSecOps. Examples include Jenkins,

CFEngine, and Ansible.

29

• Vulnerability scanners and code analyzers are tools used to test codes for

potential and known issues. Some of these tools are used on static codes

while others are used while the codes are being executed (dynamic).

Examples of vulnerability scanners and code analyzers include Fortify,

FindBugs, and SonarQube.

E. PERFORMANCE METRICS OF SOFTWARE DEVELOPMENT

There are different aspects of software measurement. The two main classifications

of software measurement are product and process (Misra & Omorodion, 2011). The goal

of these metrics is “identification and measurement of the essential parameters that affect

software development” (Misra & Omorodion, 2011) so better decisions can be made. These

measurements attempt to measure performance through different frameworks and

indicators, quantitatively and qualitatively. Broadly speaking, projects are often measured

by profitability through their Return on Investment (ROI). A profitability metric, such as

ROI, is not always the best measurement of performance, especially in a non-profit

organization such as the DOD. The cost and profitability of software are perhaps not the

best indicators for software development in the DOD. A better way to measure the

performance of software development would be through efficiency or productivity.

Different development methodologies use different metrics to measure

productivity. There is no set list of standard metrics, therefore the metrics used in DOD’s

Agile Metrics Guide will be covered here. For Agile, these metrics are (DOD, 2019c):

• Story points measure the complexity of a story. This unit of measurement

is the building block that allows a team the ability to estimate how much

effort is required and how much work can be completed within a given

sprint or release. This unit of measurement varies from team to team.

• Velocity measures the amount of work a team completes in each sprint or

release. This measurement can be represented by units such as Story

Points, hours, etc.

30

• Velocity variance is the standard deviation from average velocity. It shows

the difference from the average.

• Velocity predictability is the difference between planned and completed

velocity, or the difference between planned and completed story points.

• Story completion rate is the number of stories completed in each sprint or

release.

• Spring burndown chart is used to estimate the work completed daily,

usually in hours. The chart can be used to generate an estimated

completion date based on the current work pace.

• Release burnup is a chart that measures the amount of work completed

based on the total amount of work planned for a given release. This chart

is used to estimate whether the team is on track.

• Cumulative flow diagram (CFD) depicts the flow of work through a

process by keeping a cumulative count of the number of items at each step

in the process.

For DevSecOps, metrics are used to provide insight into the delivery pipeline. These

metrics include (DOD, 2019c):

• Mean time to recovery (MTTR) measures how quickly a system or

solution can be restored to functional use after a critical failure.

• Deployment frequency provides information on the cadence of

deployments in terms of time elapsed between deployments.

• Lead time measures how long it takes to deliver a required solution.

• Change fail rate measures the percentage of changes to production that

fail.

31

These performance metrics are here to help managers make better decisions that

will enable faster software delivery. Managers should also note that “there is no tradeoff

between improving performance and achieving higher levels of stability and quality.

Rather, high performers do better at all these measures” (Forsgren et al., 2018).

F. ORGANIC DEVELOPMENT

Literature shows that mass customization and time-to-market are enablers of

sustained competitive advantage (Byrd, 2001). Mass customization is delivering a

customer’s need in a cost-effective way (Byrd, 2001). It is a dynamic process in that it does

not require the same sequence for every deployment and is customer focused. It uses “pre-

engineered modules” and configures them however is necessary for the specific project or

customer. In software, mass customization is analogous to incremental and iterative

development that relies on customer feedback. An aspect of agile development is common

code repositories that are available for use on other projects. When and how they must be

used is not defined but access to these repositories saves developers from writing the same

code twice.

In software development, time is a critical piece of the puzzle, whether the project

is on schedule is critical but equally important is whether what is being developed is still

relevant and what the warfighter needs. In software development, time is also critical in

that it must fill a capability or security gap quickly before an adversary can exploit it. Byrd

describes time as time-to-market and delivery performance. Time-to-market refers to the

time between requirements gathering and a minimum viable product. Delivery

performance is the ability to deliver the product faster than competitors or in the military’s

case, faster than adversaries can exploit the vulnerability and its relevancy. Mass

customization is important within time-to-market, especially for industries with

customized products, like DOD (Byrd, 2001). Shorter product development and delivery

provide a strategic advantage (Byrd, 2001).

Developing software organically will enhance our ability to produce mass

customized software and more closely control the product delivery time with the goal of

sustaining our competitive advantage. Internal development may also decrease the time-

32

to-market as these software factories, like Kessel Run, can iteratively develop and deploy

rapidly, instead of relying solely on contractors and the software acquisition process. The

ultimate benefit is that internal software development is an enabler of the military’s core

competencies that create a sustained competitive advantage (Byrd, 2001).

Figure 8. Sustained Competitive Advantage Map. Source: Byrd

(2001).

The DOD’s software acquisition process is antiquated and is unable to maintain

pace with the current software demands. With the right level of authorization and coding

talent in the Defense Department and working side by side with the DOD, the warfighter

will receive software updates within minutes to days instead of months or years. DOD

hardened software factories provide tremendous cost and time savings. A McKinsey study

that reviewed 5,400 IT projects found that 66 percent were over budget, 33 percent

experienced a schedule overrun, and 17 percent did not meet the expected benefits (Bloch

et al., 2012). This can no longer be the status quo for the DOD as our adversaries will

exploit our vulnerabilities.

Agile methodologies, like DevOps, provide an opportunity to improve the DOD’s

software, as well as prevent program cancellation. The ability to develop the software

internally using an agile approach will allow the user to interact with a functional product

33

to provide feedback that will improve the quality. This interaction also provides real-time

status and metrics of software completion since there is a live version. Agile developers

use a myriad of tools that add security, flexibility and efficiencies into the process.

G. CLOUD MIGRATION

1. Policies and Directives

In alignment with the federal government’s IT infrastructure consolidation efforts,

the DOD Cloud Strategy, signed off by the Deputy Secretary of Defense in December

2018, aims to use the cloud to further reduce the amount of data centers, increase security

posture through integrated Defensive Cyber Operations, and provide rapidly deployable

common services (Department of Defense [DOD], 2018a). In July 2018, the DOD released

the final Request for Proposal for an enterprise-wide cloud called Joint Enterprise Defense

Infrastructure (JEDI) Cloud (DOD, 2018b). JEDI is a $10 billion cloud contract that would

overhaul DOD’s IT infrastructure over a period of 10 years, if all contract options are

exercised (DOD, 2019b). The solicitation called for Infrastructure as a Service (IaaS) and

Platform as a Service (PaaS) for both classified and unclassified systems (DOD, 2018b).

In October 2019, the JEDI contract was awarded to Microsoft, however, this decision is

being challenged by Amazon Web Services due to alleged political bias and intervention

(DOD, 2019b; Dastin, 2020).

2. Cloud Characteristics and Benefits

The drivers behind cloud migration are fueled by the essential characteristics of

cloud computing: on-demand self-service, broad network access, resource pooling, rapid

elasticity, and measured service (Mell & Grance, 2011).

• On-demand self-service allows customers quick access to computing

resources they need without having to go through human channels.

• Broadband network access allows customers access to their contents

through a variety of computing platforms such as mobile phone, tablets,

laptops, and workstations.

34

• Resource pooling is a way for the provider to combine their computing

resources to serve multiple customers thereby managing their resources

more efficiently.

• Rapid elasticity allows swift allocation of resources based on customer

demands. This allocation process is often automatic and appears seamless

from the customer’s perspective.

• Measured service is similar to utilities monitoring. The customer’s

resource usage such as storage, processing, or bandwidth, can be

monitored, controlled, and reported. The customer would only be billed

based on their usage.

These characteristics offer organizations the benefits of efficiency, agility, and

innovation (DOD, 2012). Organizations can cut the cost and time of building and

maintaining their own data centers and instead use those resources to focus on their

businesses (Hochstein et al., 2011). As the machine learning and AI fields continue to

grow, cloud computing also enables organizations to conduct big data analytics by

accessing and paying for large computing resources on an as-needed basis. The DOD plans

on using the characteristics of cloud computing for objectives such as enabling exponential

growth, enabling AI and data transparency, and extending tactical support for warfighters

at the edge (DOD, 2018a). Although not mentioned in the article, the cloud enables

software development through a flexible, cost-efficient, and collaborative environment.

3. Cloud Service Models

Cloud service models are the level of service the customers choose that meet their

needs. The service models, as defined by National Institute of Standards and Technology

(NIST), are Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software

as a Service (SaaS). The three service models offer various levels of capability to the

consumers (Mell & Grance, 2011).

35

• IaaS provides the fundamental computing resources to the consumer while

allowing the consumer to maintain control over operating systems and

applications.

• PaaS includes services provided by IaaS with the addition of operating

systems, leaving the control of deployed applications to the consumer.

• SaaS provides all the services included with IaaS and PaaS, leaving the

consumer with the decision on the types of applications required.

Figure 9. Cloud Service Models. Source: Hou (n.d.).

The DOD is currently focused on IaaS and PaaS due to the flexibility of running

various existing applications. Other cloud service models are emerging as cloud computing

grows and evolves. One service model, Data as a Service (DaaS), has potential interest for

the DOD as an on-demand access to big data for analytic purposes due to its ability to

standardize the massive amount of existing data to make DOD information visible and

accessible to all authorized users (DOD, 2012). Another up and coming service model of

interest is Containers as a Service (CaaS). CaaS would streamline the build/test/deploy

pipelines in DevOps since it allows applications to work and run as if built locally, thus

eliminating environmental inconsistencies and making testing and debugging easier (IBM,

36

n.d.). It would be a useful tool for development teams as the DOD transitions to DevSecOps

and development in the cloud.

4. Cloud Deployment Models

Cloud deployment models are defined by how the cloud infrastructure is

provisioned. Deployment models include private, community, public, and hybrid (Mell &

Grance, 2011).

• Private cloud is provisioned for the exclusive use of a single organization.

The actual ownership and management of a private cloud may fall on the

organization, a provider, or a combination of the two. The physical

location of the private cloud could be on or off the organization’s

premises.

• Community cloud is provisioned for use for a specific set of customers

with shared interests such as missions and security requirements. These

customers could be from the same or different organizations. The

ownership and management of a community cloud may fall on one or

more organizations in the community, a provider, or a combination of

above. The physical location of the community cloud could be on or off

organizations’ premises.

• Public cloud is provisioned for use by the general public. The ownership

and management of a public cloud can fall on one or more organizations.

The physical location of a public cloud is on the premises of the provider.

• Hybrid cloud is a combination of the different deployment models. The

different clouds within a hybrid cloud remain as separate entities but are

connected to allow for certain data exchange. The ownership,

management, and physical location varies depending on individual clouds

that make up the hybrid cloud.

37

DOD’s General-Purpose cloud, to be fulfilled by the JEDI contract, is likely to be

a private or community cloud used by its service components (DOD, 2018a). Its Fit-for-

Purpose clouds, fulfilled by various vendors, are likely to employ multiple deployment

models based on different requirements (DOD, 2018a). The completed DOD Enterprise

Cloud Environment would be a hybrid cloud encompassing both the General Purpose and

Fit-for-Purpose clouds (DOD, 2018a).

5. Cloud Migration Models

The two cloud migration strategies are cloud hosting and cloudification

(Mendonca, 2014). Cloud hosting is moving modified legacy applications into the cloud

(Mendonca, 2014). Cloudification is either rewrite the legacy applications from scratch or

replace the legacy applications with suitable cloud services (Mendonca, 2014). Each

strategy contains different solutions depending on the constraints of the legacy applications

and the cloud environment. Microsoft Azure narrows cloud hosting solutions down to

rehost, refactor, and rearchitect; and cloudification solutions to rebuild and replace

(Microsoft Azure, 2019; Moore, 2018).

a. Cloud Hosting Solutions

• Rehost: The legacy application is moved into the cloud without being

modified, this is also known as “lift and shift.”

• Refactor: The legacy application code is restructured and optimized for the

cloud environment without changing its external behavior.

• Rearchitect: The legacy application code is extensively modified to take

advantage of the cloud environment.

b. Cloudification Solutions

• Rebuild: The legacy application code is rewritten from scratch with the

same specifications and requirements.

38

• Replace: The legacy application is replaced with a new application with

updated requirements.

The migration of a large enterprise system, such as the DOD’s, into the cloud is

especially challenging due to its wide array of heterogeneous and complex legacy

applications and data systems (Mendonca, 2014). One of the many challenges DOD will

be facing is deciding which of the above migrating solutions to use for each of its

applications based on the characteristics of the applications.

H. SOFTWARE DEVELOPMENT IN THE CLOUD ENVIRONMENT

1. Benefits and Challenges

Traditionally, software development occurs on an offline machine. This machine

would require a dedicated physical space, access to power, and personnel to maintain it. It

would provide a fixed environment with limited resources, and developers would have to

be onsite to access it. Software development in the cloud would eliminate the need for a

dedicated physical space and maintenance crew since the development environment would

be hosted in the cloud and maintained by the cloud provider. The cloud environment would

provide developers the flexibility to customize the development environment, access to

virtually unlimited computing resources, and access to the development environment from

anywhere with an internet connection (Mall et al., 2017). Other benefits of development in

the cloud include increased data reliability, easier group collaboration, and quicker

deployment with less probability of failures (Mall et al., 2017).

The top challenges of development in the cloud environment are security risks and

giving up control of the environment over to the cloud provider (Al-Rousan, 2015).

Security risks of hosting the development environment in the cloud is a trade-off of being

able to access the development environment from anywhere with an internet connection.

Unauthorized access to the development environment can occur in situations with stolen

credentials or by cloud provider employees (Al-Rousan, 2015). Aside from the potential

unauthorized access that comes with working with cloud providers is the potential

challenge of communication between software developers and the cloud provider (Patidar

et al., 2011). The developers will have varied abilities to control the development

39

environment, including outages, depending on the chosen cloud service and deployment

model. Developers will have to communicate their desired changes to the cloud provider

for changes they don’t have access to.

2. Agile Development in the Cloud

The DOD has been locked into the traditional waterfall method of software

development for many years due to its acquisition environment. In recent years, the DOD

has taken an interest in the Agile approach to help it rapidly develop and deploy

applications. The cloud environment has shown to be complementary to Agile

development with many success stories following Salesforce’s release of their whitepaper

on their transition of moving Agile development into the cloud (Mall et al., 2017).

Salesforce’s whitepaper credited cloud computing for the elimination of inefficient

distribution requirements that can slow the Agile development process down (Salesforce,

2008). The elimination of the delay in distribution enables continuous feedback between

developers and customers leading to a significant decrease in days between major releases

and an increase in features delivered (Salesforce, 2008; Mahmood & Saeed, 2013). Other

complementary factors that cloud computing brings to Agile development include

enhanced testing support and transparency (Younas et al., 2016). Enhanced testing support

is made possible by many test servers that the cloud can support (Younas et al., 2016).

Increased transparency is achieved through capturing of shared data across the

development environment by developer services and can be used to help measure and

manage the project (Tuli et al., 2014).

I. SUMMARY

While the as-is state of software development in the DOD is concerning, it is also

optimistic. The optimism surrounding new start-up units that are born agile, like Air

Force’s Platform One and the DevSecOps Initiative, show a new appreciation for software

and the importance of getting it right. There is no one right method but the authors

highlighted multiple that are proven in industry and are most appropriate for the DOD

along with some of the tools used. Finally, the chapter concluded with describing how the

cloud initiative enables faster development to ensure the United States maintains its

40

military superiority, and the performance metrics managers could use to help steer their

development teams in delivering software faster.

41

III. RESEARCH METHODS

A. INTRODUCTION

The methodology used for this research is in the form of qualitative case studies

through interviews with developers and program managers familiar with the software

development process. Qualitative research, one of the three types of research designs, “is

a means for exploring and understanding the meaning individuals or groups ascribe to a

social or human problem,” using “open ended questions, emerging approaches, text or

image data” (Creswell, 2009). A case study is a type of qualitative “strategy of inquiry in

which the researcher explores in depth a program, event, activity, process, or one or more

individuals” (Creswell, 2009). The authors chose qualitative research design for this

research as a way to pose open-ended questions in a bid to explore and understand how

TSO and other DOD organizations are developing their software, and what TSO should do

to improve their process and evolve with the current threat landscape; hence the case study

strategy of inquiry was chosen to explore the software development methodologies at three

different DOD organizations in order to gain an understanding and compare and contrast

the development methodologies used, and recommend a way forward for TSO.

B. RESEARCH METHOD

1. Case Study

The case study method is “the preferred strategy when ‘how’ or ‘why’ questions

are being posed, when the investigator has little control over events, and when the focus is

on a contemporary phenomenon within some real-life context” (Yin, 1994). The case study

inquiry allows the researchers to capture a wider variety of variables and sources (Yin,

1994), thus allowing the researchers to interpret variables that are less tangible and harder

to measure. The case study inquiry strategy allowed the authors to ask open ended

questions on how the DOD organizations are developing their software, capturing answers

that are not easily quantifiable. This method also allowed the authors to review qualitative

documents, and audio and visual materials from the private sector, the current leader of

software development. The biggest limitation the authors encountered with the inquiry

42

strategy is the level of details some organizations are willing to divulge due to security

concerns.

2. Semi-structured Interview Questions

The semi-structured interview questions were developed with the help of the topic

sponsor. The questions focused on the processes and tools—two out of the three pillars of

software development of People, Processes, and Tools (Koch, 2009). Questions regarding

testing and plans for cloud migration were also posed. Many of these questions are

intertwined due to the interconnectedness between the development process and tools used

during the SDLC. The interviews start with a general overview of the development

methodology employed by the organization then move into processes and tools. The

questions on the development process were focused on code migration between

development, system integration testing, system acceptance testing, and production

environments. These questions answer the who, when, where, and how of code migration

between the environments. The questions on tools are partially overlapped by the how

question asked about the migration process, but with more details on what and why.

Questions on code testing dig further into both the process and tools used to accomplish

the task.

All interviews started with a general and overview questions about the organization

and the organizations it supports. The below questions are some of the questions asked by

the interviewers followed by a brief discussion about the applicability of such questions:

a. Describe Your Software Development Methodologies

Beginning with this question, respondents provided the interviewee an opportunity

to explain which common software development methodology their organization utilizes

as well as provides the composition of the team size and interactions amongst different

members of the team. It was purposefully left open-ended in order to allow the interviewee

to describe the methodology in any way they determine is appropriate. This is important as

it generally follows one of the well documented types of methodologies and allows the

interviewers to observe the methodology described in practice versus the textbook

43

definition. Follow on questions that stemmed from this response became more specific

depending on the organization.

b. Describe Your Code Migration Process

This is a process-oriented question. It is a three-part question that allows the

interviewers to explore the nuances of different organizations migration processes from

development through production. Identifying these nuances is important as it frames the

major differences in the methodologies, organizations, and is the point of focus for TSO.

The understanding of this process is critical to providing recommendations to TSO and add

value to their organization.

c. Describe Your Software Development Tool Set

As a tool-based question, it differentiates between the multitude of tools used for

version control, integrated development environments (IDE), and configuration

management. This question is designed to give perspective on the different types of tools

similar organizations to TSO use and to compare tools in order to provide alternative

options for TSO’s use.

d. Describe Your Software Testing Efforts

Testing is an important aspect of the development for both operability and security.

This question focused on the testing process provides insights of how, where, and when

the organizations test. The answers to this question are limited due to additional testing

done by security teams outside of the development teams as well as overall security

concerns. This question was emphasized due to the importance of security in DOD systems

as well as the potential to slow the development and deployment cycles.

e. Cloud Migration Efforts

As the DOD focuses on the transition to the cloud, the researchers were curious as

to how prepared the organizations were to transition and the effects of the transition on

their software development environments.

44

C. SUMMARY OF PLACES INTERVIEWED

The three DOD organizations interviewed for this research were Marine Corps

Technology Services Organization (TSO), Navy Supply Systems Command Business

Systems Center (NAVSUP BSC), and Defense Manpower Data Center (DMDC). In-

person interviews were planned prior to the start of the research, however, due to the

COVID-19 pandemic, only the interviews at TSO were conducted in person. Interviews at

NAVSUP BSC and DMDC were conducted over the phone and email.

1. Marine Corps Technology Services Organization (TSO)

TSO, located in Indianapolis, Indiana, is the Marine Corps’ in-house development

team that supports its business operations systems including, but not limited to “pay,

personnel, budget execution, orders writing, accounting and installation systems” (Marine

Corps, n.d.). It is a government-owned, government-operated organization composed of

four divisions: Marine Corps Total Force Systems (MCTFS), Marine Corps Integrated Pay

and Personnel Systems (MCIPPS), Standard Accounting, Budgeting and Reporting System

(SABRS), and Enterprise Services Division (ESD). This research is focused on the three

development divisions: MCTFS, MCIPPS, and SABRS. Each of these divisions is

responsible for a set of products. MCTFS is responsible for the integrated military pay and

personnel system. MCIPPS is responsible for Marine Online and various orders writing

systems. SABRS is responsible for SABRS and Marine Corps Financial Integrated

Analysis System (MCFIAS). Each division employs a software development methodology

that suits their needs.

2. Navy Supply Systems Command Business Systems Center (NAVSUP
BSC)

NAVSUP BSC headquartered in Mechanicsburg, Pennsylvania, is the Navy’s

provider for Information Technology/Information Management solutions in “functional

areas of logistics, supply chain management, transportation, finance and accounting”

(Naval Supply Systems Command, n.d.). BSC is a government-owned, government-

operated organization composed of seven departments: Code 91 Business Management &

Comptroller, Code 92 Logistics Solutions, Code 93 Core Business Solutions, Code 94

45

Technology Services, Code 95 Data/Analytics Solutions, Code 97 ERP Business Office &

FLC Support, and Code 98 ERP Services. The department interviewed in this research is

Code 92. They are made up of 25 to 30 application development teams and are responsible

for providing a wide variety of logistics and supply systems.

3. Defense Manpower Data Center (DMDC)

DMDC is the IT provider for Defense Human Resources Activity (DHRA), serving

under the Office of the Secretary Defense (OUSD). It provides identity management for

both past and present DOD personnel. Other than identity management, DMDC provides

a wide range of services involving personnel, manpower, training, and finance to an

extensive list of customers. Its mission can be summarized in three parts. The first is to

“collect and maintain an archive of automated manpower, personnel, training, and other

databases for the Department of Defense” (DMDC, n.d.). The second is to “support the

information requirements of the OUSD for Personnel & Readiness (P&R) and other

members of the DOD manpower, personnel, and training communities with accurate,

timely, and consistent data” (DMDC, n.d.). Lastly, to “operate DOD-wide personnel

programs and conduct research and analysis as directed by the OUSD P&R” (DMDC, n.d.).

Due to the size and variety of DMDC’s portfolio, some projects are government-

owned and operated, while others are government-owned, contractor-operated.

46

THIS PAGE INTENTIONALLY LEFT BLANK

47

IV. ANALYSIS

A. INTRODUCTION

This chapter will summarize the responses from the organizations interviewed on

their development methodology, code migration process, development tool set, testing

efforts, and cloud migration efforts. A discussion will follow the interviewees’ responses,

covering changes TSO could adopt to optimize its development process.

B. INTERVIEWEE RESPONSES

1. TSO

a. Development Methodology

Each of TSO’s software development branches use a development methodology

best suited to their needs. MCTFS uses an iterative method similar to the waterfall due to

the scale and use of financial and personnel data, making it an imperative to ensure the

code does what it is intended to do before being deployed to production on the mainframe.

MCTFS’ development teams are made up of a minimum of a designer, programmer, and

tester, and its teams range from 3 to 10 members. MCIPPS uses Scrum for most of its teams

with the tiger teams employing the Kanban method. The department is split 60 percent

government civilians and 40 percent contractors. SABRS uses Scrum with 4-weeks sprints

consisting of three per team. As much as MCIPPS and SABRS try to stay true to an agile

approach, there are still steps in the development process that require queuing and waiting

for an approval to move to the next step.

b. Code Migration Process

The code migration process from development to production are similar for each of

the branches with some variation on the tools used. The first environment is the

development (DEV) environment. Programmers write their code and conduct unit testing

in DEV. Once the code passes unit testing, it is promoted to the System Integration Testing

(SIT) environment to make sure it works as intended with all systems it interacts with.

From SIT environment, the code is moved to System Acceptance Testing (SAT), or User

48

Acceptance Testing (UAT) environment, for further testing and customer validation. Once

the code is ready for delivery, it is migrated to production (PROD). For each branch, once

the code is deemed ready for migration to the next environment, a work ticket is submitted

to an application administrator in the Enterprise Services Division for migration.

c. Development Tool Set

The development toolset each branch uses are more varied. MCTFS uses

mainframe specific IDEs which are Topaz workbench, IDz, and Roscoe/TSO (Time

Sharing Option). MCIPPS and SABRS uses IntelliJ IDEA, Eclipse, and Visual Studio Code

as their IDEs for their work on mid-tier servers. These are limited sets of IDEs

programmers can choose from based on their preference. MCIPPS and SABRS also use

other plug-ins and extensions with their IDEs to help streamline their work while coding.

For version control and configuration management, MCTFS uses ISPW. MCIPPS uses

Subversion for version control and Jenkins for configuration management. SABRS uses

Subversion for both version control and configuration management.

d. Testing Efforts

MCTFS conducts security testing for all its web services through ReadyAPI, and

vulnerability assessment is done by an Information System Security Officer (ISSO).

MCIPPS and SABRS developers both use HP Fortify to conduct vulnerability testing

during their development process with further assessments completed by the ISSO.

MCTFS uses manual testing for the acceptance testing and a mix of manual and automated

testing for regression and performance testing. Most of MCIPPS testing, to include unit

testing, system integration testing and system acceptance testing is conducted manually.

e. Cloud Migration Efforts

TSO is in the early phase of the cloud migration effort and is using Microsoft’s

Cloud Adoption Framework as a guideline for the migration. While TSO is planning on

using JEDI as the contract vehicle for the entire migration, it is unknown when JEDI will

become operational. In the meantime, MCIPPS is exploring different options to move their

development teams into a cloud based DevSecOps environment.

49

2. NAVSUP BSC

a. Development Methodology

The main development methodology employed by Code 92 at NAVSUP BSC is

waterfall. Some teams opt to employ Agile, Scrum, and pseudo Agile methodologies.

Pseudo Agile is a hybrid between waterfall and Agile. The waterfall teams are on quarterly

or yearly release schedule. The Agile and Scrum teams are on 3 to 4-weeks release

schedule, and the pseudo-Agile teams are on 6 to 8-weeks release schedule.

b. Code Migration Process

The code migration process at Code 92 is like the process at TSO. Once testing

criteria are satisfied in each environment, a work ticket is submitted to the operations team

at Code 94 for the code to be migrated to the next environment.

c. Development Tool Set

Code 92 uses .NET and Azure DevOps in their development tool set. The

developers use Visual Studio, JDeveloper, Eclipse, SQL Developer, and SQL Server

Management Studio (SSMS) as their IDEs. Version control is accomplished by Git and

Azure DevOps, and configuration management is accomplished with Azure DevOps.

d. Testing Efforts

Code testing in DEV, TEST, and PROD are done manually within the development

teams. User Acceptance Testing are done with the customers for big releases. Vulnerability

testing are done through HP Fortify, VS code analysis, SpotBugs, and FindBugs. Further

testing is conducted by ISSO and Information System Security Manager (ISSM) in a

separate department, Code 94.

e. Cloud Migration Efforts

Cloud migration effort is a slow process at Code 92. The department is exploring

options while keeping an eye on JEDI progress.

50

3. DMDC

At the writing of this thesis, DMDC is in the process of migrating to the cloud

environment and adopting DevSecOps. The interview gave the authors a small glimpse

into the transition process since many of the questions were considered sensitive. Overall,

the code migration process at DMDC is dependent on the underlying platform the system

is developed and its corresponding DevSecOps build pipeline. Most development tools

DMDC uses are Java-based with the main IDE being Eclipse. Source code and version

control are managed by Git and GitLab. Regarding code testing, the development teams

try to achieve an 85% code coverage during unit testing. Independent tests are also done

by quality assurance teams. Other tests and assessments are done as a part of build

pipelines.

C. DISCUSSION

The focus of software development in the DOD is providing functional, secure

software to the warfighters in a timely manner. The DevSecOps methodology is currently

the best suited methodology to accomplish that task. DevSecOps focuses on reducing the

mean time to production and increasing the deployment frequency, which are

accomplished through automated development pipelines with security baked-in from the

start. The effectiveness of DevSecOps in producing software is backed up by various

metrics. Air Force’s Platform One’s metrics show an average deployment frequency of

20.8 per day (C. Chew, PowerPoint slides email to authors, July 30, 2020). That is a

minimum of 20.8 changes ready to be delivered to the customer in a single day versus one

deployment of batched changes every two to four weeks using Scrum.

As the DOD is pushing for an agile and secure software development process, the

discussion will focus on how TSO can adopt DevSecOps for its mid-tier development

teams. Specifically, the changes required to its people, process, and tools. The discussion

will also cover possible challenges and limitations TSO might face while implementing

DevSecOps, and some of the readily available service options for implementation.

51

1. Implementation Requirements for DevSecOps

At TSO, MCIPPS and SABRS would benefit greatly by leveraging automated

testing and reengineering their testing processes. Both units described their testing

processes as mostly manual and that operations and security staff move the code from one

environment to the next. Automation provides speed that might be lacking from the current

process. A restructuring of personnel is another aspect of DevSecOps that will enhance

TSO’s capabilities. Most of the promotion of code through the lifecycle is conducted by

operations or security personnel (system administrators/application administrators or

information system security officer/engineer). The scope of the developers’ testing is

limited, but by creating one cohesive team the operations and security team members can

conduct simultaneous testing earlier in the development lifecycle allowing program

efficiency. DevSecOps will allow developers to provide secure code by “shifting security

left” and by ensuring everyone is responsible for security. Automation will provide speed

and consistency during the build, testing, integration, and delivery processes. Transitioning

to DevSecOps will require changes to culture, structure, processes, and tools that are

currently in place. DevSecOps is more than a methodology, it is a philosophy.

a. People

For TSO to successfully transition to DevSecOps, the most critical aspect involves

their people. Educating the entire organization on the close collaboration necessary in order

to effectively implement DevSecOps is likely the toughest hurdle to overcome. Personnel

that usually do not work closely with each other will be expected to develop an integrated

and capable team. Communication and transparency between the teams will lead to more

secure and effective applications. By integrating the development, operations, and security

teams on smaller projects they will begin to break down the cultural barriers that separate

them. Embedded within this philosophy is that everyone is responsible for security. A

strong champion and change management leader will aide in this process, but it is

incumbent on the entire leadership team to have a comprehensive plan incorporating their

employees’ recommendations. Restructuring personnel into more horizontally aligned

teams from the beginning will assist in a smoother transition.

52

Training developers on secure coding practices is critical to the “shift-left” principle

that seeks to embed security into the development process early. The first line of defense

for security and speed is secure code. TSO leadership should empower the developers with

the necessary skills to code securely. Instead of mandating training from the top-down,

creative approaches will likely create more buy-in. The training should be developed by a

combination of senior developers and security members to facilitate teamwork and

minimizing negative stigmas between the groups. This training needs to be in TSO’s

preferred language, so it is relevant.

Most importantly, DevSecOps is a cultural change that TSO must embrace. A

security first, teamwork-oriented mindset is the first step in adopting DevSecOps. The

process and tools changes are only effective if teams are willing to collaborate and

everyone believes that security is their responsibility.

b. Process

A business processing reengineering effort is required to investigate the current

process in order to identify processes that automation replaces. The current structure of

TSO slows down the process when development teams must manually enter the queue to

get their codes tested or approved to be promoted to the next environment. DevSecOps

success is focused on automation and integration. TSO’s manual operations and approval

processes are great inhibitors to an effective DevSecOps approach. The manual handoffs

occur when developers need to get their code tested by the security team or promoted to

the next environment by the operations team. A thorough examination of the current

process to identify security and operational chokepoints will focus the necessary procedural

changes, which generally happen between environments.

Automation is essential to DevSecOps. As a process, it is faster. It will allow TSO

to reduce the meantime to production. This is the time between the need for new features

until they are running in production. A fully automated risk monitoring and mitigation

process across the development lifecycle provides more in-depth security awareness. With

automation, TSO can eliminate human error and the latency between code migrations.

Most releases happen monthly or bi-annually but with automation and DevSecOps, TSO

53

could increase their deployment frequency from weeks to days with fewer change failures

and less costly security errors. At Platform One, a DevSecOps organization, their lead

times are 30 minutes for minor changes and two days for major ones (C. Chew, PowerPoint

slides email to authors, July 30, 2020).

Speed is one of the most important metrics for measuring software (DIB, 2019).

CI/CD is a part of the DevSecOps process that is responsible for providing speed and

requires automation. Continuous integration is when developers enter code into the main

branch which then triggers tests to run against the build before committing it to the main

branch. Continuous delivery implies that you have automated your release process. CI/CD

adds speed to TSO’s process by eliminating the current “gate-keeper” method whereby a

person approves and migrates code. DevSecOps and CI/CD would effectively reduce the

lead time for changes from weeks, to hours or days depending on the complexity of the

change.

c. Tools

DevSecOps cannot be bought through a package of tools since DevSecOps is a

philosophy that includes the interaction between people, process, and tools, however there

are certain tools that facilitate the DevSecOps methodology. Many tools used in

DevSecOps are already being used by the development teams at TSO. While planning for

an automated pipeline, TSO will need to decide if MCIPPS and SABRS will use the same

toolchain. Using the same tools in the pipeline is likely to decrease the cost of implementing

and maintaining the pipeline, but the two departments might require the use of different

tool.

It is challenging to differentiate between people, process, and tools at times, since

the premise behind the methodology is the interconnectedness of the triad. For example, in

order to leverage automation, leadership must be willing to give up control of the manual

process and trust the tools to work as designed. This trust and the trust of the three different

teams to code securely is part of larger cultural change. Many of the tools that TSO already

uses are compatible with the DevSecOps methodology, like JIRA, Jenkins, GitHub, Fortify

and Splunk to name a few.

54

2. Challenges and Limitations

Implementing DevSecOps is not without challenges and limitations. From an

organizational point of view, the biggest challenge TSO will have to overcome is the

challenge of changing its current culture. Successful adoption of DevSecOps will require

all members of the team to be on board. Team members must utilize soft skills in order to

form a cohesive and productive team. The transition will also require developers to learn

new skill sets and practice developing secure code. From a technical point of view, the

biggest challenge is implementing the continuous delivery part of the CI/CD pipeline.

Continuous delivery involves automated testing and promotion to the next environment,

leaving deployment to production the only manual part in the process. The adoption

process for continuous delivery will require trust in automation and likely changes to

current policies. The current policies are designed to mitigate risks through approvals

authorities at higher levels, however this slows down delivery. This change is as much

procedural and cultural since the trust in automation is a must-have for success.

Other challenges and limitations TSO might face include budget and prioritizing

between cloud migration efforts and DevSecOps adoption. Adopting DevSecOps will incur

the initial cost to set up the development environment and train employees on new tools

and practices of DevSecOps. Recurring cost includes licensing and maintenance of the

development environment. A budget constraint might limit the ability to adopt DevSecOps,

and it is a likely possibility as fiscal austerity looms over the federal government. The cloud

migration planning efforts might also limit resources available for DevSecOps adoption

depending on TSO’s prioritization. TSO should consider prioritizing DevSecOps first if it

must prioritize between cloud migration and DevSecOps. Having a good DevSecOps

process and CI/CD pipeline in place will aid with cloud application development when

cloud migration occurs.

3. Available Options

DevOps and DevSecOps as a service are becoming popular in the commercial

sector with companies like Amazon Web Services and Microsoft Azure offering their

services. DevSecOps as a service is considered as PaaS where the provider maintains the

55

development environments. There are various efforts in the DOD to provide DevSecOps

development environments for its organizations. As of May 2020, Air Force’s Platform

One was designated as one of DOD’s enterprise service provider for DevSecOps (DOD,

2020). The Marine Corps also has a DevSecOps solution in the works with Marine Corps

Business Operations Support System (MCBOSS). The benefits of choosing a DOD or

service approved DevSecOps service provider is eliminating the time and paperwork

required for the Authority to Operate (ATO) when setting up the development environment

and eliminating the need to maintain the environment. The potential drawbacks to using a

DevSecOps service provider are cost, tool availability, and configuration control over the

development environment.

4. DevSecOps and the Cloud

The cloud is considered a key enabler for a full implementation of DevSecOps’

CI/CD pipeline. Cloud computing provides scalability and flexibility for seamless

continuous integration. TSO is in the early phase of their cloud migration effort at the

writing of this thesis and is planning on using JEDI as the contract vehicle for the entire

migration. It is unknown when JEDI will become operational. This will provide TSO more

time with cloud migration planning as well as optimizing their development process for

the cloud. DevSecOps is traditionally associated with cloud application development, but

that does not mean DevSecOps practice cannot be used to optimize the current

development process. By adopting DevSecOps early, TSO will place itself in an

advantageous position for the eventual migration to JEDI cloud.

D. SUMMARY

The DevSecOps transition will result in require complete commitment from

everyone at TSO but it will result in securely developed code and faster releases.

Communication and collaboration must replace the siloed approach between developers,

operations, and security staff. The cultural transition will take time and the involvement of

a strong champion will be important. Changing the culture will drive the acceptance of new

processes, like automation, and leverage the full capabilities of the toolchain. This

56

transition will make TSO more efficient and effective in achieving their mission to “deliver

secure, auditable, and proficient capabilities to their stakeholders.”

57

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This comprehensive research sought to explore the software methodologies of

organizations like TSO in order to provide a road map to facilitate the transition to

DevSecOps. It strived to answer four research questions:

1. How could TSO go from a multitude of approaches to DevSecOps?

2. How will the transition to DevSecOps impact the software developers at

TSO to continue to develop critical software securely and efficiently?

3. How do similar software development activities within the Department of

Defense develop software and might the Marine Corps consider similar

approaches?

4. What is the optimal way to migrate the existing software development

environment to the cloud, and continue to allow access to the requisite

software development tools?

The first phase of the research involved a comprehensive literature review and interview

questions formulation. The questions provided the framework for the researchers during

the interviews of personnel and software development teams from TSO, NAVSUP BSC,

and DMDC. The focus was on DevSecOps and the supporting resources.

DevSecOps is the culture and practice of integrating the software development,

security, and operations teams (DOD, 2019a). TSO leaders are interested in transitioning

to the DevSecOps model in order to provide frequent, smaller, and more secure releases.

Teams that are already operating in an agile manner are best suited to adapt their procedures

and structure to benefit from the advantages of DevSecOps since it is a significant culture

shift. It incorporates security throughout the development lifecycle which minimizes costs

relating to resolving security issues. When developers are taught to code securely, it

decreases the amount of security errors and increases the chances of finding and fixing

security issues early.

58

DevSecOps is not without its limitations. The most significant hurdle to practicing

DevSecOps is likely the required culture change and collaboration amongst the developers,

operations staff, and security personnel. Embedded within this is that the developers must

code with security best practices instead of expecting to add it as a bolt-on late in the

development lifecycle. Due to the frequent release of code the two teams must coordinate

closely with operations to ensure the environment and the infrastructure can handle the

changes. The three teams must work in unison to ensure that secure, reliable, and functional

code can be delivered rapidly.

B. FINDINGS AND RECOMMENDATIONS

Out of the three departments within TSO, MCIPPS and SABRS are best suited for

a transition to DevSecOps due to their familiarity with agile methodology and use of tools

compatible with DevSecOps. Currently, the development, operations, and security teams

are siloed which is an inhibitor to the collaboration required for DevSecOps to work

efficiently. Collaboration between the three teams is tightly coupled with the development

pipeline. The current pipeline is mostly manual with the developers handing off their code

to the security and operations teams for testing and promotion to the next environment. The

manual handoffs create inefficiencies and delays. Several tools used by the teams are

compatible with DevSecOps, and can be configured for automation into a CI/CD pipeline.

The departments within TSO, specifically MCIPPS and SABRS, have been optimizing

their development process individually. Development teams have started experimenting

with automated unit testing, a first step for continuous integration. Moving forward it will

require formal formation of DevSecOps teams to effectively configure and implement a

CI/CD pipeline.

C. RECOMMENDATIONS FOR FUTURE RESEARCH

With the changing landscape of technology and the speed at which it changes, there

is ample opportunity for continued work. DevSecOps is a relatively new endeavor by the

DOD that it must leverage in order to remain flexible and deploy secure software releases

in a timely manner. As the DOD becomes more digital, these topics are closely linked to

national security.

59

1. Combat Systems

Combat systems are increasingly becoming more software intensive whether

through autonomous systems or through manned platforms like the Joint Strike Fighter

(JSF). As this trend continues, software and security must be delivered rapidly and securely

in order to remain combat effective. DevSecOps offers opportunities to deliver reliable

software patches quickly increasing the warfighter’s competitive advantage.

2. Mainframes

Software development teams in mainframe environments are still predominately

using waterfall methodology as their development process. New tools are becoming

available that supports a more agile approach that shifts security to the left. Research could

be conducted on how organizations with mainframe environments can adopt a more agile

methodology.

3. Culture

DevSecOps involves a culture change. It is more than purchasing new tool kits and

incorporating those into the developers’ repertoire. A fundamental shift in management

and interactions between various stakeholders must occur in order to effectively implement

DevSecOps. A broader culture change is necessary as well to meet our needs in developing

software. An interested author might explore the change management side of implementing

a new development methodology, especially one as interaction heavy as DevSecOps.

4. Talent Pool

As software and security pervade all the DOD’s systems, it must be able to recruit

and retain competent talent. A future researcher might be interested in developing a

roadmap for recruiting and retaining digital talent, including education, training and

developing alternate career paths for the DOD’s digital workforce. The DOD cannot fall

behind modern digital trends and practices.

60

5. Acquisition Process

Software is not like hardware. It becomes obsolete faster than most hardware and

requires constant updates and patches. The DOD’s acquisition system is designed for

hardware which is to time-consuming for software. The DOD must modernize its policies

and regulations to support faster development and acquisition of software and the resources

that enable its development and use. This involves ensuring our networks support the

required resources and that the DOD is leveraging the best practices and tools available. A

robust study focused on refining the acquisition pipeline for software would likely prove

valuable for the DOD.

61

LIST OF REFERENCES

Agile Alliance. (n.d.). Extreme Programming. Retrieved January 7, 2020, from
https://www.agilealliance.org/glossary/xp

Air Force. (n.d.). DOD enterprise DevSecOps initiative (DSOP). Retrieved May 27,
2020, from https://software.af.mil/dsop/#problemstatement

Al-Rousan, T. (2015). Cloud computing for global software development: Opportunities
and challenges. International Journal of Cloud Applications and Computing
(IJCAC), 5(1), 58–68. https://doi.org/10.4018/ijcac.2015010105

Amazon Web Services. (n.d.). What is DevOps? Retrieved May 27, 2020, from
https://aws.amazon.com/devops/what-is-devops/

Anderson, A., Hendrickson, & C., Jeffries, R. (2000). Extreme Programming installed.
O’Reilly.

Beck, K., Beedle, M., Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.
...Grenning, J. (2001). The Agile Manifesto. Agile Alliance.
http://agilemanifesto.org/

Beck, K. (1999). Embracing change with Extreme Programming. Computer, Volume 32
(10). 70–77. https://doi.org/10.1109/2.796139

Boehm, B., & Turner, R. (2003). Balancing agility and discipline: A guide for the
perplexed. Pearson Education Inc.

Bloch, M., Blumberg, S., & Laartz, J. (2012, October). Delivering large-scale IT projects
on time, on budget, and on value. McKinsey Digital.
https://www.mckinsey.com/business-functions/mckinsey-digital/our-
insights/delivering-large-scale-it-projects-on-time-on-budget-and-on-value

Byrd, T. (2001, April–June). Information Technology, core competencies and sustained
competitive advantage. Information Resources Management Journal, Volume
14(2). 27–36. https://www.igi-global.com/gateway/article/full-text-pdf/1198

Byrd, T., Lewis, B., & Turner, D. (2004, April - June). The impact of IT personal skills
on infrastructure and competitive IS. Information Resources Management
Journal, Volume 17(2). 38–62. https://www.igi-global.com/gateway/article/full-
text-pdf/1255

Carter, K. (2017). Francois Raynaud on DevSecOps. Software Engineering, 93–96.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8048652

62

Cois, C. (2014, June 2). A generalized model for automated DevOps. Software
Engineering Institute. https://insights.sei.cmu.edu/sei_blog/2014/06/a-
generalized-model-for-automated-devops.html

Coyne, B, & Sharma, S. (2015). DevOps for dummies. (2nd ed). John Wiley and Sons.

Creswell, J. (2009). Research design: Qualitative, quantitative, and mixed methods
approaches (3rd ed.). Sage Publications.

Dastin, Jeffrey. (2020, January 22). Amazon asks court to pause Microsoft’s work on
Pentagon’s JEDI contract. Reuters. https://www.reuters.com/article/us-amazon-
com-pentagon/amazon-asks-court-to-pause-microsofts-work-on-pentagons-jedi-
contract-idUSKBN1ZM0FB

Defense Innovation Board (2019, May 3). Software Is Never Done Refactoring the
Acquisition Code for Competitive Advantage.
https://media.defense.gov/2019/Apr/30/2002124828/-1/-
1/0/SOFTWAREISNEVERDONE_REFACTORINGTHEACQUISITIONCODE
FORCOMPETITIVEADVANTAGE_FINAL.SWAP.REPORT.PDF

Defense Manpower Data Center. (n.d.). DMDC overview. Retrieved July 13, 2020.
https://www.dmdc.osd.mil/appj/dwp/dmdc_overview.jsp

Department of Defense. (2012). Cloud computing strategy. Retrieved June 10, 2019.
https://apps.dtic.mil/dtic/tr/fulltext/u2/a563989.pdf

Department of Defense. (2018a). DOD cloud strategy.
https://media.defense.gov/2019/Feb/04/2002085866/-1/-1/1/DOD-CLOUD-
STRATEGY.PDF

Department of Defense. (2018b, July 26). Draft JEDI cloud RFP #HQ0034-18-R-0077.
https://beta.sam.gov/opp/3860a4f4fe9d9ffc31e722ece82a143c/view

Department of Defense. (2019a, August 12). DOD enterprise DevSecOps reference
design.
https://dodcio.defense.gov/Portals/0/Documents/DOD%20Enterprise%20DevSec
Ops%20Reference%20Design%20v1.0_Public%20Release.pdf?ver=2019-09-26-
115824-583

Department of Defense (2018c). Design and Acquisition of Software for Defense Systems.
https://dsb.cto.mil/reports/2010s/DSB_SWA_Report_FINALdelivered2-21-
2018.pdf

Department of Defense. (2019b, October 25). Contract for Oct. 25, 2019.
https://www.defense.gov/newsroom/contracts/contract/article/1999639/

63

Department of Defense. (2019c, September 23). Agile metrics guide.
https://www.dau.edu/cop/it/DAU%20Sponsored%20Documents/Agile%20Metric
s%20v1.1%2020191122.pdf

Department of Defense. (2020, May 22). Designation of enterprise service provider for
DevSecOps. https://software.af.mil/wp-content/uploads/2020/05/DoD-CIO-
Signed-Memo-Enterprise-Service-Provider-for-DevSecOps.pdf

Ebert, C., Gallardo, G., Hernantes, & J., Serrano, N. (2016, May-June). DevOps. IEEE
Software Volume 33. 94–100.https://doi.org/10.1109/MS.2016.68

Forsgren, N., Humble, J., & Kim, G. (2018). Accelerate. Google Books.

Hochstein, L., Schott, B., & Graybill, R. (2011). Computational engineering in the cloud:
Benefits and challenges. Journal of Organizational and End User Computing
(JOEUC), 23(4), 31–50. https://doi.org/10.4018/joeuc.2011100103

Hou, T. (n.d.). IaaS vs PaaS vs SaaS enter the ecommerce vernacular: What you need to
know, examples & more. Ecommerce Technology. Big Commerce.
https://www.bigcommerce.com/blog/saas-vs-paas-vs-iaas/#the-key-differences-
between-on-premise-saas-paas-iaas

IBM. (n.d.). What is Containers as a Service (CaaS)? Retrieved May 21, 2020.
https://www.ibm.com/services/cloud/containers-as-a-service

Jeffries R. & Lindstrom, L. (2004). Extreme Programming and Agile software
development methodologies. Information Systems Management, Volume 21(3).
41–52. https://doi.org/10.1201/1078/44432.21.3.20040601/82476.7

Kelman, Steven (2018, April 18). Striking a blow for agile with DOD weapons systems.
The Lectern. Federal Computer Week.
https://fcw.com/blogs/lectern/2018/04/dod-agile-kelman.aspx

Koch, A. S. (2009, June 22). People, processes and tools: The three pillars of software
development. CM Crossroads. https://www.cmcrossroads.com/article/people-
processes-and-tools-three-pillars-software-development

Mahalakshmi, M., & Sundararajan, M. (2013). Traditional SDLC vs Scrum methodology
– A comparative study. International Journal of Emerging Technology and
Advanced Engineering, 3(6), 192–196.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.413.2992&rep=rep1&t
ype=pdf

Mahmood, Z., & Saeed, S. (2013). Software engineering frameworks for the cloud
computing paradigm. https://doi.org/10.1007/978-1-4471-5031-2

64

Mall, R., Panigrahi, C., & Pati, B. (2017). Software development methodology for cloud
computing and its impact. https://doi.org/10.4018/978-1-5225-1721-4.ch012

Marine Corps. (n.d.). Technology Services Organization. Retrieved May 21, 2020, from
https://www.hqmc.marines.mil/pandr/organization/Technology-Services-
Organization/

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing (Special
publication 800–145). https://permanent.access.gpo.gov/gpo17628/SP800-145.pdf

Mendonca, N. (2014). Architectural options for cloud migration. Computer, 47(8), 62–
66. https://doi.org/10.1109/MC.2014.203

Mersino, A. (2018, April 1). Project success rates: Agile versus waterfall. Vitality
Chicago. https://vitalitychicago.com/blog/agile-projects-are-more-successful-
traditional-projects/

Microsoft Azure. (2019, April 4). Cloud adoption framework migration model.
https://docs.microsoft.com/en-us/azure/cloud-adoption-
framework/migrate/migration-considerations/

Misra, S., & Omorodion, M. (2011). Survey on agile metrics and their inter-relationship
with other traditional development metrics. ACM SIGSOFT Software Engineering
Notes, 36(6), 1–3. https://doi.org/10.1145/2047414.2047430

Moore, S. (2018, June 1). 7 options to modernize legacy systems. Gartner.
https://www.gartner.com/smarterwithgartner/7-options-to-modernize-legacy-
systems/

Naval Supply Systems Command. (n.d.). NAVSUP Business Systems Center. Retrieved
May 21, 2020, from https://www.navsup.navy.mil/public/navsup/bsc/

Pace, H. (2019). Software challenges [Class notes for MN3309: Software Acquisition
Management for Strategic and Tactical Systems]. Graduate School of Defense
Management, Naval Postgraduate School.
https://cle.nps.edu/portal/site/c14b8156-3ade-44cf-8c34-
35d2c619a7f9/tool/9caae9a2-6eaf-4de6-913a-45cd9dde5c28?panel=Main

Patidar, S., Rane, D., & Jain, P. (2011). Challenges of software development on cloud
platform. 2011 World Congress on Information and Communication
Technologies, 1009–1013. https://doi.org/10.1109/WICT.2011.6141386

Pettit, S. (n.d.). Continuous Integration vs. Continuous Delivery vs. Continuous
Deployment. https://www.atlassian.com/continuous-
delivery/principles/continuous-integration-vs-delivery-vs-deployment

65

Ragunath, P., Velmourougan, S., Davachelvan, P., Kayalvizhi, S., & Ravimohan, R.
(2010). Evolving a new model (SLDC Model 2010) for Software Development
Life Cycle (SDLC). International Journal of Computer Science and Network
Security. 10(1), 112–119. ResearchGate.

Rico, D. F. (2008). Business value of Agile methods [Presentation]. University of
Virginia, United States.
https://www.commerce.virginia.edu/sites/default/files/Centers/Rico%20slides.pdf

Rico, D. F. (2008). What is the Return on Investment (ROI) of Agile methods?
[Unpublished manuscript].

Rigby, D., Southerland, J., Noble, A. (2018, May-June). Agile at Scale. Harvard
Business Review. https://hbr.org/2018/05/agile-at-scale

Rubens, P. (2017, June 27). What are containers and why do you need them? CIO.
https://www.cio.com/article/2924995/what-are-containers-and-why-do-you-need-
them.html

Schwaber K & Southerland, J. (2017). The definitive guide to Scrum: The rules of the
game. The Scrum Guide. https://scrumguides.org/docs/scrumguide/v2017/2017-
Scrum-Guide-US.pdf

Salesforce. (2008). Agile development meets cloud computing for extraordinary results at
Salesforce.com. The Landmark One Market.
http://www.developerforce.com/media/ForcedotcomBookLibrary/WP_Agile_112
608.pdf

Scrum Process. (2009, January 9). In Wikipedia. Retrieved January 20, 2020, from
https://commons.wikimedia.org/wiki/File:Scrum_process.svg

Surianarayanan, C., Ganapathy, G., & Pethuru, R. (2019). Essentials of Microservices
Architecture. https://doi-org.libproxy.nps.edu/10.1201/9780429329920

Thones, J. (2015). Microservices. Software Engineering, 113–116.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7030212

Tuli, A., Hasteer, N., Sharma, M., & Bansal, A. (2014). Empirical investigation of agile
software development: cloud perspective. ACM SIGSOFT Software Engineering
Notes, 39(4), 1–6. https://doi.org/10.1145/2632434.2632447

United States Marine Corps. (2011). Marine Corps Enterprise Network (MCEN).
https://www.hqmc.marines.mil/Portals/156/Newsfeeds/SV%20Documents/Summ
aries/Marine%20Corps%20Enterprise%20Network.pdf

66

Webster, G., Creemers, R., Triolo, P., & Kania, E. (2017, Aug 1). Full translation:
China’s ‘new generation Artificial Intelligence development plan’ (2017). New
America. https://www.newamerica.org/cybersecurity-
initiative/digichina/blog/full-translation-chinas-new-generation-artificial-
intelligence-development-plan-2017/

Winder, D. (2018, December). DevSecOps. PC Pro, 290. ProQuest.

Younas, M., Ghani, I., Jawawi, D., & Khan, M. (2016). A framework for agile
development in cloud computing environment. Journal of Internet Computing and
Services, 17(5), 67–74. https://doi.org/10.7472/jksii.2016.17.5.67

67

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	20Sep_Hsu_Amy_First8
	20Sep_Hsu_Patterson
	I. INTRODUCTION
	A. Background
	B. Problem Statement
	C. Purpose Statement
	D. Research Questions
	E. Research Methods
	F. Proposed Data, Observation, and Analysis methods
	G. Potential Benefits and Limitations
	H. Organization of the Thesis

	II. LITERATURE REVIEW
	A. Introduction
	B. STATE OF DOD’S SOFTWARE DEVELOPMENT CAPABILITIES
	C. DOD MODERNIZATION
	1. Waterfall
	2. Agile
	3. Extreme Programming
	a. The XP Team
	b. How XP Works
	c. Principles

	4. Scrum
	a. Scrum Artifacts
	b. The Scrum Team
	c. How Scrum Works

	5. DevSecOps
	a. How DevSecOps Works
	b. DevSecOps Tools

	D. SOFTWARE DEVELOPMENT TOOLS
	E. Performance Metrics of Software Development
	F. ORGANIC DEVELOPMENT
	G. CLOUD MIGRATION
	1. Policies and Directives
	2. Cloud Characteristics and Benefits
	3. Cloud Service Models
	4. Cloud Deployment Models
	5. Cloud Migration Models
	a. Cloud hosting Solutions
	b. Cloudification solutions

	H. SOFTWARE DEVELOPMENT IN THE CLOUD ENVIRONMENT
	1. Benefits and Challenges
	2. Agile Development in the Cloud

	I. SUMMARY

	III. Research Methods
	A. Introduction
	B. Research method
	1. Case Study
	2. Semi-structured Interview Questions
	a. Describe Your Software Development Methodologies
	b. Describe Your Code Migration Process
	c. Describe Your Software Development Tool Set
	d. Describe Your Software Testing Efforts
	e. Cloud Migration Efforts

	C. Summary of places interviewed
	1. Marine Corps Technology Services Organization (TSO)
	2. Navy Supply Systems Command Business Systems Center (NAVSUP BSC)
	3. Defense Manpower Data Center (DMDC)

	IV. analysis
	A. Introduction
	B. INTERVIEWEE RESPONSES
	1. TSO
	a. Development Methodology
	b. Code Migration Process
	c. Development Tool Set
	d. Testing Efforts
	e. Cloud Migration Efforts

	2. NAVSUP BSC
	a. Development Methodology
	b. Code Migration Process
	c. Development Tool Set
	d. Testing Efforts
	e. Cloud Migration Efforts

	3. DMDC

	C. DISCUSSION
	1. Implementation Requirements for DevSecOps
	a. People
	b. Process
	c. Tools

	2. Challenges and Limitations
	3. Available Options
	4. DevSecOps and the Cloud

	D. SUMMARY

	V. ConclusionS and recommendations
	A. Conclusions
	B. FINDINGS AND RECOMMENDATIONS
	C. RECOMMENDATIONS FOR FUTURE RESEARCH
	1. Combat Systems
	2. Mainframes
	3. Culture
	4. Talent Pool
	5. Acquisition Process

	List of References
	initial distribution list

