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ABSTRACT

The management complexity, hardware limitations, and lack of scalability in the
Marine Corps’ traditional networking infrastructure creates an opportunity gap that can be
filled by software-defined networking (SDN). At the same time, mobile ad-hoc networks
(MANETS) have proved to be indispensable in austere environments, allowing tactical
units to communicate without the need for permanent infrastructure. Anticipating the
proliferation of mobile hand-held technology, a case is made for On-Demand
Registration/Revocation in On-the-Move Networks (ORION), a flexible public key
infrastructure (PKI) authentication framework for ad-hoc mobile devices. Resembling a
localized extension of DISA’s Purebred solution, ORION was designed specifically for
tactical edge networks. ORION combines the centralized management and programmable
capabilities of SDN with the decentralized, self-healing properties of MANET into one
scalable, autonomous, interoperable system. The proposed model is designed, developed,
and evaluated to demonstrate that forward-deployed, SDN-hosted Certificate Authorities
are capable of providing PKI services to edge devices under adversarial network conditions
characterized by low bandwidth, high latency, and high loss probabilities.
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CHAPTER 1:

Introduction

We must get our critical infrastructure and vulnerabilities “off the X by es-
tablishing mobile, low-signature forward presence. We must develop dis-
tributed, low-signature, lethal, networked, persistent, and risk-worthy joint
expeditionary capabilities that can persist and operate within the adversary’s
weapons engagement zone. We must introduce uncertainty into the adversary
risk calculus with more expeditionary bases, distributed signatures, and op-
erationally relevant capabilities and posture. We must maintain persistent,
forward forces with high lethality and operational reach to ensure we keep “a
foot in the door” and don’t have to risk “kicking in the door.” We must provide

resilience to our forward stand-in forces with relative economy.

—General David H. Berger, 38th Commandant of the Marine Corps [1]

After more than eighteen years of counter-terrorism operations abroad, the “war on ter-
ror”’ no longer remains the primary concern for the U.S. Department of Defense (DoD) [2].
With the accelerated growth of technology, the erosion of international order, and the re-
emergence of near-peer threats, the U.S. National Defense Strategy (NDS) has reoriented
its primary focus to inter-state strategic competition, otherwise known as the “great power
competition” between both China and Russia. As noted in the NDS, this ever-complex
operating environment has prompted a rapid modernization of the U.S. military as America
seeks to maintain dominant superiority in every operating domain— air, land, sea, space,
cyberspace. Key prioritizations of this modernization are the recognition of cyberspace as a
warfighting domain and increased innovation in command, control, communications, com-
puters and intelligence, surveillance, and reconnaissance (C4ISR) capabilities [2]. As stated
in the Department of the Navy (DON) 2020 Information Superiority Vision, Information is
Combat Power [3].

Research in wargames pertaining to the NDS have demonstrated the collaborative
advantage of allied partners in great power conflicts. Essential to this partnership is the

need for communications and information network interoperability across forward deployed

1



forces [4]. In keeping with the NDS, the 38th Commandant’s Planning Guidance (CPG) fur-
ther emphasizes the dire importance of improving the command and control (C2) processes
to better support joint/coalition interoperability as well as the Marine Corps’ warfighting
philosophy of maneuver warfare. The requirement to innovate C2 processes is especially
paramount in a presumably denied and degraded information network environment. As the
CPG contends, modern operations have become more distributed than ever before, requiring

networks that provide resiliency, robustness, and secure access for mission success.

The realization of U.S. cyberspace dominance necessitates an aggressively reduced
reliance on expensive, hardware-defined solutions. Hardware technology runs counter to
the military’s modernization and automation endeavor as it requires manual configuration,
is difficult to upgrade, and exhausts already limited resources/storage capacity. To meet this
cyber strategy, C2 equipment must not only be reliable and secure, it must also be adaptable,
scalable, lightweight, and inexpensive to replace. In concert with the Navy’s Distributed
Maritime Operations (DMO) strategy, the Marine Corps has shifted towards a Stand-in
Forces concept in anticipation of a greater role in the maritime littorals— Littoral Operations
in a Contested Environment (LOCE) and Expeditionary Advance Base Operations (EABO)
[4]. With a renewed interest in the Indo-Pacific Area of Responsibility (AOR), the Marine
Corps’ ability to generate “technically disruptive, tactical stand-in engagements” within
an adversary’s long-range weapons engagement zone (WEZ) will require “low signature,

affordable, and risk-worthy platforms and payloads” [4].

To exact speed and generate operational tempo over the competition, the USMC must
take advantage of advanced systems that can virtualize hardware functionalities on-demand—
software-defined systems. With software-defined technology, the rigid, physical limitations
of hardware are removed, exposing a flexible system capable of performing multiple hard-
ware roles. For the warfighter, machine automation provides the ability to eliminate tasks
that are “repetitive, time-consuming, and routine” [4]. Per the Commandant’s guidance
regarding warfighting investments in artificial intelligence, data science, and emerging

technology:

We must set conditions so that the Marines can focus on warfighting tasks
rather than data entry and redundant administrative processes. This will make

the Marine Corps more lethal. [4]



The current USMC network mobility model for forward-deployed ground forces re-
lies on a framework of software-defined radios (SDRs) with limited reachback capability.
These SDRs are able to form mobile ad-hoc networks (MANETS), decentralized, self-
healing networks capable of supporting tactical operations in environments which lack
existing communications infrastructure— a necessary requirement for modern military com-
munications systems. The USMC currently lacks adaptable authentication schemes in edge
networks that can leverage software automation while taking user identity into account.
The current approach to MANET authentication is based on symmetric keys and involves
cumbersome cryptographic fill devices as well as complex key management infrastructures.
As such, the present methodology suffers from a lack of scalability, interoperability, and

autonomy.

The DoD Public Key Infrastructure (PKI) serves as the identity and authentication
mechanism for the Department of Defense Information Network (DoDIN) and uses the
issued Common Access Card (CAC) as the primary token for credentialing. PKIis important
for secure, encrypted communications because public key certificates ensure that “someone
is who they say they are” and that the information they are sending has not been modified in
transit. However, PKI was not originally designed for implementation in tactical networks.
Thus, PKI is mainly employed in the garrison environment on wired networks. PKI
leverages asymmetric keys to overcome the issue of scalability but requires a robust and
reliable backbone connection to the DoDIN in order to support and access back-end services.
These challenges, among others, have curtailed PKI employment in tactical edge networks.
Furthermore, the CACs presents modernization challenges due to its dependence on smart
card readers making its functionality inadequate for the environment described in the NDS—
an area that can be improved with software-based methods. Even then, certificate revocation
and key recovery still present a challenge in a denied and degraded environment (D2E) as
backbone connections are not always available, especially in tactical edge networks. For
example, users with expired or revoked certificates should be immediately exempt from
network access. Conversely, users who require a certificate renewal should not experience

a lapse or interruption in network services.

With the pervasive development in mobile, hand-held technology, smartphones have
become ubiquitous, enjoying increased adoption across the world, including in develop-

ing nations. More than just a basic communications device, smartphones have become



integrated into every facet of life— from reading the news to streaming Netflix, vehicle
navigation, social media, banking, shopping on Amazon, ride-sharing, etc. As smartphone
popularity continues to grow, so too will society’s reliance on these smart devices to ac-

complish everyday tasks. Figures 1.1 and 1.2 show the growth of smartphones globally

38
35
32 I I
2019 2020 2021

Figure 1.1. Number of Smartphone Users Worldwide. Source: [5].
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Figure 1.2. Percentage of Global Population Using Smartphones. Source:

[5].

Given the smartphone’s versatility, it is no surprise that military leadership has demon-
strated great interest in its potential advantages, both on the battlefield and in garrison.
Compared to the heavy, expensive radios currently in use, smartphones boast advanced

computational capabilities in an inexpensive, lightweight, portable package. The technol-
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ogy is familiar and user-friendly to younger troops, enabling superior learnability, produc-
tivity, and user satisfaction from inception. The value of combat-ready smartphones has
yet to be fully realized. For example, the built-in global positioning system (GPS) can be
used for terrain mapping, the cameras can be used to relay time-critical pictures and videos
to commanders, and applications can be developed to support medical services, logistical

needs, and track troop movements [6].

The advent of software-defined networking (SDN) brings centralized control and
programmability to network management through separation of the data and control plane.
SDN affords limitless potential for establishing new network services through an abstraction
of the data plane. The implications are significant— networked hardware devices no longer
need to implement complicated Internet Protocol (IP) routing protocols and instead become
simple forwarding devices. Moreover, management of the control plane falls to logical
controllers which decide how packets will flow throughout the network. Can we leverage
SDN technology to facilitate secure authentication in tactical MANETs? In other words,
in what scenarios could a SDN-based distributed certificate authority (CA) be deployed to

improve network performance and support PKI in edge networks?

1.1 Motivating Scenario

The number of public key-enabled (PKE)-devices per warfighter is projected to increase
as the battlefield becomes more digitally connected [7]. The growth of PKE-devices
will easily outnumber the number of people, prompting a demand for increased software
automation; SDN is well-positioned to address these future challenges. Given the objectives
and requirements of the operating environment described in the NDS and CPG, we envision
a future USMC mobility model that employs smartphones for ad-hoc networking— also
known as a smartphone ad-hoc network (SPAN). A depiction of this vision is outlined as

follows:

* A company-sized formation of foot-mounted troops dispersed 100m apart with limited

mechanized support.

Each individual is carrying a smartphone.

Each smartphone is a participating node of a MANET for purposes of facilitating C2.

Each node is able to transmit unicast, multicast, and broadcast messages.



* The SPAN leverages mobile PKI credentialing to support an authentication scheme
that provides confidentiality, integrity, and non-repudiation.

» Reachback connectivity to the battalion combat operations center is degraded/unavail-
able.

The scenario described in Figure 1.3 is not impractical to conceptualize given the
rapid pace of advancement in mobility and networking. Government-procured smartphones
already exist within the DoD, but adoption has been slow and fielding has generally been
limited to senior leadership. Within the last four years, the DoD has developed and released
a mobile PKI system called Purebred which implements derived PKI credentials for clients

on unclassified mobile platforms to access remote content, sign encrypted e-mails, and
securely browse the Internet without the use of a CAC [8]. The derived credentials are
escrowed private keys and X.509 public key certificates that maintain the same expiration

datetime as their respective CAC certificates, either generated from a DoD CA or retrieved
from a certificate repository [8].

Figure 1.3. Mobile Ad-Hoc Network with Vehicle-Mounted Reachback



In the future operating environment, we anticipate the proliferation of the Purebred
concept beyond garrison. To be specific, we envision an authentication scheme that re-
sembles a localized extension of Purebred for networks at the tactical edge. In a D2E,
this extension must be capable of supporting device registration (to include credentialing)
and revocation in the absence of a reachback to PKI back-end services. We have decided
to call this authentication scheme On-Demand Registration/Revocation in On-the-Move
Networks (ORION).

1.2 Research Questions

Given that a complete replication of Purebred registration and revocation services in
the MANET setting would likely be resource-prohibited and would expose sensitive systems
and data that are not necessary in the MANET, we seek to address the critical challenges

facing ORION by answering the following research questions:

1. In the event that a mobile device is lost, destroyed, or compromised, how can SDN
facilitate timely revocation of the device’s derived credentials?
2. How can SDN be exploited to securely automate the registration and credentialing

process of new mobile devices?

As the Marine Corps continues to modernize and invest in smartphone technologies,
the requirement to properly manage and authenticate these devices is paramount. Given its
programmability and centralized management, the SDN paradigm is well-poised to address
the fundamental obstacles curtailing the propagation of PKI authentication to the tactical
edge. The primary scope of this thesis is to design and develop ORION- a Software-defined
Mobile Ad-hoc Networking (SD-MANET) authentication architecture for a potential USMC
network mobility model which leverages Purebred functionality and uses commercial-off-
the-shelf (COTS) and government-oft-the-shelf (GOTS) products. We seek to demonstrate
that SDN controllers can be forward deployed to host CAs within a MANET in order to
extend PKI functionalities to tactical edge networks. In support of the NDS and CPG,
the desired end state is that ORION will maximize the lethality, operational tempo, and
security of Marine combat units through the exploitation of software-defined automation.
To achieve this end state, ORION will aggressively leverage SDN and mobile technology to

facilitate C2, mobility, scalability, interoperability with joint/coalition forces, and authenti-



cation in constrained (i.e., low bandwidth, high packet loss rate) and contested networking

environments.

1.3 Thesis Organization

This thesis is divided into six chapters and is organized as follows. Chapter 1 frames
the problem statement and motivation for the research. Chapter 2 describes background
technology and related work. Chapter 3 explores the design of the proposed authentication
scheme, ORION. Chapter 4 discusses the implementation process. Chapter 5 provides the
results of the evaluation and experimentation process as well as lessons-learned. Chapter 6

concludes with a summary of the thesis and examines future work to be pursued.



CHAPTER 2:
Background

Everything changes so fast and the rules are against us. The most important
thing we can do is be open to new ideas. Not to create chaos, not to create
friction. But I am confident enough in the intellect and advice, that we will
come up with the right solution, even if it is only 80 percent. If we do nothing,

we lose. I am willing to take risk.

—General Robert B. Neller, 37th Commandant of the Marine Corps [9]

2.1 Authentication Concepts

The purpose of this section is to provide a general overview of widely-used authenti-
cation schemes and their application in the DoD with a focus on enterprise and commercial
mobile devices (CMDs).

Data breaches are a growing problem across the world. In 2019 alone, atleast 5.3 billion
records from businesses to universities and government agencies (Facebook, T-Mobile,
Capital One, the Federal Emergency Management Agency, and Georgia Tech, to name a
few) had their databases compromised [10]. The pervasive growth of Internet of Things (I0T)
connected devices and the concerns for data privacy management have indubitably brought
about its own set of challenges and highlighted the necessities for information protection.
In order to effectively protect an organization’s data in the modern information age, the
establishment of a robust access control policy is required [11]. Access control is defined
as a method of ensuring that users are who they say they are (authentication) and that they
have the appropriate access to the data they want to access to (authorization) [11]. The
desired end state of an access control policy is to limit the roles and permissions of end

users and/or computer systems on the network [12].

Since November 28, 2007, the DoD Information Assurance Certification and Accredi-
tation Process (DIACAP) has served as the model for risk management on DoD information
systems [13]. Specifically, the DIACAP defined the DoD Information Assurance (IA) re-
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quirements and capabilities between all DoD systems and their enclaves- to include access
control [13]. In March 12, 2014, the DoD Chief Information Officer (CIO) issued DoDI
8510.01 which announced the retirement of DIACAP and the adoption of the National
Institute of Standards and Technology (NIST) Risk Management Framework (RMF) [14].
This marked, for the first time, a departure from legacy DoD-specific standards to a holistic
alignment with federal standards in an effort to eliminate situations requiring compliance
of two differing standards while reducing vendor costs [15]. See Table B.1 in Appendix A

for current DoDIN access control management references..

2.1.1 Password-based Authentication

Traditional non-cryptographic password-based authentication methods fail to pro-
vide adequate protection due to its inability to provide confidentiality, integrity, or non-
repudiation [16]. Most user created passwords are, arguably, weak and reused across
multiple different accounts [17]. Passwords can be cracked by brute force (e.g., dictionary
attacks); however, increasing the complexity of a password increases the difficulty for user
memorization. Even then, password strength is limited by the amount of effort placed into
creating them and the best passwords can still be exploited by social engineering or man-
in-the-middle (MITM) attacks (e.g., phishing, eavesdropping) [18]. If the authenticator or

database where the passwords are stored is breached, the passwords could be compromised.

An improvement to static password authentication is a dynamic approach known as
one-time passwords (OTPs) [19]. OTPs were derived from a need to safeguard against replay
attacks due to the potential for passive network eavesdropping [20]. OTPs are typically
utilized as part of a two-factor authentication (2FA) or multi-factor authentication (MFA)
scheme since OTPs are considered “something you have” whereas passwords are considered
as “something you know” [21]. OTPs are generated by combining the user password with
an unique seed and function (e.g., secure hash) and then delivered to the client through
various methods (e.g., security token, printed paper, software application, short message
service (SMS) text) [21]. OTPs protect against password replay and reuse because a new
OTP is generated for each session or transaction; however, its use as a shared key still makes
OTPs vulnerable to MITM attacks (see Figure 2.1) [18], [21].

10
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(a) SKL. Source: [22].

Processor

32-bit Intel® XScale™ CPU (400 MHz)

Operating System

Windows® CE.net™ (4.2)

Memory

98MB Flash ROM

Working SDRAM

64MB

Storage SDRAM

64 MB( Battery Backed-up)

Graphics

2-D Accelerator for high-speed image
manipulation

Display

3.5" QVGA, 65K Color Sunlight-readable
Transflective TFT LCD Display, LED
Backlit, Manual Brightness Control,
Color Mapping for NVG use (8-bit
mode) (Optional VGA CRT Output)

USB

1 USB mini-A host port, 1 USB mini-B
device port

Size / Weight

7.45"x 4.25"x 2.25",22.6 oz. with
Standard Li-lon Battery. Standard Li-lon
Battery: 9 oz. Heavy Duty Li-lon Battery

Pack: 14.3 oz.

Battery / Run-time

Standard Li-lon Battery Pack, 6-24
hours, Heavy Duty Li-lon Battery Pack,
12-48 hours

(b) SKL Specifications. Adapted from [22]

The SKL is a ruggedized hand-held USMC key management device that replaced
the AN/CYZ-10 Data Transfer Device (DTD) [23]. Embedded within the SKL is
a KOV-21 Personal Computer Memory Card International Association (PCMCIA)
Information Security (INFOSEC) card that was developed and authorized by the
National Security Agency (NSA) to encrypt and decrypt cryptographic functions
using a removable crypto ignition key (CIK) [23], [24]. Due to the sensitive na-
ture of the KOV-21 card, the SKL is a Controlled Cryptographic Item (CCl) and
accounted by the Central Office of Record (COR) by serial number (ALC 1) [23].
The SKL is primarily used within the Marine Corps to securely distribute keying
material (keymat) onto communications equipment [23].

Figure 2.2. AN/PYQ-10 Simple Key Loader (SKL)

2.1.2 Cryptographic Mechanisms

Cryptographic authentication protocols that leverage symmetric-key algorithms (e.g.,
Advanced Encryption Standard (AES), Data Encryption Standard (DES), Triple Data En-
cryption Standard (3DES)) rely on a shared key for both encryption and decryption (see

Figure 2.3). Symmetric-key cryptography is primarily used for encryption (confidentiality)

since the algorithms are considered fast and strong [16]. In this fashion, the sender converts

the plaintext to ciphertext using the symmetric algorithm and the shared key [16]. The
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recipient uses the same key to decrypt the ciphertext back to plaintext [16]. Key manage-
ment, the establishment and sharing of the key between the sender and receiver(s), is the
most difficult aspect of symmetric-key cryptography and the attack surface and complexity
only grows as the number of users increase [16]. Common methods of key management are
through “out-of-band” mechanisms such as a cryptographic fill device or a Key Distribution
Center (KDC) outside of the shared network [22], [16].

Sender Encrypting with the Decrypting with the Recipient
Shared Ke Shared Ke
AN
Plaintext Ciphertext Plaintext

Figure 2.3. Symmetric-key Cryptography

Encrypting with Decrypting with .

SendeL Recipient's Public Key Recipient's Private Key RECIDIE:IZ
la

P = [ = = \

Plaintext Ciphertext Plaintext

Figure 2.4. Public-key Cryptography

A secure hash function (e.g., Message Digest 5 (MDS5), Secure Hash Algorithm 3
(SHA-3)) is a one-way mathematical function that creates a fixed size “fingerprint” from
an arbitrary size data input [16]. The output of a hash function is called a message digest.
Message digests are used to provide integrity (data was not modified in transit), but by
themselves, do not offer confidentiality or non-repudiation as a malicious actor can intercept
a sender’s message and replace it with a modified message and its respective digest [16].
To provide authenticity, a message authentication code (MAC) tag can be generated by
computing an algorithm with the message and a shared secret key as input [25]. The
sender sends the original message with the MAC tag and the recipients compute their

own MAC tag from the original message and the shared secret key in order to verify that
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the tags match [25]. A variation of a MAC called a hash-based message authentication

code (HMAC) uses secure hash functions as the computed algorithm (see Figure 2.5).

Asymmetric (public-key) algorithms (e.g., Diffie-Hellman, Rivest-Shamir-Adleman
(RSA), elliptic-curve cryptography (ECC)) address the shortcomings of key management
by introducing two keys: a public key and a private key [16]. Only the public key is
published and the private key is kept secret [16]. Public-key algorithms are not as useful for
encrypting large messages (compared to symmetric keys) due to their computational cost
[16]. Rather, they are specifically used to provide authentication, non-repudiation, integrity
through digital signatures and confidentiality through key management [16]. In asymmetric
cryptography, any message may be encrypted with a public key but only the authorized

recipient can decrypt the message using their respective private key (confidentiality) [16].

-ty

Sender Original Message Tag 1

HMAC Algorithm

0 b

Tag 1 Original Message
ﬂ | l If Tagl = Tag2, the message

is authenticated and has
not been modified.

-ty D

Recipient Original Message Tag 2

HMAC Algorithm

Figure 2.5. Authentication and Integrity with HMAC. Adapted from [25].

2.1.3 Point-to-Point Authentication

The Point-to-Point Protocol (PPP) defines the data link layer authentication standard
that allows for remote client authentication over point-to-point (P2P) links (e.g., dial-up,
circuit-switched) using protocols such as Password Authentication Protocol (PAP) and
Challenge Handshake Authentication Protocol (CHAP) [26].

14



PAP is the most basic password-based authentication protocol [27]. PAP requires the
subscriber to submit a username and password pair to the authenticator until either authen-
tication occurs or the network connection is terminated [27]. However, this authentication
scheme suffers from a wide array of vulnerabilities (e.g., MITM) due to the fact that PAP
sends passwords in plaintext [27].

>
e Password: 1234 e
~< Accept/Reject ~
R1 R2

Figure 2.6. PAP (Two-Way Handshake)

-

Challenge
S -S
u Password (Hash): J7A1 u
- Accept/Reject
R1 R2

Figure 2.7. CHAP (Three-Way Handshake)

CHAP is known as a challenge-and-response protocol and uses a three-way handshake
[28]. In this scheme, the authenticator transmits a "challenge" message to the user who
responds with the hash (also called message digest) of the password [28]. The authenticator
verifies the hash value using its own database of expected hash values [28]. If the hash
values match, the subscriber is authenticated. Upon initial success, CHAP continues to
conduct random periodic verifications [28]. While the plaintext password is never sent over
the network, both client and server share the same password in plaintext [28]. Since the
passwords are stored on both the client and server side, CHAP is not efficient for large
organizations where storage resources are limited [28]. CHAP was designed to protect
against replay attacks by incrementally changing the identifier and varying the challenge

value which is used along with the password to compute the hash value [28].
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Extensible Authentication Protocol (EAP) arose from the need for an open standard
authentication framework as network connectivity outgrew traditional P2P links with the
advent of the Institute of Electrical and Electronics Engineers (IEEE) 802 standard [29].
EAP is unique from PAP and CHAP in that it is not an authentication protocol [29]. Rather,
EAP is a general protocol that allows for the selection and transport of open standard or
proprietary third-party authentication mechanisms (e.g., EAP-MDS5, LEAP, EAPoL, EAP-
TLS, EAP-IKEv2) between the client (also called supplicant) and authenticator through
the use of a back-end authentication server (AS) [29]. The back-end AS is typically
a server that runs on Authentication, Authorization, and Accounting (AAA) protocols
which support EAP such as Remote Authentication Dial-In User Service (RADIUS) or
Diameter [29]. AAA protocols will be described in the following subsection. The capability
to support different authentication schemes allows EAP-compatible Network Access Server
(NAS) devices (e.g., switches or access points) the flexibility to provide remote client
authentication over dedicated, switched circuited, wired, and wireless links while serving
in two simultaneous capacities: an authenticator for local clients (assuming that the NAS
supports the specified authentication method) or a pass-through agent for non-local clients
(NAS requires no knowledge of the authentication method) [29]. Figure 2.8 shows a high-
level diagram of EAP authenticating to a RADIUS AS over a local area network (LAN)

authenticator.
EAPoL (EAP over LAN) EAP RADIUS
E = r;‘ : 7 E ‘ lntranEI
Supplicant ¥ Authenticator “ T thentication &
(802.1X Client) (802.1X Switch/AP) uthentication Server

(EAP RADIUS Server)

Figure 2.8. EAPoL via Authenticator to an EAP RADIUS AS. Adapted
from [29].

2.1.4 Client-Server Authentication

PPP does not support device scalability, is vulnerable to physical tampering, and makes
it difficult for network administrators to centralize logging and auditing [30]. As the Internet
grew, the limitations of PPP led to the development of AAA protocols as researchers realized

it was no longer effective nor efficient to manage access control over individual NAS devices.
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Leveraging the IEEE 802.1X standard for port-based Network Access Control (PNAC),
AAA provides a client-server model that allows end users to authenticate via an authenticator
to a centralized server which stores all the credentials and information required for access
management. Commonly used AAA protocols include RADIUS, Diameter, and Terminal
Access Controller Access-Control System Plus (TACAS+). Although it is not an AAA
protocol, Kerberos is another popular network authentication protocol that will be described

in this subsection.

RADIUS was initially conceived for authenticating dial-up network users but has since
become a general-purpose authentication protocol for wired and wireless users attempting
to gain network access [31]. When RADIUS was first being developed, servers were single
threaded meaning that individual requests were processed sequentially [31]. This was not
conducive to scalability and would have resulted in long server queues for servers that saw
hundreds of users per minute [31]. Thus, developers needed a lightweight multi-threaded
solution and chose User Datagram Protocol (UDP) as the transport protocol due to its
connectionless, low overhead features [31]. This greatly simplified server implementation
and improved authentication response times over the connection-oriented Transmission
Control Protocol (TCP) [31]. To improve reliability, RADIUS artificially incorporates
its own retransmission timer [31]. Lastly, RADIUS only encrypts the segment of the
data packet containing the user authentication credentials vice the entire packet, making it

vulnerable to replay attacks [32].

Diameter was developed as the technological demands, complexity, and scale of AAA
networks grew with the introduction of broadband, high-speed wireless, and new applica-
tions such as Voice over IP (VoIP) [32]. Additionally, developers of Diameter sought to
overcome the inherent flaws of RADIUS due to its use of UDP. Diameter supports both TCP
and Streaming Control Transmission Protocol (SCTP) which enables whole packet encryp-
tion via Transport Layer Security (TLS) or Datagram Transport Layer Security (DTLS),
respectively [32]. The reliability provided by TCP and SCTP especially benefited account-
ing services where packet loss had the potential for lost revenue. Other features that were
previously not supported by RADIUS included support for agents (e.g.,proxies, redirects,
relays), support for server-initiated messages, error notifications, capability negotiations
between clients and servers, and dynamic discovery of peers [32]. Diameter was also
designed to be backwards compatible with legacy networks running RADIUS [32].
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TACAS+ is proprietary Cisco protocol for access control and the most up-to-date
version of Extended TACAS (XTACAS) and the Internet Engineering Task Force (IETF)
standard of TACAS [30]. The original TACAS is one of the oldest authentication protocols
as it was first designed to authenticate dial-up links for the Advanced Research Projects
Agency Network (ARPANET), the precursor to the Internet [33]. TACAS+ performs
the same functions of RADIUS and Diameter with an added feature when using Cisco
devices. TACAS+ allows enterprises the ability to manage network administrators through
command authorization [30]. Command authorization is useful for large organizations that
have multiple administrators accessing different segments of the network as it can be used
to restrict administrator commands input [30]. Just like Diameter, TACAS+ also supports
TCP and whole packet encryption between the AS and NAS device [30].

Kerberos, developed by researchers at Massachusetts Institute of Technology (MIT), is
another popular client-server network authentication protocol that provides mutual authen-
tication through symmetric-key cryptography (see Figure 2.9) [34]. In Kerberos, the client
is verified through a trusted-third party known as the KDC which contains two servers: an
AS and a Ticket Granting Server (TGS) [35]. The client encrypts the access request with
their own password and sends it to the AS [35]. The AS matches the user identification to the
client’s password stored in a database and uses the client’s password to decrypt the client’s
request [35]. Once the client is verified, the AS sends a Ticket Granting Ticket (TGT) to
the client which is encrypted with a second secret key that it shares with the TGS [35].
The client sends the TGT back to the TGS along with its initial request [35]. Once the
TGS receives the TGT, it decrypts the TGT using the second secret key and then issues a
short-lived ticket (also called session key) encrypted with a third secret key that it shares
with the application server [35]. The client can now send the ticket to the application server
who decrypts and verifies the ticket with the secret key which it shares with the TGT [35].
Unlike TACAS+, Kerberos is open-source and based entirely on open Internet standards;

this allows for public scrutiny and thus, continual updates to the protocol.

2.1.5 Certificate-based Authentication
Similar to a handwritten signature, digital signatures leverage public-key cryptography
to prove the sender’s identity, making it difficult for the sender to deny that a message

originated from them [16]. The sender’s private key encrypts the message, which generates
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Figure 2.9. Kerberos Authentication Protocol Diagram. Adapted from [36].

a digital signature. To authenticate the sender, the recipient generates his/her own digest
from the original message, decrypts the sender’s signature with the sender’s public key to
produce another digest, and then compares the two digests to verify that they match (see
Figure 2.10) [16]. Thus, the sender cannot deny that he/she generated the signature (non-

repudiation) and as long as the digests match, the data was not modified (integrity) [16].

Just as a passport or driver’s license is used to prove an individual’s identity, a digital
certificate (also called public-key certificate) is an electronic document that guarantees,
against impersonation, the identity of an individual, server, organization, etc [37]. Request
for Comments (RFC) 5280 details the X.509 framework which defines the current public-
key certificate standard for use across the Internet [38]. Figure 2.11 displays the X.509
syntax for each certificate version. Like OTPs, digital certificates are another example of
possession-based authentication with an additional authentication factor: the private key
is “something you have” and the password that protects the private key is “something you
know” [37]. With regards to passport authenticity, your picture along with other personal
information is used to verify your identity and the passport is issued and endorsed by the
Department of State upon application approval. This begs the question: how do we ensure

the authenticity of digital certificates? The proof of validity for a certificate requires the
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digital signature of a trusted-third party [37].
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Figure 2.10. Signing and Verification of a Digital Signature

2.1.6 DoD Public Key Infrastructure

The advent of public-key algorithms solved the limitations of symmetric-key distribu-
tion and management in providing scalability, authentication, and non-repudiation through
a framework called PKI [16]. PKI connects trusted-third party across widely distributed
organizational boundaries, thus allowing the secure distribution of public keys [16]. Since
the public key are managed by the trusted-third party and also bound to a particular user, the
private key possessed by the users ensure that integrity, authentication, and non-repudiation
are maintained through digital signatures [16]. The secure management of private keys is
vital to the security of PKI. There are two primary ways that private keys can be stored:
locally on the client’s device or through a remote hardware device such as a Universal Serial

Bus (USB) token or smart card [39]. PKI contains the following functional components:

1. A CA. The CA is a trusted-third party or entity trusted by all participants in the
network to perform certification responsibilities for achieving public-key authentica-
tion [40]. The primary services that the CA provides are: certificate issuing (e.g.,
create and sign certificates), certificate renewal (e.g., publish unexpired certificates),

certificate revocation (e.g., maintains certificate revocation lists (CRLs), and certifi-
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cation storage (e.g., maintain archive of expired certificates issued by the respective
CA) [16], [40]. In general, once trust is established, a CA can issue or revocate cer-
tificates for users and other CAs by signing with its own private key [16]. Likewise,
users and other CAs can verify the authenticity of the CA in question via its respective
public key [16]. The principal top-level CA in a PKI is known as the root CA [16].
Since there is no higher trusted entity to verify the certificate of the root CA, it issues
its own “self-signed” certificate and publishes its own public key to assert trust [16].
The safeguarding of a CA’s private key is paramount and represents a vulnerability

in PKI that must not be compromised [16].

. A registration authority (RA). The RA — a collection of hardware, software, and/or
human operators — is trusted by the CA to register and authenticate the identity of PKI
users [16]. CAs maintain their own list of RAs and mutually authenticate each other
with respective public and private keys [16]. Similar to the CA, an RA’s private key
must also be heavily guarded [16].

. A repository. The repository is a database that provides a means to store, distribute,
manage, and update the status of digital certificates [16]. The CAs submits active
certificates and an updated list of revoked certificates, known as a CRL, to the repos-

itory servers [16].

. An archive. The archive is a database that stores and maintains a record of CA
issued certificates and associating certificate-related information that could be used

to determine the validity of a digital signature for future dispute resolution [16].

Given the vulnerabilities of password-based authentication, the DoD viewed PKI

technology and public cryptography as critical elements of the DoD IA Defense-in-Depth

strategy for enterprise imperatives as well as warfighting [41]. In August of 1997, the

Deputy Secretary of Defense (DEPSECDEF) released a memorandum soliciting input from

the Under Secretaries of Defense in an effort to identify requirements for the design,

development, and implementation of a DoD PKI to provide integrity, authentication, non-

repudiation, and confidentiality for all programs and applications on DoD networks [42].

As stated in the memorandum:
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The Department of Defense is taking major steps in reforming its paper-based
processes. It is our plan to move from traditional paper-based processes into an
environment where data is moved electronically between users. As part of this
effort, we have developed a position paper for the Department on digital signa-
tures and commercial practices that I want to share with you. Jointly developed
by my office and the Assistant Secretary of Defense for Command, Control,
Communications, Computers and Intelligence (ASD(C3I)), the Defense Infor-
mation Systems Agency (DISA) and the National Security Agency (NSA), this
document serves to identify the baseline for the Department’s transition to a

paperless environment. [42]

In May of 1999, the DEPSECDETF released another memorandum detailing the DoD poli-
cies for the development and implementation of a DoD-wide PKI that was later updated
by the DoD CIO in August of 2000 in order to better align milestones with the “Smart
Card Adoption and Implementation” memorandum, released in November of 1999 [41]. In
November of 2000, the DON published its PKI implementation plan, providing a roadmap
for Navy and Marine Corps planners to execute the DoD PKI policy [43]. The initiation of
smart card deployment and its supporting infrastructure under DoD PKI began in 2004 with
the issuance of Homeland Security Presidential Directive-12 (HSPD-12) which dictated
the use of a shared identification standard for promoting interoperability amongst Federal
authentication mechanisms [44]. The following year, Federal Information Processing Stan-
dard (FIPS) 201 was published which defined the Federal smart card credentialing standard
known as the Personal Identity Verification (PIV) Card (known as the CAC within the
DoD) [44]. The emergence of PKI within the DON saw aggressive, widespread adoption;
by 2010, approximately 85% of users under the DON had migrated to authentication using
the PKI-enabled CAC [45]. In an effort to better align with the PKI standards of the Federal
Government and to streamline operational interoperability, a DoD memorandum was pub-
lished in February of 2019 directing the replacement of the DoD Identity certificate with
the DoD PIV authentication certificate by May of 2020 [46].

2.1.7 Common Access Card
The DoD CAC leverages smart card technology in order to provide authentication

(digital signature), data integrity (digital signature), confidentiality (encryption), and non-
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Figure 2.11. X.509 Certificate Fields. Adapted from [38].

repudiation (digital signature) [47]. In addition, the CAC serves as the standard identification
card for access control to physical spaces (e.g., U.S. military bases, buildings, controlled
areas) and DoD networks and systems. [48], [49]. CACs provide a strong 2FA mechanism
requiring something that you know, a Personal Identification Number (PIN), and some-
thing that you have, physical possession of the CAC. CACs are issued and maintained by
local RA infrastructures using the DoD’s Defense Enrollment Eligibility Reporting Sys-
tem (DEERS) personnel database for identity verification and Defense Manpower Data
Center (DMDC)/Real-time Automated Personnel Identification System (RAPIDS) for pro-
cessing/credentialing [49]. CACs are issued to uniformed members of the Armed Forces,

U.S. Public Health Service, National Oceanic and Atmospheric Administration (NOAA),
DoD Civilians, and DoD Contractors [48].

The CAC possesses a 32-bit reduced instruction set computer (RISC) processor and

23



Legend

Private Key
(pri)
Public Key
(pub)
X.509
Certificate

Unreadable
(Externally)

Read-Only
(Externally)

DoD Common Access Card (CAC)

Authenticationg;

i
i

Digital Signaturey;

Authentication and digital signature key pairs
are generated internally within the CAC.

Authenticationyyp

Digital Signaturepup

Encryption
(Decryption)pri

o\

Authentication

Encryption

DoD Certificate Authority (CA)

The respective CA will create and sign the digital
certificates with the public keys enclosed.

g Authenticationpup
? Digital Signaturepus

3 Encryptionpuy <y

RAPIDS Local Registration
Authority (RA)

Encryption key pair generation is conducted
externally from the CAC via a cryptographic
hardware security module at a RAPIDS ID Office.

Encryption

(Decryption)p, Encryptiony,

I

Encryption Key Escrow

Digital Signature Q

A copy of the encryption private key is

escrowed to allow for decryption of
i i messages from a previous CAC(s).
Encryption
L ) (Decryption)pri

Figure 2.12. CAC Enrollment under DoD PKI. Adapted from [50].

additional cryptographic hardware that allows it to perform public-private key generation
for the purpose of supporting PKI operations [47]. The CAC is capable of storing 144K of
data on its tamper-resistant integrated circuit chip (ICC) which typically contains the client’s
RSA public-private key pairs for identity and/or PIV authentication, digital signature and
encryption as well as their respective digital certificates among other personal/administrative
information [48]. Figure 2.13 shows the CAC ICC hardware architecture which has been
adapted from [51]. To further guard against host devices (which, by default, are assumed
to be untrusted), the internal components of the CAC are designed such that the client’s
private keys are unable to be viewed or obtained [47]. As such, all PKI challenge-response
operations to verify the validity of the private keys are performed within the CAC making
it impossible for the host device to possess any knowledge of the private keys [47]. As an
added level of physical security, the PIN protects the CAC in the event of theft [47]. The
authentication and digital signature key pairs are generated internally within the CAC. The

e-mail encryption key pair, however, is generated externally at a RAPIDS office using a
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DoD-approved hardware security module (HSM). The resulting private key is imported
onto the client’s CAC and copied/escrowed to allow for future retrieval in order to allow for
decryption of messages from previous a CAC(s). The client’s public keys are sent to the
respective CA who verifies the client’s identity. Once the client’s identity is validated, the
CA encrypts the client’s information and the client’s public key with its own private key to
create a digitally signed certificate that is then stored in a certificate database, archived, and

imported onto the client’s CAC.

( )
™ 32-bit RISC _| | Cryptographic
Microprocessor Module
L RAM
Smart Card Reader » ROM
> EEPROM
. J

CACs are passive devices which require a smart card reader to provide power and
an interface for half-duplex communication through a serial input/output (1/0)
interface [52]. The CAC employs a black-box model where an input is fed through
the card reader, processed by the CAC's microprocessor, and the resulting output
is returned to the card reader [52]. The memory mapping unit (MMU) of the
microprocessor’'s operating system (OS) creates a hardware-software firewall that
prevents user (application-layer) processes from viewing or accessing the private
keys stored on the CAC. Thus, the CAC is considered a secure storage device be-
cause it prevents the card reader from having direct access to the CAC's protected
memory spaces [52].

Figure 2.13. Simplified CAC ICC Architecture

2.1.8 Mobile Device Management
The rise of mobile technology has been recognized as a key capability enabler for joint

force combat operations [53]. Globally integrated operations, secure and non-secure com-
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munications, and cloud-enabled C2 can all leverage the application of mobile technology to
greatly increase collaboration and the dissemination of information [53]. Given the surge
in DoD CMDs, the implementation of a consolidated Mobile Device Management (MDM)
architecture and Mobile Application Store (MAS) at the DoD enterprise level is necessary
to provide secure mobile device operation and maintenance in cost-effective manner [53].
The DoD’s MDM and MAS architecture seeks to minimize duplication, cost, and downtime

by providing enterprise management for the following [53]:

* Policy enforcement for end user devices through the establishment of end user per-
missions for approved functions at the user and application-level

* Malware detection

e Over-the-Air (OTA) software distribution

* Remote data wiping

* Remote device configuration management

* Asset/property management for data and key protection

* Distribution, update, and deletion of mobile applications

The DoD’s MDM architecture is a decentralized system hosted across several Defense
Information Systems Agency (DISA) Defense Enterprise Computing Centers (DECCs) and
accessed through a web portal for those with administrative profiles [53]. While the Bring
Your Own Device (BYOD) or personally owned devices trend has seen rapid adoption
across the commercial industry for business purposes, the current DoD policy prohibits the
use of BYOD [53]. As stated by the DoD CIO, Teri Takai, in her CMD implementation

plan memorandum,

Despite the benefits, existing DoD policies, operational constructs, and security
vulnerabilities currently prevent the adoption of devices that are unapproved

and procured outside of official government acquisition. [53]

Simply said, the assumption of risk for BYODs exceeds the threshold which the DoD is
willing to assume, in part primarily due to the inability to implement MDM in personal
mobile devices [54]. Without MDM, the DoD is unable to implement any of the configu-
ration controls required for ensuring mobile device security and preventing data breaches

(i.e., remote wiping). Because sensitive information, such as private keys, are stored on
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CMDs, MDM also allows the capability to sandbox applications (using virtual machines to
partition the memory of mobile devices) such that only approved applications have access
to the requested data [54].

2.1.9 Mobile Derived Credentials

Prior to 2016, DoD CMDs lacked a true capability to conduct secure e-mail and
web browsing due to the hardware challenges associated with tethering a smartphone to a
smart card [55]. Smart card readers with Bluetooth technology were tested for a period
of time but found to be too cumbersome and costly [55]. MicroSDs SmartCard-HSMs
were also tested but proved to be limited in functionality since not all leading mobile
platforms supported SD cards [55]. The need for smart card reading infrastructure also
meant that organizations would have to incur additional operating costs since smart card
readers were not typically bundled with device purchases. Overall, existing hardware
tethering solutions were found to be inadequate; in addition, they did not provide a positive
experience for end users [55]. Advances in mobile telecommunications have paved the
way for radio frequency (RF) communications with smart cards over a contactless surface
using Near Field Communication (NFC) technology [44]. As implied, the user would be
required to place the smart card in close proximity to the NFC-enabled device, but existing
technologies and standards had not made it practical nor possible for use [44]. This set
in motion the DoD’s motivation to develop and implement a set standard for providing
National Information Assurance Partnership (NIAP) certified U.S. Government CMDs a

capability to securely store mobile credentials without the use of smart card readers [55].

In September of 2014, the DoD CIO issued a memorandum directing the DoD PKI
Project Management Office (PMO) to conduct research in order to design an enterprise
service for implementing derived PKI credentials on unclassified CMDs [55]. A derived
credential, as defined in NIST Special Publication 800-63-3, is an alternative to CAC-based

authentication designed specifically for mobile devices and is

A credential issued based on proof of possession and control of an authenticator
associated with a previously issued credential, so as not to duplicate the identity

proofing process. [56]

27



Less than a year later, on October of 2015, the NSA and DISA hosted an Industry Day in
which the initial requirements and capabilities for the Purebred program were announced
[55]. In August of 2016, Purebred reached initial production capability with support for
user encryption key recovery following in December of that year [55]. What is the Purebred
program?
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Security Services, Web Server  Read/write Purebred Recover user Map Lo ED'_Pl &
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Anchor Constraint Tool encryption certificate
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Figure 2.14. System Architecture for Purebred. Adapted from [57].

Using Apple’s OTA Profile Configuration and Delivery Protocol with Key Manage-
ment Extensions (KMEs) to distribute Simple Certificate Enrollment Protocol (SCEP)
and Public Key Cryptography Standards (PKCS) #12 payloads, Purebred provides derived
credentialing for clients on unclassified mobile platforms to access remote content, sign
encrypted e-mails, and securely browse the Internet without the use of a CAC [8]. The
derived credentials are escrowed private keys and X.509 public key certificates that maintain

the same expiration datetime as their respective CAC certificates, either generated from a
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DoD CA that supports SCEP (i.e., authentication certificate, digital signature certificate) or

retrieved from a certificate repository (i.e., e-mail encryption certificate) [8].
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Authentication and digital signature key pairs are generated internally within the
device. In the current Purebred configuration, up to (3) decryption keys may
be retrieved from the Red Hat Data Recovery Manager. The respective e-mail
encryption certificate(s) are retrieved from the Certificate History Repository [57].

Figure 2.15. Purebred Mobile Device Credentials

SCEP is utilized as the backbone PKI communications protocol for certificate manage-
ment (i.e., certificate requests, CRL queries, certificate renewals) while PKCS #12 defines
the storage syntax for the files containing personal identity information which include pri-
vate keys and digital certificates [58], [59]. Purebred is comprised of a key management
server along with a host of application that supports both smartphones and tablets for all
major platforms (e.g., iOS, Android, Microsoft, Blackberry) to include the USB platform,
YubiKey [55].
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Another key breakthrough of Purebred is its ability to separate key management from
device management, an issue which mobile ecosystems have struggled to decouple [55].
Maintaining separate management structures allows the enterprise PKI system to remain
centralized while enabling the decentralizing of mobile instances. Since device management
varies according to the operational scenario, it was DISA’s intent to maintain vendor

neutrality in order to support the varied use cases of each service and agency [55].

The credentialing workflow for Purebred is typically a one-time enrollment process,
similar to how often a new CAC is generated, unless something unexpected happens to
the credentialed mobile device [55]. The credentialing process begins either in-person
or remotely via a Purebred Agent (PBA), a trusted DoD PKI administrator that has been
granted the ability to credential and enroll mobile devices [55]. Though the mobile de-
vice are Government Furnished Equipment (GFE), additional processes are required to

cryptographically verify and establish trust [55].

First, the mobile device generates a RSA key pair to create a temporary self-signed
device certificate that is submitted to the Purebred portal (a Wi-Fi connection is required) [8].
The PBA’s electronic data interchange personal identifier (EDIPI) is required to link the
enrollment session of the user to the respective PBA [8]. The PBA then generates a pre-
enrollment OTP using the PBA’s EDIPI and the unique identifier of the device on the
Purebred server which is entered into the Purebred Registration application to prevent spam
by securing the new device’s public key [8]. The OTP generator and validator for the entire
enrollment process leverages a NIST SP800-108 key derivation function (KDF) to generate
time-based one-time passwords (TOTPs) [8]. The KDF uses two symmetric keys which
are stored in a HSM: the first key is associated to human viewable OTP values while the
second key uses OTP values from the SCEP payloads which are not viewable by humans

and encrypted using server-authenticated TLS [8].

Next, the PBA compares the certificate hash of the device serial number on the Purebred
database to the hash displayed on the mobile device, this ensures the integration of human
verification to prevent MITM attacks or impersonations [55]. The PBA authorizes the
device enrollment by generating and submitting an enrollment OTP along with the client’s
digital signature via SCEP which then allows the Purebred CA to credential the device
with a new device certificate under DoD PKI [8]. Figure 2.16 and Figure 2.17 show the
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enrollment and credentialing process as displayed on the Purebred application.
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Figure 2.17. Importing Purebred Derived Credentials. Source: [55].

Once the device is enrolled, the user can then generate their own OTPs on the Purebred
portal [8]. The OTPs serve as a challenge password for authentication in the SCEP protocol
allowing the retrieval of the client’s identity/PIV authentication certificate, digital signature
certificate and e-mail encryption certificate(s) as well as the corresponding decryption
key(s) (up to three) [55] [8].
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2.1.10 Purebred Key Management

While Purebred can support both centralized and distributed (on-device) key genera-
tion, the RSA key pairs in practice are generated and stored internally within the mobile
device using platform-specific application programming interfaces (APIs) [8]. See Table
2.1 [57]. The keys may be protected by vendor-specific hardware components (i.e., key
attestation) and/or software depending on the mobile platform [8]. Key attestation is a way
for the mobile device to prove to the CA that the asymmetric key it possesses is stored in
secure hardware (i.e., Trusted Execution Environment (TEE), Secure Element (SE)) trusted
by the CA [60]. Software protection is typically implemented by storing the encrypted keys
in containers isolated from application processes, allowing only system processes to carry
out the challenge-response protocol required for cryptographic operations. This ensures

that it is impossible for application processes to extract or view the keymat.

Table 2.1. Purebred Platform-specific Key Generation

Platform Key Generation
iOS Software: Apple KeyChain API
Android  Software: Android Keystore API

Microsoft ~ Hardware: Universal Windows Platform APIs on Surface Pro; Yubikey using Yubikey APIs
Blackberry Software: OpenSSL

Adapted from [57].

Though Purebred can support hardware-back mechanisms for key storage, it is not
currently being utilized due to the lack of a CA capable of issuing hardware derived
certificates and the lack of MDM support (i.e., for Android, the MDM application claims
the one and only DeviceOwner function leaving Purebred without a delegated certificate
installer feature) [57]. Decryption private keys are securely imported from a key escrow
system via a mutually authenticated TLS connection since the same decryption key used
on the mobile device is the same key used on CAC-enabled computer workstations or

laptops [8].

2.2 Mobile Ad-hoc Networks

Advances in networking and portable computing have produced distinct types of wire-

less networks classified according to two primary criteria: the number of hops it takes a
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packet to travel across the wireless network (one or multiple hops) and whether wireless
network requires existing infrastructure (i.e., base station) to operate [61]. Table 2.2 shows

examples of wireless networks based on this set of criteria.

An emerging class of wireless networks exists which does not rely on pre-existing infras-
tructure but rather on a collection of mobile nodes which act as independent routers within
the network to transmit data to the final destination [61]. This class of networks, which
can form rapidly changing self-healing topologies, is known as a MANET. MANETS have
numerous applications in the civilian sector (i.e., first responders, IoT's, personal area net-
works (PANs)) but its autonomous behavior, small footprint, and decentralized management
make it particularly beneficial for military use at the tactical edge where speed/tempo and

mobility is desired.

Table 2.2. Classification of Wireless Networks

Network Classification Example(s)
Single-hop, Infrastructure-based WiFi, 3G
Single-hop, Infrastructure-less Bluetooth

Multi-hop, Infrastructure-based  Sensor/mesh networks

Multi-hop, Infrastructure-less ~ Mobile ad-hoc networks

Adapted From [61].

Independent of conventional structure, MANETSs are advantageous in disaster areas
and combat zones where backbone infrastructure or access points are non-existent, de-
stroyed, or impractical [62]. In addition, the dynamic routing capabilities of MANETS can
be a vital enabler for extending line-of-sight (LOS) and beyond line-of-sight (BLOS) com-
munications (via airborne methods such as Unmanned Aerial Vehicles (UAVs), Battlefield
Airborne Communications Node (BACN)-equipped aircraft, communications satellites) in
situations where traditional terrestrial communications may be degraded due to factors such
as inclement weather or obstructions in the terrain. Figure 2.18 illustrates how the Adaptive
Networking Wideband Waveform (ANW2) MANET can be extended BLOS.

Despite their advantages and applications, MANETS are still faced with their own set

of challenges and planning considerations when it comes to employment, including:
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Network Management: no centralized trusted authority to administrate/monitor
network operations, lack of network management framework

Resource Constraints: nodes have limited computing capability, data storage, bat-
tery capacity and as a result, limited transmission power/range

Wireless Constraints: by default, lower bandwidth than wired links, signal degra-
dation due to obstructions/interference in wireless medium, longer delays, high bit
error rate (BER)/packet loss, broadcast nature of MANETSs means nodes in range of
sending node will receive the transmission

Mobility: constantly changing topologies, discovery/configuration of new nodes,
high frequency of link updates due to arbitrary node connections/disconnections
poses challenges in network convergence

Scalability: frequent unpredictable topological changes poses challenges for dy-
namic routing and network configurations, identification of emergent behaviors can
be difficult to determine

Security/Privacy: dynamic nature of nodes makes physical security difficult, wireless
medium operates in the open and can potentially be accessible by malicious actors
i.e., MITM
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* Interoperability: integration of heterogeneous devices is challenging due to issues
such as software compatibility, use of proprietary/standard communications proto-

cols, service support, etc.

2.2.1 USMC MANET Employment

The demand for commanders in the field to gain access to real-time battlefield informa-
tion as well as their desire to extend situational awareness down to the squad-level has fueled
the widespread distribution of SDRs to troops at the tactical edge under the DoD’s Joint
Tactical Radio System (JTRS) program [64]. As opposed to traditional hardware-defined
radios, SDRs leverage software to perform digital signal processing of RF signals, enabling
a single radio the ability to receive and transmit multiple types of radio protocols, other-
wise known as waveforms. The Software Communications Architecture (SCA), developed
under the JTRS program, serves as an international open standard framework for military
SDRs, defining the foundation for which to instantiate and manage waveforms in a way
that supports multi-national interoperability, data security, and software portability while

minimizing costs [64].

With improvements in mobile ad-hoc technology, DoD wideband waveforms (such
as ANW2, Soldier Radio Waveform (SRW), Wideband Networking Waveform (WNW),
Tactical Scalable MANET X (TSM-X)) have started to replace legacy narrowband wave-
forms (i.e., amplitude modulation (AM)/frequency modulation (FM), very high frequency
(VHF)/ultra high frequency (UHF) LOS, Single Channel Ground and Airborne Radio Sys-
tem (SINCGARS)) due to their ability to effectively and efficiently transmit voice, video,
and data on-the-move across a multitude of operational environments. These waveforms add
redundancy while limiting single points of failure by taking advantage of the self-healing
nature of MANETS [65]. Likewise, the flexibility to move about and communicate from a
vehicle has allowed field commanders the ability to lead their troops from the front, thereby

reducing the decision cycle through real-time information access [65].

Developed by Harris Corporation, ANW2 is a proprietary waveform being used for
secure MANETS across the Marine Corps. The workhorses of ANW?2 networking are the
Harris Falcon III AN/PRC-117G manpack radio and its handheld version, the Harris Falcon
IIT AN/PRC-152A. Typically employed at the platoon-level and below, ANW?2 was designed
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(a) AN/PRC-117G Manpack Radio. Source: [66]. (b) AN/PRC-152A Handheld Radio. Source: [67].
Figure 2.19. USMC ANW?2-Capable Radios

for supporting scalable, high-bandwidth data communications in both stub and/or transit
network configurations [64], [68]. Once the mission plan (Communications Programming
Application (CPA)) is configured, radios within the ANW2 network will automatically
route between each other [69]. The formation and self-synchronization (no GPS required)
of a ANW2 subnet can be completed in less than 30 seconds with subnet healing and joins
being completed within five seconds [64]. Depending on the transmission bandwidth and
operating environment, data rates of 50 kbps up to 5 Mbps can be expected, see Table 2.3.
Backhaul or network integration is achieved through a radio configured with a RedLAN
connection which allows routing outside of the ANW?2 network [69]. Figure 2.20 shows a

typical ANW?2 topology with a RedLAN connection.

The limitations of the AN/PRC-117G’s transmission range limits its practical use
beyond the platoon-level [68]. Operators must also use a cable to tether the radio to an
auxiliary device (i.e., laptop) in order to provide data capabilities, proving cumbersome
and a challenge for personnel mobility [70]. The AN/PRC-117G is also relatively heavy
(12 1bs), “bulky (3.7 H x 7.4 W x 8.8 D inches), and expensive (over $30K/radio)” [70].
Another performance setback for ANW2 stems from its use of Time Division Multiple
Access (TDMA) which in effect reduces the available bandwidth across all the radios in the
MANET due to sharing of the same frequency band [70]. The handheld AN/PRC-152A,
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while almost 10 Ibs lighter (2.7 1bs) and smaller (10.25 H x 3.0 W x 2.5 D inches), suffers
from a lower transmission range (SW transmitter) while still being relatively expensive
($13K/radio) [70]. Overall, the cost of equipping the force has limited the distribution and
availability of these radios across the Fleet Marine Force [70].

Table 2.3. ANW2 Data Rates
Bandwidth Data Rates

1.2MHz 50 kbps to 2.8 Mbps
5 MHz 200 kbps to 5 Mbps

Source: [71].

The current DoD approach to MANET authentication is largely based on symmetric
(NSA Type 1) encryption. Type 1 encryption refers to NSA-developed or approved algo-
rithms (i.e., AES-256, FIREFLY, HAVEQUICK) which protect classified information (up
to Top Secret) on products used by the U.S. Government, their contractors, federally spon-
sored non-U.S. Government activities, and North Atlantic Treaty Organization (NATO)
allies [72]. In this scheme, authentication between the sender and receiver is achieved
through the use of a pre-shared key which is used to both encrypt and decrypt the plain
text and respective cipher text. Using an external fill device (which receives the keys
from the KDC), the keys are transferred via DS-101 (current NSA key transfer protocol)
to the supporting SDR [72]. While symmetric cryptography is computationally fast and
efficient for data encryption, key distribution and management still remains a fundamen-
tal challenge [16]. To protect these keys from compromise, cryptographic key rollovers
(key changes) are frequent and manually performed (via a key fill device)— a redundant,
time-consuming task. As such, symmetric encryption is not very scalable for larger tactical

networks.

2.3 Software-defined Networks

With the intent of widespread access and global information sharing, traditional IP
networking infrastructure was designed to be decentralized. Despite the widespread adop-
tion of traditional networking, the explosive growth of the Internet and IoT devices have

spawned massive network infrastructures that have become very complex and difficult to
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manage [73]. In order for administrators to implement network policies, individual network
devices, network applications, and middleboxes (i.e., firewalls, intrusion detection systems,
load balancers, deep packet inspection tools) have to be manually configured using low-
level vendor-specific programming languages [73]. Adding to this complexity, traditional
networks inherently lack the capability to dynamically reconfigure and respond to network

faults and load changes which consequently requires more manual administration [73].

To further exacerbate the situation, traditional networks are vertically integrated mean-
ing that the control plane, which makes protocol-based decisions on how to manage network
traffic, and the data plane, which sends the traffic according to the control plane’s decision,
are attached within the same networking devices [73]. The end result is that the static
infrastructure of traditional networking makes future innovation difficult as it lacks both the

resiliency and ability to adapt to ever-changing network conditions [73]. Fortunately, the
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innovations of the information age have created a digitally connected society where tasks
which were once defined by hardware have now been replaced by software. Leading this
paradigm shift in the networking domain is an emerging approach to network infrastruc-
ture virtualization known as SDN [73]. In accordance with [73], SDN is defined by the

following:
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Figure 2.21. SDN Architecture. Source: [73].

1. Separated control and data plane: SDN disassociates the vertical integration of
traditional networking by separating the control plane from the data plane [73]. In
other words, network devices no longer possess control functionalities and only serve
as packet forwarding elements [73].

2. Flow-based forwarding: Instead of traditional destination-based forwarding, for-
warding is based on a sequence of packets (flows) which are stored in a flow table
and act as a matching criterion with instructions for action [73]. Flow programming
allows for flexibility through the aggregated abstraction of the data plane components

(i.e., switches, routers, firewalls) [73].
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Figure 2.22. Traditional Network versus SDN. Source: [73].

3. Logically centralized control logic: The control plane’s logic is executed via a
logical SDN controller, also called the network operating system (NOS) [73]. SDN
controllers serve as the strategic brains of the network by managing the flows going
to the switches and routers based on the abstracted network view [73].

4. Programmable Network: Software (network applications) running on the SDN
controller allows network programmability to permeate across the data plane giving

SDNs an unprecedented advantage over traditional networking infrastructure [73].

The separation of the data and control plane in SDNs allows three primary advantages over

traditional networks: centralized management, scalability, and improved security [74].

1. Centralized Management: The SDN controller provides network administrators
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an abstracted view of the entire network while also giving them the capability to
manage the entire network from one location (locally or remotely); thus, improving
automation and eliminating individual device management.

2. Scalability: Centralization administration allows for network resources and virtual-
ized services to be provisioned on-demand, circumventing manual installations and
configurations.

3. Improved Security: The entire network security policy can be centrally enforced
to ensure compliance (i.e., software patching) and to dynamically respond to external
threats (i.e., network segmentation). Network Function Virtualization (NFV) reduces

vendor lock-in.

2.3.1 Software-defined Mobile Ad-hoc Networks

While still at its infancy stage, SD-MANET is an evolving, new field of research that
integrates the principles of SDN to establish and manage a wireless multi-hop network of
peer-to-peer nodes in an infrastructureless environment [75]. This networking paradigm

creates unique challenges, especially as it pertains to the tactical environment:

* The employment of the SDN over a MANET requires a TCP between the SDN con-
troller and each forwarding node for control messages (i.e., OpenFlow) [75]. However,
the connection between MANET nodes may be unreliable due to the dynamic nature
of MANETS [75].

* SDN control message sizes may be too large for MANETS in a tactical environment
which typically exhibit low bandwidth and intermittent links [75].

* Recently proposed SD-MANET architectures, such as vehicular ad-hoc networks
(VANETS), assume a single-hop link from the forward node to the SDN controller
over a separate channel (i.e., cellular) [75]. However, in tactical MANETS, the
SDN controller should be able to communicate with all nodes in the network using
multi-hop.

» Similar research also assumes a base station to host the SDN controller and a location
service (i.e., GPS) for tracking forward nodes is available [75]. For tactical situa-
tions, the SDN controller would most likely be hosted on mobile nodes (i.e., mobile
operations center, vehicle-mounted node, foot-mounted node) in the network since

the environment is expected to be infrastructureless. Additionally, location services
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should not be expected at each node.

2.4 Related Work

While little industry support exists in the area of SD-MANETS, the field has started
to gain traction among researchers seeking to combine the benefits that each paradigm
offers. Lacking a dedicated mechanism for global network and resource management, SDNs
offers a breakthrough concept by enabling programmability on an otherwise traditionally
static network infrastructure. However, the centralization of the SDN controller introduces
challenges in link reliability and network performance when managing highly dynamic and
mobile networks. Little work has been conducted regarding the application of SDNs in
the wireless domain, as the majority of research is concentrated on applications in wired

infrastructures such as Internet service provider (ISP) networks and data centers [76].

Nobre et al. was the first research to evaluate the application of a SDN architecture
in battlefield networking (BN) [77]. The study defined BN as the concept of independent,
dispersed tactical networks integrated as part of a larger network, typically through satellites.
Although the work did not explicitly focus on MANETS, its vision of applying SDN
technology to improve battlefield communications and security serves as the catalyst for
this thesis.

Poularakis et al. proposed architecture designs for tactical SD-MANETS [76]. Specif-
ically, the authors focused on where and how to organize the SDN controllers in the network
(globally, locally, or on mobile nodes) while addressing the advantages and disadvantages

of each location.

In [78], Poularakis et al. argued that the centralized nature of SDN created problems
with SD-MANET robustness. The study introduced methods of hybrid control logic to
add redundancy and flexibility by pushing control logic (data forwarding decisions) to
the mobile nodes: migrating to a distributed routing protocol between nodes during poor
network conditions, allowing nodes in a cluster to determine routes independently, and

storing forwarding rules on the mobile nodes.

Zouridaki et al. explored a distributed CA-based PKI scheme employing threshold-
based cryptography for MANETSs based on ECC in order to provide authenticated and
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encrypted information exchange [79]. The research used a clustering of nodes to reduce
overhead and enable scalability while ECC was adopted due to its computational perfor-
mance (reduced key size). The study’s proposed PKI architecture was shown to be compat-
ible with current smartcard technology. While SDN was not employed in this research, the
work highlights areas that may be improved with the hybridization of SDN.

To the extent of the author’s knowledge, this thesis is the first work to explore a
CA-based PKI scheme for tactical SD-MANETs:.
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CHAPTER 3:
Design

This increasingly complex security environment is defined by rapid technologi-
cal change, challenges from adversaries in every operating domain, and the im-
pact on current readiness from the longest continuous stretch of armed conflict
in our Nation’s history. In this environment, there can be no complacency—-
we must make difficult choices and prioritize what is most important to field a
lethal, resilient, and rapidly adapting Joint Force. America’s military has no

preordained right to victory on the battlefield.

—Jim Mattis, 26th U.S. Secretary of Defense [2]

The objective of this chapter is to develop an architectural design for ORION, an
SD-MANET authentication scheme that employs SDN controllers to provide on-demand,
heterogeneous device-user authentication (in addition to its traditional flow routing respon-
sibilities). An implementation for ORION is developed in order to evaluate its strengths,
weaknesses, and viability as a future USMC network mobility model. The technical re-
quirements of the Purebred infrastructure are examined in order to develop a framework for
ORION that will support the intent of the NDS, CPG, and the future of authentication in

tactical edge networks.

3.1 Technical Requirements

ORION leverages the current Purebred infrastructure to support credentialing when
back-end connections are available in order to take advantage of existing system solutions
and functions that would otherwise not be available in the absence of a back-end. See Figure
3.2 for an overview of ORION’s conceptual architecture design. This section focuses on

two major technical requirements of ORION:

1. In the event that a mobile device is lost, destroyed, or compromised, ORION shall

have the capability to facilitate timely revocation of device derived credentials by a
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Trusted Agent (TA). Compromise or expiration of CAC credentials shall also result
in the revocation of credentials pertaining to ORION.

ORION shall be capable of enrolling and credentialing new mobile devices in the
absence of a back-end connection. An expedited method shall be offered that empha-
sizes automation of this process to the maximum extent possible while adhering to
NIST guidelines for Authenticator Assurance Level (AAL) 3.

Supplementary topics that will be addressed include decryption key escrow and system

interoperability.

3.2 Consideration of Purebred Features

The following is an outline of fundamental Purebred solutions that will be taken into

consideration when designing ORION in order to determine how certain features of Purebred

can be built upon and adapted for use in a mobile ad-hoc tactical environment [57] [80]:

A e

Purebred integrates into the DoD PKI enclave;

Purebred’s source code is available for government review;

Purebred supports both centralized and distributed key generation;

Purebred supports decryption key recovery;

Purebred authenticates and authorizes all parties involved in the provisioning process

(i.e., device, people, services);

6. Purebred uses NIST-approved cryptographic algorithms and key sizes;

10.

11.
12.

13.

. Purebred supports NIAP-validated or in-evaluation devices;

During registration, users must demonstrate possession and control of CAC per NIST
SP800-157;

Purebred facilitates automated revocation of derived (software) credentials when
associated CAC is revoked.

Purebred avoids passing private keys, passwords, challenge values, etc. through
MDM in plaintext form;

Purebred enrollment includes a live agent in the process for human verification;
Purebred supports remote registration, reducing labor and allowing users to register
without having to visit a provisioning facility;

Purebred supports modern certificate enrollment protocols (i.e., Enrollment over
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Secure Transport (EST));

14. Purebred performs certificate validation in accordance with RFC 5280, “Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile”;

15. Purebred supports Personal Identity Verification (PIV) Authentication, Digital Sig-
nature, and E-mail Encryption credentials along with a Device credential for each
authorized device;

16. Derived PIV Authentication and Digital Signature certificates feature the same expi-

ration (notAfter) value as the CAC credentials they were derived from.

3.3 Assumptions
The following assumptions are made in order to set conditions for the ORION design

structure:

* Internet connection may be unavailable in tactical environment— limited/no connec-
tion to back-end services;

* ORION is platform agnostic— cross platform differences (i.e., iOS, Android) will not
be evaluated;

* ORION Registration app has been pre-installed on all smartphones prior to deploy-
ment;

* MDM configurations have been installed prior to deployment;

* SDN is currently deployed to support routing in the SPAN;

* SDN controller possesses the means to wirelessly communicate with devices within
its own network (i.e., Wi-Fi Direct, Bluetooth, Apple’s Multipeer Connectivity frame-
work);

* Ad-hoc links possess sufficient bandwidth to support ORION;

* ORION CA key pair generation will utilize FIPS approved cryptographic modules
and methods;

* Backup copies of the ORION CA private key will be created and stored using FIPS
approved methods;

» Use of biometric sensors and processing conforms with NIST standards for AAL 3;

» All key pairs use a RSA 2048 bit modulus.
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3.4 Hierarchical Chain of Trust

Root CA

|
l |

Device ID CA EMAIL
CA CA

Figure 3.1. ORION CA Hierarchy

The DoD Root CA, maintained by the NSA, is the ultimate authentication authority
for all public key certificates created within the DoD PKI hierarchy. With regards to the
notion of trust, the DoD Root CA serves as the common trust anchor for all intermediate CAs
subordinate to the Root CA. The DoD Root CA generates its own key pairs and signs its own
public certificate as well as the certificates of its subordinate CAs. The subordinate CAs,
in turn, use the DoD Root CA’s signature on their certificate to prove to their subordinates
that they are trusted authorities within the PKI hierarchy. The ORION CA will ideally serve
as an subordinate CA underneath a DISA-managed intermediate CA to provide a security
partition and trust barrier for the ORION domain. The ORION CA will manage all aspects

of subscriber public key certificates within its hierarchy.

3.5 Trusted Agents

ORION TAs, who serve as functional equivalents to Purebred Agents, are individuals

with role-based authorization to execute Subscriber and device identity validation during
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the registration process on behalf of the ORION CA. TAs ensure that there is a human
audit in the registration process to ensure visual vetting of the individual and/or device.
That is, a TA assists in authenticating the Subscriber to the CA. TAs do not have privileged
permissions to perform any functions on behalf of the CA or access to the CA. TAs roles
are identified on their public key certificates by a Subject field Common Name (CN) of
“TA” followed by their EDIPI (i.e., CN = TA.1234567890).

Arrow Legend
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: Archive and ™. H certificate information to a
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Figure 3.2. ORION Conceptual Design
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3.6 Subscribers

ORION Subscribers are end users identified by their associated public key certificate
Subject field and must demonstrate proof of possession of the respective certificate’s corre-
sponding private key. Subscribers must possess a current and valid U.S. Government issued

CAC in order to be actively enrolled in the system.

3.7 System Architecture

ORION’s architecture is defined by the OpenFlow open-source standard and consists
of a software-defined controller responsible for provisioning and managing virtual soft-
ware applications required for proper functioning of the system. ORION applications and

responsibilities include the following:

1. ORION CAs
» Create, sign, issue, and revoke public key certificates for respective class type
(i.e., Device, Identity CA, E-mail CA);
* Post and receive updated certificate information to a back-end directory/CRL;
* Post, update, and maintain certificate information in the Certificate Revocation
App;
e If CAC credentials are expired/revoked, perform automated revocation of
ORION credentials pending connection to back-end database (i.e., DMDC)
2. ORION Registration App
* Collect and aggregate device and user information to the CA;
* Facilitate time-based one-time password (TOTP) requests for generation and
recovery of PKI credentials;
* Demonstrate possession of valid CAC.
3. ORION Certificate Revocation App
* Archive and maintain all certificate information posted from the CA;
* Provide certificate revocation status to relying parties;
* Provide an interactive graphical user interface (GUI) for TAs to use in the
execution of their duties as it pertains to certificate revocation.
4. User/Biometric Database
* Store all local user identity-related and biometric data required for authentica-

tion/credentialing.
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5. Key Escrow Manager
» Coordinate with CA to recover and locally archive Subscriber decryption private
keys.
6. SDN Controller Database
* Store periodic backups of the controller configuration to ensure continuity in

the event of a disaster or data loss.

3.8 Credential Registration

Per [81], the CAC is the primary DoD PKI credential for logical authentication to
unclassified networks, systems, servers, and applications as it meets the criteria for AAL
3 in accordance with NIST SP800-63-3, “Digital Identity Guidelines”. While the CAC is
optimized for use in traditional wired environments (i.e., desktops, laptops), its inadequacies
in the wireless mobile environment have led to a revisal of FIPS 201-1, "Personal Identity
Verification (PIV) of Federal Employees and Contractors™ [44]. To facilitate authentication
of mobile devices as well as cost-efficiency, the updated FIPS 201-2 seeks to leverage the
existing DoD PKI infrastructure and the trusted identity of a current, valid CAC holder
to provision an additional credential called a derived credential [44]. When compared
to regular employment of a smart card reader and CAC for secure authentication, derived
credentials are a more pragmatic solution for “CAC-enabling” mobile devices. NIST SP800-
157, “Guidelines for Derived Personal Identity Verification (PIV) Credentials”, further states
that in order to provision derived credentials, the user must first prove possession of a valid
CAC [44]. As such, the Purebred registration process requires a computer with a smart
card reader in order to ensure that the user requesting new credentials can demonstrate CAC

possession before derived credentials are issued.

To align with existing policy, ORION leverages the same prerequisite of demonstrating
CAC possession (or equivalent thereof to a max practical extent) during the registration
process. Additionally, credentials derived for use in ORION will ideally be an entirely new
set of credentials separate from Purebred- this is analogous to having separate credentials
for garrison and tactical. For one, it would allow implementation of the principle of least
privilege, ensuring user segmentation and security compartmentalization from the Purebred
and garrison DoD PKI domain. Moreover, it would enable greater flexibility and control

for use in the local tactical environment (i.e., certificate revocation).
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3.9 Identity and Device Trust

7

Non-Local Environment

DEERS

Purebred CA

Purebred Agent

Purebred

Local Environment

ORION
Biometrics

Repository

ORION CA

ORION TA

Utilizing a similar identity assurance model to Purebred, ORION implements identity
attestation through DEERS when a stable back-end connection is available for establishing
verification services. In the absence of a backhaul connection, ORION will default to
its local biometric database which contains the fingerprint and facial data of CAC owners
collected during the CAC registration process. These biometric modalities have been phys-
ically verified at a DEERS ID support office during capture to belong to the enrollee and
thus, serve as an alternative approximation to a DEERS verification. Biometric authenti-

cation will also be utilized during log-in for participating devices. Additional rationale for

Figure 3.3. ORION Identity Verification Architecture

biometric use is detailed in the following subsection.
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3.10 Use of Biometrics

Biometric authentication proves “something that you are” and is measured by physi-
cal characteristics (i.e., fingerprint, iris, facial) and/or behavioral characteristics (i.e., how
you type, how you walk) [82]. The use of biometric modalities in ORION will conform
with NIST SP800-63B, “Digital Identity Guidelines: Authentication and Lifecycle Man-
agement”, which states that biometric authentication may be implemented in AAL 3 so
long as “the biometric sensor and subsequent processing methods meet the performance
requirements” of the aforementioned publication. Biometric authentication has seen limited

use in tactical application for reasons which include [82]:

* Biometric False Match Rates (FMRs) provided limited confidence in Subscriber
authentication when used by itself;

* Biometrics is vulnerable to spoofing attacks;

* Biometric comparison uses probabilistic means vice deterministic techniques;

* Proliferation of biometric technology is limited and the technology itself is not fully
mature;

* Biometric characteristics are considered open secrets (e.g., facial images can easily
be obtained online or by camera, fingerprints can be lifted and copied, iris patterns

can be captured using high resolution images).

Despite these limitations, when combined with other authentication methods, biomet-
ric technology is considered secure [82]. Since most modern smartphones are factory
equipped with biometric sensors and subsequent processing software, costs associated with
equipping/upgrading devices are eliminated. Additionally, biometrics provides a potential
defense measure against device post-compromise in current tactical radio networks. For
instance, if a programmed radio is lost during a convoy, any individual, including the ad-
versary, who acquires the radio can listen in on internal communications because there is
no authentication mechanism to prevent unauthorized use the device. The compromised
communication window can potentially last hours or more if the losing unit fails to quickly
recognize the loss and execute a timely cryptographic key rollover. The consequences may
be severe, posing significant risk to life and jeopardizing mission success (i.e., positional
compromise, operational compromise). Device biometric authentication for log-in provides

a solution to closing this vulnerability gap.
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In an effort to leverage and provide stronger confidence in biometric authentication,

the following authentication requirements are proposed and adapted from [82]:

* Biometrics shall only be used in combination with a MFA solution that incorporates
a physical authenticator in order to certify that the user proves “something you have”
(i.e., associated smartphone during log-in, CAC possession during enrollment);

* The biometric system shall allow no more than 3 consecutive failed authentication
attempts. Once that limit is reached, an exponentially increasing delay starting at 30
second will be imposed following each successive failed attempt;

* Alternative methods of authentication may also be offered as a substitute to the current
biometric method upon reaching the failure limit (i.e., a different modality method,
PIN, password);

* Biometric comparison for device log-in shall be performed locally on the user’s
device;

* Biometric comparison for the registration process shall be performed remotely on a
central biometrics verifier database;

* Biometrics shall be used during all stages of the enrollment process to prevent re-
pudiation of the enroller and to ensure that the entire credentialing process is being

conducted by the same individual.

3.11 Dynamic Passwords

ORION CAs emulate Purebred’s use of time-limited and context-limited OTPs values
during the registration process to provide proof of trustworthy credential usage with mobile
devices that it communicates with [8]. Per [82], AAL 3 requires safeguard against replay
attacks. Thus, the use of TOTPs is considered replay resistant as the values are only valid

within a limited, specified window. As stated in [8],

The one-time password entered into the Purebred Registration app serves to sig-
nal the user’s authorization of a request while authenticating selected attributes

contained in the request.

Just as in Purebred, TOTPs are also used in ORION to authorize issuance of device and all
derived certificates. A KDF based on NIST SP800-108 is used to generate the symmetric key

54



for the TOTP algorithm [80]. As added security feature, ORION requires that Subscribers
authenticate using biometrics before a TOTP value can be generated. See Figure 3.4 for an

overview of the CA’s TOTP generation and verification process.

Inputs
Biometric data (i.e., fingerprint) Biometric Sensor

and Processor

Inputs Inputs
-Context (i.e., EDIPI, serial number) KDF in Counter -Context (i.e., EDIPI, serial number) KDF in Counter
-Key derivation key Mode -Key derivation key Mode
-Number of bytes requested -Number of bytes requested
Derived Key | Derived Key |
Inputs Inputs
-Current time -Current time
-Step size -Step size
-Offset -Offset
-Number of digits -Window e
-TOTP Password
TOTP Generator TOTP Generator
(RFC 6238) (RFC 6238)
— —
— —
Valid or Invalid
TOTP Password TOTP Password
a) TOTP Password Generation b) TOTP Password Verification

Figure 3.4. Multi-factor TOTP Generation and Verification. Source: [80].

3.12 OpenFlow Security

The OpenFlow protocol serves as the main southbound protocol for ORION’s con-
trol plane allowing switch flow tables to be configured properly in order to manage the
forwarding of packets. To maximize bandwidth and facilitate interoperability, securing

the southbound communications channel between the SDN controller and its switch(es)
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with TLS is an optional feature. However, it is highly recommended that TLS be enabled
for southbound communications between the control and the forwarding plane. This is
especially important as unsecure communications between the controller and switch is
vulnerable to eavesdropping and MITM attacks [83]. Ensuring that the controller and its
switch(es) are mutually authenticated via TLS provides a mechanism for encrypting control
traffic [83]. As a result, this security measure also protects ORION against MITM attacks

or any malicious impersonation of its switch(es) or controller [83].

3.13 Full and Expedited Registration

ORION provides the option for two modes of device registration and credentialing

which may be situationally dictated based upon the needs of the using entity:

1. Full registration: requires TA witnessing, CAC demonstration/verification and/or
biometric authentication, and supplemental authentication using TOTPs;

2. Expedited registration: eliminates manual operations; registration is entirely auto-
mated through biometrics. TA oversight is removed along with CAC demonstra-

tion/verification and TOTP authentication.

The expedited mode is less secure, but may be necessary in urgent situations. It is
recommended that the use of expedited registration provides more restrictive services when
compared to a full registration (i.e., limited access in terms of credential validity period
or limited functionality in terms of post-registration services provided). Nevertheless, the
use of expedited mode still conforms to NIST guidelines for AAL 3 as authentication
is accomplished using a multi-factor cryptographic device (i.e. biometric-activated smart

device with secure processor) [82]. The following excerpt was taken from NIST SP800-63B:

...a biometric is recognized as a factor, but not recognized as an authenticator
by itself. Therefore, when conducting authentication with a biometric, it is
unnecessary to use two authenticators because the associated device serves as

“something you have,” while the biometric serves as “something you are. [82]
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3.13.1 Full Device Enrollment Process

The full device enrollment process has been adapted from [84] and depicts the steps
necessary for the Subscriber to provision a device credential which is required for obtaining
new derived credentials. The full device enrollment process consists of a pre-enrollment
phase followed by a final enrollment phase with TA vetting and CAC or biometric verifica-

tion. See Figure 3.5 for the full device enrollment flow diagram.
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Figure 3.5. Full ORION Device Enrollment. Adapted from [8].

1. The TA establishes a mutually authenticated TLS with the ORION Regis-
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10.

11.

12.

13.

14.

tration App using the TA’s own device and the TA’s token.

The TA obtains a TOTP from the app by entering the enrolling device’s
serial number and their own EDIPI for future authorization association. The TOTP
is signed using the app’s private key.

() The Subscriber, on their enrolling device, accesses the ORION Registration
App. The enrolling device generates a self-signed certificate. The device’s self-signed
public key certificate, certificate hash, and other device identifiers are posted to the
app along with the TOTP value generated by the TA. The Subscriber’s device is now
connected to the app via Server Side TLS.

The app verifies that the TOTP is valid and if so, the device is added to the
list of eligible devices for enrollment in the app.

The TA visually verifies that the device information presented in the app
matches the information on the enrolling device.

@ Once the TA has completed the verification, the TA prompts the app for a
second TOTP.

Q The TOTP is entered on the enrolling device to enable device pre-
enrollment.

The app sends a challenge password to the enrolling device using the pre-
existing Server Side TLS session.

The enrolling device responds to the challenge by signing it with its device
private key.

The app verifies the signature with the enrolling device’s corresponding
public key and sends an encrypted SCEP instructions (containing the enrollment
TOTP) using the enrolling device’s self-signed public key certificate.

Q The enrolling device generates a new key pair and uses the information in
the SCEP to craft a Certificate Signing Request (CSR) for the CA in order to obtain
a formal device certificate.

The app sends another challenge password which the enrolling device now
signs with the new private key.

Q The enrolling device sends the signed challenge and CA-issued device
public key certificate to the app. The app verifies the validity of the device’s public
key certificate.

ThDevice To associate the enrolled device with the Subscriber, the TA verifies the
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Subscriber’s identity by confirming their CAC. Within the app, the TA assigns the
device to the Subscriber by linking the device with the Subscriber’s EDIPI. The TA
may also associate the device to a biometric modality belonging to the Subscriber as
an addition to the EDIPIL.

15. At this point, the Subscriber is now ready to obtain ORION credentials and

recover decryption keys.

3.13.2 Expedited Device Enrollment Process

The expedited device enrollment process, as shown in Figure 3.6, removes the TA
vetting process and the use of TOTP authentication. Device credentialing is accomplished
through two biometric authentication steps— the first step initiates the registration process
and the second step confirms device enrollment. The procedure required to provision an

expedited device credential is as follows:
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Figure 3.6. Expedited ORION Device Enrollment
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10.

@ The Subscriber enters the enrolling device’s serial number and their own
EDIPI. The Subscriber sends the information to the Registration App and initiates
device pre-enrollment via biometric authentication.

@ The enrolling device generates a self-signed certificate. The device’s self-
signed public key certificate, certificate hash, and other device identifiers are posted
to the app. The Subscriber’s device is now connected to the app via Server Side TLS.

The app sends a challenge password to the enrolling device using the pre-
existing Server Side TLS session.

C) The enrolling device responds to the challenge by signing it with its device
private key.

The app verifies the signature with the enrolling device’s corresponding
public key and sends an encrypted SCEP instructions using the enrolling device’s
self-signed public key certificate.

(:) The enrolling device generates a new key pair and uses the information in
the SCEP to craft a CSR for the CA in order to obtain a formal device certificate.

The app sends another challenge password which the enrolling device now
signs with the new private key.

The enrolling device sends the signed challenge and CA-issued device
public key certificate to the app. The app verifies the validity of the device’s public
key certificate.

@ To complete the device enrollment process, the Subscriber associates their
device to the newly CA-generated device credential when prompted via biometric
authentication.

Q At this point, the Subscriber is now ready to obtain ORION credentials and

recover decryption keys.

3.13.3 Full Credentialing Process

The full Subscriber credentialing process has been adapted from [84] and depicts the

steps necessary to provision new derived identity, signature, and encryption credentials. The

Subscriber credentialing process is contingent on trust in the enrolling device. Therefore,

the Subscriber must first successfully enroll the device (receive a CA-issued device public

key certificate) before the Subscriber credentialing process can be initiated. See Figure 3.7

for the full credential enrollment flow diagram [8].
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Figure 3.7. Full ORION Subscriber Credential Enrollment. Adapted from [8].

. The Subscriber accesses the ORION Registration App and presents their
CAC/PIN or biometric/EDIPI in order to obtain a TOTP.

The app verifies that the Subscriber’s EDIPI in the CAC certificate matches
the EDIPI linked to the user’s device or that the biometric data matches the EDIPI
assigned to the device.

The Subscriber submits the TOTP and the app generates an encrypted SCEP
instruction (using the Subscriber’s device public key certificate) that is then sent back
to the Subscriber.

The enrolling device decrypts the SCEP payload containing a TOTP to
generate an identity or signature CSR to the CA through an established Server Side
TLS. Key pairs for identity and signature credentials are generated locally on the
enrolling device.

. E-mail encryption certificate: After a successful TOTP exchange, the key pairs will
be generated by the Registration App who will negotiate on behalf of the Subscriber to

obtain an encryption certificate. The resulting decryption private key and encryption
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certificate will be sent in an encrypted PKCS #12.
6. Key escrow: The escrow of decryption key(s) will be executed by the Key Escrow

Manager via the Registration App in the same manner.

3.13.4 Expedited Credentialing Process
The expedited credentialing process, as shown in Figure 3.8, removes the use of
TOTP authentication. The credentialing process is authorized through the use of biometric

authentication. The procedure required to provision expedited Subscriber credentials is as

follows:

Biometric/EDIPI

PKCS #7 with encrypted SCEP instructions

Execute SCEP instructions; Identity or Signature certificate request

VO ) (ddv uonensiboy NOIHO)

New Identity or Signature certificate signed by ORION CA

User Device

______________ OR_____________}_/______________-
Execute SCEP instructions; Encryption certificate request Encryption certificate via mutually
g authenticated TLS g
PKCS #7 with encrypted PKCS #12 2
g 7
-___------T__F’R _____________ g ______________ "
Execute SCEP instructions; Key escrow request 8 . . §
o Recover decryption key(s) via <
; mutually authenticated TLS m
PKCS #7 with encrypted PKCS #12 = g
\_ W CJ

Figure 3.8. Expedited ORION Subscriber Credential Enrollment

1. The Subscriber accesses the ORION Registration App, types in their EDIPI,
and performs biometric authentication to initiate the selected credentialing process.
2. The app verifies that the Subscriber’s EDIPI in the biometric database

matches the EDIPI linked to the user’s device.
3. The app generates an encrypted SCEP instruction (using the Subscriber’s
device public key certificate) that is then sent back to the Subscriber.

62



4. @ The enrolling device decrypts the SCEP payload containing a TOTP to
generate an identity or signature CSR to the CA through an established Server Side
TLS. Key pairs for identity and signature credentials are generated locally on the
enrolling device.

5. E-mail encryption certificate: The key pairs will be generated by the Registration App
who will negotiate on behalf of the Subscriber to obtain an encryption certificate.
The resulting decryption private key and encryption certificate will be sent in an
encrypted PKCS #12.

6. Key escrow: The escrow of decryption key(s) will be executed by the Key Escrow

Manager via the Registration App in the same manner.

3.14 Credential Revocation

Certificate revocation duties, other than certificate expiration, are delegated from the
CA to the TAs and executed via the Certificate Revocation App. Any subscribers, or
authorized parties (as defined in a Certification Practice Statement (CPS)), may request

revocation assistance from a TA.

3.14.1 ORION Revocation App

The design considerations for the ORION Revocation App takes into account three pri-
mary methods for managing revocation: CRLs, Online Certificate Status Protocol (OCSP),
and OCSP Stapling.

Certificate Revocation Lists

A CRL is simply a list maintained by the CA, or an entity designated by the CA,
which details all revoked certificates by serial number and the reason why the certificate
was revoked [85]. CRLs are not efficient when it comes to scalability as the CRL will
continue to grow over time along with its supporting infrastructure [86]. In addition, CRLs
updates are only published periodically and thus, a dilemma exists where a client may allow
an already revoked certificate [86]. On the other hand, CRLs are susceptible to availability
issues. In the event that a client is unable to request the CRL, the client would not be able

to make a decision regarding the validity of a certificate [86].
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Online Certificate Status Protocol

OCSP is a more modern approach to CRLs as it circumvents the issue of outdated
CRLs by enabling the client to on-demand request the status of a certificate’s validity [86].
For this reason, the OCSP is more efficient when compared to CRLs as it does not require
the client to download the entire CRL [86]. However, this makes OCSP a prime target
for Distributed Denial of Service (DDoS) attacks as the service is completely reliant on its
request-response protocol [86]. A privacy concern for OCSP is that its usage allows the CA
to identify the time of request and the specific certificate that was queried [86]. Similarly,
the client’s certificate is also linked to the transaction as well as their IP address [86].
While this ability to log events may not be a concern for government use, there are security

implications as the client requests are not protected from replay or MITM attacks [86].

OCSP Stapling

To overcome to privacy and security concerns of OCSP, OCSP Stapling introduces a
TLS extension that enables the server-side to automatically request the status of a certificate
and append the time-stamped, CA-signed result to the client-server handshake [86]. This
protects against MITM, replay attacks, and resolves the privacy concerns of regular OCSP
because the server is now responsible for fulfilling the OCSP request vice the client [86].
However, OCSP Stapling does not solve the availability issue when employed on an open

network as a failure in the OCSP server would cause the service to fail [86].

Revocation Design Considerations

With regards to the ORION framework, OCSP Stapling may be the best option of the
three as it improves the scalability and time inaccuracy issues in traditional CRLs while
providing more security against MITM and replay attacks than regular OCSP. Availability
remains an important concern and would require further research to determine its viability
and effectiveness when hosted on a SDN controller. As long as the service is hosted as an
internal SDN application it would be executing within the controller’s container. Thus, it
would be incumbent upon the controller to ensure security of the service and even then, a
failure of the controller would still cause the service to shutdown. Separately, the MITM
attack surface may be an area that the TLS feature in OpenFlow could facilitate in securing
as it encrypts and authenticates soundbound communication from the controller to the
switch(es). Pending additional experimentation, traffic from the ORION CAs and OCSP
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application would theoretically be secure since the entities are again virtually hosted within

the controller.

3.14.2 Causes for Revocation
In their capacity, TAs reserve the ability to revoke any certificate issued by the ORION
CA only. This authority does not extend to those certificates issued on a CAC or by Purebred.

Per [80], the following circumstances require certificate revocation, but is not limited to:

» Subscriber’s private key is lost, stolen, or suspected of compromise;

* Subscriber is suspected of fraud or other adverse behavior;

* Subscriber is no longer affiliated with any component of its distinguished name;

» Subscriber dies, deserts, becomes a prisoner of war or is classified as missing in
action;

¢ Subscriber leaves the DoD;

» Subscriber forgets the password and no recovery is possible;

* Subscriber violates the Subscriber agreement;

* Subscriber leaves the organization that sponsored it in the PKI, and does not return
its hardware token (in the case where one has been issued);

 Subscriber or authorized party (as defined in a CPS) asks for Subscriber’s certificate
to be revoked;

* One of the certificates associated with a shared private key is revoked, then all
certificates using that private key must also be revoked and the private key may not
be used for any other certificates;

* Any certificate issued (directly or indirectly) based on a request signed with a key
that subsequently determined to have been compromised at the time the request was

made.

3.14.3 Revocation Requests

Should any of the revocation requirements be met, the first available TA will be
immediately alerted by the individual(s) aware of the circumstance(s). The TAs will review
and, pending legitimacy, approve or reject the revocation request. The revocation request

procedure is as follows:
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1. Notified TA authenticates and approves revocation request;

2. TA accesses Certificate Revocation App;

3. CA authenticates TA’s authenticity by verifying possession of respective TA’s role-
based private key. CA authenticates to TA by decrypting associated request with TA’s
public key certificate.

4. Mutual TLS connection is established between the TA’s device and the CA;

5. TA selects and confirms associated certificates for revocation within the Certificate
Revocation App. Additionally, TA indicates reason for revocation;

6. CA completes revocation process.

3.14.4 Revocation due to External Circumstances

Should a Subscriber’s CAC credentials be revoked for any reason, the Subscriber’s
corresponding ORION credentials will be automatically suspended, pending revocation, so
long as there is a stable back-end connection to a DoD CRL server. In the absence of a
back-end connection, an out-of-band communication method (i.e., long-haul radios) may

be used to contact a tactical unit in order to direct a certificate revocation(s).

3.14.5 Emergency Revocation

The capability to conduct on-demand, remote revocation of all local ORION credentials
within a SD-MANET should be available to TAs for circumstances such as those which
pose a threat to safety, force preservation, actual (or suspicion of) ORION compromise, or

other reasons as defined in a CPS.

3.15 Key Escrow

The risk-return trade-offs of locally replicating and storing non-ORION private de-
cryption keys cannot be justified given the liability and the consequences of a potential
compromise. However, ORION will be capable of performing key escrow functions for

decryption keys created in the process of generating ORION E-mail Encryption credentials.
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3.16 Credential Profile and Management
ORION will provide three Subscriber certificates (Authentication, Digital Signature,

and E-mail Encryption) in addition to a Device certificate. See Figure 3.9 for a layout of a

typical certificate profile.

Device

Subject Common Name:
Varies per mobile OS

Key Usage:
Digital Signature
Key Encipherment

Extended Key Usage:
Client Authentication

PIV-Authentication

Subject Common Name:
LastName.FirstName.MI.

Subject Alternate Name:
User Principle Name:
EDIPI+6@MIL

Key Usage:
Digital Signature

Extended Key Usage:
Client Authentication

Smartcard Logon
Biometric Logon

Digital Signature

Subject Common Name:
LastName.FirstName.MlI.

Subject Alternate Name:
RFC822 Name:

E-mail Address
User Principle Name:
EDIPI@MIL

Key Usage:
Digital Signature
Non-Repudiation

Extended Key Usage:
Client Authentication

E-mail Encryption

Subject Common Name:
LastName.FirstName.MI.

Subject Alternate Name:
RFC822 Name:
E-mail Address

Key Usage:
Key Encipherment

Figure 3.9. Typical ORION Subscriber Certificate Profile. Adapted from
[80].

To address the concern of device certificate management in tactical environments (i.e.,
manual verification of certificate expirations on an individual device), the Army developed
a certificate-monitoring tool called Public Key Infrastructure in a Tactical Environment
(PKITE) which automatically collects and displays all device certificate information to a
web database [7]. This allows soldiers to check all certificate statuses and to receive an
alert on their devices when a certificate is nearing expiration [7]. The ORION Certificate
Revocation App should emulate a similar function to PKITE to leverage automation and to

enable scalability.

3.17 Joint and Coalition Interoperability

In a joint/coalition environment, the requirement to securely communicate amongst
entities must be predicated upon a common trust anchor. To facilitate trust with entities
outside of ORION, but within the DoD domain, trust is established through the concept of
CA chaining. However, CA chaining does not allow for secure communications with CAs
outside of the “chain”. To establish trust with an external CAs, the ORION CA will execute

cross certification (also known as federated PKI) in order to authenticate users belonging
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to a different domain. In cross certification, the ORION CA first establishes trust with the
other CA by performing an out-of-band verification of the other CA’s public key certificate.
Each CA will than sign the hash of the other CA’s public key certificate to produce a
cross certificate that can be distributed amongst its respective users. See Figure 3.10 for an

overview of the cross certification process.

@ @

ORIONcerT Allycerr
CAORION |[¢======= e mcccc e e m == m CAany

Allycerr T +| ORIONCcgrT

exchange cross certificates

R \
ORlONprivate,key{haSh(AlIYCERT)}) Allyprivate key{hash(ORIONcert)}
J

Figure 3.10. Facilitating Coalition Interoperability with CA Cross Certifica-
tion

3.18 Backup and Restoration

To facilitate survivability and resiliency, the ORION system architecture includes an
encrypted database for the SDN controller configuration. Periodic backups of the controller
database ensures continuity in the event of a disaster or data loss. The controller database is
regularly replicated to alternate CAs to ensure that there is not a single point of failure. Only
designated alternate CAs are authorized to perform a full SDN infrastructure restoration

after successfully decrypting the database.
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3.19 Summary
The purpose of this chapter was to develop an architectural design for ORION in order
to evaluate its potential as an authentication scheme for mobile ad-hoc communications in

tactical edge networks. The proposed design achieves two primary objectives:

1. ORION shall have the capability to facilitate on-demand revocation of device derived
credentials through a TA.

2. ORION shall have the capability to provision derived credentials without back-end
support. Additionally, a method is provided to automate device credentialing (that
will limit full functionality to the device or decrease the validity period of derived

credentials) without the assistance of a TA.

The use of biometrics (as an alternative authentication factor) is recommended and ap-
proaches to key escrow, framework interoperability, and service recovery are discussed.
The emulation of ORION’s framework and functions is analyzed in the following chapter to
assess its strengths, weaknesses, and viability as part of a future USMC network mobility

model.
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CHAPTER 4

Implementation

The Marine Corps’ reliance on information networks to enable timely decision-
making in support of operations creates a vulnerability we must mitigate. As the
Marine Corps matures the tactics, techniques, and procedures required to sup-
port a persistent information network, it must continue to explore and rehearse
methods to maintain combat effectiveness in a communications degraded envi-
ronment. Networks must incorporate resiliency characteristics that will support
the continued operation of key functions while defensive cyberspace measures
are implemented, and provide appropriate protection of information without
undue sacrifice of functionality. A persistent information network is essential
for MAGTF operations.

—Marine Corps Concept for Cyberspace Operations [87]

4.1 Configuring the Virtual Environment

ORION’s functions were emulated and evaluated in a virtual environment using a hard-
ware device (laptop computer) and open-source software to simulate ORION’s deployment
in a tactical environment. Figure 4.1 provides an abstracted view of the desired virtualized
implementation. The scope of this emulation experiment centered on implementation of
ORION’s device registration and credentialing process; specifically, the expedited mode

since the full registration and credentialing process already exists in Purebred.

4.1.1 System Specifications
The following were the laptop computer system specifications used to develop

ORION’s proof-of-concept model:

System Operating System: Windows 10 Pro
Manufacturer/Model: Acer Aspire ES-576G
Processor: Intel Core i5-8250U @ 1.6 GHz
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IP: 10.0.03:9999

Ope-nl;k)-w{

N
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.
.
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@ python™ orion Reg. App (Python API)

Laptop Computer

Figure 4.1. Software Abstraction of ORION's Experimental Design

Graphics Coprocessor: NVIDIA GeForce MX150 with 2.00 GB Dedicated GDDRS VRAM
Installed Memory (RAM): 8.00 GB Dual Channel Memory DDR4

Hard Drive: 256 GB SSD

System Type: 64-bit Operating System, x64-based processor

Hypervisor: Oracle VM VirtualBox 6.0.4r128413 (Qt5.6.2)

Virtual Machine Operating System: Ubuntu 19.10

SDN Operating System: Open Network Operating System (ONOS) 2.4.0
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Network Emulator: Mininet 2.2.2 [88]
Packet Analyzer: Wireshark 3.0.5 [89]
Programming Languages: Python 2.7.17 & Java 1.8.0

4.1.2 Mininet

The Mininet network emulator was chosen for use as a test bed to virtualize ORION’s
network environment due to its flexibility and built-in support for SDN, OpenFlow, custom
topologies, and network testing. Network topologies were created using software vice
hardware and behaved similarly to their discrete hardware counterparts [90]. Mininet used
“a set of features built into Linux that allow a single system to be split into a bunch of
smaller “containers”, each with a fixed share of the processing power” [90]. This feature
provided Mininet with superior performance and host scalability when compared to other

“emulators which use full virtual machines” [90].

The Mininet network was composed of isolated hosts, emulated links, and emulated
switches [90]. Mininet hosts were user-level Linux processes running in virtualized con-
tainers that provided network interfaces, ports, and routing capabilities [90]. Mininet links
rates were configurable and managed by the Linux Traffic Control (tc) utility [90]. Mininet
switches used the default Linux bridge or Open vSwitch to perform packet switching re-

sponsibilities across the different interfaces [90].

Mininet provided a command line interface (CLI) for managing the network and
individual nodes which was called by running the CLI () constructor [90]. To run programs
in Mininet hosts, the cmd () method was used to send input to the host’s bash shell process
[90]. The terminal emulator (xterm) was invoked to provide a virtualized CLI GUI
experience for executing commands directly from the host computer. Additionally, Mininet
allowed use of the Python API for developing prototype scripts. The RemoteController
class served as a proxy for connecting Mininet to an external SDN controller running
independently (i.e., in a LAN,a separate virtual machine (VM), or on a laptop) of the
Mininet network [90].
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Topology Design

The following Python code was used to design a simple network topology in Mininet
for experimentation. It consisted of one SDN controller, one OpenFlow supported switch,
and two hosts (simulating a TA and a Subscriber end device). For research purposes, such
a simple topology was sufficient for emulating the client-server interaction between the
Subscriber and the ORION Registration App. The TA host device was initially included for
ORION Revocation App development. However, the TA host was not utilized as the app

implementation was left for future work.

orion__topo.py

#!/usr/bin/python

from mininet.topo import Topo

from mininet.net import Mininet

class ORION(Topo):
def __init__ (self):

# initialize topology
Topo.__init__ (self)

# add hosts
trusted_agent = self.addHost(’ta’)
subscriber = self.addHost(’client’)

# add switch
orion_switch = self.addSwitch(’switch’, dpid="1775
)

# add links
self.addLink (trusted_agent , orion_switch)

self.addLink (subscriber , orion_switch)
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23

topos = {’orion’: (lambda:ORION() )}

Topology Build

Executing the script below on the Linux CLI resulted in a build of the Mininet network
topology within the Ubuntu VM. Network Address Translation (NAT) functionality was
enabled and served as an intermediary router between the SDN controller and the Mininet
hosts in order to facilitate communications between the controller subnet and the Mininet
subnet. The official Internet Assigned Numbers Authority (IANA) registered TCP ports for
the OpenFlow protocol are 6633 and 6653 [91]. The output of the Mininet topology script:

$ sudo mn ——custom orion_topo.py ——topo orion ——mac ——
controller=remote ,ip=127.0.0.1, port=6653 ——switch ovs,
protocols=0OpenFlowl3 ——nat

%% Creating network

%% Adding controller

%% Adding hosts:

client ta

%% Adding switches:

switch

#%% Adding links:

(client , switch) (ta, switch)

%% Configuring hosts

client ta

%% Starting controller

c0

%% Starting 1 switches

switch

%% Starting CLI:

mininet >
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4.1.3 ONOS

:~5 onos localhost
Welcome to Open Network Operating System (ONOS)!

Documentation: wiki.onosproject.org
Tutorials: tutorials.onosproject.org

Mailing lists: lists.onosproject.org

Come help out! Find out how at: contribute.onosproject.org

Hit '<tab>' for a list of available commands
and '[cmd] --help' for help on a specific command.
Hit '<ctrl-d>' or type 'logout' to exit ONOS session.

Figure 4.2. ONOS CLI

Many open source SDN controllers exist for building SDN and NFV solutions. Due to
its robust support and popularity within the open source community, the ONOS controller
was chosen for use in this experiment to manage the control plane of ORION’s SDN
and its associated network components (i.e. switches, links, software applications). The
ONOS platform was analogous to a server OS that responds to client requests, and was
also responsible for the management and configuration of the SDN [92]. The ONOS kernel
and its system applications were constructed in Java and loaded into an Apache Karaf
Open Services Gateway initiative (OSGi) container, enabling modules to be installed and
executed in a single Java Virtual Machine (JVM) [92]. The ability to run ONOS within a
JVM allowed it to be interoperable across a variety of OS platforms [92]. ONOS included
its own CLI (which was accessed with the onos localhost command) as well as a web-
based GUI for interaction with the platform ecosystem (by typing the following URL into a
web browser: localhost:8181/onos/ui; see Figure 4.3). After downloading the ONOS
tarbal from the online ONOS repository, Bazel (an open-source build tool developed by
Google) was used to install and start the ONOS server from the CLI. Upon execution, the

ONOS server log runs continuously in the foreground until the server is terminated.
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Links : 0
Hosts : 2
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Intents : 0

E) Flows :

(b) Interface Layout
Figure 4.3. ONOS GUI
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OpenFlow and Reactive Forwarding

Device CA
IP: 10.0.03:7777
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Figure 4.4. Expedited Registration and Credentialing Emulation Topology

After starting the ONOS instance and Mininet test topology, the openflow (OpenFlow)
and fwd (Reactive Forwarding) applications which were preloaded on ONOS (but not
installed by default) had to be activated. Since flows were not installed on the data-plane,
traffic was initially unable to be forwarded appropriately. Activating both applications
installed on demand flow forwarding and was achieved via the ONOS CLI with the following

command:
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onos> app activate fwd
Activated org.onosproject.openflow

Activated org.onosproject.fwd

To verify that OpenFlow and Reactive Forwarding was correctly installed, the following
command may be typed to view all installed SDN applications:

onos> app —a —s

Next, a ping test with the pingall () command confirmed successful connectivity between
the Mininet hosts and the NAT interface.

mininet> pingall
%% Ping: testing ping reachability
client —> ta nat0
ta —> client natO
nat0 —> client ta

k%% Results: 0% dropped (6/6 received)

4.2 ORION Registration App

Due to ONOS’ dependence on the Java platform, the server-side of the ORION Regis-
tration App was constructed using the Java programming language. See Appendix A for the
GitHub repository hyperlink containing all source code. First, anew ONOS application was
generated using the onos-create-app tool which employs the Apache Maven Archetype,
a build software that allows projects to be rapidly prototyped. Once the new application
structure was generated, the .java file was modified to build the ORION Registration App.
The mvn clean install command was invoked to compile the .java file into an .oar file
that was then stored in the local Maven repository. The onos-app tool was used to install

and deploy the .oar application into the ONOS instance; the exclamation mark tells ONOS
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to immediately activate the ORION Registration App upon installation. The onos-app tool
was also used to install re-compiled applications without restarting the entire ONOS server

by replacing the install keyword with reinstall.

$ onos—app localhost install! target/FILENAME. oar

4.2.1 OpenSSL

The OpenSSL software library was selected for establishing the ORION PKI build.
OpenSSL is a robust, commercial-grade cryptography toolkit that supports open-source
implementations of the TLS and Secure Sockets Layer (SSL) protocol [93]. The OpenSSL
library enjoys wide spread support from the open-source cryptography community and its
application is well documented. Specifically, as it pertained to the experimentation, the
included command-line binary was useful for performing a plethora of cryptographic oper-
ations such as generating private keys, signing public key certificates, encrypting/decrypting
data, importing/exporting a variety of PKCS file formats, etc. In addition, the OpenSSL
API offered developer-level customization capabilities for facilitating efficient scripting of

cryptography related tasks.

4.2.2 Expedited Device Registration and Credentialing

The client-side of the application was constructed using the open-source Python pro-
gramming language. Python was chosen for its extensive standard library, OS compatibility,
and syntax readability which facilitated management of the source code and simplified the
application development process. As an interpreted programming language, the source
code is not compiled after editing and thus can be executed immediately. This improved the
prototype development time and allowed the coding efforts to be directed toward building
the application’s core functionalities. See Figure 4.2.2 for an example implementation of

ORION’s expedited device registration and credentialing process.

Biometric Verification
To expedite the build process, the biometric verification was simulated using a simple

password challenge and response method. To expound, the client provided the biometric
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"Node: client"

Figure 4.5. ORION Registration App Graphical User Interface

input in the form of a password. The server simulated the verification process by comparing
the client’s input password against the server’s database stored password that was linked to
the client’s EDIPI. The server accepted the client’s password if it matched the password

stored in its database.

Process Threading

To optimize the performance of the registration and credentialing process, threading
was used to control the execution and timing of concurrent processes. In contrast to a timer
or sleep function, the implementation of process threading was a more elegant and efficient
way of managing application execution flow. Instead of pausing the main program for a
specified period of time, threading was more accurate as the main process would only wait
the minimum time required for the sub-process to finish executing. For the client-side,
the thread module was used to create a Python class (thread.Thread) that represented
a threaded process. To start the thread, the start() method was invoked to initiate
the process and the join() method was invoked to block further execution of the main
program until the threaded process had been terminated. Similarly, on the server-side, the

Java implementation involved the creation of a Process class in order to return an instance
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of Process’s subclass that could then be controlled by invoking the method to execute the
process, Runtime.getRuntime () . exec(), or invoking the method to wait for the process

to terminate, waitFor ().

Encoding Compatibility

It was important to note the character encoding differences between Python 2.x
(American Standard Code for Information Interchange (ASCII)) and the Project Object
Model (POM) Extensible Markup Language (XML) file encoding (Universal Transforma-
tion Format 8-bit (UTF-8)) used by Apache Maven to build the Java project. While Python
3.x used the Unicode Standard UTF-8 encoding for file read and writes, Python 2.x used
ASCII encoding by default. Since different encoding schemes generated unique character-
to-byte mappings (e.g., different bytes corresponded to the same character and vice-versa),
the client-side Python source code was modified to adopt the UTF-8 encoding scheme in
order to prevent corrupted read and writes that would have resulted from encoding and

decoding in different standards.

Simple Certificate Enrollment Protocol

SCEP was used as a means to automate the distribution of public certificates without
the need for end user involvement. The use of a SCEP Gateway API Uniform Resource
Locator (URL) was simulated using the ORION Registration App which provided the
client with an encrypted PKCS #7 file containing the socket pair information needed to
interact with the respective CA along with a hash of the CA’s public key which was used to

authenticate the CA once a connection was established.

PKCS #7

PKCS #7, now known as the Cryptographic Message Syntax (CMS), was used to
digitally sign, digest, authenticate, or encrypt the contents of a message and serves as
the foundation for the Secure/Multipurpose Internet Mail Extensions (S/MIME) standard
[94]. For the experiment, PKCS #7 files, denoted by the file extension .p7, were mainly
used to encapsulate and encrypt SCEP instructions using the receiver’s public certificate.
Additionally, PKCS #7 was also used to encrypt the client’s encryption private key for

transport and to sign the server’s encrypted challenge message.
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The following OpenSSL command was used to generate a PKCS #7 with public certificate

encrypted contents:

$ openssl smime -encrypt -in IN_FILE -outform pem -out ENCRYPTED_FILE.p7
PUBLIC.crt

The following OpenSS1 command was used to decrypt a public certificate encrypted PKCS

#7 file using the recipient’s corresponding private key:

$ openssl smime -decrypt -inform pem -in ENCRYPTED_FILE.p7 -inkey PRIVATE
.key -out DECRYPTED_FILE

The following OpenSSI command was used to sign the server’s PKCS #7 containing a

challenge message using the sender’s private key:

$ openssl smime -sign -nodetach -in DECRYPTED_FILE -out SIGNED.p7 -
outform pem -inkey PRIVATE.key -signer PUBLIC.crt

PKCS #12

PKCS #12 is a cryptography standard developed by RSA Laboratories that defines a
message syntax for importing and exporting personal identity information [59]. PKCS #12
was specifically used in ORION’s implementation for the transfer of public certificates.
The standard, denoted by the file extension .pfx or .p12, supports a password-based privacy
and security mode that was used to protect the file contents [59]. For the experiment, the
password derived symmetric key was used to encrypt the file data and integrity was provided

through a MAC that was also derived from the same password.

The following OpenSS] command was used to package and encrypt a public certificate for

export:
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$ openssl pkcsl2 -export -nokeys -out OUT_FILE.pfx -in IN_FILE.crt -
password pass:PASSWORD

The following OpenSS1l command was used to extract the contents of an encrypted PKCS

#12 file containing a public certificate:

$ openssl pkcsl2 -in IN_FILE.pfx -out OUT_FILE.crt -nokeys -password pass
: PASSWORD

Figure 4.2.2: ORION Registration & Credentialing Implementation

Initiating session with ORION Registration Server...
Server Response: ***Connected to ORION Registration App server on
10.0.0.3:9999%**

FTedededefdefddehde el fddehdehdehdefdRk

* ORION Registration App ***

FedededededefeddehdehdefdeRdefddehdehdehde Rk

~~~ Main Menu ~~~~
[1] Expedited Device Credentialing
[2] Exit App

Select an option [ ]: 1
Requesting expedited device credentialing...

Server Response: OK - Authenticate

Enter your full name i.e., Lewis Burwell Puller:

>Full Name: Chesty Puller

Enter your DoD e-mail address i.e., lewis.puller@usmc.mil:
>E-mail: chesty.puller@usmc.mil

Enter your EDIPI:
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>EDIPI: 1234567890

Enter your device serial number:

>Device S/N: usmcl775

For security, ORION needs to verify your identity:

>Fingerprint: password

Sending user and device information

Server Response: OK - Verified

Generating 2048-bit RSA private key

Generating self-signed X.509 public certificate

Creating pl2 containing self-signed public certificate

Checking if server is ready for file transfer...

Server Response: OK - Send

Preparing to transfer: PULLER.CHESTY.1234567890.pfx

Completed transfer: PULLER.CHESTY.1234567890.pfx

Server Response: OK - Received

Server Response: challenge.p7 737

Establishing new file stream connection with the server...

Server Response: ***Connected to ORION Registration App server on
10.0.0.3:8888***

Received: challenge.p7 of size: 737 bytes

File stream with the server closed...

challenge.p7 successfully decrypted with PULLER.CHESTY.1234567890.key;

server challenge stored as decrypted.txt
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signed.p7 containing decrypted.txt successfully encrypted and signed with
PULLER.CHESTY. 1234567890 .key

Checking if server is ready for file transfer...

Server Response: OK - Send

Preparing to transfer: signed.p7?

Completed transfer: signed.p?7

Server Response: OK - Received

Server Response: scep.p7 749

Establishing new file stream connection with the server...

Server Response: ***Connected to ORION Registration App server on
10.0.0.3:8888***

Received: scep.p7 of size: 749 bytes

File stream with the server closed...

scep.p7 successfully decrypted with PULLER.CHESTY.1234567890.key; server

challenge stored as scep.txt

Establishing connection with ORION DEVICE CA...
Server Response: ***Connected to ORION SCEP DEVICE CA on 10.0.0.3:7777%%*%

Sending GETACERT request to DEVICE CA...

Server Response: caCert.pfx 1112

Received: caCert.pfx of size: 1112 bytes

hash of CA.crt: c7820aeb
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DEVICE CA public certificate hash successfully verified

Connection with DEVICE CA closed...

Generating RSA private key, 2048 bit long modulus (2 primes)

e is 65537 (0x010001)

Done.

Generating CA Certificate Signing Request...

Done.

Establishing connection with ORION DEVICE CA...
Server Response: ***Connected to ORION SCEP DEVICE CA on 10.0.0.3:7777%**

Server Response: OK - Send

Preparing to transfer: PULLER.CHESTY.1234567890.csr

Completed transfer: PULLER.CHESTY.1234567890.csr

Server Response: OK - Received

Receiving Device Certificate from ORION DEVICE CA...

Server Response: deviceCert.pfx 1072

Received: deviceCert.pfx of size: 1072 bytes

Device Certificate extracted from P12

Connection with DEVICE CA closed...

Server Response: challenge2.p7 688
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Establishing new file stream connection with the server...

Server Response: ***Connected to ORION Registration App server on
10.0.0.3:8888%**

Received: challenge2.p7 of size: 688 bytes

File stream with the server closed...

challenge2.p7 successfully decrypted with PULLER.CHESTY.1234567890.device

.key; server challenge stored as decrypted2.txt

signed2.p7 containing decrypted2.txt successfully encrypted and signed
with PULLER.CHESTY. 1234567890 .device.key

Checking if server is ready for file transfer...

Server Response: OK - Send
Preparing to transfer: signed2.p7
Completed transfer: signed2.p7

Server Response: OK - Received

Authenticate your identity to complete the process:

>Fingerprint: password

Processing.....

Server Response: OK - Verified

+++++ ORION Device Enrollment Complete - Total Elapsed Time:
1.54713320732 Seconds +++++

+++++ Device serial: usmcl775 is now credentialed to user EDIPI:
1234567890 +++++
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Press [Enter] to continue to expedited credentialing

For security, ORION needs to verify your identity:

>Fingerprint: password

Server Response: OK - Verified

Server Response: scep.p7 701

Establishing new file stream connection with the server...

Server Response: ***Connected to ORION Registration App server on
10.0.0.3:8888***

Received: scep.p7 of size: 701 bytes

File stream with the server closed...

scep.p7 successfully decrypted with PULLER.CHESTY.1234567890.device.key;

server challenge stored as scep.txt

Establishing connection with ORION ID CA...
Server Response: ***Connected to ORION SCEP ID CA on 10.0.0.3:6666***

Sending GETACERT request to ID CA...

Server Response: IDcaCert.pfx 1144

Received: IDcaCert.pfx of size: 1144 bytes

hash of IDCA.crt: clfc9a8a
ID CA public certificate hash successfully verified

Connection with ID CA closed...

Generating RSA private key, 2048 bit long modulus (2 primes)
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e is 65537 (0x010001)

Done.

Generating CA Certificate Signing Request...

Done.

Establishing connection with ORION ID CA...
Server Response: ***Connected to ORION SCEP ID CA on 10.0.0.3:6666***

Server Response: OK - Send

Preparing to transfer: PULLER.CHESTY.1234567890.piv.csr

Completed transfer: PULLER.CHESTY.1234567890.piv.csr

Server Response: OK - Received

Receiving PIV Authentication Certificate from ORION ID CA...

Server Response: pivCert.pfx 1088

Received: pivCert.pfx of size: 1088 bytes

PIV Authentication Certificate extracted from P12

Connection with ID CA closed...

+++++ PIV Authentication Credential Received +++++

Server Response: scep.p7 701

Establishing new file stream connection with the server...

Server Response: ***Connected to ORION Registration App server on
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10.0.0.3:8888***

Received: scep.p7 of size: 701 bytes

File stream with the server closed...

scep.p7 successfully decrypted with PULLER.CHESTY.1234567890.device.key;
server challenge stored as scep.txt

Establishing connection with ORION EMAIL CA...
Server Response: ***Connected to ORION SCEP EMAIL CA on 10.0.0.3:5555%*%

Sending GETACERT request to EMAIL CA...

Server Response: EMAILcaCert.pfx 1152

Received: EMAILcaCert.pfx of size: 1152 bytes

hash of EMAILCA.crt: ca®664bc
EMAIL CA public certificate hash successfully verified

Connection with EMAIL CA closed...

Generating RSA private key, 2048 bit long modulus (2 primes)
B i

e is 65537 (0x010001)

Done.

Generating CA Certificate Signing Request...

Done.

Establishing connection with ORION EMAIL CA...
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Server Response: ***Connected to ORION SCEP EMAIL CA on 10.0.0.3:5555%%%

Server Response: OK - Send

Preparing to transfer: PULLER.CHESTY.1234567890.signature.csr

Completed transfer: PULLER.CHESTY.1234567890.signature.csr

Server Response: OK - Received

Receiving Digital Signature Certificate from ORION EMAIL CA...

Server Response: signatureCert.pfx 1088

Received: signatureCert.pfx of size: 1088 bytes

Digital Signature Certificate extracted from P12

Connection with EMAIL CA closed...

+++++ Digital Signature Credential Received +++++

Server Response: scep.p7 701

Establishing new file stream connection with the server...

Server Response: ***Connected to ORION Registration App server on
10.0.0.3:8888***

Received: scep.p7 of size: 701 bytes

File stream with the server closed...

scep.p7 successfully decrypted with PULLER.CHESTY.1234567890.device.key;

server challenge stored as scep.txt

Establishing connection with ORION EMAIL CA...
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Server Response: ***Connected to ORION SCEP EMAIL CA on 10.0.0.3:5555%%%

Sending GETACERT request to EMAIL CA...

Server Response: EMAILcaCert.pfx 1152

Received: EMAILcaCert.pfx of size: 1152 bytes

hash of EMAILCA.crt: ca®664bc
EMAIL CA public certificate hash successfully verified

Connection with EMAIL CA closed...

ORION Registration App is generating new key pair and Encryption CSR...

Server Response: encryptionCert.pfx

Establishing file connection with ORION Registration App...

Server Response: ***Connected to ORION Registration App server on

10.0.0.3:8888***

Sending Encryption Certificate request

Server Response: encryptionCert.pfx 1088

Received: encryptionCert.pfx of size: 1088 bytes

Encryption Certificate received: PULLER.CHESTY.1234567890.encryption.crt

Closing file connection...
Server Response: encryptionKey.p7 3102
Establishing new file stream connection with the server...

Server Response: ***Connected to ORION Registration App server on
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10.0.0.3:8888***

Received: encryptionKey.p7 of size: 3102 bytes

File stream with the server closed...

encryptionKey.p7 successfully decrypted with PULLER.CHESTY.1234567890.
device.key; stored as encrypted.key

writing RSA key
encrypted.key successfully decrypted: PULLER.CHESTY.1234567890.encryption
.key

+++++ Encryption Key/Credential Received +++++

*#*%* Subscriber Credentialing Completed - Total Elapsed Time:
2.08721208572 Seconds ***

4.3 Summary

The purpose of this chapter was to implement the architectural design of ORION
for further evaluation. The system configuration and specifications of the experiment
were outlined and the scope of the implementation was established. Specifically, the
expedited mode of the ORION Registration App was developed for both device registration
and user credentialing. Mininet was used to emulate an experimental ORION network
topology which included two hosts, a switch, and two links that connected the hosts to
the switch. The ONOS controller was selected to manage the SDN environment and
all server-side applications were developed and virtualized on the controller using Java.
The client-side application was prototyped in Python. OpenSSL was used to build out
the PKI authentication scheme and to execute any cryptography-related tasks. Relevant
Tactics (Tools), Techniques, and Procedures (TTP) used to facilitate and optimize the

implementation were also discussed.
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CHAPTER 5:

Evaluation

MCDRP 1 points out that a significant advantage can be gained by being first to
exploit a development in the art and science of war. A military that is slow to
exploit technological advances and adapt new ways of tighting opens itself to
catastrophic defeat. As we continue to reap the benefits of technological
progress in many wartighting areas, we must capture the full potential inherent
in automation. Automation can mitigate risk, reducing the exposure of humans
to harm, and reduce the workload on personnel. As machines advance from
performing repetitive tasks to dynamic workloads, it will free people to focus
on the things they do uniquely or best. The challenge, as machines become
more capable and autonomous, is how to put people and things together in the

most effective pairings for the mission at hand.

—Marine Corps Operating Concept [95]

The evaluation is divided into three sections. First, methods of validating correct behav-
ior and function of the ORION Registration App are demonstrated. Next, functional timing
test are conducted under adversarial network conditions characterized by low bandwidth
and high packet loss probabilities; the details of the results are highlighted and discussed.
Finally, a summary of the evaluation is presented to outline the expected performance of

the ORION framework and its deployment in tactical edge networks.

5.1 Validation of Correctness
This section discusses the methods used to perform unit testing and to evaluate the
expected behavior of the ORION Registration App. The following tests were performed

using OpenSSL to view the details of the desired file in order to check for correctness.

1. Check the validity of a private key:
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$ openssl rsa -in PULLER.CHESTY.1234567890.device.key -check
RSA key ok
writing RSA key

MITIEowIBAAKCAQEAre4gpoShVyxWyYFP/YnRINKj9Q13AnnWUudktS2gZiZj6eRQ
D/bCOkmI9IBpM+vp fompTINMQOC8hdIOSc6x jy6hIKKZF8 InUnfyoF9rire69VZkz
EkTqgGYkGh6cJL1F6]TYE2 jUFFOFskibEP5SnTvrIncFdiEMgI7YgoN826uts+CTf
CgI0OF1qzvWIZSIwPpdG6xA0J44DpgzviU8aiojp3HNoUvNhu2HPmBanxYwwxhq5x
k351I6£j6pP/EqCF2z0F4NCCg4 1PUHKnkpeU5ptUdGw2p£f+38kWF32K/+kbkXZ/6
Dfb+gc33GPYGtyjZjVdPMpAQ7B509Bp7drSZnQIDAQABAOIBAEByg+M£6hi /GT15
bQZpdtBOvOoknyCPvNbl3zwzN+gh+YvFSdVgfjglkvlMdZHaDFgBk7MSV8Q500+1
4S]zk1lb4eESBEZFhruMLp82PEceZiixbIuZ/fYXVKY7458Wm6LSINXfNzOIKDIYU2
Wh815Wnii®vIRrsjBFm30nx5uY06NDeeMULEKUZLiSm3ZDQy3w0Y jiYwYVPoXxbI
FAfsEHGIkoaVWHOkJQqmlLgZ4LFWreq4i7Xsy®OWfMqgZubnlgEBeH3Pjroz0bb9/0
VpGQ3uCg4VNvie204ZISCw60tmauQIl6nDnQyKXoUbu®t IRPUAXRLAU/QQmzR8V4k
18QHRYECgYEA1RxVNA1HZkwA9RTVGDdAKZeGDVvMHrmDqY3R91g+1hnl.d7UKH3LF70
UgUGkOBw1ift21xHHokfBJ2Renu7lbzoUkUaZmBto9jInf/avfApVIX+PBiZoorN
2G80P4Ca0E/rJCOFTI8jAe/0U1£feCqUDS jZKYw7 fcwirXamtWc7qLHUCgYEA®OS85
oDa8u4 1Q0He 306HRKwbkWAHkpK 39phmhi JPC1t9kkTFU2rOkH1 tK7iglt3hv28Sr
ULH76UQ83aw0a®LNTS+3KYd2xXFkXw1VbgVcgbJLhbI3DLYyFFED/300RBvR7eBGL
ADGyZ0soL/ytEN]12PPu8R+ijep/6NyBcn695s4kCgYBIkP1CXDMv 1 jmNOgbFNC6V
OpFNOQssLufWg9ZhclrYbnIDtIqiBUNUMN19468I£fVgOvg9I6pAxViYveuqINmY1
fWpb6gHrhOnrQzAM9TZdnbLQa+AEXRcK1+7wkK3y9uOuzpmZVDQreLXNm2HOZ £QU
1R/HUOOrMoyHvDtXFWoP8QKBgEWUNUue jvGimOGFNLceJ2s9y1Nnpf4V10/2Xy39
JYLXWCtmEOOZCes2Gdj/87eK2y2D7EleSHcha2e jAAZEkOwt1MC2xR3xqixhY17V
WEuG/dGTTPPn4CWjk9KFTMnV]zOQEotJAZGWnNaGPhhLYy3h44zK845F sm0 jUNU4
+b2JA0GBAJKHPLi /cxwb6bYWSHoAhdbDcLL+PDBOuOu80UutbrwZmXeALTX£8TKyb
xNCallrdIBalx+ux5xOmSOPLLRmms Jzv7nAP12ZxyMP2r06]3+mDA1x0UQdrufyha
RMpcbi81ZHnwgWhy9AJv2beFgH1QTmxMLBPUekXg2gKI9NngyZa7

2. Check the validity of a CSR:
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$ openssl req -text -noout -verify -in PULLER.CHESTY.1234567890.
csr

verify OK

Certificate Request:
Data:

Version: 1 (0x0)

Subject: C = US, OU = USMC, O = U.S.GOVERNMENT, CN =
PULLER.CHESTY. 1234567890, emailAddress = chesty.
puller@usmc.mil

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public-Key: (2048 bit)

Modulus:
00:c1:94:11:a0:e2:8e:4c:90:3d:f2:eb:d9:c3:6e:
b2:c3:56:a2:a3:e5:3¢c:c9:40:66:4d:5e:05:56:¢6:
43:63:52:5a:7a:19:02:55:¢c2:82:01:4a:43:4d:€0:
aa:6e:6a:e3:£f0:60:bb:bf:fd:19:0e:7a:4d:cb:92:
20:57:bb:07:9c:7a:3e:4e:9d:15:8a:c3:45:b4:20:
a8:2c:53:a5:96:£f7:54:cf:cf:cf:aa:ac:7c:7c:a2:
fl:aa:5e:95:34:01:23:2f:4a:£7:87:al1:7b:d8:27:
3b:71:88:9b:6b:60:56:cd:0b:a3:98:73:7e:cf:9d:
37:7b:c2:16:df:11:cb:82:10:d9:eb:7c:87:62:£3:
9d:a7:21:63:fb:be:8c:1la:ec:d6:19:67:90:73:£8:
81:26:50:ef:2a:69:ea:29:2e:42:41:47:ca:3b:bb:
ee:16:3b:b6:13:7e:21:23:31:60:ee:5f:6c:50: fc:
73:£3:40:82:3c:b4:60:02:99:71:9¢:91:3£:56:93:
ec:0f:a7:80:5a:03:db:8b:42:9f:9c:b5:0f:e7:ce:
4a:e8:e2:fe:a0:8c:d7:d6:bb:d7:£fc:e7:29:b4:da:
ed:ea:d2:8d:e3:16:6f:24:e9:5b:55:6d: fe:fd:44:
£2:2a:31:87:7a:6d:58:fc:89:a8:df:89:c8:0b:8b:
ef:c7

Exponent: 65537 (0x10001)

Attributes:
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Requested Extensions:

X509v3 Key Usage:

Digital Signature
Signature Algorithm: sha256WithRSAEncryption

44:8d:79:06:ee:51:27:13:72:67:8c:ed:52:09:5e:d9:c2:9e:
4e:b0:£1:08:b3:9d:5£:73:d6:4a:e0:27:df:4a:23:04:e7:60:
9d:6c:eb:47:b3:39:cb:b0:88:47:bf:cf:cc:b2:18:24:42:el:
38:bd:df:80:bf:6d:03:ef:51:51:4b:4b:83:cb:97:04:39:ce:
73:2c:d4:df:1c:99:43:ae:f9:37:e6:2a:cb:c4:b8:00:2a:62:
c3:b5:32:a3:9b:1a:52:24:39:b1:02:8d:1e:d2:49:19:5a:02:
07:22:d6:00:0d:8c:de:67:1b:67:78:15:40:39:70:£1:99:d3:
04:d4:c9:17:34:17:cd:b2:da:29:b2:ad:£f4:bd:04:39:e6:ce:
ac:88:82:d2:67:be:0£f:08:fd:60:1f:0c:c4:d5:a3:3d:1d: fa:
c8:e5:34:31:19:9d:3e:91:a7:2d:06:b£f:68:fc:05:d1:2e:6£:
39:7a:16:ed:bl:5a:2b:91:0¢c:02:44:c7:b3:7d:10:2b:a7:0b:
a2:88:57:fa:95:a4:e4:b6:ef:5b:fe:£8:1e:73:53:21:9f:2b:
80:ea:6f:97:7a:ce:10:21:5e:a3:f1:£d:07:e3:12:a8:b5:94:
cc:22:02:8£:bd:£9:36:c0:cf:42:af:ea:e2:be:2e:39:be:40:
b8:02:19:76

. Check the validity of a public certificate:

$ openssl x509 -in PULLER.CHESTY.1234567890.device.crt -text -
noout
Certificate:
Data:
Version: 1 (0x0)
Serial Number:
5d:9a:7d:5d:00:9a:€6:28:69:6d:£7:0a:68:b2:£5:52:21:90:
f7:1e
Signature Algorithm: sha256WithRSAEncryption
Issuer: C = US, O = U.S. Government, OU = USMC, CN = DOD
DEVICE CA
Validity
Not Before: Jun 9 04:34:57 2020 GMT
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Not After :

puller@usmc.mil

Jun 9 04:34:57 2021 GMT
Subject: C = US, OU = USMC, O = U.S.GOVERNMENT, CN =
PULLER.CHESTY.1234567890, emailAddress

Subject Public Key Info:

42:
c7:
2a:
£8:
53:
6a:

Public Key Algorithm: rsaEncryption
RSA Public-Key: (2048 bit)
Modulus:

00:
b2:
4a:
aa:
20:
as:
f1:
3b:
37:
9d:
81:
ee:
73:
ec:
4a:
e4:
£2:
e0:

cl:
c3:
63:
6e:

57

2C:
aa:
71:
7b:
a7:
26:
16:
£3:
0f:
e8:
ea:
2a:

(¥4

94:
56:
52:
6a:
:bb:
53:
S5e:
88:
c2:
21:
50:
3b:
40:
a7z:
e2:
d2:
31:

11:
az2:
5a:
e3:
07:
as:
95:
9b:
16:
63:
ef:
b6:
82:
80:
fe:
8d:
87:

a0:
a3:
7a:
£0:
9c:
96:
34:
6b:
df:
fb:
2a:
13:
3c:
5a:
ao:
e3:
7a:

e2:
e5:
19:

60
7a

£7:
01:
60:
11:
be:
69:
7e:
b4:
03:
8c:
16:
6d:

8e:
3c:
02:
:bb
:3e:
54:
23:
56:
cb:
8c:
ea:
21:
60:
db:
d7:
6f:
58:

4c:
c9:
55:
:bf:

4e

cf:
2f:
cd:
82:
la:
29:
23:
02:
8b:
d6:
24:
fc:

Exponent: 65537 (0x10001)
Signature Algorithm: sha256WithRSAEncryption

6f:4f:1b:
16:9£:49:
2f£:a9:72:
a0:c9:b2:
le:00:02:
8d:a3:b2:

6f:
7a:
02:
08:
7cC:
8f:

a9:
9e:
ab:
d4:
68:
00:

8b:d7:ab:
d7:c6:97:
ac:42:8c:
41:22:49:
ea:f2:c9:
19:8f:ca:

99

40:48:
ff:b2:
al:73:
0e:48
9a:5c:
10:f4:

90:
40:
c2:
fd:
:9d:
cf:
4a:
Ob:
10:
ec:
2e:
31:
99:
42:
bb:
e9:
89:

27:c0:
8b:bl:
75:d7:
:f4:a0:
4d:8a:68:
85:e2:

3d:
66:
82:
19:
15:
cf:
£7:
a3:
d9:
dé6:
42:
60:
71:
9f:
d7:
5b:
as:

f2:
4d:
01:
Oe:
8a:
aa:
87:
98:
eb:
19:
41:
ee:
9c:

9c

fc:
55:
df:

bO:
ea:
45:

29

5f:

= chesty.

ac

el:
40:
2e:
:b6:
59:
cf:

eb:
Se:
4a:
7a:
c3:
17/c:
7b:
7e:
87:
90:
ca:
6c:
3f:
0f:
29:
fe:
c8:

al:
73:
/cC:
67:
47:
5f:
91:
:b5:
e7:
6d:
89:

do:
05:
43:
4d:
:b4:

45

f4:
£8:
20:
:fa:
63:
a7z:

08

c3:
56:
4d:
cb:

/C:
ds:
ctf:
62:
73:
3b
50:
56:
e7:
b4:
fd:
Ob:

e0:
ab:
eb:

di:
4f:

be:
c6:
e0:
92:
20:
az:
27:
9d:
£3:
£8:

:bb:

fc:
93:
ce:
da:
44:
8b:

c9:
17:
38:
ae:
eb:
ag0:




9c:25:3a:ec:41:e3:3£:££:£0:6f:b0:c6:56:9£:40:£f4:5b:35:
d6:£5:86:00:0£:33:c9:d2:8a:42:de:9c:81:57:6e:cf:33:23:
41:1b:87:67:c4:49:a2:b7:66:75:3£:d9:d0:da:dd:a8:8d:32:
25:d2:ed:ff:1c:49:c5:ef:65:7c:5e:b4:c6:25:c9:31:54:c2:
df:c1:49:b8:78:23:e9:97:c1:80:de:0d:14:2f:43:a3:5e: fc:
06:49:c3:df:78:01:1b:b4:57:b9:bf:6e:73:83:59:da:el:le:
97:8a:58:b4:85:4b:7d:33:50:8c:95:fd:5d:ea:40:7d:7a:5c:
Sb:cb:4b:26:ea:ac:7e:c0:e4:0d:28:71:82:87:51:da:b3:ab6:
e8:48:99:7d

. Check the validity of a PKCS #12 file:

$ openssl pkcsl2 -info -in deviceCert.pfx

Enter Import Password:

MAC: shal, Iteration 2048

MAC length: 20, salt length: 8

PKCS7 Encrypted data: pbeWithSHA1And40BitRC2-CBC, Iteration 2048

Certificate bag

Bag Attributes: <No Attributes>

subject=C = US, OU = USMC, O = U.S.GOVERNMENT, CN = PULLER.
CHESTY. 1234567890, emailAddress = chesty.puller@usmc.mil

issuer=C = US, 0 = U.S. Government, OU = USMC, CN = DOD DEVICE
CA

MIIDVDCCAjwCFF2afVOAmuYoaW33Cmiy9VIhkPceMA®GCSqGSIb3DQEBCWUAME4X
CzAJBgNVBAYTA1VTMRgwFgYDVQQKDA9VL1MuIEdvdmVybml1bnQxDTALBgNVBASM
BFVTTUMXF jAUBgNVBAMMDURPRCBERVZJQOUgQOEwWHhcNM jAwN jA5MDQzNDU3WhcN
MjEwNjA5MDQzNDU3WjB/MQswCQYDVQQGEwW]VUzZENMASGA 1UECwwEVVNNQzEXMBUG
A1UECgwOVS5TLkdPVkVSTk1FT1QxITAfBgNVBAMMGFBVTEXFUi5DSEVTVFKkuMTIZ
NDU2Nzg5MDE1MCMGCSqGSIb3DQEJARYWY2h1c3R5LnB1bGx1lckB1lc21jLmlpbDCC
ASTwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAMGUEaADI jkyQPfLr2cNussNW
ogP1PM1AZk1eBVbGSmNSWnoZA1XCggFKQO®3gaqm5g4/Bgu7/9GQ56TcuSIFe7B5x6
Pk6dFYrDRbQgqCxTpZb3VM/Pz6qsfHyi8apel TQBIy9K94ehe9gn03GIm2tgVsOL
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o5hzfs+dN3vCFt8Ry4IQ2et8h2LznachY/u+jBrs1hlnkHP4gSZQ7ypp6ikuQkFH
yju77hY7thN+ISMxY05£fbFD8c/NAgjyOYAKZcZyRP1aT7A+ngFoD24tCn5y1D+£0
Suji/qCM19a71/znKbTa50rSjeMiWbyTpW1Vt/v1E8ioxh3ptWPyJqN+JyAuL4McC
AwEAATANBgkqghkiG9wOBAQsSFAAOCAQEAQmMIPG2+pi9erQEgnwLDh90DIxxafSXqge
18aX/7KLsepA+KsXKi+pcgKrrEKMoXN110UuI0s4+KDJsgjUTyJIDkj0oCm2CPqu
Ux4AAnxo6vLImlxNimhZY9Hrao2 jso8AGY/KEPSF41 /Pp®+gnCU67EH P/ /wb7DG
Vp9A9Fs11vWGAA8zydKKQt6cgVduzzMjQRuHZ8RIordmdT /ZONrdqIO®yJdLt /xx]
xe91fF60xiXJMVTC38F JuHgj6Z{fBgN4NFC9D0o178BknD33gBG7RXub9uc4NZ2uEe
14pYtIVLETNQjIX9XepAfXpcW8tLJugsfsDkDShxgodR2rOm6EiZfQ==

5. Confirm that a public certificate matches its corresponding CSR and/or private

key:

$ sudo sudo openssl x509 -noout -modulus -in PULLER.CHESTY
.1234567890.device.crt | openssl sha256

(stdin)= 16
c39c0£fa336d7333d804458aalaeaf1184a192115da9db26cfa36170£f2a1d0d

$ sudo openssl x509 -noout -modulus -in PULLER.CHESTY
.1234567890.device.crt | openssl sha256

(stdin)= 16
c39c0fa336d7333d804458aalaeaf1184a192115da9db26cfa36170f2a1d0d

$ sudo openssl req -noout -modulus -in PULLER.CHESTY.1234567890.
csr | openssl sha256

(stdin)= 16
c39c0fa336d7333d804458aalaeaf1184a192115da9db26cfa36170£f2a1d0d

5.1.1 Traffic Analysis
Wireshark was used to analyze the TCP traffic between the client and the ORION
Registration App server. As depicted in Figure 5.1, network traffic between the client

and server was not encrypted and the TCP communications could be viewed. This may
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be a security concern as network transactions were visible, inviting the possibility of
exploitation and malicious network-related attacks (i.e., spoofing, session hijacking, MITM,
replay). However, it was assumed for purposes of this analysis that any data traversing
a DoD network would be encrypted using NSA-approved Type 1 encryption hardware
(i.e., TACLANE-micro KG-175D) and/or Commercial Solutions for Classified (CSfC)-
approved, commercial-grade technology in accordance with NIST and federal government
IA standards. While important to note, the topic of this subject was outside the scope of the
ORION framework, and further study on viable DoD-approved encryption solutions was

thus left to future work.

Wireshark - Follow TCP Stream (tcp.sktream eq 6) - nat0O-etho - O (X

Hello =
***Connected to ORION Registration App server on 18.0.0.3:8888***
0K

----- BEGIN PKCS7-----
MIIB4QYJKoZIhveNAQcDoIIBEjCCAC4CANAXgyGCMITIETgIBADBMME4xCzAJBgNY
BAYTALVTMROwFgYDVQQKDASVLIMUIEdvdmVybmilbn(QxDTALBgNYBASMBRVTTUMX
FjAUBgNVEAMMDURPRCBERVZINOUgQBECFF2afVoAMuY oaW33Cmiy W IhkPocwMADG
C5gGSIb3DQERAQUABIIBAFqIOEL kegbw+zRIRDIIWESdTHMY jN41A3EULZhIKSPU
8h1YjAFIKDTSHpTEQD1GgqNwEDCSXNSEaESpW2pKHWU+DAR3eY365Q3 1H WiwkAT
kf3FBJp8alsQyt sSoePLSTXXEbyhMIpcULta3QQus 7y(91vMSVosKa+XYywsDXGY
YoeHCpTFR/F3ZVaFIzTXCTGr xIF1oDsNYArwev/ vAVYASKHEV /8] cYwD ] TEhVSvvl
qf4Cl5z2XjwoG15X L WeikbyETzk2xNr i81C56h/SbMg26vKkxWIcmAiB&TvDLcoV
Ky 71zQoY7QZpmzXmcBih T2t xRAORXYFRWCDELWT LwIowQwY JKoZThveNAQCBMBQG
CCqGSIb3DOMHBA M3 JYUER]KITAgauP /XY IPZDXbKkwATCOLThiv/ 07 ZEDQMVNTEI
6J2geis=

————— END PKCST-----

2 client pkts, 2 server pkis, 3 turms.

Entire conversation (776 bytes) * | Show and save data as | ASCII * | Stream |6 |¥
Find: Find Next
Filter Out This Stream Print Save as... Back A Close % tHelp

Figure 5.1. Wireshark Capture of Application TCP Stream

5.2 Network Performance Analysis

In order to model and evaluate the typical network characteristics serving a forward-
deployed Marine unit, the Very Small Aperture Terminal (VSAT)-Small satellite commu-
nication (SATCOM) system was chosen as a candidate for identifying realistic network link

thresholds. While many alternatives exist, the VSAT-Small is often employed by small
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operational units as a means of reachback for access to the Marine Corps Enterprise Net-
work (MCEN), making it a suitable candidate. With the understanding that bandwidth
allocation and link performance are dependent upon a variety of factors (i.e., priority,
mission, weather, beam angle), we considered the following network scenario to be a gen-
eralized baseline for a typical VSAT-Small link: 2Mbps bandwidth, 700ms latency, and
1% loss rate. By applying this baseline, the expedited registration and credentialing mode
of the ORION Registration App was evaluated under a combination of varying bandwidth
settings {128 kbps, 256 kbps, 512 kbps, 1 Mbps, 2Mbps} coupled with a fixed packet loss
rate of 1%, and a latency of 700+50ms. Furthermore, the app was deployed in a highly
constrained network condition to examine its feasibility and performance in a high loss
(10%), high delay (700+50ms), low bandwidth (128 kbps) environment.

5.2.1 Traffic Control

The Linux tool tc was used to impair the network link conditions (e.g., bandwidth, loss,
latency), and was configured within the Mininet client’s xterm CLI. While the Mininet
CLI offered traffic control capabilities, the Mininet tc feature was not as granular and
customizable as the built-in tc. Of note, both tc packages could not be simultaneously used,
and doing so would result in the following: Error: Exclusivity flag on, cannot
modify. tc modifies the Traffic Control in the Linux kernel to shape transmission rates
and to manage the scheduling of transmission packets [96]. By enabling traffic policing
with the ingress queuing discipline, the client’s expected link conditions were applied
for automated testing. Additionally, NetEm, an internal feature of tc, allowed for the

modification of delay and packet loss to be activated on the client’s network interface.

Packet loss is typically attributed to transient events such as network congestion, buffer
overflows, or random transmission bit errors. The pattern of packet loss is then generalized
to be non-uniform in distribution, meaning that equal-probability events for defining packet
loss would be inadequate in generating realistic test data. Rather, packet loss is more
bursty in nature. A more complete method for emulating complex packet loss mechanisms
incorporates the Gilbert-Elliot loss model and can be enabled on NetEm by specifying the
gemodel parameter. The Gilbert-Elliot loss model states that packet loss can be more
appropriately modeled as a stochastic 2-state Markov process to capture the observed loss
pattern [97]. The Gilbert-Elliot model considers a good (G) and a bad (B) state where each
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state has a probability for independent error events (1-p or 1-r) as dictated by its respective
state dependent error rate (1-k or 1-h) [97]. See Figure 5.2 for a diagram of the Gilbert-Elliot
model depicted as a 2-state Markov process. Network analysis using gemodel would likely
produce more accurate results but was out of the scope for purposes of this evaluation.

Thus, we leave further research in this area to future work.

p

1-p

r

Figure 5.2. Modeling Gilbert-Elliot Loss Model as a 2-State Markov Chain.
Source: [97].

For the evaluation, the loss parameter was enabled on NetEm using two input pa-
rameters after the 1loss keyword. The first parameter specified the overall packet loss rate;
the second parameter specified the average number of consecutive losses correlated to the
previous lost packet. This method of correlation was generalized to emulate packet burst
losses. Network latency was emulated using the delay parameter in NetEm. To make the
effects of delay more realistic, four parameters were used. The first parameter specified
an overall delay of 700ms. The second parameter specified that delay value be uniformly
distributed between {650ms-750ms}. The third parameter specified that the current packet
delay would be 25% correlated with the delay of the previous packet. The distribution

parameter was set to normal to model a non-uniformly distributed delay.

The following were example commands used to implement the desired bandwidth, loss, and

latency characteristics:

$ sudo tc gqdisc add dev client-eth® root handle 1: tbf rate 1Mbit burst
1600 limit 3200
$ sudo tc gdisc add dev client-eth® parent 1:1 handle 10: netem loss 1%
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25% delay 700ms 50ms 25% distribution normal

The following example command was used to verify the configured tc settings:

$ sudo tc qdisc show dev client-eth®

gdisc tbf 1: root refcnt 2 rate 1 Mbit burst 1600b lat 12.8ms

gqdisc netem 10: parent 1:1 limit 1000 delay 700.0ms 50.0ms 25% loss 1%
25%

The following example command was used to delete the configured tc settings:

$ sudo tc qdisc del dev client-eth® root

The network throughput tool, iperf, was included in Mininet and used to validate TCP
bandwidth performance on the client-side, ensuring that the desired effects were achieved.

Ping was used to validate that network delay settings were properly implemented.

mininet> iperf client nat®
**%* Tperf: testing TCP bandwidth between client and nat®
#*%% Results: [‘951 Kbits/sec’, ‘1.06 Mbits/sec’]

5.2.2 Functional Timing Tests

The application execution time of ORION’s full expedited mode (device registration
and credentialing) was evaluated by measuring the total time required to register and fully
credential the device under varying network conditions. The constraints of the network
link also served to assess and demonstrate the application’s stability and resiliency in low
bandwidth and high latency environments. The total time required to complete a full
expedited ORION device credentialing process was composed of the sum of the registration
and credentialing process. Time cost required to conduct biometric authentication was not
added to the total time as the process was simulated; further research examining methods
of biometric authentication and its effect on application performance were left for future

work.
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Bandwidth Latency (ms) Packet Loss Registration (sec) Credentialing (sec) Total (sec)

2 Mb 700+50 1 26.45 35.37 61.82
1 Mb 700+50 1 26.46 35.54 62.01
512 kb 700+50 1 26.94 35.51 62.45
256 kb 700+50 1 26.12 35.02 61.15
128 kb 700+50 1 27.01 36.03 63.04
128 kb 700+50 10 27.92 38.17 66.09
128 kb 700+50 20 3291 47.09 80.00
128 kb 700+50 30 57.52 68.45 125.97
128 kb 700+50 40 92.75 127.09 219.84

Table 5.1. Mean Execution Times for Device Registration and Credentialing

Low Bandwidth Timing Testing

To observe performance in low bandwidth links, the application was tested at different
bandwidth levels {128 kbps, 256 kbps, 512 kbps, 1 Mbps, 2Mbps} at and below the baseline
using a fixed packet loss of 1%, and a latency of 700+50ms. For each bandwidth setting,
the experiment was run a total of 20 times to provide statistical significance and the total
time was tabulated, separated by registration, credentialing, and the sum of both. The
result of individual experiments are depicted on scatter plots (Figure 5.3, 5.4, and 5.5)
for comparison. The results are also depicted on standard boxplots to illustrate the min,
max, median, and interquartile timing range (Figure 5.6 and 5.7). The results of the low
bandwidth testing showed that decreasing the bandwidth more than 93% (128 kb) below the
baseline had relatively minimal effect on the total time required to register and credential
a device. Although the total time slightly increased as bandwidth was lowered (+1.22 sec
difference between 2Mb and 128 kb), the experiment showed that the application was able to
perform flawlessly in low bandwidth environments with no unexpected failures. Overall, the
average time required to fully register and credential a device under the ORION framework
at and below baseline bandwidth conditions is slightly over one minute in most situations
(61.82 sec at 2 Mb and 63.04 at 128kb).

High Loss Timing Testing

To observe the impact of increasing packet loss on ORION’s performance, the appli-
cation was tested at different loss levels {10%, 20%, 30%, 40%} below the baseline using
a fixed bandwidth of 128 kb, and a latency of 700+50ms. The loss level represented the
number of data packets lost per 100 packets sent by the client. For each packet loss setting,
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Effect of Network Bandwidth on Expedited Device Registration Performance
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Figure 5.3. Bandwidth Effects on Device Registration

the experiment was run a total of 20 times. Compared to low bandwidth settings, packet
loss had the most significant effect on timing performance as it directly impacted TCP
performance in two ways. First, as the number of lost packets increased, the number of TCP
retransmissions also increased. Second, loss of acknowledgement packets caused the TCP
congestion control window to be halved, thus directly reducing the amount of throughput
available for use. As packet loss increased, the range between the minimum and maximum
execution time increased considerably as shown in Figure 5.9. Additionally, an exponen-
tial increase in total application execution time was observed as packet loss increased, see
Figure 5.8. No application failures were observed. The experiment demonstrated that the
ORION framework and application was capable of reliably performing in low bandwidth,

high loss environments, albeit at an expectedly reduced performance level.

5.3 Summary
The ORION Registration App was evaluated for correctness in function and perfor-
mance under emulated link conditions characteristic of tactical edge networks. The relia-

bility and robustness of the application was tested by further constraining link properties,
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Effect of Network Bandwidth on Expedited Device Credentialing Performance
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Figure 5.4. Bandwidth Effects on Device Credentialing

specifically bandwidth, packet loss, and latency, to measure the execution time required to
register and credential a device using the app’s on-demand expedited mode. The results
showed that the developed app was able to provide expected functionalities even under the
most extreme conditions with a trade-off of reduced performance. No unexpected fail-
ures or bugs were observed during the experimentation process. The results of the timing
tests demonstrated the app’s capability to support mobile PKI credentialing in network
degraded environments. Through the implementation of the ORION Registration App, we

also demonstrated that a SDN controller can be deployed to perform CA functionalities.
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Effect of Network Bandwidth on Full Expedited Mode Performance
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Figure 5.5. Bandwidth Effects on Full Expedited Mode

ORION Expedited Registration and Credentialing Performance under Varying Network Bandwidth
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Figure 5.6. Device Registration and Credentialing Under Varying Bandwidth
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Effect of Increasing Packet Loss on Application Execution Time
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Figure 5.8. Application Timing Performance with Increasing Packet Loss
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ORION Expedited Device Registration and Credentialing Performance in Low Bandwidth, High Loss Networks
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CHAPTER 6:

Conclusion

I believe in my soul that Marines are different. Our identity is firmly rooted in
our warrior ethos. This is the force that will always adapt and overcome no

matter what the circumstances are. We fight and win in any clime and place.

—General David H. Berger, 38th Commandant of the Marine Corps [4]

6.1 Conclusion

Since the inception of this research, we have sought to address critical communication-
related challenges facing forward deployed Marines in the future operating environment.
The management complexity, hardware limitations, and lack of scalability in traditional
networking infrastructure created an opportunity gap that could be filled by SDN. SDN
solves many issues confronting traditional networks by separating the control plane from
the data plane, allowing data plane network devices to serve as simple packet forwarders
managed by the SDN controller residing within the control plane. The SDN controller
serves as a centralized orchestrator, providing network administrators a global network
view and the ability to enforce updates and deploy modifications across the entire network

from any remote location.

Anticipating the proliferation of mobile, hand-held technology beyond garrison, we
envisioned and developed ORION, a next generation PKI authentication framework for a
network of ad-hoc mobile devices. Resembling a localized extension of Purebred (DISA’s
mobile security solution), ORION was designed specifically for tactical edge networks as it
combines SDN’s centralized management capability and globally, dynamic programmabil-
ity with the decentralized, self-healing properties of MANET technology into one scalable,
autonomous, interoperable system. Compared to traditional networking, SDN is unen-
cumbered by vendor lock-in issues affecting hardware-based infrastructures. As a result,
we believe this holds significant organizational cost saving potential over the system’s life
cycle. As the warfighting demand for PKE-devices continues to grow, SDN technology is
well-positioned to address future challenges in distributed ad hoc mobility models.
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In a D2E environment, access to back-end services is not guaranteed and a complete
local replication of PKI services would be resource-prohibitive. Likewise, the covert nature
of certain tactical operations may necessitate minimal electronic footprints that would be
not possible with high-powered transmission systems. As such, ORION was designed to
support PKI-dependent functionalities in the absence of remote PKI services. In designing

ORION, we have sought to answer the following research questions:

1. In the event that a mobile device is lost, destroyed, or compromised, how can SDN
facilitate timely revocation of the device’s derived credentials?
2. How can SDN be exploited to securely automate the registration and credentialing

process of new mobile devices?

With the understanding that a full device registration and credentialing process may not
always be situationally possible, we designed an alternative process which reduced manual
procedures and eliminated human oversight, CAC demonstration, and TOTP authentica-
tion. In lieu of a TA, the authentication process was automated through the adoption of
biometrics. While the expedited mode is less secure, the combination of biometrics and de-
vice possession met NIST MFA requirements but offered a much faster enrollment process
time. Furthermore, hosting ORION’s CAs within the SDN controller offered the flexibil-
ity to locally manage the entire PKI process without the need for back-end CA services.
Given the requirement to facilitate timely revocation of derived credentials, we proposed
possible design considerations for the ORION Revocation App, the primary mechanism for

managing on-demand ORION credential revocation.

ORION’s framework and the ORION Registration App were developed using open
source software and emulated within a virtual Linux environment. Mininet was used to
prototype the network topology which included emulated hosts, switches, and links. The
SDN’s OS, ONOS, hosted the SDN controller and server-side services; ONOS programs
were built using the Java programming language. The client-side ORION Registration App
was coded in Python for rapid prototyping and testing. The commercial-grade cryptography
software, OpenSSL, served as the cryptographic foundation for the PKI build and facilitated

execution of tasks related to cryptographic operations.

The ORION Registration App was evaluated for correctness, than deployed onto a

test network emulating link conditions characteristic of tactical edge networks to further

114



examine its performance in constrained and degraded networks. The stress testing demon-
strated ORION’s robustness and reliability in low bandwidth, high delay, high loss network
environments. In the most adverse link environments simulated, e.g., with a low data rate of
128 kbps, network latency of 700ms, and a packet loss rate up to 40%, ORION consistently
demonstrated its capability to support the full spectrum of mobile PKI credentialing. Addi-
tionally, we showed evidence through implementation that a SDN controller was capable of
hosting and performing CA functionalities. As SDN technology continues to advance and
gain traction within networking research communities and corporate institutions, we believe
that its adaptability, scalability, and employment of software automation is unprecedented,
and certainly worthy of consideration, as the Marine Corps continues to modernize the

capabilities of tactical communications.

6.2 Future Work

Due to the technical limitations and the scope of this thesis, there exist potential
research paths that require further exploration and study to fully realize the potential of
ORION:

1. Develop the ORION Revocation App— While potential designs were proposed, the
ORION Revocation App was not fully implemented and evaluated in this research.
Future research should investigate the performance of CRL, OCSP, and OCSP Sta-
pling and determine which method is best for obtaining certificate revocation statuses
given the resource and network constraints of a tactical edge network.

2. Examine distributed controller environments— This research focused on the imple-
mentation of a strict hierarchical CA model using a single controller. Future re-
search should experiment with multi-controller environments e.g., implementation of
a federated hierarchical CA model, to examine the interaction between neighboring
controllers. The end state of this research should investigate how controllers can
work together to establish globally optimal decisions outside of their local area e.g.,
what happens when a client transitions from one controller network to a neighboring
network.

3. Implement biometric authentication— Further research is required to design and im-
plement a biometric verification system for ORION. The research should explore

methods for biometric authentication from a security and performance perspective
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while testing various biometric modalities.

. Optimize application performance— The ORION Registration App’s client/server
source code requires further analysis to increase code efficiency. Future work should
investigate performance bottlenecks in the registration and credentialing process in an
effort to improve application execution times. Additionally, entry points and functions
should be thoroughly examined to model potential threats and/or identify unexpected

software bugs.
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APPENDIX A:
Source Code

The ORION source code may be downloaded from the following GitHub repository:

https://github.com/usmc-orion/orion
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APPENDIX B:
Additional References

B.1 DoDIN Access Control Management

Policies, Directives, and Instructions

HSPD-12: Policy for a Common ID Standard for Federal Employees and Contractors

FIPS 201-2: Personal Identity Verification (PIV) of Federal Employees and Contractors

CNSSP-3: National Policy for Granting Access to Classified Cryptographic Information
CNSSP-16: National Policy for the Destruction of COMSEC Paper Material
CNSSD-506: National Directive to Implement PKI on Secret Networks

CNSSI-1300: Instructions for NSS PKI X.509

NSTISSI-3028: Operational Security Doctrine for the FORTEZZA User PCMCIA Card
CNSSI-4001: Controlled Cryptographic Items

CNSSI-4003: Reporting and Evaluating COMSEC Incidents

CNSSI-4005: Safeguarding COMSEC Facilities and Materials, amended by CNSS-008-14
CNSSI-4006: Controlling Authorities for COMSEC Material

DoDI 1000.25: DoD Personnel Identity Protection (PIP) Program

DoDI 5200.01: DoD Information Security Program and Protection of SCI

DoDI 5200.08: Security of DoD Installations and Resources and the DoD PSRB

DoDI 8520.02: Public Key Infrastructure (PKI) and Public Key Enabling (PKE)

DoDI 8520.03: Identity Authentication for Information Systems

DoDM 1000.13, Vol. 1: DoD ID Cards: ID Card Life-cycle
Table B.1. Updated Nov. 27, 2019. Source: [98].
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