

U.S. Army Research Institute for the Behavioral and Social Sciences

Relative Weights Analysis is a "Grey Box" Relative Importance Algorithm

Briefing for: George Mason University

The views expressed in this presentation are those of the author and do not reflect the official policy or position of the Department of the Army, DOD, or the U.S. Government.

2/22/2021

Garett Howardson, Ph.D. U.S. Army Research Institute for the Behavioral and Social Sciences (ARI)

ARI Mission

MISSION: Drive scientific innovation to enable the Army to acquire, develop, employ, and retain professional Soldiers and enhance personnel readiness.

Personnel Assessment

Innovative measures and methods to maximize personnel and unit readiness of the Future Army.

Team Effectiveness

Innovative assignment and development methods to maximize team and squad readiness for the future battlefield.

Leader Development

Novel methods to accelerate leader development of critical competencies for Multidomain Operations.

Basic Research

Fundamental theories and new domains in behavioral and social sciences with high potential impact on Army issues.

WHERE PERSONNEL SCIENCE MEETS PERSONNEL PRACTICE

Basic Research Strategic Direction

"Right person, right job, right time"

"Optimize individual and team performance"

"Deliberate management of Soldier & Officer Talent"

"Develop smart, thoughtful, & innovative leaders"

"Employ each individual to maximum effect"

Learning and

Development

Basic Research Strategic & Technical Goals

		Near (FY20-27)	Mid (FY28-35)	Far (FY36-45)		
	Science of Measurement of Individuals and Collectives	Strategic Goal: Advanced psychometric theory for deriving valid measurements from complex assessments and continuous streams of data				
		Computational psychometrics for modeling dynamic data	Measurement theory for dynamic constructs	Measurement theory for simulation-based assessment		
		Dynamic Team composition & staffing models	Context-sensitive measures of adaptability & flexibility	Embedded assessments of individual and group attributes		
	Understanding	Strategic Goal: Develop multilevel theory and methods for understanding dynamic restructuring, coordination, and composition processes in complex organizations				
	Multilevel and Organizational Dynamics	Non-linear models for assessing team processes Integrating geospatial concepts into team effectiveness	Computational models of individual & group dynamics Modeling dynamic organizational restructuring	Complex computational models of multi-layered organizations for experimentation		
	Context of Behavior in Military Environments	Strategic Goal: Integrative theory specifying the interactive relationships between individual characteristics and contextual drivers in predicting human behavior				
		Leadership theory for complex organizations	Multilevel contextual effects on organizational behavior	Models integrating individual, group, and contextual factors to		
		Identify contextual factors impacting social & decision processes	Models for strategically activating organizationally-relevant identities	predict organizational behavior		
	Formal/Informal Learning and Development	Strategic Goal: Holistic model of individual and collective learning across work settings and contexts throughout the career span				
		Understand the role of narratives in learning	Unobtrusive measures for assessing career learning	Complex computational models of development across the career span		
		Characteristics that impact individual & collective learning	Non-linear models of learning & development			

Basic Research Model

- Engages Army researchers within the scientific community
- Large scale, topic-focused collaborative research programs with ARI researchers and external scientists

U.S. Army Research Institute for the Behavioral and Social Sciences

Relative Weights Analysis is a "Grey Box" Relative Importance Algorithm

Briefing for: George Mason University

The views expressed in this presentation are those of the author and do not reflect the official policy or position of the Department of the Army, DOD, or the U.S. Government.

2/22/2021

Garett Howardson, Ph.D. U.S. Army Research Institute for the Behavioral and Social Sciences (ARI)

- Whole-person approach for Soldiers
- Combine multiple pieces of diverse information
- Often *relative importance* methods to determine information's importance given the other pieces of information
- The volume and variety of information pieces has outpaced relative importance methods common in applied psychology

- Give overview of two algorithmic perspectives of importance
- Describe prevalence of methods in personnel selection
- Argue that personnel selection needs to either:
 - 1. Acknowledge and embrace uncertainty of more sophisticated machine learning methods, OR
 - 2. Abandon use of relative importance methods (at least as currently practiced)

Relative Importance Overview

- Emerged from desire for predictor-specific effect sizes in multiple regression
 - Practical versus statistical significance
- General goal is twofold:
 - 1. Put all predictors on common metric
 - 2. Incorporate predictor correlations into effect size calculation
- Began as exploratory tool to supplement regression
 - More like a descriptive statistic
- More recently also included non-parametric inferential methods (e.g., bootstrapping)

Relative Importance Algorithms

- Exhaustive
 - Examine all possible comparisons between objects of interest
 - Apply corrections for multiple comparisons as necessary
 - Aggregate across all comparisons
 - Becomes increasingly more difficult as number of objects increase
- Heuristic
 - Uses pre-defined rules and mathematical optimization to search for important areas of the object space
 - Searches for "good enough" approximation
 - Often used when exhaustive search would be impractical (as with most real-world problems)

Quick Example

- Calculating the similarity of a set of observations
- Exhaustive
 - Compare all possible combinations of scores (e.g., kernel density estimation)
- Heuristic
 - Calculate standard deviation of scores

- Often want to know if a new predictor offers anything over existing ones, namely GMA and Big 5
 - Step 1: GMA + Big 5
 - Step 2: GMA + Big 5 + New Thing
- Only accounts for *unique* contribution of New Thing
 - Shared contribution or common variance is attributed to the set of old things
- What if we care about the <u>common</u> or don't have strong theory for order?
 - Use relative importance

- Two primary methods in psychology:
 - Exhaustive: dominance analysis / LMG / Shapley decomposition
 - Heuristic: relative weights analysis
- Dominance
 - Relatively* well-defined statistical interpretation
 - Combinatorial explosion (requires 2^p regressions)
- Relative Weights
 - Not well defined statistically
 - Fast via the singular value decomposition (SVD)

Interpreting Relative Weights

- Squared structure coefficient from standardized principal components regression
- Weights summing to squared multiple correlation due to principal components extracted, *not* original variables
- Importance weights are calculated via contribution to principal components, which are themselves linear combinations of original variables (i.e., basically a black box)

Howardson, G. H. (in prep). Johnson's relative weights are the squared structure coefficients from a standardized principal components regression.

- Personnel selection seems skeptical about machine learning relative importance methods
 - How can we demonstrate construct validity if we don't know what model we're using or if there are arbitrary parameters?
- I would argue that using relative weights analysis <u>is</u> using a machine learning method (regularization via PCR)
- I would even argue that are several machine learning methods that can account for relative importance in a less opaque way than relative weights (e.g., ridge regression)

Conclusion

- Can't have it both ways
 - If we're comfortable with relative weights analysis, we should be comfortable with regularization methods in general
- I advocate more regularization methods in selection and construct validation
 - Regularization methods are really just real-world regression methods
 - Do require understanding the uncertainty tradeoffs, but arguably so does any real-world method

References

- Howardson, G. N. (April, 2019). *A relative weights algorithm for ill-conditioned problems.* Poster presented at the 34th annual meeting of the Society for Industrial-Organizational Psychology, Washington, DC.
- Howardson, G. H. (2020). Johnson's relative weights are the squared structure coefficients from a standardized principal components regression. *Manuscript in preparation*.

- Questions?
 - garett.n.howardson.civ@mail.mil

RI	EPORT DOC		Form Approved OMB No. 0704-0188							
1. REPORT DATE (DA	D-MM-YYYY)	3.	3. DATES COVERED (From - To)							
February 2021	Interim			May 2018 – Feb 2021						
4. TITLE AND SUBTI	FLE Nanalyzia ia a "gray	5a.								
Relative weights	s analysis is a grey	56								
		55	GRANT NOMBER							
		5c	PROGRAM ELEMENT NUMBER							
			611102							
6. AUTHOR(S)		5d	. PROJECT NUMBER							
Howardson, Gare	tt, N.		AA4							
		5e	TASK NUMBER							
		51.								
7. PERFORMING OR	GANIZATION NAME(S) AND ADDRESS(ES)		8.						
U.S. Army Res	earch Institute	,(-)			NUMBER					
for the Be	havioral & Social	Sciences								
6000 6 TH Stree	t (Bldg. 1464 / Mail									
Fort Belvoir, VA	22060-5610									
9. SPONSORING / MO	DNITORING AGENCY	10	SPONSOR/MONITOR'S ACRONYM(S)							
	oorob Instituto		ARI							
for the Be	earch institute	Sciences								
6000 6 TH Stree	t (Bldg 1464 / Mail	Stop 5610)		11.	NUMBER(S)					
Fort Belvoir, VA	A 22060-5610									
12. DISTRIBUTION/A	AILABILITY STATEM	ENT: Distribution Stat	ement A: Approved	for public r	elease; distribution is unlimited					
	VNOTES			•	•					
Presentation (iven to George Ma	son University I-O P	sychology program							
14. ABSTRACT Relative weight	s and dominance :	analysis offer two pro	omising relative imp	ortance me	ethods for multiple regression					
Whereas domin	nance analysis offe	ers more statistically	interpretable solutio	ons. calcula	ting such solutions is					
computationally	/ burdensome. Cor	nversely, although re	lative weights are c	omputation	hally simpler, interpreting said					
weights statistic	cally is more difficu	It. Trading statistical	interpretability for c	computatio	nal simplicity is sometimes called					
"black box" pre	diction or using "bla	ack box" machine lea	arning algorithms, w	hich is ofte	en viewed skeptically in applied					
psychology. The purpose of this talk is to highlight that despite this machine learning skepticism, many applied										
psychologists are comfortable using relative weights analysis, which, as I argue, is itself a relatively opaque or "grey										
box" statistical	method. In other w	ords, applied psycho	ological researchers	seem con	itortable with the computational					
simplicity / stati	stical interpretabilit	ty tradeoir when con	aucting relative imp	boro that	alysis while also rejecting said					
	tradeon for a wher range of machine learning analytical methods. I argue here that making meaningful progress as a									
machine learning in general										
15. SUBJECT TERMS	;									
variable importance, multiple regression, statistical interpretation, statistical computing										
16. SECURITY CLASS	SIFICATION OF:		17. LIMITATION 18	18.	19a. NAME OF RESPONSIBLE					
			OF ABSTRACT	NUMBER	PERSON					
			Linlimite -	PAGES						
Unclassified	Unclassified	Unclassified	Uniimited		703-545-2441					
Chicksoniou	Chicadomou		Unclassifieu	18						
.					·					