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Abstract 

Mission Engineering is the quantification of the effects applied by a system-of-systems (SoS) to achieve 
measurable desired results. The execution of the mission is defined by a mission thread; that is the 
sequence of actions/processes executed by elemental systems. Typically, there are many plausible 
mission threads that can be executed. The domain of complex missions has been described as ‘Wicked’ 
because traditional military and space program-based Systems Engineering practices fail due to a lack of 
discrete phases, a dependence on context, and the non-uniqueness of a ‘good-enough’ mission thread. 
Wicked problems also tend to be unstructured with no centralized control and do not lend themselves to 
linear step-by-step processes. Wicked problems are inherently uncertain leading to the broader issue of 
trust across a mission knowledge base, and any mission level analyses. The nature of a complex mission 
will require an iterative approach resulting in a continuous reduction in uncertainty, an increase in trust, 
and refinement in the topology of the mission thread. The approach described in this paper is based upon 
Applied Category Theory (ACT) as a universal representation of mathematical knowledge; OODA-based 
decomposition of mission threads focused on Boyd’s ORIENT function; and a Trust metric to provide 
decision makers confidence in the results. 

Executive Summary 

Mission Engineering is the quantification of the effects applied by a system-of-systems (SoS) to achieve 
measurable desired results. A mission can be constrained by or benefit from dynamic contexts. The 
Environment is defined as a subset of context and only accounts for one of many conditions that both 
help define and can alter mission execution. The execution of the mission is defined by a mission thread; 
that is the sequence of actions/processes executed by elemental systems. Typically, there are many 
plausible mission threads that can be executed. Mission threads can be decomposed into event chains. 
An event chain is a ‘short’ sequence of events with a quantifiable outcome. 

Traditional system evaluation modeling and simulation (M&S) tools struggle to characterize performance 
at the mission level. Typically, these tools are structured, discrete-event simulations that are successfully 
used at the system level, but fail for many reasons when applied to a SoS within a mission context. An 
alternative is to move away from a single M&S approach that attempts to provide a true/false answer for 
mission success. Instead, embrace a toolbox of structured and unstructured M&S approaches which 
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provide various quantitative perspectives on acceptable mission success criteria, thus providing richer 
insight into the mission context.  

Missions can be complex if they are constructed with many moving parts that originate from sub-
optimized business rules. From the combinatorics, many plausible mission threads are possible for the 
execution of a given mission. Missions are graphical in nature, where each node and edge in a mission 
graph contains both structured and unstructured information to include metadata, functional behaviors, 
and empirical and virtual data. Missions can be highly complex, and the datastore will be extensive with 
the number of nodes anticipated to exceed a 10+9.  

The domain of highly complex missions has been described as ‘Wicked’ because traditional military and 
space program-based Systems Engineering practices fail due to a lack of discrete phases, a dependence 
on context, and the non-uniqueness of a ‘good-enough’ mission thread. Wicked problems also tend to be 
unstructured with no centralized control, or simple hierarchical structure, and do not lend themselves to 
linear step-by-step processes. Wicked problems are inherently uncertain due to both complexity and the 
dynamic nature of context. This uncertainty leads to the broader issue of trust across a mission knowledge 
base, and any mission level analyses.  

The performance of SoS to meet a mission goal is highly determined by the interstitials (the relationships 
between systems), the SoS themselves, and the operational context. The dynamic interplay between the 
SoS and the environment preclude a single best answer, although there may be many good enough 
answers. In other words, there are most likely multiple plausible mission threads to achieve a given 
mission success measure.  

Mission analyses should be conducted on a representative set of bounding mission threads, and 
uncertainty in the analyses must be quantified. Trust in all aspects of the mission must be measured as a 
basis for decisions. The nature of a complex mission will require an iterative approach resulting in a 
continuous reduction in uncertainty, an increase in trust, and refinement in the topology of the mission 
thread and their constituent event chains. 

Trustworthy predictions of mission effects require a multi-faceted and layered approach. The authors 
propose: 

Introduction 

Mission Engineering is the quantification of the effects applied by a system-of-systems (SoS) to achieve 

measurable desired effects. A mission can be constrained or benefited by dynamic contexts. The 

Environment is defined as a subset of context and only accounts for one of many conditions that both help 

define and can alter mission execution. The execution of the mission is defined by a mission thread; that 

is the sequence of actions/processes executed by elemental systems. Typically, there are many plausible 

mission threads that can be executed. Mission threads can be decomposed into event chains. An event 

chain is a ‘short’ sequence of events with a quantifiable outcome. 

Missions can be mathematically characterized utilizing graph-based methodologies. A mission graph is 

composed of systems, the environment, policy and doctrine, and connecting relationships. The systems 

are represented by the nodes in the graph. System behaviors tend to be governed by mathematical laws 

or equations (e.g. Newtonian mechanics and Maxwell’s equations). The edges of the mission graph define 

relationships and interactions between the nodes. These relationships are quantifiable behaviors and can 

be utilized to pre-determine mission success criteria. There can be many edges between two nodes. 

Mission threads are critical paths through the graph. The success of the mission is dominated by the inter-
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system relationships, or interstitial space [Garrett, 2011], that space between structure or matter where 

integration resides.  

Traditional system evaluation modeling and simulation (M&S) tools struggle to characterize performance 

at the mission level. Typically, these tools are structured, discrete-event simulations that are successfully 

used at the system level, but fail for many reasons when applied to a SoS within a mission context [Riox, 

2002] [Henriksen, 2008]. Kinder has proposed moving away from a single M&S approach that attempts to 

provide a true/false answer for mission success. To evaluate a SoS he embraces a toolbox of structured 

and unstructured M&S approaches providing various quantitative perspectives on acceptable mission 

success criteria [Kinder, 2014] thus providing richer insight into the mission context.  

Missions can be complex if they are constructed with many moving parts that originate from sub-

optimized business rules. While complexity is frequently used in describing SoS, it is rarely quantified 

[Ladyman, 2013]. For the purposes of Mission Engineering, complexity is a measure of extent defined as 

an ordered triple, (n, e, p), where n is the number of nodes in the mission graph, e is the number of edges 

in the graph, and p is the number of defined paths, or mission threads. In the mission graph the number 

of edges can approach n2 (n squared) and the maximum number of paths can approach n! (n factorial) 

[Guichard, 2017]. From the combinatorics, many plausible mission threads are possible for the execution 

of a given mission. Each node and edge in a mission graph contains both structured and unstructured 

information to include metadata, functional behaviors, and empirical and virtual data, i.e., Live, Virtual 

and Constructive [Urias, 2012]. Due to combinatorics, mission graphs are expected to be highly complex 

and the datastore will be extensive. Graph databases are mature technology with demonstrated 

scalability and extensibility ideally suited to store these extensive quantities and diversity of anticipated 

mission data sets. Graph visualization and query tools are readily available and compatible with the 

databases [Besta, 2019].  

As mission knowledge increases the associated mission-graph datastore will grow significantly in 

complexity with the number of nodes anticipated to exceed a 10+9. The domain of highly complex missions 

has been described as ‘Wicked’ because traditional military and space program-based Systems 

Engineering practices fail due to a lack of discrete phases, a dependence on context, and the non-

uniqueness of a ‘good-enough’ mission thread. Wicked problems also tend to be unstructured with no 

centralized control, or simple hierarchical structure, and do not lend themselves to linear step-by-step 

processes [Rittel, 1973]. Wicked problems are inherently uncertain due to both complexity and the 

dynamic nature of context. This uncertainty leads to the broader issue of trust across a mission knowledge 

base, and any mission level analyses [Liu, 2016] [Loper, 2019].  

The performance of SoS to meet a mission goal is determined by the interstitials (the relationships 

between systems), the SoS themselves, and the operational context. The dynamic interplay between the 

SoS and the environment preclude a single best answer, although there may be many good enough 

answers. In other words, there are most likely multiple plausible mission threads to achieve a given 

mission success measure. Mission analyses should be conducted on a representative set of bounding 

mission threads, and uncertainty in the analyses must be quantified. Trust in all aspects of the mission 

must be measured as a basis for decisions. The nature of a complex mission will require an iterative 
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approach resulting in a continuous reduction in uncertainty, an increase in trust, and refinement in the 

topology of the mission thread and their constituent event chains. 

This paper proposes a multi-faceted, inherently unstructured and iterative approach of modeling, 

simulation and analysis looping (MSAL) to better assess mission success quantitatively. [Loper and Garrett, 

2015]. Through realistic examples, the creation of a multi-layered, multi-dimensional mission model, and 

event chains will be demonstrated. The starting point will be a United States Department of Defense (US 

DoD) proposed Mission Engineering and Integration process. This process will then be rigorously 

expanded and applied to a generic mission within a surrogate example utilizing a city neighborhood 

involving people transiting about the neighborhood and participating in the functions of education and 

work, with an underlying behavior of cheating. The focus of the effort is on the establishment of a rigorous 

mission schema based on Applied Category Theory along with an approach to mission functional 

decomposition based on the Observe, Orient, Decide, Act (OODA) Loop [Boyd, 1987]. This demonstration 

creates the necessary graphical basis and the mathematical foundation to which MSAL can be applied. 

Finally, an overarching approach to quantify  trust will be presented.  

Applied Category Theory  

While knowledge about a SoS can be stored and manipulated as a knowledge graph, this formulation 

cannot capture the mathematical nature of the physical interactions. In wicked problems, we find each 

sub-domain governed by different mathematical principles. For example, in the electromagnetic domain 

of radio communication, the system is governed by Maxwell’s equations and solving equations for phases 

and amplitudes, but these radio communications are carrying messages on a social network, which is 

governed by stochastic processes over a discrete communication graph. In order to integrate these vast 

differences in fundamental dynamics, we must store information in the unified theory of mathematics 

provided by Applied Category Theory (ACT). 

Our software approach1 implements a rapidly developing field of mathematics called ACT, which 

understands physical and computational systems through the lens of categories [Halter et. al, 2019]. A 

category is a mathematical structure, built from objects (things) and morphisms (relationships between 

things), where the structure comes from composition of morphisms. The traditional presentation of 

mathematics centers around Set Theory, where the objects are sets and the morphisms are functions with 

the traditional definition of function composition. Almost any mathematical object can be viewed as a 

category, for example a graph is a category with vertices as its objects and paths as its morphisms. In a 

graph, you compose paths by concatenating them head to tail. Chemical, Biological, and Ecological 

systems can be viewed as categories with species as the objects and reactions as the morphisms. To 

reactions �, � can be composed if the products of � are the reagents of �. Processes in Systems 

Engineering can be modeled as a category, for example a co-design can be modeled as a category where 

the objects are resources and the components that provide input resources, produce output resources 

[Censi, 2017]. ACT seeks universal representations of mathematical knowledge that transcend domains 

and disciplines. The ACT approach is inherently computational and universal, which makes it an ideal 

framework for studying Mission Engineering and Integration.  

 
1 SemanticModels.jl is developed on GitHub at https://github.com/jpfairbanks/SemanticModels.jl with 

documentation hosted at https://aske.gtri.gatech.edu/docs/latest/. 
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By taking the ACT perspective, we can build mathematical and computational tools for analyzing systems 

across diverse domains. The unified framework of categories allows for representing different 

mathematical frameworks as examples of a common algebraic structure. This unification of heterogenous 

modeling frameworks allows us to build tools that are specialized enough to exploit structured knowledge 

about the application area, but general enough to write software against a common interface. One 

example of where this approach can shine is the modeling of mission threads as a graph. While existing 

graph based techniques treat the edges as the primary structure and build hierarchical representations of 

systems for either understanding or computational efficiency, the ACT approach takes the hierarchical 

design of the network as primary and deals directly with the consequences of that hierarchy. 

Once a system is modeled as a graph, graph analytic techniques such as pathfinding, centrality, and 

community detection can be used to analyze the system. Pathfinding techniques are used to explore paths 

through a graph. An example of pathfinding is Google Maps where several of the shortest routes between 

two points are calculated in terms of distance and time. In the mission model the technique could be used 

to explore alternate mission threads or event chains. Centrality is used to explore the role of nodes in the 

mission graph. Centrality provides a metric of connectedness. It also entails finding nodes that have 

significant control or influence, these could be vulnerable choke points in communications or decision 

making. Community detection algorithms are based on finding relations and behaviors within the group. 

These groups could be a structure of resiliency or subsequent failure. The algorithms used for these 

techniques are mature and available as open source tools e.g., Apache Spark with GraphX2. These 

techniques will provide insight enabling changes to the topology of the mission model and/or mission 

threads [Fairbanks et. al, 2015]. However, the ACT perspective opens up a whole new set of tools for 

analyzing systems such as comparison of networks with metadata via optimal transport [Patterson 2019].  

Mission Engineering is an inherently multi-domain problem where the dynamics of the problem appear 

too complex to be mathematically modeled. However, this is true when trying to identify a single set of 

mathematical rules for modeling all aspects of the mission. When you separate the mission into each 

domain and model them separately, the mission engineering process is amenable to mathematical 

analysis. However, since the rules for different domains are diverse, traditional simulation software 

development techniques fail to give a unified treatment of the system, which is essential for building large 

scale software for accurately modeling a complex mission. It is only through the ACT paradigm that we 

can see how these different mathematical modeling frameworks are examples of categories with various 

axioms. We can then build software that works with explicit representations of the axioms to build a 

unified software ecosystem for mathematical modeling and computer simulation of complex multi-

domain missions. Building a model is insufficient for mission engineering in wicked problems, the models 

you build must be used to reason about the world and make decisions. This decision making process 

requires that the models be tractable either analytically, or numerically. The ACT perspective gives you a 

framework for analyzing systems with symbolic algebra, with an easy transition to numerical analysis 

when there is no analytic solution, which is usually the case for wicked problems. 

The DoD Mission Engineering and Integration Process  

The US DoD is working toward the establishment of a Mission Engineering discipline. DoD has defined a 

10-step mission-based process for Mission Engineering and Integration (MEI) through the Office of the 

 
2 https://spark.apache.org/, https://spark.apache.org/graphx/ 
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Undersecretary of Defense for Acquisition and Sustainment Mission Engineering and Integration 

Guidebook [DoD, 2020]. This paper will start with the DoD example, but our work is not limited to military 

applications. The MEI steps are: 

(1)  Identify the missions and tasks. 
(2)  Define mission success and desired effect. 
(3)  Identify mission success factors. 
(4)  Identify conditions for each mission success factor. 
(5)  Map mission success conditions to mission tasks. 
(6)  Identify critical conditions for each mission task. 
(7)  Map systems into mission tasks. 
(8)  Define appropriate scoring criteria for each mission task. 
(9)  Apply the scoring criteria. 
(10)  Manage the assigned mission areas. 
 
The process begins as a language-based analysis with the collection of mission information. This data is 

retrieved from doctrine and policy, and includes an initial mission thread(s) defining context and the 

operational mission environment. The next step in the process is an event decomposition of the mission 

thread, to create a series of discrete, sequenced effects/kill chains (these are referred to as event chains 

throughout the paper) which are composed of a set of tasks (e.g., track threat, detect hostile intent, 

neutralize threat). The event chains are represented as a path in a graph, where each node/system in the 

path is subjectively ranked as red/yellow/green based on defined success criteria. In this analysis the 

edges are only implicitly addressed. As the analysis proceeds, tactical systems replace conceptual nodes 

in the chains. Effects/kill chains are then reconfigured to maximize green capability. Based on these 

analyses, the mission threads are reconfigured and the analysis repeated as goals evolve. Context, and 

the environment are at best implicit, and no mission graph with supporting metadata are created. The 

Guidebook uses a simplistic, notional Air Warfare example to demonstrate the process. The scoring 

criteria for this example are shown in Table 1 and the scored event chain, using nodes, edges, paths (n, e, 

p), is shown as a string diagram in Figure 1. 

Table 1. Evaluation criteria used for scoring the notional Air Warfare example 

Mission Task Critical Conditions 

Track  Can the platform provide a weapon quality track?  

 Is the required range to each target in a group provided? 

 Does the platform track targets sufficiently when it has less than complete mission data? 

Identification: 
Commit 

 Is the potential target classified sufficiently well to commit resources to that area? 

Identification: 
Engage 

 Are all Blue and Red forces correctly identified? 

 Is a correct decision (engage Red and do not engage Blue) made on each track? 

 For each track to be engaged, is an engagement order issued?  

 Is an appropriate/preferred weapon ordered for the engagement? 

 Does the platform detect targets of interest at a range to support or exceed the desired 
weapons employment or enhance decision time? 
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Figure 1. Scored event chain applied to a SoS consisting of three systems has complexity (14, 15 ,4) 

Functional Decomposition, OODA and the Orient Function 

Many military-based event chains are deliberately system-centric in their construction to fit within a 

required System Engineering process. Evaluation of communications and messaging beyond their system 

boundaries (particularly in virtual and constructive testing) are usually only implicitly considered. System 

level event chains also tend to be system unique in lexicon with a detailed level of abstraction that is 

unnecessary for mission analysis.  This provides new challenges when aggregating diverse systems into a 

mission-based SoS. A SoS/mission event framework with an appropriate level of abstraction that explicitly 

represents communication across the SoS and provides for contextual awareness is desirable. 

In the Air Warfare example in Figure 1, the functions of information technology (e.g., communications, 

information technology, data analytics, artificial intelligence) are represented as edges in the graph. These 

edges are the interstitials [Garrett, 2011], which are the domain of integration and interoperability across 

the mission. The interstitials thus play a dominate role in mission success and need to be explicitly 

represented in the event chain. The process to address the interstitials are based on John Boyd’s OODA 

loop, shown in Figure 2 [Boyd, 1987].  
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Figure 2. John Boyd's OODA Loop 

Where Observe, Decide and Act are system functions, Boyd defined Orient as a multi-faceted and iterative 

hub between them. It is Orient that is suited to represent the interstitial functions. Boyd defined five sub-

functions to Orient, which provide contextual awareness; external communications were not considered.  

 New Information, Previous Experience and Analysis/Synthesis are straight forward involving data 
processing and extend readily to mission engineering.  

 Genetic Heritage and Cultural Conditions involve inference, and are a means of assessing the local 
environment including social context within the mission environment.  

These last two Orient sub-functions reduce uncertainty, and enable better decisions and informed actions 

[Boyd, 1976]. A sixth sub-function, communication, is added to explicitly address messaging across the 

SoS. The communication sub-function is more than having the means to communicate (e.g., the pipe); it 

includes what flows on the pipe (syntax and semantics, quality, trustworthiness, timeliness) and the 

unique needs of the two systems (nodes) that are connected by the pipe (edge).  Thus, communication is 

part of the Interstitial Space, a foundational characteristic between every system/sub-system in the 

mission. The mapping from the Boyd fighter pilot perspective to a SoS mission perspective is shown in 

Table 2. 

 

Table 2. Translation of Boyd’s Orient function to a suitable SoS construct for Mission Engineering 

Boyd 1987 Mission Engineering and Integration 2020 

Cultural Traditions Parse the physical and natural environment relevant to the moment  

Genetic Heritage Parse the human environment relevant to the moment  

New Information Parse and analyze the OBSERVE/Sensor network data, and update the knowledgebase 
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Figure 3 maps the Air Warfare events from 

Figure 1 to OODA functions. Interestingly there 

are no ORIENT steps to enable data flows and 

communication.  To create an event chain that 

represents the networked SoS, these OODA 

functions are then explicitly interspersed with 

Orient functions. Figures 4 shows plausible 

Observe and Decide event chains, with the 

Orient function explicitly represented where 

Orient is one of the first four sub-functions in 

Table 2.  In these event chains, the 

communication sub-function is represented as a 

directed edge. The loops about the Orient 

functions represent iterative processing and can 

add significant complexity. These graphs are not 

unique solutions to the event chain but 

represent plausible paths within a mission 

thread. Presenting event chains and mission 

threads as OODA-based graphs will set the stage 

for subsequent quantitative analyses.  

 

Figure 3. Air Warfare kill/event chain mapped 
to the OODA functions 

 

 

Previous 

Experience 

Mine the historical data, LVC, etc. – update the knowledgebase 

Analysis/Synthesis Re-calculate ‘real-time’ ability to meet the mission goal and effects chain goal(s) 

Communication Communicate 
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Figure 4. A plausible event chain for the Air Warfare example with complexity (30, 50, ∞) given the 
looping in sensor network configurations 

Interrogating the Mission with Modeling, Simulation, Analysis Looping  

MSAL is an iterative approach suited to provide a variety of perspectives for quantitatively evaluating the 

ability of an SoS to meet mission goals [Loper and Garrett, 2015]. MSAL is created and executed upon a 

graphical mission model and an initial set of event chains (e.g., Figures 1 and 4) and mission threads or 

paths, that traverse the model. As discussed earlier, traditional system modeling languages are not 

appropriate for a SoS evaluating a complex mission.  The mission model should instead be built using ACT-

based mathematical specifications. The mission model is a basis of a graph database where each node 

and edge in the model is the basis of independent data stores containing metadata, structured and 

unstructured data, and essentially extensible sub-databases. Multiple associations, the edges between 

nodes in the databases, can be made arbitrarily within the ACT-based specification. Graph databases have 

demonstrated scalability, extensibility, and a robust open source toolset that includes visualization, query 

languages, and graph analytics. They are also readily integrated with machine learning and artificial 

intelligence tools. The other advantage of a graph database is that a simulation can be built upon the 

mission model, i.e., the database is a flexible, reconfigurable simulation framework providing a consistent 

interface standard. The mission model consists of the following information: 

1. Environment data, 
2. Relevant systems and resources needed to execute the mission, 
3. Context including constraining policy and doctrine, 
4. Mission goals, 
5. Compilable behaviors, node or edge, to support modeling and/or simulation, which could include 

conditional probability tables and supporting data, and 

6. Live, Virtual and Constructive data, real-time or historical.  
 

Once the initial event chains and mission threads have been created, MSAL can interrogate event chains 

by Bayesian Inference when experimental data is available. The first step of this process is to establish the 

event chains as paths through the mission graph consistent with mission goals. The second step is to 
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perform functional decomposition and merge the event chain graphs establishing mission processes. The 

OODA loop provides a means for such a functional decomposition. The event process can then be 

converted from a cyclic multidigraph into a unique, directed acyclic graph to enable the use of Bayesian 

techniques, e.g., Markov Chains. This process will likely create several directed acyclic graphs, i.e., a 

parallel/sequential process, for each mission thread.  The third step is to collect and analyze existing data 

sets and if possible establish statistical distributions about each mission process. From these analyses the 

probability of event success, ��|�,�,…
�������, may be inferred using Bayesian techniques. If the probability of 

event success is unacceptably low or there is insufficient data, then experimentation will be used to 

change mission thread topology.  

Experimentation about the event chains can be conducted through the use of Uncertainty Quantification 

(UQ) coupled with agent-based simulation run on scenarios. Scenarios are instances of a mission thread. 

The use of simulation explicitly introduces a temporal component to the scenario. Agent-based 

simulations are a key tool to evaluate mission success when inter-entity relationships have similar or 

greater importance than the performance of individual entities. Agent-based techniques readily deal with 

networks and inter-agent interactions to include human social factors, non-linearity in agent behavior 

and/or coupling, or the absence of explicit mathematical solutions. Further, due to their fast running 

nature, hundreds to thousands of runs can be realized per day [Bonabeau, 2002].  The Dempster-Shafer-

based UQ engine will propagate both epistemic and aleatoric uncertainties through iterative simulation 

producing bounds about a multi-dimensional, optimized performance surface [Dempster, 1968] [Shafer, 

1976].  Any detail within the uncertainty bounds is but high frequency noise. The intent is not to simulate 

the totality of a mission, but to provide insight where needed within the mission thread due to a lack of 

empirical data, or a change in context. This simulation-based evidence could lead to changes in mission 

thread topology, inter-system relationships/behaviors, or populate conditional probability tables. The 

optimal solution is not desired, instead the goal is to minimize uncertainty while maintaining acceptable 

performance. The authors believe the characteristics of the uncertainty bounds are more important to 

decision makers than the absolute nature of an optimized performance prediction. The use of UQ in 

simulation is mature technology; an example is DAKOTA from Sandia National Laboratories3, an open 

source tool for driving simulations with iterative analysis method containing Dempster-Shafer theory of 

evidence capability.  

Various components of MSAL have been demonstrated; Mabrok [2017] used ACT to create a robust 

foundation for Model-Based Systems Engineering focusing on the relationships between components 

explicitly including requirements. ACT has been used to rigorously couple agent-based simulation with 

Bayesian inference to create hybrid methods consistent with MSAL [Beheshti, 2013]. Henkel [2015] has 

applied graph database techniques to enable robust queries and data analyses of models, simulation 

results, and metadata in Biology. Key to the approach was maintaining relationships between the models, 

simulations, and metadata to facilitate reuse. GraphPool [Lange, 2016] is an application built upon a graph 

datastore to enable management of substantial data generation from concurrent simulation. Vehicle to 

vehicle information flow in a dynamic multi-layered traffic network was modeled and simulated upon a 

graph-based framework [Kim, 2016]. This emerging work gives confidence to build the multi-faceted 

MSAL. 

 
3 https://dakota.sandia.gov/, page 53 of the theory manual 
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Using an ACT basis for integration enables the rigorous implementation, data management and 

extensibility of software. ACT provides for a mathematical foundation used to build the multi-layered 

mission graph. This foundation can be viewed as graphical maps defining the functional structure and sub-

structures of objects and morphisms. The graph then is both the model and the data schema upon which 

the MSAL process is built. Mission thread construction begins using ACT to create string diagrams [Jacobs, 

2019] facilitating the rigorous and consistent execution of subsequent analyses. Categories and functors 

become the mathematical architecture of agent-based simulation as well as managing the data from 

thousands of iterative simulation runs and the associated UQ analysis.  

A Graphical Example 

These graph-based concepts will be demonstrated on a city model representing a mission environment 

upon which mission threads can be placed and analyses conducted. The city is based on the City Anatomy 

Framework; City Anatomy provides a hierarchically sound and well-established description, identification, 

nomenclature, and classification of all city systems, subsystems and interactions…” [Agreement, 2015]. 

The framework is language-based and, at the highest level, is composed of three interacting layers: the 

city Structure, Interactions and Society as shown in Figure 5. A graphical instance of the framework is 

shown in Figure 6, containing 68 nodes and 211 edges. This graph is math-based and testable. In this graph 

the nodes represent the environment (green), the infrastructure (yellow), and the built domain (blue). 

The edges of the graph represent flows (e.g. electricity, water, etc.), interactions, or hierarchical 

relationships (i.e., ‘subsets of’). Specific details of the city like roads and buildings would be substructures 

embedded within the graph. 

 

Figure 5. The city anatomy framework, as basis for modeling a city 
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Environment: geography, environment/air quality

Infrastructure: communication networks, water cycle, energy, 
matter (goods, food, waste), mobility network (car, walk, bike, 
plane, train), nature

Built Domain: residential, commercial; neighborhoods, districts; 

public vs private spaces

Interactions 

Functions: living, working, education, shopping, transport, 
health, performing arts, tourism

Economy: Wealth production and distribution, commerce and 
trade, innovation and entrepreneurial ecosystems, 
competitiveness, tax base, and financing vehicles

Culture: language, traditions, beliefs, values, and the way that 
people organize their concepts of the world

Information
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Figure 6. A graphical instance [Shannon, 2003] of the city anatomy framework containing all the 
information in Figure 5 

A notional mission involving college students on the Georgia Institute of Technology (GaTech) campus will 

be used as an example for creating event chains; the first step in implementing MSAL. The example will 

be static and lead to the creation of an OODA-based event chain. The mission graph will be multilayered 

and consistent with the City Anatomy framework.   

Mission Model 
The mission model for this example is a subset of Figure 6. The mission environment is Atlanta Georgia, 

specifically the GaTech neighborhood. The details of Atlanta and GaTech add additional layers within the 

model. For reference of complexity and consistency with the City Anatomy taxonomy, this example will 

explicitly represent: 

• Structure layer components: Built Domain - Neighborhood, Buildings and Dwellings; Infrastructure 
- Mobility Network comprised of Streets, Bike Paths and Walkways, and Communication Network.  

• Society layer components: Citizens – students and professors at GaTech. 

• Interaction layer components: Functions - Working, Education and Transport.  

Atlanta is divided into 12 Districts each with a City Council member4, and GaTech is in District 3. Atlanta 

has 242 neighborhoods; one of which is GaTech5. The neighborhood population is about 8000 with 

approximately 90% being college aged. There are around 970 dwellings where nearly 90% are non-family 

households.  Figure 7 is a map of the GaTech campus from Open Street map6, along with a close up view 

of the center of campus. This map is composed of 45 nodes and 592 edges along with extensive metadata 

for each. This is significant complexity and parsing the data is necessary for subsequent analyses. 

 
4 http://cbatl.org/atlanta-city-district-maps/ and https://citycouncil.atlantaga.gov/home 
5 http://documents.atlantaregional.com/NN/Profiles/AtlantaProfiles/E02.pdf 
6 https://www.openstreetmap.org/?edit_help=1#map=16/33.7757/-84.3999 
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Figure 7. Images of the GaTech campus from Open Street Map. The image on the right shows the detail 
in the dataset consisting of the node and edges representing buildings, streets, walkways, etc. 

Mission Threads 
The mission is defined as groups of students from a class working to solve a homework assignment. One 

of the groups decides to cheat by plagiarizing from classmates, with their mission goal being to fool the 

professor that their work is original. ACT will be used to rigorously define the mission schema, a precursor 

to the mission thread. Figure 8 shows three representations of the mission schema [Joyal-Street, 1991]. 

The top left representation is programming syntax that could be used by a subject matter expert. The 

bottom view is the String diagram that is easy to visualize and understand. The top right representation is 

an algebraic expression that would be easy to manipulate with algorithms. Each string is an entity type, 

and each box is a process that matches entity production with requirements. The input code used to 

generate the diagram and the corresponding algebraic expressions are included as well. This String 

diagram also necessarily defines a database schema, and can be used to construct a mission simulator.  

 

Figure 8. An example mission thread of students plagiarizing an assignment in a college class. The 
mission thread is show in three representations of a schema-level mission thread; a) a programing 
syntax that is easy to write, b) a formula that is easy to computationally manipulate, and c) a string 

diagram that is easy to visually interpret and understand. 
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The next step is to explicitly define mission resources and relations. The resources (top left view of Figure 

9) are the students, Team, taking a class together; the professor, Prof, teaching them; and the homework 

assignment, Assgn. The product of the mission is the grade the professor gives the assignment, Score. 

There are two subsets of Team, S1 and S2.  The relations (right view of Figure 9) are class, north, east, 

solve, west, gradea, and plagiarize. Class is the process where the professor and students create a 

learning environment resulting in an assignment given to Team. North, east and west are the motions the 

Team takes transiting about the campus. Solve is the process of completing the homework. Gradea is the 

professor’s process for grading the homework. Plagiarize is the process of team S2 copying the homework 

from an element of S1. The mission will track the movement of the individuals of Team and Prof through 

the campus as the students complete their assignment and receive a grade.     

 

Figure 9. An example category presentation. One lists the concepts and relationships between those 
concepts along with any axioms of the theory. These axioms allow symbolic computation techniques to 

reason about models analytically before running an explicit simulation of the model numerically. 

The Team and Prof transit on streets, walkways and bike paths between their dwellings and buildings 

containing classrooms, offices and study areas.  Once Team and Prof arrive at the appropriate building 

they participate in the work and education interactions. Transit is represented by a series of event chains 

composed of the primitive movement operations north, east, and west. Each of the processes of class, 

solve, gradea, and plagiarize are represented by an event chain. A nearest neighbor analysis of the City 

Anatomy graph show that persons, buildings and dwellings may have significant impact on the outcome 

of the event chain. The integration of these event chains would then become the mission thread. Based 

on the number of possible primitive events, there is a combinatorial explosion of mission complexity. 
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Mission Threads and OODA 
To complete a mission thread a functional decomposition of the schema must be conducted. For this 

example, we will be building an event chain, a subset of the overall mission thread. An OODA-base event 

chain is a Directed Acyclic Graph where the edges represent the movement of people or information 

consistent with the schema, Figure 8. There are a set of edges representing Team transiting to and from 

the processes class, solve and plagiarize. There are a set of edges representing Prof transiting to and from 

class and gradea. There are also two types of edges: external communication between sets S
1
, S

2
 and/or 

Prof, and internal communication within a set. The nodes for S
1
, S

2
 and Prof are OBSERVE, ORIENT, DECIDE 

and Act where the Orient nodes are: 

1. Parse the physical and natural environment relevant to the moment, 
2. Parse the human environment relevant to the moment,  
3. Parse and analyze the OBSERVE data, 
4. Mine historical data,  
5. Reassess the ability to meet the mission goal and effects chain goal(s). 

The Orient nodes are the essence of learning from observation and experimentation.  

The concept of creating an OODA-based event chain will be demonstrated on the process class. Using Prof 
as an example, a plausible functional decomposition for class could begin as: 

• Prof walking to Class, is an ACT within the Transport function 
• Prof checks the IT infrastructure and reassess the ability to meet the lesson goal is an ORIENT. 

This transitions from Transport to Working. 
• Prof observes Team, OBSERVE 
• Prof processing state of Class and Team, ORIENT 1, 2 & 3 
• Prof decides to start lesson, DECIDE 
• Prof teaching in Class with Team, ACT 
• Prof teaching in Class with Team, ORIENT 2, 3 & 5 

The ORIENT function could be represented as multiple entities or bundled as a single entity type. Figure 

10 is an instance of an event chain for class. The class begins as above with the entrance of the entities of 

Prof and Team.  In class a learning environment is established, teaching material presented, a question 

and answer session followed with an assignment given to Team. Team breaks up during class into to 

subsets, S1 and S2. The class ends with a communication between students in S1 and S2 requesting 

assistance to cheat, then S1 and S2 transit away in two different directions. 

 

Figure 10. An event chain for Class 
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Mission Mathematics 
In the ACT paradigm, you define a model as a syntactic expression that describes a model as a formula, 

then give that model semantics that you can view as a meaning, behavior or implementation. In terms of 

Mission Engineering, the wiring diagram (or equivalent program or formula) is the syntactic 

representation of the mission, and the semantics of the mission are given by a relational algebra database 

instance or a run of a simulation in a traditional M&S context.  

For example, a mission thread containing movement operations is a relation on places that satisfy the 

constraints of that thread. If the mission thread was � = ����ℎ ⋅ ���� ⋅ ����ℎ then the semantics of that 

mission thread is the set of all pairs of points (��, ��), (��, ��) such that there is a path (�, � + 1) →

(� + 1, � + 1) → (� + 1, � + 2) in the transportation network. In a city aligned to a grid, we have the 

axiom that ����ℎ ⋅ ���� = ���� ⋅ ����ℎ so an automated reasoning algorithm could compute analytically 

that ����ℎ ⋅ ���� ⋅ ����ℎ = ����ℎ ⋅ ����ℎ ⋅ ���� and thus would know that the semantics of a path � is 

given by the set  {(�, �), (� + 1, � + 2) ∣ �, �}. The ACT paradigm connects syntactic descriptions of 

models to their mathematical behavior by the principle of compositionality. Let � denote the map from 

descriptions of systems to their behaviors, we say that � is compositional if �(� ⋅ �) = �(�) ⋅ �(�) for all 

pairs of models �, �. This property can be characterized by �preserving the algebraic structure of 

composition (⋅). Algebraic properties and maps that preserve them are essential to the mathematical 

analysis of systems.  

By formalizing our mission engineering frameworks as algebraic objects (categories), we can build 

computer algebra systems that can analyze mission threads within those frameworks. When 

implementing the semantics of mission engineering in a software system, a relation database can store 

the data and database joins implementing the composition rule for the semantics. In the example above, 

the composition of path is implemented as a database join because if you want to compose a path � → � 

with a path � → � you are looking for all the paths � → �, � → � where � = �. This is precisely the notion 

of a database join and could be implemented in SQL as select t1.start, t2.end from paths as 

t1 join paths as t2 on t1.end == t2.start. In this way the map � transforms descriptions of 

paths into relations on pairs of points that turns composition of paths into joins of relations. When we say 

that mission engineering software can generate a simulation of the mission thread, it is exploiting these 

structure preserving maps to go from wiring diagrams of the mission thread to a computer program that 

computes the semantics of the mission thread. In the example above, that means converting sequences 

of directions into SQL queries that compute sets of paths.  

When implementing the semantics of a mission thread in real-world data, you have to mine the structures 

from data you have available. For that purpose we turn to the Open Street Map as a source for transit 

networks. The mission thread specifies that a set of event chains for Transit would be a set of paths along 

Streets, Walkways and Bike Paths through the campus. There would be the set of paths for Prof and a set 

of paths for each element (student) in the set Team. These paths are obtained from shortest path 

applications and a temporal component could be added with routing applications, e.g., the proprietary 

Google Maps or the open source Grasshopper Maps. The parsing and interrogation of Open Street Map 

data can be readily achieved by the use of open source tools like OSMnx tool [Boeing, 2017]. A parsed 

data set from OSMnxset from which routing analyses could be conducted is shown in Figure 11. In this 

data set there are 5057 nodes and 6373 edges and 12 defined categories of streets, walkways, bike paths, 

parking lots, etc. For brevity we will not execute the routing analysis in this paper.  
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Figure 11.  The mobility network in the GaTech neighborhood, parsed from Open Street map, is 
presented as an undirected graph with 5057 nodes and 6373 edges 

 

Trust, an Overarching Measure of Mission Confidence 

There is an increasing desire to use things (e.g., cellphones, physical devices, vehicles, and other systems 

embedded with electronics, software, sensors, actuators) in lieu of humans in dangerous or routine 

situations, and also to make things more intelligent such that they can deliver personalized services. The 

growth of the Internet of Things (IoT) introduces increasing complexity and scale, and raises questions 

about the trustworthiness of this emerging technology. The approach used to establish trust in the IoT 

will be the starting point to establish a trust protocol for mission engineering. 

Defining Trust 
The connection between people and things is complex, and creates a set of trust concerns. Trust should 

be considered at two levels: (1) whether a thing trusts the data it receives or trusts the other things it 

interacts with (machine to machine, or M2M) and (2) whether a human trusts the things, services, data, 

or IoT offerings that it uses (human to machine, or H2M / M2H). This leads to the idea that trust is multi-

dimensional.  

Ahn et al. [2007] described the concept of multi-dimensional trust by different agent characteristics, such 

as quality, reliability, and availability. For Matei et al. [2009], trust refers to the trustworthiness of a 

sensor, whether it has been compromised, the quality of data from the sensor, and the network 

connection. Grandison and Sloman [2000] define trust as the belief in the competence of an entity to act 

dependably, securely, and reliably within a specified context. To address behavior uncertainty in agent 

communities, Pinyol and Sabater-Mir [201]) define three levels of trust based on human society: security, 
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institutional, and social. Leisterm and Schultz [2012] identify technical, computational, and behavioral 

trust, but focus primarily on a behavioral trust indicator. The idea that trust is a level of confidence is 

captured by Voas et. al [2018]: the probability that the intended behavior and the actual behavior are 

equivalent given a fixed context, fixed environment, and fixed point in time. Lastly, recognizing trust is 

multi-dimensional, NIST defines it as “… the demonstrable likelihood that the system performs according 

to designed behavior under any set of conditions as evidenced by characteristics including, … security, 

privacy, reliability, safety and resilience” [NIST, 2017]. 

Work on trust management is often divided into two areas: security-oriented and non-security- oriented 

[Terzis, 2009]. Security-oriented trust adopts a restricted view, where trustworthiness is equated to the 

degree to which an entity or object is considered secure. This traditional view sees trustworthiness as an 

absolute property that an entity either has or doesn’t have. This is often accomplished by determining the 

credentials an entity possesses, and iteratively negotiating how to disclose certified digital credentials that 

verify properties of trust.  An example of this is GTRI’s Trustmark program (GTRI, 2013), which facilitates 

federated identity and attribute management (i.e., the reuse of digital identities and associated attributes) 

in enterprise systems. Identity reuse requires trust between entities that assert attributes and entities 

that rely on such assertions. The rules and requirements for establishing such trust comprise an identity 

trust framework. Non-security-oriented trust adopts a wider view similar to the social sciences. This 

includes a view of trust as a mechanism for achieving, maintaining, and reasoning about the quality of 

service and interactions. Trust is determined on the basis of evidence (personal experiences, observations, 

recommendations, and reputation) and is situational, meaning an entity’s trustworthiness differs 

depending on the context of the interaction.  A goal of trust management is about managing the risks of 

interactions between entities, which includes the notion of malicious and selfish behavior. Since non-

security oriented trust is similar to the human notion of trust, areas such as computer-mediated trust 

between users, building human trust in computer systems, and human-computer interaction are part of 

the continuum of interest. 

Trust and OODA 
OODA is about creating processes and implementing procedures that cycle through the loop quickly and 
ultimately lead us to action, whether it’s automated or not. Consider the plagiarism example of Figure 8, 
once Prof has observed the Team,  it is parsing the physical and natural environment, parsing the human 
environment, and parsing and analyzing the OBSERVE data that leads to the conclusion that the lesson, 
ACT, can begin. It is this ORIENT processing that enables the action to occur. In a similar manner Team 
OBSERVEs the lecture and the subsequent ORIENT processes the lesson, i.e., learning, leading to the action 
of questioning. Likewise when a member of Team S2 cheats, they DECIDE after reassessing their ability to 
successfully complete the homework assignment.   The benefit is from ORIENT processes, which provide 
the insights that inform the decisions and subsequent actions needed. Where observe, decide and act are 
system functions, orient is multi-dimensional. The five ORIENT sub-functions (mentioned earlier) which 
provide contextual awareness and external communications are fundamental to trust, especially in 
settings such as IoT and smart cities. Collecting new information, previous experience and the ability to 
analyze/synthesize data are precursors to computing trust. However, it is the ability to parse the physical 
and natural environment (genetic heritage) and human environment (cultural conditions) relevant to the 
moment, that enables us to compute trust based on evidence, i.e. the non-security oriented trust 
described above. Further, the syntax and semantics of the message, timeliness, and verification the 
message was successfully conveyed are all key to computing trust. In settings such as smart cities, where 
the urban environment is in constant change, these orient sub-functions reduce uncertainty, and enable 
better decisions and informed actions.  
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Trust and MSAL 

To tie this together in a system model for MSAL, we adopt a layered trust framework defined by Yan et al. 

[2014]. These layers work together to create an environment in which things and humans can interact and 

make trustworthy decisions. The layers in the framework include (i) physical perception, which perceives 

physical environments and human social life; (ii) a network layer that transforms and processes perceived 

environment data; and (iii) an application layer that offers context-aware intelligent services in a pervasive 

manner. The fourth layer, trust management, represents the cyber-physical social relationships that 

connect layers. Figure 12 depicts these layers, with trust objectives. A trustworthy system relies on the 

cooperation among layers. “Ensuring the trustworthiness of one … layer (e.g., network layer) does not 

imply that the trust of the whole system can be achieved” [Yan et al., 2014]. 

 

Figure 12. IoT Trust framework 

MSAL is designed to reduce mission uncertainty, providing decision makers quantitative measures of 

mission success to include mission thread and event chain topologies. There are, however, other criteria 

in addition to MSAL-based data that are important in making evidence-based decision. Therefore, trust in 

decision making must be considered from a mission perspective, including both security and non-security-

oriented properties. Determination of trust requires analysis of the ORIENT functions across a mission 

thread. Thus, trust is a based on managing the interstitials, as described below.   

Trust at the Application layer – “What to trust” – is where the individual simulations reside (e.g., agent 

based, equation based, AI based) that execute the mission model. Since no one simulation contains 

everything important to the mission model, it is conceivable that strength of trust comes from having 

many simulations with different assumptions and world context. In other words, an ensemble of 

simulations with different perspectives has the effect of reducing risk by giving greater understanding to 

sensitivity and uncertainty. First, each simulation is tested with the same data set (parameter 

distributions, not scenarios). Aleatoric and when appropriate epistemic parameter distributions will be 

defined and their effects upon simulation outcome evaluated [Ferson, 2007]. Single parameter sensitivity 

• Data Fusion and Mining Trust: data collected should be processed and 
analyzed in a trustworthy way, including reliability, privacy and accuracy

• Data Transmission and Communication Trust: unauthorized system entities 
can’t access private data of others in data communications and transmission

• Quality of Trust Services: “Only here, only me and only now” services are 
expected

• Human–Computer Trust Interaction: provides sound usability and supports HCI 
in a trustworthy way

• Data Perception Trust: data sensing and collection should be reliable; trust 
properties like sensor sensibility, preciseness, security, reliability and 
persistence; collection efficiency
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studies will be used to assess the most impactful parameters for subsequent study. Optimization will 

provide insight into areas of high gradients and parameter interactions within the performance space. UQ 

will then define confidence bounds about the performance space for each simulation. For example, Figure 

13 shows the effects of a parameter study with a single simulator. Each prediction of the path of hurricane 

Cristobal, from UKMET7 simulator, is shown as a separate line; these are instances of bounding mission 

threads. Since the same input distributions should yield similar results, all of the ensemble simulations 

should show similar trends (e.g., uncertainty volumes). If one of the simulations produces results very 

different that the rest of the ensemble, there is reason to question that simulation. In other words, the 

comparison of ensemble results will lead to an understanding of which simulations to trust, and how 

much.  

 

Figure 13. Parameter sensitivity analysis from a single simulation 

Trust at the Network layer – “When to trust” – is where the mission graphs reside. A mission graph is 

composed of systems, the environment, policy and doctrine, and connecting relationships (which can be 

related to the structure, society and interactions dimensions of the City Anatomy). This layer captures 

both a visual and mathematical behavior of people and mobility. At this layer, mission graphs are 

structured using ACT, and transformed using graph analytics (quantifying/assess topologies, centrality, 

clustering). Temporal changes to topology, based on context, is one particular focus of trust in this layer.     

Trust at the Physical Perception layer – “Where to trust” – At this layer mission threads and reside. A 

mission thread is a sequence of actions/processes with quantifiable outcomes. There are many plausible 

mission threads that can be executed, and each thread has a temporal component. Simulator specific 

scenarios are created for each mission thread along with establishing the input parameters. An ensemble 

of simulators is run on each mission thread and the aggregate outcome is used to establish error bounds. 

It is by considering the ensemble of all possible mission threads that provides the best insight, and enables 

us to derive a greater understanding of trust.   

To illustrate this concept, consider how simulation is used in hurricane tracking. In Figure 14, an ensemble 

of simulations is run on the mission threads, and the aggregate outcome shows the error bound of all 

 
7 A medium-range (3 to 7 day) numerical weather prediction model operated by the United Kingdom METeorological Agency. It 
has a resolution of 75 kilometers and covers the entire northern hemisphere. Forecasters use this model along with the ECMWF 
and GFS in making their extended forecasts (3 to 7 days). https://forecast.weather.gov/glossary.php?word=ukmet 
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possible outcomes. The ensemble is from the European Centre for Medium-Range Weather Forecasts 

(ECMWF), which has pioneered a system to predict forecast confidence. This system is the Ensemble 

Prediction System (EPS). What the ensemble shows us is that over time context evolves and dispersion 

increases.

 

Figure 14. Ensemble hurricane prediction  

Trust Management layer – “How to trust” – The trust management layer can be thought of in terms 

infrastructure and the systems which check that programs, e.g. databases, queries, analytics, etc., are 

sound. The type systems put constraints on application programs such that each function can only be 

applied to the right “type” of value. Since all functions are annotated with the input type and return type, 

a compiler can reason over an expression to determine if the expression is “well-typed.” As you refine the 

types of a program to be more precise about which sets of values are distinguished at the type level, you 

get stronger guarantees that programs that type check are trustworthy. In this way, as you use ACT in 

constructing models, you get more precise constraints about what kinds of mission threads are valid 

scenarios for your simulation. A software system that uses the principles of ACT can validate these 

scenarios before executing them based on a logical notion of well-formed expressions. In functional 

programming, careful work needs to be done upfront to establish the types and the signatures of the 

functions in order to capture the “business logic” into the type system.  The analogous process in the ACT 

approach is to design a category whose objects are types of values and whose morphisms are processes 

where the signature of each morphism respects the domain knowledge of experts in the systems under 

examination. Once this work to capture the expert knowledge is done, computational systems can 

automatically validate statements about these systems including statements about the existence of 

particular mission threads. This computational validation yields higher trust in the resulting modeling and 

simulation systems. 

Mission engineering software can check the well-formedness of mission threads by checking that 

whenever two processes are composed sequentially, the output type of the first process matches the 

input type of the second process. The structure of a Generalized Algebraic Theory contains all the 

information necessary to make these type judgements. That a mission thread is well-formed is not 

sufficient to say that it is relevant to a mission engineering analysis or that a set of well-formed mission 

threads is exhaustive, but it is necessary for a mission thread to “make sense” within the scope of the 
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system. This requirement can allow mission thread planners to avoid the consideration of meaningless 

scenarios in a machine enforceable way. Many simulation developers in DoD communities will object to 

analyses conducted with a simulation software because the scenarios analyzed “don’t make sense from a 

domain perspective.” These objections are informal arguments against certain mission threads, and by 

formalizing this process as checking the well-formedness of expressions, we can automate those 

judgements, which will accelerate mission engineering timelines. Database systems perform these checks 

on queries as part of their runtime systems. Before a RDBMS will execute a query it will check that all of 

the columns referenced by the query exist and any functions called in the query support the datatypes 

that the schema uses. In this way they will invalidate the comparison of a DATETIME with an INTEGER 

unless appropriate conversion functions are used. While these constraints are sometimes frustrating to 

developers, they are very valuable for ensuring the correctness and integrity of large scale software 

systems. While traditionally these type checking techniques are only used in the design and 

implementation of programming languages, the ACT approach widens their applicability to large areas of 

mathematics and scientific computing. Our mission engineering approach applies these techniques to the 

analysis of mission threads. 

The Next Step 
We have described the application of MSAL to both a military and smart city example. We now consider 

a third case study, inspired by the COVID-19 Pandemic, that can exercise all the aspects of MSAL and trust 

described previously. In addition, data is readily accessible and many models and simulations are open 

source [CDC, 2020]. A potential mission could be the phased reopening of the GaTech campus for the fall 

2020 semester, while anticipating a second wave of the pandemic to strike Atlanta during the semester. 

A mission goal of successfully completing academic requirements for all students with no deaths to 

students, faculty and employees provides for a plausible example.  

Building upon the Existing Epidemiology Toolset 
There are three types of epidemiology simulations; equation-based, agent-based and discrete event. 

Deterministic, equation-based simulations are the classic epidemiology simulations and have been around 

for decades [Sharkey, 2008]. They are homogenous in nature and should be applied carefully to large 

populations [Hethcote, 1994]. Critics of equation-based techniques argue that detailed social behaviors 

are necessary for credible simulation results [Shen, 2020]. Agent-based simulations, sometimes referred 

to as stochastic simulations, explicitly represents population heterogeneities, i.e., networks with behavior 

functions [Grefenstette et al, 2013] [Ferguson et al, 2005]. Many agent-based simulations are massively 

parallel with capability to add substantial detail [Halloran, 2020]. Massively parallel discrete event 

simulations have also been developed to capture ever increasing detail [Perumalla, 2020]. There are also 

federated models and simulations creating integrated products to aid in pandemic decision making [Stein 

et al, 2012] and supply logistics [Araz, 2013].  

A thorough comparison including single parameter, parametric analyses were made of three massively 

parallel, agent-based simulators using the ‘same’ scenario to address the effectiveness of various 

mitigation strategies in an influenza pandemic [Halloran, 2008]. The analytics used and the comparisons 

made are simplistic.  The authors describe significant differences in the implementation of social networks 

that make direct comparisons difficult. The case can be made that this simulation is focused on the OODA 

OBSERVE and ACT function, where decisions are pre-scripted and the orient sub-functions are ignored. All 

three of these simulators are open source and can be readily applied to this proposed mission. 
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Typically, epidemiology scenarios are not unambiguously defined. The CDC recently defined COVID-19 

scenarios as the traditional epidemiological simulation parameters with values typical with an upper and 

lower bound without societal context [CDC, 2019]. Parameter distribution details are not referenced. In 

other words, the goal of these scenarios is not to look at or explore the shape of curve by pulling from 

distributions, rather it is simply establishing a nominal upper/lower bound. Language-based descriptions 

of simulated social networks are sometimes provided by authors but not with sufficient detail to 

understand their algorithms. The use of OODA-based event chains and mission threads would add explicit 

clarity to the analysis. The use of graph analytics and visual inspection upon the mission graph and mission 

threads could provide more insight into social behaviors (heterogeneity) than functional descriptions 

embedded within the simulation. For example, a clustering and community analysis of a mission graph 

could readily point out areas of high potential transmission enabling simulation over a more simplistic 

mission thread.  

A 2006 review of pandemic influenza modeling by the National Academy of Sciences [NAS, 2007] resulted 

in a series of recommendations to prepare for future pandemics. These recommendations include 

improved methods for estimating model and parameter uncertainty, and defining broader outcome 

measures to include the costs and benefits of intervention strategies. The current state of epidemiological 

modeling and simulation has yet to address these recommendations. Parameter aleatoric uncertainty is 

rarely quantified and epistemic uncertainty ignored. Parametric sensitivity studies are, when reported, 

conducted one-at-a-time. Multiparameter optimization and uncertainty quantification studies to quantify 

parameter interactions are nonexistent. Massively parallel simulations are routinely run on various social 

networks, yet the network graphs are rarely displayed and graph analytics not used.  

Using MSAL and Trust 
The Application Layer of a COVID-19 investigation would consist of a set of about 6 simulators that the 

epidemiological community is currently using to study the effects of mitigation on COVID-19 incidence. 

Parameter sensitivity, optimization and UQ would be conducted for each simulator building upon the CDC 

scenarios. These results gauge trust in the individual simulations about a similar input distribution and 

would be the basis to select the group of simulators for subsequent work.  

CDC reports simulation results with their COVID-19 forecasting, it begins to addresses the question 

whether a simulation is consistent with expectations and the data. Two week projections, shown in Figure 

15, provide an interesting visual understanding of the wide range of forecasts of individual simulations, 

based on their underlying assumptions and data. However, they only show simple trends based simplistic 

parameter sensitivity runs (nominal, upper and lower bounds), they do not look at the shape of the 

parameter distributions. We need to look at where there are peaks and valleys in the bounding volume, 

not simply the shape of a flat curve. Unlike hurricane tracking simulations where there is more integration 

of past data into future predictions, this is simply a collection of simulation runs without subsequent 

analyses.  
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Figure 15. CDC National COVID-19 Forecasting8 

The Network Layer is the unstructured component that deals with concepts that are heterogeneous and 

not readily quantified by traditional equation-based techniques. It includes the graphical constructs of the 

mission model. The mission model would be built upon our previous work starting with Figures 5 and 6, 

and explicitly add relevant networks and network detail, e.g. the mobility network of Figure 11. 

Preliminary event chains would be defined based on the City Anatomy Interactions of functions, economy, 

culture and Information. These event chain graphs would be very much like the plagiarism example above 

where physically passing a homework assignment would be analogous to passing a virus. The event chains 

would be OODA-based with an emphasis on the ORIENT sub-function to enable subsequent trust analyses. 

In this construct economy would look at the cost of options such as social distancing, isolation, quarantine, 

hybrid classes (in person and on-line); culture would include behaviors/actions about social distancing, 

isolation, quarantine, hybrid classes; and information would look at the effects of messaging on economy 

and culture changes. Thus, event chains would include cost functions and conditional probabilities of 

success. Graph analytics will be conducted upon the networks to look to quantify locations of 

homogeneity and heterogeneity, define communities and identify density centrality. Temporal changes 

to the graph topology are also quantified. The efficacy of network topology to define social behaviors will 

be evaluated and compared to social behaviors incorporated into the selected simulators.  

The Physical Perception Layer is where we integrate the structured and unstructured components and 

use them to interrogate the mission threads. The creation of this Layer begins by defining a set of 

bounding OODA-based mission threads to meet the mission goal. These mission threads are built from a 

common mission schema and content found in the trust Network Layer. Using the simulators and insight 

gained from the Application Layer along with a probabilistic analysis of  ensemble results will define an 

overarching uncertainty. The approach would be consistent with the ensemble-based probability swath 

[Ortt, 2018] used to express uncertainty in hurricane tracks (see Figure 14).  

By decomposing the problem into structured (physical perception and application layer) and unstructured 

(trust network layer) parts built upon the category theory basis, one can quickly and precisely get at the 

key attributes that contribute to meeting the mission goal, e.g., dropping the epi curve to minimal deaths 

in a short time period. The use of multi-parameter UQ on many individual sims in the physical layer gets 

at impactful variables and particularly important combinations of variables. The network layer uses the 

power of graph theory and analytics to very quickly partition the problem into homogeneous and 

 
8 https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html 
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heterogeneous domains. Structured simulations can then focus where they are best suited; the 

homogeneous regions. The trust-based approach would provide quicker (cheaper), more robust, and 

trustworthy results than building 'federated super simulations'. The ensemble techniques then allow for 

appropriately focused simulations (with insight into their trustworthiness) to get at a robust uncertainty 

map of what we know about meeting the specific mission goal. The use of this approach would enable the 

epidemiology community to coordinate analysis approach while maintaining their autonomy and provide 

a coordinated means for decision makers to trust the simulation results.   

Conclusions 

This paper presents a robust approach to multi-disciplinary, mission engineering beginning with a military 

example. The concept is then applied to a Smart City, and finally applied to the mission of mitigating the 

spread of the COVID-19 Pandemic. 

Mission Engineering and Integration is the definition, identification, assemblage, analysis and 

quantification of a SoS to achieve measurable desired effects and therefore mission success. The mission 

is constrained by dynamic operational context and can be inherently complex. Missions are graph-based 

where the number of edges can approach the number of entities squared and the maximum number of 

paths can approach the number of entities factorial. From the combinatorics, many plausible mission 

threads are possible for a given mission. However, not all paths are feasible or desirable due to the 

governing rules of the mission domain. Missions tend to be layered and multidimensional. They are 

layered in terms of abstraction; a node in a mission graph can contain very detailed substructure. They 

are multi-dimensional in that several interrelated functions can occur simultaneously; these functions 

appear as edges in the mission thread. ACT seeks universal representations of mathematical knowledge 

that transcend domains and disciplines. The ACT approach is inherently computational and universal, 

which makes it a candidate framework for studying mission engineering. ACT is suited to rigorously define 

a mission schema. This mathematical basis of the schema necessarily defines a corresponding database 

schema, and the architecture of a mission simulator.  

The key to OODA-based decomposition of mission threads and event chains is Boyd’s ORIENT function. 

ORIENT is used as an edge in a graph to represent the function of communication. Communication 

encompasses the communication infrastructure, the syntax and semantics of the message, timeliness and 

trustworthiness, and verification that the meaning of the message was successfully conveyed. In addition, 

ORIENT has several entity functions related to situational awareness and information processing, defined 

as: 

• Parse the physical and natural environment relevant to the moment, 
• Parse the human environment relevant to the moment,  
• Parse and analyze the OBSERVE data, 
• Mine historical data, and 
• Reassess the ability to meet the mission goal and effects chain goal(s). 

The addition of ORIENT entities between the OBSERVE, DECIDE and ACT functions adds both robustness 

and complexity.  

MSAL is an iterative approach suited to provide a variety of perspectives for quantitatively evaluating the 

ability of an SoS to meet mission goals. MSAL is created and executed upon a graphical mission model and 

an initial set of event chains and/or mission threads. Graph theoretic and ACT-based constituent 
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capabilities of MSAL have been demonstrated in the literature enabling integration of a robust MSAL 

toolbox. 

Since missions are inherently uncertain due to complexity and the dynamic nature of context, the broad 

issue of trust across a mission knowledge base and mission level analysis become vital to decision making. 

Trust can be measured for both security and non-security properties of missions, yet understood at the 

mission level. A Trust Framework is proposed that is comprised of four layers; Application, Network, 

Physical Perception and Trust Management. For mission models and simulations, the Application Layer 

evaluates single simulators and quantifies uncertainties. The Network Layer is graphical and contains the 

mission models and event chains.  The Physical Perception Layer uses an ensemble approach of multi-

simulators running the same mission threads similar to the technique used for hurricane prediction. 

Convergence of the results over time builds trust. The Network Management Layer pulls together the 

three layers and is constrained by an ACT basis. This is the layer of data storage, query and scripting. 

Metrics that enable decisions makers to quickly grasp which mission threads are feasible with what level 

of risk is an emerging and important area of research. The goal of MSAL is not to find the perfect answer, 

rather it provides a quantifiable, testable approach that enables people to make better informed 

decisions. 
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