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Abstract 

In the interest of improving the resilience of cyber-physical control systems to 

better operate in the presence of various cyber-attacks and/or faults, this dissertation 

presents a novel controller design based on deep-learning networks. This research lays out 

a controller design that does not rely on fault or cyber-attack detection. Being passive, the 

controller’s routine operating process is to take in data from the various components of the 

physical system, holistically assess the state of the physical system using deep-learning 

networks and decide the subsequent round of commands from the controller. This use of 

deep-learning methods in passive fault tolerant control (FTC) is unique in the research 

literature. The proposed controller is applied to both linear and nonlinear systems. 

Additionally, the application and testing are accomplished with both actuators and sensors 

being affected by attacks and /or faults.  

The effects of various attacks and faults are identified, and composed into a 

taxonomy for use in training and testing FTCs. By training the controller on the wide range 

of cyber-attack and fault effects, the type(s) of attack or fault affecting the system do not 

need to be known in advance. This research effort challenges the assertion made by some 

researchers that passive FTC is limited in utility or application because fault information 

must be known a priori. 

Two variants of the proposed controller design are presented and tested; one using 

a single large deep-learning network and the other using an ensemble of smaller networks. 

The proposed controller design is compared to an active fault tolerant controller. Both are 
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applied to simulations of a benchmark non-linear quadruple-tank system. Test results show 

both versions of the proposed controller design perform monotonically better than the 

active FTC in keeping or regaining control of the system during a simulated cyber-attack 

or fault. The proposed controller is also more responsive to changes in the system, not 

suffering from the delays inherent to active FTCs. 

The differences in performance are especially pronounced when the system under 

control is tested with Stuxnet-like attacks.  
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DEEP LEARNING-BASED, PASSIVE FAULT TOLE RANT CONTROL 

FACILITATED BY A TAXONOMY OF CYBER-ATTACK EFFECTS 

 

 

 Introduction 

This chapter provides the context for the research described in this dissertation. 

Events that exemplify the challenges faced by cyber-physical systems are described and 

the specific research questions to be explored are presented. The methodology and the 

scope of the proposed solution are introduced.  

1.1. Motivation 

In 2014, a German steel mill was attacked by hackers who accessed the operational 

control system via the company’s IT network [1]. The hackers were able to put the mill 

into an “undefined state” [2] from which a blast furnace could not be shut down properly, 

resulting in extensive, though unspecified physical damage to furnace systems at the mill. 

This confirmed case of a cyber-attack causing physical destruction of equipment followed 

the Stuxnet attack that damaged Iranian centrifuges at a uranium enrichment plant [2]. That 

attack was discovered in 2010; since then, experts have warned that it would only be a 

matter of time before other more destructive attacks would occur. 

In Maroochy, Australia, a former employee of the shire’s water services used radio 

signals to remotely switch valves in the water treatment plant [3]. He caused extensive 

environmental damage by routing 800,000 liters of untreated sewage into nearby 

waterways and parks, contaminating fresh water sources and killing marine life. 

More recently, the Ukrainian power grid was taken down in a cyber-attack that 

required “extensive reconnaissance” [4] and preparation to complete. This is, or should be, 
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of particular concern to the US Department of Defense (DOD). There are over 2,600 

electrical, water, wastewater, and natural gas utility systems on DOD installations [5]. In 

1997, the DOD decided that utility privatization was the preferred method for improving 

utility systems and services; Congress subsequently approved legislative authority for 

privatizing utility systems at military installations. Since these privatization efforts are 

currently under way, a closer look at the technology controlling these systems is warranted. 

1.2. General Issue 

Cyber-physical systems (CPS) are systems of collaborating computational elements 

controlling physical entities such as: power and water, industrial systems, transportation 

systems, medical devices, security systems, building automation, emergency management, 

and many other systems vital to our well-being. Industrial Control Systems (ICS) are a 

subset of these cyber-physical systems that comprise a diverse group of sensor and control 

systems used to monitor and control critical infrastructure. These include Supervisory 

Control and Data Acquisition (SCADA) systems, Distributed Control Systems (DCS) and 

Programmable Logic Controllers (PLCs).  

When any CPS malfunctions, or fails, the operation of the corresponding system(s) 

in the real world can endanger physical safety or even cause loss of life, as well as property 

damage or harm to the environment [6]. The priorities for traditional IT systems are usually 

focused, in order, on confidentiality, integrity, and availability (CIA) of the data. These 

priorities are generally reversed for ICS. Keeping the system up and running (data 

availability) is the top priority for ICS. Data integrity and confidentiality usually fall in 

behind availability. 
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As applied to ICS, industry recommended solutions include security policies, 

procedures, tools and products to prevent unauthorized access of the system [7] [8]. These 

solutions, when used together are commonly referred to as a “Defense in Depth” [9] 

approach. The elements of Defense in Depth are all useful and should be employed. 

Unfortunately, focusing too much on “preventing access” results in a cyber “Maginot Line” 

to protect ICS.  

France’s WWII defensive line did prevent the German army from simply rolling 

straight across the border. Instead, the Germans got around it by way of Belgium and easily 

conquered France. Likewise, Defense in Depth makes a head-on attack of an ICS much 

more difficult, but ICS are ill equipped to deal with malicious actors if, and when, they do 

gain access to the system. 

There has been (and continues to be) interest in the control theory community in 

developing controllers that can operate in the presence of a component failure, i.e. fault 

tolerant controls (FTC). Practitioners in this community have made the logical step of 

applying the benefits of FTC in developing controllers that can respond to a cyber-attack 

on any physical component of a system.  

Unlike active (reactive) controllers which depend on attack or fault detection to 

trigger their activity, passive (proactive) controllers are designed to properly control the 

system whether faults and/or attacks are present or not. Proactive controls are disregarded 

by many researchers because of the belief that proactive controllers are only effective if 

detailed information about the fault or attacks the system may face is known a priori [10] 

[11].  
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1.3. Research Questions  

This research will address the following questions relating to the use of fault 

tolerant controls to improve the resilience of cyber physical systems.  

Question 1. What are the physical layer effects in Cyber Physical System that could 

result from a component fault or cyber-attack?  

Question 2. How could a passive Fault tolerant Controller use deep learning to 

maintain operations, and how could it be realized?  

Question 3. Will the approach work for both linear and nonlinear systems?  

Question 4. What benefit(s) does passive FTC with deep learning provide 

compared to an active FTC?  

1.4. Methodology 

To answer the research questions stated above, this dissertation proposes an ICS 

control design that is broadly applicable to multiple input – multiple output (MIMO) and 

multiple input – single output (MISO) systems.  

 

Figure 1.1. Notional MISO and MIMO Systems Diagram. 
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For systems portrayed in Figure 1.1, the control signals going to the actuators in the 

system (plant) are labeled (ui) and the output signals from the system sensors are labelled 

(yi). Both systems have more than one actuator to be controlled, thus categorizing them as 

multiple input systems.  

In an effort to represent system faults and cyber-attacks, their possible effects are 

explored at the fundamental physical component (sensor or actuator) layer. By considering 

the possible behaviors of a sensor or actuator when being affected by faults or cyber-

attacks, we develop and present a taxonomy of effects. This taxonomy is useful in the 

design and testing of any FTC, but is foundational to the design, training and testing of a 

proposed controller design. 

The proposed controller holistically considers the entire state of the system under 

control and uses deep-learning networks (either stand-alone or in an ensemble) to 

determine the next appropriate commands for each actuator in the system under control. It 

does so without relying on a fault or attack detection mechanism. The proposed design is 

tested in simulations, on both linear and nonlinear systems, with multiple combinations of 

fault/attack effects on the sensors and actuators introduced to the system under test. The 

proposed controller performance is compared to a published active FTC controller design 

and the test results are analyzed. 

Finally, the proposed controller and comparison controller are tested on a system 

that is experiencing Stuxnet-like attacks. Those test results are also discussed. 
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1.5 Assumptions/Limitations 

The application of this research effort will only be demonstrated on MIMO and 

MISO systems. While this controller design could be applied to systems with a single input 

(single actuator), these are of limited interest, because the direct and/or indirect interaction 

within a system of multiple inputs make the control problem much more challenging and 

interesting. 

Any solution that would require altering the system to be controlled (e.g., adding 

redundant components or limiting the system’s intended operational capabilities) is not 

considered in this work. The solution controller needs to work with the system as designed. 

As described in Chapter 3, there are some fault and attack effects that can render 

an actuator in the cyber physical system “uncontrollable”. Since there is no fault tolerant 

or adaptive controller that can control an uncontrollable component, such fault and cyber-

attack effects will not be addressed in this work unless the system under control is designed 

with redundant actuators. 

1.6. Organization 

The remainder of this dissertation is organized as follows: Chapter 2 provides a 

review of the pertinent literature in the areas of fault tolerant control, reactive control, 

system modeling and faults and attacks on control systems. Chapter 3 shows the 

development of the taxonomy of effects and lays out the proposed controller design in 

detail. Chapter 4 describes a proof-of-concept, linear test subject and specifies how the 

proposed controller is applied to that test subject system. The method and results of testing 

the proposed controller design on the linear system are also discussed. Chapter 5 describes 
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a benchmark nonlinear test subject system and specifies how the proposed controller is 

applied to that test subject system. The design and training of the deep learning-based 

controller are presented in detail. The method and results of testing the proposed controller 

design on the nonlinear system are also discussed. In Chapter 6, a published comparison 

controller [12] is reviewed and the method and results of testing the comparison controller 

design on the same nonlinear system are presented and analyzed. This chapter also 

compares and addresses the results of testing the proposed and comparison controllers on 

the nonlinear test system. In addition, it also provides a discussion on the results of testing 

the comparison controller and the proposed controller(s) against Stuxnet-like attacks on the 

non-linear test system. Concluding remarks and comments are found in Chapter 7. 
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 Literature Review 

2.1 Chapter Overview  

This chapter provides an overview of the relevant existing literature for the 

proposed research problem. First, is a review of work done in traditional fault tolerant 

controls, followed by data driven fault tolerant controls. A review of the fault tolerant 

controls using artificial intelligence is then presented and the section is rounded out with a 

review of the application of deep-learning methods applied to active fault tolerant controls. 

The final section reviews how faults and attacks are represented in the various publications. 

2.2 Relevant Research  

The literature reviewed in this chapter comes from two related areas of controls 

research: Fault Tolerant Controls (FTC) and controls designed to respond to attacks. The 

former focuses on designing controllers that can handle one or more faults/malfunctions in 

the system under control. The latter focuses on designing controllers that can respond to 

one or more deliberate attacks on the system under control. Both areas offer research 

worthy of discussion. 

The literature can be divided along a few different lines; active vs. passive FTC, 

model-based vs. data-driven, or those designed to work with linear vs. nonlinear systems. 

Active vs. passive FTC is a sorting used in much of the literature, and this section will 

begin there since the controller proposed in this work is passive and the controller against 

which it will be compared is active.  
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2.2.1 Fault Tolerant Controls 

Before beginning a review of the pertinent literature, it is useful to define the terms 

that are commonly used in the field of fault tolerant controls. The following definitions 

come from [13]. 

• Fault-tolerance: the ability of a controlled system to maintain control objectives, 

despite the occurrence of a fault. A degradation of control performance may be accepted. 

Fault-tolerance can be obtained through fault accommodation or through system and/or 

controller reconfiguration.  

• Fault-accommodation: change in controller parameters or structure to avoid the 

consequences of a fault. The input-output between controller and plant is unchanged. The 

original control objective is achieved although performance may degrade.  

• Reconfiguration: change in input-output between the controller and plant through 

change of controller structure and parameters. The original control objective is achieved 

although performance may degrade.  

• Supervision: the ability to monitor whether control objectives are met. If not, 

calculate a revised control objective and a new control structure and parameters that make 

a faulty closed loop system meet the new modified objective. Supervision should take 

effect if faults occur and it is not possible to meet the original control objective within the 

fault tolerant scheme. 

Figure 2.1 provides a taxonomy of FTC approaches in each category. The subjects 

highlighted in bold face are discussed in this section. The others are listed for context, and 

references to research in those areas are provided in Appendix A. 
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Figure 2.1. Taxonomy of Fault Tolerant Control Methods. 

Current efforts on FTC design can be classified as either passive (proactive), or 

active. The passive approach focuses on making the system insensitive to faults by 

designing a more robust controller. Passive Fault Tolerant Controllers (PFTC) are 

attractive for their comparative design simplicity. The advantage of the PFTC approach 

can be explained as follows. When a fault occurs, it takes some time for the Fault Detection 

and Diagnosis (FDD) module of an active FTC to detect the fault and then isolate and 

identify the fault. There may also be some delay due to the controller reconfiguration. 

During this period, the system is working with the nominal controller. Performance of the 

system in this period is mainly dependent on the severity of the fault and the robustness of 

the nominal controller. It is clear that the controlled system may become unstable during 
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this period [14]. For safety-critical systems, such as aircraft flight controls or nuclear power 

plants, the time window may be too short to perform accurate fault isolation and estimation. 

In such cases, a PFTC system is preferable because it does not need an FDD scheme [15]. 

2.2.1.1 Passive Fault Tolerant Control 

Passive controllers can employ robust control methods such as Linear Quadratic 

Gaussian (LQG) control like that used in [16] and [17]. The problem concerns linear 

systems driven by additive white Gaussian noise. The challenge is to determine an output 

feedback law that is optimal in the sense of minimizing the expected value of a quadratic 

cost criterion. The LQG controller is simply a combination of a Kalman filter (linear 

quadratic state estimator (LQE)) as part of a linear quadratic regulator (LQR) as shown in 

Figure 2.2. 

 

Figure 2.2. Linear Quadratic Gaussian Controller and System. 

The output measurements are assumed to be corrupted by Gaussian noise (v) and 

the initial state (w) is assumed to be a random Gaussian vector. The LQG controller 
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provides reliable linear quadratic state feedback control such that it can tolerate actuator 

outages. The work in [18] combines LQC and H∞ optimization to control flight tracking in 

the Advanced Tactical Fighter when actuator faults or flight surface impairments occur. 

H∞ optimization methods are used to synthesize controllers to achieve stabilization 

with guaranteed performance [19] [20] [21] [22]. To use H∞ methods, the control problem 

is expressed as a mathematical optimization problem, and the challenge is to find the 

controller that solves this optimization. H∞ techniques have the advantage over classical 

control techniques in that they are readily applicable to problems involving multivariate 

systems with cross-coupling between channels. The disadvantages of H∞ techniques 

include the level of mathematical understanding needed to apply them successfully and the 

need for a reasonably accurate model of the system to be controlled. The general form of 

an H∞ controller with plant is shown in Figure 2.3. 

 

Figure 2.3. General Form of H-infinity Control. 

The plant (P) takes as input a reference signal and disturbances (w) as well as the 

manipulated signal (u). The outputs from the plant are an error signal (z) and the measured 
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variables (v) used to control the system. The controller (K) uses v to manipulate u. The 

signals w, u, z and v are usually vectors while P and K are matrices. The mathematical 

formula for the system is  

[
𝑧
𝑣
] = 𝑃(𝑠) [

𝑤
𝑢
] = [

𝑃11(𝑠) 𝑃12(𝑠)
𝑃21(𝑠) 𝑃22(𝑠)

] [
𝑤
𝑢
] 

where 

u=K(s)v 

The dependency of z on w is expressed as:  

𝑧 = 𝐹ℓ(𝐏, 𝐊)𝑤 

𝐹ℓ is called the lower linear fractional transformation and is defined as  

𝐹ℓ(𝐏, 𝐊) = 𝑃11 + 𝑃12𝐊(𝐼 − 𝑃22𝐊)−1𝑃21 

Thus, the objective of H∞ control is to find K such that 𝐹ℓ(𝐏, 𝐊) is minimized 

according to the H∞ norm. 

It is important to keep in mind that the resulting controller is only optimal with 

respect to the prescribed cost function and does not necessarily represent the best controller 

in terms of the usual performance measures used to evaluate controllers such as settling 

time, energy expended, etc. As an example, the method used in [18], guarantees the H∞ 

performance of the normal systems, as well as the faulty system to be less than a 

predetermined bound.  

In the cases of [23] and [24] faults are modeled as uncertainties and a robust control 

is designed such that it can tolerate uncertainties. Robust control of uncertain piecewise 

linear systems using state feedback and continuous piecewise Lyapunov functions helps 

achieve the desired H∞ performance. 
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Another approach is to use simple redundancy as described in [25]. In this example, 

the presence of multiple redundant (identical) controllers to ensure H∞ performance is 

achieved even in the presence of sensor and/or actuator faults. 

Sliding Mode control (SMC) is a nonlinear control method that alters the dynamics 

of a nonlinear system by application of a discontinuous control signal that forces the system 

to "slide" along a cross-section of the system's normal behavior as depicted in Figure 2.4.  

 

Figure 2.4. Sliding Mode Control and System. 

The example in Figure 2.4 depicts a generic sliding mode control circuit. The 

discontinuous signal that forces the system to slide is usw and the signal being acted upon 

is ueq. 

The feedback control law is not a continuous function of time. Instead, it can switch 

from one continuous structure to another based on the current position in the state space. 

Thus, sliding mode control is a variable structure control method. The multiple control 

structures are designed so that trajectories always move toward an adjacent region with a 
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different control structure, and so the ultimate trajectory will not exist entirely within one 

control structure. Instead, it will slide along the boundaries of the control structures [26], 

[27] [28] as shown in Figure 2.5. 

 

Figure 2.5. Phase Portrait of Sliding Mode Control [29]. 

One advantage of this method is that the dynamic behavior of the system may be 

directly tailored by the choice of switching function; essentially the switching function is 

a measure of desired performance [30]. The sliding mode approach is also used in [31] 

with application to aircraft control. 

Attack preventive approaches (also called proactive) seek to make the controller 

more robust by identifying the system vulnerabilities and changing the physical structure, 

changing parameters of the system, or by designing new control methodologies. They are 

not dependent on an attack detection system. The primary criticism of preventive 
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approaches is that designers are required to have prior knowledge of the types of attacks 

[11]. Work in preventive action controllers has focused on modifying the system structure 

(e.g., adding redundancy), or by designing more robust controllers. 

In [32] the authors use observability and controllability Gramian matrices as a 

means of measuring and minimizing network vulnerability. The vulnerabilities of a power 

system state estimator are explored in [33] where modifications of routing and data 

authentication are used to mitigate data integrity attacks. Authors in [34] find the optimal 

estimator that minimizes estimation error based on multiple sensor measures. 

The work in [35] investigates the problems of robust passive fault-tolerant control 

for systems with time-delays and uncertain parameters or unmodeled dynamics. The 

authors design a state feedback controller, which ensures robust stability of the closed loop 

system for all “admissible uncertainties”. The challenge is to design a controller that meets 

desired performance metrics and maintains stability despite the uncertainties in the system. 

The authors develop a linear matrix inequality (LMI) approach to solve these problems. 

This work considers only actuator faults and/or unknown parameters. 

2.2.1.2 Active Fault Tolerant Control 

In contrast to passive control, active FTC approaches focus on responding to an 

identified, or diagnosed fault. In order to respond to a fault, active controllers require a 

mechanism for detecting and isolating faults. Typically, an active FTC will have a Fault 

Detection and Identification (FDI) scheme and a controller reconfiguration mechanism 

paired with a reconfigurable controller [36]. The structure of an FTC system is depicted in 

Figure 2.6.  
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Figure 2.6. Traditional Control Loop with Fault Detection & Diagnosis Block. 

In Figure 2.6 yref is the desired output of the system under control (i.e., condition 

the controller is trying to reach). The output of the controller is designated by u while the 

output of the system under control (the plant) is designated as y. Under normal operations, 

the controller compares yref to y and adjusts the next value of u to compensate for any error 

in the last value of y. 

The fault diagnosis block receives the input (u) and output (y) from the system, and 

checks its consistency with the behavior of the system. If the I/O sequence is consistent 

with the normal behavior of the system, then the system is considered to be working in the 

normal condition by the FDD block and will continue working with the nominal controller. 

If the I/O sequence is not consistent with the nominal behavior of the system, then the FDD 

block detects occurrence of a fault. Specifically, the measured difference between normal 
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and abnormal behavior is tracked and accumulates as a residual. Once the residual crosses 

a predetermined threshold, the fault is “detected”. 

Next, the FDD block tries to find out which fault has occurred by checking the 

consistency of the I/O sequence with the faulty behaviors of the system. The result is a 

fault candidate fc; the controller is then informed by the FDD block that fault fc has 

occurred. A new control scheme, should be designed online, or be selected among pre-

designed controllers such that the faulty system can achieve the control objective. 

If such a controller exists, then the system is considered to be fault-tolerant with 

respect to the fault fc and the control objective. But if the controller objective cannot be 

achieved, the system is not fault tolerant. In this case, a possible solution is to change the 

control objective, e.g. by allowing some degradation in system performance. 

Set-membership based detection and isolation approaches have been proposed for 

the detection of specific faults. These methods generally operate by discarding models of 

a system or subsystem that are not compatible with observed data rather than selecting the 

most likely model. 

There is a multiplicity of methods to perform active Fault Tolerant Control. 

Although each method has its own advantages (speed, accuracy, ease of implementation, 

etc.) and weaknesses (need for closed-form mathematical models, inability to detect 

multiple sensor faults, inability to distinguish between sensor and system faults, and the 

need to integrate different approaches together to accomplish different tasks such as 

modeling, fault detection, fault isolation, etc.). As shown in Figure 2.1, the approaches used 

can be divided into a few broad categories.  
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2.2.1.2.1 Observer Based Controllers 

An observer is a system that provides an estimate of the internal state of a given 

real system, from measurements of the input and output of the real system. A typical 

configuration of a system with an internal observer is shown in Figure 2.7.  

 

Figure 2.7. Control System with Internal Observer. 

Observers are a popular tool employed in the active FTC area for fault detection. 

The work in [37] introduces an observer-based approach to estimate the actuator fault in a 

system and design an FTC strategy that compensates for the effects of the fault. The authors 

use a quadratic boundedness approach to design the observer so that the state and fault 

estimation errors converge to the origin. 

In [38] the authors estimate simultaneous sensor and actuator faults using an 

adaptive observer based on the quadratic Lyapunov approach. The solution is described as 

an optimization problem formulated in terms of linear matrix inequalities. The proposed 
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controller is applied to a VTOL (vertical take-off and landing) aircraft system. The work 

in [39] also uses an adaptive observer but it is applied to aircraft engines in this case.   

2.2.1.2.2 Model Predictive Control  

Model Predictive Control (MPC) relies explicit model of the system to predict a 

future output chain (ŷ). The basic structure of MPC is shown in Figure 2.8.  

 

Figure 2.8. Basic Structure of Model Predictive Control. 

Based on predicted system output (ŷ) and current system output (y), the error (e) is 

calculated. The error is fed into the optimizer which calculates the future optimal control 

sequence (Δu) using the cost function and constraints. The sampling instant is represented 

by k. 

As an example, the work in [40] develops multiple models off-line then uses 

multiple MPC on-line to switch between models as faults are detected. The approach is 

demonstrated on a simulated DC servo from the MATLAB® controls toolbox. 

The work in [41] takes on a more challenging effort in using a discrete controller 

with an analog continuous system (these combinations are known as hybrid systems). 
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Intended to control an aircraft conducting air-to-air refueling, this work uses Hybrid Bond 

Graphs to capture the interactions in the physical system and temporal causal graphs to 

derive state-space equations for fault isolation and to estimate fault magnitudes.  

2.2.1.2.3 Adaptive Control 

Adaptive control changes the control law with parameters that may be uncertain or 

at least variable over time. A generic adaptive control diagram is shown in Figure 2.9. 

 

Figure 2.9 Generic Adaptive Control Diagram. 

Unlike robust control, adaptive control requires no a priori knowledge of the bounds 

of the parameters or variables in question. Adaptive controls can be direct or indirect. 

Indirect adaptive control estimates the parameters of the controller using a model of the 

process. Direct adaptive control uses the I/O data to calculate the controller parameters. 

Reactive responses only take effect once the attack has been detected. They then 

reconfigure the control action to mitigate the impact of the attack on the system.  
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Many reactive controllers require switching between models or modes to maintain 

control. Upon detection of a fault, the switching methodologies in [42] and [43] generate a 

model or vector for the controller to compensate for the detected abnormality. 

Model-based responses use models of the system under normal conditions (i.e., not 

under attack) and compares them to the values received from the system under control to 

determine the best response to keep the system in a desirable state.  

There are two general types of model-based adaptive control: 

Model reference adaptive controllers (MRACs) which incorporate a reference model 

defining desired closed loop performance [44] as shown in Figure 2.10.  

 

 

Figure 2.10. Model Reference Adaptive Control Diagram. 

Examples of this approach are found in [45] and [46] in which the authors present 

a method for handling “locked in place” actuator faults by using a model of the system 

with known actuator faults as a reference to design a control structure to dealing with 

unknown actuator faults. 
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The other method is Model identification adaptive controllers (MIACs). This 

approach builds a mathematical model of the system while the system is running as 

shown in Figure 2.11. 

 

Figure 2.11. Model Identification Adaptive Control Diagram. 

An example of this approach is found in [47]. Here the authors use online model 

and control derivative identification to control the X-33 reusable launch vehicle in ascent 

mode. 

For both approaches, different types of models are used such as finite state 

machines [48] or linear models that can be used to represent nonlinear systems [49]. Others 

use redundant back-up controllers [50] or models of the process controller itself [51] [52] 

[53]. For further related work in the field of active FTC, the reader is referred to references 

[A1-A82] in Appendix A. 

In summary, the examples of published work in the area fault tolerant controls can 

be grouped as either active or passive as shown in Table 2.1. 
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Table 2.1. Passive and Active Fault Tolerant Control References. 

Passive FTC Active FTC 

[16] [17] [18] [19] [20] [21] 

[22] [23] [24] [25] [26] [27] 

[28] [31] [32] [33] [34] [35] 

 

 

[37] [38] [39] [40] [41] [42] 

[43] [44] [45] [46] [47] [48] 

[49] [50] [51] [52] [53] 

A: [A1-A82] 

 

2.2.2 Data-Driven Control vs. Model-Based Control 

Up to this point, the control literature reviewed has been model-based. There is 

another separation in control approaches that cuts across both active and passive FTC; that 

is Model-Based Control (MBC) vs. Data Driven Control (DDC) [54]. Since at least one 

application of the proposed controller in this dissertation uses a data-driven design, it is 

appropriate to review the fundamentals of DDC.  

Data-driven controls are the control theories and methods in which the controller is 

designed directly using on-line or off-line I/O data of the controlled system or knowledge 

from the data processing without using explicit or implicit information of the mathematical 

model of the controlled process, and whose stability, convergence, and robustness can be 

guaranteed by rigorous mathematical analysis under certain reasonable assumptions [55]. 

The reason to make the division between MBC and DDC is that MBC theory can 

only solve control problems when reliable mathematical models are available and the 

uncertainties are constrained within a known moderate bound. DDC methods are the better 

choice for control problems in which the mathematical model is difficult to establish or 



25 

unavailable or if the mathematical model is complicated with too high of an order or too 

much nonlinearity [54]. 

Data direct controls generally fall into one of two structure types. The first is those 

with a fixed controller structure. This kind of DDC method involves controller design that 

depends only on plant I/O measurements with a pre-specified fixed controller structure. 

Controller parameters are obtained from some optimization procedures, such as batched or 

recursive algorithms. Here the controller design problem is transformed into the controller 

parameter identification with the help of the assumption that the controller structure is 

known prior and linear in controller parameters. No information regarding the plant model 

or dynamics is involved. The main issue in this kind of methods is how to determine 

controller structure for a given controlled plant. 

Obtaining a good controller structure with unknown parameters, especially for 

general nonlinear systems, is quite difficultAnother issue with this kind of DDC method is 

the lack of the stability and analysis methodologies. 

The second (and more interesting) type of DDC is made up of those systems with 

an unknown controller structure. These can further be divided into 2 subsets; Apparent 

DDC methods and Model-free DDC methods. 

Apparent DDC methods. In this DDC method the controller design is dependent 

only on measured plant I/O data and the plant model structure and the dynamics are 

implicitly involved in controller design. The controller design and methods of theoretical 

analysis are similar to those of MBC designs. However, they are also more robust when 

they are used in practice. The direct adaptive control and predictive control methods 

(described previously) are typical of this [56]. 
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Model-free DDC methods. This kind of DDC method implies that the controller is 

designed directly simply using the measured plant I/O data, without explicitly or implicitly 

using model information. This is the ideal type of DDC method. The outstanding feature 

of this kind of DDC methods is that it has a systematic controller design framework and 

systematic means of analyzing stability. The main difference between this kind of DDC 

method and others is that the effectiveness or rationality of the controller structure or 

controller designing is theoretically guaranteed using rigorous mathematics. This strategy 

can deal with the system control problems using a uniform way both for linear and 

nonlinear systems.  

2.2.2.1 Passive DDC 

A passive, model-free FTC method is presented in [57]. In this work several 

candidate controllers are designed without any knowledge of the plant model or fault 

model(s). Using an approach called unfalsified Control (UC) the controllers that do not 

achieve the required performance set by the designer are discarded (falsified) and switched 

out of the loop. That controller is then replaced by an unfalsified controller. This process 

continues until a controller is placed in the loop that can maintain proper performance. No 

fault detection or fault identification steps are involved. The decision to switch controllers 

is driven by poor performance of the system, not in response to a fault or attack. This 

controller in [57] was demonstrated on a MIMO system. 

2.2.2.2 Active DDC 

The work in [58] used active model predictive control (described previously) 

combined with a data-driven approach to determining the post-fault actions for system 
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recovery. The authors applied the control approach to a 4-motor drone experiencing partial, 

single and multiple faults. 

In [59] the authors present a data driven compensation controller to make a 

traditional PID controller more fault tolerant. This is an active FTC system that is 

demonstrated on a DC motor controller experiencing a single fault. 

In [60] an integrated data-driven adaptive FTC system design scheme is proposed 

for MIMO systems with unknown plant model dynamics. The nominal feedback controller 

is first designed with a data-driven observer-based residual generator, which produces a 

residual signal when a fault occurs. Then, the data-driven adaptive FTC compensator is 

developed using only the online system data. This Model Free Adaptive Control (MFAC) 

system is compared to an iterative feedback controller (IFC) on a stirred, heated tank 

system. 

In an unusual application of active fault detection [61] proposes an unsupervised 

model-free approach to detect insulin pump malfunctioning in an artificial pancreas, 

relying on data-driven techniques for anomaly detection. It is model-free, thus avoiding the 

complex subtask of identifying a model of patient physiology and it is also unsupervised, 

thus not requiring labeled data for training, which is difficult to obtain in actual practice. 

The authors extract a feature set capable of accounting for the dynamics in type-1 diabetic 

physiology and designed to highlight anomalous behaviors associated with pump faults. 

They then applied established anomaly detection methods to the data set. 

The work in [62] reviews a residual generator-based (active) data-driven fault-

tolerant control framework. The two data driven methods for deriving the optimal 

compensator control design are based on gradient decent or machine learning. By analyzing 
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the differences between the cost function of the two methods, it is confirmed that the 

solution obtained by the gradient descent method is locally optimal while the reinforcement 

learning method’s solution is globally optimal. Both methods are demonstrated on a DC 

motor benchmark case study. These systems are nonlinear. The fault used in this work is a 

single step disturbance. No discussion about multiple faults. 

For more examples of published work in the area of active Data-Driven FTC, the 

reader is referred to references [A84-A90] in Appendix A. 

In review, the published work in the area of Data-Driven Control can be grouped 

in to active and passive DDC as shown in Table 2.2. 

Table 2.2. Active and Passive Data Driven Control References. 

Passive  Active   

[16] [17] [18] [19] [20] [21] 

[22]  [23] [24] [25] [26] [27] 

[28] [31] [32] [33] [34] [35] 

 

 

[57] 

 

[37] [38] [39] [40] [41] [42] 

[43] [44] [45] [46] [47] [48] 

[49] [50] [51] [52] [53] 

A: [A1-A82]  

[58] [59] [60] [61] [62] 

A: [A84-A90] D
D

C
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This last example brings up another area of research applicable to fault tolerant 

controls. That is the application of artificial intelligence methods in FTC. 

2.2.3 Artificial Intelligence in FTC  

The use of artificial intelligence techniques in fault tolerant control has been 

researched since 1988. Part of the reason for the interest is AI methods can be readily 
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applied to nonlinear systems which can be a challenge with crisp mathematical methods. 

Like conventional FTC methods, AI related FTC can be grouped as either passive or active. 

2.2.3.1 Passive FTC using Artificial Intelligence 

The first published work on using AI with passive FTC or adaptive controls was 

the application of Fuzzy Control theory to the flight controls of an F-16 experiencing 

actuator faults [63] also found in [64]. In this work, the authors use fuzzy model learning 

to teach the controller normal aircraft responses to various pilot inputs. With the “normal” 

model in memory, the controller used fuzzy control principles to adapt the controller 

outputs when the aircraft behavior varied from the normal model. The approach is effective 

to a point. The authors found that trying to model all possible fault conditions resulted in 

degraded performance of the controller under normal conditions as well as being very 

computationally demanding. 

Like all fuzzy controllers, this approach is well suited to non-linear systems. While 

this work could theoretically handle more than one simultaneous actuator faults, the 

possibility of co-occurring sensor faults is not addressed in this work. 

In 2001, the authors of [65] published work on a fuzzy logic-based damage-

mitigation controller. The system uses a dual level control scheme. In addition to the 

normal (lower level) control functions the controller also employs a structural model of the 

system and a damage prediction model. Using data from the system during operation, the 

damage prediction model informs the fuzzy damage controller (higher level control) when 

conditions indicate a higher likelihood of damage to a critical component. The fuzzy 

damage controller then adjusts the control signals to the system to lessen the likelihood of 
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damage to a component This early work added to the body of research, but is not actually 

FTC. 

In [66], which was published in 2011, the authors investigate the position and 

velocity tracking control problem with high-speed trains with multiple vehicles connected 

through couplers. A dynamic model reflecting nonlinear and elastic impacts between 

adjacent vehicles as well as traction/braking nonlinearities and actuation faults is derived. 

They developed neuro-adaptive fault-tolerant control algorithms to account for various 

factors such as input nonlinearities, actuator failures, and uncertain impacts of in-train 

forces in the system simultaneously. The resulting control scheme is essentially 

independent of any system model and is primarily data-driven because with the appropriate 

input–output data, the proposed control algorithms are capable of automatically generating 

the intermediate control parameters, neuro-weights, and the compensation signals, literally 

producing the traction/braking force based upon input and response data only. The process 

does not require precise information on system models or system parameters. 

Finally, in [67] the authors propose a passive fault-tolerant tracking controller for 

use with a class of uncertain, non-linear systems with intermittent faults and time delays. 

The proposed controller uses a fuzzy control system combined with a PID controller on a 

two-tank system experiencing intermittent actuator faults. 

2.2.3.2 Active FTC Using Artificial Intelligence 

Research in using artificial intelligence in active FTC was first published in 1988 

when the authors of [68] proposed adding a learning portion to a rule-based FTC system 

so that new rules for controlling the system can be generated to respond to an unanticipated 

fault in the system. The controller used redundant software and hardware to ensure accurate 
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data (at varying levels of fidelity) was available when required. The rules and normal 

operating data were stored in a lattice structure. Rules for all anticipated faults were 

included in the original controller design. When an unanticipated fault was detected, the 

controller would search by depth and by breadth across the lattice for the existing data and 

rules that best match the conditions of the unanticipated fault and generate control actions. 

The authors of [69] use a multi-layer perceptron network as the process model and 

adapt it on-line using extended Kalman filters to learn changes in process dynamics. In this 

way, the adaptive model learns the post-fault dynamics caused by actuator or component 

faults. Then, the inversion of the neural model is used as a controller to maintain the system 

stability and control performance after fault occurrence. The convergence of the model 

inversion control is verified using the Lyapunov method. 

In [70] the authors provide an overview of applying a neural network to the control 

of a nonlinear system for the purpose of detecting, identifying and accommodating a fault 

in the system. The fault(s) are unspecified but categorized as either “incipient” or “abrupt” 

and are, therefore, only described their time profile matrix. A learning algorithm is used to 

approximate the function of the fault thus acting as detector and identifier all in one. No 

mention is made of detecting more than one fault at a time. 

The authors of [71] integrated model-based adaptive control and reconfiguration 

based on fault detection and diagnosis. The adaptive controller and the fault detection 

scheme are based on a fuzzy model process. In this case it is applied to a heat exchanger 

which is a non-linear system. The topic of addressing multiple simultaneous faults is not 

addressed. 
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The authors of [72] show that a dynamic fuzzy logic controller (DFLC) could be 

shown to be equivalent to a sliding mode controller, but without the chattering they 

experience during disturbances. Sliding mode controllers have a “dead zone” in which the 

control equations converge to zero for second order (and lower) systems. This work applies 

the DFLC to higher order nonlinear systems. 

Similarly, in [73] the authors apply fuzzy logic techniques to affect the gain on a 

sliding mode controller to design a discontinuous controller for nonlinear multivariable 

systems to eliminate the chattering they experience during disturbances.  

In [74] a genetic algorithm is used to design a fault tolerant controller for the active 

magnetic bearings used by the Rolls Royce turbomachine’s rotor. This is a nonlinear 

system. The controller has a fault compensator which responds by shifting the workload to 

neighboring coils when the controller detects that one has failed (which is the anticipated 

fault). The authors do discuss the application of this approach to multiple coil failures but 

do not implement in under those conditions. 

A genetic algorithm is also used in [75] to train a multi-layer neural network. The 

controller relies on redundancy to ensure there is a fault-free data path and the neural 

network selects which data path to use when a fault is detected by the active detection 

circuit. The genetic algorithm retrains the network weights. The controller is implemented 

on a Field Programmable Gate Array (FPGA). 

The authors of [76] use a genetic algorithm to redesign the sliding mode controller 

after a fault is detected. This approach preserves much of the dynamics of the system 

unaffected by the failure. 
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For more published work in the area of active FTC using artificial intelligence 

techniques, the reader is referred to references [A91-A117] in Appendix A. 

In summary, the examples of published work in Artificial Intelligence in fault 

tolerant and adaptive controls can be grouped as either active or passive as shown in Table 

2.3. 

Table 2.3. Passive and Active References on Artificial Intelligence in FTC. 

Passive  Active   

[16] [17] [18] [19] [20] [21] 

[22]  [23] [24] [25] [26] [27] 

[28] [31] [32] [33] [34] [35] 

 

 

[57] 

 

 

 

[63] [64] [65] [66] [67]  

 

[37] [38] [39] [40] [41] [42] 

[43] [44] [45] [46] [47] [48] 

[49] [50] [51] [52] [53] 

A: [A1-A82]  

[58] [59] [60] [61]  

A: [A84-A90] 

[62] 

 

 [68] [69] [70] [71] [72] [73] 

[74] [75] [76] 

A: [A91-A117]   
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2.2.4 Deep Learning in Fault Tolerant Controls 

Deep learning is a comparatively recent development in Artificial Intelligence. 

While deep-learning networks are a type of Artificial Neural Network (ANN) they differ 

from the traditional neural networks referenced previously. Deep-learning networks are 
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capable of effectively working with much larger data sets than traditional neural networks. 

Additionally, deep-learning networks do not require any type of a priori feature extraction.  

2.2.4.1 Active Fault Tolerant Control Using Deep Learning 

There are a few examples of deep-learning methods being used in active FTC 

systems. The earliest is from 2016 in which the authors used a stacked sparse auto encoder 

to learn the deep architectures of fault data to minimize the loss of information in the event 

of a fault. Their proposed method was used to improve the divisibility between faults and 

normal process, and classify faults in the chemical benchmark, Tennessee Eastman Process 

(TEP) data [77]. 

In 2018 the authors of [78] used a hybrid recurrent/convolutional neural network 

model to estimate adaptation parameters for F-16 aircraft dynamics experiencing 

actuator/engine faults. The model is trained offline from a database of different failure 

scenarios. When a fault occurs, the model identifies adaptation parameters and feeds this 

information to an adaptive controller, which changes its configuration to better handle the 

fault. This controller works especially well in the case of significant actuator faults/failures.  

Another active FTC application of deep learning is found in [79] published in 2019. 

Here the authors proposed a real-time fault diagnostic model for air-handling units 

(AHUs); the model used deep learning to improve the operational efficiency of AHUs. 

EnergyPlus® simulation software was used to establish different types of fault operation 

behavior data to serve as reference for the deep-learning network, thus improving the 

reliability of the diagnostic model. The proposed deep neural network features five hidden 

layers, each comprised of 200 neurons. 
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The authors of [80] propose using deep-learning tools, specifically auto-encoders, 

to actively identify faults in in the assemblies of automobile instrument clusters. 

In [81] the authors propose a fault diagnosis method based on convolutional neural 

network (CNN) for aero-engine sensors. Convolutional layers and pooling layers in a CNN 

are used to extract correlation features among sensed signals, based on which fully 

connected layers are used to actively diagnose sensor faults. The inception module method 

is used to extract features on different data sizes among sensors, making the method 

capable of detecting multi-sensor faults.  

More recently, a Long Short-Term Memory (LSTM) network was used to actively 

diagnose sensor bias in an air-cooled chiller system [82]. 

In [83], a mapless movement policy for robots is presented. Deep reinforcement 

learning is used to create a policy which is capable of handling a robot even when some of 

its sensors are broken. The policy is based on three neural models capable not only of 

moving the robot, but also learning the best movement behavior to adapt it to its perception 

needs.  

The other FTC-related deep learning work is based around bearing fault detection 

and fault identification [84]. The publications in this survey use, autoencoder networks, 

restricted Boltzman machines and convolutional neural networks to detect and/or identify 

failing bearings. 

2.2.4.2 Passive Fault Tolerant Control Using Deep Learning 

We are not aware of any passive FTC systems that employ deep-learning methods. 

Thus, passive FTC using deep-learning methods appears to be a research area of potential 

interest. 
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The examples of published work in deep learning in active fault tolerant and 

adaptive controls are added to the active FTC group as shown in Table 2.4. 

Table 2.4. Passive and Active FTC Methods with Deep Learning Included. 

Passive  Active   

[16] [17] [18] [19] [20] [21] 

[22] [23] [24] [25] [26] [27] 

[28] [31] [32] [33] [34] [35] 

 

 

[57] 

 

 

 

 

[63] [64] [65] [66] [67] 

[37] [38] [39] [40] [41] [42] 

[43] [44] [45] [46] [47] [48] 

[49] [50] [51] [52] [53] 

A: [A1-A82]  

[58] [59] [60] [61]  

A: [A84-A90] 

 

[62] 

 

[68] [69] [70] [71] [72] [73] 

[74] [75] [76] 

A: [A91-A117] 

 

[78] [79] [80] [81] [82] [83] 

[84]   
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The control approach proposed in this dissertation is a passive controller that uses 

deep-learning methods. 

All of the works discussed thus far have some form of limitation. Active FTC 

controllers must rely on detecting and identifying a fault. To prevent the poor performance 

that would result from a high rate of false positives or false negatives in the detection 

mechanism, some form of cumulative residual is calculated thus forcing a delay between 
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the onset of the attack or fault and the detection of it. Once detected, the active FTC system 

must select the appropriate corrective action. Combined, these steps result in a delay that 

could allow the system under control to experience a critical failure before control is 

regained. 

Among the passive FTC works cited, the limitations are primarily system-based 

(linear or piece-wise linear only) [16] [17] [19] [23] [24] or component-based (sensor faults 

only [26] [34] or actuator faults only [22] [18] [27] [31] [35] [63] [64] [67]). The other 

limitations are the requirement to add redundant components [25] [32] or limiting the types 

of attacks or faults that can occur [20] [21] [28]. Table 2.5 summarizes the limitations as 

described. 

Table 2.5. References Sorted by Limitations. 

Limitation Referenced Work 

Response Delay from Fault/Attack Onset All Active FTC 

Linear (Piecewise Linear) Systems Only [16] [17] [19] [23] [24] 

Sensor Faults Only [26] [34] 

Actuator Faults Only [22] [18] [27] [31] [35] [63] [64] [67] 

Redundancy Required [25] [32] 

Specific Attack/Fault Types Only [20] [21] [28] 

 

The ideal controller would adapt to the effects of faults and attacks as a matter of 

routine operations, not relying on a detection mechanism. This controller would be able to 

deal with attacks and faults on both sensors and actuators. It would be able to work on 

linear and nonlinear systems alike and would not require adding additional redundant 

components to function properly. In this work, we propose such a controller. 
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2.2.5 Faults and Cyber-Attacks on FTC as Represented in Literature 

In the body of FTC work, the faults that can affect the system under control are 

represented in different ways. In [70] the speed at which the faults occur was addressed by 

categorizing them as either abrupt or incipient. Abrupt faults occur quickly and are 

generally easier for active FTCs to detect and identify, while the effects of incipient faults 

come on gradually over time and can be more difficult for active FTCs to detect or identify. 

In identifying the faults that could affect a wind turbine [85], the authors separate 

out the faults as sensor faults and actuator faults. The sensor faults are labeled as Fixed 

Value or Gain Factor. A Fixed Value fault occurs when the sensor repeatedly reports the 

same value when that value should be changing. A Gain Factor fault is one in which the 

sensor reports a higher value than is correct, but the reported value does change over time.  

For actuators, the faults are labelled as either Offset or Changed Dynamics. An Offset fault 

is said to have occurred when an actuator consistently misses the intended end state by the 

error size. A Changed Dynamic fault occurs when the actuator responds differently to a 

given command. 

A popular approach in much of the research is to assume the fault is manifested as 

a fading component. For example, the work in [86] represents the faulty actuator as 

responding to the control command at some level below that which is intended.  

Mathematically, faults are often treated as additive or multiplicative terms [87] 

appended to the in the model of the system.  

Taken together, these articles provide useful examples of different ways that 

component faults can be represented, but none provide a comprehensive picture of the 

effects of faults on industrial control systems. 
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Three studies were conducted in 2017. The authors of [88] present a model-based 

software development framework integrated with a hardware-in-the-loop (HIL) testbed for 

rapidly deploying CPS attack experiments. The framework provides the ability to emulate 

low level attacks and obtain platform specific performance measurements that could be 

difficult to obtain in a traditional simulation environment. This work focused on the attack 

vectors and types of attacks (DDoS, packet sniffing, side-channel attacks, etc.) rather than 

looking at the effects of the attacks on control components. 

In [89] the authors capture and systematize existing research on CPS security under 

a unified framework. The framework consists of three orthogonal coordinates: (1) from the 

security perspective, they follow the well-known taxonomy of threats, vulnerabilities, 

attacks and controls; (2) from the CPS components perspective, they focus on cyber, 

physical, and cyber-physical components; and (3) from the CPS systems perspective, they 

explore general CPS features as well as representative systems (e.g., smart grids, medical 

CPS and smart cars). Here again the research does not drill down to the physical component 

level. 

In [90] the authors present an analysis method (STPA-SafeSec) to consider both 

system safety and security. This work references the physical layer components as part of 

the process analysis, but does not address specific effects at that layer. 

In work leading up to this dissertation [91] industrial control systems were modeled 

along with inputs from an attacker and the system response was tested using formal 

verification. That research highlighted the necessity of knowing all the effects a fault or 

cyber-attack can have on a CPS. 
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There is no published work that addresses the full range of effects that cyber-attacks 

and faults can have at the physical layer of a cyber-physical system. We address this in 

Chapter 3. 

2.3 Summary 

This chapter reviewed the relevant research in the area of fault tolerant controls 

(both active and passive), data driven fault tolerant controls, the use of artificial intelligence 

in FTC and, specifically, the application of deep-learning methods. The limitations of 

previously published works were identified and the area of passive FTC using deep 

learning was identified as an open area of research. There was also a review of the research 

addressing the types of faults and attacks and how they are represented in the TC research. 
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 Background and Methodology 

3.1 Chapter Overview 

As stated in Chapter 1, this dissertation presents a novel, passive controller for 

industrial control systems designed to operate properly in the presence of multiple cyber-

attacks and/or component faults. This chapter initially presents background information on 

the network structure and protocols used by industrial control systems. This is followed by 

the development and introduction of a taxonomy of the effects faults and cyber-attacks can 

have on the physical components of the system. The chapter also introduces the design of 

a deep learning-based, passive controller design for ICS networks. The application of the 

taxonomy of effects to training and testing this controller is discussed. Finally, a version 

of the controller that uses an ensemble of smaller networks instead of a single large network 

is described. 

3.2 ICS Networks 

Industrial Control Systems can be very complex with multiple layers of activity, as 

shown in Figure 3.1 (originally from the DoD Committee on National Security Systems 

Instruction (CNSSI) No. 1253, “Security Categorization and Control Selection for National 

Security Systems”). In this layered representation, the highest layer represents the interface 

between the ICS and the outside world while the lowest layer represents the physical 

components that interface the controller to the system under control. Layers 2 through 5 

use well known Internet Protocols (IPs). 
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Figure 3.1. CNSSI 1235 ICS Overlay Enclave Authorization Boundary & Layers [92]. 

Less well known are the non-IP connections appearing in layers 0 through 2, as 

shown in Figure 3.2.  

 

Figure 3.2. Notional ICS Network. 
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Depending on the size and complexity of the ICS network, it may or may not 

include Programmable Logic Controllers (PLCs) or Remote terminal Units (RTUs). A 

small control system may have the controller tied directly to the individual components 

(actuators and sensors) that interact with the physical system (or plant) under control.  

The connections from layer 2 down to layer 0 can be radio, cellular or wired 

(telephone, coaxial or Ethernet). These connections are referred to as a “fieldbus”. Fieldbus 

was the original protocol used for these communications. According to the International 

Electrotechnical Commission (IEC), there are 16 different Communication Profile 

Families (CPFs) or protocols used in process controls [93]. Fieldbus is the generic term for 

any of them. The most common are Foundation Fieldbus, Profibus, Modbus, and the 

Control and Information Protocol (CIP). For the purposes of this research effort no 

distinction is made between various fieldbus protocols. All of them carry data to and from 

the controller. The particular format of the data and the protocol(s) used are irrelevant to 

this research effort. 

3.3 Effects of Cyber-Attacks and Faults  

The survey [89] cited in Chapter 2 provides a taxonomy of cyber threats (Criminal, 

Espionage, Insider, etc.) and identifies the various types of cyber-attacks that can affect 

cyber-physical systems. However, the effects discussed are limited to the system level and 

the proposed “controls” are all focused on limiting network access to the system. Nowhere 

in the literature is there discussion of the component-level effects that cyber-attacks can 

have on an industrial control system. The remainder of this section uses the ICS enclave 

layers described in Figure 3.1 and the list of ICS attacks listed in [89] as the starting point 
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to develop a taxonomy of cyber-attack effects on ICS. The effects of faults are also rolled 

in so the resulting taxonomy can be used in the training and/or testing of a control system 

meant to address the faults and cyber-attacks that can impact an ICS. 

The cyber-attack examples include the attack on the Maroochy Water Services in 

Queensland Australia. In that case, the attacker accessed the system via a wireless 

communications link (layer 2) and used his system knowledge to send false commands to 

the system pumps (actuators) at layer 0. 

In the Stuxnet example, the malware was written to exploit the lack of encryption 

on the Siemens motor controllers and the fieldbus that connected them to infect the system. 

This resulted in harmful control commands being injected into the system and false sensor 

signals being sent to the controllers so the human monitors were not aware of the 

misbehaving systems. With Stuxnete, the attack entered the system at layer 5 and 

propagated through the ICS until it found its way to the motor controllers (layer 1). 

The German steel mill attack [1] was an example of hackers accessing the corporate 

IT network (layer 5) and pivoting via layer 4 to the operational network (layer 3). In that 

case the hackers used the controllers in layers 2 and 1 to eventually manipulate multiple 

actuators (layer 0) and put the system into a state from which the blast furnace could not 

easily be shut down.  

The Modbus worm [94] exploits the lack of authentication in the Modbus protocol. 

The worm has been demonstrated to cause DoS attacks by causing servers to repeatedly 

reset and injecting false command signals to the system actuators. 

A research effort using the Shodan program [95] found over 14,000 ICS directly 

connected to the internet. Web-based attacks have been used to leave devices in an open 
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connection state thus allowing an illegitimate user to access the field devices remotely and 

execute malicious commands or cause a denial of service to the legitimate users. 

Looking across these examples, there is no single means of access or type of attack 

that was common to all. The only common factor in each was that the field devices (sensors 

and/or actuators) of the system were affected. In the case of the Denial of Service attacks, 

the field devices never received the command signals and therefore did not respond. In 

those attacks where malicious control signals were introduced to the system. The actuators 

responded to those modified signals. The Stuxnet attack was a good example of falsified 

sensor data being introduced into the system thus preventing any notification that the 

system was behaving abnormally. 

3.4 Taxonomy of Effects on Physical Components 

At layer 0, sensors and actuators are the components which interface between the 

cyber side and the physical side in cyber physical systems as shown in Figure 3.3. 

 

Figure 3.3. Basic Control System 



46 

From the perspective of the controller, the information of interest is the last control 

signal sent to the actuator(s) of the plant 𝑢𝑡 and the output reported by the sensor(s) of the 

plant 𝑦𝑡. A “dumb” controller assumes the actuators are behaving as commanded and that 

the sensor readings it is receiving are accurate. Therefore, minimizing any difference (or 

error) between the reported output 𝑦𝑡 and the desired output 𝑦𝑟𝑒𝑓 is addressed by adjusting 

the commands to the plant actuators 𝑢𝑡. Other than the sensor readings 𝑦𝑡, the plant is a 

black box operation to the controller. 

In reality the output error could be caused by an attack or a fault of the actuator 

(shown as  𝑢̂𝑡 in Figure 3.4) or the error may be incorrectly perceived by the controller 

because of an attack or a fault of the sensor (shown as  𝑦̂𝑡  in Figure 3.4). Even more 

challenging still, is a combination of both. 

 

Figure 3.4. Basic Control System with Attacks/Faults 
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A control system, like that shown in Figure 3.4. can be modeled using simple 

differential equations 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥 + 𝐷𝑢 

Where 𝑥 is the system state, 𝑢 is the input to the system actuator(s) and 𝑦 is the 

output from the system sensor(s). A common way of representing a fault in the system is 

to add the fault term to the equations. So, an actuator fault would be represented in the 

differential equations as  

𝑥̇ = 𝐴𝑥 + 𝐵𝑢̂ 

𝑦 = 𝐶𝑥 + 𝐷𝑢̂ 

Where 𝑢̂ is the resulting faulty actuator signal resulting from some function of 𝑢 

and an erroneous or malicious input 𝑣.  

𝑢̂ = 𝑓(𝑢, 𝑣) 

Similarly, a sensor fault would be a function of the output equation and a faulty or 

malicious input s. 

𝑦̂ = 𝑓(𝐶𝑥 + 𝐷𝑢, 𝑠) 

This 𝑢̂ and 𝑦̂ nomenclature will be used through this section and we will return to these 

control system equations shortly. 

By focusing on the effects of faults and/or attacks, rather than how the attack or 

fault occurred, we can enumerate and describe the effects of cyber-attacks and faults in 

terms of how the system sensors and actuators behave. We present the development of a 

taxonomy of these abnormal behaviors which will be referenced in later chapters of this 

work. 
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3.4.1.1 Sensors 

The term sensor refers to a device that measures something from the physical 

system under control and reports that measurement to the controller. All modern ICS 

sensors operate on common principles; a physical change in the system produces a 

corresponding electrical (voltage, current, capacitance, etc.) change in the sensor. Figure 

3.5 shows an example of a water level measurement sensor. 

 

Figure 3.5. Example Water Level Sensor [96] 

In the case of this example sensor, changing water level causes a change in the 

capacitance of the sensor. That capacitance measurement is converted (via Capacitance-to-

Digital Converters) to a digital signal which is then sent to the controller via the fieldbus.  

From one time increment (𝑡) to the next (𝑡 + 1), the value of the measurement sent 

(reported) from a properly functioning sensor can only change in one of three ways as 

shown in Table 3.1, where y is the value of the reported signal from the sensor. 
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Table 3.1. Possible Changes of Sensor Measurement Values 

Value Change 

Increase yt < yt+1 

Decrease yt > yt+1 

No change yt = yt+1 

 

Any fault in the sensor can cause the value of the reported measurement (y) to be 

different than the actual value. Similarly, a cyber-attack on the system can alter or replace 

the value being reported via the fieldbus from the sensor. In either case, if the reported 

value is incorrect, there are only four comparative ways in which the measured value can 

differ from the actual value over a single time step as shown in Table 3.2, where 𝑦̂ is the 

corrupt reported value, and 𝑦 is the correct value of the measurement (i.e., the value that 

should have been reported). 

Table 3.2. Possible Changes in Reported Sensor Measurement Values 

Reported Value Differs from Actual Value 

High ŷt = yt  AND  ŷt+1 > yt+1 

Low ŷt = yt  AND  ŷt+1 < yt+1 

No change ŷt = yt  AND ŷt = ŷt+1 AND  yt ≠ yt+1 

No value ŷt = yt  AND ŷt+1 = { } 

 

These four comparative variations between the reported and actual values can be 

considered the building blocks for creating the effects of a fault or cyber-attack on the 

sensor. By expanding the time frame to cover several consecutive time steps, we begin to 

see more possible effects. If the same type of effect persists over time, the resulting effect 

remains the same. If different basic effects are combinations of these effects can be added 
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to those already identified. If there is a pattern to the combination the effect is cyclical, 

otherwise it is stochastic. Thus, the effects on the reported value, as compared to the actual 

value, can be represented by the six different effects described in Table 3.3. These six 

representative effects can be set to start abruptly or gradually (incipient faults) and, of 

course, the specific values of the variables should be set to match the system to be tested. 

Table 3.3. Fundamental Effects on Sensors 

 Sensor Effect Descriptions 

1 
Increased 

Value 
𝑦̂𝑡+𝑧 = 𝛼 + 𝑦𝑡+𝑧 𝑂𝑅 𝛼̆(𝑦𝑡+𝑧) Where α > 0 and  𝛼̆ > 1 

2 
Decreased 

Value 
 𝑦̂𝑡+𝑧 = 𝛽 + 𝑦𝑡+𝑧 𝑂𝑅 𝛽̆(𝑦𝑡+𝑧) Where β < 0 and 0 < 𝛽̆ < 1 

3 
Stochastic 

Value 
𝑦̂𝑡+𝑧 = 𝑦𝑡+𝑧 +

1

𝜎√2𝜋
𝑒−

(𝑧−𝜇)2

2𝜎  

Where μ is mean and σ is the 

standard deviation of additive 

Gaussian noise 

4 
Cyclical 

Value 
𝑦̂𝑡+𝑧 = 𝑦𝑡+𝑧 + 𝛾 𝑠𝑖𝑛(𝛿𝜋𝑧) 

Where γ determines the 

magnitude of an additive cyclical 

effect and δ determines the 

frequency 

5 
Fixed 

Value 
 𝑦̂𝑡+𝑧 = 𝜀   Where ε is the fixed value 

6 No Value 𝑦̂𝑡+𝑧 = { }    

 

Returning to the control theory equation for the sensor output 

𝑦̂ = 𝑓(𝐶𝑥 + 𝐷𝑢, 𝑠) 

The variable s is drawn from the third column of Table 3.3. If, for example, the 

control designer wants to represent an additive effect (# 1 through #4) to their system 

model, the output equation would take the form  𝑦̂ = 𝐶𝑥 + 𝐷𝑢 + 𝑠. For multiplicative 

effects (#1 or #2) the output equation would take the form  𝑦̂ = 𝑠(𝐶𝑥 + 𝐷𝑢). Effects #5 

and #6 are simple replacement functions (i.e., 𝑦̂ = 𝑠). 
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3.4.1.2 Actuators 

An actuator is a device that effects a change in the physical system under control. 

The actuator receives an electronic command signal from the controller via the fieldbus 

and converts that signal into physical action. 

The process to develop the effects of cyber-attacks and faults on actuators is very 

similar to that done for sensors. From one time increment (t) to the next (t+1), the value of 

the command signal sent to a properly functioning actuator can only change in one of three 

ways as shown in Table 3.4, where u is the value of the command signal. 

Table 3.4. Possible Changes in Actuator Command Values 

Value Change 

Increase ut < ut+1 

Decrease ut > ut+1 

No change ut = ut+1 

 

A cyber-attack on the system can alter or replace the command signal value to the 

actuator. Similarly, a mechanical or electrical fault in the actuator can cause the actuator to 

respond to the command signal as if the value of the signal were something different than 

the actual value u. In either case, if the actuator does not respond as desired, there are only 

four ways in which the action value can differ from the commanded value over a single 

time step as depicted in Table 3.5, where û is the altered or misinterpreted command signal. 

These four comparative variations between the received and actual values are the building 

blocks for creating the effects of a fault or cyber-attack on the actuator. By expanding the 

time frame to cover several consecutive time steps, we begin to see more possible effects.  
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Table 3.5. Possible Variations from Actuator Value 

Reported Value Differs from Actual Value 

High ût = ut  AND  ut+1 < ût+1 

Low ût = ut  AND  ut+1 > ût+1 

No change ût = ut  AND ut ≠ ut+1 AND  ût = ût+1 

No Value ût = ut  AND ût+1 = { } 

 

If the same type of effect persists over time, the resulting effect remains the same. 

Combinations of these effects can be added to those already identified. If there is a pattern 

to the combination, the effect can be considered cyclical, otherwise it is stochastic. Thus, 

the effects on the received command signal value, as compared to the actual value, can be 

represented by the six different effects described in Table 3.6. These six representative 

effects can be set to start abruptly or gradually (incipient faults) and, of course, the specific 

values of the variables should be set to match the system to be tested. 

Table 3.6. Fundamental Effects on Actuators 

 
Actuator Effect Descriptions 

1 
Increased 

Value 
𝑢̂𝑡+𝑧 = 𝛼 + 𝑢𝑡+𝑧  𝑂𝑅  𝛼̆(𝑢𝑡+𝑧) Where α > 0 and  𝛼̆ > 1 

2 
Decreased 

Value 
𝑢̂𝑡+𝑧 = 𝛽 + 𝑢𝑡+𝑧  𝑂𝑅  𝛽̆(𝑢𝑡+𝑧) Where β < 0 and 0 < 𝛽̆ < 1 

3 
Stochastic 

Value 
𝑢̂𝑡+𝑧 = 𝑢𝑡+𝑧 +

1

𝜎√2𝜋
𝑒−

(𝑧−𝜇)2

2𝜎  

Where μ is mean and σ is the 

standard deviation of Gaussian 

noise 

4 
Cyclical 

Value 
𝑢̂𝑡+𝑧 = 𝑢𝑡+𝑧 + 𝛾 𝑠𝑖𝑛(𝛿𝜋𝑧) 

Where γ sets the magnitude of a 

cyclical effect and δ determines the 

frequency 

5 
Fixed 

Value 
𝑢̂𝑡+𝑧 = 𝜀   Where ε is the fixed value 

6 No Value 𝑢̂𝑡+𝑧 = { }   
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Returning to the control theory equations for the system, the variable v is drawn 

from the third column of Table 3.6. For all of the actuator effects, the system equations 

would take the form  

𝑥̇ = 𝐴𝑥 + 𝐵𝑢̂ 

𝑦 = 𝐶𝑥 + 𝐷𝑢̂ 

If, for example, the control designer wants to represent an additive effect (#1 

through #4) to their system model, then 𝑢̂ = 𝑣 + 𝑢. For multiplicative effects (#1 or #2) 

the altered input signal is derived from 𝑢̂ = 𝑣(𝑢). Effects #5 and #6 are simple replacement 

functions (i.e., 𝑢̂ = 𝑣). 

The 12 representative effects (from Table 3.3 and Table 3.6) constitute a taxonomy 

of effects that cyber-attacks and faults can have on the sensors and actuators of an ICS. 

Using this taxonomy, the control designer can represent the effects as abrupt or incipient, 

as intermittent or continuous, as a single effect or in combination with other effects.  

This taxonomy is a basis upon which any fault tolerant or adaptive control can be 

tested. Because the effects can be applied to any Industrial Control System or any Cyber-

physical system, they can be used to test both active and passive FTC. The flexibility of 

setting variable values associated with each effect also means they can be readily applied 

to the training of control systems that employ any kind of learning in their design. This 

taxonomy is foundational to the controllers designed and presented in later chapters of this 

dissertation. 
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3.5 Proposed Controller Considerations 

To be generally applicable to ICS, the controller must work with both linear and 

non-linear systems. The controller must also be capable of handling faults or cyber-attacks 

that affect both the sensors and the actuators of the system. The controller must also be 

capable of handling any type of cyber-attack or fault effect. 

As mentioned in Chapter 2, the goal of active FTC is ensuring the stability and 

performance, possibly degraded, of a system experiencing one or more faults, by 

reconfiguring the controller on-line, using a fault detection and diagnosis (FDD) 

component that detects, isolates and estimates the current fault. Contrary to this active 

approach, the passive solution uses a unique robust controller that, will deal with all the 

expected faults.  The passive approach has the advantage of avoiding the time delay 

required in active FTC for on-line fault diagnosis and control reconfiguration. In addition, 

passive controller designs are generally more simple in their design. 

A primary criticism of passive (proactive) controllers is that a knowledge of the 

types of attacks or faults the controller may face is required a priori. As seen in Chapter 2, 

the existing literature regarding passive FTC always places some sort of limitation on the 

type of fault, or type of component or type of system to which the controller can be applied. 

Since almost any conceivable type of component effect can be represented using the 

taxonomy described previously, these limitations can be set aside and a truly universal 

passive FTC can be considered. 

Because it would be used with complex systems, such a controller must necessarily 

be capable of considering multiple simultaneous inputs. Which specific inputs are the most 

important will vary from system to system, so the controller should be able to select the 
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inputs used to determine the correct control command. Because the effects of cyber-attacks 

and faults are characterized in part by how they change over a segment of continuous time, 

the controller must also be able to leverage the change in inputs over a segment in time. 

These considerations drove the decision to design the proposed controller around a Long 

Short-Term Memory (LSTM) network [97].  

3.5.1 Long Short-Term Memory Networks 

LSTM networks are a type of deep-learning, recurrent neural network (RNN) 

designed to classify activities over time. LSTMs are a favored tool in applications such as 

natural language recognition or activity classification from video inputs. Their ability to 

use time series inputs makes LSTMs a good candidate for use with industrial control 

systems. ICS are commonly continuous-time (analogue) plants controlled by discrete-time 

(digital) controllers.  

Intended for use with time series inputs, RNNs not only process an input vector but 

they also include previous hidden layer values as well. This allows the network to use 

previous iterations as part of its calculations for selecting the best output. Because RNNs 

use back-propagation to update the network weights during training, they are prone to 

phenomena known as “vanishing gradient” and “exploding gradient” [98]. 

The relationship between layers in a RNN is multiplicative. As a result, in deep 

networks (those with many hidden layers), the values being passed back through the 

network to update the weights can quickly become so small that they have little or no effect 

on the front layers (vanishing gradient). It also easy for the opposite to occur where some 

values grow exponentially causing some weights to be grossly over-emphasized (exploding 

gradient). 
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LSTM networks address these problems by including a “forget gate” which allows 

the individual nodes (called cells) of the network to either carry useful information through 

to the next layer to update the weights or dismiss information that will overly affect the 

weights. Figure 3.6 shows a notional LSTM cell, also called a block. As shown, an 

individual cell takes as input the output of a previous cell ht-1, the previous cell state ct-1, 

and the new system input xt, also called a feature. The output from a given cell is denoted 

as ht and the state of that cell is ct. The internal gates are the forget gate 𝑓, the input gate 𝑖, 

the input modulation gate 𝑔 and the output gate 𝑜.  

 

 

Figure 3.6. Typical LSTM Block [99]. 

The equations for the individual cell are given below, in which the subscript t 

denotes time.  

𝑓𝑡 = 𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

𝑖𝑡 = 𝜎(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝑜𝑡 = 𝜎(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

where 
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𝑓𝑡 represents the forget gate 

𝑖𝑡 represents the input gate 

𝑜𝑡 represents the output gate 

𝜎 represents the sigmoid function 

𝑤𝑥 represents the weights for the respective gate (𝑥) neurons 

ℎ𝑡−1 represents the output of the previous LSTM block (at time 𝑡 − 1) 

𝑥𝑡 represents the input at the current time stamp 

𝑏𝑥 represents the biases for the respective gates 𝑥 

Since the LSTM network works with time series input data, multiple cells (blocks) 

are connected to create the network as shown in Figure 3.7. 

 

Figure 3.7. LSTM Network Logic Structure [100]. 

The input to the LSTM network is a 2-dimensional array. One dimension is the 

number of features (designated as x in Figure 3.7) and the other is the number of time steps 

(designated as 𝑐 in Figure 3.7). The number of features is driven by the input data to the 

network and is set when the network is designed. The number of prior time steps can vary 
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from feature to feature, but large variations in the number of time steps from one feature to 

another can adversely affect the performance of the network [101].  

The number of hidden layers and nodes in the network is also determined when the 

network is designed. Increasing the number of hidden units can improve the performance 

of the network, but comes at a cost of longer training times and increased time to calculate 

a solution. Increasing the number of hidden layers in the network can significantly increase 

the time required for the network to calculate a solution. 

3.5.2 Proposed Controller Design 

An overview of the proposed controller is shown in Figure 3.8. 

 

Figure 3.8. Overview of Proposed Controller with Plant. 

It takes as input the desired output value of the plant (𝑦𝑟𝑒𝑓), the previous output 

value of the plant (𝑦𝑡−1) and the previous input to the plant (𝑢𝑡−1) that resulted in 𝑦𝑡−1. 

The output from the controller is the new input to the plant, 𝑢𝑡. 
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From the perspective of the controller, there may be no way to tell if a change in 

behavior and associated sensor readings is the result of a faulty sensor, a system fault, or if 

it is an accurate measure of a system being affected by an actuator that is in fact under 

attack. The normal functioning of the controller must therefore keep the plant performance 

within established bounds of “acceptable behavior” regardless of how or why the system 

is affected. The proposed controller uses deep learning to learn a policy, or mapping, of 

various inputs to the appropriate output. The mapping is a function of the controller inputs 

which results in a single desired controller output (𝑢𝑡) to the actuator to which it is assigned. 

𝑢𝑡  =  𝑓(𝑦𝑡−1, 𝑢𝑡−1) 

The specific stages of the proposed controller are shown in Figure 3.9 and described below. 

 

Figure 3.9. Stages of Controller Using LSTM Network. 

3.5.3 Input to the LSTM 

The input to the controller includes the values reported by the system sensors and 

the control value(s) previously sent to the actuators. These values, along with others 

derived from these values are internally calculated. These inputs (called features) are 
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tracked, normalized and presented to the LSTM network as shown in Figure 3.8. The 

number of features, their composition and their length (time steps) are all determined by 

the designer and are based on the specific system to be controlled. 

3.5.4 Data Driven and Model-Based Control 

Depending on the system to be controlled, the LSTM-based controller can be purely 

data-driven (as with the test subject in Chapter 4) or may be a synthesis of model-based 

and data-driven control (as with the test subject in Chapter 5). If the latter is the case, then 

along with the input features, the control program also generates values from multiple 

internal models of the system under control. The classification decision made by the LSTM 

is which model’s output to select based on the input features provided. Because the LSTM 

is selecting the model, not the model’s output value, there is only one correct solution, even 

if more than one of the models happens to be calculating the same value. 

3.5.5 Converting LSTM Output to a Usable Control Signal 

The raw output of the LSTM needs to be converted into a signal that is useable by 

the system under control. The exact conversion mechanism varies based on the system. In 

the case of a simple linear system (such as the test subject in Chapter 4) a set of if-then-

else logic statements may be sufficient. In the case of the test subject in Chapter 5, the 

output of the internal models from which the LSTM is selecting are possible values for a 

sensor 𝑦𝑖. Once the LSTM network decides which model to select, the output value of the 

selected model is fed into a classical controller such as a Proportional-Integral-Derivative 

(PID) controller. That PID controller then determines the control signal value 𝑢𝑡 to the 

actuator to which it is assigned. 
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The block diagram in Figure 3.10 shows the principles of how these terms are 

generated and applied. The figure shows a classical PID controller that continuously 

receives an error value as the difference between a desired reference 𝑟(𝑡) and a measured 

process variable 𝑦(𝑡) , and applies a correction based on proportional, integral, and 

derivative terms. The controller attempts to minimize the error 𝑒(𝑡)  over time by 

adjustment of a control variable 𝑢(𝑡), such as the speed of a pump motor, to a new value 

determined by a weighted sum of the control terms. 

 

 

Figure 3.10. Traditional PID Controller Block Diagram [102]. 

The overall control function is  

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫𝑒(𝑡′)𝑑𝑡′

𝑡

0

+ 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
 

where 𝐾𝑝 , 𝐾𝑖 and 𝐾𝑑  are all non-negative and represent the coefficients for the 

proportional, integral, and derivative terms respectively (sometimes denoted P, I, and D).  

In the standard form of the equation, 𝐾𝑖 and 𝐾𝑑 are replaced by 𝐾𝑝/𝑇𝑖 and 𝐾𝑝𝑇𝑑, 

respectively. This is useful because 𝑇𝑖 and 𝑇𝑑have some understandable physical meaning, 
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since they represent the integration time and the derivative time. Factoring out 𝐾𝑝 results 

in the standard form equation: 

𝑢(𝑡) = 𝐾𝑝  (𝑒(𝑡) + 
1

𝑇𝑖
 ∫ 𝑒(𝑡′)𝑑𝑡′ + 𝑇𝑑  

𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0

) 

In the proposed controller design, the LSTM network provides the value of the current, or 

corrected, sensor reading 𝑦(𝑡) to the PID as shown in Figure 3.9. 

In this application the PID controller is employed to allow fine tuning of the overall 

controller. The primary goal of fine tuning is to ensure the controller precisely controls the 

system when no fault or attack is present. It also simplifies the controller calculations in 

cases where the reference level 𝑦𝑟𝑒𝑓 may change during the course of normal operations. 

Instead of the LSTM having to learn the proper output to the actuator for all possible 𝑦𝑟𝑒𝑓  

levels, the error 𝑒𝑡 is simply calculated and used as a matter of course. 

It should be noted that the use of a PID controller was influenced by the specific 

test case systems being controlled in this dissertation. A different type of system using this 

LSTM-based controller may be able to use a Proportional, Proportional-Integral, 

Proportional-Derivative, or other type of controller.  

3.6 Training the LSTM Network 

Regardless of the number, composition or length of the features, training the LSTM 

network(s) requires samples of the features as generated when the system is operating. 

Specifically, the samples need to be representative of the system under normal operating 

conditions as well as while being affected by faults and/or cyber-attacks that cause the 

various behaviors in the sensors and actuators described previously.  



63 

The data used to train the proposed controller was generated by building a computer 

simulation of the test subject systems in MATLAB®. The test subject system in this data 

generation step is controlled by a traditional controller that meets the control requirements 

when no faults or attacks are affecting the system. This controller has access to true system 

values, not just the sensor readings or control signals provided to the system previously. 

With the benefit of access to ground truth, the simulated control program can select the 

best output for any situation it faces. A combination of correct and incorrect control outputs 

are saved and used for training the LSTM network.  

The simulation is run, iteratively introducing representative values of each of the 

effects of faults and cyber-attacks on each component. Table 3.7 shows how the number 

and combinations of data generating simulations runs are determined. 

Table 3.7. Numbers and Combinations of Data Generation Runs. 

 Components   

 A S Runs per 

Effect 

Total 

Runs 

N
u

m
b

er
 

o
f 

E
ff

ec
ts

 X - A A(X) 

- Y B B(Y) 

X Y C C(XY) 

 Total ∑ 

 

The example in Table 3.7 is for a controller with two components that will be 

affected for testing and training. For some component effects, additional runs are made to 

better balance out the number of data samples between single and multiple components 

being tested (i.e., 𝐴(𝑋) + 𝐵(𝑌) ≈ 𝐶(𝑋𝑌)). 
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After each component (sensors and actuators) has been run with each of the 

different effects, the process is repeated with two components being simultaneously 

affected. This repeated increasing the number of components affected until the desired 

number of components have been affected. The information saved from each data 

generation run are the input variables that will be provided to the LSTM during testing. 

Before the data from the simulation runs can be used to train the LSTM networks 

there are several preprocessing steps it must go through. 

Since the training data is generated sequentially, each training data sample is an      

m by n matrix where m is the number of features and n is the length of each input sample. 

The input length n is determined when the controller is designed. The length should be 

selected as the shortest that provides good results. Inputs longer than this may result in 

degraded network performance.  

The data must also be normalized to a range of (-1,1). This is done by subtracting 

the mean value for each element and dividing by the maximum value for each element. 

With the data normalized, 20% of the data is randomly selected and set aside for interim 

testing and validation.  

A key step in data preprocessing for LSTMs is data balancing. If, for example, a 

significant portion of the data has a correct classification of “1” and only a comparative 

few with correct classification of 2 or 3, the LSTM will learn it can get good results by 

simply classifying all inputs as “1”. Therefore, the data is balanced by identifying which 

classification group is most represented in the data set and duplicating the inputs from the 

less represented classes until all classes have the same number of samples in the training 

data. This step is repeated on the sequestered testing inputs as well. 
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3.6.1 Ensemble or Single LSTM 

There are circumstances in which an ensemble of smaller LSTM networks may be 

preferable to a single larger network. Examples of such cases could include, limited 

memory on processing hardware which precludes the possibility of training or executing a 

very large network, inputs to the network that are too difficult for a single network to 

separate, or a requirement for the classifier to operate under tight time constraints, (i.e., the 

controller must be capable of a higher sampling rate).  

Each of the LSTM networks within the ensemble is trained using a separate but 

equal portion of the training data. Individually, each of these networks is a reasonably 

accurate classifier. However, when aggregated together in an ensemble, their combined 

performance is improved. 

The decision of how many classifiers to use in an ensemble depends on the number 

of class labels (different possible outputs) used for that specific ensemble.  

Research indicates, for example, using more than two classifiers to make a binary 

classification decision offered no improvement in performance and in many cases 

decreased the accuracy of the ensemble. This “law of diminishing returns in ensemble 

construction” was first identified and applied by Bonab and Can. Their work in [103] 

demonstrates that using the same number of classifiers as class labels provides the highest 

accuracy. 

3.6.2 Many Classifiers - Single Solution 

There are several possible methods for resolving the results of the networks within 

an ensemble to a single output. The following approaches were investigated for this 

research: majority vote scheme, multiple linear regression (MLR), k Nearest Neighbor 
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(kNN) classifier, and Boosting and Bootstrap Aggregation Algorithms (Bagging). Each is 

described below and the results of testing with each are described in Chapter 5. 

Majority Vote Method. As the name implies, this method takes the output from 

each classifier (𝑢𝑧) in the stacked ensemble and counts it as a vote for that particular output 

to be the output of the entire ensemble (𝑢𝑡). Whichever output receives the most votes is 

selected as the overall output of the ensemble. In the case of a tie, a tie-breaking policy is 

required. 

Multiple Linear Regressions (AKA multiple regression). Multiple Linear 

Regression (MLR) is an extension of ordinary least squares regression. It seeks to predict 

the value of a dependent variable using the values of more than one explanatory variables 

by calculating a weighting for each explanatory variable. In this application, the 

explanatory variables are the outputs from the individual LSTM networks in the ensemble 

(𝑢𝑖). The weightings are represented as 𝑏𝑖 and the dependent variable is the single overall 

output of the entire ensemble (𝑢𝑡). The equation for MLR is  

𝑢𝑡 = 𝑏0 + 𝑏1𝑢1 + 𝑏2𝑢2 + 𝑏3𝑢3 + ⋯ . .+𝑏𝑧𝑢𝑧 

k Nearest Neighbor. The k Nearest Neighbor (kNN) is an instance-based classifier. 

Classifying an input using the kNN classifier can be as simple as locating the nearest known 

neighbor in the instance space and labeling the unknown instance with the same class label 

as that of the located (known) neighbor(s). 

One kNN classifier is used for each LSTM ensemble. The classifier takes the output 

of each LSTM network in the ensemble (𝑢1, 𝑢2, … 𝑢𝑧) and provides the single output 𝑢𝑡. 

During training, the kNN classifier builds a multi-dimensional space and places each 

training point 𝑞𝑖 in that space. When the kNN classifier is used, the outputs of the LSTMs 
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in the ensemble (𝑢1, 𝑢2, … 𝑢𝑧) are used as a measure of their respective dimension in that 

space. 

In this application “nearest” is defined using the Euclidean distance 𝐷 between 

each training point 𝑞𝑖  and the new point to be classified which is described by the 

dimensions (𝑢1, 𝑢2, … 𝑢𝑧); refer to the equation shown below: 

𝐷(𝑢,𝑞) = √∑(𝑢𝑖 − 𝑞𝑖)
2

𝑛  

𝑖=1

 

The training point 𝑝 that is closest to the new point described by those dimensions is used 

to classify the new point 𝑢𝑡. To maximize the performance of the classifier, the number of 

neighbors chosen 𝑘 is set to 1. 

Boosting and Bootstrap Aggregation Algorithms. Boosting and Bootstrap 

Aggregation (commonly called Bagging) both strengthen the performance of an ensemble 

of weaker learners by minimizing bias and variance in the learning algorithms. Bagging 

randomly selects training samples for each learner and develops them in parallel. Boosting 

develops the learners in sequence, weighting training data that was not learned well in in 

one learner so that it can be used again in subsequent learners. 

By using the ensemble algorithms built into MATLAB®, the outputs of the LSTMs 

are not treated as an ensemble, but rather as separate, parallel inputs to an ensemble of 

decision trees which the fitcensemble function in MATLAB® generates. By choosing to 

let MATLAB® automatically optimize the hyperparameters of the fitcensemble function, 

the algorithm tries both Boosting and Bagging algorithms and selects the one that provides 

the best results. 
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Each of these methods for determining the single output 𝑢𝑡 of the LSTM stack is 

tested and the results of testing with each are described in Chapter 5. 

 

Figure 3.11. Information Flow through an Ensemble to Control a Single Actuator. 

Figure 3.11 depicts the logic flow through the controller to generate output signals 

for a single system actuator. This is duplicated for each system actuator, with each having 

its own LSTM stack, stack solver and output.  

3.7 Test Methodology 

The method for testing the controller is very similar to the method for generating 

the training data. For all testing, the system under test (SUT) and the associated control 

algorithm are realized as MATLAB® scripts. The tests are performed on an Intel® Core i7 

CPU platform with 32 GB of RAM running Windows 10. Each test run is conducted by 

running the script for a predetermined number of iterations. Prior to each run the 

attack/fault effects(s) (described previously) is/are set to be activated at an iteration after 

the system has reached a normal steady state level. Each of the sensor effects are applied 

on individual runs, then each of the actuator effects were applied on individual runs. 
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Finally, the sensor and actuator effects are applied simultaneously on the last several test 

runs, with each run using a different combination of the different effects. In all of the test 

runs the value of the variable(s) were randomly selected, from the uniform range described 

previously, prior to the beginning of the test run. The test metrics of interest are: 

 Did a catastrophic failure occur? This is defined differently for each system 

under test. 

 Did the controller maintain proper control? – Proper control is defined as 

keeping the system output values within ±1% of the set reference value. 

 If proper control was lost, how long did it take to regain proper control? – This 

is measured in iterations of the controller algorithm. 

 From the onset of the attack/fault effect(s), how long did it take for the 

controller to respond appropriately? – Definitions for this will vary from system 

to system and controller to controller. 

 Percentage of total iterations in which the controller responded appropriately - 

Definitions for this will vary from system to system and controller to controller. 

3.8 Summary 

This chapter provided the development of a taxonomy of the effects that faults and 

cyber-attacks can have on the physical components of a system. The proposed controller 

design was explained in detail and an alternate ensemble version was also discussed. 

Considerations for training and testing the proposed controller based on the taxonomy were 

discussed and the methodology for testing the proposed controller(s) was described. 
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 Proof of Concept - Test Subject: Steam Boiler System 

4.1 Chapter Overview 

This chapter discusses the use of the linear steam boiler test subject system to 

demonstrate the utility of the proposed control approach. The specifics of how the proposed 

controller is applied to the system are described in detail. The taxonomy described in 

Chapter 3 is used to develop training data a test methodology for the proposed controller 

design. Finally, the results of the testing on the steam boiler with the proposed controller 

are discussed.  

4.2 The Steam Boiler System 

The steam boiler is a linear system with requirements that specify several safety 

measures and multiple operating modes (separate from the controller). The steam boiler 

uses binary actuators for which a single classifier type LSTM controller will suffice.  

The Steam-boiler Control Specification Problem [104] [105] was initially 

published by Jean-Raymond Abrial and was provided to participants of the Dagstuhl 

meeting, “Methods for Semantics and Specification”, in June 1995. 

The specification describes a control program serving to control the water level in 

a steam boiler like those used in nuclear power plants. Based on a specification by the 

“Institute for Risk Research” and the “Protection and Nuclear Safety Institute” (Institut de 

Protection et de Sureté Nucléaire) the requirements for the controller emphasize safety and 

are very formal. Figure 4.1 depicts the steam boiler system. 
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Figure 4.1. Steam Boiler System Diagram. 

The controller is responsible for keeping the water level in the tank between preset 

maximum and minimum levels, while ensuring that the boiler generates a sufficient volume 

of steam not exceeding a preset maximum. The controller takes as inputs values from 

sensors that measure the water level in the 1200 liter tank. The output from the controller 

is control signals sent to the 4 water pumps which are simply On/Off devices.  

4.2.1 Operational Modes/Safety Features 

Since this steam boiler is intended for use in a nuclear power plant, allowing the 

system to enter a state that could damage the steam boiler, or connected equipment, is 

unacceptable. In order to ensure the safety of the system, the specifications for the 

controller call for it to switch between five different modes [104]. Four are operational 
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modes (Initialization, Normal, Degraded and Rescue); the fifth operational mode is 

Emergency Stop. The operation of these modes is summarized below. 

Initialization mode: In this mode, the controller waits for the physical units to 

become ready and then ensures the starting water level in the tank is between the preset 

maximum and minimum required for normal operations. 

Normal mode: In this mode, the controller’s task is to maintain the water level in 

the boiler between the two "normal" levels. The controller communicates with physical 

units to obtain information about the states of the units (water level, etc.) and uses this 

information to react. The program stays in normal mode until a failure is detected, or an 

emergency stop signal is received.  

Degraded mode: In this mode, the program tries to maintain a satisfactory water 

level, despite of the failure of one or more physical components. 

Rescue mode: This is the mode in wherein the program attempts to maintain 

satisfactory water levels in the boiler, despite failure of the water level measuring unit. This 

indicates that it has to computationally estimate the water level taking into account boiler 

dynamics. 

Emergency stop mode: The control program has to engage the emergency stop 

mode either when the vital units experience a failure, or when water levels fail to reach 

either of its two-limit values. This mode may also be reached upon detection of a 

transmission error between the program and physical units. In this mode, the control will 

just send a command to the physical units, to cease operation, and then terminate itself. 
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4.2.2 System Parameters and Variables 

The value of primary concern in this system is the water level in the boiler tank (q). 

The various capacities and flow rates for the physical system components are shown on 

Table 4.1. 

Table 4.1. Parameters and Variables used in the Steam Boiler System. 

Parameters Unit Description 

C = 1200 liters Physical capacity of steam boiler 

M2 = 900 liters Maximum allowable water level 

M1 = 100 liters Minimum allowable water level 

N2 = 600 liters Maximum normal water level 

N1 = 400 liters Minimum normal water level 

W = 10 liters/sec Maximum quantity of steam at output 

U1 = 10 liters/sec/sec Maximum gradient increase of steam at output 

U2 = 10 liters/sec/sec Maximum gradient decrease of steam at output 

P = 5 liters/sec Nominal pump capacity 

Variable Unit Description 

q liters Current quantity of water in steam boiler 

p liters/sec Current throughput of pumps 

v liters/sec Current quantity of steam at output 

 

The calculation for the water level change when the system is operating normally 

is defined by the following time-variant linear equation: 

𝑞𝑡 = 𝑞𝑡−1 + ∑𝑝𝑖

4

𝑖=1

− 𝑣 

There is also an internal model for estimating the water level in the boiler using estimated 

flow of the pumps. 

𝑞𝑚𝑡 = 𝑞𝑚𝑡−1 + ∑𝑝𝑒𝑖

4

𝑖=1

− 𝑣 
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4.3 Proposed Controller Design 

As applied to this test system, the proposed controller design uses a single LSTM 

network for all four pumps. For each iteration of the control program, the LSTM is used to 

determine how many pumps should be turned on. The basic configuration of the system 

with the proposed controller is shown in Figure 4.2.  

 

Figure 4.2. Proposed Controller with System. 

For the steam boiler controller a few trial runs were conducted to identify the input 

sequence length that resulted in the best overall performance of the controller. In the trial 

runs the only parameter that was changed was the sequence length. The results are shown 

in Table 4.2. 

Table 4.2. Change in Network Performance Correlated with Sequence Length 

Length Performance 

5 97.98% 

10 98.56% 

15 97.76% 

20 96.80% 
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As the sequence length was increased, the results of each trial run decreased from 

the maximum results that were achieved with a sequence length of ten.  

Using the sequence length of ten identified in the trial runs, the next stage was to 

find the combination of hidden layers and nodes per layer that would maximize 

performance of the LSTM on the Steam Boiler system data. The results of those 

experiments are shown in Table 4.3. 

Table 4.3. Comparison of Network Performance Correlated with Network Size 

Nodes Hidden Layers 

 2 3 4 5 

768 98.42 98.22 97.44 98.46 

512 98.56 98.28 98.34 98.68 

256 97.78 98.42 98.26 98.06 

128 97.60 97.80 98.58 95.80 

64 97.08 96.34 98.22 96.32 

 

The best performance was derived from the network with five hidden layers and 

512 nodes per layer. The second best was the network with four hidden layers and 128 

nodes per layer. The network size selected was the third best with two hidden layer and 

512 nodes per layer. This network size was chosen because additional hidden layers 

significantly increase the time required to train and test the network. Since the performance 

difference between the top three was minimal, the smaller network was chosen.  

The full LSTM used for the steam boiler controller is a six-layer network with an 

input layer, two hidden layers (with 512 nodes each), a fully connected 4-node layer, a 

dense layer (softmax layer) and an output layer with 4 nodes. 
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4.3.1 Inputs to the LSTM 

The LSTM for the steam boiler uses a 16x10 element input matrix. Table 4.4 

describes the variable values used to generate the input matrix. 

Table 4.4. Input to LSTM. 

Input 

Rows 

Description Example 

Variables 
1 Difference between the reported water level and the reference level (ref-qr) 

2 Difference between the modelled water level and the reference level (ref- qm) 

3-6 Last estimated flow rate through each of the four pumps [pe] 

7-10 Last reported flow rate from each of the four pumps  [pr] 

11-14 Available pump register [1,0,1,1] 

15 System Mode (Normal, Degraded, Rescue, Emergency Stop) (11-14) 

16 The sum of the estimated flow rate through each of the 4 pumps (sum(pe)) 

 

The output of the LSTM is a single value (1 through 4) indicating how many motors 

should be on. Based on this decision, a switching routine in the controller then sends the 

appropriate signal (on or off) to each pump. 

4.4 Effects of Faults and Cyber-Attacks 

Before discussing how the LSTMs were trained and tested, it is necessary to show 

how the effects of cyber-attacks and faults on the steam boiler system components are 

addressed. 

Recall the taxonomy of representative sensor effects described in Chapter 3, Table 

3.3. Applied to the sensor of the steam boiler system, these effects are applied as described 

below and summarized in Table 4.5. 
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1. Increased Value effect - This effect is modeled as an abrupt, multiplicative   

function with 𝛼̆ being randomly selected from a uniform distribution with values on 

the interval (1.10, 2.10).  

2. Decreased Value effect - This effect is modeled as an abrupt, multiplicative 

function with 𝛽̆ being randomly selected from a uniform distribution with values on 

the interval (0.10, 0.80).  

3. Stochastic Value effect – This effect is modeled as an abrupt, additive function with 

𝜇 set to zero and 𝜎 being randomly selected from a uniform distribution with values on 

the interval (0.05, 0.55).  

4. Cyclical Value effect – This effect is modeled as an abrupt, additive function with 

𝛾 being randomly selected from a uniform distribution with values on the interval  

(0.10, 1.10) and 𝛿 being randomly selected from a uniform distribution with values on 

the interval (0.015, 1.015).  

5. Fixed Value effect – This effect is modeled as an abrupt, function with ε being 

randomly selected from a uniform distribution with values on the interval (0.00, 20.00).  

6. No Value effect – This effect is modeled as an abrupt, function with the value of 

𝑦𝑡+𝑧  being set as Not-a-Number (NaN). 

In addition to these six effects, it is also prudent to examine the performance of the 

controller if the quadruple tank system sensors are subjected to incipient effects. Therefore, 

two more effects are modeled: 
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7. Increased Value effect - This effect is modeled as an incipient, additive function 

with 𝛼 being randomly selected from a uniform distribution with values on the interval 

(0.00, 1.00) and the effect being applied using the equation   

 𝑦̂𝑡+𝑧 = 𝑦𝑡 + .025𝛼𝑦𝑡+𝑧 

8. Decreased Value effect - This effect is modeled as an incipient, additive function 

with 𝛽 being randomly selected from a uniform distribution with values on the interval 

(0.00, 1.00) and the effect being applied using the equation   

 𝑦̂𝑡+𝑧 = 𝑦𝑡 − .05𝛽𝑦𝑡+𝑧 

These eight sensor effect representations are summarized in Table 4.5. The Effect 

Number and Effect Value fields will be used when discussing test results. 

Table 4.5. Summary of Sensor Effects for the Steam Boiler System 

Effect 

Type 

Effect 

Number 

Effect Value Add, Mult 

or Replace 

Abrupt or 

Incipient 

Increased 1 (1.10, 2.10) Mult Abrupt 

Decreased 2 (0.10, 0.80) Mult Abrupt 

Stochastic 3 (0.05, 0.55) Add Abrupt 

Cyclical 4 (0.10, 1.10) (0.015, 1.015) Add Abrupt 

Fixed 5 (100, 900) Replace Abrupt 

No Value 6 (NaN) Replace Abrupt 

Increased 7 (0, 1.00) Add & Mult Incipient 

Decreased 8 (0, 1.00) Add & Mult Incipient 

 

There are no set rules for selecting the ranges of the effect values. In general, the 

low end of the range should make the effect strong enough to cause a change in the sensor. 

At the high end the value should not cause the effect to exceed the physical limitations of 

the sensor. Applied to the actuators of the quadruple-tank system, the effects are applied as 

described below and summarized in Table 4.6. 



79 

1. Increased Value effect – This effect is modeled as an abrupt, multiplicative   

function with  𝛼̂ being randomly selected from a uniform distribution with values on 

the interval (1.05, 1.50). This effect leaves the actuator controllable.  

2. Decreased Value effect – This effect is modeled as an abrupt, multiplicative 

function with  𝛽̂ being randomly selected from a uniform distribution with values on 

the interval (0.15, 0.90). This effect leaves the actuator controllable. 

3. Stochastic Value effect – This effect is modeled as an abrupt, additive function with 

𝜇 set to zero and 𝜎 being randomly selected from a uniform distribution with values on 

the interval (0.05, 0.55). This effect leaves the actuator controllable. 

4. Cyclical Value effect – This effect is modeled as an abrupt, additive function with 

𝛾 being randomly selected from a uniform distribution with values on the interval    

(0.50, 3.50) and 𝛿 being randomly selected from a uniform distribution with values on 

the interval (0.05, 0.55). This effect leaves the actuator controllable. 

5. Fixed Value effect – This effect is modeled as an abrupt, function with 𝜀 being 

randomly selected from a uniform distribution with values on the interval (1.00, 4.00). 

This effect leaves the actuator uncontrollable. 

6. No Value effect – This effect is modeled as an abrupt, function with the value of 

𝑦𝑡+𝑧  being set as Not-a-Number (NaN). This effect leaves the actuator uncontrollable. 

Two additional effects are modeled to examine the performance of the controller if 

the quadruple tank system sensors are subjected to incipient effects:  
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7. Increased Value effect – This effect is modeled as an incipient, additive function 

with 𝐴 being randomly selected from a uniform distribution with values on the interval 

(0.00, 1.00) and the effect being applied using the equation   

 𝑢̂𝑡+𝑧 = (𝑢𝑡 + .0025𝛼𝑢𝑡+𝑧)𝑢𝑡+𝑧 

8. Decreased Value effect – This effect is modeled as an incipient, additive function 

with 𝛽 being randomly selected from a uniform distribution with values on the interval 

(0.00, 1.00) and the effect being applied using the equation   

 𝑢̂𝑡+𝑧 = (𝑢𝑡 − .0019𝛽𝑢𝑡+𝑧)𝑢𝑡+𝑧 

These eight actuator effect representations are summarized in Table 4.6. The Effect 

Number and Effect Value fields will be used when discussing test results. 

Table 4.6. Summary of Actuator Effects for Steam Boiler System 

Effect 

Type 

Effect 

Number 

Effect Value Add, Mult or 

Replace 

Abrupt or 

Incipient 

Controllable 

Increased 1 (1.05, 1.50) Mult Abrupt Yes 

Decreased 2 (0.10, 0.80) Mult Abrupt Yes 

Stochastic 3 (0.05, 0.55) Add Abrupt Yes 

Cyclical 4 (0.50, 3.50) 

(0.05, 0.55) 

Add Abrupt Yes 

Fixed 5 (1.00, 4.00) Replace Abrupt No 

No Value 6 (NaN) Replace Abrupt No 

Increased 7 (0.00, 1.00) Add & Mult Incipient Yes 

Decreased 8 (0.00, 1.00) Add & Mult Incipient Yes 

 

Fixed Value (#5) and the No Value (#6) effects leave the actuator uncontrollable 

but the steam boiler system design does include redundant actuators, so these two effects 

will be included in the training or testing of the controller for the steam boiler system. 
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As with the sensor effects, the variable range values for the actuator effects should 

be large enough to produce the desired effect, but so large that the actuator is driven beyond 

its physical capabilities. 

4.5 Training the LSTM Networks 

The following parameters were used to train the LSTM for this controller in 

MATLAB®: 

Solver: ADAptive Moment estimation (ADAM) 

Execution Environment: auto (defaults to GPU if one is present) 

Initial Learning Rate: 0.0002 

Learn Rate Schedule: piecewise 

Learn Rate Drop Factor: 0.5 

Learn Drop Rate: 2 (epochs) 

Maximum Epochs: 10 

In order to expedite the training process of the LSTM, the training inputs are 

compiled into “minibatches”. The larger the minibatch, the quicker the training is 

accomplished. If the minibatch size is too large, the network will overfit to the training data 

and not perform well in testing or actual use. Based on the size of the training data set, the 

minibatch size for this application is 256 inputs.  

Another important parameter in training the LSTM is the learning rate. Larger 

learning rates help the values of the LSTM weights to converge more quickly, but risk 

possibly settling in local minimum rather than the global minimum. Lower learning rates 

are more likely to find the global minimum but can take a very long time to get there. 

MATLAB® allows the designer to vary the learning rate during training. In this application, 
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the initial learning rate is set at 0.002 and is cut by 50% every 2 epochs. Thus, after 20 

training epochs the training rate is dropped to 0.000125. 

4.5.1 Generating Training Data 

The data used to train the proposed controller was generated by building a computer 

simulation of the quadruple-tank system in MATLAB®. This test subject system was 

controlled by a logic statement controller that meets the control requirements when no 

faults or attacks are affecting the system. This controller was fed the output from the correct 

model so it always controlled the system correctly. 

The simulation was run, iteratively introducing representative values of each of the 

effects of faults and cyber-attacks on each component as shown in Table 4.7. 

Table 4.7. Numbers and Combinations of Data Generation Runs for Steam Boiler. 

 Components   

 
S A1 A2 

Runs per 

Effect 

Total 

Runs 

E
ff

ec
ts

 

8 0 0 8 64 

0 8 0 8 64 

0 0 8 8 64 

8 8 0 1 64 

8 0 8 1 64 

0 8 8 1 64 

    Total 384 

 

After each component has been run with each of the different effects (8 for the 

sensor and 8 for each pump), the process is repeated with two components being 

simultaneously affected (the sensor and each pump, then 2 pumps) which totals 196 effects 

combinations. 
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Eight times as many data generation simulations were run with single component 

effects compared to those with two components affected. This was done to provide an 

approximately equal number of samples for each. 

Each data generation simulation ran for 500 iterations with the component effect 

starting at iteration number 250. This was done to ensure the system was operating in a 

normal steady state the effect begins. 

A total of 192,000 inputs were generated using them method described above. Each 

input was a 16x10 matrix. 

4.5.2 Data Preprocessing 

Before the data from the simulation runs can be used to train the LSTM networks 

there are several preprocessing steps it must go through. 

The data was first be normalized to a range of (−1,1). With the data normalized, 

20% of the data was randomly selected and set aside for future testing. This left 153,600 

data samples in the training set. Data balancing increased the training set to 162,560 

samples evenly distributed across the four classification groups. The LSTMs were then 

trained with this data using the training parameters identified at the beginning of this 

section 

4.6 Testing the Controller with Steam Boiler System 

The linear steam boiler system was tested as a proof of concept; that a passive, data 

driven controller based on a deep-learning network could properly control a simple linear 

system in the presence of various and sometimes simultaneous cyber-attacks and faults. 

This system has redundant actuators and several built-in safety checks to prevent 
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catastrophic failure. The actuators are binary (off/on) making the control requirements 

comparatively simple. The testing on this system is intended to determine if a version of 

the proposed controller can maintain proper control of the system and if faults or attacks 

that would normally trigger the built-in EMERGENCY STOP mode can be countered to 

keep the system running rather than shutting down. 

The method for testing the controller is very similar to the method for generating 

the training data. For all testing, the system under test (SUT) and the associated control 

algorithm are realized as MATLAB® scripts. Each test run is conducted by running the 

script for 500 iterations. Prior to each run the attack/fault effects(s) (described previously) 

is/are set to be activated at iteration number 250. Each of the eight sensor effects were 

applied on individual runs, then each of the actuator effects were applied on individual runs 

to two of the four pumps. This totaled 24 individual effect runs. Finally, the sensor and 

actuator effects were applied simultaneously on the last 192 test runs, with each run using 

a different combination of the different effects. In all of the test runs the value of the 

variable(s) were randomly selected, from the uniform range described previously, prior to 

the beginning of the test run.  

With each test run, the performance of the steam boiler with the proposed controller 

was recorded against the metrics in Table 4.8. 
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Table 4.8. Measured Items for Steam Boiler Testing 

Components 

Affected 

How many actuators and/or sensors were simultaneously 

affected? 

Catastrophic 

Failure 

Did the water level ever fall below 100 liters or exceed 900 

liters? 

Mode 14  

Triggered 
Was mode 14 (Emergency Stop mode) triggered? 

Proper Control 

Maintained 

Was the liquid level in the tank maintained between 495 and 

505 liters (reference level ± 1%)? 

Iterations to Regain 

Proper Control 

If proper control was not maintained, how many iterations 

occurred before the system was recovered back to proper 

control? 

Iterations to 

Correct Solution 

How many iterations occurred from the onset of the effect until 

the controller selected the correct solution? 

Iterations with 

Correct Solution % 

What percentage of the iterations in the test were run with the 

correct solution selected? 

For this system, a failed test (catastrophic failure) is defined as one wherein the 

water level in the tank is allowed to rise above 900 liters, or drop below 100 liters. The 

performance of the proposed controller is also judged by its ability to keep the water level 

in the tank within 1% of the desired level. If the controller allows the system to go outside 

the ±1% range then it is also measured on how long it takes to return it to that level if it 

does.  

The system was tested with each component being affected by one of the 

fault/attack effects as described previously. After a run with each component being tested 

with each effect, the effects were applied to two components simultaneously until all 

combinations of components were tested with all combinations of effects. 

The results of the testing are shown in Table 4.9 below. Due to size constraints of 

the dissertation format, only a portion of the chart is displayed in Table 4.9. The entire 

chart is found in Appendix B. 
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Table 4.9. Test Results on Steam Boiler Using Proposed Controller. 
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1       0 0 0 1 * 0 100.00% 

2 1 206.17     1 0 0 1 * 0 100.00% 

3 2 0.71     1 0 0 1 * 0 100.00% 

4 3 0.24     1 0 0 1 * 0 100.00% 

5 4 0.50     1 0 0 1 * 0 100.00% 

6 5 340.08     1 0 0 1 * 0 100.00% 

7 6 *     1 0 0 1 * 0 100.00% 

8 7 0.28     1 0 0 1 * 0 100.00% 

9 8 0.50     1 0 0 1 * 0 100.00% 

10   1 2.68   1 0 0 1 * 0 100.00% 

11   2 0.74   1 0 0 1 * 0 100.00% 

12   3 0.45   1 0 0 1 * 0 100.00% 

13   4 0.40   1 0 0 1 * 0 99.33% 

14   5 1.88   1 0 0 1 * 105 77.00% 

15   6 *   1 0 0 1 * 0 100.00% 

16   7 0.74   1 0 0 1 * 0 100.00% 

17   8 0.10   1 0 0 1 * 0 100.00% 

18     1 2.81 1 0 0 1 * 9 99.00% 

19     2 0.49 1 0 0 1 * 0 100.00% 

20     3 0.09 1 0 0 1 * 9 98.33% 
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198   6 * 5 1.25 2 0 0 1 * 0 100.00% 

199   6 * 6 * 2 0 0 1 * 0 100.00% 

200   6 * 7 0.21 2 0 0 1 * 0 100.00% 

201   6 * 8 0.12 2 0 0 1 * 0 100.00% 

202   7 0.46 1 1.93 2 0 0 1 * 0 100.00% 

203   7 0.22 2 0.51 2 0 0 1 * 0 100.00% 

204   7 0.36 3 0.35 2 0 0 1 * 0 100.00% 

205   7 0.39 4 0.26 2 0 0 1 * 0 92.67% 

206   7 0.88 5 1.03 2 0 0 1 * 168 85.67% 

207   7 0.64 6 * 2 0 0 1 * 0 100.00% 

208   7 0.08 7 0.30 2 0 0 1 * 0 100.00% 

209   7 0.86 8 0.66 2 0 0 1 * 0 100.00% 

210   8 0.78 1 2.95 2 0 0 1 * 0 100.00% 

211   8 0.72 2 0.16 2 0 0 1 * 0 100.00% 

212   8 0.74 3 0.27 2 0 0 1 * 0 100.00% 
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213   8 0.93 4 0.24 2 0 0 1 * 0 99.00% 

214   8 0.73 5 1.33 2 0 0 1 * 153 83.67% 

215   8 0.70 6 * 2 0 0 1 * 0 100.00% 

216   8 0.67 7 0.37 2 0 0 1 * 0 100.00% 

217   8 0.99 8 0.64 2 0 0 1 * 0 100.00% 

 

Of the 217 total test runs there were no catastrophic failures. In 198 cases the 

controller kept proper control throughout the test run. In the others, the controller regained 

proper control in an average of 124 iterations (median of 86). The Mode 14 (Emergency 

Shut Down) conditions were met in only 2 of the test runs. On average, the controller 

selected the correct solution in 20.95 iterations (median of zero). In total, 94.46% of all 

iterations were completed with the correct solution selected by the controller. The results 

of the test are summarized in Table 4.10. 

Table 4.10. Test Result Summary for Proposed Controller 

Test 

Runs 

Comp. 

Affected 

Cat. 

Fail 

Mode 

14 

Active 

Proper 

Control 

Iterations to 

Regain Proper 

Control 

Iterations to 

Correct Model 

Iterations Using 

Correct Model 

% 

# A/S/Both % % % Median Mean Median Mean Median Mean 

16 Actuator 0 0.00 93.75 250.00 250.00 0.00 10.06 99.67 94.64 

8 Sensor 0 0.00 100.00 * * 0.00 0.00 100.00 100.00 

192 Both 0 1.02 88.78 78.50 114.50 0.00 50.11 100.00 94.19 

Total - 0 0.92 91.24 86.00 124.05 0.00 20.95 100.00 94.46 

 

Statistically speaking, this controller performed perfectly on the eight tests using 

sensor effects. The performance on the 16 tests using actuator effects was good, but the 

results for the metric of how quickly it regained proper control was skewed by the fact that 

there was only one of the 16 tests in which proper control was maintained, and in that case 

the controller did not regain proper control before he test ended, hence the recorded value 
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of 250 iterations. With a larger pool of test results the 192 tests conducted when 2 

components were being affected provides more useful results.  

Using the same data summarized in the last two columns of Table 4.10., a confusion 

matrix of the classification results of the LSTM is shown in Table 4.11. 

Table 4.11. Confusion Matrix of LSTM Classifications for Steam Boiler 

 Number of Pumps Selected  

C
o
rr

ec
t 

N
u

m
b

er
 5046 169 0 0 1 

3817 79904 243 0 2 

0 0 5103 0 3 

0 0 0 18468 4 

 1 2 3 4  

By way of review, model 1 is the correct choice when no component is being 

affected. Model 2 is the correct choice when the actuator is being affected. Model 3 is the 

correct choice when the sensor is being affected and model 4 is the correct choice when 

both are being affected. 

The benefit of this testing was two-fold. First, it confirmed that a passive, data-

driven, LSTM-based controller could be used to make the system under test resilient to the 

effects of cyber-attacks and faults. This was demonstrated by leveraging the taxonomy of 

effects developed in Chapter 3. 

Second, this testing showed the utility of the proposed controller on a simple, linear 

system with redundant actuators and built in safety modes. This is a stark contrast to the 

test subject introduced in Chapter 5.  
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4.7 Chapter Summary 

This chapter presented a linear system used as a proof-of-concept test subject. The 

proposed controller design was applied to this system. The method for generating training 

data using the taxonomy of effects was described. The training process was discussed and 

the system was tested using the various effects of faults and attacks described previously. 

The testing demonstrates this controller works well with the test system even in the 

presence of multiple simultaneous faults/attacks. Since good results were achieved on this 

linear system with redundant actuators, application to a more complex and challenging 

system is in order. 
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 Test Subject: Quadruple-Tank System  

5.1 Chapter Introduction 

This chapter presents a detailed description of the benchmark quadruple-tank 

system. The application of the proposed controller to this nonlinear system is detailed. 

Specifics of how the taxonomy of effects is applied to the quadruple-tank system are 

presented. Two versions of the proposed controller are presented; single LSTM and 

ensemble-based). The steps for training and testing the controllers are described and the 

results of that testing are discussed. 

5.2 Quadruple-Tank System Design 

The quadruple-tank system was first introduced in 1999 as a problem for the study 

of multivariable control [106]. The system consists of four cylindrical tanks connected to 

each other through pipes as shown in Figure 5.1.  

 

Figure 5.1. Diagram of Quadruple-Tank System [106]. 
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The system is fed by two pumps. Specifically, tanks 1 and 4 are fed by pump 1 

while tanks 2 and 3 are fed pump 2. Additionally, tank 1 is fed by the output of tank 3 and 

tank 2 is fed by the output of tank 4. The ratio of how much fluid flows to the upper tank 

or lower tank from each pump is set manually by a proportional valve at the outlet of each 

pump. 

The function of the controller is to set the control voltage to each pump (and thereby 

the speed of each pump) such that the fluid level in both lower tanks is as close as possible 

to the preset reference level. The physical parameters of the quad-tank system [107] are 

shown in Table 5.1.  

Table 5.1. System Parameters used in the Quadruple-Tank System. 

Parameter Description Value 

A1, A3 Cross-sectional area of tanks 1 and 3 28 cm2 

A2, A4 Cross-sectional area of tanks 2 and 4 32 cm2 

a1, a3 Cross-sectional area of outlet pipes 1 and 3 0.071 cm2 

a2, a4 Cross-sectional area of outlet pipes 2 and 4 0.057 cm2 

kc Voltage constant 0.5 V/cm 

g Gravitational constant 981 cm/s2 

 

The values for these parameters were not specified in the original publication of the 

system. These are the values used in subsequent publications [107] and [108] which built 

upon the original work. The same is true for the operational parameters given in Table 5.2. 
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Table 5.2. Operational Parameters for the Quadruple-Tank System [107] [108]. 

Parameter Description Value 

ℎ1
0 Initial height of liquid in tank 1 12.6 cm 

ℎ2
0 Initial height of liquid in tank 2 13.0 cm 

ℎ3
0 Initial height of liquid in tank 3 4.8 cm 

ℎ4
0 Initial height of liquid in tank 4 4.9 cm 

𝑣1
0 Initial input to pump 1 3.15 V 

𝑣2
0 Initial input to pump2 3.15 V 

𝑘1 Gain constant for pump 1 voltage 3.14 cm3/Vs 

𝑘2 Gain constant for pump 2 voltage 3.29 cm3/Vs 

𝛾1 Ratio to lower tank from pump 1 0.70 

𝛾2 Ratio to lower tank from pump 2 0.60 

 

The valve settings (𝛾1, 𝛾2) determine if the majority of the water from each pump 

is directed to the associated lower tank or associated upper tank. The valves are set before 

the system runs. When the valves are set so that (𝛾1 + 𝛾2) < 1 the system is said to be in 

a minimum phase, meaning the majority of the liquid from the pumps is going to the upper 

tanks. When the valves are set such that 1 ≤ (𝛾1 + 𝛾2) ≤ 2 the system is said to be in a 

non-minimum phase, meaning the majority of the liquid is going to the lower tanks. 

5.2.1 Internal System Equations 

Using these parameters, the following nonlinear equations for the rate of change in 

the level of fluid in each tank (where ℎ𝑖  is the fluid level in tank 𝑖) are presented in [106] 

as follows: 

𝑑ℎ1

𝑑𝑡
=

−𝑎1

𝐴1
√2𝑔ℎ1 + 

𝑎3

𝐴1
√2𝑔ℎ3 +

𝛾1𝑘1

𝐴1
𝑣1    (1) 

𝑑ℎ2

𝑑𝑡
=

−𝑎2

𝐴2
√2𝑔ℎ2 + 

𝑎4

𝐴2
√2𝑔ℎ4 +

𝛾2𝑘2

𝐴2
𝑣2    (2) 
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𝑑ℎ3

𝑑𝑡
=

−𝑎3

𝐴3
√2𝑔ℎ3 + 

(1−𝛾2)𝑘2

𝐴3
𝑣2    (3) 

𝑑ℎ4

𝑑𝑡
=

−𝑎4

𝐴4
√2𝑔ℎ4 + 

(1−𝛾1)𝑘1

𝐴4
𝑣1    (4) 

The value on the right-hand side of each equation is used to update the height of 

fluid in each respective tank and the output from the system (𝑦𝑖) is calculated as  

𝑦𝑖 = ℎ𝑖𝑘𝑐 

There is no water level sensor in tank 3 or 4, therefore the water height in those tanks must 

be calculated if that information is required by the controller. The input to the system 𝑢𝑖 is 

referenced as 𝑣𝑖 in the equations above.  

5.3 Proposed Controller for Quadruple-Tank Test Case 

As applied to the quadruple-tank test system, the proposed controller design uses 

one LSTM classifier network for each of the pumps as shown in Figure 5.2.  

 

Figure 5.2. Proposed Controller with System. 
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5.3.1 Designing the LSTMs 

In this application, the control designer determines the sequence length (time steps) 

of the input features. Longer sequence lengths provide more information for the network 

to use, but for any application there is an optimal sequence length. For the quad-tank 

controller a few trial runs were conducted to identify the input sequence length that resulted 

in the best overall performance of the controller. In the trial runs the only parameter that 

was changed was the sequence length. The results are shown in Table 5.3. 

Table 5.3. Change in Network Performance Correlated with Sequence Length 

Length Performance 

5 93.94% 

10 93.38% 

15 92.95% 

20 92.37% 

25 95.59% 

30 95.93% 

35 90.21% 

40 90.23% 

As the sequence length was increased, the results of each trial run also increased 

until the maximum results were achieved with a sequence length of 30. From there the 

results began to drop off again. 

Using the sequence length of 30 identified in the trial runs, the next stage was to 

find the combination of hidden layers and nodes per layer that would maximize 

performance of the LSTM on the Quadruple-tank system data. The results of those 

experiments are shown in Table 5.4. 
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Table 5.4. Comparison of Network Performance Correlated with Network Size 

Nodes Hidden Layers 

 2 3 4 5 6 7 8 9 10 

768 94.71 93.26 93.52 95.36 96.17 91.81 94.82 91.11 88.08 

512 93.90 95.81 96.48 96.85 96.73 96.87 98.29 96.79 93.35 

256 93.81 93.96 93.70 93.88 93.71 93.83 93.99 94.15 94.07 

128 92.53 93.08 93.30 93.70 93.86 93.58 93.89 94.15 93.76 

64 89.21 89.16 91.94 93.33 93.81 93.95 94.21 93.23 92.50 

 

The best performance was derived from the network with eight hidden layers and 

512 nodes per layer. Therefore the LSTM network is comprised of the input layer, eight 

hidden layers, each with 512 nodes, a fully connected 4-node layer, a softmax (dense) layer 

and an output layer with four output nodes – a total of 12 layers.  

5.3.2 Internally Generated Models 

When applied to the quadruple tank system, the proposed controller uses the LSTM 

to select one of several different models of the quadruple-tank system. These models are 

generated using the nonlinear equations described previously. Specifically, these models 

provide a value of the water level in each of the lower tanks. In order to better understand 

how the models are developed, two additional variables are introduced: 𝑦𝑖𝑟 and 𝑣𝑖𝑒. 

The variable 𝑦𝑖𝑟 is the reported value from the water level senor in tank 𝑖. The true 

value is 𝑦𝑖. Under normal operating conditions, 𝑦𝑖𝑟 = 𝑦𝑖, but the controller only receives 

𝑦𝑖𝑟 and has no access to 𝑦𝑖. The variable 𝑣𝑖𝑒 is the estimated value of the voltage to pump 

𝑖. The actual voltage to that pump is 𝑣𝑖  in prior equations, but the controller can only 

estimate the pump voltage based on the last command given. 
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Through the remainder of this section, the discussion will refer to tank 1 and pump 

1 and its associated LSTM. This done for clarity. The principles and analogous calculations 

also apply to tank 2 and pump 2 with its associated LSTM. 

At every iteration of the control program the tank 1 sensor and pump 1 (actuator) 

of the quadruple-tank system could be operating normally, or the tank sensor could be 

affected by a fault/cyber-attack, or the pump could be affected by a fault/cyber-attack or 

both could be affected. For each of these four conditions a different internal model is 

generated. The role of the LSTM is to assess the state of the system and select one of the 

four models to use for the controller. The derivation of each model is described below. 

Model 1: Uses the reported value of the water level sensor and is the correct model 

to use only when the system is operating free of any attacks or faults. Therefore, the 

modeled value 𝑦1𝑚  =  𝑦1𝑟. 

Model 2: Generates a value 𝑦𝑖 under the assumption that the associated pump is 

experiencing an attack or fault. This means the estimated pump voltage 𝑣1𝑒 is assumed to 

be incorrect and a new value for the modelled pump voltage needs to be calculated. This is 

done using equation (2) to solve for ℎ4 

ℎ4 =
[
𝐴4
𝑎2

(
𝑑ℎ2

𝑑𝑡
+

𝑎2
𝐴2

√2𝑔ℎ2 −
𝛾2𝑘2
𝐴2

𝑣2𝑒)]
2

2𝑔
 

The value for 𝑑ℎ4 can be calculated and a model value for the voltage to pump 1 (𝑣1𝑚) is 

calculated by solving equation (4) for v1m 

𝑣1𝑚 =
𝐴4

𝑑ℎ4

𝑑𝑡
+ 𝑎4√2𝑔ℎ4

(1 − 𝛾1)𝑘1
 

This v1m then replaces v1 in equation (1) and a new dh1 is calculated  
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𝑑ℎ1𝑚

𝑑𝑡
=

−𝑎1

𝐴1
√2𝑔ℎ1 + 

𝑎3

𝐴1
√2𝑔ℎ3 +

𝛾1𝑘1

𝐴1
𝑣1𝑚 

This newly derived value of 𝑑ℎ1 is used to calculate the modelled value of 𝑦1𝑚 .  

Model 3: Generates a value 𝑦𝑖 under the assumption that the water level sensor is 

experiencing an attack or fault. Since the reported value of 𝑦1𝑟 would be influenced by the 

attack or fault, a new value is calculated using equation (1). 

𝑑ℎ1𝑚

𝑑𝑡
=

−𝑎1

𝐴1
√2𝑔ℎ1 + 

𝑎3

𝐴1
√2𝑔ℎ3 +

𝛾1𝑘1

𝐴1
𝑣1𝑒 

which is then used to calculate h1m and 

𝑦1𝑚 = ℎ1𝑚𝑘𝑐 

Model 4: Generates a value 𝑦𝑖𝑚 under the assumption that both the pump and the 

water level sensor are experiencing an attack and/or fault. To generate a modeled value for 

tank sensor 1 (𝑦1𝑚) neither 𝑦1𝑟 nor 𝑣1𝑒 can be used. The model for tank 1 is then derived 

by first calculating the value of ℎ4 using equation (2).ℎ4 =
[
𝐴4
𝑎2

(
𝑑ℎ2
𝑑𝑡

+
𝑎2
𝐴2

√2𝑔ℎ2−
𝛾2𝑘2
𝐴2

𝑣2𝑒)]
2

2𝑔
 

The value for 𝑑ℎ4 can be calculated and a model value for 𝑣1 is calculated by solving 

equation (4) for 𝑣1𝑚: 

𝑣1𝑚 =
𝐴4

𝑑ℎ4

𝑑𝑡
+ 𝑎4√2𝑔ℎ4

(1 − 𝛾1)𝑘1
 

This new value for 𝑣1𝑚 is then used to calculate 𝑑ℎ1 using equation (1) 

𝑑ℎ1𝑚

𝑑𝑡
=

−𝑎1

𝐴1
√2𝑔ℎ1 + 

𝑎3

𝐴1
√2𝑔ℎ3 +

𝛾1𝑘1

𝐴1
𝑣1𝑚 

𝑦1𝑚 can be calculated  

y1m=h1m kc 
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The same steps are followed to generate models related to the tank 2 sensor and 

pump 2 for use by the associated LSTM network. 

5.3.3 Inputs to the LSTM 

Both LSTM classifiers in the controller use the same input matrix, consisting of 27 

rows and 30 columns. The 30 columns represent the consecutive time iterations while the 

27 rows contain the different feature values as listed in Table 5.5.  

Table 5.5. Inputs to LSTM Networks. 

Input 

Rows 

Description Example Variables 

1-2 Reported values of each sensor y1r, y2r 

3-4 Estimated voltage to each pump v1e, v2e 

5-7 Error estimated by the output of 

models 

y2m-yref, y3m-yref, y4m-yref 

8-10 Difference in the estimated output 

between models 

y2m-y3m, y2m-y4m, y3m-y4m 

11-13 Absolute value of difference in 

change in the estimated output of 

models 

|Δy2m-Δy3m|, |Δy2m-Δy4m|, |Δy3m-Δy4m| 

14-16 Change in the estimated output of 

models 

Δy2m, Δy3m, Δy4m 

17-19 Value of the model outputs y2m, y3m, y4m 

20-27 Binary logic statements 

comparing the mean squared 

error between samples of the 

models 

MSE(y2m(t-19:t)-y4m(t-19:t))>0.000138 

AND MSE(y3m(t-19:t)- y4m(t-19:t)) > 

0.000125 

 

A comment on the last entry of Table 5.5. As the controller runs, the last 20 values 

of the output of each model (𝑦𝑖𝑚(𝑡 − 19: 𝑡)) are stored in an array variable. In the binary 

logic statements, the mean squared difference of comparing each array pairwise is taken 

compared to a set value. If both parts of this statement are true, this statement provides a 1 
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to the input matrix. While these statements alone cannot provide sufficient input to control 

the system, they do help in discriminating between two very similar conditions. 

5.4 Effects of Faults and Cyber-Attacks 

Before discussing how the LSTMs were trained and tested, it is necessary to show 

how the effects of cyber-attacks and faults on the quad-tank system components are 

addressed. Recall the taxonomy of representative sensor effects described in Chapter 3 

which is repeated here in Tables 5.6.  

Table 5.6. Fundamental Effects on Sensors 

 Sensor Effect Descriptions 

1 
Increased 

Value 
𝑦̂𝑡+𝑧 = 𝛼 + 𝑦𝑡+𝑧 𝑂𝑅 𝛼̆(𝑦𝑡+𝑧) Where α > 0 and  𝛼̆ > 1 

2 
Decreased 

Value 
 𝑦̂𝑡+𝑧 = 𝛽 + 𝑦𝑡+𝑧 𝑂𝑅 𝛽̆(𝑦𝑡+𝑧) Where β < 0 and 0 < 𝛽̆ < 1 

3 
Stochastic 

Value 
𝑦̂𝑡+𝑧 = 𝑦𝑡+𝑧 +

1

𝜎√2𝜋
𝑒−

(𝑧−𝜇)2

2𝜎  

Where μ is mean and σ is the 

standard deviation of additive 

Gaussian noise 

4 
Cyclical 

Value 
𝑦̂𝑡+𝑧 = 𝑦𝑡+𝑧 + 𝛾 𝑠𝑖𝑛(𝛿𝜋𝑧) 

Where γ determines the 

magnitude of an additive cyclical 

effect and δ determines the 

frequency 

5 
Fixed 

Value 
 𝑦̂𝑡+𝑧 = 𝜀   Where ε is the fixed value 

6 No Value 𝑦̂𝑡+𝑧 = { }    

 

Applied to the sensors of the quadruple-tank system, these effects are applied as 

described below and summarized in Table 5.7. 
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1. Increased Value effect – This effect is modeled as an abrupt, multiplicative   

function with 𝛼̂ being randomly selected from a uniform distribution with values on 

the interval (1.00, 3.00).  

2. Decreased Value effect – This effect is modeled as an abrupt, multiplicative 

function with 𝛽̂ being randomly selected from a uniform distribution with values on 

the interval (0.15, 0.90).  

3. Stochastic Value effect – This effect is modeled as an abrupt, additive function with 

𝜇 set to zero and 𝜎 being randomly selected from a uniform distribution with values on 

the interval (0.05, 0.55).  

4. Cyclical Value effect – This effect is modeled as an abrupt, additive function with 

𝛾 being randomly selected from a uniform distribution with values on the interval   

(0.10, 1.10) and 𝛿 being randomly selected from a uniform distribution with values on 

the interval (0.015, 1.015).  

5. Fixed Value effect – This effect is modeled as an abrupt, function with ε being 

randomly selected from a uniform distribution with values on the interval (0.00, 20.00).  

6. No Value effect - This effect is modeled as an abrupt, function with the value of 

𝑦𝑡+𝑧  being set as Not-a-Number (NaN). 

Two additional effects are modeled to examine the performance of the controller if 

the quadruple tank system sensors are subjected to incipient effects.  

7. Increased Value effect – This effect is modeled as an incipient, additive and 

multiplicative function with 𝛼 being randomly selected from a uniform distribution 

with values on the interval (0.00, 1.00) and the effect being applied using the equation   
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 𝑦̂𝑡+𝑧 = 𝑦𝑡 + .005𝛼𝑦𝑡+𝑧 

8. Decreased Value effect – This effect is modeled as an incipient, additive and 

multiplicative function with 𝛽 being randomly selected from a uniform distribution 

with values on the interval (0.0, 1.0) and the effect being applied using the equation   

 𝑦̂𝑡+𝑧 = 𝑦𝑡 − .005𝛽𝑦𝑡+𝑧 

These eight sensor effect models are summarized in Table 5.7. The Effect Number and 

Effect Value fields will be used when discussing test results. The six representative actuator 

effects are described in Table 5.8. 

Table 5.7. Summary of Sensor Effects for Quadruple-Tank System 

Effect 

Type 

Effect 

Number 

Effect Value Add, Mult, 

Replace 

Abrupt or 

Incipient 

Increased 1 (1.00, 3.00) Mult Abrupt 

Decreased 2 (0.15, 0.90) Mult Abrupt 

Stochastic 3 (0.05, 0.55) Add Abrupt 

Cyclical 4 (0.10, 1.10) (0.015, 1.015) Add Abrupt 

Fixed 5 (0.00, 20.00) Replace Abrupt 

No Value 6 (NaN) Replace Abrupt 

Increased 7 (0.00, 1.00) Add & Mult Incipient 

Decreased 8 (0.00, 1.00) Add & Mult Incipient 
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Table 5.8. Fundamental Effects on Actuators 

 
Actuator Effect Descriptions 

1 
Increased 

Value 
𝑢̂𝑡+𝑧 = 𝛼 + 𝑢𝑡+𝑧  𝑂𝑅  𝛼̆(𝑢𝑡+𝑧) Where α > 0 and  𝛼̆ > 1 

2 
Decreased 

Value 
𝑢̂𝑡+𝑧 = 𝛽 + 𝑢𝑡+𝑧  𝑂𝑅  𝛽̆(𝑢𝑡+𝑧) Where β < 0 and 0 < 𝛽̆ < 1 

3 
Stochastic 

Value 
𝑢̂𝑡+𝑧 = 𝑢𝑡+𝑧 +

1

𝜎√2𝜋
𝑒−

(𝑧−𝜇)2

2𝜎  

Where μ is mean and σ is the 

standard deviation of Gaussian 

noise 

4 
Cyclical 

Value 
𝑢̂𝑡+𝑧 = 𝑢𝑡+𝑧 + 𝛾 𝑠𝑖𝑛(𝛿𝜋𝑧) 

Where γ sets the magnitude of a 

cyclical effect and δ determines the 

frequency 

5 
Fixed 

Value 
𝑢̂𝑡+𝑧 = 𝜀   Where ε is the fixed value 

6 No Value 𝑢̂𝑡+𝑧 = { }   
 

 

Applied to the actuators of the quadruple-tank system, these effects are applied as 

described below and summarized in Table 5.9. 

1. Increased Value effect – This effect is modeled as an abrupt, multiplicative   

function with 𝛼̂ being randomly selected from a uniform distribution with values on 

the interval (1.05, 1.50). This effect leaves the actuator controllable.  

2. Decreased Value effect – This effect is modeled as an abrupt, multiplicative 

function with  𝛽̂ being randomly selected from a uniform distribution with values on 

the interval (0.15, 0.90). This effect leaves the actuator controllable. 

3. Stochastic Value effect – This effect is modeled as an abrupt, additive function with 

𝜇 set to zero and 𝜎 being randomly selected from a uniform distribution with values on 

the interval (0.05, 0.55). This effect leaves the actuator controllable. 
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4. Cyclical Value effect – This effect is modeled as an abrupt, additive function with 

𝛾 being randomly selected from a uniform distribution with values on the interval   

(0.50, 3.50) and 𝛿 being randomly selected from a uniform distribution with values on 

the interval (0.05, 0.55). This effect leaves the actuator controllable. 

5. Fixed Value effect – This effect is modeled as an abrupt, function with ε being 

randomly selected from a uniform distribution with values on the interval (0.00, 10.00). 

This effect leaves the actuator uncontrollable. 

6. No Value effect – This effect is modeled as an abrupt, function with the value of 

𝑦𝑡+𝑧  being set as Not-a-Number (NaN). This effect leaves the actuator uncontrollable. 

As stated previously, two additional effects are also modelled. 

7. Increased Value effect – This effect is modeled as an incipient, additive and 

multiplicative function with α being randomly selected from a uniform distribution 

with values on the interval (0.00, 1.00) and the effect being applied using the equation   

 𝑢̂𝑡+𝑧 = (𝑢𝑡 + .005𝛼𝑢𝑡+𝑧)
2𝑢𝑡+𝑧

3
 

8. Decreased Value effect – This effect is modeled as an incipient, additive and 

multiplicative function with β being randomly selected from a uniform distribution with 

values on the interval (0.00, 1.00) and the effect being applied using the equation   

 𝑢̂𝑡+𝑧 = (𝑢𝑡 − .005𝛽𝑢𝑡+𝑧)
2𝑢𝑡+𝑧

3
 

These eight actuator effect models are summarized in Table 5.9. 
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Table 5.9. Summary of Actuator Effects for Quadruple-Tank System 

Effect 

Type 

Effect 

Number 

Effect Value Add, Mult or 

Replace 

Abrupt or 

Incipient 

Controllable 

Increased 1 (1.05, 1.50) Mult Abrupt Yes 

Decreased 2 (0.15, 0.90) Mult Abrupt Yes 

Stochastic 3 (0.05, 0.55) Add Abrupt Yes 

Cyclical 4 (0.50, 3.50) 

(0.05, 0.55) 

Add Abrupt Yes 

Fixed 5 (0.00, 10.00) Replace Abrupt No 

No Value 6 (NaN) Replace Abrupt No 

Increased 7 (0.00, 1.00) Add & Mult Incipient Yes 

Decreased 8 (0.00, 1.00) Add & Mult Incipient Yes 

 

The Effect Number and Effect Value fields will be used when discussing test results. 

Since the Fixed Value (#5) and the No Value (#6) effects leave the actuator uncontrollable 

and the quadruple-tank system design does not include redundant actuators, these two 

effects will not be included in the training or testing of the controller for the quadruple tank 

system. 

5.5 Training the LSTM Networks 

The following parameters were used to train the LSTM for this controller in 

MATLAB®: 

Solver: ADAptive Moment estimation (ADAM) 

Execution Environment: auto (defaults to GPU if one is present) 

Initial Learning Rate: 0.0002 

Learn Rate Schedule: piecewise 

Learn Rate Drop Factor: 0.5 

Learn Drop Rate: 2 (epochs) 

Maximum Epochs: 20 
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In order to expedite the training process of the LSTM, the training inputs are 

compiled into “minibatches”. The larger the minibatch, the quicker the training is 

accomplished. If the minibatch size is too large, the network will overfit to the training data 

and not perform well in testing or actual use. Based on the size of the training data set, the 

minibatch size for this application is 512 inputs.  

Another important parameter in training the LSTM is the learning rate. Larger 

learning rates help the values of the LSTM weights to converge more quickly, but risk 

possibly settling in local minimum rather than the global minimum. Lower learning rates 

are more likely to find the global minimum but can take a very long time to get there. 

MATLAB® allows the designer to vary the learning rate during training. In this application, 

the initial learning rate is set at 0.002 and is cut by 50% every 2 epochs. Thus, after 20 

training epochs the training rate is dropped to 0.000125. 

5.5.1 Generating Training Data 

The data used to train the proposed controller was generated by building a computer 

simulation of the quadruple-tank system in MATLAB®. This test subject system was 

controlled by a PID controller which was fed the output from the correct model so it always 

controlled the system correctly. 

Table 5.10. Numbers and Combinations of Data Generation for Quad-Tank System. 

 Components   

 
A S 

Runs per 

Effect 

Total 

Runs 

E
ff

ec
ts

 6 0 20 120 

0 8 15 120 

6 8 5 240 

 Total 480 
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The simulation was run, iteratively introducing representative values of each of the 

effects of faults and cyber-attacks on each component. After each component has been run 

with each of the different effects (8 for the sensor and 6 for the actuator), the process is 

repeated with both components being simultaneously affected (48 different combinations). 

Four times as many data generation simulations were run with actuator effects, and 

three times as many with sensor effects, compared to those with two components affected. 

This was done to provide an approximately equal number of samples for single component 

effects as multiple component effects. 

Each data generation simulation ran for 500 iterations with the component effect 

starting at iteration number 250. This was done to ensure the system was operating in a 

normal steady state the effect begins. 

A total of 240,000 inputs were generated using them method described above. Each 

input was a 27x30 matrix. 

5.5.2 Data Preprocessing 

Before the data from the simulation runs can be used to train the LSTM networks 

there are several preprocessing steps it must go through. 

The data must first be normalized to a range of (−1,1). With the data normalized, 

20% of the data was randomly selected and set aside for future testing. This left 198,000 

data samples in the training set. 

A key step in data preprocessing for LSTMs is data balancing. If a significant 

portion of the data has a correct classification of “1” and only a comparative few with 

correct classification of 2, 3 or 4, the LSTM will learn it can get good results by simply 

classifying all inputs as “1”. Therefore, the data is balanced by identifying which 
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classification group was most represented in the data set and duplicating data samples from 

each of the other classification groups until all four groups had the same number of data 

samples. This step increased the training set to 344,000 samples evenly distributed across 

the four classification groups. 

The LSTMs were then trained with this data using the training parameters identified 

at the beginning of this section 

5.6 Testing Methodology for Proposed Controller 

The quadruple-tank system poses some interesting and difficult control challenges. 

Testing with this non-linear system is intended to find the limits of both the proposed and 

the comparison controllers in the presence of the various cyber-attacks and component 

faults. Unlike the steam boiler, discussed in Chapter 4, this system has no redundant 

components nor built-in safety features. The actuators are variable speed pumps which 

make the control requirements much more complex. 

The method for testing the controller is very similar to the method for generating 

the training data. For all testing, the system under test (SUT) and the associated control 

algorithm are realized as MATLAB® scripts. The tests are performed on an Intel® Core i7 

CPU platform with 32 GB of RAM running Windows 10. Each test run is conducted by 

running the script for 500 iterations. Prior to each run the attack/fault effects(s) (described 

previously) is/are set to be activated at iteration number 250. Each of the eight sensor 

effects were applied on individual runs, then each of the six actuator effects were applied 

on individual runs. Finally, the sensor and actuator effects were applied simultaneously on 

the last 48 test runs, with each run using a different combination of the different effects. In 
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all of the test runs the value of the variable(s) were randomly selected, from the uniform 

range described previously, prior to the beginning of the test run.  

5.7 Test Results 

A total of 63 test runs were completed for the test; 1 with no effects applied, 8 with 

a sensor effect applied, 6 with an actuator effect applied and 48 with both a sensor and an 

actuator effect applied. For ease in understanding the complete results of the testing as 

presented in Table 5.11., the column headers are described below. 

Test Run Number – Sequential number of the specific test run 

Pump 1 Effect – Actuator effect applied in the test run. The effect numbers refer to the 

second column of Table 5.9. 

Effect Value – Refers to the randomly selected variable value for that effect on that test 

run. The range of possible actuator effect values are given in column 3 of Table 5.9. 

Sensor 1 Effect - Sensor effect applied in the test run. The effect numbers refer to the 

second column of Table 5.7. 

Effect Value – Refers to the randomly selected variable value for that effect on that test 

run. The range of possible sensor effect values are given in column 3 of Table 5.7. 

Components Affected – Total number of sensors and/or actuators affected in the test run. 

Catastrophic Failure - Boolean indicator is 1 if the actual water level in tank 1 dropped 

to 0 or exceeded 25 cm (maximum height of the tank). Otherwise it is 0. 

Maintain Proper Control – Boolean indicator is 1 if the actual water level in tank 1 did 

not vary by more than ±1% from the reference value after the effect was initiated. 

Otherwise it is 0. 
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Iterations to Regain Proper Control – If the previous column entry in the test run is a 0, 

this entry shows how many iterations occurred from the time the water level in tank 1 went 

outside the ±1% until it was brought back into that range. 

Iterations to Correct Model – Measure of how many controller program iterations 

occurred from the onset of the effect(s) until the controller selected the correct model.  

Iterations Using Correct Model (%) – Measure of the percentage of iterations during the 

test run in which the correct model was selected by the controller.  

Complete results of the test runs are shown in Table 5.11. 

Table 5.11. Test Results of Proposed Controller. 
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1   0  0 0 1  0 100.00% 

2   1 2.96  1 0 1  1 99.67% 

3   2 0.56  1 0 1  1 99.67% 

4   3 0.48  1 0 1  1 99.67% 

5   4 0.71  1 0 1  1 99.67% 

6   5 15.72  1 0 1  1 99.67% 

7   6 * 1 0 1  1 99.67% 

8   7 0.05  1 0 1  18 94.00% 

9   8 0.82  1 0 1  7 97.67% 

10 1 1.44    1 0 0 1 2 99.33% 

11 2 0.73    1 0 1  2 99.33% 

12 3 4.48    1 0 1  2 99.33% 

13 4 2.47    1 0 1  3 99.00% 

14 7 0.62    1 0 0 1 3 99.00% 

15 8 0.87    1 0 0 1 3 99.00% 

16 1 1.14  1 2.21  2 0 1  4 98.67% 

17 1 1.50  2 0.18  2 0 0 3 3 99.00% 

18 1 1.11  3 1.16  2 0 1  4 98.67% 

19 1 1.43  4 0.69  2 0 0 2 2 99.33% 

20 1 1.45  5 11.75  2 0 0 2 2 99.33% 

21 1 1.20  6 * 2 0 0 1 4 98.67% 
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22 1 1.50  7 0.21  2 0 0 2 2 99.33% 

23 1 1.18  8 0.83  2 0 1  3 99.00% 

24 2 0.30  1 2.53  2 0 0 30 3 99.00% 

25 2 0.61  2 0.87  2 0 0 10 2 99.33% 

26 2 0.53  3 2.44  2 0 0 15 2 99.33% 

27 2 0.52  4 0.35  2 0 0 15 2 99.33% 

28 2 0.23  5 3.07  2 0 0 36 3 99.00% 

29 2 0.80  6 * 2 0 0 2 4 98.67% 
30 2 0.69  7 0.01  2 0 0 4 2 99.33% 
31 2 0.76  8 0.25  2 0 0 2 3 99.00% 
32 3 1.08  1 2.31  2 0 0 1 3 99.00% 
33 3 4.91  2 0.67  2 0 1  4 98.67% 
34 3 1.88  3 2.40  2 0 1  4 98.67% 
35 3 2.45 4 0.92  2 0 0 2 3 99.00% 
36 3 1.23 5 15.41  2 0 1  5 98.33% 
37 3 1.86 6 * 2 0 0 1 4 98.67% 
38 3 4.36 7 0.13  2 0 1  4 98.67% 
39 3 4.50 8 0.73  2 0 0 1 3 99.00% 
40 4 1.77 1 2.21  2 0 0 1 4 98.67% 
41 4 2.79 2 0.89  2 0 1  4 98.67% 
42 4 0.10 3 2.57  2 0 0 3 5 98.33% 
43 4 2.96 4 0.96  2 0 1  10 96.67% 
44 4 0.84 5 13.72  2 0 1  250 16.33% 
45 4 2.48 6 * 2 0 1  17 94.33% 
46 4 0.99 7 0.70  2 0 1  6 98.00% 
47 4 1.84 8 0.97  2 0 1  4 98.67% 
48 7 0.62 1 2.15 2 0 0 3 4 98.67% 
49 7 0.65 2 0.25 2 0 0 3 4 98.67% 
50 7 0.08 3 2.12 2 0 0 2 3 99.00% 
51 7 0.84 4 0.03 2 0 0 2 3 99.00% 
52 7 0.54 5 6.75 2 0 0 3 4 98.67% 
53 7 0.80 6 * 2 0 0 3 4 98.67% 
54 7 0.76 7 0.44 2 0 0 2 3 99.00% 
55 7 0.87 8 0.82 2 0 0 1 2 99.33% 
56 8 0.55 1 1.33 2 0 0 2 3 99.00% 
57 8 0.63 2 0.83 2 0 0 3 4 98.67% 
58 8 0.34 3 1.82 2 0 0 2 3 99.00% 
59 8 0.10 4 0.26 2 0 0 3 4 98.67% 
60 8 0.49 5 0.03 2 0 0 3 4 98.67% 
61 8 0.27 6 * 2 0 0 3 4 98.67% 
62 8 0.44 7 0.72 2 0 0 2 3 99.00% 
63 8 0.82 8 0.24 2 0 0 1 2 99.33% 
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Of the 63 test runs, there was only a single test (#44) in which the proposed 

controller did not maintain or regain proper control of the system after it was affected. The 

test results are summarized in Table 5.12. 

Table 5.12. Test Result Summary for Proposed Controller 

Test 

Runs 

Component 

Affected 

Cat. 

Fail 

Proper 

Control 

Iterations to 

Regain Proper 

Control 

Iterations to 

Correct Model 

Iterations 

Using Correct 

Model % 

# A/S/Both % % Mean Median Mean Median Mean Median 

6 Actuator 0 50.00 1.00 1.00 2.50 2.50 99.00 99.00 

8 Sensor 0 100.00 * * 3.88 1.00 98.67 98.67 

48 Both 0 27.08 4.29 2.00 7.80 3.00 97.37 98.50 

Total - 0 39.68 4.58 2.00 7.54 3.00 97.48 99.00 

 

Using the same data summarized in the last two columns of Table 5.12., a confusion 

matrix of the classification results of the LSTM is shown in Table 5.13. 

Table 5.13. Confusion Matrix of LSTM Classifications in Proposed Controller 

 Model Selected  

C
o
rr

ec
t 

M
o
d

el
 3338 0 0 0 1 

10 1491 3 2 2 

30 0 1977 1 3 

74 0 356 11618 4 

 1 2 3 4  

 

By way of review, model 1 is the correct choice when no component is being 

affected. Model 2 is the correct choice when the actuator is being affected. Model 3 is the 

correct choice when the sensor is being affected and model 4 is the correct choice when 
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both are being affected. These test results are discussed and analyzed in more detail in 

Chapter 6. 

5.8 Ensemble Variant of Network-Based Controller 

To this point the discussion of the design, training and testing of the proposed 

controller has considered a single LSTM network assigned to each actuator in the system 

under control. As discussed in Chapter 3, there are circumstances in which an ensemble of 

smaller LSTM networks may be preferable to a single larger network.  

For use as a controller for the quadruple-tank system, we found an ensemble of four 

smaller LSTM networks (2 hidden layers with 512 nodes each), operated slightly faster a 

single larger network. It is also possible to extract out a small increase in classification 

accuracy. 

 

Figure 5.3. Quadruple Tank System with Ensemble-Based Controller 
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From a design perspective, the differences between a controller with ensembles vs 

single networks are comparatively minor. Figure 5.3 depicts the quadruple-tank system 

(plant) with two ensembles of LSTM networks as opposed to the two single networks 

previously shown in Figure 5.1. 

Within the controller, the logic flow in an ensemble-based controller is very similar 

to that of single network-based controller.  

 

Figure 5.4. Logic Flow through a Single Network-Based Controller 

 

Comparing the flow shown in Figure 5.4 to that shown in Figure 5.5, the ensemble 

requires a resolver to take the output from the four networks in the ensemble and provide 

a single output to the PID controller. 
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Figure 5.5. Logic Flow within an Ensemble-Based Controller. 

To train the LSTMs in the ensemble the training data was divided into fourths 

(86,000 samples each) so that each LSTM would be trained with different data than the 

others.  

After the LSTMs were each trained, the various options for resolving the LSTM 

outputs to a single solution were also trained and tested. As discussed in Chapter 3, the 

options considered were a majority vote (and a unanimous vote variation), a kNN network, 

Multiple Linear Regression and MATLAB’s built-in ensemble Bagging/Boosting 

program. The results of testing each of these is summarized in Table 5.14. 

Table 5.14. Test Results for Ensemble Resolution Options. 

Method Accuracy 

Majority Vote 93.82% 

Unanimous Vote 95.24% 

k Nearest Neighbor 94.93% 

Multiple Linear Regression 91.97% 

Bagging/Boosting 97.43% 
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It should be noted that the accuracy score of the Majority Vote and Unanimous 

Vote methods reflected above are based only on the number inputs for which there was a 

majority or unanimous input to select. For those inputs that did not have a majority or 

unanimous answer to select, no model was selected. This can be illustrated by the results 

shown in the confusion matrix for the Unanimous Vote method in Table 5.15. 

Table 5.15. Confusion Matrix of Unanimous Vote Ensemble Resolver. 

  Model Selected  

C
o
rr

ec
t 

M
o
d

el
 0 2259 0 0 0 1 

11 8 986 0 0 2 

13 16 0 1177 0 3 

1447 124 265 7 4187 4 

 none 1 2 3 4  

 

In Table 5.15, the “none” column shows the times there was no unanimous input 

for the resolver to select. In these cases another means of deciding a single result is 

required. 

If all of the LSTMs in an ensemble select the same model, the output of that model 

is provided to the PID controller. If a unanimous decision is not reached, then a 

bagging/boosting classifier is activated to make the selection. The confusion matrix for the 

Bagging/Boosting algorithm is presented in Table 5.16. 
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Table 5.16. Confusion Matrix of Bagging/Boosting Ensemble Resolver. 

 Model Selected  

C
o
rr

ec
t 

M
o
d

el
 2259 0 0 0 1 

9 995 1 0 2 

18 0 1188 0 3 

40 123 0 5788 4 

 1 2 3 4  

 

Given that the Bagging/Boosting algorithms showed the best accuracy of the five 

methods considered, it would be reasonable to simply use it as the ensemble resolver. 

However, in this application, combining the Unanimous Vote and Bagging Boosting 

algorithms provided slightly improved accuracy over the Bagging/Boosting algorithm 

alone. The confusion matrix for two combined is shown in Table 5.17. 

 

Table 5.17. Confusion Matrix for Unanimous Vote with Bagging/Boosting Resolver. 

 Model Selected  

C
o
rr

ec
t 

M
o
d

el
 2259 0 0 0 1 

11 993 1 0 2 

16 0 1190 0 3 

46 112 66 5806 4 

 1 2 3 4  

 

The two methods combined provide a classification accuracy of 97.60% which is 

slightly better than the 97.43% accuracy of the Bagging/Boosting algorithm alone. 
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5.8.1 Testing the Ensemble-Based Controller 

The testing for the ensemble-based controller was conducted exactly as the testing 

for the single network-based controller. Complete results of the test runs is shown in Table 

5.18, and a summary is provided in Table 5.19. 

Table 5.18. Test Results of Proposed Controller Using Ensembles. 
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1     0 0 1  0 100.00% 

2   1 2.96  1 0 1  2 99.33% 

3   2 0.56  1 0 1  3 99.00% 

4   3 0.48  1 0 1  3 99.00% 

5   4 0.71  1 0 1  3 99.00% 

6   5 15.72  1 0 1  3 99.00% 

7   6 * 1 0 1  3 99.00% 

8   7 0.05  1 0 1  20 93.33% 

9   8 0.82  1 0 1  9 97.00% 

10 1 1.44    1 0  1 2 99.33% 

11 2 0.73    1 0 1  2 99.33% 

12 3 4.48    1 0 1  5 98.33% 

13 4 2.47    1 0 1  5 98.33% 

14 7 0.62    1 0  1 5 98.33% 

15 8 0.87    1 0  1 5 98.33% 

16 1 1.14  1 2.21  2 0 1  1 99.67% 

17 1 1.50  2 0.18  2 0  2 1 99.67% 

18 1 1.11  3 1.16  2 0 1  1 99.67% 

19 1 1.43  4 0.69  2 0  2 1 99.67% 

20 1 1.45  5 11.75  2 0  2 1 99.67% 

21 1 1.20  6 * 2 0 1  1 99.67% 

22 1 1.50  7 0.21  2 0  16 13 95.67% 

23 1 1.18  8 0.83  2 0  14 14 95.33% 

24 2 0.30  1 2.53  2 0  30 1 99.67% 

25 2 0.61  2 0.87  2 0  10 1 99.67% 

26 2 0.53  3 2.44  2 0  15 1 99.67% 

27 2 0.52  4 0.35  2 0  15 1 99.67% 

28 2 0.23  5 3.07  2 0  36 1 99.67% 

29 2 0.80  6 * 2 0 1  1 99.67% 
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30 2 0.69  7 0.01  2 0  23 23 92.33% 
31 2 0.76  8 0.25  2 0  23 24 92.00% 
32 3 1.08  1 2.31  2 0 1  1 99.67% 
33 3 4.91  2 0.67  2 0 1  1 99.67% 
34 3 1.88  3 2.40  2 0 1  1 99.67% 
35 3 2.45 4 0.92  2 0 1  1 99.67% 
36 3 1.23 5 15.41  2 0 1  1 99.67% 
37 3 1.86 6 * 2 0 1  1 99.67% 
38 3 4.36 7 0.13  2 0  13 15 95.00% 
39 3 4.50 8 0.73  2 0  14 14 95.33% 
40 4 1.77 1 2.21  2 0  2 1 99.67% 
41 4 2.79 2 0.89  2 0 1  1 99.67% 
42 4 0.10 3 2.57  2 0  3 2 99.33% 
43 4 2.96 4 0.96  2 0 1  1 99.67% 
44 4 0.84 5 13.72  2 0 1  1 99.67% 
45 4 2.48 6 * 2 0 1  1 99.67% 
46 4 0.99 7 0.70  2 0 1  6 98.00% 
47 4 1.84 8 0.97  2 0  3 14 95.33% 
48 7 0.62 1 2.15  2 0  1 1 99.67% 

49 7 0.65 2 0.25  2 0  1 1 99.67% 

50 7 0.08 3 2.12  2 0  1 1 99.67% 

51 7 0.84  4 0.03  2 0  1 1 99.67% 

52 7 0.54  5 6.75  2 0  1 1 99.67% 

53 7 0.80  6 * 2 0  1 1 99.67% 

54 7 0.76  7 0.44  2 0  15 15 95.00% 

55 7 0.87  8 0.82  2 0  1 2 99.33% 

56 8 0.55  1 1.33  2 0  1 1 99.67% 

57 8 0.63  2 0.83  2 0  1 1 99.67% 

58 8 0.34  3 1.82  2 0  1 1 99.67% 

59 8 0.10  4 0.26  2 0  1 1 99.67% 

60 8 0.49  5 0.03  2 0  1 1 99.67% 

61 8 0.27  6 * 2 0  1 1 99.67% 

62 8 0.44  7 0.72  2 0  14 15 95.00% 

63 8 0.82  8 0.24  2 0  1 2 99.33% 

 

Table 5.19. LSTM Ensemble Test Result Summary. 

Test 

Runs 

Component 

Affected 

Cat. 

Fail 

Proper 

Control 

Iterations to 

Regain Proper 

Control 

Iterations to 

Correct Model 

Iterations 

Using Correct 

Model % 

# A/S/Both % % Mean Median Mean Median Mean Median 

6 Actuators 0 50.00 1.00 1.00 4.00 5.00 98.67 98.33 

8 Sensors 0 100.00 * * 5.75 3.00 98.08 99.00 

48 Both 0 31.25 8.06 2.00 4.04 1.00 98.65 99.67 

Total - 0 56.25 7.47 2.00 4.19 1.00 98.60 99.67 
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Using the same data summarized in the last two columns of Table 5.19 a confusion 

matrix of the classification results of the LSTM ensemble is shown in Table 5.20. 

Table 5.20. Confusion Matrix of LSTM Ensemble Classifications. 

 Model Selected  

C
o
rr

ec
t 

M
o
d

el
 3338 0 0 0 1 

12 1482 0 12 2 

30 0 1962 16 3 

71 123 0 11854 4 

 1 2 3 4  

 

Comparing the summarized test results in Table 5.12 to those in 5.19, we see the 

ensemble-based controller showed slightly improved performance over the single LSTM-

based controller. The ensemble base controller maintained proper control of the system 

during the tests in 56.25% of the runs where the single LSTM controller did so in only 

39.68% of the tests. Additionally, the single LSTM controller had a mean correct model 

selection rate of 97.48% while the ensemble-based controller’s mean selection rate was 

98.60%. These are just two highlights in the comparison of these two controllers. The 

performance of these controllers will be compared in more depth in Chapter 6. 

5.9 Computational Overhead 

Parameters 

The computational parameters of an LSTM network are weights (input and 

recurrent) at each hidden layer of the network as well as the biases at each cell. The number 
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of parameters is determined by the number inputs to the layer, the number of outputs from 

the layer as well as the hidden state (h) and cell state (c) described in section 3.5.1. There 

are four different sets of weights that are used in LSTM operations. Therefore, the number 

of parameters at a layer with m inputs and n outputs is calculated as  

4n(m+n+1)  

Consider the single large LSTM used to control the quadruple-tank system. The 

input to that network has 27 nodes (one for each input feature), each of the eight hidden 

layers contains 512 nodes, there is a softmax layer and 4 output nodes.  

This means the first hidden layer has 4×512(27+512+1)=1,105,920 parameters. 

The second through the eighth hidden layers each have 4×512(512+512+1)=2,099,200 

parameters. This makes a total of 15,800,320 parameters for the network. 

In comparison, the ensemble of smaller networks was made up of four LSTMs each 

with two hidden layers of 512 nodes each. Each of those networks had the same 1,105,920 

parameters for the first hidden layer, 2,099,200 parameters in the second layer. As a result, 

each of the smaller networks had 3,205,120 parameters for a total of 12,820,480 parameters 

in the ensemble. 

Memory Requirements 

Given the number of parameters for both the large LSTM and the LSTM ensemble, 

we can estimate the memory requirements for each. Assuming 64-bit processing and 

assuming each of the parameters in the LSTM networks is a double precision floating point 

number, each parameter will require 8 bytes of memory. From this, the large LSTM is 

estimated to be 128MB and the ensemble of LSTMs is estimated to be 103MB. Recall that 
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as applied to the quadruple-tank system, the controller would employ two LSTMs, one for 

each actuator. This doubles the estimated memory requirement for each.  

During operation, the controller program needs to capture and store past values of 

input features. With a segment length of 30 time steps and 27 features, this temporal data 

and the basic controller algorithm can bring the minimum memory requirement up to 

258MB for the large LSTM controller and 208MB for the LSTM ensemble controller. 

These estimates all assume the controller program runs on a CPU. If the controller 

computer is equipped with a GPU, the memory requirements could easily jump to over 1.5 

GB because of the wider vector paths used. 

The amount of RAM available on current industrial computers (process controllers) 

is discussed later in this section. 

Multiply and Accumulate Operations 

To better appreciate the computational capability required to operate a large LSTM 

network, it is useful to consider the Multiply and Accumulate (MAC) operations required 

in its use. In [109], the authors describe how the number of MAC operations in an LSTM 

are estimated. In short, matrix to vector multiplications dominate the number of 

computations made in an LSTM as well as the number of parameters. The number of MAC 

operations in a layer of an LSTM with m inputs and n outputs is given by 

sn[4(n+m)+3] 

where s is the segment length of the input features.  

Thus, the large LSTM network used in this dissertation performs 33,162,240 MAC 

operations in the first layer and 62,960,640 in the second through eighth layers. This is a 

total of 473,886,720 MAC operations at each iteration of the program. 
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Similarly, in the ensemble of smaller networks each LSTM would execute the 

32,486,400 MAC operations in the first layer and the 62,960,640 operations in the second 

layer. This makes a total of 96,122,880 operations per network or 384,491,520 operations 

in the entire ensemble. The computational complexity of the LSTM is then O(n2+n). 

As configured for the quadruple-tank system, each actuator requires its own LSTM 

in the proposed controller design. Therefore, the large LSTM controller for the quadruple-

tank system uses two networks and would execute approximately 950 million MAC 

operations per iteration of the control algorithm. In the case of the LSTM ensemble 

controller, two ensembles would be used and the control algorithm would execute over 760 

million MAC operations per iteration. 

This large number of MAC operations per iteration of the control program brings 

to mind the question of what the sampling rate of the controller can be in this application. 

Across the industrial controls community, the lower bound for sampling rates varies 

depending on the type of process under control. The general rules of thumb are; 1 second 

or faster for flow loops (processes) and 1-2 seconds for pressure processes. These processes 

react quickly to changes in controller output. Temperature control processes react more 

slowly to controller outputs so sampling every 2-5 seconds is the standard for those 

processes. 

Modern CPUs, implementing combinational logic, are capable completing a MAC 

operation every cycle. Clock speed and the number of cores of the control computer CPU 

then drive the best possible sampling rate of the controller.  
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Industrial Computers 

A brief survey of industrial computers used for process control was conducted. 

Computers from three different sources were considered, using four different models from 

each source as samples. The survey revealed that the industrial computers currently 

available all use modern, Intel® multi-core processors with clock speeds ranging from just 

under 2 GHz to just under 4 GHz. The available RAM amounts range from 4 GB to 64 GB. 

Table 5.21 summarizes these findings. 

Table 5.21. Industrial Computer Processor Cores, Clock Speeds and RAM. 

Brand Allen-Bradley by Rockwell Automation 

Model VersaView 5400 6181P 6181P Advanced 6177R 

Processor Atom E3845 Core i3 - 4102E Core i7 - 4700EQ Core i5 - 2500 

Cores 4 2 4 4 

Speed 1.91 GHz 1.6 GHz 2.4 GHz 3.1 GHz 

Max RAM 4 GB 16 GB 16 GB 32 GB 

 

Brand Industrial Computers Limited 

Model IPPC 1602 IPPC 1501 IPPC 1503 IPPC 2107 

Processor Celeron - J1900 Core i3 - 3120ME Core i7 - 3540M Core i5 - 6300U 

Cores 4 2 2 2 

Speed 2.42 GHz 2.4 GHz 2.9 GHz 2.40 GHz 

Max RAM 4 GB 8 GB 8 GB 16 GB 

 

Brand CONTEC 

Model VPC 1600 VPC 3000 VPC 3100-G VPC 5000-G 

Processor Celeron G1820TE Core i3 - 4570S Core i7 - 8700 Xeon E-2278GE 

Cores 2 4 6 8 

Speed 2.2 GHz 2.9 GHz 3.2 GHz 3.3 GHz 

Max RAM 4 GB 8 GB 32 GB 64 GB 

 

From the information shown in Table 5.21, it appears any of the industrial 

computers listed would have sufficient RAM to run the proposed controller algorithms. 

Using the CPU specifications identified in Table 5.21 the plots shown in Figure 5.6 were 

generated. 
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Figure 5.6 shows the relationship between processor clock speed and maximum 

sampling rate when running a control algorithm that executes 1 billion MAC operations 

per iteration. 

 

Figure 5.6. CPU Clock Speed vs. Sampling Rates. 

When considering the effect of multiple CPU cores on the possible sampling rate 

for the plots in Figure 5.6, Amdahl’s law was applied with the assumption that 75% of the 

controller code could be run in parallel.  

Any of the CPU core/clock speed combinations in Table 5.21 would allow a 

sampling rate of 1 second or less using a control algorithm similar to the proposed 

controller with the large LSTM networks. Of course, if a significantly faster sampling rate 

(e.g., 0.25 seconds) is required, a CPU with a higher clock speed and/or more cores would 

be required to reach the desired sampling rate. 
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5.10 Chapter Summary 

In this chapter, the benchmark, nonlinear quadruple-tank system was described and 

used as a test subject. The specific design of the proposed controller as applied to this 

system was also presented in detail. The utility of the effects taxonomy was demonstrated. 

The specifics of testing the system and controller were discussed and results presented. In 

addition, the design implementation and testing of an LSTM ensemble-based controller 

were also presented. Finally, the computational overhead requirements for using the 

proposed controller were discussed. 
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 Reference Controller, Comparative Test Results Analysis and Stuxnet-Like 

Attack Testing 

6.1 Chapter Introduction 

This chapter describes a previously published, active fault tolerant controller [12] 

which was applied to the same quadruple-tank system described in Chapter 5. The 

controller is tested using the same tests applied to the proposed controller in the previous 

chapter and the results of that testing are described. This chapter presents a discussion on 

the results of testing the proposed controller and the comparison controller with 63 different 

effects on a sensor and/or a pump of the quadruple-tank system as described in Chapter 5. 

Both versions of the proposed controller and the comparison controller are tested while the 

system is subjected to simulated Stuxnet-like attacks. The results of that testing are 

compared and discussed as well. 

6.2 Comparison Controller Design 

In [12] the authors presented a reconfigurable control strategy for linear continuous 

time invariant systems. This controller was selected because it embodies the more common 

characteristics of current FTC; it is active, model-driven and incorporates an observer as 

part of the solution. In addition, it is intended to achieve some of the same control 

requirements as the controller proposed in this dissertation. Namely, to maintain proper 

control of the system in the presence of both sensor and actuator faults whether they occur 

one at a time or simultaneously.   

As described in section 2.2.1, a reconfigurable controller uses a fault detection and 

identification mechanism to trigger reaction in the controller. Figure 6.1 shows the generic 

function of a reconfigurable controller. 
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.  

Figure 6.1. Reconfigurable Control System Diagram. 

In general terms, when the fault detection and identification mechanism detects and 

identifies a particular fault, it generates a fault estimate (𝑓𝑒 ) for the reconfiguration 

mechanism. In response, the reconfiguration mechanism generates a correction function 

(𝑓𝑐) for the controller. Depending on the specific design, the correction function may cause 

a change in the controller itself so it can adapt to the fault, or it may modify one or more 

the signals into the controller (𝑦𝑡) or out of the controller (𝑢𝑡). This latter approach is 

sometimes referred to as “fault hiding” as the controller itself does not need to be aware of 

the fault to function normally. This is the approach used in the comparison reference 

controller [12]. 

The authors of [12] apply their active, reconfigurable controller to the benchmark 

quadruple-tank system described in Chapter 5. They utilize linearized state-space equations 

to model the system to be controlled. In control theory, such state space models represent 
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a system using a series of first-order differential equations and an algebraic output 

equation. In general form, the state equations are derived as 

𝑥̇𝑛 = 𝑓𝑛(𝑥1, 𝑥2, … 𝑥𝑛, 𝑢1, 𝑢2, … 𝑢𝑚) 

and the output equation is derived as 

𝑦𝑝 = ℎ𝑝(𝑥1, 𝑥2, … 𝑥𝑛, 𝑢1, 𝑢2, … 𝑢𝑚) 

where 𝑥𝑖 is the state space, 𝑢𝑖 is the input from the controller and 𝑦𝑖 is the system output. 

If the system of equations are linear they can be rewritten in the general form 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥 

Where 𝐴 , 𝐵 , and 𝐶  are the state, input, and output matrices, respectively. Using this 

nomenclature, the nominal system with feedback controller diagram shown in Figure 6.2 

is reconfigured to the new, but equivalent, diagram shown in Figure 6.3. This form will be 

used in the remainder of this system description. 

 

 

Figure 6.2. Nominal System with Feedback Control. 
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Figure 6.3. Equivalent System with Feedback Control. 

The reference system uses a classical proportional-integral (PI) controller for each 

of the two pumps in the quadruple-tank system. Recall the nonlinear equations for the rate 

of change in the level of fluid in each tank in the quadruple-tank system previously 

presented in section 5.2.1: 

𝑑ℎ1

𝑑𝑡
=

−𝑎1

𝐴1
√2𝑔ℎ1 + 

𝑎3

𝐴1
√2𝑔ℎ3 +

𝛾1𝑘1

𝐴1
𝑣1    (1) 

𝑑ℎ2

𝑑𝑡
=

−𝑎2

𝐴2
√2𝑔ℎ2 + 

𝑎4

𝐴2
√2𝑔ℎ4 +

𝛾2𝑘2

𝐴2
𝑣2    (2) 

𝑑ℎ3

𝑑𝑡
=

−𝑎3

𝐴3
√2𝑔ℎ3 + 

(1−𝛾2)𝑘2

𝐴3
𝑣2    (3) 

𝑑ℎ4

𝑑𝑡
=

−𝑎4

𝐴4
√2𝑔ℎ4 + 

(1−𝛾1)𝑘1

𝐴4
𝑣1    (4) 

Using equations (1-4), the system can be represented by linearized the state equations 

presented in [12]. 
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=
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0
 

(1 − 𝛾2)𝑘1

𝐴4

(1 − 𝛾2)𝑘2

𝐴3 
0
 ]

 
 
 
 
 
 
 
 

𝑢 

which has the form 𝑥̇ = 𝐴𝑥 + 𝐵𝑢.  The output equation is given by 𝑦 = 𝐶𝑥: 

𝑦 =  [
𝐾𝑐 0 0 0
0 𝐾𝑐 0 0

] 𝑥 

where the time constants in 𝐴 are given by: 

𝑇𝑖 = −
𝐴𝑖

𝑎𝑖

√
2ℎ𝑖

𝑜

𝑔
, where i = 1,… ,4 

The fault hiding reconfigurable control approach is based on the idea of placing a 

reconfiguration block between the nominal controller and the faulty plant at 

reconfiguration time as shown in Figure 6.4. 

 

Figure 6.4. Fault Hiding with Reconfiguration Block. 

In Figure 6.4 the output signal from a faulty sensor (𝑦𝑓) is reconfigured to a correct 

output signal (𝑦𝑐) for the nominal controller. The correct input from the nominal controller 
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(𝑢𝑐) is reconfigured to a signal (𝑢𝑓) that will compensate for the faulty actuator in the plant. 

The reconfiguration block hides the fault from the controller and helps the faulty plant to 

operate properly.  The reconfiguration block contains a virtual sensor and a virtual actuator. 

In the event of a sensor fault, the controller activates the virtual sensor as shown in Figure 

6.5. 

 

Figure 6.5. Faulty System with Virtual Sensor [12]. 

The derivation of the virtual sensor is similar to the design of a state observer (as 

described in section 2.2.1). The derivation is given by: 

𝑥̇̂ = 𝐴𝑥̂ + 𝐵𝑢𝑐 + 𝐿(𝑦𝑓 − 𝐶𝑥̂)  

The parameter L is chosen so that all poles are within the design set 𝐶𝑔: 

𝜎(𝐴 − 𝐿𝐶𝑓) ⊂ 𝐶𝑔 

This resulting block is the virtual sensor and is actually a Luenberger observer with output 

matrix 𝐶. In the event of an actuator fault, the virtual actuator uses the input signal meant 
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for the nominal process and transforms it into a signal useful for controlling the faulty plant 

as shown in Figure 6.6. 

 

Figure 6.6. Faulty Plant with Virtual Actuator [12]. 

As defined by the state-space model, the virtual actuator is described as: 

𝑥̇Δ = (𝐴 − 𝐵𝑓𝑀)𝑥Δ + 𝐵𝑢𝑐 

𝑦𝑐 = 𝑦𝑓 + 𝐶𝑥Δ 

𝑢𝑓 = 𝑀𝑥Δ 

where M is chosen so that all poles are within the designated set Cg where  

𝜎(𝐴 − 𝐵𝑓𝑀) ⊂ 𝐶𝑔 

When a fault occurs in both a sensor and an actuator at the same time, the 

reconfiguration block is realized by the interconnection of a virtual sensor and a virtual 

actuator as shown in Figure 6.7. 
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Figure 6.7. Virtual Sensor and Actuator with Faulty Plant [12]. 

As described previously, the virtual sensor is an observer for the state of the faulty 

plant with an output error injection and the virtual actuator contains a reference model of 

the nominal plant with feedback of the difference between the reference state and the 

observed state, as well as feed through of the control input. In this configuration the state 

space model equations are: 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢𝑐 

𝑦𝑐 = 𝐶𝑥 

𝑢𝑓 = 𝑀(𝑥 − 𝑥̂𝑓) 
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The authors of [12] use a simple fault detection mechanism. In the case of the virtual 

sensor, a fault is indicated if 𝐶 ≠ 𝐶𝑓 .  For the virtual actuator, a fault is indicated if 𝐵 ≠ 𝐵𝑓.  

Both the virtual actuator and virtual sensor are engaged when 𝐶 ≠ 𝐶𝑓 and 𝐵 ≠ 𝐵𝑓. This 

simplistic approach works fine in a sterile simulation environment, but does not allow for 

the possibility of minor signal noise or minor fluctuation in these parameters that easily 

occur when any change occurs in the system. In order to avoid excessive false positives, 

we implement this comparison controller using a typical residual generator [11]. The 

residual generator is simply sliding windows which tracks the sum of the difference 

between 𝐶 and 𝐶𝑓 and between 𝐵 and 𝐵𝑓. The window sums the difference over the last 

twenty iterations. This type of  residual generator is commonly used in active FTC systems. 

6.3 Comparison Controller Testing 

For all testing, the system under test (SUT) and the associated control algorithm are 

realized as MATLAB® scripts. The tests are performed on an Intel® Core i7 CPU platform 

with 32 GB of RAM running Windows 10. Each test run is conducted by running the script 

for 500 iterations. Prior to each run the attack/fault effects(s) (described previously) is/are 

set to be activated at iteration number 250. The type of effect and magnitude of the effects 

were identical to those used in testing the proposed controller.  

The various effects are shown in Table 6.1 and Table 6.2. The Effect Number and 

Effect Value fields will be used when discussing test results. Since the Fixed Value (#5) 

and the No Value (#6) effects leave the actuator uncontrollable and the quadruple-tank 

system design does not include redundant actuators, these two effects were not included in 

the training or testing of the controller for the quadruple tank system. 
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Table 6.1. Summary of Sensor Effects Used in Testing the Comparison Controller. 

Effect 

Type 

Effect 

Number 

Effect Value Add, Mult or 

Replace 

Abrupt or 

Incipient 

Increased 1 (1.00, 3.00) Mult Abrupt 

Decreased 2 (0.15, 0.90) Mult Abrupt 

Stochastic 3 (0.05, 0.55) Add Abrupt 

Cyclical 4 (0.10, 1.10) (0.015, 1.015) Add Abrupt 

Fixed 5 (0.00, 20.00) Replace Abrupt 

No Value 6 (NaN) Replace Abrupt 

Increased 7 (0.00, 1.00) Add & Mult Incipient 

Decreased 8 (0.00, 1.00) Add & Mult Incipient 

 

Table 6.2. Summary of Actuator Effects Used in Testing the Comparison Controller. 

Effect 

Type 

Effect 

Number 

Effect Value Add, Mult or 

Replace 

Abrupt or 

Incipient 

Controllable 

Increased 1 (1.05, 1.50) Mult Abrupt Yes 

Decreased 2 (0.15, 0.90) Mult Abrupt Yes 

Stochastic 3 (0.05, 0.55) Add Abrupt Yes 

Cyclical 4 (0.50, 3.50) 

(0.05, 0.55) 

Add Abrupt Yes 

Fixed 5 (0.00, 10.00) Replace Abrupt No 

No Value 6 (NaN) Replace Abrupt No 

Increased 7 (0.00, 1.00) Add & Mult Incipient Yes 

Decreased 8 (0.00, 1.00) Add & Mult Incipient Yes 

 

In each test run the onset of the effect is timed to begin after the system is in a 

steady state condition (iteration #250). This is done to ensure an “apples to apples” 

comparison of the different controllers and to allow clarity in identifying how the system 

is controlled by each controller and how long it takes for the controller to return the system 

to the steady state condition. The tests performed on this controller were identical to those 

performed on the proposed controller in Chapter 5, and each test run used the same effect 

variable values as were used to test the proposed controller and the ensemble variant of 

that controller.  
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6.3.1 Comparison Controller Test Results 

A total of 63 test runs were completed for the test; 1 with no effects applied, 8 with 

a sensor effect applied, 6 with an actuator effect applied and 48 with both a sensor and an 

actuator effect applied. The complete results of the testing are presented in Table 6.3. The 

column headers are identical to those used in the tests in Chapter 5. 

Table 6.3. Results of Tests on Comparison Controller. 
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1     0 0 1  0 100.00% 

2   1 2.96  1 0 0 250 1 99.67% 

3   2 0.56  1 0 0 28 3 99.00% 

4   3 0.48  1 0 0 46 inf 16.33% 

5   4 0.71  1 0 0 18 inf 16.33% 

6   5 15.72  1 0 0 22 2 99.33% 

7   6 * 1 0 1  1 99.67% 

8   7 0.05  1 0 0 49 77 74.33% 

9   8 0.82  1 0 0 75 44 85.33% 

10 1 1.44    1 0 1  19 93.67% 

11 2 0.73    1 0 1  16 94.67% 

12 3 4.48    1 0 1  21 93.00% 

13 4 2.47    1 0 1  24 92.00% 

14 7 0.62    1 0 1  13 95.67% 

15 8 0.87    1 0 1  12 96.00% 

16 1 1.14  1 2.21  2 0 0 250 22 92.67% 

17 1 1.50  2 0.18  2 0 0 250 2 99.33% 

18 1 1.11  3 1.16  2 0 0 35 13 95.67% 

19 1 1.43  4 0.69  2 0 0 250 inf 16.33% 

20 1 1.45  5 11.75  2 0 0 13 11 96.33% 

21 1 1.20  6 * 2 0 0 222 24 92.00% 

22 1 1.50  7 0.21  2 0 0 40 42 86.00% 

23 1 1.18  8 0.83  2 0 0 250 26 91.33% 

24 2 0.30  1 2.53  2 0 0 221 7 97.67% 

25 2 0.61  2 0.87  2 0 0 23 8 97.33% 

26 2 0.53  3 2.44  2 0 0 119 15 95.00% 

27 2 0.52  4 0.35  2 0 0 1 25 91.67% 
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28 2 0.23  5 3.07  2 0 0 1 3 99.00% 

29 2 0.80  6 * 2 0 0 219 24 92.00% 

30 2 0.69  7 0.00  2 0 0 250 211 29.67% 

31 2 0.76  8 0.25  2 0 0 29 41 86.33% 

32 3 1.08  1 2.31  2 0 0 217 14 95.33% 

33 3 4.91  2 0.67  2 0 0 228 4 98.67% 

34 3 1.88  3 2.40  2 0 0 16 19 93.67% 

35 3 2.45 4 0.92  2 0 0 20 22 92.67% 

36 3 1.23 5 15.41  2 0 0 3 10 96.67% 

37 3 1.86 6 * 2 0 0 228 17 94.33% 

38 3 4.36 7 0.13  2 0 0 250 49 83.67% 

39 3 4.50 8 0.73  2 0 0 250 28 90.67% 

40 4 1.77 1 2.21  2 0 0 3 12 96.00% 

41 4 2.79 2 0.89 2 0 0 24 10 96.67% 

42 4 0.10 3 2.57  2 0 0 9 13 95.67% 

43 4 2.96 4 0.96  2 0 0 4 23 92.33% 

44 4 0.84 5 13.72  2 0 0 17 12 96.00% 

45 4 2.48 6 * 2 0 1  13 95.67% 

46 4 0.99 7 0.70  2 0 0 1 29 90.33% 

47 4 1.84 8 0.97  2 0 0 40 26 91.33% 

48 7 0.62 1 2.15 2 0 0 218 14 95.33% 

49 7 0.65 2 0.25 2 0 0 11 3 99.00% 

50 7 0.08 3 2.12 2 0 0 250 24 92.00% 

51 7 0.84  4 0.03 2 0 0 16 15 95.00% 

52 7 0.54  5 6.75 2 0 0 5 4 98.67% 

53 7 0.80  6 * 2 0 0 218 14 95.33% 

54 7 0.76  7 0.44 2 0 0 250 32 89.33% 

55 7 0.87  8 0.82 2 0 0 17 30 90.00% 

56 8 0.55  1 1.33 2 0 0 177 15 95.00% 

57 8 0.63  2 0.83 2 0 0 19 6 98.00% 

58 8 0.34  3 1.82 2 0 0 189 15 95.00% 

59 8 0.10  4 0.26 2 0 0 2 32 89.33% 

60 8 0.49  5 0.03 2 0 0 225 14 95.33% 

61 8 0.27  6 * 2 0 0 224 14 95.33% 

62 8 0.44  7 0.72 2 0 0 250 28 90.67% 

63 8 0.82  8 0.24 2 0 0 250 44 85.33% 

 

Reviewing the results of these tests, the value of the taxonomy of effects (from 

Chapter 3) becomes more apparent. The comparison controller performed well when the 

effects were presented as abrupt, multiplicative increases or decreases to the sensor and/or 

actuator. In the article presenting this active, fault tolerant controller [12], these were the 
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only type of tests performed. In this research, the broader range effects identified conditions 

that posed a challenge to the comparison controller as well as highlighting a weakness of 

the active FTC; the inherent delay in responding to a fault or cyber-attack that is the result 

of using a dedicated detection/identification mechanism. The test results are summarized 

in Table 6.4. 

Table 6.4. Test Result Summary for Comparison Controller. 

Test 

Runs 

Component 

Affected 

Cat. 

Fail 

Proper 

Control 

Iterations to 

Regain Proper 

Control 

Iterations to 

Correct 

Detection 

Iterations 

Using Correct 

Detection % 

# A/S/Both % % Mean Median Mean Median Mean Median 

6 Actuators 0 100.00 * * 17.50 17.50 94.17 94.17 

8 Sensors 0 12.50 69.71 46.00 16.00  1.50 73.75 92.17 

48 Both 0   2.08 123.49 119.00 22.48 15.00 90.76 95.00 

Total  0 14.29 116.52 47.50 20.83 15.00 89.07 95.00 

Using the same data summarized in the last two columns of Table 6.4, a confusion 

matrix of the detection/identification results of the comparison controller is shown in Table 

6.5. By way of review, fault type 1 is the correct choice when no component is being 

affected. Fault type 2 is the correct choice when the actuator is being affected. Fault type 

3 is the correct choice when the sensor is being affected and fault type 4 is the correct 

choice when both are being affected. 

Table 6.5. Confusion Matrix of Fault Detection in Comparison Controller. 

 Fault Type Detected  

C
o
rr

ec
t 

F
a
u

lt
 T

y
p

e 3338 0 0 0 1 

105 1401 0 0 2 

624 4 1378 2 3 

1284 27 19 10718 4 

 1 2 3 4  
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6.4 Discussion of Test Results for All Three Controllers 

The quadruple-tank test subject was subjected to 63 different tests in which a 

system sensor and/or a system pump was subjected to the different effects of a cyber-attack 

or fault. The tests were conducted on the system with the comparison controller and with 

the proposed controller (both single LSTM and ensemble variants) separately, but 

concurrently, so that the exact same effects were applied to each. The summary results of 

these tests are provided for comparison across all three controllers in Table 6.6. 

Table 6.6. Summary of Test Results on Quadruple-Tanks System. 

Controller 
Cat. 

Fail 

Proper 

Control 

Maintained 

Iterations to 

Regain Proper 

Control 

Iterations to 

Correct Detection 

or Model Selection 

Iterations 

Using Correct 

Detection or 

Model % 

 % % Mean Median Mean Median Mean Median 

Comparison 0 14.29 116.52 47.50 20.83 15.00 89.07 95.00 

Proposed 

(Ensemble) 
0 56.25    7.47   2.00   4.19   1.00 98.60 99.67 

Proposed 

(Single 

LSTM) 

0 39.68   4.58   2.00   7.54   3.00 97.48 99.00 

 

In no test did any controller allow a catastrophic failure of the system. Failure is 

defined as allowing a tank to run dry or to overfill. Most of the results summarized in Table 

6.6 are based on the performance of the system under control, and allow a ready 

comparison of how well the three controllers perform their intended function. Whether the 

priority is maintaining proper control or regaining that control after it is lost, the single 

LSTM controller performed better on these tests than the comparative controller and the 
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ensemble based controller did somewhat better than the single LSTM controller, making it 

the best of the three from a controller performance perspective. 

6.4.1 Statistical Analysis of Test Results for All Three Controllers 

In the area of active fault tolerant controls, “fault detection” is an ubiquitous term 

and is usually paired with other terms like “identification”, “diagnosis” or “recognition”. 

These terms all refer to the act of determining what type of fault has been detected. In the 

case of the comparison controller described in this chapter, that determination identifies 

the fault as being associated with a sensor, with an actuator or with both. In other words. It 

is performing classification of the fault. Since the proposed controller is based on a 

classification tool (LSTM) it is appropriate to compare both controllers as classifiers. 

Precision and recall are both popular metrics for evaluating classifier performance. 

Precision is the percentage that the classifier correctly predicts positive when making a 

decision. More specifically, precision is the number of correctly identified positive 

examples divided by the total number of examples that are classified as positive.  

As presented in [110], given an 𝑛 × 𝑛 confusion matrix 𝑚, like the one shown in 

Table 6.5, the precision measurement 𝑃 for the 𝑖𝑡ℎ class is given by 

𝑃𝑖 = 
𝑚𝑖𝑖

∑ 𝑚𝑖𝑥
𝑛
𝑥=1

 

Recall is the percentage of positives correctly identified out of all the existing positives; it 

is the number of correctly classified positive examples divided by the total number of true 

positive examples in the test set. The Recall measurement 𝑅 for the 𝑖𝑡ℎ class is given by 

𝑅𝑖 = 
𝑚𝑖𝑖

∑ 𝑚𝑥𝑖
𝑛
𝑥=1
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Precision and recall are often achieved at the expense of the other, i.e., high precision is 

achieved at the expense of recall and vice versa. An ideal classifier would have both high 

recall and high precision.  

The F-measure, sometimes called the F-statistic or F1-score, is the harmonic 

measure of precision and recall in a single measurement. The F1-score ranges from 0 to 1, 

with a measure of 1 being a classifier perfectly capturing both precision and recall. The F1-

Score (harmonic mean) for the 𝑖𝑡ℎ class is calculated using the precision and recall for that 

class: 

𝐹1𝑖 = 
2𝑃𝑖𝑅𝑖

𝑃𝑖 + 𝑅𝑖
 

With these three scores, an overall F1-score for the entire classifier can be calculated.  

There are three such overall F1-scores; Macro F1, Weighted F1 and Micro F1. The 

Macro F1 (ℱ1) is simply the arithmetic mean of the individual class hormonic means: 

ℱ1 =  
1

𝑛
∑

2𝑃𝑥𝑅𝑥

𝑃𝑥 + 𝑅𝑥

𝑛

𝑥=1

 

When averaging the Macro F1, equal weight is given to each class even if the distribution 

of data across those classes is unbalanced. Such is the case with the tests conducted on the 

various controllers for the quadruple-tank system. This can cause the Macro F1 to skewed 

by an over represented class on which the classifier performs poorly or exceptionally well. 

To counter this, a Weighted F1 (WF1) score includes the number of samples in each 

class (sx), known as the “support” to give equal weigh to each class. 

𝑊𝐹1 = 
∑

2𝑃𝑥𝑅𝑥

𝑃𝑥 + 𝑅𝑥

𝑛
𝑥=1 𝑠𝑥

∑ 𝑠𝑥
𝑛
𝑥=1
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As with the Macro F1 there are also weighted averages for the Precision and Recall. 

The final overall F1-score is the Micro-F1. Rather than being an average of F1-

scores, the Micro-F1 provides an overall accuracy for the classifier. It is simply the 

proportion of correctly classified samples to all the samples. Looking back at the example 

confusion matrix, the Micro-F1 is calculated as 

𝔽1 =  
∑ 𝑚𝑥𝑥

𝑛
𝑥=1

∑ ∑ 𝑚𝑥𝑦
𝑛
𝑥=1

𝑛
𝑦=1

 

The micro-precision and micro-recall scores are calculated in the exact same 

manner, so micro-F1 = micro-precision = micro-recall = accuracy. For reference, all of 

the scores discussed are presented in Table 6.7 through 6.9 for the comparison controller, 

ensemble controller and LSTM controller respectively. 

From the scores for the comparison controller (Table 6.7.) the impact of the 

unbalanced precision and recall scores for classes 1 and 3 can be observed in the respective 

F1-score for those two classes. Relying solely on the macro-F1 score as an overall 

assessment of the classification performance would underrate the performance with a score 

of 0.8682. Using the weighted-F1 improves the overall assessment, but the micro-F1 score 

appears to be the best overall measure of the comparative controller’s classification ability. 

The ensemble and single LSTM classifiers were more consistent across their overall 

scores. For both of these the micro-F1-score is the preferred score. With scores of 0.9860 

and 0.9748 respectively, the ensemble and LSTM controllers demonstrate they are more 

accurate classifiers than the comparison controller. With a slightly higher accuracy score, 

and the results discussed in section 6.3.1, the ensemble-based controller is shown to be the 

more accurate classifier as well as the better overall controller. 
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Table 6.7. Precision, Recall and F1-Score Analysis for Comparison Controller. 

Class Precision Recall F1-Score Support 

1 0.6238 1.0000 0.7683 3338 

2 0.9784 0.9303 0.9537 1506 

3 0.9864 0.6863 0.8094 2008 

4 0.9998 0.8896 0.9415 12048 

Macro F1 0.8971 0.8765 0.8682  

Weighted F1 0.9303 0.8907 0.8979  

Micro F1 0.8907 0.8907 0.8907  

Table 6.8. Precision, Recall and F1-Score Analysis for Ensemble-Based Controller. 

Class Precision Recall F1-Score Support 

1 0.9673 1.0000 0.9833 3338 

2 0.9234 0.9841 0.9527 1506 

3 1.0000 0.9771 0.9884 2008 

4 0.9976 0.9839 0.9907 12048 

Macro F1 0.9721 0.9863 0.9788  

Weighted F1 0.9866 0.9860 0.9862  

Micro F1 0.9860 0.9860 0.9860  

Table 6.9. Precision, Recall and F1-Score Analysis for LSTM-Based Controller. 

Class Precision Recall F1-Score Support 

1 0.9670 1.0000 0.9832 3338 

2 1.0000 0.9900 0.9950 1506 

3 0.8463 0.9846 0.9102 2008 

4 0.9997 0.9643 0.9817 12048 

Macro F1 0.9533 0.9847 0.9675  

Weighted F1 0.9777 0.9748 0.9754  

Micro F1 0.9748 0.9748 0.9748  
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6.5 Testing with Stuxnet-Like Attacks 

In the introductory section of this dissertation there is a reference to the Stuxnet 

virus attack and the damage it caused. The Stuxnet virus was able to work undetected 

because it not only was able to change the speed of the Iranian centrifuge motors, it also 

caused the motor speed sensor to report to the human operators that the centrifuge was 

operating within normal parameters. 

6.5.1 Stuxnet-Like Test Design 

Using the effects of the actual Stuxnet attack as an example, the comparison 

controller, the ensemble controller and the proposed controller design were tested with five 

different Stuxnet-like attacks on the quad-tank system. In all five tests the sensor value was 

locked in at the reference amount of 10 cm. The pump was then affected to abruptly rise in 

the first test and abruptly drop in the second test. The third test applied an oscillation to the 

pump voltage which caused the pump speed to oscillate. The other two tests were 

conducted applying an incipient effect to the pump; gradually increasing it in the fourth 

test and gradually decreasing it in the fifth test.  

In all five cases the attack occurred after the system had reached steady-state 

operations and the response of the respective systems was monitored over a 1,000 iteration 

window to allow the controllers more time to recover from the effects of the attack. All 

five attack scenarios were run four times with changes to the randomly selected effect 

variable values in the actuator effects. All three controllers were subjected to the exact 

same tests.  
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6.5.2 Stuxnet-Like Test Results 

To better visualize the differences in how these controllers handled the Stuxnet-like 

attacks, the following figures are grouped by test. The first group of three figures are from 

each of the three controllers showing performance during the first test and so on with each 

subsequent test. Each figure has 2 panels. The panel on the left depicts the water level in 

the tank (solid blue line) and the reported level from the tank sensor (dashed red line). The 

panel on the right depicts the voltage to the pump. The Stuxnet-like attack affects the pump 

voltage while the controller attempts to counter that effect. The quality of control in each 

case is represented by how close the controller can keep the actual water level to the desired 

(reference) level. 

Figures 6.8 through 6.10 depict examples of the test #1 performance of the 

comparison controller, the ensemble controller and the single LSTM controller 

respectively. Comparing the plots of the first Stuxnet-like attack test, we see the 

comparison controller never did recognize this as an attack on the sensor and the actuator. 

As a result, it never responded to it. Both the Ensemble controller and the LSTM controller 

quickly regained control of the system. 
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Figure 6.8. System Response to Stuxnet-like Attack #1 with Comparison Controller. 

 

 

Figure 6.9. System Response to Stuxnet-like Attack #1 with LSTM Ensemble Controller. 

 

Figures 6.11. through 6.13. depict examples of the test #2 performance of the 

comparison controller, the ensemble controller and the single LSTM controller 

respectively. 
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Figure 6.10. System Response to Stuxnet-like Attack #1 with Proposed Controller. 

 

Figure 6.11. System Response to Stuxnet-like Attack #2 with Comparison Controller. 

 

Figure 6.12. System Response to Stuxnet-like Attack #2 with LSTM Ensemble Controller 
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Figure 6.13. System Response to Stuxnet-like Attack #2 with Proposed Controller. 

In the second attack, the comparison controller did detect and identify the attack 

correctly and was able to regain proper control of the system before the test ended. The 

ensemble controller caused a spike in pump voltage before bringing the system under 

control and the LSTM controller regained proper control very quickly. 

Figures 6.14 through 6.16 depict examples of the test #3 performance of the 

comparison controller, the ensemble controller and the single LSTM controller 

respectively. 

 

Figure 6.14. System Response to Stuxnet-like Attack #3 with Comparison Controller. 
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Figure 6.15. System Response to Stuxnet-like Attack #3 with LSTM Ensemble Controller. 

 

Figure 6.16. System Response to Stuxnet-like Attack #3 with Proposed Controller. 

The third Stuxnet-like attack is the most similar to the actual Stuxnet attack in 

which the Iranian centrifuges were subjected large swings in motor speed. In this test the 

comparison controller did eventually detect the attack at iteration 542. The ensemble 

controller regained control after a full cycle of the oscillation and the LSTM controller did 

so almost immediately. 

Figures 6.17 through 6.19 depict examples of the test #4 performance of the 

comparison controller, the ensemble controller and the single LSTM controller 

respectively. 
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Figure 6.17. System Response to Stuxnet-like Attack #4 with Comparison Controller. 

 

Figure 6.18. System Response to Stuxnet-like Attack #4 with LSTM Ensemble Controller. 

 

Figure 6.19. System Response to Stuxnet-like Attack #4 with Proposed Controller. 
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In the fourth test, the comparison controller did eventually detect the attack. This 

case illustrates the challenge to active fault tolerant controllers posed be incipient effects 

of cyber-attacks and faults. Because the onset of the effect was gradual, it took the 

controller over 560 iterations to detect it. The other controllers handled the effect readily. 

Figures 6.20 through 6.22 depict examples of the test #5 performance of the comparison 

controller, the ensemble controller and the single LSTM controller respectively. 

 

Figure 6.20. System Response to Stuxnet-like Attack #5 with Comparison Controller 

 

Figure 6.21. System Response to Stuxnet-like Attack #5 with LSTM Ensemble Controller. 
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Figure 6.22. System Response to Stuxnet-like Attack #5  with Proposed Controller. 

Similar to the fourth test, the fifth attack was eventually detected by the comparison 

controller while the other controllers were able regain or maintain proper control 

throughout the test.  

The figures shown above allow us to visualize how the effects from the taxonomy 

influence the system and how the controller behaves in the presence of those effects. The 

numerical results of these tests allow us to better measure and analyze their performance.  

The results on the test metrics for the comparison controller are presented in Table 

6.10. In this test series there were no catastrophic failures. Of the 20 Stuxnet tests the 

comparison controller detected and identified the attack as applying to both the sensor and 

the actuator in 17. Those that were not detected are indicated by the term “inf” in that 

column of the chart. Of those it did detect, it took between 138 to 587 iterations of the 

control program to do so. Another indication that the comparison controller struggled to 

perform under these conditions is the time required for the controller to bring the system 

back into proper control which started at 623 iterations on the low end and there were 10 
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tests in which the controller did not regain proper control before the test ended (indicated 

by 750 iterations in that column). 

The same tests were run against the ensemble LSTM controller. The results are 

presented in Table 6.11. 

 

Table 6.10. Results of Stuxnet-Like Attack on Quadruple-Tank System with the 

Comparison Controller. 
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1 1 1.36 5 10 2 0 0 739 179 77.63% 

2 1 1.12 5 10 2 0 0 750 407 49.13% 

3 1 1.10 5 10 2 0 0 750 587 26.63% 

4 1 1.09 5 10 2 0 0 750 inf 6.13% 

5 2 0.71 5 10 2 0 0 696 194 75.75% 

6 2 0.77 5 10 2 0 0 701 223 72.13% 

7 2 0.87 5 10 2 0 0 750 366 54.25% 

8 2 0.45 5 10 2 0 0 706 138 82.75% 

9 4 0.28 5 10 2 0 0 750 inf 6.13% 

10 4 0.32 5 10 2 0 0 750 293 63.38% 

11 4 0.05 5 10 2 0 0 723 103 87.13% 

12 4 0.18 5 10 2 0 0 623 107 86.63% 

13 7 0.23 5 10 2 0 0 750 561 29.88% 

14 7 0.08 5 10 2 0 0 750 inf 6.13% 

15 7 0.82 5 10 2 0 0 750 314 60.75% 

16 7 0.43 5 10 2 0 0 750 411 48.63% 

17 8 0.91 5 10 2 0 0 721 159 80.13% 

18 8 0.44 5 10 2 0 0 710 166 79.25% 

19 8 0.87 5 10 2 0 0 719 159 80.13% 

20 8 0.91 5 10 2 0 0 720 159 80.13% 
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Table 6.11. Results of Stuxnet-like Attacks on the Quadruple-Tank System with the 

LSTM Ensemble Controller. 
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1 1 1.36 5 10 2 0 0 15 13 98.38% 

2 1 1.12 5 10 2 0 0 12 16 98.00% 

3 1 1.10 5 10 2 0 0 10 16 98.00% 

4 1 1.09 5 10 2 0 0 9 16 98.00% 

5 2 0.71 5 10 2 0 0 23 23 97.13% 

6 2 0.77 5 10 2 0 0 23 24 97.00% 

7 2 0.87 5 10 2 0 0 21 24 97.00% 

8 2 0.45 5 10 2 0 0 28 24 97.00% 

9 4 0.28 5 10 2 0 0 11 16 98.00% 

10 4 0.32 5 10 2 0 0 141 24 97.00% 

11 4 0.05 5 10 2 0 0 34 13 98.38% 

12 4 0.18 5 10 2 0 0 28 23 97.13% 

13 7 0.23 5 10 2 0 0 15 14 98.25% 

13 7 0.08 5 10 2 0 0 15 14 98.25% 

15 7 0.82 5 10 2 0 0 15 14 98.25% 

16 7 0.43 5 10 2 0 0 15 14 98.25% 

17 8 0.91 5 10 2 0 0 15 14 98.25% 

18 8 0.44 5 10 2 0 0 15 14 98.25% 

19 8 0.87 5 10 2 0 0 15 14 98.25% 

20 8 0.91 5 10 2 0 0 15 14 98.25% 

 

The LSTM ensemble controller selected the correct model in each of the 20 tests. 

The speed at which it did so ranged from as few as 13 iterations and up to 24 iterations. 

The controller also regained proper control of the system in every test, requiring from 9 to 

141 iterations to do so. In all 20 test cases the disruption to the system was minimal as the 

LSTM ensemble controller using ensembles readily handled the Stuxnet-like attacks.  
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The same tests were also run against the proposed (single LSTM) controller as 

summarized in Table 6.12. The proposed controller was able to maintain control of the 

system during the simulated Stuxnet-like attacks. In five of the tests, the water level in the 

tank was maintained within the ±1% range during the entire test. In the other tests, it was 

quickly brought back into proper control with the worst case being test #8 in which 20 

iterations were required to do so. In all cases, the controller selected the correct model in 

only 2 to 4 iterations. 

Table 6.12. Results of Stuxnet-like Attacks on the Quadruple-Tank System with the 

Proposed Controller (Single LSTM). 
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1 1 1.36 5 10 2 0 0 2 2 99.75% 

2 1 1.12 5 10 2 0 1 * 4 99.50% 

3 1 1.10 5 10 2 0 1 * 4 99.50% 

4 1 1.09 5 10 2 0 1 * 4 99.50% 

5 2 0.71 5 10 2 0 0 3 2 99.75% 

6 2 0.77 5 10 2 0 0 2 3 99.63% 

7 2 0.87 5 10 2 0 1 * 3 99.63% 

8 2 0.45 5 10 2 0 0 20 2 99.75% 

9 4 0.28 5 10 2 0 1 * 4 99.50% 

10 4 0.32 5 10 2 0 0 17 2 99.75% 

11 4 0.05 5 10 2 0 0 12 2 99.75% 

12 4 0.18 5 10 2 0 0 3 2 99.75% 

13 7 0.23 5 10 2 0 0 2 3 99.63% 

14 7 0.08 5 10 2 0 0 2 3 99.63% 

15 7 0.82 5 10 2 0 0 2 3 99.63% 

16 7 0.43 5 10 2 0 0 2 3 99.63% 

17 8 0.91 5 10 2 0 0 2 3 99.63% 

18 8 0.44 5 10 2 0 0 2 3 99.63% 

19 8 0.87 5 10 2 0 0 2 3 99.63% 

20 8 0.91 5 10 2 0 0 2 3 99.63% 
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The tests results for all three controllers are summarized in Table 6.13. Using the 

test data above, the confusion matrices for the three controllers are presented in Tables 

6.14 through 6.16. By design, the Stuxnet attack is difficult to detect because the sensor 

replay attack portion hides what the malware does to the actuators. The large number of 

false negatives shown in Table 6.14 are consistent with expectations. 

 

Table 6.13. Summary of Test Results for Stuxnet-Like Attacks. 

Controller 
Cat. 

Fail 

Proper 

Control 

Maintained 

Iterations to 

Regain Proper 

Control 

Iterations to 

Correct 

Detection or 

Model 

Selection 

Iterations 

Using Correct 

Detection or 

Model % 

 % % Mean Median Mean Median Mean Median 

Comparison 0   0.00 727.90 744.50 266.24 194.00 57.63 67.75 

Proposed 

(Ensemble) 
0   0.00 23.75 15.00 17.20 15.00 97.85 98.13 

Proposed 

(Single LSTM) 
0 25.00 5.00 2.00 2.90 3.00 99.64 99.63 

 

Table 6.14. Confusion Matrix of Stuxnet Attack Detection in Comparison 

Controller. 

 Fault Type Selected  

C
o
rr

ec
t 

F
a
u

lt
 T

y
p

e 980 0 0 0 1 

0 0 0 0 2 

0 0 0 0 3 

6776 0 3 8241 4 

 1 2 3 4  
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Table 6.15. Confusion Matrix of Stuxnet Attack Classification of Ensemble 

Controller. 

 Model Selected  

C
o
rr

ec
t 

M
o
d

el
 980 0 0 0 1 

0 0 0 0 2 

0 0 0 0 3 

58 268 0 14676 4 

 1 2 3 4  

 

The ensemble controller fared much better in correctly selecting the correct model 

to use during the Stuxnet-like attacks. The 268 cases where model 2 was mistakenly 

selected over model 4, indicate the effects of the attack on the system led the controller to 

make decisions as if only the actuator was being affected. 

 

Table 6.16. Confusion Matrix of Stuxnet Attack Classification of LSTM Controller. 

 Model Selected  

C
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t 
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 980 0 0 0 1 

0 0 0 0 2 

0 0 0 0 3 

58 0 0 14962 4 

 1 2 3 4  
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The LSTM controller did not have the same problem as the ensemble controller. 

Based on the data in Table 6.12 the 58 misclassifications shown here are fully attributable 

to the 2 or 3 iterations that elapsed in every test between the onset of the attack and the 

controller selecting the correct model. Based on the information in these confusion 

matrices, we use the procedures described earlier in the chapter to calculate the micro-F1 

score for each controller. Those scores are shown in Table 6.17 

Table 6.17. Micro F1 Score for Controllers 

Controller Micro F1 Score 

Comparison  0.5763 

Ensemble 0.9785 

LSTM 0.9964 

Based on the Stuxnet test results discussed thus far, it is not surprising that the 

comparison controller has the lowest accuracy of the three when working with the Stuxnet-

like attack data. That controller’s reliance on detection of an attack specifically designed 

to avoid detection poses a significant challenge to this and other active fault tolerant 

controllers. 

In the general test section, the ensemble-based controller showed the best accuracy 

score for dealing with the array and combinations of effects on the system components. 

Clearly the ensemble-based approach works very well for general purpose classification of 

the various effects. The single larger LSTM-based controller showed remarkable accuracy 

in working with the system inputs and interactions specific to the Stuxnet-like effects. This 

would appear to support the idea that a large deep-learning network can learn the subtle 
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relationships and interactions between the various input provided to the controller when 

working with a complex, non-linear system like the quadruple tank system. 

6.6 Conclusions 

The active comparison controller performed reasonably well in these tests. It is a 

state-of-the-art, fault tolerant controller which encompasses some of the preferred methods 

of fault detection and model switching. While it did take a while to detect and respond to 

the Stuxnet-like attack, the fact that it did so at all is to the designers’ credit.  

In comparison, both versions of the proposed passive, deep learning-based 

controller did not suffer from the detection delays demonstrated in the active comparison 

controller. This confirms one of the touted benefits of passive over active FTC; namely not 

relying on a detection mechanism to initiate the fault tolerant behavior. Both variants of 

the proposed controller showed improved performance over the comparison controller as 

measured by every metric of the testing. This not only showed the efficacy of this controller 

design, but also the value of the taxonomy representing the various effects of faults and 

cyber-attacks in training and testing as was done in this research effort. 

6.7 Chapter Summary 

This chapter reviewed the comparison controller and its application to the 

quadruple-tank system. The specific design of the comparison controller was presented and 

the testing approach for the system was described. Results of that testing were also 

discussed. 

The results of testing performed on the quadruple-tank system using the comparison 

controller and proposed controllers (as described in the previous chapters) has been 
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presented and discussed with analysis of their performance as controllers and as classifiers. 

In addition, all three controllers were tested against 20 Stuxnet-like attacks. The wide 

variety of variables and possible combinations of conditions demonstrated the value of the 

effects taxonomy as a basis for building useful training data as well as comprehensive test 

scenarios. The test results support the validity of the approach and show the efficacy of a 

passive controller design for dealing with multiple simultaneous cyber-attacks and/or faults 

in an ICS. 
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 Conclusions and Recommendations 

7.1 Chapter Overview 

This chapter summarizes the research documented in this dissertation. The original 

research questions are revisited and the contributions of the research are presented along 

with avenues of future work as it relates to this research effort. 

7.2 Conclusions of Research 

This dissertation presents a deep learning-based, passive controller designed to 

keep the system under control operating properly, even when multiple components of the 

system are experiencing the effects of faults and/or attacks. The various effects of these 

faults and attacks are described and enumerated in a taxonomy so that they can be 

considered in controller design and used in the testing.  

7.2.1 Research Questions Revisited 

Question 1. What are the physical layer effects in Cyber Physical System that could 

result from a component fault or cyber-attack?  

Answer 1. In this work we have presented the development and implementation of 

a unique taxonomy of effects. This taxonomy addresses the possible effects a fault or cyber-

attack could have on the physical components (sensors and actuators) of an industrial 

control system. It provides the building blocks for representing the wide variety of physical 

layer effects when designing, training and/or testing control systems. By focusing on the 

physical layer effects, the particular type of cyber-attack or how it occurred become 

irrelevant. 
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Question 2. How could a passive Fault Tolerant Controller use deep learning to 

maintain operations, and how could it be realized?  

Answer 2. The controller proposed in this dissertation is a passive Fault Tolerant 

Controller. The heart of the controller is a Long Short-Term Memory (LSTM) network. By 

using this deep-learning network, control decisions are made by holistically considering 

the entire state of the system under control and selecting the next command signal. The 

command signal is chosen from options generated by internal models of the system. Since 

no special action is required if an attack or fault is in effect, functioning in the presence of 

an attack, or fault, are all in the normal course of operations for the controller. 

There are two variants of this controller presented. One uses a single large LSTM 

to make the control decision, while the other uses an ensemble of smaller LSTMs to 

accomplish the same goal. 

The taxonomy of effects described in the answer to Question 1 is pivotal to the 

realization of this controller design. The LSTM requires large amounts of training data that 

is representative of the input data that will be available to the network during operations. 

With the development of the taxonomy, we can represent the various effects of cyber-

attacks and faults the system could experience and generate large amounts of data with 

good variation. This made it possible to realize the passive FTC with restricting it to 

particular types of faults or attack effects. 

Question 3. Will the approach work for both linear and nonlinear systems?  

Answer 3. As demonstrated in this research effort, the approach is equally adept at 

controlling both linear and non-linear systems. The deep-learning network can separate out 

the differences in the inputs (which are sometimes very subtle) and readily handle the 
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complexity of a non-linear system. In published literature, some designers have modelled 

the non-linear system under control as a piecewise linear system to allow their controller 

to work with it. Because the proposed controller in this dissertation is so capable, there was 

no need to represent the  non-linear system as piecewise linear. 

Question 4. What benefit(s) does passive FTC with deep learning provide 

compared to an active FTC?  

Answer 4. The primary benefits of passive FTC, in comparison to active, are: 

1. Simpler design. The passive FTC takes input from the system under control and 

sends a control command at every iteration of the control program regardless of 

any faults or cyber-attacks on the system. The active controller relies on a 

dedicated fault detection/identification mechanism to trigger it into 

reconfiguring the controller or to calculate alternative solutions. These 

mechanisms add complexity to the active controller design. 

2. Minimization of delays. Must take the extra steps described above, there is an 

inherent delay from the time a fault or attack occurs until the active controller 

can take corrective action. Depending on the severity of the effect of the fault 

or attack, this delay could result in serious negative impact to the system to the 

system. Passive controllers do not suffer from these delays. 

3. Resilience to a broad array of effects. One of the greatest perceived limitations 

of passive controllers is that some knowledge of the faults or attacks the 

controller will face must me known a priori and passive controllers are, 

therefore, limited in their utility. By basing this controller design on a deep-

learning network, the application of the controller is not limited to certain types 
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of faults or effects that fall within limited parameters. The deep-learning can be 

trained to handle any conceivable effect from a fault or cyber-attack. Again, the 

development of the taxonomy of effects was key to making this so.  

7.2.2 Contributions of Research 

The primary contribution of this research effort is the novel design of an ICS 

controller unlike others in current research as follows: 

1. The proposed controller is unique in that it uses one or more deep-learning 

networks and does not require a fault or attack detection/identification function to operate 

properly. It is a passive design that considers the entire state of the system and decides how 

to control it based on that information, regardless of either the presence or absence of faults 

and/or attacks. This deep learning-based approach to passive FTC is not found elsewhere 

in controls literature. 

2. This research challenges the notion that passive controllers cannot be broadly 

applied because some knowledge of the types of faults and attacks the system may face is 

required, a priori. This dissertation presents a unique taxonomy of effects that provides the 

building blocks to represent any effect of a fault or cyber-attack on an ICS. This is done by 

addressing those effects at how they are manifested at the physical component level of the 

system. 

3. The controller presented in this dissertation is not restricted in application to 

linear or piecewise linear systems. It is also not limited to the type of fault or to a particular 

component (sensor or actuator) fault. This makes the proposed controller exceptional 

among passive fault tolerant controllers. 
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4. The results of the testing demonstrate the deep-learning based passive controller 

can perform at least as well as its active FTC counterparts. The controller’s ability to handle 

a Stuxnet-like attack on the system shows one of the primary advantages of the proposed 

controller over the active FTC designs which must rely on the fault detection/identification 

function in order to operate. 

7.3 Recommendations for Future Research 

The research presented here can be further explored in a number of different 

directions.  

1. Both example controllers described and tested in this work use a classification 

type LSTM network to select from among the possible modeled commands to control the 

system. Using a regression-type deep-learning network to determine the output signal to 

the controller may allow this to be a purely data-drive (model-free) design. Early efforts to 

use such a network this in this work were unsuccessful, but do not eliminate the possibility 

of future success.  

2. The use of an ensemble of deep-learning networks requires significant 

computational overhead, as described in section 5.9. Further work focused on reducing the 

computational demand of the ensemble or refining a single deep-learning network to 

perform at the same (or higher) level as the ensemble presented here would be a marked 

improvement. 

3. The application and evaluation of this method to real world systems in a 

laboratory, or range environments constitutes a logical reason for further continuation of 

this effort. As pointed out in [111], there is a great need for facilities that incorporate real-
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world industrial control systems and processes to provide training on the effects cyber-

initiated actions have on physical systems.  

7.4 Summary 

This chapter has revisited the original research questions and summarized how they 

were addressed in the dissertation. The contributions of this research in passive fault 

tolerant control using deep-learning methods have been discussed. Along with the pivotal 

role played by the developed taxonomy of effects in making this controller design feasible. 

Additionally, areas for potential further research have also been identified. 
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Active Fault Tolerant Controls 
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The methodology consists of four steps: redundancy creation, state prediction, 

sensor measurement validation and fusion, and fault detection through residue change 

detection. These steps use the information obtained by looking at a sensor individually, 

information from the sensor as part of a group of sensors, and the immediate history of the 

process that is being monitored. Using a Kalman Filter, the methodology can detect 

multiple sensor failures, both abrupt as well as incipient. It can also detect subtle sensor 

failures such as drift in calibration and degradation of the sensor. The methodology is 

applied to data from a gas turbine power plant. 

The authors of [A97] use adaptive fuzzy models to detect and identify a fault, thus 

providing fault tolerant control for a nonlinear system. The nonlinear fuzzy inference 

system is based on the Takagi-Sugeno fuzzy models. This approach is limited to detecting 

and identifying a single fault at a time. They later apply this method to a rail vehicle motor 

controller in [A98]. 

An unspecified nonlinear system is controlled by a neural network in [*90]. Using 

the residual signal generated by the fault detection module another neural network-based 

control loop is introduced to compensate for the fault(s) detected. 

Likewise, in [A96] genetic programming is used to increase the convergence rate 

of the fault detection and identification routine applied to an evaporation station at a sugar 

factory. This approach is specifically geared toward nonlinear systems. 

In [A94-A96] the authors propose using an artificial neural network to compensate 

for the unknown dynamics of the fault(s). The controller uses a sliding mode control signal 

to keep the system performance in an acceptable range until the ANN can determine the 

best response to the detected fault. A multiple-fault case is also addressed. 

A Fault Detection and Identification (FDI) routine based on a wavelet neural net is 

propose in [A102]. The network is trained using data from simulated fault scenarios. The 

approach is designed to detect and identify only a single fault at a time. 
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The authors of [A103] and [A104] use component level models to generate system 

data. Like [A97] a Takagi-Sugeno fuzzy model is used to capture the structure of the system 

under control. Finally fuzzy/neural control is used in conjunction with a learning algorithm 

to capture the dynamics caused by faults. This approach is applied to jet engine turbine 

control. 

In [A105] the authors use the flexibility of fuzzy logic to select from among several 

models for the best fit to the conditions of the system when one or more faults occur. 

In [A106-A108] the authors propose a neural network-based learning approach. 

The Controller references a Dynamic Model bank when a fault is detected. If the bank 

contains the appropriate model for the fault in question, that model is used. Otherwise the 

supervisor module changes the initial conditions of the algorithm to keep system 

performance within acceptable bounds. The controller is demonstrated on a nonlinear 

system. 

In [A109] the controller architecture uses a neural controller aiding an existing 

conventional controller. The neural controller uses a feedback error learning mechanism 

and employs a dynamic Radial Basis Function neural network called Extended Minimal 

Resource Allocating Network (EMRAN), which uses only on-line learning and does not 

need a priori training. The conventional controller is designed using a classical design 

approach to achieve the desired autonomous landing profile with tight touchdown 

dispersions. The system is demonstrated in cases with single and double faults. 

The authors of [A110] demonstrate an application of neural estimators for detection 

and identification of faults in sensors and actuators in flight controls. The actuator faults 

are addressed using nonlinear dynamic inversion. The sensor faults are addressed by 

replacing the sensor outputs with neural estimates computed during fault detection and 

identification. 

In [A111] a robust fault tolerant fuzzy control problem for continuous-time 

nonlinear systems with time delay and sensor faults is addressed. The Takagi-Sugeno fuzzy 

model is employed to represent a nonlinear system. Using a sensor fault model and fuzzy 

state observer, the authors develop a fuzzy output feedback controller. The fuzzy control 

system is reliable in the sense of that asymptotic stability is achieved not only when all 

sensor components are operating properly, but also in the presence of some component 

failures. 

In [A112] a neural network state observer is trained by the actual nonlinear control 

system. From the residual difference between outputs of actual system and neural network 

observer, the fault of control system is detected and determined. Fault tolerant control is 

realized by using a compensation controller to maintain the stability and performance of 

the system. As an example of the application, a tracking control problem for the speed and 

azimuth of a mobile robot driven by two independent wheels is addressed by using the 

controller. 

The authors of [A113] use an RBF neural network to compensate for the system 

faults and disturbances using model reference adaptive control technology. The Lypanov 

stability theory is used to tune the weights of the neural network. 

 

 In [A114] the authors use an iterative learning algorithm combined with an 

unknown input observer. The controller is applied to a satellite attitude control system.  
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 The work in [A115] uses a RBF neural net along with reference models for adaptive 

control applied to wind turbines. 

 The work in [A116] introduces a fault tolerant controller design for nonlinear 

unknown systems with multiple actuators and bounded disturbance. The controller consists 

of an adaptive learning-based control law and a switching function mechanism. The 

adaptive control law is implemented by a two-layer neural network and the switching 

function is designed to automatically search for the correct switching vector to turn off the 

unknown faulty actuator if there is one. The stability of the system output under the 

occurrence of actuator failure is proved through standard Lyapunov approach, while the 

other signals are guaranteed to be bounded. The proposed controller design is implemented 

on a simulation example using a continuous stirred tank reactor. 

 Finally, the authors of [A117] propose an adaptive, active fault tolerant control for 

a class of nonlinear systems with unknown actuator faults. The actuator fault is assumed to 

have no traditional affine appearance of the system state variables and control input. A 

radial basis function neural network (NN) is be used in the design of the fault tolerant 

controller. The authors claim their fault-tolerant control scheme can minimize the time 

delay between fault occurrence and accommodation and reduce the adverse effect on 

system performance. 
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B. Appendix: Steam Boiler Test Results Chart 
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1       0 0 0 1 * 0 100.00% 

2 1 206.17     1 0 0 1 * 0 100.00% 

3 2 0.71     1 0 0 1 * 0 100.00% 

4 3 0.24     1 0 0 1 * 0 100.00% 

5 4 0.50     1 0 0 1 * 0 100.00% 

6 5 340.08     1 0 0 1 * 0 100.00% 

7 6 *     1 0 0 1 * 0 100.00% 

8 7 0.28     1 0 0 1 * 0 100.00% 

9 8 0.50     1 0 0 1 * 0 100.00% 

10   1 2.68   1 0 0 1 * 0 100.00% 

11   2 0.74   1 0 0 1 * 0 100.00% 

12   3 0.45   1 0 0 1 * 0 100.00% 

13   4 0.40   1 0 0 1 * 0 99.33% 

14   5 1.88   1 0 0 1 * 105 77.00% 

15   6 *   1 0 0 1 * 0 100.00% 

16   7 0.74   1 0 0 1 * 0 100.00% 

17   8 0.10   1 0 0 1 * 0 100.00% 

18     1 2.81 1 0 0 1 * 9 99.00% 

19     2 0.49 1 0 0 1 * 0 100.00% 

20     3 0.09 1 0 0 1 * 9 98.33% 

21     4 0.54  1 0 0 0 250 9 92.67% 

22     5 3.36  1 0 0 1 * 9 49.00% 

23     6 * 1 0 0 1 * 0 100.00% 

24     7 0.02  1 0 0 1 * 10 99.33% 

25     8 0.72  1 0 0 1 * 10 99.33% 

26 1 447.99  1 1.49    2 0 0 1 * 0 100.00% 

27 1 297.91  2 0.61    2 0 0 1 * 0 100.00% 

28 1 344.57  3 0.50    2 0 0 1 * 0 100.00% 

29 1 485.93  4 0.26    2 0 0 0 250 151 92.00% 

30 1 718.16  5 3.66    2 0 0 0 4 99 52.33% 

31 1 140.89  6 *   2 0 0 1 * 0 100.00% 

32 1 617.00  7 0.97    2 0 0 1 * 0 100.00% 

33 1 376.34  8 0.50    2 0 0 1 * 0 100.00% 

34 1 667.00    1 1.59  2 0 0 1 * 0 100.00% 

35 1 670.79    2 0.69  2 0 0 1 * 0 100.00% 

36 1 429.47    3 0.14  2 0 0 1 * 9 98.00% 

37 1 672.76    4 0.34  2 0 0 0 250 9 93.33% 

38 1 166.15    5 1.63  2 0 0 1 * 9 75.00% 
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39 1 668.67    6 * 2 0 0 1 * 0 100.00% 

40 1 758.26    7 1.00  2 0 0 1 * 153 95.67% 

41 1 281.74    8 0.26  2 0 0 1 * 10 99.33% 

42 2 0.34  1 2.35    2 0 0 1 * 0 100.00% 

43 2 0.47  2 0.66    2 0 0 1 * 0 100.00% 

44 2 0.21  3 0.26    2 0 0 1 * 0 100.00% 

45 2 0.68  4 0.47    2 0 0 0 250 187 92.33% 

46 2 0.48  5 3.70    2 0 0 0 2 103 51.67% 

47 2 0.17  6 *   2 0 0 1 * 0 100.00% 

48 2 0.24  7 0.12    2 0 0 1 * 0 100.00% 

49 2 0.36  8 0.32    2 0 0 1 * 0 100.00% 

50 2 0.76    1 1.86  2 0 0 1 * 9 99.00% 

51 2 0.14    2 0.42  2 0 1 1 * 9 99.33% 

52 2 0.38    3 0.45  2 0 0 1 * 10 96.67% 

53 2 0.77    4 0.11  2 0 0 1 * 10 91.00% 

54 2 0.14    5 1.63  2 0 1 1 * 9 74.67% 

55 2 0.49    6 * 2 0 0 1 * 0 100.00% 

56 2 0.59    7 0.65  2 0 0 1 * 10 97.33% 

57 2 0.73    8 0.47  2 0 0 1 * 10 99.33% 

58 3 0.55  1 1.47    2 0 0 1 * 0 100.00% 

59 3 0.36  2 0.37    2 0 0 1 * 0 100.00% 

60 3 0.25  3 0.50    2 0 0 1 * 0 100.00% 

61 3 0.18  4 0.30    2 0 0 1 * 0 99.33% 

62 3 0.28  5 1.24    2 0 0 1 * 140 84.33% 

63 3 0.13  6 *   2 0 0 1 * 0 100.00% 

64 3 0.10  7 0.40    2 0 0 1 * 0 100.00% 

65 3 0.41  8 0.01    2 0 0 1 * 0 100.00% 

66 3 0.10    1 3.04  2 0 0 1 * 9 99.00% 

67 3 0.38    2 0.37  2 0 0 1 * 0 100.00% 

68 3 0.20    3 0.19  2 0 0 1 * 9 97.67% 

69 3 0.25    4 0.48  2 0 0 0 71 10 77.00% 

70 3 0.21    5 1.71  2 0 0 1 * 9 74.33% 

71 3 0.23    6 * 2 0 0 1 * 0 100.00% 

72 3 0.15    7 0.38  2 0 0 1 * 10 98.33% 

73 3 0.30    8 0.44  2 0 0 1 * 10 99.33% 

74 4 0.38  1 2.08    2 0 0 1 * 0 100.00% 

75 4 0.22  2 0.35    2 0 0 1 * 0 100.00% 

76 4 0.06  3 0.11    2 0 0 1 * 0 100.00% 

77 4 0.09  4 0.29    2 0 0 1 * 0 99.67% 

78 4 0.26  5 3.26    2 0 0 0 2 93 54.33% 

79 4 0.21  6 *   2 0 0 1 * 0 100.00% 

80 4 0.31  7 0.30    2 0 0 1 * 0 100.00% 

81 4 0.34  8 0.17    2 0 0 1 * 0 100.00% 

82 4 0.26    1 2.85  2 0 0 1 * 9 99.00% 

83 4 0.08    2 0.66  2 0 0 1 * 9 99.33% 

84 4 0.34    3 0.37  2 0 0 1 * 9 96.33% 

85 4 0.51    4 0.50  2 0 0 0 45 9 71.67% 
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86 4 0.14    5 1.26  2 0 0 1 * 9 80.33% 

87 4 0.32    6 * 2 0 0 1 * 0 100.00% 

88 4 0.21    7 0.50  2 0 0 1 * 10 98.33% 

89 4 0.52    8 0.21  2 0 0 1 * 10 99.33% 

90 5 617.82  1 2.83    2 0 0 1 * 0 100.00% 

91 5 806.00  2 0.13    2 0 0 1 * 0 100.00% 

92 5 843.89  3 0.36    2 0 0 1 * 0 100.00% 

93 5 113.62  4 0.38    2 0 0 1 * 0 99.67% 

94 5 528.18  5 1.54    2 0 0 1 * 119 83.33% 

95 5 225.07  6 *   2 0 0 1 * 0 100.00% 

96 5 722.37  7 0.71    2 0 0 1 * 0 100.00% 

97 5 130.29  8 0.07    2 0 0 1 * 0 100.00% 

98 5 570.14    1 2.73  2 0 0 1 * 9 99.00% 

99 5 606.40    2 0.59  2 0 0 1 * 0 100.00% 

100 5 852.30    3 0.09  2 0 0 1 * 245 99.33% 

101 5 298.13    4 0.43  2 0 0 0 250 10 96.33% 

102 5 433.60    5 2.35  2 0 0 1 * 9 64.00% 

103 5 801.63    6 * 2 0 0 1 * 0 100.00% 

104 5 563.82    7 0.95  2 0 0 1 * 146 96.00% 

105 5 790.12    8 0.36  2 0 0 1 * 0 100.00% 

106 6 * 1 2.16    2 0 0 1 * 0 100.00% 

107 6 * 2 0.79    2 0 0 1 * 0 100.00% 

108 6 * 3 0.12    2 0 0 1 * 0 100.00% 

109 6 * 4 0.35    2 0 0 0 6 163 80.00% 

110 6 * 5 3.24    2 0 0 1 * 95 55.00% 

111 6 * 6 *   2 0 0 1 * 0 100.00% 

112 6 * 7 0.22    2 0 0 1 * 0 100.00% 

113 6 * 8 0.89    2 0 0 1 * 0 100.00% 

114 6 *   1 1.37  2 0 0 1 * 9 99.00% 

115 6 *   2 0.40  2 0 0 1 * 9 99.00% 

116 6 *   3 0.08  2 0 0 1 * 10 98.33% 

117 6 *   4 0.08  2 0 0 0 132 10 82.67% 

118 6 *   5 3.18  2 0 0 1 * 9 51.00% 

119 6 *   6 * 2 0 0 1 * 0 100.00% 

120 6 *   7 0.11  2 0 0 1 * 10 99.00% 

121 6 *   8 0.61  2 0 0 1 * 10 99.00% 

122 7 0.80  1 2.15    2 0 0 1 * 0 100.00% 

123 7 0.02  2 0.10    2 0 0 1 * 0 100.00% 

124 7 0.88  3 0.22    2 0 0 1 * 0 100.00% 

125 7 0.11  4 0.36    2 0 0 1 * 0 99.33% 

126 7 0.08  5 3.64    2 0 0 0 1 99 52.00% 

127 7 0.54  6 *   2 0 0 1 * 0 100.00% 

128 7 0.04  7 0.29    2 0 0 1 * 0 100.00% 

129 7 0.12  8 0.81    2 0 0 1 * 0 100.00% 

130 7 0.82    1 1.41  2 0 0 1 * 9 99.33% 

131 7 0.99    2 0.19  2 0 0 1 * 0 100.00% 

132 7 0.29    3 0.11  2 0 0 1 * 9 98.67% 
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133 7 0.41    4 0.51  2 0 0 0 250 9 92.00% 

134 7 0.54    5 1.25  2 0 0 1 * 9 80.33% 

135 7 0.59    6 * 2 0 0 1 * 0 100.00% 

136 7 0.77    7 0.35  2 0 0 1 * 10 98.67% 

137 7 0.55    8 0.77  2 0 0 1 * 10 99.33% 

138 8 0.72  1 1.31    2 0 0 1 * 0 100.00% 

139 8 0.11  2 0.33    2 0 0 1 * 0 100.00% 

140 8 0.14  3 0.14    2 0 0 1 * 0 100.00% 

141 8 0.16  4 0.10    2 0 0 1 * 0 100.00% 

142 8 0.18  5 1.65    2 0 0 1 * 115 82.67% 

143 8 0.52  6 *   2 0 0 1 * 0 100.00% 

144 8 0.41  7 0.30    2 0 0 1 * 0 100.00% 

145 8 0.50  8 0.90    2 0 0 1 * 0 100.00% 

146 8 0.80    1 2.93  2 0 0 1 * 9 99.00% 

147 8 0.90    2 0.19  2 0 0 1 * 0 100.00% 

148 8 0.31    3 0.28  2 0 0 1 * 13 96.67% 

149 8 0.23    4 0.37  2 0 0 0 250 9 93.33% 

150 8 0.09    5 3.14  2 0 0 1 * 9 52.33% 

151 8 0.25    6 * 2 0 0 1 * 0 100.00% 

152 8 0.23    7 0.30  2 0 0 1 * 10 99.33% 

153 8 0.10    8 0.18  2 0 0 1 * 10 99.33% 

154   1 2.91  1 2.50  2 0 0 1 * 0 100.00% 

155   1 2.94  2 0.49  2 0 0 1 * 0 100.00% 

156   1 1.54  3 0.40  2 0 0 1 * 0 100.00% 

157   1 2.15  4 0.26  2 0 0 0 250 143 91.33% 

158   1 2.05  5 3.09  2 0 0 1 * 103 57.33% 

159   1 1.56  6 * 2 0 0 1 * 0 100.00% 

160   1 2.59  7 0.57  2 0 0 1 * 0 100.00% 

161   1 1.69  8 1.00  2 0 0 1 * 0 100.00% 

162   2 0.14  1 1.38  2 0 0 1 * 0 100.00% 

163   2 0.24  2 0.34  2 0 0 1 * 0 100.00% 

164   2 0.28  3 0.18  2 0 0 1 * 0 100.00% 

165   2 0.52  4 0.33  2 0 0 1 * 0 99.00% 

166   2 0.57  5 1.17  2 0 0 1 * 170 91.67% 

167   2 0.32  6 * 2 0 0 1 * 0 100.00% 

168   2 0.37  7 0.83  2 0 0 1 * 0 100.00% 

169   2 0.21  8 0.78  2 0 0 1 * 0 100.00% 

170   3 0.16  1 1.35  2 0 0 1 * 9 99.33% 

171   3 0.33  2 0.26  2 0 0 1 * 0 100.00% 

172   3 0.14  3 0.13  2 0 0 1 * 0 100.00% 

173   3 0.16  4 0.22  2 0 0 1 * 0 99.00% 

174   3 0.46  5 1.60  2 0 0 1 * 122 80.33% 

175   3 0.48  6 * 2 0 0 1 * 0 100.00% 

176   3 0.32  7 0.31  2 0 0 1 * 0 100.00% 

177   3 0.33  8 0.02  2 0 0 1 * 0 100.00% 

178   4 0.41  1 2.04  2 0 0 0 86 135 88.00% 

179   4 0.38  2 0.44  2 0 0 1 * 0 99.00% 
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180   4 0.08  3 0.14  2 0 0 1 * 176 92.33% 

181   4 0.17  4 0.45  2 0 0 1 * 0 99.00% 

182   4 0.10  5 2.43  2 0 0 1 * 105 66.67% 

183   4 0.49  6 * 2 0 0 1 * 0 100.00% 

184   4 0.10  7 0.32  2 0 0 1 * 0 100.00% 

185   4 0.22  8 0.97  2 0 0 1 * 0 99.00% 

186   5 3.40  1 1.57  2 0 0 0 1 105 55.33% 

187   5 2.12  2 0.32  2 0 0 1 * 112 73.33% 

188   5 2.00  3 0.20  2 0 0 1 * 109 70.67% 

189   5 1.73  4 0.20  2 0 0 1 * 0 99.00% 

190   5 2.39  5 2.12  2 0 0 0 7 215 48.33% 

191   5 3.20  6 * 2 0 0 1 * 0 100.00% 

192   5 2.52  7 0.36  2 0 0 1 * 105 64.00% 

193   5 2.12  8 0.73  2 0 0 1 * 110 73.00% 

194   6 * 1 2.82  2 0 0 1 * 0 100.00% 

195   6 * 2 0.80  2 0 0 1 * 0 100.00% 

196   6 * 3 0.41  2 0 0 1 * 0 100.00% 

197   6 * 4 0.23  2 0 0 1 * 0 100.00% 

198   6 * 5 1.25  2 0 0 1 * 0 100.00% 

199   6 * 6 * 2 0 0 1 * 0 100.00% 

200   6 * 7 0.21  2 0 0 1 * 0 100.00% 

201   6 * 8 0.12  2 0 0 1 * 0 100.00% 

202   7 0.46  1 1.93  2 0 0 1 * 0 100.00% 

203   7 0.22  2 0.51  2 0 0 1 * 0 100.00% 

204   7 0.36  3 0.35  2 0 0 1 * 0 100.00% 

205   7 0.39  4 0.26  2 0 0 1 * 0 92.67% 

206   7 0.88  5 1.03  2 0 0 1 * 168 85.67% 

207   7 0.64  6 * 2 0 0 1 * 0 100.00% 

208   7 0.08  7 0.30  2 0 0 1 * 0 100.00% 

209   7 0.86  8 0.66  2 0 0 1 * 0 100.00% 

210   8 0.78  1 2.95  2 0 0 1 * 0 100.00% 

211   8 0.72  2 0.16  2 0 0 1 * 0 100.00% 

212   8 0.74  3 0.27  2 0 0 1 * 0 100.00% 

213   8 0.93  4 0.24  2 0 0 1 * 0 99.00% 

214   8 0.73  5 1.33  2 0 0 1 * 153 83.67% 

215   8 0.70  6 * 2 0 0 1 * 0 100.00% 

216   8 0.67  7 0.37  2 0 0 1 * 0 100.00% 

217   8 0.99  8 0.64  2 0 0 1 * 0 100.00% 
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