

DEEP LEARNING-BASED, PASSIVE FAULT TOLERANT CONTROL

FACILITATED BY A TAXONOMY OF CYBER-ATTACK EFFECTS

DISSERTATION

Dean C. Wardell, Lieutenant Colonel, USAF

AFIT-ENG-DS-20-D-013

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government. This material is declared a work of the U.S. Government and is not

subject to copyright protection in the United States.

AFIT-ENG-DS-20-D-013

DEEP LEARNING-BASED, PASSIVE FAULT TOLERANT CONTROL

FACILITATED BY A TAXONOMY OF CYBER-ATTACK EFFECTS

DISSERTATION

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

Dean C. Wardell, BS, MS

Lieutenant Colonel, USAF

23 November 2020

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-DS-20-D-013

DEEP LEARNING-BASED, PASSIVE FAULT TOLERANT CONTROL

FACILITATED BY A TAXONOMY OF CYBER-ATTACK EFFECTS

Dean C. Wardell, BS, MS

Lieutenant Colonel, USAF

Committee Membership:

Dr. Robert F. Mills

Chair

Dr. Gilbert L. Peterson

Member

Dr. Mark E. Oxley

Member

Dr. Adedeji B. Badiru

Dean

Graduate School of Engineering and Management

iv

AFIT-ENG-DS-20-D-013

Abstract

In the interest of improving the resilience of cyber-physical control systems to

better operate in the presence of various cyber-attacks and/or faults, this dissertation

presents a novel controller design based on deep-learning networks. This research lays out

a controller design that does not rely on fault or cyber-attack detection. Being passive, the

controller’s routine operating process is to take in data from the various components of the

physical system, holistically assess the state of the physical system using deep-learning

networks and decide the subsequent round of commands from the controller. This use of

deep-learning methods in passive fault tolerant control (FTC) is unique in the research

literature. The proposed controller is applied to both linear and nonlinear systems.

Additionally, the application and testing are accomplished with both actuators and sensors

being affected by attacks and /or faults.

The effects of various attacks and faults are identified, and composed into a

taxonomy for use in training and testing FTCs. By training the controller on the wide range

of cyber-attack and fault effects, the type(s) of attack or fault affecting the system do not

need to be known in advance. This research effort challenges the assertion made by some

researchers that passive FTC is limited in utility or application because fault information

must be known a priori.

Two variants of the proposed controller design are presented and tested; one using

a single large deep-learning network and the other using an ensemble of smaller networks.

The proposed controller design is compared to an active fault tolerant controller. Both are

v

applied to simulations of a benchmark non-linear quadruple-tank system. Test results show

both versions of the proposed controller design perform monotonically better than the

active FTC in keeping or regaining control of the system during a simulated cyber-attack

or fault. The proposed controller is also more responsive to changes in the system, not

suffering from the delays inherent to active FTCs.

The differences in performance are especially pronounced when the system under

control is tested with Stuxnet-like attacks.

vi

Acknowledgments

I would like to express my sincere gratitude to my research committee, Dr. Bob

Mills, Dr. Bert Peterson and Dr. Mark Oxley, for their guidance and support throughout

the course of this dissertation effort. Their insight, experience and patience are certainly

appreciated.

vii

Table of Contents

Page

Abstract .. iv

Table of Contents .. vii

 Introduction ..1

1.1. Motivation ...1

1.2. General Issue ...2

1.3. Research Questions ...4

1.4. Methodology ...4

1.5 Assumptions/Limitations ...6

1.6. Organization ..6

 Literature Review...8

2.1 Chapter Overview ..8

2.2 Relevant Research ..8

2.2.1 Fault Tolerant Controls .. 9

2.2.2 Data-Driven Control vs. Model-Based Control 24

2.2.3 Artificial Intelligence in FTC ... 28

2.2.4 Deep Learning in Fault Tolerant Controls... 33

2.2.5 Faults and Cyber-Attacks on FTC as Represented in Literature 38

2.3 Summary ..40

 Background and Methodology ...41

3.1 Chapter Overview ..41

3.2 ICS Networks ...41

3.3 Effects of Cyber-Attacks and Faults ..43

viii

3.4 Taxonomy of Effects on Physical Components45

3.5 Proposed Controller Considerations ..54

3.5.1 Long Short-Term Memory Networks .. 55

3.5.2 Proposed Controller Design ... 58

3.5.3 Input to the LSTM ... 59

3.5.4 Data Driven and Model-Based Control ... 60

3.5.5 Converting LSTM Output to a Usable Control Signal 60

3.6 Training the LSTM Network ...62

3.6.1 Ensemble or Single LSTM .. 65

3.6.2 Many Classifiers - Single Solution ... 65

3.7 Test Methodology ..68

3.8 Summary ..69

 Proof of Concept - Test Subject: Steam Boiler System70

4.1 Chapter Overview ..70

4.2 The Steam Boiler System ..70

4.2.1 Operational Modes/Safety Features ... 71

4.2.2 System Parameters and Variables .. 73

4.3 Proposed Controller Design ...74

4.3.1 Inputs to the LSTM ... 76

4.4 Effects of Faults and Cyber-Attacks ..76

4.5 Training the LSTM Networks ..81

4.5.1 Generating Training Data .. 82

4.5.2 Data Preprocessing .. 83

ix

4.6 Testing the Controller with Steam Boiler System83

4.7 Chapter Summary ..89

 Test Subject: Quadruple-Tank System ..90

5.1 Chapter Introduction ..90

5.2 Quadruple-Tank System Design ..90

5.2.1 Internal System Equations .. 92

5.3 Proposed Controller for Quadruple-Tank Test Case93

5.3.1 Designing the LSTMs ... 94

5.3.2 Internally Generated Models .. 95

5.3.3 Inputs to the LSTM ... 98

5.4 Effects of Faults and Cyber-Attacks ..99

5.5 Training the LSTM Networks ..104

5.5.1 Generating Training Data .. 105

5.5.2 Data Preprocessing .. 106

5.6 Testing Methodology for Proposed Controller107

5.7 Test Results ..108

5.8 Ensemble Variant of Network-Based Controller112

5.8.1 Testing the Ensemble-Based Controller ... 117

5.9 Computational Overhead ...119

5.10 Chapter Summary ..125

 Reference Controller, Comparative Test Results Analysis and Stuxnet-Like

Attack Testing ..126

6.1 Chapter Introduction ..126

6.2 Comparison Controller Design ..126

x

6.3 Comparison Controller Testing ...134

6.3.1 Comparison Controller Test Results .. 136

6.4 Discussion of Test Results for All Three Controllers139

6.4.1 Statistical Analysis of Test Results for All Three Controllers 140

6.5 Testing with Stuxnet-Like Attacks ..144

6.5.1 Stuxnet-Like Test Design .. 144

6.5.2 Stuxnet-Like Test Results .. 145

6.6 Conclusions ..159

6.7 Chapter Summary ..159

 Conclusions and Recommendations ..161

7.1 Chapter Overview ..161

7.2 Conclusions of Research ..161

7.2.1 Research Questions Revisited ... 161

7.2.2 Contributions of Research .. 164

7.3 Recommendations for Future Research ...165

7.4 Summary ..166

8 Bibliography ...167

A. Appendix: Additional References ..176

B. Appendix: Steam Boiler Test Results Chart ..192

xi

List of Figures

Page

Figure 1.1. Notional MISO and MIMO Systems Diagram. .. 4

Figure 2.1. Taxonomy of Fault Tolerant Control Methods. ... 10

Figure 2.2. Linear Quadratic Gaussian Controller and System. 11

Figure 2.3. General Form of H-infinity Control. .. 12

Figure 2.4. Sliding Mode Control and System. .. 14

Figure 2.5. Phase Portrait of Sliding Mode Control [29]. ... 15

Figure 2.6. Traditional Control Loop with Fault Detection & Diagnosis Block. 17

Figure 2.7. Control System with Internal Observer. ... 19

Figure 2.8. Basic Structure of Model Predictive Control. .. 20

Figure 2.9 Generic Adaptive Control Diagram... 21

Figure 2.10. Model Reference Adaptive Control Diagram. .. 22

Figure 2.11. Model Identification Adaptive Control Diagram. .. 23

Figure 3.1. CNSSI 1235 ICS Overlay Enclave Authorization Boundary & Layers [92]. 42

Figure 3.2. Notional ICS Network. ... 42

Figure 3.3. Basic Control System ... 45

Figure 3.4. Basic Control System with Attacks/Faults ... 46

Figure 3.5. Example Water Level Sensor [96] ... 48

Figure 3.6. Typical LSTM Block [99]. ... 56

Figure 3.7. LSTM Network Logic Structure [100]. .. 57

Figure 3.8. Overview of Proposed Controller with Plant. .. 58

Figure 3.9. Stages of Controller Using LSTM Network. .. 59

xii

Figure 3.10. Traditional PID Controller Block Diagram [102]. 61

Figure 3.11. Information Flow through an Ensemble to Control a Single Actuator. 68

Figure 4.1. Steam Boiler System Diagram. .. 71

Figure 4.2. Proposed Controller with System. .. 74

Figure 5.1. Diagram of Quadruple-Tank System [106]. ... 90

Figure 5.2. Proposed Controller with System. .. 93

Figure 5.3. Quadruple Tank System with Ensemble-Based Controller 112

Figure 5.4. Logic Flow through a Single Network-Based Controller............................. 113

Figure 5.5. Logic Flow within an Ensemble-Based Controller. 114

Figure 5.6. CPU Clock Speed vs. Sampling Rates. .. 124

Figure 6.1. Reconfigurable Control System Diagram. ... 127

Figure 6.2. Nominal System with Feedback Control. ... 128

Figure 6.3. Equivalent System with Feedback Control. ... 129

Figure 6.4. Fault Hiding with Reconfiguration Block. ... 130

Figure 6.5. Faulty System with Virtual Sensor [12]. .. 131

Figure 6.6. Faulty Plant with Virtual Actuator [12]. ... 132

Figure 6.7. Virtual Sensor and Actuator with Faulty Plant [12]. 133

Figure 6.8. System Response to Stuxnet-like Attack #1 with Comparison Controller. .. 146

Figure 6.9. System Response to Stuxnet-like Attack #1 with LSTM Ensemble Controller.

 .. 146

Figure 6.10. System Response to Stuxnet-like Attack #1 with Proposed Controller. 147

Figure 6.11. System Response to Stuxnet-like Attack #2 with Comparison Controller. 147

xiii

Figure 6.12. System Response to Stuxnet-like Attack #2 with LSTM Ensemble Controller

 .. 147

Figure 6.13. System Response to Stuxnet-like Attack #2 with Proposed Controller. 148

Figure 6.14. System Response to Stuxnet-like Attack #3 with Comparison Controller. 148

Figure 6.15. System Response to Stuxnet-like Attack #3 with LSTM Ensemble

Controller. .. 149

Figure 6.16. System Response to Stuxnet-like Attack #3 with Proposed Controller. 149

Figure 6.17. System Response to Stuxnet-like Attack #4 with Comparison Controller. 150

Figure 6.18. System Response to Stuxnet-like Attack #4 with LSTM Ensemble

Controller. .. 150

Figure 6.19. System Response to Stuxnet-like Attack #4 with Proposed Controller. 150

Figure 6.20. System Response to Stuxnet-like Attack #5 with Comparison Controller . 151

Figure 6.21. System Response to Stuxnet-like Attack #5 with LSTM Ensemble

Controller. .. 151

Figure 6.22. System Response to Stuxnet-like Attack #5 with Proposed Controller. ... 152

xiv

List of Tables

Page

Table 2.1. Passive and Active Fault Tolerant Control References. 24

Table 2.2. Active and Passive Data Driven Control References. 28

Table 2.3. Passive and Active References on Artificial Intelligence in FTC. 33

Table 2.4. Passive and Active FTC Methods with Deep Learning Included. 36

Table 2.5. References Sorted by Limitations. ... 37

Table 3.1. Possible Changes of Sensor Measurement Values .. 49

Table 3.2. Possible Changes in Reported Sensor Measurement Values 49

Table 3.3. Fundamental Effects on Sensors .. 50

Table 3.4. Possible Changes in Actuator Command Values .. 51

Table 3.5. Possible Variations from Actuator Value .. 52

Table 3.6. Fundamental Effects on Actuators ... 52

Table 3.7. Numbers and Combinations of Data Generation Runs. 63

Table 4.1. Parameters and Variables used in the Steam Boiler System. 73

Table 4.2. Change in Network Performance Correlated with Sequence Length 74

Table 4.3. Comparison of Network Performance Correlated with Network Size 75

Table 4.4. Input to LSTM. .. 76

Table 4.5. Summary of Sensor Effects for the Steam Boiler System 78

Table 4.6. Summary of Actuator Effects for Steam Boiler System 80

Table 4.7. Numbers and Combinations of Data Generation Runs for Steam Boiler. 82

Table 4.8. Measured Items for Steam Boiler Testing ... 85

Table 4.9. Test Results on Steam Boiler Using Proposed Controller. 86

xv

Table 4.10. Test Result Summary for Proposed Controller .. 87

Table 4.11. Confusion Matrix of LSTM Classifications for Steam Boiler 88

Table 5.1. System Parameters used in the Quadruple-Tank System. 91

Table 5.2. Operational Parameters for the Quadruple-Tank System [107] [108]. 92

Table 5.3. Change in Network Performance Correlated with Sequence Length 94

Table 5.4. Comparison of Network Performance Correlated with Network Size 95

Table 5.5. Inputs to LSTM Networks. .. 98

Table 5.6. Fundamental Effects on Sensors .. 99

Table 5.7. Summary of Sensor Effects for Quadruple-Tank System 101

Table 5.8. Fundamental Effects on Actuators ... 102

Table 5.9. Summary of Actuator Effects for Quadruple-Tank System 104

Table 5.10. Numbers and Combinations of Data Generation for Quad-Tank System. .. 105

Table 5.11. Test Results of Proposed Controller. ... 109

Table 5.12. Test Result Summary for Proposed Controller .. 111

Table 5.13. Confusion Matrix of LSTM Classifications in Proposed Controller 111

Table 5.14. Test Results for Ensemble Resolution Options. .. 114

Table 5.15. Confusion Matrix of Unanimous Vote Ensemble Resolver. 115

Table 5.16. Confusion Matrix of Bagging/Boosting Ensemble Resolver. 116

Table 5.17. Confusion Matrix for Unanimous Vote with Bagging/Boosting Resolver. . 116

Table 5.18. Test Results of Proposed Controller Using Ensembles. 117

Table 5.19. LSTM Ensemble Test Result Summary. ... 118

Table 5.20. Confusion Matrix of LSTM Ensemble Classifications. 119

Table 5.21. Industrial Computer Processor Cores, Clock Speeds and RAM. 123

xvi

Table 6.1. Summary of Sensor Effects Used in Testing the Comparison Controller. 135

Table 6.2. Summary of Actuator Effects Used in Testing the Comparison Controller. . 135

Table 6.3. Results of Tests on Comparison Controller. .. 136

Table 6.4. Test Result Summary for Comparison Controller. .. 138

Table 6.5. Confusion Matrix of Fault Detection in Comparison Controller. 138

Table 6.6. Summary of Test Results on Quadruple-Tanks System. 139

Table 6.7. Precision, Recall and F1-Score Analysis for Comparison Controller. 143

Table 6.8. Precision, Recall and F1-Score Analysis for Ensemble-Based Controller. ... 143

Table 6.9. Precision, Recall and F1-Score Analysis for LSTM-Based Controller. 143

Table 6.10. Results of Stuxnet-Like Attack on Quadruple-Tank System with the

Comparison Controller. .. 153

Table 6.11. Results of Stuxnet-like Attacks on the Quadruple-Tank System with the

LSTM Ensemble Controller. .. 154

Table 6.12. Results of Stuxnet-like Attacks on the Quadruple-Tank System with the

Proposed Controller (Single LSTM). ... 155

Table 6.13. Summary of Test Results for Stuxnet-Like Attacks. 156

Table 6.14. Confusion Matrix of Stuxnet Attack Detection in Comparison Controller. 156

Table 6.15. Confusion Matrix of Stuxnet Attack Classification of Ensemble Controller.

 .. 157

Table 6.16. Confusion Matrix of Stuxnet Attack Classification of LSTM Controller. .. 157

Table 6.17. Micro F1 Score for Controllers .. 158

1

DEEP LEARNING-BASED, PASSIVE FAULT TOLE RANT CONTROL

FACILITATED BY A TAXONOMY OF CYBER-ATTACK EFFECTS

 Introduction

This chapter provides the context for the research described in this dissertation.

Events that exemplify the challenges faced by cyber-physical systems are described and

the specific research questions to be explored are presented. The methodology and the

scope of the proposed solution are introduced.

1.1. Motivation

In 2014, a German steel mill was attacked by hackers who accessed the operational

control system via the company’s IT network [1]. The hackers were able to put the mill

into an “undefined state” [2] from which a blast furnace could not be shut down properly,

resulting in extensive, though unspecified physical damage to furnace systems at the mill.

This confirmed case of a cyber-attack causing physical destruction of equipment followed

the Stuxnet attack that damaged Iranian centrifuges at a uranium enrichment plant [2]. That

attack was discovered in 2010; since then, experts have warned that it would only be a

matter of time before other more destructive attacks would occur.

In Maroochy, Australia, a former employee of the shire’s water services used radio

signals to remotely switch valves in the water treatment plant [3]. He caused extensive

environmental damage by routing 800,000 liters of untreated sewage into nearby

waterways and parks, contaminating fresh water sources and killing marine life.

More recently, the Ukrainian power grid was taken down in a cyber-attack that

required “extensive reconnaissance” [4] and preparation to complete. This is, or should be,

2

of particular concern to the US Department of Defense (DOD). There are over 2,600

electrical, water, wastewater, and natural gas utility systems on DOD installations [5]. In

1997, the DOD decided that utility privatization was the preferred method for improving

utility systems and services; Congress subsequently approved legislative authority for

privatizing utility systems at military installations. Since these privatization efforts are

currently under way, a closer look at the technology controlling these systems is warranted.

1.2. General Issue

Cyber-physical systems (CPS) are systems of collaborating computational elements

controlling physical entities such as: power and water, industrial systems, transportation

systems, medical devices, security systems, building automation, emergency management,

and many other systems vital to our well-being. Industrial Control Systems (ICS) are a

subset of these cyber-physical systems that comprise a diverse group of sensor and control

systems used to monitor and control critical infrastructure. These include Supervisory

Control and Data Acquisition (SCADA) systems, Distributed Control Systems (DCS) and

Programmable Logic Controllers (PLCs).

When any CPS malfunctions, or fails, the operation of the corresponding system(s)

in the real world can endanger physical safety or even cause loss of life, as well as property

damage or harm to the environment [6]. The priorities for traditional IT systems are usually

focused, in order, on confidentiality, integrity, and availability (CIA) of the data. These

priorities are generally reversed for ICS. Keeping the system up and running (data

availability) is the top priority for ICS. Data integrity and confidentiality usually fall in

behind availability.

3

As applied to ICS, industry recommended solutions include security policies,

procedures, tools and products to prevent unauthorized access of the system [7] [8]. These

solutions, when used together are commonly referred to as a “Defense in Depth” [9]

approach. The elements of Defense in Depth are all useful and should be employed.

Unfortunately, focusing too much on “preventing access” results in a cyber “Maginot Line”

to protect ICS.

France’s WWII defensive line did prevent the German army from simply rolling

straight across the border. Instead, the Germans got around it by way of Belgium and easily

conquered France. Likewise, Defense in Depth makes a head-on attack of an ICS much

more difficult, but ICS are ill equipped to deal with malicious actors if, and when, they do

gain access to the system.

There has been (and continues to be) interest in the control theory community in

developing controllers that can operate in the presence of a component failure, i.e. fault

tolerant controls (FTC). Practitioners in this community have made the logical step of

applying the benefits of FTC in developing controllers that can respond to a cyber-attack

on any physical component of a system.

Unlike active (reactive) controllers which depend on attack or fault detection to

trigger their activity, passive (proactive) controllers are designed to properly control the

system whether faults and/or attacks are present or not. Proactive controls are disregarded

by many researchers because of the belief that proactive controllers are only effective if

detailed information about the fault or attacks the system may face is known a priori [10]

[11].

4

1.3. Research Questions

This research will address the following questions relating to the use of fault

tolerant controls to improve the resilience of cyber physical systems.

Question 1. What are the physical layer effects in Cyber Physical System that could

result from a component fault or cyber-attack?

Question 2. How could a passive Fault tolerant Controller use deep learning to

maintain operations, and how could it be realized?

Question 3. Will the approach work for both linear and nonlinear systems?

Question 4. What benefit(s) does passive FTC with deep learning provide

compared to an active FTC?

1.4. Methodology

To answer the research questions stated above, this dissertation proposes an ICS

control design that is broadly applicable to multiple input – multiple output (MIMO) and

multiple input – single output (MISO) systems.

Figure 1.1. Notional MISO and MIMO Systems Diagram.

5

For systems portrayed in Figure 1.1, the control signals going to the actuators in the

system (plant) are labeled (ui) and the output signals from the system sensors are labelled

(yi). Both systems have more than one actuator to be controlled, thus categorizing them as

multiple input systems.

In an effort to represent system faults and cyber-attacks, their possible effects are

explored at the fundamental physical component (sensor or actuator) layer. By considering

the possible behaviors of a sensor or actuator when being affected by faults or cyber-

attacks, we develop and present a taxonomy of effects. This taxonomy is useful in the

design and testing of any FTC, but is foundational to the design, training and testing of a

proposed controller design.

The proposed controller holistically considers the entire state of the system under

control and uses deep-learning networks (either stand-alone or in an ensemble) to

determine the next appropriate commands for each actuator in the system under control. It

does so without relying on a fault or attack detection mechanism. The proposed design is

tested in simulations, on both linear and nonlinear systems, with multiple combinations of

fault/attack effects on the sensors and actuators introduced to the system under test. The

proposed controller performance is compared to a published active FTC controller design

and the test results are analyzed.

Finally, the proposed controller and comparison controller are tested on a system

that is experiencing Stuxnet-like attacks. Those test results are also discussed.

6

1.5 Assumptions/Limitations

The application of this research effort will only be demonstrated on MIMO and

MISO systems. While this controller design could be applied to systems with a single input

(single actuator), these are of limited interest, because the direct and/or indirect interaction

within a system of multiple inputs make the control problem much more challenging and

interesting.

Any solution that would require altering the system to be controlled (e.g., adding

redundant components or limiting the system’s intended operational capabilities) is not

considered in this work. The solution controller needs to work with the system as designed.

As described in Chapter 3, there are some fault and attack effects that can render

an actuator in the cyber physical system “uncontrollable”. Since there is no fault tolerant

or adaptive controller that can control an uncontrollable component, such fault and cyber-

attack effects will not be addressed in this work unless the system under control is designed

with redundant actuators.

1.6. Organization

The remainder of this dissertation is organized as follows: Chapter 2 provides a

review of the pertinent literature in the areas of fault tolerant control, reactive control,

system modeling and faults and attacks on control systems. Chapter 3 shows the

development of the taxonomy of effects and lays out the proposed controller design in

detail. Chapter 4 describes a proof-of-concept, linear test subject and specifies how the

proposed controller is applied to that test subject system. The method and results of testing

the proposed controller design on the linear system are also discussed. Chapter 5 describes

7

a benchmark nonlinear test subject system and specifies how the proposed controller is

applied to that test subject system. The design and training of the deep learning-based

controller are presented in detail. The method and results of testing the proposed controller

design on the nonlinear system are also discussed. In Chapter 6, a published comparison

controller [12] is reviewed and the method and results of testing the comparison controller

design on the same nonlinear system are presented and analyzed. This chapter also

compares and addresses the results of testing the proposed and comparison controllers on

the nonlinear test system. In addition, it also provides a discussion on the results of testing

the comparison controller and the proposed controller(s) against Stuxnet-like attacks on the

non-linear test system. Concluding remarks and comments are found in Chapter 7.

8

 Literature Review

2.1 Chapter Overview

This chapter provides an overview of the relevant existing literature for the

proposed research problem. First, is a review of work done in traditional fault tolerant

controls, followed by data driven fault tolerant controls. A review of the fault tolerant

controls using artificial intelligence is then presented and the section is rounded out with a

review of the application of deep-learning methods applied to active fault tolerant controls.

The final section reviews how faults and attacks are represented in the various publications.

2.2 Relevant Research

The literature reviewed in this chapter comes from two related areas of controls

research: Fault Tolerant Controls (FTC) and controls designed to respond to attacks. The

former focuses on designing controllers that can handle one or more faults/malfunctions in

the system under control. The latter focuses on designing controllers that can respond to

one or more deliberate attacks on the system under control. Both areas offer research

worthy of discussion.

The literature can be divided along a few different lines; active vs. passive FTC,

model-based vs. data-driven, or those designed to work with linear vs. nonlinear systems.

Active vs. passive FTC is a sorting used in much of the literature, and this section will

begin there since the controller proposed in this work is passive and the controller against

which it will be compared is active.

9

2.2.1 Fault Tolerant Controls

Before beginning a review of the pertinent literature, it is useful to define the terms

that are commonly used in the field of fault tolerant controls. The following definitions

come from [13].

• Fault-tolerance: the ability of a controlled system to maintain control objectives,

despite the occurrence of a fault. A degradation of control performance may be accepted.

Fault-tolerance can be obtained through fault accommodation or through system and/or

controller reconfiguration.

• Fault-accommodation: change in controller parameters or structure to avoid the

consequences of a fault. The input-output between controller and plant is unchanged. The

original control objective is achieved although performance may degrade.

• Reconfiguration: change in input-output between the controller and plant through

change of controller structure and parameters. The original control objective is achieved

although performance may degrade.

• Supervision: the ability to monitor whether control objectives are met. If not,

calculate a revised control objective and a new control structure and parameters that make

a faulty closed loop system meet the new modified objective. Supervision should take

effect if faults occur and it is not possible to meet the original control objective within the

fault tolerant scheme.

Figure 2.1 provides a taxonomy of FTC approaches in each category. The subjects

highlighted in bold face are discussed in this section. The others are listed for context, and

references to research in those areas are provided in Appendix A.

10

Figure 2.1. Taxonomy of Fault Tolerant Control Methods.

Current efforts on FTC design can be classified as either passive (proactive), or

active. The passive approach focuses on making the system insensitive to faults by

designing a more robust controller. Passive Fault Tolerant Controllers (PFTC) are

attractive for their comparative design simplicity. The advantage of the PFTC approach

can be explained as follows. When a fault occurs, it takes some time for the Fault Detection

and Diagnosis (FDD) module of an active FTC to detect the fault and then isolate and

identify the fault. There may also be some delay due to the controller reconfiguration.

During this period, the system is working with the nominal controller. Performance of the

system in this period is mainly dependent on the severity of the fault and the robustness of

the nominal controller. It is clear that the controlled system may become unstable during

11

this period [14]. For safety-critical systems, such as aircraft flight controls or nuclear power

plants, the time window may be too short to perform accurate fault isolation and estimation.

In such cases, a PFTC system is preferable because it does not need an FDD scheme [15].

2.2.1.1 Passive Fault Tolerant Control

Passive controllers can employ robust control methods such as Linear Quadratic

Gaussian (LQG) control like that used in [16] and [17]. The problem concerns linear

systems driven by additive white Gaussian noise. The challenge is to determine an output

feedback law that is optimal in the sense of minimizing the expected value of a quadratic

cost criterion. The LQG controller is simply a combination of a Kalman filter (linear

quadratic state estimator (LQE)) as part of a linear quadratic regulator (LQR) as shown in

Figure 2.2.

Figure 2.2. Linear Quadratic Gaussian Controller and System.

The output measurements are assumed to be corrupted by Gaussian noise (v) and

the initial state (w) is assumed to be a random Gaussian vector. The LQG controller

12

provides reliable linear quadratic state feedback control such that it can tolerate actuator

outages. The work in [18] combines LQC and H∞ optimization to control flight tracking in

the Advanced Tactical Fighter when actuator faults or flight surface impairments occur.

H∞ optimization methods are used to synthesize controllers to achieve stabilization

with guaranteed performance [19] [20] [21] [22]. To use H∞ methods, the control problem

is expressed as a mathematical optimization problem, and the challenge is to find the

controller that solves this optimization. H∞ techniques have the advantage over classical

control techniques in that they are readily applicable to problems involving multivariate

systems with cross-coupling between channels. The disadvantages of H∞ techniques

include the level of mathematical understanding needed to apply them successfully and the

need for a reasonably accurate model of the system to be controlled. The general form of

an H∞ controller with plant is shown in Figure 2.3.

Figure 2.3. General Form of H-infinity Control.

The plant (P) takes as input a reference signal and disturbances (w) as well as the

manipulated signal (u). The outputs from the plant are an error signal (z) and the measured

13

variables (v) used to control the system. The controller (K) uses v to manipulate u. The

signals w, u, z and v are usually vectors while P and K are matrices. The mathematical

formula for the system is

[
𝑧
𝑣
] = 𝑃(𝑠) [

𝑤
𝑢
] = [

𝑃11(𝑠) 𝑃12(𝑠)
𝑃21(𝑠) 𝑃22(𝑠)

] [
𝑤
𝑢
]

where

u=K(s)v

The dependency of z on w is expressed as:

𝑧 = 𝐹ℓ(𝐏, 𝐊)𝑤

𝐹ℓ is called the lower linear fractional transformation and is defined as

𝐹ℓ(𝐏, 𝐊) = 𝑃11 + 𝑃12𝐊(𝐼 − 𝑃22𝐊)−1𝑃21

Thus, the objective of H∞ control is to find K such that 𝐹ℓ(𝐏, 𝐊) is minimized

according to the H∞ norm.

It is important to keep in mind that the resulting controller is only optimal with

respect to the prescribed cost function and does not necessarily represent the best controller

in terms of the usual performance measures used to evaluate controllers such as settling

time, energy expended, etc. As an example, the method used in [18], guarantees the H∞

performance of the normal systems, as well as the faulty system to be less than a

predetermined bound.

In the cases of [23] and [24] faults are modeled as uncertainties and a robust control

is designed such that it can tolerate uncertainties. Robust control of uncertain piecewise

linear systems using state feedback and continuous piecewise Lyapunov functions helps

achieve the desired H∞ performance.

14

Another approach is to use simple redundancy as described in [25]. In this example,

the presence of multiple redundant (identical) controllers to ensure H∞ performance is

achieved even in the presence of sensor and/or actuator faults.

Sliding Mode control (SMC) is a nonlinear control method that alters the dynamics

of a nonlinear system by application of a discontinuous control signal that forces the system

to "slide" along a cross-section of the system's normal behavior as depicted in Figure 2.4.

Figure 2.4. Sliding Mode Control and System.

The example in Figure 2.4 depicts a generic sliding mode control circuit. The

discontinuous signal that forces the system to slide is usw and the signal being acted upon

is ueq.

The feedback control law is not a continuous function of time. Instead, it can switch

from one continuous structure to another based on the current position in the state space.

Thus, sliding mode control is a variable structure control method. The multiple control

structures are designed so that trajectories always move toward an adjacent region with a

15

different control structure, and so the ultimate trajectory will not exist entirely within one

control structure. Instead, it will slide along the boundaries of the control structures [26],

[27] [28] as shown in Figure 2.5.

Figure 2.5. Phase Portrait of Sliding Mode Control [29].

One advantage of this method is that the dynamic behavior of the system may be

directly tailored by the choice of switching function; essentially the switching function is

a measure of desired performance [30]. The sliding mode approach is also used in [31]

with application to aircraft control.

Attack preventive approaches (also called proactive) seek to make the controller

more robust by identifying the system vulnerabilities and changing the physical structure,

changing parameters of the system, or by designing new control methodologies. They are

not dependent on an attack detection system. The primary criticism of preventive

16

approaches is that designers are required to have prior knowledge of the types of attacks

[11]. Work in preventive action controllers has focused on modifying the system structure

(e.g., adding redundancy), or by designing more robust controllers.

In [32] the authors use observability and controllability Gramian matrices as a

means of measuring and minimizing network vulnerability. The vulnerabilities of a power

system state estimator are explored in [33] where modifications of routing and data

authentication are used to mitigate data integrity attacks. Authors in [34] find the optimal

estimator that minimizes estimation error based on multiple sensor measures.

The work in [35] investigates the problems of robust passive fault-tolerant control

for systems with time-delays and uncertain parameters or unmodeled dynamics. The

authors design a state feedback controller, which ensures robust stability of the closed loop

system for all “admissible uncertainties”. The challenge is to design a controller that meets

desired performance metrics and maintains stability despite the uncertainties in the system.

The authors develop a linear matrix inequality (LMI) approach to solve these problems.

This work considers only actuator faults and/or unknown parameters.

2.2.1.2 Active Fault Tolerant Control

In contrast to passive control, active FTC approaches focus on responding to an

identified, or diagnosed fault. In order to respond to a fault, active controllers require a

mechanism for detecting and isolating faults. Typically, an active FTC will have a Fault

Detection and Identification (FDI) scheme and a controller reconfiguration mechanism

paired with a reconfigurable controller [36]. The structure of an FTC system is depicted in

Figure 2.6.

17

Figure 2.6. Traditional Control Loop with Fault Detection & Diagnosis Block.

In Figure 2.6 yref is the desired output of the system under control (i.e., condition

the controller is trying to reach). The output of the controller is designated by u while the

output of the system under control (the plant) is designated as y. Under normal operations,

the controller compares yref to y and adjusts the next value of u to compensate for any error

in the last value of y.

The fault diagnosis block receives the input (u) and output (y) from the system, and

checks its consistency with the behavior of the system. If the I/O sequence is consistent

with the normal behavior of the system, then the system is considered to be working in the

normal condition by the FDD block and will continue working with the nominal controller.

If the I/O sequence is not consistent with the nominal behavior of the system, then the FDD

block detects occurrence of a fault. Specifically, the measured difference between normal

18

and abnormal behavior is tracked and accumulates as a residual. Once the residual crosses

a predetermined threshold, the fault is “detected”.

Next, the FDD block tries to find out which fault has occurred by checking the

consistency of the I/O sequence with the faulty behaviors of the system. The result is a

fault candidate fc; the controller is then informed by the FDD block that fault fc has

occurred. A new control scheme, should be designed online, or be selected among pre-

designed controllers such that the faulty system can achieve the control objective.

If such a controller exists, then the system is considered to be fault-tolerant with

respect to the fault fc and the control objective. But if the controller objective cannot be

achieved, the system is not fault tolerant. In this case, a possible solution is to change the

control objective, e.g. by allowing some degradation in system performance.

Set-membership based detection and isolation approaches have been proposed for

the detection of specific faults. These methods generally operate by discarding models of

a system or subsystem that are not compatible with observed data rather than selecting the

most likely model.

There is a multiplicity of methods to perform active Fault Tolerant Control.

Although each method has its own advantages (speed, accuracy, ease of implementation,

etc.) and weaknesses (need for closed-form mathematical models, inability to detect

multiple sensor faults, inability to distinguish between sensor and system faults, and the

need to integrate different approaches together to accomplish different tasks such as

modeling, fault detection, fault isolation, etc.). As shown in Figure 2.1, the approaches used

can be divided into a few broad categories.

19

2.2.1.2.1 Observer Based Controllers

An observer is a system that provides an estimate of the internal state of a given

real system, from measurements of the input and output of the real system. A typical

configuration of a system with an internal observer is shown in Figure 2.7.

Figure 2.7. Control System with Internal Observer.

Observers are a popular tool employed in the active FTC area for fault detection.

The work in [37] introduces an observer-based approach to estimate the actuator fault in a

system and design an FTC strategy that compensates for the effects of the fault. The authors

use a quadratic boundedness approach to design the observer so that the state and fault

estimation errors converge to the origin.

In [38] the authors estimate simultaneous sensor and actuator faults using an

adaptive observer based on the quadratic Lyapunov approach. The solution is described as

an optimization problem formulated in terms of linear matrix inequalities. The proposed

20

controller is applied to a VTOL (vertical take-off and landing) aircraft system. The work

in [39] also uses an adaptive observer but it is applied to aircraft engines in this case.

2.2.1.2.2 Model Predictive Control

Model Predictive Control (MPC) relies explicit model of the system to predict a

future output chain (ŷ). The basic structure of MPC is shown in Figure 2.8.

Figure 2.8. Basic Structure of Model Predictive Control.

Based on predicted system output (ŷ) and current system output (y), the error (e) is

calculated. The error is fed into the optimizer which calculates the future optimal control

sequence (Δu) using the cost function and constraints. The sampling instant is represented

by k.

As an example, the work in [40] develops multiple models off-line then uses

multiple MPC on-line to switch between models as faults are detected. The approach is

demonstrated on a simulated DC servo from the MATLAB® controls toolbox.

The work in [41] takes on a more challenging effort in using a discrete controller

with an analog continuous system (these combinations are known as hybrid systems).

21

Intended to control an aircraft conducting air-to-air refueling, this work uses Hybrid Bond

Graphs to capture the interactions in the physical system and temporal causal graphs to

derive state-space equations for fault isolation and to estimate fault magnitudes.

2.2.1.2.3 Adaptive Control

Adaptive control changes the control law with parameters that may be uncertain or

at least variable over time. A generic adaptive control diagram is shown in Figure 2.9.

Figure 2.9 Generic Adaptive Control Diagram.

Unlike robust control, adaptive control requires no a priori knowledge of the bounds

of the parameters or variables in question. Adaptive controls can be direct or indirect.

Indirect adaptive control estimates the parameters of the controller using a model of the

process. Direct adaptive control uses the I/O data to calculate the controller parameters.

Reactive responses only take effect once the attack has been detected. They then

reconfigure the control action to mitigate the impact of the attack on the system.

22

Many reactive controllers require switching between models or modes to maintain

control. Upon detection of a fault, the switching methodologies in [42] and [43] generate a

model or vector for the controller to compensate for the detected abnormality.

Model-based responses use models of the system under normal conditions (i.e., not

under attack) and compares them to the values received from the system under control to

determine the best response to keep the system in a desirable state.

There are two general types of model-based adaptive control:

Model reference adaptive controllers (MRACs) which incorporate a reference model

defining desired closed loop performance [44] as shown in Figure 2.10.

Figure 2.10. Model Reference Adaptive Control Diagram.

Examples of this approach are found in [45] and [46] in which the authors present

a method for handling “locked in place” actuator faults by using a model of the system

with known actuator faults as a reference to design a control structure to dealing with

unknown actuator faults.

23

The other method is Model identification adaptive controllers (MIACs). This

approach builds a mathematical model of the system while the system is running as

shown in Figure 2.11.

Figure 2.11. Model Identification Adaptive Control Diagram.

An example of this approach is found in [47]. Here the authors use online model

and control derivative identification to control the X-33 reusable launch vehicle in ascent

mode.

For both approaches, different types of models are used such as finite state

machines [48] or linear models that can be used to represent nonlinear systems [49]. Others

use redundant back-up controllers [50] or models of the process controller itself [51] [52]

[53]. For further related work in the field of active FTC, the reader is referred to references

[A1-A82] in Appendix A.

In summary, the examples of published work in the area fault tolerant controls can

be grouped as either active or passive as shown in Table 2.1.

24

Table 2.1. Passive and Active Fault Tolerant Control References.

Passive FTC Active FTC

[16] [17] [18] [19] [20] [21]

[22] [23] [24] [25] [26] [27]

[28] [31] [32] [33] [34] [35]

[37] [38] [39] [40] [41] [42]

[43] [44] [45] [46] [47] [48]

[49] [50] [51] [52] [53]

A: [A1-A82]

2.2.2 Data-Driven Control vs. Model-Based Control

Up to this point, the control literature reviewed has been model-based. There is

another separation in control approaches that cuts across both active and passive FTC; that

is Model-Based Control (MBC) vs. Data Driven Control (DDC) [54]. Since at least one

application of the proposed controller in this dissertation uses a data-driven design, it is

appropriate to review the fundamentals of DDC.

Data-driven controls are the control theories and methods in which the controller is

designed directly using on-line or off-line I/O data of the controlled system or knowledge

from the data processing without using explicit or implicit information of the mathematical

model of the controlled process, and whose stability, convergence, and robustness can be

guaranteed by rigorous mathematical analysis under certain reasonable assumptions [55].

The reason to make the division between MBC and DDC is that MBC theory can

only solve control problems when reliable mathematical models are available and the

uncertainties are constrained within a known moderate bound. DDC methods are the better

choice for control problems in which the mathematical model is difficult to establish or

25

unavailable or if the mathematical model is complicated with too high of an order or too

much nonlinearity [54].

Data direct controls generally fall into one of two structure types. The first is those

with a fixed controller structure. This kind of DDC method involves controller design that

depends only on plant I/O measurements with a pre-specified fixed controller structure.

Controller parameters are obtained from some optimization procedures, such as batched or

recursive algorithms. Here the controller design problem is transformed into the controller

parameter identification with the help of the assumption that the controller structure is

known prior and linear in controller parameters. No information regarding the plant model

or dynamics is involved. The main issue in this kind of methods is how to determine

controller structure for a given controlled plant.

Obtaining a good controller structure with unknown parameters, especially for

general nonlinear systems, is quite difficultAnother issue with this kind of DDC method is

the lack of the stability and analysis methodologies.

The second (and more interesting) type of DDC is made up of those systems with

an unknown controller structure. These can further be divided into 2 subsets; Apparent

DDC methods and Model-free DDC methods.

Apparent DDC methods. In this DDC method the controller design is dependent

only on measured plant I/O data and the plant model structure and the dynamics are

implicitly involved in controller design. The controller design and methods of theoretical

analysis are similar to those of MBC designs. However, they are also more robust when

they are used in practice. The direct adaptive control and predictive control methods

(described previously) are typical of this [56].

26

Model-free DDC methods. This kind of DDC method implies that the controller is

designed directly simply using the measured plant I/O data, without explicitly or implicitly

using model information. This is the ideal type of DDC method. The outstanding feature

of this kind of DDC methods is that it has a systematic controller design framework and

systematic means of analyzing stability. The main difference between this kind of DDC

method and others is that the effectiveness or rationality of the controller structure or

controller designing is theoretically guaranteed using rigorous mathematics. This strategy

can deal with the system control problems using a uniform way both for linear and

nonlinear systems.

2.2.2.1 Passive DDC

A passive, model-free FTC method is presented in [57]. In this work several

candidate controllers are designed without any knowledge of the plant model or fault

model(s). Using an approach called unfalsified Control (UC) the controllers that do not

achieve the required performance set by the designer are discarded (falsified) and switched

out of the loop. That controller is then replaced by an unfalsified controller. This process

continues until a controller is placed in the loop that can maintain proper performance. No

fault detection or fault identification steps are involved. The decision to switch controllers

is driven by poor performance of the system, not in response to a fault or attack. This

controller in [57] was demonstrated on a MIMO system.

2.2.2.2 Active DDC

The work in [58] used active model predictive control (described previously)

combined with a data-driven approach to determining the post-fault actions for system

27

recovery. The authors applied the control approach to a 4-motor drone experiencing partial,

single and multiple faults.

In [59] the authors present a data driven compensation controller to make a

traditional PID controller more fault tolerant. This is an active FTC system that is

demonstrated on a DC motor controller experiencing a single fault.

In [60] an integrated data-driven adaptive FTC system design scheme is proposed

for MIMO systems with unknown plant model dynamics. The nominal feedback controller

is first designed with a data-driven observer-based residual generator, which produces a

residual signal when a fault occurs. Then, the data-driven adaptive FTC compensator is

developed using only the online system data. This Model Free Adaptive Control (MFAC)

system is compared to an iterative feedback controller (IFC) on a stirred, heated tank

system.

In an unusual application of active fault detection [61] proposes an unsupervised

model-free approach to detect insulin pump malfunctioning in an artificial pancreas,

relying on data-driven techniques for anomaly detection. It is model-free, thus avoiding the

complex subtask of identifying a model of patient physiology and it is also unsupervised,

thus not requiring labeled data for training, which is difficult to obtain in actual practice.

The authors extract a feature set capable of accounting for the dynamics in type-1 diabetic

physiology and designed to highlight anomalous behaviors associated with pump faults.

They then applied established anomaly detection methods to the data set.

The work in [62] reviews a residual generator-based (active) data-driven fault-

tolerant control framework. The two data driven methods for deriving the optimal

compensator control design are based on gradient decent or machine learning. By analyzing

28

the differences between the cost function of the two methods, it is confirmed that the

solution obtained by the gradient descent method is locally optimal while the reinforcement

learning method’s solution is globally optimal. Both methods are demonstrated on a DC

motor benchmark case study. These systems are nonlinear. The fault used in this work is a

single step disturbance. No discussion about multiple faults.

For more examples of published work in the area of active Data-Driven FTC, the

reader is referred to references [A84-A90] in Appendix A.

In review, the published work in the area of Data-Driven Control can be grouped

in to active and passive DDC as shown in Table 2.2.

Table 2.2. Active and Passive Data Driven Control References.

Passive Active

[16] [17] [18] [19] [20] [21]

[22] [23] [24] [25] [26] [27]

[28] [31] [32] [33] [34] [35]

[57]

[37] [38] [39] [40] [41] [42]

[43] [44] [45] [46] [47] [48]

[49] [50] [51] [52] [53]

A: [A1-A82]

[58] [59] [60] [61] [62]

A: [A84-A90] D
D

C

 F

T
C

This last example brings up another area of research applicable to fault tolerant

controls. That is the application of artificial intelligence methods in FTC.

2.2.3 Artificial Intelligence in FTC

The use of artificial intelligence techniques in fault tolerant control has been

researched since 1988. Part of the reason for the interest is AI methods can be readily

29

applied to nonlinear systems which can be a challenge with crisp mathematical methods.

Like conventional FTC methods, AI related FTC can be grouped as either passive or active.

2.2.3.1 Passive FTC using Artificial Intelligence

The first published work on using AI with passive FTC or adaptive controls was

the application of Fuzzy Control theory to the flight controls of an F-16 experiencing

actuator faults [63] also found in [64]. In this work, the authors use fuzzy model learning

to teach the controller normal aircraft responses to various pilot inputs. With the “normal”

model in memory, the controller used fuzzy control principles to adapt the controller

outputs when the aircraft behavior varied from the normal model. The approach is effective

to a point. The authors found that trying to model all possible fault conditions resulted in

degraded performance of the controller under normal conditions as well as being very

computationally demanding.

Like all fuzzy controllers, this approach is well suited to non-linear systems. While

this work could theoretically handle more than one simultaneous actuator faults, the

possibility of co-occurring sensor faults is not addressed in this work.

In 2001, the authors of [65] published work on a fuzzy logic-based damage-

mitigation controller. The system uses a dual level control scheme. In addition to the

normal (lower level) control functions the controller also employs a structural model of the

system and a damage prediction model. Using data from the system during operation, the

damage prediction model informs the fuzzy damage controller (higher level control) when

conditions indicate a higher likelihood of damage to a critical component. The fuzzy

damage controller then adjusts the control signals to the system to lessen the likelihood of

30

damage to a component This early work added to the body of research, but is not actually

FTC.

In [66], which was published in 2011, the authors investigate the position and

velocity tracking control problem with high-speed trains with multiple vehicles connected

through couplers. A dynamic model reflecting nonlinear and elastic impacts between

adjacent vehicles as well as traction/braking nonlinearities and actuation faults is derived.

They developed neuro-adaptive fault-tolerant control algorithms to account for various

factors such as input nonlinearities, actuator failures, and uncertain impacts of in-train

forces in the system simultaneously. The resulting control scheme is essentially

independent of any system model and is primarily data-driven because with the appropriate

input–output data, the proposed control algorithms are capable of automatically generating

the intermediate control parameters, neuro-weights, and the compensation signals, literally

producing the traction/braking force based upon input and response data only. The process

does not require precise information on system models or system parameters.

Finally, in [67] the authors propose a passive fault-tolerant tracking controller for

use with a class of uncertain, non-linear systems with intermittent faults and time delays.

The proposed controller uses a fuzzy control system combined with a PID controller on a

two-tank system experiencing intermittent actuator faults.

2.2.3.2 Active FTC Using Artificial Intelligence

Research in using artificial intelligence in active FTC was first published in 1988

when the authors of [68] proposed adding a learning portion to a rule-based FTC system

so that new rules for controlling the system can be generated to respond to an unanticipated

fault in the system. The controller used redundant software and hardware to ensure accurate

31

data (at varying levels of fidelity) was available when required. The rules and normal

operating data were stored in a lattice structure. Rules for all anticipated faults were

included in the original controller design. When an unanticipated fault was detected, the

controller would search by depth and by breadth across the lattice for the existing data and

rules that best match the conditions of the unanticipated fault and generate control actions.

The authors of [69] use a multi-layer perceptron network as the process model and

adapt it on-line using extended Kalman filters to learn changes in process dynamics. In this

way, the adaptive model learns the post-fault dynamics caused by actuator or component

faults. Then, the inversion of the neural model is used as a controller to maintain the system

stability and control performance after fault occurrence. The convergence of the model

inversion control is verified using the Lyapunov method.

In [70] the authors provide an overview of applying a neural network to the control

of a nonlinear system for the purpose of detecting, identifying and accommodating a fault

in the system. The fault(s) are unspecified but categorized as either “incipient” or “abrupt”

and are, therefore, only described their time profile matrix. A learning algorithm is used to

approximate the function of the fault thus acting as detector and identifier all in one. No

mention is made of detecting more than one fault at a time.

The authors of [71] integrated model-based adaptive control and reconfiguration

based on fault detection and diagnosis. The adaptive controller and the fault detection

scheme are based on a fuzzy model process. In this case it is applied to a heat exchanger

which is a non-linear system. The topic of addressing multiple simultaneous faults is not

addressed.

32

The authors of [72] show that a dynamic fuzzy logic controller (DFLC) could be

shown to be equivalent to a sliding mode controller, but without the chattering they

experience during disturbances. Sliding mode controllers have a “dead zone” in which the

control equations converge to zero for second order (and lower) systems. This work applies

the DFLC to higher order nonlinear systems.

Similarly, in [73] the authors apply fuzzy logic techniques to affect the gain on a

sliding mode controller to design a discontinuous controller for nonlinear multivariable

systems to eliminate the chattering they experience during disturbances.

In [74] a genetic algorithm is used to design a fault tolerant controller for the active

magnetic bearings used by the Rolls Royce turbomachine’s rotor. This is a nonlinear

system. The controller has a fault compensator which responds by shifting the workload to

neighboring coils when the controller detects that one has failed (which is the anticipated

fault). The authors do discuss the application of this approach to multiple coil failures but

do not implement in under those conditions.

A genetic algorithm is also used in [75] to train a multi-layer neural network. The

controller relies on redundancy to ensure there is a fault-free data path and the neural

network selects which data path to use when a fault is detected by the active detection

circuit. The genetic algorithm retrains the network weights. The controller is implemented

on a Field Programmable Gate Array (FPGA).

The authors of [76] use a genetic algorithm to redesign the sliding mode controller

after a fault is detected. This approach preserves much of the dynamics of the system

unaffected by the failure.

33

For more published work in the area of active FTC using artificial intelligence

techniques, the reader is referred to references [A91-A117] in Appendix A.

In summary, the examples of published work in Artificial Intelligence in fault

tolerant and adaptive controls can be grouped as either active or passive as shown in Table

2.3.

Table 2.3. Passive and Active References on Artificial Intelligence in FTC.

Passive Active

[16] [17] [18] [19] [20] [21]

[22] [23] [24] [25] [26] [27]

[28] [31] [32] [33] [34] [35]

[57]

[63] [64] [65] [66] [67]

[37] [38] [39] [40] [41] [42]

[43] [44] [45] [46] [47] [48]

[49] [50] [51] [52] [53]

A: [A1-A82]

[58] [59] [60] [61]

A: [A84-A90]

[62]

 [68] [69] [70] [71] [72] [73]

[74] [75] [76]

A: [A91-A117]

 A

I

 D

D
C

F

T
C

2.2.4 Deep Learning in Fault Tolerant Controls

Deep learning is a comparatively recent development in Artificial Intelligence.

While deep-learning networks are a type of Artificial Neural Network (ANN) they differ

from the traditional neural networks referenced previously. Deep-learning networks are

34

capable of effectively working with much larger data sets than traditional neural networks.

Additionally, deep-learning networks do not require any type of a priori feature extraction.

2.2.4.1 Active Fault Tolerant Control Using Deep Learning

There are a few examples of deep-learning methods being used in active FTC

systems. The earliest is from 2016 in which the authors used a stacked sparse auto encoder

to learn the deep architectures of fault data to minimize the loss of information in the event

of a fault. Their proposed method was used to improve the divisibility between faults and

normal process, and classify faults in the chemical benchmark, Tennessee Eastman Process

(TEP) data [77].

In 2018 the authors of [78] used a hybrid recurrent/convolutional neural network

model to estimate adaptation parameters for F-16 aircraft dynamics experiencing

actuator/engine faults. The model is trained offline from a database of different failure

scenarios. When a fault occurs, the model identifies adaptation parameters and feeds this

information to an adaptive controller, which changes its configuration to better handle the

fault. This controller works especially well in the case of significant actuator faults/failures.

Another active FTC application of deep learning is found in [79] published in 2019.

Here the authors proposed a real-time fault diagnostic model for air-handling units

(AHUs); the model used deep learning to improve the operational efficiency of AHUs.

EnergyPlus® simulation software was used to establish different types of fault operation

behavior data to serve as reference for the deep-learning network, thus improving the

reliability of the diagnostic model. The proposed deep neural network features five hidden

layers, each comprised of 200 neurons.

35

The authors of [80] propose using deep-learning tools, specifically auto-encoders,

to actively identify faults in in the assemblies of automobile instrument clusters.

In [81] the authors propose a fault diagnosis method based on convolutional neural

network (CNN) for aero-engine sensors. Convolutional layers and pooling layers in a CNN

are used to extract correlation features among sensed signals, based on which fully

connected layers are used to actively diagnose sensor faults. The inception module method

is used to extract features on different data sizes among sensors, making the method

capable of detecting multi-sensor faults.

More recently, a Long Short-Term Memory (LSTM) network was used to actively

diagnose sensor bias in an air-cooled chiller system [82].

In [83], a mapless movement policy for robots is presented. Deep reinforcement

learning is used to create a policy which is capable of handling a robot even when some of

its sensors are broken. The policy is based on three neural models capable not only of

moving the robot, but also learning the best movement behavior to adapt it to its perception

needs.

The other FTC-related deep learning work is based around bearing fault detection

and fault identification [84]. The publications in this survey use, autoencoder networks,

restricted Boltzman machines and convolutional neural networks to detect and/or identify

failing bearings.

2.2.4.2 Passive Fault Tolerant Control Using Deep Learning

We are not aware of any passive FTC systems that employ deep-learning methods.

Thus, passive FTC using deep-learning methods appears to be a research area of potential

interest.

36

The examples of published work in deep learning in active fault tolerant and

adaptive controls are added to the active FTC group as shown in Table 2.4.

Table 2.4. Passive and Active FTC Methods with Deep Learning Included.

Passive Active

[16] [17] [18] [19] [20] [21]

[22] [23] [24] [25] [26] [27]

[28] [31] [32] [33] [34] [35]

[57]

[63] [64] [65] [66] [67]

[37] [38] [39] [40] [41] [42]

[43] [44] [45] [46] [47] [48]

[49] [50] [51] [52] [53]

A: [A1-A82]

[58] [59] [60] [61]

A: [A84-A90]

[62]

[68] [69] [70] [71] [72] [73]

[74] [75] [76]

A: [A91-A117]

[78] [79] [80] [81] [82] [83]

[84]

D

L

A

I

 D

D
C

 F

T
C

The control approach proposed in this dissertation is a passive controller that uses

deep-learning methods.

All of the works discussed thus far have some form of limitation. Active FTC

controllers must rely on detecting and identifying a fault. To prevent the poor performance

that would result from a high rate of false positives or false negatives in the detection

mechanism, some form of cumulative residual is calculated thus forcing a delay between

37

the onset of the attack or fault and the detection of it. Once detected, the active FTC system

must select the appropriate corrective action. Combined, these steps result in a delay that

could allow the system under control to experience a critical failure before control is

regained.

Among the passive FTC works cited, the limitations are primarily system-based

(linear or piece-wise linear only) [16] [17] [19] [23] [24] or component-based (sensor faults

only [26] [34] or actuator faults only [22] [18] [27] [31] [35] [63] [64] [67]). The other

limitations are the requirement to add redundant components [25] [32] or limiting the types

of attacks or faults that can occur [20] [21] [28]. Table 2.5 summarizes the limitations as

described.

Table 2.5. References Sorted by Limitations.

Limitation Referenced Work

Response Delay from Fault/Attack Onset All Active FTC

Linear (Piecewise Linear) Systems Only [16] [17] [19] [23] [24]

Sensor Faults Only [26] [34]

Actuator Faults Only [22] [18] [27] [31] [35] [63] [64] [67]

Redundancy Required [25] [32]

Specific Attack/Fault Types Only [20] [21] [28]

The ideal controller would adapt to the effects of faults and attacks as a matter of

routine operations, not relying on a detection mechanism. This controller would be able to

deal with attacks and faults on both sensors and actuators. It would be able to work on

linear and nonlinear systems alike and would not require adding additional redundant

components to function properly. In this work, we propose such a controller.

38

2.2.5 Faults and Cyber-Attacks on FTC as Represented in Literature

In the body of FTC work, the faults that can affect the system under control are

represented in different ways. In [70] the speed at which the faults occur was addressed by

categorizing them as either abrupt or incipient. Abrupt faults occur quickly and are

generally easier for active FTCs to detect and identify, while the effects of incipient faults

come on gradually over time and can be more difficult for active FTCs to detect or identify.

In identifying the faults that could affect a wind turbine [85], the authors separate

out the faults as sensor faults and actuator faults. The sensor faults are labeled as Fixed

Value or Gain Factor. A Fixed Value fault occurs when the sensor repeatedly reports the

same value when that value should be changing. A Gain Factor fault is one in which the

sensor reports a higher value than is correct, but the reported value does change over time.

For actuators, the faults are labelled as either Offset or Changed Dynamics. An Offset fault

is said to have occurred when an actuator consistently misses the intended end state by the

error size. A Changed Dynamic fault occurs when the actuator responds differently to a

given command.

A popular approach in much of the research is to assume the fault is manifested as

a fading component. For example, the work in [86] represents the faulty actuator as

responding to the control command at some level below that which is intended.

Mathematically, faults are often treated as additive or multiplicative terms [87]

appended to the in the model of the system.

Taken together, these articles provide useful examples of different ways that

component faults can be represented, but none provide a comprehensive picture of the

effects of faults on industrial control systems.

39

Three studies were conducted in 2017. The authors of [88] present a model-based

software development framework integrated with a hardware-in-the-loop (HIL) testbed for

rapidly deploying CPS attack experiments. The framework provides the ability to emulate

low level attacks and obtain platform specific performance measurements that could be

difficult to obtain in a traditional simulation environment. This work focused on the attack

vectors and types of attacks (DDoS, packet sniffing, side-channel attacks, etc.) rather than

looking at the effects of the attacks on control components.

In [89] the authors capture and systematize existing research on CPS security under

a unified framework. The framework consists of three orthogonal coordinates: (1) from the

security perspective, they follow the well-known taxonomy of threats, vulnerabilities,

attacks and controls; (2) from the CPS components perspective, they focus on cyber,

physical, and cyber-physical components; and (3) from the CPS systems perspective, they

explore general CPS features as well as representative systems (e.g., smart grids, medical

CPS and smart cars). Here again the research does not drill down to the physical component

level.

In [90] the authors present an analysis method (STPA-SafeSec) to consider both

system safety and security. This work references the physical layer components as part of

the process analysis, but does not address specific effects at that layer.

In work leading up to this dissertation [91] industrial control systems were modeled

along with inputs from an attacker and the system response was tested using formal

verification. That research highlighted the necessity of knowing all the effects a fault or

cyber-attack can have on a CPS.

40

There is no published work that addresses the full range of effects that cyber-attacks

and faults can have at the physical layer of a cyber-physical system. We address this in

Chapter 3.

2.3 Summary

This chapter reviewed the relevant research in the area of fault tolerant controls

(both active and passive), data driven fault tolerant controls, the use of artificial intelligence

in FTC and, specifically, the application of deep-learning methods. The limitations of

previously published works were identified and the area of passive FTC using deep

learning was identified as an open area of research. There was also a review of the research

addressing the types of faults and attacks and how they are represented in the TC research.

41

 Background and Methodology

3.1 Chapter Overview

As stated in Chapter 1, this dissertation presents a novel, passive controller for

industrial control systems designed to operate properly in the presence of multiple cyber-

attacks and/or component faults. This chapter initially presents background information on

the network structure and protocols used by industrial control systems. This is followed by

the development and introduction of a taxonomy of the effects faults and cyber-attacks can

have on the physical components of the system. The chapter also introduces the design of

a deep learning-based, passive controller design for ICS networks. The application of the

taxonomy of effects to training and testing this controller is discussed. Finally, a version

of the controller that uses an ensemble of smaller networks instead of a single large network

is described.

3.2 ICS Networks

Industrial Control Systems can be very complex with multiple layers of activity, as

shown in Figure 3.1 (originally from the DoD Committee on National Security Systems

Instruction (CNSSI) No. 1253, “Security Categorization and Control Selection for National

Security Systems”). In this layered representation, the highest layer represents the interface

between the ICS and the outside world while the lowest layer represents the physical

components that interface the controller to the system under control. Layers 2 through 5

use well known Internet Protocols (IPs).

42

Figure 3.1. CNSSI 1235 ICS Overlay Enclave Authorization Boundary & Layers [92].

Less well known are the non-IP connections appearing in layers 0 through 2, as

shown in Figure 3.2.

Figure 3.2. Notional ICS Network.

43

Depending on the size and complexity of the ICS network, it may or may not

include Programmable Logic Controllers (PLCs) or Remote terminal Units (RTUs). A

small control system may have the controller tied directly to the individual components

(actuators and sensors) that interact with the physical system (or plant) under control.

The connections from layer 2 down to layer 0 can be radio, cellular or wired

(telephone, coaxial or Ethernet). These connections are referred to as a “fieldbus”. Fieldbus

was the original protocol used for these communications. According to the International

Electrotechnical Commission (IEC), there are 16 different Communication Profile

Families (CPFs) or protocols used in process controls [93]. Fieldbus is the generic term for

any of them. The most common are Foundation Fieldbus, Profibus, Modbus, and the

Control and Information Protocol (CIP). For the purposes of this research effort no

distinction is made between various fieldbus protocols. All of them carry data to and from

the controller. The particular format of the data and the protocol(s) used are irrelevant to

this research effort.

3.3 Effects of Cyber-Attacks and Faults

The survey [89] cited in Chapter 2 provides a taxonomy of cyber threats (Criminal,

Espionage, Insider, etc.) and identifies the various types of cyber-attacks that can affect

cyber-physical systems. However, the effects discussed are limited to the system level and

the proposed “controls” are all focused on limiting network access to the system. Nowhere

in the literature is there discussion of the component-level effects that cyber-attacks can

have on an industrial control system. The remainder of this section uses the ICS enclave

layers described in Figure 3.1 and the list of ICS attacks listed in [89] as the starting point

44

to develop a taxonomy of cyber-attack effects on ICS. The effects of faults are also rolled

in so the resulting taxonomy can be used in the training and/or testing of a control system

meant to address the faults and cyber-attacks that can impact an ICS.

The cyber-attack examples include the attack on the Maroochy Water Services in

Queensland Australia. In that case, the attacker accessed the system via a wireless

communications link (layer 2) and used his system knowledge to send false commands to

the system pumps (actuators) at layer 0.

In the Stuxnet example, the malware was written to exploit the lack of encryption

on the Siemens motor controllers and the fieldbus that connected them to infect the system.

This resulted in harmful control commands being injected into the system and false sensor

signals being sent to the controllers so the human monitors were not aware of the

misbehaving systems. With Stuxnete, the attack entered the system at layer 5 and

propagated through the ICS until it found its way to the motor controllers (layer 1).

The German steel mill attack [1] was an example of hackers accessing the corporate

IT network (layer 5) and pivoting via layer 4 to the operational network (layer 3). In that

case the hackers used the controllers in layers 2 and 1 to eventually manipulate multiple

actuators (layer 0) and put the system into a state from which the blast furnace could not

easily be shut down.

The Modbus worm [94] exploits the lack of authentication in the Modbus protocol.

The worm has been demonstrated to cause DoS attacks by causing servers to repeatedly

reset and injecting false command signals to the system actuators.

A research effort using the Shodan program [95] found over 14,000 ICS directly

connected to the internet. Web-based attacks have been used to leave devices in an open

45

connection state thus allowing an illegitimate user to access the field devices remotely and

execute malicious commands or cause a denial of service to the legitimate users.

Looking across these examples, there is no single means of access or type of attack

that was common to all. The only common factor in each was that the field devices (sensors

and/or actuators) of the system were affected. In the case of the Denial of Service attacks,

the field devices never received the command signals and therefore did not respond. In

those attacks where malicious control signals were introduced to the system. The actuators

responded to those modified signals. The Stuxnet attack was a good example of falsified

sensor data being introduced into the system thus preventing any notification that the

system was behaving abnormally.

3.4 Taxonomy of Effects on Physical Components

At layer 0, sensors and actuators are the components which interface between the

cyber side and the physical side in cyber physical systems as shown in Figure 3.3.

Figure 3.3. Basic Control System

46

From the perspective of the controller, the information of interest is the last control

signal sent to the actuator(s) of the plant 𝑢𝑡 and the output reported by the sensor(s) of the

plant 𝑦𝑡. A “dumb” controller assumes the actuators are behaving as commanded and that

the sensor readings it is receiving are accurate. Therefore, minimizing any difference (or

error) between the reported output 𝑦𝑡 and the desired output 𝑦𝑟𝑒𝑓 is addressed by adjusting

the commands to the plant actuators 𝑢𝑡. Other than the sensor readings 𝑦𝑡, the plant is a

black box operation to the controller.

In reality the output error could be caused by an attack or a fault of the actuator

(shown as 𝑢̂𝑡 in Figure 3.4) or the error may be incorrectly perceived by the controller

because of an attack or a fault of the sensor (shown as 𝑦̂𝑡 in Figure 3.4). Even more

challenging still, is a combination of both.

Figure 3.4. Basic Control System with Attacks/Faults

47

A control system, like that shown in Figure 3.4. can be modeled using simple

differential equations

𝑥̇ = 𝐴𝑥 + 𝐵𝑢

𝑦 = 𝐶𝑥 + 𝐷𝑢

Where 𝑥 is the system state, 𝑢 is the input to the system actuator(s) and 𝑦 is the

output from the system sensor(s). A common way of representing a fault in the system is

to add the fault term to the equations. So, an actuator fault would be represented in the

differential equations as

𝑥̇ = 𝐴𝑥 + 𝐵𝑢̂

𝑦 = 𝐶𝑥 + 𝐷𝑢̂

Where 𝑢̂ is the resulting faulty actuator signal resulting from some function of 𝑢

and an erroneous or malicious input 𝑣.

𝑢̂ = 𝑓(𝑢, 𝑣)

Similarly, a sensor fault would be a function of the output equation and a faulty or

malicious input s.

𝑦̂ = 𝑓(𝐶𝑥 + 𝐷𝑢, 𝑠)

This 𝑢̂ and 𝑦̂ nomenclature will be used through this section and we will return to these

control system equations shortly.

By focusing on the effects of faults and/or attacks, rather than how the attack or

fault occurred, we can enumerate and describe the effects of cyber-attacks and faults in

terms of how the system sensors and actuators behave. We present the development of a

taxonomy of these abnormal behaviors which will be referenced in later chapters of this

work.

48

3.4.1.1 Sensors

The term sensor refers to a device that measures something from the physical

system under control and reports that measurement to the controller. All modern ICS

sensors operate on common principles; a physical change in the system produces a

corresponding electrical (voltage, current, capacitance, etc.) change in the sensor. Figure

3.5 shows an example of a water level measurement sensor.

Figure 3.5. Example Water Level Sensor [96]

In the case of this example sensor, changing water level causes a change in the

capacitance of the sensor. That capacitance measurement is converted (via Capacitance-to-

Digital Converters) to a digital signal which is then sent to the controller via the fieldbus.

From one time increment (𝑡) to the next (𝑡 + 1), the value of the measurement sent

(reported) from a properly functioning sensor can only change in one of three ways as

shown in Table 3.1, where y is the value of the reported signal from the sensor.

49

Table 3.1. Possible Changes of Sensor Measurement Values

Value Change

Increase yt < yt+1

Decrease yt > yt+1

No change yt = yt+1

Any fault in the sensor can cause the value of the reported measurement (y) to be

different than the actual value. Similarly, a cyber-attack on the system can alter or replace

the value being reported via the fieldbus from the sensor. In either case, if the reported

value is incorrect, there are only four comparative ways in which the measured value can

differ from the actual value over a single time step as shown in Table 3.2, where 𝑦̂ is the

corrupt reported value, and 𝑦 is the correct value of the measurement (i.e., the value that

should have been reported).

Table 3.2. Possible Changes in Reported Sensor Measurement Values

Reported Value Differs from Actual Value

High ŷt = yt AND ŷt+1 > yt+1

Low ŷt = yt AND ŷt+1 < yt+1

No change ŷt = yt AND ŷt = ŷt+1 AND yt ≠ yt+1

No value ŷt = yt AND ŷt+1 = { }

These four comparative variations between the reported and actual values can be

considered the building blocks for creating the effects of a fault or cyber-attack on the

sensor. By expanding the time frame to cover several consecutive time steps, we begin to

see more possible effects. If the same type of effect persists over time, the resulting effect

remains the same. If different basic effects are combinations of these effects can be added

50

to those already identified. If there is a pattern to the combination the effect is cyclical,

otherwise it is stochastic. Thus, the effects on the reported value, as compared to the actual

value, can be represented by the six different effects described in Table 3.3. These six

representative effects can be set to start abruptly or gradually (incipient faults) and, of

course, the specific values of the variables should be set to match the system to be tested.

Table 3.3. Fundamental Effects on Sensors

 Sensor Effect Descriptions

1
Increased

Value
𝑦̂𝑡+𝑧 = 𝛼 + 𝑦𝑡+𝑧 𝑂𝑅 𝛼̆(𝑦𝑡+𝑧) Where α > 0 and 𝛼̆ > 1

2
Decreased

Value
 𝑦̂𝑡+𝑧 = 𝛽 + 𝑦𝑡+𝑧 𝑂𝑅 𝛽̆(𝑦𝑡+𝑧) Where β < 0 and 0 < 𝛽̆ < 1

3
Stochastic

Value
𝑦̂𝑡+𝑧 = 𝑦𝑡+𝑧 +

1

𝜎√2𝜋
𝑒−

(𝑧−𝜇)2

2𝜎

Where μ is mean and σ is the

standard deviation of additive

Gaussian noise

4
Cyclical

Value
𝑦̂𝑡+𝑧 = 𝑦𝑡+𝑧 + 𝛾 𝑠𝑖𝑛(𝛿𝜋𝑧)

Where γ determines the

magnitude of an additive cyclical

effect and δ determines the

frequency

5
Fixed

Value
 𝑦̂𝑡+𝑧 = 𝜀 Where ε is the fixed value

6 No Value 𝑦̂𝑡+𝑧 = { }

Returning to the control theory equation for the sensor output

𝑦̂ = 𝑓(𝐶𝑥 + 𝐷𝑢, 𝑠)

The variable s is drawn from the third column of Table 3.3. If, for example, the

control designer wants to represent an additive effect (# 1 through #4) to their system

model, the output equation would take the form 𝑦̂ = 𝐶𝑥 + 𝐷𝑢 + 𝑠. For multiplicative

effects (#1 or #2) the output equation would take the form 𝑦̂ = 𝑠(𝐶𝑥 + 𝐷𝑢). Effects #5

and #6 are simple replacement functions (i.e., 𝑦̂ = 𝑠).

51

3.4.1.2 Actuators

An actuator is a device that effects a change in the physical system under control.

The actuator receives an electronic command signal from the controller via the fieldbus

and converts that signal into physical action.

The process to develop the effects of cyber-attacks and faults on actuators is very

similar to that done for sensors. From one time increment (t) to the next (t+1), the value of

the command signal sent to a properly functioning actuator can only change in one of three

ways as shown in Table 3.4, where u is the value of the command signal.

Table 3.4. Possible Changes in Actuator Command Values

Value Change

Increase ut < ut+1

Decrease ut > ut+1

No change ut = ut+1

A cyber-attack on the system can alter or replace the command signal value to the

actuator. Similarly, a mechanical or electrical fault in the actuator can cause the actuator to

respond to the command signal as if the value of the signal were something different than

the actual value u. In either case, if the actuator does not respond as desired, there are only

four ways in which the action value can differ from the commanded value over a single

time step as depicted in Table 3.5, where û is the altered or misinterpreted command signal.

These four comparative variations between the received and actual values are the building

blocks for creating the effects of a fault or cyber-attack on the actuator. By expanding the

time frame to cover several consecutive time steps, we begin to see more possible effects.

52

Table 3.5. Possible Variations from Actuator Value

Reported Value Differs from Actual Value

High ût = ut AND ut+1 < ût+1

Low ût = ut AND ut+1 > ût+1

No change ût = ut AND ut ≠ ut+1 AND ût = ût+1

No Value ût = ut AND ût+1 = { }

If the same type of effect persists over time, the resulting effect remains the same.

Combinations of these effects can be added to those already identified. If there is a pattern

to the combination, the effect can be considered cyclical, otherwise it is stochastic. Thus,

the effects on the received command signal value, as compared to the actual value, can be

represented by the six different effects described in Table 3.6. These six representative

effects can be set to start abruptly or gradually (incipient faults) and, of course, the specific

values of the variables should be set to match the system to be tested.

Table 3.6. Fundamental Effects on Actuators

Actuator Effect Descriptions

1
Increased

Value
𝑢̂𝑡+𝑧 = 𝛼 + 𝑢𝑡+𝑧 𝑂𝑅 𝛼̆(𝑢𝑡+𝑧) Where α > 0 and 𝛼̆ > 1

2
Decreased

Value
𝑢̂𝑡+𝑧 = 𝛽 + 𝑢𝑡+𝑧 𝑂𝑅 𝛽̆(𝑢𝑡+𝑧) Where β < 0 and 0 < 𝛽̆ < 1

3
Stochastic

Value
𝑢̂𝑡+𝑧 = 𝑢𝑡+𝑧 +

1

𝜎√2𝜋
𝑒−

(𝑧−𝜇)2

2𝜎

Where μ is mean and σ is the

standard deviation of Gaussian

noise

4
Cyclical

Value
𝑢̂𝑡+𝑧 = 𝑢𝑡+𝑧 + 𝛾 𝑠𝑖𝑛(𝛿𝜋𝑧)

Where γ sets the magnitude of a

cyclical effect and δ determines the

frequency

5
Fixed

Value
𝑢̂𝑡+𝑧 = 𝜀 Where ε is the fixed value

6 No Value 𝑢̂𝑡+𝑧 = { }

53

Returning to the control theory equations for the system, the variable v is drawn

from the third column of Table 3.6. For all of the actuator effects, the system equations

would take the form

𝑥̇ = 𝐴𝑥 + 𝐵𝑢̂

𝑦 = 𝐶𝑥 + 𝐷𝑢̂

If, for example, the control designer wants to represent an additive effect (#1

through #4) to their system model, then 𝑢̂ = 𝑣 + 𝑢. For multiplicative effects (#1 or #2)

the altered input signal is derived from 𝑢̂ = 𝑣(𝑢). Effects #5 and #6 are simple replacement

functions (i.e., 𝑢̂ = 𝑣).

The 12 representative effects (from Table 3.3 and Table 3.6) constitute a taxonomy

of effects that cyber-attacks and faults can have on the sensors and actuators of an ICS.

Using this taxonomy, the control designer can represent the effects as abrupt or incipient,

as intermittent or continuous, as a single effect or in combination with other effects.

This taxonomy is a basis upon which any fault tolerant or adaptive control can be

tested. Because the effects can be applied to any Industrial Control System or any Cyber-

physical system, they can be used to test both active and passive FTC. The flexibility of

setting variable values associated with each effect also means they can be readily applied

to the training of control systems that employ any kind of learning in their design. This

taxonomy is foundational to the controllers designed and presented in later chapters of this

dissertation.

54

3.5 Proposed Controller Considerations

To be generally applicable to ICS, the controller must work with both linear and

non-linear systems. The controller must also be capable of handling faults or cyber-attacks

that affect both the sensors and the actuators of the system. The controller must also be

capable of handling any type of cyber-attack or fault effect.

As mentioned in Chapter 2, the goal of active FTC is ensuring the stability and

performance, possibly degraded, of a system experiencing one or more faults, by

reconfiguring the controller on-line, using a fault detection and diagnosis (FDD)

component that detects, isolates and estimates the current fault. Contrary to this active

approach, the passive solution uses a unique robust controller that, will deal with all the

expected faults. The passive approach has the advantage of avoiding the time delay

required in active FTC for on-line fault diagnosis and control reconfiguration. In addition,

passive controller designs are generally more simple in their design.

A primary criticism of passive (proactive) controllers is that a knowledge of the

types of attacks or faults the controller may face is required a priori. As seen in Chapter 2,

the existing literature regarding passive FTC always places some sort of limitation on the

type of fault, or type of component or type of system to which the controller can be applied.

Since almost any conceivable type of component effect can be represented using the

taxonomy described previously, these limitations can be set aside and a truly universal

passive FTC can be considered.

Because it would be used with complex systems, such a controller must necessarily

be capable of considering multiple simultaneous inputs. Which specific inputs are the most

important will vary from system to system, so the controller should be able to select the

55

inputs used to determine the correct control command. Because the effects of cyber-attacks

and faults are characterized in part by how they change over a segment of continuous time,

the controller must also be able to leverage the change in inputs over a segment in time.

These considerations drove the decision to design the proposed controller around a Long

Short-Term Memory (LSTM) network [97].

3.5.1 Long Short-Term Memory Networks

LSTM networks are a type of deep-learning, recurrent neural network (RNN)

designed to classify activities over time. LSTMs are a favored tool in applications such as

natural language recognition or activity classification from video inputs. Their ability to

use time series inputs makes LSTMs a good candidate for use with industrial control

systems. ICS are commonly continuous-time (analogue) plants controlled by discrete-time

(digital) controllers.

Intended for use with time series inputs, RNNs not only process an input vector but

they also include previous hidden layer values as well. This allows the network to use

previous iterations as part of its calculations for selecting the best output. Because RNNs

use back-propagation to update the network weights during training, they are prone to

phenomena known as “vanishing gradient” and “exploding gradient” [98].

The relationship between layers in a RNN is multiplicative. As a result, in deep

networks (those with many hidden layers), the values being passed back through the

network to update the weights can quickly become so small that they have little or no effect

on the front layers (vanishing gradient). It also easy for the opposite to occur where some

values grow exponentially causing some weights to be grossly over-emphasized (exploding

gradient).

56

LSTM networks address these problems by including a “forget gate” which allows

the individual nodes (called cells) of the network to either carry useful information through

to the next layer to update the weights or dismiss information that will overly affect the

weights. Figure 3.6 shows a notional LSTM cell, also called a block. As shown, an

individual cell takes as input the output of a previous cell ht-1, the previous cell state ct-1,

and the new system input xt, also called a feature. The output from a given cell is denoted

as ht and the state of that cell is ct. The internal gates are the forget gate 𝑓, the input gate 𝑖,

the input modulation gate 𝑔 and the output gate 𝑜.

Figure 3.6. Typical LSTM Block [99].

The equations for the individual cell are given below, in which the subscript t

denotes time.

𝑓𝑡 = 𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)

𝑖𝑡 = 𝜎(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

𝑜𝑡 = 𝜎(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

where

57

𝑓𝑡 represents the forget gate

𝑖𝑡 represents the input gate

𝑜𝑡 represents the output gate

𝜎 represents the sigmoid function

𝑤𝑥 represents the weights for the respective gate (𝑥) neurons

ℎ𝑡−1 represents the output of the previous LSTM block (at time 𝑡 − 1)

𝑥𝑡 represents the input at the current time stamp

𝑏𝑥 represents the biases for the respective gates 𝑥

Since the LSTM network works with time series input data, multiple cells (blocks)

are connected to create the network as shown in Figure 3.7.

Figure 3.7. LSTM Network Logic Structure [100].

The input to the LSTM network is a 2-dimensional array. One dimension is the

number of features (designated as x in Figure 3.7) and the other is the number of time steps

(designated as 𝑐 in Figure 3.7). The number of features is driven by the input data to the

network and is set when the network is designed. The number of prior time steps can vary

58

from feature to feature, but large variations in the number of time steps from one feature to

another can adversely affect the performance of the network [101].

The number of hidden layers and nodes in the network is also determined when the

network is designed. Increasing the number of hidden units can improve the performance

of the network, but comes at a cost of longer training times and increased time to calculate

a solution. Increasing the number of hidden layers in the network can significantly increase

the time required for the network to calculate a solution.

3.5.2 Proposed Controller Design

An overview of the proposed controller is shown in Figure 3.8.

Figure 3.8. Overview of Proposed Controller with Plant.

It takes as input the desired output value of the plant (𝑦𝑟𝑒𝑓), the previous output

value of the plant (𝑦𝑡−1) and the previous input to the plant (𝑢𝑡−1) that resulted in 𝑦𝑡−1.

The output from the controller is the new input to the plant, 𝑢𝑡.

59

From the perspective of the controller, there may be no way to tell if a change in

behavior and associated sensor readings is the result of a faulty sensor, a system fault, or if

it is an accurate measure of a system being affected by an actuator that is in fact under

attack. The normal functioning of the controller must therefore keep the plant performance

within established bounds of “acceptable behavior” regardless of how or why the system

is affected. The proposed controller uses deep learning to learn a policy, or mapping, of

various inputs to the appropriate output. The mapping is a function of the controller inputs

which results in a single desired controller output (𝑢𝑡) to the actuator to which it is assigned.

𝑢𝑡 = 𝑓(𝑦𝑡−1, 𝑢𝑡−1)

The specific stages of the proposed controller are shown in Figure 3.9 and described below.

Figure 3.9. Stages of Controller Using LSTM Network.

3.5.3 Input to the LSTM

The input to the controller includes the values reported by the system sensors and

the control value(s) previously sent to the actuators. These values, along with others

derived from these values are internally calculated. These inputs (called features) are

60

tracked, normalized and presented to the LSTM network as shown in Figure 3.8. The

number of features, their composition and their length (time steps) are all determined by

the designer and are based on the specific system to be controlled.

3.5.4 Data Driven and Model-Based Control

Depending on the system to be controlled, the LSTM-based controller can be purely

data-driven (as with the test subject in Chapter 4) or may be a synthesis of model-based

and data-driven control (as with the test subject in Chapter 5). If the latter is the case, then

along with the input features, the control program also generates values from multiple

internal models of the system under control. The classification decision made by the LSTM

is which model’s output to select based on the input features provided. Because the LSTM

is selecting the model, not the model’s output value, there is only one correct solution, even

if more than one of the models happens to be calculating the same value.

3.5.5 Converting LSTM Output to a Usable Control Signal

The raw output of the LSTM needs to be converted into a signal that is useable by

the system under control. The exact conversion mechanism varies based on the system. In

the case of a simple linear system (such as the test subject in Chapter 4) a set of if-then-

else logic statements may be sufficient. In the case of the test subject in Chapter 5, the

output of the internal models from which the LSTM is selecting are possible values for a

sensor 𝑦𝑖. Once the LSTM network decides which model to select, the output value of the

selected model is fed into a classical controller such as a Proportional-Integral-Derivative

(PID) controller. That PID controller then determines the control signal value 𝑢𝑡 to the

actuator to which it is assigned.

61

The block diagram in Figure 3.10 shows the principles of how these terms are

generated and applied. The figure shows a classical PID controller that continuously

receives an error value as the difference between a desired reference 𝑟(𝑡) and a measured

process variable 𝑦(𝑡) , and applies a correction based on proportional, integral, and

derivative terms. The controller attempts to minimize the error 𝑒(𝑡) over time by

adjustment of a control variable 𝑢(𝑡), such as the speed of a pump motor, to a new value

determined by a weighted sum of the control terms.

Figure 3.10. Traditional PID Controller Block Diagram [102].

The overall control function is

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫𝑒(𝑡′)𝑑𝑡′

𝑡

0

+ 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡

where 𝐾𝑝 , 𝐾𝑖 and 𝐾𝑑 are all non-negative and represent the coefficients for the

proportional, integral, and derivative terms respectively (sometimes denoted P, I, and D).

In the standard form of the equation, 𝐾𝑖 and 𝐾𝑑 are replaced by 𝐾𝑝/𝑇𝑖 and 𝐾𝑝𝑇𝑑,

respectively. This is useful because 𝑇𝑖 and 𝑇𝑑have some understandable physical meaning,

62

since they represent the integration time and the derivative time. Factoring out 𝐾𝑝 results

in the standard form equation:

𝑢(𝑡) = 𝐾𝑝 (𝑒(𝑡) +
1

𝑇𝑖
 ∫ 𝑒(𝑡′)𝑑𝑡′ + 𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0

)

In the proposed controller design, the LSTM network provides the value of the current, or

corrected, sensor reading 𝑦(𝑡) to the PID as shown in Figure 3.9.

In this application the PID controller is employed to allow fine tuning of the overall

controller. The primary goal of fine tuning is to ensure the controller precisely controls the

system when no fault or attack is present. It also simplifies the controller calculations in

cases where the reference level 𝑦𝑟𝑒𝑓 may change during the course of normal operations.

Instead of the LSTM having to learn the proper output to the actuator for all possible 𝑦𝑟𝑒𝑓

levels, the error 𝑒𝑡 is simply calculated and used as a matter of course.

It should be noted that the use of a PID controller was influenced by the specific

test case systems being controlled in this dissertation. A different type of system using this

LSTM-based controller may be able to use a Proportional, Proportional-Integral,

Proportional-Derivative, or other type of controller.

3.6 Training the LSTM Network

Regardless of the number, composition or length of the features, training the LSTM

network(s) requires samples of the features as generated when the system is operating.

Specifically, the samples need to be representative of the system under normal operating

conditions as well as while being affected by faults and/or cyber-attacks that cause the

various behaviors in the sensors and actuators described previously.

63

The data used to train the proposed controller was generated by building a computer

simulation of the test subject systems in MATLAB®. The test subject system in this data

generation step is controlled by a traditional controller that meets the control requirements

when no faults or attacks are affecting the system. This controller has access to true system

values, not just the sensor readings or control signals provided to the system previously.

With the benefit of access to ground truth, the simulated control program can select the

best output for any situation it faces. A combination of correct and incorrect control outputs

are saved and used for training the LSTM network.

The simulation is run, iteratively introducing representative values of each of the

effects of faults and cyber-attacks on each component. Table 3.7 shows how the number

and combinations of data generating simulations runs are determined.

Table 3.7. Numbers and Combinations of Data Generation Runs.

 Components

 A S Runs per

Effect

Total

Runs

N
u

m
b

er

o
f

E
ff

ec
ts

 X - A A(X)

- Y B B(Y)

X Y C C(XY)

 Total ∑

The example in Table 3.7 is for a controller with two components that will be

affected for testing and training. For some component effects, additional runs are made to

better balance out the number of data samples between single and multiple components

being tested (i.e., 𝐴(𝑋) + 𝐵(𝑌) ≈ 𝐶(𝑋𝑌)).

64

After each component (sensors and actuators) has been run with each of the

different effects, the process is repeated with two components being simultaneously

affected. This repeated increasing the number of components affected until the desired

number of components have been affected. The information saved from each data

generation run are the input variables that will be provided to the LSTM during testing.

Before the data from the simulation runs can be used to train the LSTM networks

there are several preprocessing steps it must go through.

Since the training data is generated sequentially, each training data sample is an

m by n matrix where m is the number of features and n is the length of each input sample.

The input length n is determined when the controller is designed. The length should be

selected as the shortest that provides good results. Inputs longer than this may result in

degraded network performance.

The data must also be normalized to a range of (-1,1). This is done by subtracting

the mean value for each element and dividing by the maximum value for each element.

With the data normalized, 20% of the data is randomly selected and set aside for interim

testing and validation.

A key step in data preprocessing for LSTMs is data balancing. If, for example, a

significant portion of the data has a correct classification of “1” and only a comparative

few with correct classification of 2 or 3, the LSTM will learn it can get good results by

simply classifying all inputs as “1”. Therefore, the data is balanced by identifying which

classification group is most represented in the data set and duplicating the inputs from the

less represented classes until all classes have the same number of samples in the training

data. This step is repeated on the sequestered testing inputs as well.

65

3.6.1 Ensemble or Single LSTM

There are circumstances in which an ensemble of smaller LSTM networks may be

preferable to a single larger network. Examples of such cases could include, limited

memory on processing hardware which precludes the possibility of training or executing a

very large network, inputs to the network that are too difficult for a single network to

separate, or a requirement for the classifier to operate under tight time constraints, (i.e., the

controller must be capable of a higher sampling rate).

Each of the LSTM networks within the ensemble is trained using a separate but

equal portion of the training data. Individually, each of these networks is a reasonably

accurate classifier. However, when aggregated together in an ensemble, their combined

performance is improved.

The decision of how many classifiers to use in an ensemble depends on the number

of class labels (different possible outputs) used for that specific ensemble.

Research indicates, for example, using more than two classifiers to make a binary

classification decision offered no improvement in performance and in many cases

decreased the accuracy of the ensemble. This “law of diminishing returns in ensemble

construction” was first identified and applied by Bonab and Can. Their work in [103]

demonstrates that using the same number of classifiers as class labels provides the highest

accuracy.

3.6.2 Many Classifiers - Single Solution

There are several possible methods for resolving the results of the networks within

an ensemble to a single output. The following approaches were investigated for this

research: majority vote scheme, multiple linear regression (MLR), k Nearest Neighbor

66

(kNN) classifier, and Boosting and Bootstrap Aggregation Algorithms (Bagging). Each is

described below and the results of testing with each are described in Chapter 5.

Majority Vote Method. As the name implies, this method takes the output from

each classifier (𝑢𝑧) in the stacked ensemble and counts it as a vote for that particular output

to be the output of the entire ensemble (𝑢𝑡). Whichever output receives the most votes is

selected as the overall output of the ensemble. In the case of a tie, a tie-breaking policy is

required.

Multiple Linear Regressions (AKA multiple regression). Multiple Linear

Regression (MLR) is an extension of ordinary least squares regression. It seeks to predict

the value of a dependent variable using the values of more than one explanatory variables

by calculating a weighting for each explanatory variable. In this application, the

explanatory variables are the outputs from the individual LSTM networks in the ensemble

(𝑢𝑖). The weightings are represented as 𝑏𝑖 and the dependent variable is the single overall

output of the entire ensemble (𝑢𝑡). The equation for MLR is

𝑢𝑡 = 𝑏0 + 𝑏1𝑢1 + 𝑏2𝑢2 + 𝑏3𝑢3 + ⋯ . .+𝑏𝑧𝑢𝑧

k Nearest Neighbor. The k Nearest Neighbor (kNN) is an instance-based classifier.

Classifying an input using the kNN classifier can be as simple as locating the nearest known

neighbor in the instance space and labeling the unknown instance with the same class label

as that of the located (known) neighbor(s).

One kNN classifier is used for each LSTM ensemble. The classifier takes the output

of each LSTM network in the ensemble (𝑢1, 𝑢2, … 𝑢𝑧) and provides the single output 𝑢𝑡.

During training, the kNN classifier builds a multi-dimensional space and places each

training point 𝑞𝑖 in that space. When the kNN classifier is used, the outputs of the LSTMs

67

in the ensemble (𝑢1, 𝑢2, … 𝑢𝑧) are used as a measure of their respective dimension in that

space.

In this application “nearest” is defined using the Euclidean distance 𝐷 between

each training point 𝑞𝑖 and the new point to be classified which is described by the

dimensions (𝑢1, 𝑢2, … 𝑢𝑧); refer to the equation shown below:

𝐷(𝑢,𝑞) = √∑(𝑢𝑖 − 𝑞𝑖)
2

𝑛

𝑖=1

The training point 𝑝 that is closest to the new point described by those dimensions is used

to classify the new point 𝑢𝑡. To maximize the performance of the classifier, the number of

neighbors chosen 𝑘 is set to 1.

Boosting and Bootstrap Aggregation Algorithms. Boosting and Bootstrap

Aggregation (commonly called Bagging) both strengthen the performance of an ensemble

of weaker learners by minimizing bias and variance in the learning algorithms. Bagging

randomly selects training samples for each learner and develops them in parallel. Boosting

develops the learners in sequence, weighting training data that was not learned well in in

one learner so that it can be used again in subsequent learners.

By using the ensemble algorithms built into MATLAB®, the outputs of the LSTMs

are not treated as an ensemble, but rather as separate, parallel inputs to an ensemble of

decision trees which the fitcensemble function in MATLAB® generates. By choosing to

let MATLAB® automatically optimize the hyperparameters of the fitcensemble function,

the algorithm tries both Boosting and Bagging algorithms and selects the one that provides

the best results.

68

Each of these methods for determining the single output 𝑢𝑡 of the LSTM stack is

tested and the results of testing with each are described in Chapter 5.

Figure 3.11. Information Flow through an Ensemble to Control a Single Actuator.

Figure 3.11 depicts the logic flow through the controller to generate output signals

for a single system actuator. This is duplicated for each system actuator, with each having

its own LSTM stack, stack solver and output.

3.7 Test Methodology

The method for testing the controller is very similar to the method for generating

the training data. For all testing, the system under test (SUT) and the associated control

algorithm are realized as MATLAB® scripts. The tests are performed on an Intel® Core i7

CPU platform with 32 GB of RAM running Windows 10. Each test run is conducted by

running the script for a predetermined number of iterations. Prior to each run the

attack/fault effects(s) (described previously) is/are set to be activated at an iteration after

the system has reached a normal steady state level. Each of the sensor effects are applied

on individual runs, then each of the actuator effects were applied on individual runs.

69

Finally, the sensor and actuator effects are applied simultaneously on the last several test

runs, with each run using a different combination of the different effects. In all of the test

runs the value of the variable(s) were randomly selected, from the uniform range described

previously, prior to the beginning of the test run. The test metrics of interest are:

 Did a catastrophic failure occur? This is defined differently for each system

under test.

 Did the controller maintain proper control? – Proper control is defined as

keeping the system output values within ±1% of the set reference value.

 If proper control was lost, how long did it take to regain proper control? – This

is measured in iterations of the controller algorithm.

 From the onset of the attack/fault effect(s), how long did it take for the

controller to respond appropriately? – Definitions for this will vary from system

to system and controller to controller.

 Percentage of total iterations in which the controller responded appropriately -

Definitions for this will vary from system to system and controller to controller.

3.8 Summary

This chapter provided the development of a taxonomy of the effects that faults and

cyber-attacks can have on the physical components of a system. The proposed controller

design was explained in detail and an alternate ensemble version was also discussed.

Considerations for training and testing the proposed controller based on the taxonomy were

discussed and the methodology for testing the proposed controller(s) was described.

70

 Proof of Concept - Test Subject: Steam Boiler System

4.1 Chapter Overview

This chapter discusses the use of the linear steam boiler test subject system to

demonstrate the utility of the proposed control approach. The specifics of how the proposed

controller is applied to the system are described in detail. The taxonomy described in

Chapter 3 is used to develop training data a test methodology for the proposed controller

design. Finally, the results of the testing on the steam boiler with the proposed controller

are discussed.

4.2 The Steam Boiler System

The steam boiler is a linear system with requirements that specify several safety

measures and multiple operating modes (separate from the controller). The steam boiler

uses binary actuators for which a single classifier type LSTM controller will suffice.

The Steam-boiler Control Specification Problem [104] [105] was initially

published by Jean-Raymond Abrial and was provided to participants of the Dagstuhl

meeting, “Methods for Semantics and Specification”, in June 1995.

The specification describes a control program serving to control the water level in

a steam boiler like those used in nuclear power plants. Based on a specification by the

“Institute for Risk Research” and the “Protection and Nuclear Safety Institute” (Institut de

Protection et de Sureté Nucléaire) the requirements for the controller emphasize safety and

are very formal. Figure 4.1 depicts the steam boiler system.

71

Figure 4.1. Steam Boiler System Diagram.

The controller is responsible for keeping the water level in the tank between preset

maximum and minimum levels, while ensuring that the boiler generates a sufficient volume

of steam not exceeding a preset maximum. The controller takes as inputs values from

sensors that measure the water level in the 1200 liter tank. The output from the controller

is control signals sent to the 4 water pumps which are simply On/Off devices.

4.2.1 Operational Modes/Safety Features

Since this steam boiler is intended for use in a nuclear power plant, allowing the

system to enter a state that could damage the steam boiler, or connected equipment, is

unacceptable. In order to ensure the safety of the system, the specifications for the

controller call for it to switch between five different modes [104]. Four are operational

72

modes (Initialization, Normal, Degraded and Rescue); the fifth operational mode is

Emergency Stop. The operation of these modes is summarized below.

Initialization mode: In this mode, the controller waits for the physical units to

become ready and then ensures the starting water level in the tank is between the preset

maximum and minimum required for normal operations.

Normal mode: In this mode, the controller’s task is to maintain the water level in

the boiler between the two "normal" levels. The controller communicates with physical

units to obtain information about the states of the units (water level, etc.) and uses this

information to react. The program stays in normal mode until a failure is detected, or an

emergency stop signal is received.

Degraded mode: In this mode, the program tries to maintain a satisfactory water

level, despite of the failure of one or more physical components.

Rescue mode: This is the mode in wherein the program attempts to maintain

satisfactory water levels in the boiler, despite failure of the water level measuring unit. This

indicates that it has to computationally estimate the water level taking into account boiler

dynamics.

Emergency stop mode: The control program has to engage the emergency stop

mode either when the vital units experience a failure, or when water levels fail to reach

either of its two-limit values. This mode may also be reached upon detection of a

transmission error between the program and physical units. In this mode, the control will

just send a command to the physical units, to cease operation, and then terminate itself.

73

4.2.2 System Parameters and Variables

The value of primary concern in this system is the water level in the boiler tank (q).

The various capacities and flow rates for the physical system components are shown on

Table 4.1.

Table 4.1. Parameters and Variables used in the Steam Boiler System.

Parameters Unit Description

C = 1200 liters Physical capacity of steam boiler

M2 = 900 liters Maximum allowable water level

M1 = 100 liters Minimum allowable water level

N2 = 600 liters Maximum normal water level

N1 = 400 liters Minimum normal water level

W = 10 liters/sec Maximum quantity of steam at output

U1 = 10 liters/sec/sec Maximum gradient increase of steam at output

U2 = 10 liters/sec/sec Maximum gradient decrease of steam at output

P = 5 liters/sec Nominal pump capacity

Variable Unit Description

q liters Current quantity of water in steam boiler

p liters/sec Current throughput of pumps

v liters/sec Current quantity of steam at output

The calculation for the water level change when the system is operating normally

is defined by the following time-variant linear equation:

𝑞𝑡 = 𝑞𝑡−1 + ∑𝑝𝑖

4

𝑖=1

− 𝑣

There is also an internal model for estimating the water level in the boiler using estimated

flow of the pumps.

𝑞𝑚𝑡 = 𝑞𝑚𝑡−1 + ∑𝑝𝑒𝑖

4

𝑖=1

− 𝑣

74

4.3 Proposed Controller Design

As applied to this test system, the proposed controller design uses a single LSTM

network for all four pumps. For each iteration of the control program, the LSTM is used to

determine how many pumps should be turned on. The basic configuration of the system

with the proposed controller is shown in Figure 4.2.

Figure 4.2. Proposed Controller with System.

For the steam boiler controller a few trial runs were conducted to identify the input

sequence length that resulted in the best overall performance of the controller. In the trial

runs the only parameter that was changed was the sequence length. The results are shown

in Table 4.2.

Table 4.2. Change in Network Performance Correlated with Sequence Length

Length Performance

5 97.98%

10 98.56%

15 97.76%

20 96.80%

75

As the sequence length was increased, the results of each trial run decreased from

the maximum results that were achieved with a sequence length of ten.

Using the sequence length of ten identified in the trial runs, the next stage was to

find the combination of hidden layers and nodes per layer that would maximize

performance of the LSTM on the Steam Boiler system data. The results of those

experiments are shown in Table 4.3.

Table 4.3. Comparison of Network Performance Correlated with Network Size

Nodes Hidden Layers

 2 3 4 5

768 98.42 98.22 97.44 98.46

512 98.56 98.28 98.34 98.68

256 97.78 98.42 98.26 98.06

128 97.60 97.80 98.58 95.80

64 97.08 96.34 98.22 96.32

The best performance was derived from the network with five hidden layers and

512 nodes per layer. The second best was the network with four hidden layers and 128

nodes per layer. The network size selected was the third best with two hidden layer and

512 nodes per layer. This network size was chosen because additional hidden layers

significantly increase the time required to train and test the network. Since the performance

difference between the top three was minimal, the smaller network was chosen.

The full LSTM used for the steam boiler controller is a six-layer network with an

input layer, two hidden layers (with 512 nodes each), a fully connected 4-node layer, a

dense layer (softmax layer) and an output layer with 4 nodes.

76

4.3.1 Inputs to the LSTM

The LSTM for the steam boiler uses a 16x10 element input matrix. Table 4.4

describes the variable values used to generate the input matrix.

Table 4.4. Input to LSTM.

Input

Rows

Description Example

Variables
1 Difference between the reported water level and the reference level (ref-qr)

2 Difference between the modelled water level and the reference level (ref- qm)

3-6 Last estimated flow rate through each of the four pumps [pe]

7-10 Last reported flow rate from each of the four pumps [pr]

11-14 Available pump register [1,0,1,1]

15 System Mode (Normal, Degraded, Rescue, Emergency Stop) (11-14)

16 The sum of the estimated flow rate through each of the 4 pumps (sum(pe))

The output of the LSTM is a single value (1 through 4) indicating how many motors

should be on. Based on this decision, a switching routine in the controller then sends the

appropriate signal (on or off) to each pump.

4.4 Effects of Faults and Cyber-Attacks

Before discussing how the LSTMs were trained and tested, it is necessary to show

how the effects of cyber-attacks and faults on the steam boiler system components are

addressed.

Recall the taxonomy of representative sensor effects described in Chapter 3, Table

3.3. Applied to the sensor of the steam boiler system, these effects are applied as described

below and summarized in Table 4.5.

77

1. Increased Value effect - This effect is modeled as an abrupt, multiplicative

function with 𝛼̆ being randomly selected from a uniform distribution with values on

the interval (1.10, 2.10).

2. Decreased Value effect - This effect is modeled as an abrupt, multiplicative

function with 𝛽̆ being randomly selected from a uniform distribution with values on

the interval (0.10, 0.80).

3. Stochastic Value effect – This effect is modeled as an abrupt, additive function with

𝜇 set to zero and 𝜎 being randomly selected from a uniform distribution with values on

the interval (0.05, 0.55).

4. Cyclical Value effect – This effect is modeled as an abrupt, additive function with

𝛾 being randomly selected from a uniform distribution with values on the interval

(0.10, 1.10) and 𝛿 being randomly selected from a uniform distribution with values on

the interval (0.015, 1.015).

5. Fixed Value effect – This effect is modeled as an abrupt, function with ε being

randomly selected from a uniform distribution with values on the interval (0.00, 20.00).

6. No Value effect – This effect is modeled as an abrupt, function with the value of

𝑦𝑡+𝑧 being set as Not-a-Number (NaN).

In addition to these six effects, it is also prudent to examine the performance of the

controller if the quadruple tank system sensors are subjected to incipient effects. Therefore,

two more effects are modeled:

78

7. Increased Value effect - This effect is modeled as an incipient, additive function

with 𝛼 being randomly selected from a uniform distribution with values on the interval

(0.00, 1.00) and the effect being applied using the equation

 𝑦̂𝑡+𝑧 = 𝑦𝑡 + .025𝛼𝑦𝑡+𝑧

8. Decreased Value effect - This effect is modeled as an incipient, additive function

with 𝛽 being randomly selected from a uniform distribution with values on the interval

(0.00, 1.00) and the effect being applied using the equation

 𝑦̂𝑡+𝑧 = 𝑦𝑡 − .05𝛽𝑦𝑡+𝑧

These eight sensor effect representations are summarized in Table 4.5. The Effect

Number and Effect Value fields will be used when discussing test results.

Table 4.5. Summary of Sensor Effects for the Steam Boiler System

Effect

Type

Effect

Number

Effect Value Add, Mult

or Replace

Abrupt or

Incipient

Increased 1 (1.10, 2.10) Mult Abrupt

Decreased 2 (0.10, 0.80) Mult Abrupt

Stochastic 3 (0.05, 0.55) Add Abrupt

Cyclical 4 (0.10, 1.10) (0.015, 1.015) Add Abrupt

Fixed 5 (100, 900) Replace Abrupt

No Value 6 (NaN) Replace Abrupt

Increased 7 (0, 1.00) Add & Mult Incipient

Decreased 8 (0, 1.00) Add & Mult Incipient

There are no set rules for selecting the ranges of the effect values. In general, the

low end of the range should make the effect strong enough to cause a change in the sensor.

At the high end the value should not cause the effect to exceed the physical limitations of

the sensor. Applied to the actuators of the quadruple-tank system, the effects are applied as

described below and summarized in Table 4.6.

79

1. Increased Value effect – This effect is modeled as an abrupt, multiplicative

function with 𝛼̂ being randomly selected from a uniform distribution with values on

the interval (1.05, 1.50). This effect leaves the actuator controllable.

2. Decreased Value effect – This effect is modeled as an abrupt, multiplicative

function with 𝛽̂ being randomly selected from a uniform distribution with values on

the interval (0.15, 0.90). This effect leaves the actuator controllable.

3. Stochastic Value effect – This effect is modeled as an abrupt, additive function with

𝜇 set to zero and 𝜎 being randomly selected from a uniform distribution with values on

the interval (0.05, 0.55). This effect leaves the actuator controllable.

4. Cyclical Value effect – This effect is modeled as an abrupt, additive function with

𝛾 being randomly selected from a uniform distribution with values on the interval

(0.50, 3.50) and 𝛿 being randomly selected from a uniform distribution with values on

the interval (0.05, 0.55). This effect leaves the actuator controllable.

5. Fixed Value effect – This effect is modeled as an abrupt, function with 𝜀 being

randomly selected from a uniform distribution with values on the interval (1.00, 4.00).

This effect leaves the actuator uncontrollable.

6. No Value effect – This effect is modeled as an abrupt, function with the value of

𝑦𝑡+𝑧 being set as Not-a-Number (NaN). This effect leaves the actuator uncontrollable.

Two additional effects are modeled to examine the performance of the controller if

the quadruple tank system sensors are subjected to incipient effects:

80

7. Increased Value effect – This effect is modeled as an incipient, additive function

with 𝐴 being randomly selected from a uniform distribution with values on the interval

(0.00, 1.00) and the effect being applied using the equation

 𝑢̂𝑡+𝑧 = (𝑢𝑡 + .0025𝛼𝑢𝑡+𝑧)𝑢𝑡+𝑧

8. Decreased Value effect – This effect is modeled as an incipient, additive function

with 𝛽 being randomly selected from a uniform distribution with values on the interval

(0.00, 1.00) and the effect being applied using the equation

 𝑢̂𝑡+𝑧 = (𝑢𝑡 − .0019𝛽𝑢𝑡+𝑧)𝑢𝑡+𝑧

These eight actuator effect representations are summarized in Table 4.6. The Effect

Number and Effect Value fields will be used when discussing test results.

Table 4.6. Summary of Actuator Effects for Steam Boiler System

Effect

Type

Effect

Number

Effect Value Add, Mult or

Replace

Abrupt or

Incipient

Controllable

Increased 1 (1.05, 1.50) Mult Abrupt Yes

Decreased 2 (0.10, 0.80) Mult Abrupt Yes

Stochastic 3 (0.05, 0.55) Add Abrupt Yes

Cyclical 4 (0.50, 3.50)

(0.05, 0.55)

Add Abrupt Yes

Fixed 5 (1.00, 4.00) Replace Abrupt No

No Value 6 (NaN) Replace Abrupt No

Increased 7 (0.00, 1.00) Add & Mult Incipient Yes

Decreased 8 (0.00, 1.00) Add & Mult Incipient Yes

Fixed Value (#5) and the No Value (#6) effects leave the actuator uncontrollable

but the steam boiler system design does include redundant actuators, so these two effects

will be included in the training or testing of the controller for the steam boiler system.

81

As with the sensor effects, the variable range values for the actuator effects should

be large enough to produce the desired effect, but so large that the actuator is driven beyond

its physical capabilities.

4.5 Training the LSTM Networks

The following parameters were used to train the LSTM for this controller in

MATLAB®:

Solver: ADAptive Moment estimation (ADAM)

Execution Environment: auto (defaults to GPU if one is present)

Initial Learning Rate: 0.0002

Learn Rate Schedule: piecewise

Learn Rate Drop Factor: 0.5

Learn Drop Rate: 2 (epochs)

Maximum Epochs: 10

In order to expedite the training process of the LSTM, the training inputs are

compiled into “minibatches”. The larger the minibatch, the quicker the training is

accomplished. If the minibatch size is too large, the network will overfit to the training data

and not perform well in testing or actual use. Based on the size of the training data set, the

minibatch size for this application is 256 inputs.

Another important parameter in training the LSTM is the learning rate. Larger

learning rates help the values of the LSTM weights to converge more quickly, but risk

possibly settling in local minimum rather than the global minimum. Lower learning rates

are more likely to find the global minimum but can take a very long time to get there.

MATLAB® allows the designer to vary the learning rate during training. In this application,

82

the initial learning rate is set at 0.002 and is cut by 50% every 2 epochs. Thus, after 20

training epochs the training rate is dropped to 0.000125.

4.5.1 Generating Training Data

The data used to train the proposed controller was generated by building a computer

simulation of the quadruple-tank system in MATLAB®. This test subject system was

controlled by a logic statement controller that meets the control requirements when no

faults or attacks are affecting the system. This controller was fed the output from the correct

model so it always controlled the system correctly.

The simulation was run, iteratively introducing representative values of each of the

effects of faults and cyber-attacks on each component as shown in Table 4.7.

Table 4.7. Numbers and Combinations of Data Generation Runs for Steam Boiler.

 Components

S A1 A2

Runs per

Effect

Total

Runs

E
ff

ec
ts

8 0 0 8 64

0 8 0 8 64

0 0 8 8 64

8 8 0 1 64

8 0 8 1 64

0 8 8 1 64

 Total 384

After each component has been run with each of the different effects (8 for the

sensor and 8 for each pump), the process is repeated with two components being

simultaneously affected (the sensor and each pump, then 2 pumps) which totals 196 effects

combinations.

83

Eight times as many data generation simulations were run with single component

effects compared to those with two components affected. This was done to provide an

approximately equal number of samples for each.

Each data generation simulation ran for 500 iterations with the component effect

starting at iteration number 250. This was done to ensure the system was operating in a

normal steady state the effect begins.

A total of 192,000 inputs were generated using them method described above. Each

input was a 16x10 matrix.

4.5.2 Data Preprocessing

Before the data from the simulation runs can be used to train the LSTM networks

there are several preprocessing steps it must go through.

The data was first be normalized to a range of (−1,1). With the data normalized,

20% of the data was randomly selected and set aside for future testing. This left 153,600

data samples in the training set. Data balancing increased the training set to 162,560

samples evenly distributed across the four classification groups. The LSTMs were then

trained with this data using the training parameters identified at the beginning of this

section

4.6 Testing the Controller with Steam Boiler System

The linear steam boiler system was tested as a proof of concept; that a passive, data

driven controller based on a deep-learning network could properly control a simple linear

system in the presence of various and sometimes simultaneous cyber-attacks and faults.

This system has redundant actuators and several built-in safety checks to prevent

84

catastrophic failure. The actuators are binary (off/on) making the control requirements

comparatively simple. The testing on this system is intended to determine if a version of

the proposed controller can maintain proper control of the system and if faults or attacks

that would normally trigger the built-in EMERGENCY STOP mode can be countered to

keep the system running rather than shutting down.

The method for testing the controller is very similar to the method for generating

the training data. For all testing, the system under test (SUT) and the associated control

algorithm are realized as MATLAB® scripts. Each test run is conducted by running the

script for 500 iterations. Prior to each run the attack/fault effects(s) (described previously)

is/are set to be activated at iteration number 250. Each of the eight sensor effects were

applied on individual runs, then each of the actuator effects were applied on individual runs

to two of the four pumps. This totaled 24 individual effect runs. Finally, the sensor and

actuator effects were applied simultaneously on the last 192 test runs, with each run using

a different combination of the different effects. In all of the test runs the value of the

variable(s) were randomly selected, from the uniform range described previously, prior to

the beginning of the test run.

With each test run, the performance of the steam boiler with the proposed controller

was recorded against the metrics in Table 4.8.

85

Table 4.8. Measured Items for Steam Boiler Testing

Components

Affected

How many actuators and/or sensors were simultaneously

affected?

Catastrophic

Failure

Did the water level ever fall below 100 liters or exceed 900

liters?

Mode 14

Triggered
Was mode 14 (Emergency Stop mode) triggered?

Proper Control

Maintained

Was the liquid level in the tank maintained between 495 and

505 liters (reference level ± 1%)?

Iterations to Regain

Proper Control

If proper control was not maintained, how many iterations

occurred before the system was recovered back to proper

control?

Iterations to

Correct Solution

How many iterations occurred from the onset of the effect until

the controller selected the correct solution?

Iterations with

Correct Solution %

What percentage of the iterations in the test were run with the

correct solution selected?

For this system, a failed test (catastrophic failure) is defined as one wherein the

water level in the tank is allowed to rise above 900 liters, or drop below 100 liters. The

performance of the proposed controller is also judged by its ability to keep the water level

in the tank within 1% of the desired level. If the controller allows the system to go outside

the ±1% range then it is also measured on how long it takes to return it to that level if it

does.

The system was tested with each component being affected by one of the

fault/attack effects as described previously. After a run with each component being tested

with each effect, the effects were applied to two components simultaneously until all

combinations of components were tested with all combinations of effects.

The results of the testing are shown in Table 4.9 below. Due to size constraints of

the dissertation format, only a portion of the chart is displayed in Table 4.9. The entire

chart is found in Appendix B.

86

Table 4.9. Test Results on Steam Boiler Using Proposed Controller.

T
es

t
R

u
n

 N
o

.

S
en

so
r

E
ff

e
c
t

E
ff

ec
t

V
a
lu

e

P
u

m
p

 1
 E

ff
e
ct

E
ff

ec
t

V
a
lu

e

P
u

m
p

 2
 E

ff
e
ct

E
ff

ec
t

V
a
lu

e

C
o
m

p
o

n
en

ts

A
ff

ec
te

d

C
a
ta

st
ro

p
h

ic

F
a

il
u

re

M
o

d
e

1
4
 T

ri
g
g

er
ed

M
a

in
ta

in
 P

ro
p

er

C
o
n

tr
o
l?

It

er
a
ti

o
n

s
to

 R
eg

a
in

P
ro

p
er

 C
o
n

tr
o
l

It
er

a
ti

o
n

s
to

C
o
rr

ec
t

D
ec

is
io

n

It
er

a
ti

o
n

s
U

si
n

g

C
o
rr

ec
t

S
o
lu

ti
o
n

 %

1 0 0 0 1 * 0 100.00%

2 1 206.17 1 0 0 1 * 0 100.00%

3 2 0.71 1 0 0 1 * 0 100.00%

4 3 0.24 1 0 0 1 * 0 100.00%

5 4 0.50 1 0 0 1 * 0 100.00%

6 5 340.08 1 0 0 1 * 0 100.00%

7 6 * 1 0 0 1 * 0 100.00%

8 7 0.28 1 0 0 1 * 0 100.00%

9 8 0.50 1 0 0 1 * 0 100.00%

10 1 2.68 1 0 0 1 * 0 100.00%

11 2 0.74 1 0 0 1 * 0 100.00%

12 3 0.45 1 0 0 1 * 0 100.00%

13 4 0.40 1 0 0 1 * 0 99.33%

14 5 1.88 1 0 0 1 * 105 77.00%

15 6 * 1 0 0 1 * 0 100.00%

16 7 0.74 1 0 0 1 * 0 100.00%

17 8 0.10 1 0 0 1 * 0 100.00%

18 1 2.81 1 0 0 1 * 9 99.00%

19 2 0.49 1 0 0 1 * 0 100.00%

20 3 0.09 1 0 0 1 * 9 98.33%

.

.

.

 .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

198 6 * 5 1.25 2 0 0 1 * 0 100.00%

199 6 * 6 * 2 0 0 1 * 0 100.00%

200 6 * 7 0.21 2 0 0 1 * 0 100.00%

201 6 * 8 0.12 2 0 0 1 * 0 100.00%

202 7 0.46 1 1.93 2 0 0 1 * 0 100.00%

203 7 0.22 2 0.51 2 0 0 1 * 0 100.00%

204 7 0.36 3 0.35 2 0 0 1 * 0 100.00%

205 7 0.39 4 0.26 2 0 0 1 * 0 92.67%

206 7 0.88 5 1.03 2 0 0 1 * 168 85.67%

207 7 0.64 6 * 2 0 0 1 * 0 100.00%

208 7 0.08 7 0.30 2 0 0 1 * 0 100.00%

209 7 0.86 8 0.66 2 0 0 1 * 0 100.00%

210 8 0.78 1 2.95 2 0 0 1 * 0 100.00%

211 8 0.72 2 0.16 2 0 0 1 * 0 100.00%

212 8 0.74 3 0.27 2 0 0 1 * 0 100.00%

87

213 8 0.93 4 0.24 2 0 0 1 * 0 99.00%

214 8 0.73 5 1.33 2 0 0 1 * 153 83.67%

215 8 0.70 6 * 2 0 0 1 * 0 100.00%

216 8 0.67 7 0.37 2 0 0 1 * 0 100.00%

217 8 0.99 8 0.64 2 0 0 1 * 0 100.00%

Of the 217 total test runs there were no catastrophic failures. In 198 cases the

controller kept proper control throughout the test run. In the others, the controller regained

proper control in an average of 124 iterations (median of 86). The Mode 14 (Emergency

Shut Down) conditions were met in only 2 of the test runs. On average, the controller

selected the correct solution in 20.95 iterations (median of zero). In total, 94.46% of all

iterations were completed with the correct solution selected by the controller. The results

of the test are summarized in Table 4.10.

Table 4.10. Test Result Summary for Proposed Controller

Test

Runs

Comp.

Affected

Cat.

Fail

Mode

14

Active

Proper

Control

Iterations to

Regain Proper

Control

Iterations to

Correct Model

Iterations Using

Correct Model

%

A/S/Both % % % Median Mean Median Mean Median Mean

16 Actuator 0 0.00 93.75 250.00 250.00 0.00 10.06 99.67 94.64

8 Sensor 0 0.00 100.00 * * 0.00 0.00 100.00 100.00

192 Both 0 1.02 88.78 78.50 114.50 0.00 50.11 100.00 94.19

Total - 0 0.92 91.24 86.00 124.05 0.00 20.95 100.00 94.46

Statistically speaking, this controller performed perfectly on the eight tests using

sensor effects. The performance on the 16 tests using actuator effects was good, but the

results for the metric of how quickly it regained proper control was skewed by the fact that

there was only one of the 16 tests in which proper control was maintained, and in that case

the controller did not regain proper control before he test ended, hence the recorded value

88

of 250 iterations. With a larger pool of test results the 192 tests conducted when 2

components were being affected provides more useful results.

Using the same data summarized in the last two columns of Table 4.10., a confusion

matrix of the classification results of the LSTM is shown in Table 4.11.

Table 4.11. Confusion Matrix of LSTM Classifications for Steam Boiler

 Number of Pumps Selected

C
o
rr

ec
t

N
u

m
b

er
 5046 169 0 0 1

3817 79904 243 0 2

0 0 5103 0 3

0 0 0 18468 4

 1 2 3 4

By way of review, model 1 is the correct choice when no component is being

affected. Model 2 is the correct choice when the actuator is being affected. Model 3 is the

correct choice when the sensor is being affected and model 4 is the correct choice when

both are being affected.

The benefit of this testing was two-fold. First, it confirmed that a passive, data-

driven, LSTM-based controller could be used to make the system under test resilient to the

effects of cyber-attacks and faults. This was demonstrated by leveraging the taxonomy of

effects developed in Chapter 3.

Second, this testing showed the utility of the proposed controller on a simple, linear

system with redundant actuators and built in safety modes. This is a stark contrast to the

test subject introduced in Chapter 5.

89

4.7 Chapter Summary

This chapter presented a linear system used as a proof-of-concept test subject. The

proposed controller design was applied to this system. The method for generating training

data using the taxonomy of effects was described. The training process was discussed and

the system was tested using the various effects of faults and attacks described previously.

The testing demonstrates this controller works well with the test system even in the

presence of multiple simultaneous faults/attacks. Since good results were achieved on this

linear system with redundant actuators, application to a more complex and challenging

system is in order.

90

 Test Subject: Quadruple-Tank System

5.1 Chapter Introduction

This chapter presents a detailed description of the benchmark quadruple-tank

system. The application of the proposed controller to this nonlinear system is detailed.

Specifics of how the taxonomy of effects is applied to the quadruple-tank system are

presented. Two versions of the proposed controller are presented; single LSTM and

ensemble-based). The steps for training and testing the controllers are described and the

results of that testing are discussed.

5.2 Quadruple-Tank System Design

The quadruple-tank system was first introduced in 1999 as a problem for the study

of multivariable control [106]. The system consists of four cylindrical tanks connected to

each other through pipes as shown in Figure 5.1.

Figure 5.1. Diagram of Quadruple-Tank System [106].

91

The system is fed by two pumps. Specifically, tanks 1 and 4 are fed by pump 1

while tanks 2 and 3 are fed pump 2. Additionally, tank 1 is fed by the output of tank 3 and

tank 2 is fed by the output of tank 4. The ratio of how much fluid flows to the upper tank

or lower tank from each pump is set manually by a proportional valve at the outlet of each

pump.

The function of the controller is to set the control voltage to each pump (and thereby

the speed of each pump) such that the fluid level in both lower tanks is as close as possible

to the preset reference level. The physical parameters of the quad-tank system [107] are

shown in Table 5.1.

Table 5.1. System Parameters used in the Quadruple-Tank System.

Parameter Description Value

A1, A3 Cross-sectional area of tanks 1 and 3 28 cm2

A2, A4 Cross-sectional area of tanks 2 and 4 32 cm2

a1, a3 Cross-sectional area of outlet pipes 1 and 3 0.071 cm2

a2, a4 Cross-sectional area of outlet pipes 2 and 4 0.057 cm2

kc Voltage constant 0.5 V/cm

g Gravitational constant 981 cm/s2

The values for these parameters were not specified in the original publication of the

system. These are the values used in subsequent publications [107] and [108] which built

upon the original work. The same is true for the operational parameters given in Table 5.2.

92

Table 5.2. Operational Parameters for the Quadruple-Tank System [107] [108].

Parameter Description Value

ℎ1
0 Initial height of liquid in tank 1 12.6 cm

ℎ2
0 Initial height of liquid in tank 2 13.0 cm

ℎ3
0 Initial height of liquid in tank 3 4.8 cm

ℎ4
0 Initial height of liquid in tank 4 4.9 cm

𝑣1
0 Initial input to pump 1 3.15 V

𝑣2
0 Initial input to pump2 3.15 V

𝑘1 Gain constant for pump 1 voltage 3.14 cm3/Vs

𝑘2 Gain constant for pump 2 voltage 3.29 cm3/Vs

𝛾1 Ratio to lower tank from pump 1 0.70

𝛾2 Ratio to lower tank from pump 2 0.60

The valve settings (𝛾1, 𝛾2) determine if the majority of the water from each pump

is directed to the associated lower tank or associated upper tank. The valves are set before

the system runs. When the valves are set so that (𝛾1 + 𝛾2) < 1 the system is said to be in

a minimum phase, meaning the majority of the liquid from the pumps is going to the upper

tanks. When the valves are set such that 1 ≤ (𝛾1 + 𝛾2) ≤ 2 the system is said to be in a

non-minimum phase, meaning the majority of the liquid is going to the lower tanks.

5.2.1 Internal System Equations

Using these parameters, the following nonlinear equations for the rate of change in

the level of fluid in each tank (where ℎ𝑖 is the fluid level in tank 𝑖) are presented in [106]

as follows:

𝑑ℎ1

𝑑𝑡
=

−𝑎1

𝐴1
√2𝑔ℎ1 +

𝑎3

𝐴1
√2𝑔ℎ3 +

𝛾1𝑘1

𝐴1
𝑣1 (1)

𝑑ℎ2

𝑑𝑡
=

−𝑎2

𝐴2
√2𝑔ℎ2 +

𝑎4

𝐴2
√2𝑔ℎ4 +

𝛾2𝑘2

𝐴2
𝑣2 (2)

93

𝑑ℎ3

𝑑𝑡
=

−𝑎3

𝐴3
√2𝑔ℎ3 +

(1−𝛾2)𝑘2

𝐴3
𝑣2 (3)

𝑑ℎ4

𝑑𝑡
=

−𝑎4

𝐴4
√2𝑔ℎ4 +

(1−𝛾1)𝑘1

𝐴4
𝑣1 (4)

The value on the right-hand side of each equation is used to update the height of

fluid in each respective tank and the output from the system (𝑦𝑖) is calculated as

𝑦𝑖 = ℎ𝑖𝑘𝑐

There is no water level sensor in tank 3 or 4, therefore the water height in those tanks must

be calculated if that information is required by the controller. The input to the system 𝑢𝑖 is

referenced as 𝑣𝑖 in the equations above.

5.3 Proposed Controller for Quadruple-Tank Test Case

As applied to the quadruple-tank test system, the proposed controller design uses

one LSTM classifier network for each of the pumps as shown in Figure 5.2.

Figure 5.2. Proposed Controller with System.

94

5.3.1 Designing the LSTMs

In this application, the control designer determines the sequence length (time steps)

of the input features. Longer sequence lengths provide more information for the network

to use, but for any application there is an optimal sequence length. For the quad-tank

controller a few trial runs were conducted to identify the input sequence length that resulted

in the best overall performance of the controller. In the trial runs the only parameter that

was changed was the sequence length. The results are shown in Table 5.3.

Table 5.3. Change in Network Performance Correlated with Sequence Length

Length Performance

5 93.94%

10 93.38%

15 92.95%

20 92.37%

25 95.59%

30 95.93%

35 90.21%

40 90.23%

As the sequence length was increased, the results of each trial run also increased

until the maximum results were achieved with a sequence length of 30. From there the

results began to drop off again.

Using the sequence length of 30 identified in the trial runs, the next stage was to

find the combination of hidden layers and nodes per layer that would maximize

performance of the LSTM on the Quadruple-tank system data. The results of those

experiments are shown in Table 5.4.

95

Table 5.4. Comparison of Network Performance Correlated with Network Size

Nodes Hidden Layers

 2 3 4 5 6 7 8 9 10

768 94.71 93.26 93.52 95.36 96.17 91.81 94.82 91.11 88.08

512 93.90 95.81 96.48 96.85 96.73 96.87 98.29 96.79 93.35

256 93.81 93.96 93.70 93.88 93.71 93.83 93.99 94.15 94.07

128 92.53 93.08 93.30 93.70 93.86 93.58 93.89 94.15 93.76

64 89.21 89.16 91.94 93.33 93.81 93.95 94.21 93.23 92.50

The best performance was derived from the network with eight hidden layers and

512 nodes per layer. Therefore the LSTM network is comprised of the input layer, eight

hidden layers, each with 512 nodes, a fully connected 4-node layer, a softmax (dense) layer

and an output layer with four output nodes – a total of 12 layers.

5.3.2 Internally Generated Models

When applied to the quadruple tank system, the proposed controller uses the LSTM

to select one of several different models of the quadruple-tank system. These models are

generated using the nonlinear equations described previously. Specifically, these models

provide a value of the water level in each of the lower tanks. In order to better understand

how the models are developed, two additional variables are introduced: 𝑦𝑖𝑟 and 𝑣𝑖𝑒.

The variable 𝑦𝑖𝑟 is the reported value from the water level senor in tank 𝑖. The true

value is 𝑦𝑖. Under normal operating conditions, 𝑦𝑖𝑟 = 𝑦𝑖, but the controller only receives

𝑦𝑖𝑟 and has no access to 𝑦𝑖. The variable 𝑣𝑖𝑒 is the estimated value of the voltage to pump

𝑖. The actual voltage to that pump is 𝑣𝑖 in prior equations, but the controller can only

estimate the pump voltage based on the last command given.

96

Through the remainder of this section, the discussion will refer to tank 1 and pump

1 and its associated LSTM. This done for clarity. The principles and analogous calculations

also apply to tank 2 and pump 2 with its associated LSTM.

At every iteration of the control program the tank 1 sensor and pump 1 (actuator)

of the quadruple-tank system could be operating normally, or the tank sensor could be

affected by a fault/cyber-attack, or the pump could be affected by a fault/cyber-attack or

both could be affected. For each of these four conditions a different internal model is

generated. The role of the LSTM is to assess the state of the system and select one of the

four models to use for the controller. The derivation of each model is described below.

Model 1: Uses the reported value of the water level sensor and is the correct model

to use only when the system is operating free of any attacks or faults. Therefore, the

modeled value 𝑦1𝑚 = 𝑦1𝑟.

Model 2: Generates a value 𝑦𝑖 under the assumption that the associated pump is

experiencing an attack or fault. This means the estimated pump voltage 𝑣1𝑒 is assumed to

be incorrect and a new value for the modelled pump voltage needs to be calculated. This is

done using equation (2) to solve for ℎ4

ℎ4 =
[
𝐴4
𝑎2

(
𝑑ℎ2

𝑑𝑡
+

𝑎2
𝐴2

√2𝑔ℎ2 −
𝛾2𝑘2
𝐴2

𝑣2𝑒)]
2

2𝑔

The value for 𝑑ℎ4 can be calculated and a model value for the voltage to pump 1 (𝑣1𝑚) is

calculated by solving equation (4) for v1m

𝑣1𝑚 =
𝐴4

𝑑ℎ4

𝑑𝑡
+ 𝑎4√2𝑔ℎ4

(1 − 𝛾1)𝑘1

This v1m then replaces v1 in equation (1) and a new dh1 is calculated

97

𝑑ℎ1𝑚

𝑑𝑡
=

−𝑎1

𝐴1
√2𝑔ℎ1 +

𝑎3

𝐴1
√2𝑔ℎ3 +

𝛾1𝑘1

𝐴1
𝑣1𝑚

This newly derived value of 𝑑ℎ1 is used to calculate the modelled value of 𝑦1𝑚 .

Model 3: Generates a value 𝑦𝑖 under the assumption that the water level sensor is

experiencing an attack or fault. Since the reported value of 𝑦1𝑟 would be influenced by the

attack or fault, a new value is calculated using equation (1).

𝑑ℎ1𝑚

𝑑𝑡
=

−𝑎1

𝐴1
√2𝑔ℎ1 +

𝑎3

𝐴1
√2𝑔ℎ3 +

𝛾1𝑘1

𝐴1
𝑣1𝑒

which is then used to calculate h1m and

𝑦1𝑚 = ℎ1𝑚𝑘𝑐

Model 4: Generates a value 𝑦𝑖𝑚 under the assumption that both the pump and the

water level sensor are experiencing an attack and/or fault. To generate a modeled value for

tank sensor 1 (𝑦1𝑚) neither 𝑦1𝑟 nor 𝑣1𝑒 can be used. The model for tank 1 is then derived

by first calculating the value of ℎ4 using equation (2).ℎ4 =
[
𝐴4
𝑎2

(
𝑑ℎ2
𝑑𝑡

+
𝑎2
𝐴2

√2𝑔ℎ2−
𝛾2𝑘2
𝐴2

𝑣2𝑒)]
2

2𝑔

The value for 𝑑ℎ4 can be calculated and a model value for 𝑣1 is calculated by solving

equation (4) for 𝑣1𝑚:

𝑣1𝑚 =
𝐴4

𝑑ℎ4

𝑑𝑡
+ 𝑎4√2𝑔ℎ4

(1 − 𝛾1)𝑘1

This new value for 𝑣1𝑚 is then used to calculate 𝑑ℎ1 using equation (1)

𝑑ℎ1𝑚

𝑑𝑡
=

−𝑎1

𝐴1
√2𝑔ℎ1 +

𝑎3

𝐴1
√2𝑔ℎ3 +

𝛾1𝑘1

𝐴1
𝑣1𝑚

𝑦1𝑚 can be calculated

y1m=h1m kc

98

The same steps are followed to generate models related to the tank 2 sensor and

pump 2 for use by the associated LSTM network.

5.3.3 Inputs to the LSTM

Both LSTM classifiers in the controller use the same input matrix, consisting of 27

rows and 30 columns. The 30 columns represent the consecutive time iterations while the

27 rows contain the different feature values as listed in Table 5.5.

Table 5.5. Inputs to LSTM Networks.

Input

Rows

Description Example Variables

1-2 Reported values of each sensor y1r, y2r

3-4 Estimated voltage to each pump v1e, v2e

5-7 Error estimated by the output of

models

y2m-yref, y3m-yref, y4m-yref

8-10 Difference in the estimated output

between models

y2m-y3m, y2m-y4m, y3m-y4m

11-13 Absolute value of difference in

change in the estimated output of

models

|Δy2m-Δy3m|, |Δy2m-Δy4m|, |Δy3m-Δy4m|

14-16 Change in the estimated output of

models

Δy2m, Δy3m, Δy4m

17-19 Value of the model outputs y2m, y3m, y4m

20-27 Binary logic statements

comparing the mean squared

error between samples of the

models

MSE(y2m(t-19:t)-y4m(t-19:t))>0.000138

AND MSE(y3m(t-19:t)- y4m(t-19:t)) >

0.000125

A comment on the last entry of Table 5.5. As the controller runs, the last 20 values

of the output of each model (𝑦𝑖𝑚(𝑡 − 19: 𝑡)) are stored in an array variable. In the binary

logic statements, the mean squared difference of comparing each array pairwise is taken

compared to a set value. If both parts of this statement are true, this statement provides a 1

99

to the input matrix. While these statements alone cannot provide sufficient input to control

the system, they do help in discriminating between two very similar conditions.

5.4 Effects of Faults and Cyber-Attacks

Before discussing how the LSTMs were trained and tested, it is necessary to show

how the effects of cyber-attacks and faults on the quad-tank system components are

addressed. Recall the taxonomy of representative sensor effects described in Chapter 3

which is repeated here in Tables 5.6.

Table 5.6. Fundamental Effects on Sensors

 Sensor Effect Descriptions

1
Increased

Value
𝑦̂𝑡+𝑧 = 𝛼 + 𝑦𝑡+𝑧 𝑂𝑅 𝛼̆(𝑦𝑡+𝑧) Where α > 0 and 𝛼̆ > 1

2
Decreased

Value
 𝑦̂𝑡+𝑧 = 𝛽 + 𝑦𝑡+𝑧 𝑂𝑅 𝛽̆(𝑦𝑡+𝑧) Where β < 0 and 0 < 𝛽̆ < 1

3
Stochastic

Value
𝑦̂𝑡+𝑧 = 𝑦𝑡+𝑧 +

1

𝜎√2𝜋
𝑒−

(𝑧−𝜇)2

2𝜎

Where μ is mean and σ is the

standard deviation of additive

Gaussian noise

4
Cyclical

Value
𝑦̂𝑡+𝑧 = 𝑦𝑡+𝑧 + 𝛾 𝑠𝑖𝑛(𝛿𝜋𝑧)

Where γ determines the

magnitude of an additive cyclical

effect and δ determines the

frequency

5
Fixed

Value
 𝑦̂𝑡+𝑧 = 𝜀 Where ε is the fixed value

6 No Value 𝑦̂𝑡+𝑧 = { }

Applied to the sensors of the quadruple-tank system, these effects are applied as

described below and summarized in Table 5.7.

100

1. Increased Value effect – This effect is modeled as an abrupt, multiplicative

function with 𝛼̂ being randomly selected from a uniform distribution with values on

the interval (1.00, 3.00).

2. Decreased Value effect – This effect is modeled as an abrupt, multiplicative

function with 𝛽̂ being randomly selected from a uniform distribution with values on

the interval (0.15, 0.90).

3. Stochastic Value effect – This effect is modeled as an abrupt, additive function with

𝜇 set to zero and 𝜎 being randomly selected from a uniform distribution with values on

the interval (0.05, 0.55).

4. Cyclical Value effect – This effect is modeled as an abrupt, additive function with

𝛾 being randomly selected from a uniform distribution with values on the interval

(0.10, 1.10) and 𝛿 being randomly selected from a uniform distribution with values on

the interval (0.015, 1.015).

5. Fixed Value effect – This effect is modeled as an abrupt, function with ε being

randomly selected from a uniform distribution with values on the interval (0.00, 20.00).

6. No Value effect - This effect is modeled as an abrupt, function with the value of

𝑦𝑡+𝑧 being set as Not-a-Number (NaN).

Two additional effects are modeled to examine the performance of the controller if

the quadruple tank system sensors are subjected to incipient effects.

7. Increased Value effect – This effect is modeled as an incipient, additive and

multiplicative function with 𝛼 being randomly selected from a uniform distribution

with values on the interval (0.00, 1.00) and the effect being applied using the equation

101

 𝑦̂𝑡+𝑧 = 𝑦𝑡 + .005𝛼𝑦𝑡+𝑧

8. Decreased Value effect – This effect is modeled as an incipient, additive and

multiplicative function with 𝛽 being randomly selected from a uniform distribution

with values on the interval (0.0, 1.0) and the effect being applied using the equation

 𝑦̂𝑡+𝑧 = 𝑦𝑡 − .005𝛽𝑦𝑡+𝑧

These eight sensor effect models are summarized in Table 5.7. The Effect Number and

Effect Value fields will be used when discussing test results. The six representative actuator

effects are described in Table 5.8.

Table 5.7. Summary of Sensor Effects for Quadruple-Tank System

Effect

Type

Effect

Number

Effect Value Add, Mult,

Replace

Abrupt or

Incipient

Increased 1 (1.00, 3.00) Mult Abrupt

Decreased 2 (0.15, 0.90) Mult Abrupt

Stochastic 3 (0.05, 0.55) Add Abrupt

Cyclical 4 (0.10, 1.10) (0.015, 1.015) Add Abrupt

Fixed 5 (0.00, 20.00) Replace Abrupt

No Value 6 (NaN) Replace Abrupt

Increased 7 (0.00, 1.00) Add & Mult Incipient

Decreased 8 (0.00, 1.00) Add & Mult Incipient

102

Table 5.8. Fundamental Effects on Actuators

Actuator Effect Descriptions

1
Increased

Value
𝑢̂𝑡+𝑧 = 𝛼 + 𝑢𝑡+𝑧 𝑂𝑅 𝛼̆(𝑢𝑡+𝑧) Where α > 0 and 𝛼̆ > 1

2
Decreased

Value
𝑢̂𝑡+𝑧 = 𝛽 + 𝑢𝑡+𝑧 𝑂𝑅 𝛽̆(𝑢𝑡+𝑧) Where β < 0 and 0 < 𝛽̆ < 1

3
Stochastic

Value
𝑢̂𝑡+𝑧 = 𝑢𝑡+𝑧 +

1

𝜎√2𝜋
𝑒−

(𝑧−𝜇)2

2𝜎

Where μ is mean and σ is the

standard deviation of Gaussian

noise

4
Cyclical

Value
𝑢̂𝑡+𝑧 = 𝑢𝑡+𝑧 + 𝛾 𝑠𝑖𝑛(𝛿𝜋𝑧)

Where γ sets the magnitude of a

cyclical effect and δ determines the

frequency

5
Fixed

Value
𝑢̂𝑡+𝑧 = 𝜀 Where ε is the fixed value

6 No Value 𝑢̂𝑡+𝑧 = { }

Applied to the actuators of the quadruple-tank system, these effects are applied as

described below and summarized in Table 5.9.

1. Increased Value effect – This effect is modeled as an abrupt, multiplicative

function with 𝛼̂ being randomly selected from a uniform distribution with values on

the interval (1.05, 1.50). This effect leaves the actuator controllable.

2. Decreased Value effect – This effect is modeled as an abrupt, multiplicative

function with 𝛽̂ being randomly selected from a uniform distribution with values on

the interval (0.15, 0.90). This effect leaves the actuator controllable.

3. Stochastic Value effect – This effect is modeled as an abrupt, additive function with

𝜇 set to zero and 𝜎 being randomly selected from a uniform distribution with values on

the interval (0.05, 0.55). This effect leaves the actuator controllable.

103

4. Cyclical Value effect – This effect is modeled as an abrupt, additive function with

𝛾 being randomly selected from a uniform distribution with values on the interval

(0.50, 3.50) and 𝛿 being randomly selected from a uniform distribution with values on

the interval (0.05, 0.55). This effect leaves the actuator controllable.

5. Fixed Value effect – This effect is modeled as an abrupt, function with ε being

randomly selected from a uniform distribution with values on the interval (0.00, 10.00).

This effect leaves the actuator uncontrollable.

6. No Value effect – This effect is modeled as an abrupt, function with the value of

𝑦𝑡+𝑧 being set as Not-a-Number (NaN). This effect leaves the actuator uncontrollable.

As stated previously, two additional effects are also modelled.

7. Increased Value effect – This effect is modeled as an incipient, additive and

multiplicative function with α being randomly selected from a uniform distribution

with values on the interval (0.00, 1.00) and the effect being applied using the equation

 𝑢̂𝑡+𝑧 = (𝑢𝑡 + .005𝛼𝑢𝑡+𝑧)
2𝑢𝑡+𝑧

3

8. Decreased Value effect – This effect is modeled as an incipient, additive and

multiplicative function with β being randomly selected from a uniform distribution with

values on the interval (0.00, 1.00) and the effect being applied using the equation

 𝑢̂𝑡+𝑧 = (𝑢𝑡 − .005𝛽𝑢𝑡+𝑧)
2𝑢𝑡+𝑧

3

These eight actuator effect models are summarized in Table 5.9.

104

Table 5.9. Summary of Actuator Effects for Quadruple-Tank System

Effect

Type

Effect

Number

Effect Value Add, Mult or

Replace

Abrupt or

Incipient

Controllable

Increased 1 (1.05, 1.50) Mult Abrupt Yes

Decreased 2 (0.15, 0.90) Mult Abrupt Yes

Stochastic 3 (0.05, 0.55) Add Abrupt Yes

Cyclical 4 (0.50, 3.50)

(0.05, 0.55)

Add Abrupt Yes

Fixed 5 (0.00, 10.00) Replace Abrupt No

No Value 6 (NaN) Replace Abrupt No

Increased 7 (0.00, 1.00) Add & Mult Incipient Yes

Decreased 8 (0.00, 1.00) Add & Mult Incipient Yes

The Effect Number and Effect Value fields will be used when discussing test results.

Since the Fixed Value (#5) and the No Value (#6) effects leave the actuator uncontrollable

and the quadruple-tank system design does not include redundant actuators, these two

effects will not be included in the training or testing of the controller for the quadruple tank

system.

5.5 Training the LSTM Networks

The following parameters were used to train the LSTM for this controller in

MATLAB®:

Solver: ADAptive Moment estimation (ADAM)

Execution Environment: auto (defaults to GPU if one is present)

Initial Learning Rate: 0.0002

Learn Rate Schedule: piecewise

Learn Rate Drop Factor: 0.5

Learn Drop Rate: 2 (epochs)

Maximum Epochs: 20

105

In order to expedite the training process of the LSTM, the training inputs are

compiled into “minibatches”. The larger the minibatch, the quicker the training is

accomplished. If the minibatch size is too large, the network will overfit to the training data

and not perform well in testing or actual use. Based on the size of the training data set, the

minibatch size for this application is 512 inputs.

Another important parameter in training the LSTM is the learning rate. Larger

learning rates help the values of the LSTM weights to converge more quickly, but risk

possibly settling in local minimum rather than the global minimum. Lower learning rates

are more likely to find the global minimum but can take a very long time to get there.

MATLAB® allows the designer to vary the learning rate during training. In this application,

the initial learning rate is set at 0.002 and is cut by 50% every 2 epochs. Thus, after 20

training epochs the training rate is dropped to 0.000125.

5.5.1 Generating Training Data

The data used to train the proposed controller was generated by building a computer

simulation of the quadruple-tank system in MATLAB®. This test subject system was

controlled by a PID controller which was fed the output from the correct model so it always

controlled the system correctly.

Table 5.10. Numbers and Combinations of Data Generation for Quad-Tank System.

 Components

A S

Runs per

Effect

Total

Runs

E
ff

ec
ts

 6 0 20 120

0 8 15 120

6 8 5 240

 Total 480

106

The simulation was run, iteratively introducing representative values of each of the

effects of faults and cyber-attacks on each component. After each component has been run

with each of the different effects (8 for the sensor and 6 for the actuator), the process is

repeated with both components being simultaneously affected (48 different combinations).

Four times as many data generation simulations were run with actuator effects, and

three times as many with sensor effects, compared to those with two components affected.

This was done to provide an approximately equal number of samples for single component

effects as multiple component effects.

Each data generation simulation ran for 500 iterations with the component effect

starting at iteration number 250. This was done to ensure the system was operating in a

normal steady state the effect begins.

A total of 240,000 inputs were generated using them method described above. Each

input was a 27x30 matrix.

5.5.2 Data Preprocessing

Before the data from the simulation runs can be used to train the LSTM networks

there are several preprocessing steps it must go through.

The data must first be normalized to a range of (−1,1). With the data normalized,

20% of the data was randomly selected and set aside for future testing. This left 198,000

data samples in the training set.

A key step in data preprocessing for LSTMs is data balancing. If a significant

portion of the data has a correct classification of “1” and only a comparative few with

correct classification of 2, 3 or 4, the LSTM will learn it can get good results by simply

classifying all inputs as “1”. Therefore, the data is balanced by identifying which

107

classification group was most represented in the data set and duplicating data samples from

each of the other classification groups until all four groups had the same number of data

samples. This step increased the training set to 344,000 samples evenly distributed across

the four classification groups.

The LSTMs were then trained with this data using the training parameters identified

at the beginning of this section

5.6 Testing Methodology for Proposed Controller

The quadruple-tank system poses some interesting and difficult control challenges.

Testing with this non-linear system is intended to find the limits of both the proposed and

the comparison controllers in the presence of the various cyber-attacks and component

faults. Unlike the steam boiler, discussed in Chapter 4, this system has no redundant

components nor built-in safety features. The actuators are variable speed pumps which

make the control requirements much more complex.

The method for testing the controller is very similar to the method for generating

the training data. For all testing, the system under test (SUT) and the associated control

algorithm are realized as MATLAB® scripts. The tests are performed on an Intel® Core i7

CPU platform with 32 GB of RAM running Windows 10. Each test run is conducted by

running the script for 500 iterations. Prior to each run the attack/fault effects(s) (described

previously) is/are set to be activated at iteration number 250. Each of the eight sensor

effects were applied on individual runs, then each of the six actuator effects were applied

on individual runs. Finally, the sensor and actuator effects were applied simultaneously on

the last 48 test runs, with each run using a different combination of the different effects. In

108

all of the test runs the value of the variable(s) were randomly selected, from the uniform

range described previously, prior to the beginning of the test run.

5.7 Test Results

A total of 63 test runs were completed for the test; 1 with no effects applied, 8 with

a sensor effect applied, 6 with an actuator effect applied and 48 with both a sensor and an

actuator effect applied. For ease in understanding the complete results of the testing as

presented in Table 5.11., the column headers are described below.

Test Run Number – Sequential number of the specific test run

Pump 1 Effect – Actuator effect applied in the test run. The effect numbers refer to the

second column of Table 5.9.

Effect Value – Refers to the randomly selected variable value for that effect on that test

run. The range of possible actuator effect values are given in column 3 of Table 5.9.

Sensor 1 Effect - Sensor effect applied in the test run. The effect numbers refer to the

second column of Table 5.7.

Effect Value – Refers to the randomly selected variable value for that effect on that test

run. The range of possible sensor effect values are given in column 3 of Table 5.7.

Components Affected – Total number of sensors and/or actuators affected in the test run.

Catastrophic Failure - Boolean indicator is 1 if the actual water level in tank 1 dropped

to 0 or exceeded 25 cm (maximum height of the tank). Otherwise it is 0.

Maintain Proper Control – Boolean indicator is 1 if the actual water level in tank 1 did

not vary by more than ±1% from the reference value after the effect was initiated.

Otherwise it is 0.

109

Iterations to Regain Proper Control – If the previous column entry in the test run is a 0,

this entry shows how many iterations occurred from the time the water level in tank 1 went

outside the ±1% until it was brought back into that range.

Iterations to Correct Model – Measure of how many controller program iterations

occurred from the onset of the effect(s) until the controller selected the correct model.

Iterations Using Correct Model (%) – Measure of the percentage of iterations during the

test run in which the correct model was selected by the controller.

Complete results of the test runs are shown in Table 5.11.

Table 5.11. Test Results of Proposed Controller.

T
es

t
R

u
n

 N
o
.

P
u

m
p

 1
 E

ff
ec

t

E
ff

ec
t

V
a
lu

e

S
en

so
r

1
 E

ff
ec

t

E
ff

ec
t

V
a
lu

e

C
o
m

p
o
n

en
ts

A
ff

ec
te

d

C
a
ta

st
ro

p
h

ic

F
a
il

u
re

M
a
in

ta
in

 P
ro

p
er

C
o
n

tr
o
l?

It
er

a
ti

o
n

s
to

 R
eg

a
in

P
ro

p
er

 C
o
n

tr
o
l

It
er

a
ti

o
n

s
to

C
o
rr

ec
t

M
o
d

el

It
er

a
ti

o
n

s
U

si
n

g

C
o
rr

ec
t

M
o
d

el
 %

1 0 0 0 1 0 100.00%

2 1 2.96 1 0 1 1 99.67%

3 2 0.56 1 0 1 1 99.67%

4 3 0.48 1 0 1 1 99.67%

5 4 0.71 1 0 1 1 99.67%

6 5 15.72 1 0 1 1 99.67%

7 6 * 1 0 1 1 99.67%

8 7 0.05 1 0 1 18 94.00%

9 8 0.82 1 0 1 7 97.67%

10 1 1.44 1 0 0 1 2 99.33%

11 2 0.73 1 0 1 2 99.33%

12 3 4.48 1 0 1 2 99.33%

13 4 2.47 1 0 1 3 99.00%

14 7 0.62 1 0 0 1 3 99.00%

15 8 0.87 1 0 0 1 3 99.00%

16 1 1.14 1 2.21 2 0 1 4 98.67%

17 1 1.50 2 0.18 2 0 0 3 3 99.00%

18 1 1.11 3 1.16 2 0 1 4 98.67%

19 1 1.43 4 0.69 2 0 0 2 2 99.33%

20 1 1.45 5 11.75 2 0 0 2 2 99.33%

21 1 1.20 6 * 2 0 0 1 4 98.67%

110

22 1 1.50 7 0.21 2 0 0 2 2 99.33%

23 1 1.18 8 0.83 2 0 1 3 99.00%

24 2 0.30 1 2.53 2 0 0 30 3 99.00%

25 2 0.61 2 0.87 2 0 0 10 2 99.33%

26 2 0.53 3 2.44 2 0 0 15 2 99.33%

27 2 0.52 4 0.35 2 0 0 15 2 99.33%

28 2 0.23 5 3.07 2 0 0 36 3 99.00%

29 2 0.80 6 * 2 0 0 2 4 98.67%
30 2 0.69 7 0.01 2 0 0 4 2 99.33%
31 2 0.76 8 0.25 2 0 0 2 3 99.00%
32 3 1.08 1 2.31 2 0 0 1 3 99.00%
33 3 4.91 2 0.67 2 0 1 4 98.67%
34 3 1.88 3 2.40 2 0 1 4 98.67%
35 3 2.45 4 0.92 2 0 0 2 3 99.00%
36 3 1.23 5 15.41 2 0 1 5 98.33%
37 3 1.86 6 * 2 0 0 1 4 98.67%
38 3 4.36 7 0.13 2 0 1 4 98.67%
39 3 4.50 8 0.73 2 0 0 1 3 99.00%
40 4 1.77 1 2.21 2 0 0 1 4 98.67%
41 4 2.79 2 0.89 2 0 1 4 98.67%
42 4 0.10 3 2.57 2 0 0 3 5 98.33%
43 4 2.96 4 0.96 2 0 1 10 96.67%
44 4 0.84 5 13.72 2 0 1 250 16.33%
45 4 2.48 6 * 2 0 1 17 94.33%
46 4 0.99 7 0.70 2 0 1 6 98.00%
47 4 1.84 8 0.97 2 0 1 4 98.67%
48 7 0.62 1 2.15 2 0 0 3 4 98.67%
49 7 0.65 2 0.25 2 0 0 3 4 98.67%
50 7 0.08 3 2.12 2 0 0 2 3 99.00%
51 7 0.84 4 0.03 2 0 0 2 3 99.00%
52 7 0.54 5 6.75 2 0 0 3 4 98.67%
53 7 0.80 6 * 2 0 0 3 4 98.67%
54 7 0.76 7 0.44 2 0 0 2 3 99.00%
55 7 0.87 8 0.82 2 0 0 1 2 99.33%
56 8 0.55 1 1.33 2 0 0 2 3 99.00%
57 8 0.63 2 0.83 2 0 0 3 4 98.67%
58 8 0.34 3 1.82 2 0 0 2 3 99.00%
59 8 0.10 4 0.26 2 0 0 3 4 98.67%
60 8 0.49 5 0.03 2 0 0 3 4 98.67%
61 8 0.27 6 * 2 0 0 3 4 98.67%
62 8 0.44 7 0.72 2 0 0 2 3 99.00%
63 8 0.82 8 0.24 2 0 0 1 2 99.33%

111

Of the 63 test runs, there was only a single test (#44) in which the proposed

controller did not maintain or regain proper control of the system after it was affected. The

test results are summarized in Table 5.12.

Table 5.12. Test Result Summary for Proposed Controller

Test

Runs

Component

Affected

Cat.

Fail

Proper

Control

Iterations to

Regain Proper

Control

Iterations to

Correct Model

Iterations

Using Correct

Model %

A/S/Both % % Mean Median Mean Median Mean Median

6 Actuator 0 50.00 1.00 1.00 2.50 2.50 99.00 99.00

8 Sensor 0 100.00 * * 3.88 1.00 98.67 98.67

48 Both 0 27.08 4.29 2.00 7.80 3.00 97.37 98.50

Total - 0 39.68 4.58 2.00 7.54 3.00 97.48 99.00

Using the same data summarized in the last two columns of Table 5.12., a confusion

matrix of the classification results of the LSTM is shown in Table 5.13.

Table 5.13. Confusion Matrix of LSTM Classifications in Proposed Controller

 Model Selected

C
o
rr

ec
t

M
o
d

el
 3338 0 0 0 1

10 1491 3 2 2

30 0 1977 1 3

74 0 356 11618 4

 1 2 3 4

By way of review, model 1 is the correct choice when no component is being

affected. Model 2 is the correct choice when the actuator is being affected. Model 3 is the

correct choice when the sensor is being affected and model 4 is the correct choice when

112

both are being affected. These test results are discussed and analyzed in more detail in

Chapter 6.

5.8 Ensemble Variant of Network-Based Controller

To this point the discussion of the design, training and testing of the proposed

controller has considered a single LSTM network assigned to each actuator in the system

under control. As discussed in Chapter 3, there are circumstances in which an ensemble of

smaller LSTM networks may be preferable to a single larger network.

For use as a controller for the quadruple-tank system, we found an ensemble of four

smaller LSTM networks (2 hidden layers with 512 nodes each), operated slightly faster a

single larger network. It is also possible to extract out a small increase in classification

accuracy.

Figure 5.3. Quadruple Tank System with Ensemble-Based Controller

113

From a design perspective, the differences between a controller with ensembles vs

single networks are comparatively minor. Figure 5.3 depicts the quadruple-tank system

(plant) with two ensembles of LSTM networks as opposed to the two single networks

previously shown in Figure 5.1.

Within the controller, the logic flow in an ensemble-based controller is very similar

to that of single network-based controller.

Figure 5.4. Logic Flow through a Single Network-Based Controller

Comparing the flow shown in Figure 5.4 to that shown in Figure 5.5, the ensemble

requires a resolver to take the output from the four networks in the ensemble and provide

a single output to the PID controller.

114

Figure 5.5. Logic Flow within an Ensemble-Based Controller.

To train the LSTMs in the ensemble the training data was divided into fourths

(86,000 samples each) so that each LSTM would be trained with different data than the

others.

After the LSTMs were each trained, the various options for resolving the LSTM

outputs to a single solution were also trained and tested. As discussed in Chapter 3, the

options considered were a majority vote (and a unanimous vote variation), a kNN network,

Multiple Linear Regression and MATLAB’s built-in ensemble Bagging/Boosting

program. The results of testing each of these is summarized in Table 5.14.

Table 5.14. Test Results for Ensemble Resolution Options.

Method Accuracy

Majority Vote 93.82%

Unanimous Vote 95.24%

k Nearest Neighbor 94.93%

Multiple Linear Regression 91.97%

Bagging/Boosting 97.43%

115

It should be noted that the accuracy score of the Majority Vote and Unanimous

Vote methods reflected above are based only on the number inputs for which there was a

majority or unanimous input to select. For those inputs that did not have a majority or

unanimous answer to select, no model was selected. This can be illustrated by the results

shown in the confusion matrix for the Unanimous Vote method in Table 5.15.

Table 5.15. Confusion Matrix of Unanimous Vote Ensemble Resolver.

 Model Selected

C
o
rr

ec
t

M
o
d

el
 0 2259 0 0 0 1

11 8 986 0 0 2

13 16 0 1177 0 3

1447 124 265 7 4187 4

 none 1 2 3 4

In Table 5.15, the “none” column shows the times there was no unanimous input

for the resolver to select. In these cases another means of deciding a single result is

required.

If all of the LSTMs in an ensemble select the same model, the output of that model

is provided to the PID controller. If a unanimous decision is not reached, then a

bagging/boosting classifier is activated to make the selection. The confusion matrix for the

Bagging/Boosting algorithm is presented in Table 5.16.

116

Table 5.16. Confusion Matrix of Bagging/Boosting Ensemble Resolver.

 Model Selected

C
o
rr

ec
t

M
o
d

el
 2259 0 0 0 1

9 995 1 0 2

18 0 1188 0 3

40 123 0 5788 4

 1 2 3 4

Given that the Bagging/Boosting algorithms showed the best accuracy of the five

methods considered, it would be reasonable to simply use it as the ensemble resolver.

However, in this application, combining the Unanimous Vote and Bagging Boosting

algorithms provided slightly improved accuracy over the Bagging/Boosting algorithm

alone. The confusion matrix for two combined is shown in Table 5.17.

Table 5.17. Confusion Matrix for Unanimous Vote with Bagging/Boosting Resolver.

 Model Selected

C
o
rr

ec
t

M
o
d

el
 2259 0 0 0 1

11 993 1 0 2

16 0 1190 0 3

46 112 66 5806 4

 1 2 3 4

The two methods combined provide a classification accuracy of 97.60% which is

slightly better than the 97.43% accuracy of the Bagging/Boosting algorithm alone.

117

5.8.1 Testing the Ensemble-Based Controller

The testing for the ensemble-based controller was conducted exactly as the testing

for the single network-based controller. Complete results of the test runs is shown in Table

5.18, and a summary is provided in Table 5.19.

Table 5.18. Test Results of Proposed Controller Using Ensembles.

T
es

t
R

u
n

 N
o
.

P
u

m
p

 1
 E

ff
ec

t

E
ff

ec
t

V
a
lu

e

S
en

so
r

1
 E

ff
ec

t

E
ff

ec
t

V
a
lu

e

C
o
m

p
o
n

en
ts

A
ff

ec
te

d

C
a
ta

st
ro

p
h

ic

F
a
il

u
re

M
a
in

ta
in

 P
ro

p
er

C
o
n

tr
o
l?

It
er

a
ti

o
n

s
to

 R
eg

a
in

P
ro

p
er

 C
o
n

tr
o
l

It
er

a
ti

o
n

s
to

C
o
rr

ec
t

M
o
d

el

It
er

a
ti

o
n

s
U

si
n

g

C
o
rr

ec
t

M
o
d

el
 %

1 0 0 1 0 100.00%

2 1 2.96 1 0 1 2 99.33%

3 2 0.56 1 0 1 3 99.00%

4 3 0.48 1 0 1 3 99.00%

5 4 0.71 1 0 1 3 99.00%

6 5 15.72 1 0 1 3 99.00%

7 6 * 1 0 1 3 99.00%

8 7 0.05 1 0 1 20 93.33%

9 8 0.82 1 0 1 9 97.00%

10 1 1.44 1 0 1 2 99.33%

11 2 0.73 1 0 1 2 99.33%

12 3 4.48 1 0 1 5 98.33%

13 4 2.47 1 0 1 5 98.33%

14 7 0.62 1 0 1 5 98.33%

15 8 0.87 1 0 1 5 98.33%

16 1 1.14 1 2.21 2 0 1 1 99.67%

17 1 1.50 2 0.18 2 0 2 1 99.67%

18 1 1.11 3 1.16 2 0 1 1 99.67%

19 1 1.43 4 0.69 2 0 2 1 99.67%

20 1 1.45 5 11.75 2 0 2 1 99.67%

21 1 1.20 6 * 2 0 1 1 99.67%

22 1 1.50 7 0.21 2 0 16 13 95.67%

23 1 1.18 8 0.83 2 0 14 14 95.33%

24 2 0.30 1 2.53 2 0 30 1 99.67%

25 2 0.61 2 0.87 2 0 10 1 99.67%

26 2 0.53 3 2.44 2 0 15 1 99.67%

27 2 0.52 4 0.35 2 0 15 1 99.67%

28 2 0.23 5 3.07 2 0 36 1 99.67%

29 2 0.80 6 * 2 0 1 1 99.67%

118

30 2 0.69 7 0.01 2 0 23 23 92.33%
31 2 0.76 8 0.25 2 0 23 24 92.00%
32 3 1.08 1 2.31 2 0 1 1 99.67%
33 3 4.91 2 0.67 2 0 1 1 99.67%
34 3 1.88 3 2.40 2 0 1 1 99.67%
35 3 2.45 4 0.92 2 0 1 1 99.67%
36 3 1.23 5 15.41 2 0 1 1 99.67%
37 3 1.86 6 * 2 0 1 1 99.67%
38 3 4.36 7 0.13 2 0 13 15 95.00%
39 3 4.50 8 0.73 2 0 14 14 95.33%
40 4 1.77 1 2.21 2 0 2 1 99.67%
41 4 2.79 2 0.89 2 0 1 1 99.67%
42 4 0.10 3 2.57 2 0 3 2 99.33%
43 4 2.96 4 0.96 2 0 1 1 99.67%
44 4 0.84 5 13.72 2 0 1 1 99.67%
45 4 2.48 6 * 2 0 1 1 99.67%
46 4 0.99 7 0.70 2 0 1 6 98.00%
47 4 1.84 8 0.97 2 0 3 14 95.33%
48 7 0.62 1 2.15 2 0 1 1 99.67%

49 7 0.65 2 0.25 2 0 1 1 99.67%

50 7 0.08 3 2.12 2 0 1 1 99.67%

51 7 0.84 4 0.03 2 0 1 1 99.67%

52 7 0.54 5 6.75 2 0 1 1 99.67%

53 7 0.80 6 * 2 0 1 1 99.67%

54 7 0.76 7 0.44 2 0 15 15 95.00%

55 7 0.87 8 0.82 2 0 1 2 99.33%

56 8 0.55 1 1.33 2 0 1 1 99.67%

57 8 0.63 2 0.83 2 0 1 1 99.67%

58 8 0.34 3 1.82 2 0 1 1 99.67%

59 8 0.10 4 0.26 2 0 1 1 99.67%

60 8 0.49 5 0.03 2 0 1 1 99.67%

61 8 0.27 6 * 2 0 1 1 99.67%

62 8 0.44 7 0.72 2 0 14 15 95.00%

63 8 0.82 8 0.24 2 0 1 2 99.33%

Table 5.19. LSTM Ensemble Test Result Summary.

Test

Runs

Component

Affected

Cat.

Fail

Proper

Control

Iterations to

Regain Proper

Control

Iterations to

Correct Model

Iterations

Using Correct

Model %

A/S/Both % % Mean Median Mean Median Mean Median

6 Actuators 0 50.00 1.00 1.00 4.00 5.00 98.67 98.33

8 Sensors 0 100.00 * * 5.75 3.00 98.08 99.00

48 Both 0 31.25 8.06 2.00 4.04 1.00 98.65 99.67

Total - 0 56.25 7.47 2.00 4.19 1.00 98.60 99.67

119

Using the same data summarized in the last two columns of Table 5.19 a confusion

matrix of the classification results of the LSTM ensemble is shown in Table 5.20.

Table 5.20. Confusion Matrix of LSTM Ensemble Classifications.

 Model Selected

C
o
rr

ec
t

M
o
d

el
 3338 0 0 0 1

12 1482 0 12 2

30 0 1962 16 3

71 123 0 11854 4

 1 2 3 4

Comparing the summarized test results in Table 5.12 to those in 5.19, we see the

ensemble-based controller showed slightly improved performance over the single LSTM-

based controller. The ensemble base controller maintained proper control of the system

during the tests in 56.25% of the runs where the single LSTM controller did so in only

39.68% of the tests. Additionally, the single LSTM controller had a mean correct model

selection rate of 97.48% while the ensemble-based controller’s mean selection rate was

98.60%. These are just two highlights in the comparison of these two controllers. The

performance of these controllers will be compared in more depth in Chapter 6.

5.9 Computational Overhead

Parameters

The computational parameters of an LSTM network are weights (input and

recurrent) at each hidden layer of the network as well as the biases at each cell. The number

120

of parameters is determined by the number inputs to the layer, the number of outputs from

the layer as well as the hidden state (h) and cell state (c) described in section 3.5.1. There

are four different sets of weights that are used in LSTM operations. Therefore, the number

of parameters at a layer with m inputs and n outputs is calculated as

4n(m+n+1)

Consider the single large LSTM used to control the quadruple-tank system. The

input to that network has 27 nodes (one for each input feature), each of the eight hidden

layers contains 512 nodes, there is a softmax layer and 4 output nodes.

This means the first hidden layer has 4×512(27+512+1)=1,105,920 parameters.

The second through the eighth hidden layers each have 4×512(512+512+1)=2,099,200

parameters. This makes a total of 15,800,320 parameters for the network.

In comparison, the ensemble of smaller networks was made up of four LSTMs each

with two hidden layers of 512 nodes each. Each of those networks had the same 1,105,920

parameters for the first hidden layer, 2,099,200 parameters in the second layer. As a result,

each of the smaller networks had 3,205,120 parameters for a total of 12,820,480 parameters

in the ensemble.

Memory Requirements

Given the number of parameters for both the large LSTM and the LSTM ensemble,

we can estimate the memory requirements for each. Assuming 64-bit processing and

assuming each of the parameters in the LSTM networks is a double precision floating point

number, each parameter will require 8 bytes of memory. From this, the large LSTM is

estimated to be 128MB and the ensemble of LSTMs is estimated to be 103MB. Recall that

121

as applied to the quadruple-tank system, the controller would employ two LSTMs, one for

each actuator. This doubles the estimated memory requirement for each.

During operation, the controller program needs to capture and store past values of

input features. With a segment length of 30 time steps and 27 features, this temporal data

and the basic controller algorithm can bring the minimum memory requirement up to

258MB for the large LSTM controller and 208MB for the LSTM ensemble controller.

These estimates all assume the controller program runs on a CPU. If the controller

computer is equipped with a GPU, the memory requirements could easily jump to over 1.5

GB because of the wider vector paths used.

The amount of RAM available on current industrial computers (process controllers)

is discussed later in this section.

Multiply and Accumulate Operations

To better appreciate the computational capability required to operate a large LSTM

network, it is useful to consider the Multiply and Accumulate (MAC) operations required

in its use. In [109], the authors describe how the number of MAC operations in an LSTM

are estimated. In short, matrix to vector multiplications dominate the number of

computations made in an LSTM as well as the number of parameters. The number of MAC

operations in a layer of an LSTM with m inputs and n outputs is given by

sn[4(n+m)+3]

where s is the segment length of the input features.

Thus, the large LSTM network used in this dissertation performs 33,162,240 MAC

operations in the first layer and 62,960,640 in the second through eighth layers. This is a

total of 473,886,720 MAC operations at each iteration of the program.

122

Similarly, in the ensemble of smaller networks each LSTM would execute the

32,486,400 MAC operations in the first layer and the 62,960,640 operations in the second

layer. This makes a total of 96,122,880 operations per network or 384,491,520 operations

in the entire ensemble. The computational complexity of the LSTM is then O(n2+n).

As configured for the quadruple-tank system, each actuator requires its own LSTM

in the proposed controller design. Therefore, the large LSTM controller for the quadruple-

tank system uses two networks and would execute approximately 950 million MAC

operations per iteration of the control algorithm. In the case of the LSTM ensemble

controller, two ensembles would be used and the control algorithm would execute over 760

million MAC operations per iteration.

This large number of MAC operations per iteration of the control program brings

to mind the question of what the sampling rate of the controller can be in this application.

Across the industrial controls community, the lower bound for sampling rates varies

depending on the type of process under control. The general rules of thumb are; 1 second

or faster for flow loops (processes) and 1-2 seconds for pressure processes. These processes

react quickly to changes in controller output. Temperature control processes react more

slowly to controller outputs so sampling every 2-5 seconds is the standard for those

processes.

Modern CPUs, implementing combinational logic, are capable completing a MAC

operation every cycle. Clock speed and the number of cores of the control computer CPU

then drive the best possible sampling rate of the controller.

123

Industrial Computers

A brief survey of industrial computers used for process control was conducted.

Computers from three different sources were considered, using four different models from

each source as samples. The survey revealed that the industrial computers currently

available all use modern, Intel® multi-core processors with clock speeds ranging from just

under 2 GHz to just under 4 GHz. The available RAM amounts range from 4 GB to 64 GB.

Table 5.21 summarizes these findings.

Table 5.21. Industrial Computer Processor Cores, Clock Speeds and RAM.

Brand Allen-Bradley by Rockwell Automation

Model VersaView 5400 6181P 6181P Advanced 6177R

Processor Atom E3845 Core i3 - 4102E Core i7 - 4700EQ Core i5 - 2500

Cores 4 2 4 4

Speed 1.91 GHz 1.6 GHz 2.4 GHz 3.1 GHz

Max RAM 4 GB 16 GB 16 GB 32 GB

Brand Industrial Computers Limited

Model IPPC 1602 IPPC 1501 IPPC 1503 IPPC 2107

Processor Celeron - J1900 Core i3 - 3120ME Core i7 - 3540M Core i5 - 6300U

Cores 4 2 2 2

Speed 2.42 GHz 2.4 GHz 2.9 GHz 2.40 GHz

Max RAM 4 GB 8 GB 8 GB 16 GB

Brand CONTEC

Model VPC 1600 VPC 3000 VPC 3100-G VPC 5000-G

Processor Celeron G1820TE Core i3 - 4570S Core i7 - 8700 Xeon E-2278GE

Cores 2 4 6 8

Speed 2.2 GHz 2.9 GHz 3.2 GHz 3.3 GHz

Max RAM 4 GB 8 GB 32 GB 64 GB

From the information shown in Table 5.21, it appears any of the industrial

computers listed would have sufficient RAM to run the proposed controller algorithms.

Using the CPU specifications identified in Table 5.21 the plots shown in Figure 5.6 were

generated.

124

Figure 5.6 shows the relationship between processor clock speed and maximum

sampling rate when running a control algorithm that executes 1 billion MAC operations

per iteration.

Figure 5.6. CPU Clock Speed vs. Sampling Rates.

When considering the effect of multiple CPU cores on the possible sampling rate

for the plots in Figure 5.6, Amdahl’s law was applied with the assumption that 75% of the

controller code could be run in parallel.

Any of the CPU core/clock speed combinations in Table 5.21 would allow a

sampling rate of 1 second or less using a control algorithm similar to the proposed

controller with the large LSTM networks. Of course, if a significantly faster sampling rate

(e.g., 0.25 seconds) is required, a CPU with a higher clock speed and/or more cores would

be required to reach the desired sampling rate.

125

5.10 Chapter Summary

In this chapter, the benchmark, nonlinear quadruple-tank system was described and

used as a test subject. The specific design of the proposed controller as applied to this

system was also presented in detail. The utility of the effects taxonomy was demonstrated.

The specifics of testing the system and controller were discussed and results presented. In

addition, the design implementation and testing of an LSTM ensemble-based controller

were also presented. Finally, the computational overhead requirements for using the

proposed controller were discussed.

126

 Reference Controller, Comparative Test Results Analysis and Stuxnet-Like

Attack Testing

6.1 Chapter Introduction

This chapter describes a previously published, active fault tolerant controller [12]

which was applied to the same quadruple-tank system described in Chapter 5. The

controller is tested using the same tests applied to the proposed controller in the previous

chapter and the results of that testing are described. This chapter presents a discussion on

the results of testing the proposed controller and the comparison controller with 63 different

effects on a sensor and/or a pump of the quadruple-tank system as described in Chapter 5.

Both versions of the proposed controller and the comparison controller are tested while the

system is subjected to simulated Stuxnet-like attacks. The results of that testing are

compared and discussed as well.

6.2 Comparison Controller Design

In [12] the authors presented a reconfigurable control strategy for linear continuous

time invariant systems. This controller was selected because it embodies the more common

characteristics of current FTC; it is active, model-driven and incorporates an observer as

part of the solution. In addition, it is intended to achieve some of the same control

requirements as the controller proposed in this dissertation. Namely, to maintain proper

control of the system in the presence of both sensor and actuator faults whether they occur

one at a time or simultaneously.

As described in section 2.2.1, a reconfigurable controller uses a fault detection and

identification mechanism to trigger reaction in the controller. Figure 6.1 shows the generic

function of a reconfigurable controller.

127

.

Figure 6.1. Reconfigurable Control System Diagram.

In general terms, when the fault detection and identification mechanism detects and

identifies a particular fault, it generates a fault estimate (𝑓𝑒) for the reconfiguration

mechanism. In response, the reconfiguration mechanism generates a correction function

(𝑓𝑐) for the controller. Depending on the specific design, the correction function may cause

a change in the controller itself so it can adapt to the fault, or it may modify one or more

the signals into the controller (𝑦𝑡) or out of the controller (𝑢𝑡). This latter approach is

sometimes referred to as “fault hiding” as the controller itself does not need to be aware of

the fault to function normally. This is the approach used in the comparison reference

controller [12].

The authors of [12] apply their active, reconfigurable controller to the benchmark

quadruple-tank system described in Chapter 5. They utilize linearized state-space equations

to model the system to be controlled. In control theory, such state space models represent

128

a system using a series of first-order differential equations and an algebraic output

equation. In general form, the state equations are derived as

𝑥̇𝑛 = 𝑓𝑛(𝑥1, 𝑥2, … 𝑥𝑛, 𝑢1, 𝑢2, … 𝑢𝑚)

and the output equation is derived as

𝑦𝑝 = ℎ𝑝(𝑥1, 𝑥2, … 𝑥𝑛, 𝑢1, 𝑢2, … 𝑢𝑚)

where 𝑥𝑖 is the state space, 𝑢𝑖 is the input from the controller and 𝑦𝑖 is the system output.

If the system of equations are linear they can be rewritten in the general form

𝑥̇ = 𝐴𝑥 + 𝐵𝑢

𝑦 = 𝐶𝑥

Where 𝐴 , 𝐵 , and 𝐶 are the state, input, and output matrices, respectively. Using this

nomenclature, the nominal system with feedback controller diagram shown in Figure 6.2

is reconfigured to the new, but equivalent, diagram shown in Figure 6.3. This form will be

used in the remainder of this system description.

Figure 6.2. Nominal System with Feedback Control.

129

Figure 6.3. Equivalent System with Feedback Control.

The reference system uses a classical proportional-integral (PI) controller for each

of the two pumps in the quadruple-tank system. Recall the nonlinear equations for the rate

of change in the level of fluid in each tank in the quadruple-tank system previously

presented in section 5.2.1:

𝑑ℎ1

𝑑𝑡
=

−𝑎1

𝐴1
√2𝑔ℎ1 +

𝑎3

𝐴1
√2𝑔ℎ3 +

𝛾1𝑘1

𝐴1
𝑣1 (1)

𝑑ℎ2

𝑑𝑡
=

−𝑎2

𝐴2
√2𝑔ℎ2 +

𝑎4

𝐴2
√2𝑔ℎ4 +

𝛾2𝑘2

𝐴2
𝑣2 (2)

𝑑ℎ3

𝑑𝑡
=

−𝑎3

𝐴3
√2𝑔ℎ3 +

(1−𝛾2)𝑘2

𝐴3
𝑣2 (3)

𝑑ℎ4

𝑑𝑡
=

−𝑎4

𝐴4
√2𝑔ℎ4 +

(1−𝛾1)𝑘1

𝐴4
𝑣1 (4)

Using equations (1-4), the system can be represented by linearized the state equations

presented in [12].

130

𝑑𝑥

𝑑𝑡
=

[

−1

𝑇1
0

0
−1

𝑇2

𝐴3

𝐴1𝑇3
0

0
𝐴4

𝐴2𝑇4

0

0

 0

 0

−1

𝑇3
0

0
−1

𝑇4]

𝑥 +

[

𝛾1𝑘1

𝐴1

0

0

𝛾2𝑘2

𝐴2

0

(1 − 𝛾2)𝑘1

𝐴4

(1 − 𝛾2)𝑘2

𝐴3
0
]

𝑢

which has the form 𝑥̇ = 𝐴𝑥 + 𝐵𝑢. The output equation is given by 𝑦 = 𝐶𝑥:

𝑦 = [
𝐾𝑐 0 0 0
0 𝐾𝑐 0 0

] 𝑥

where the time constants in 𝐴 are given by:

𝑇𝑖 = −
𝐴𝑖

𝑎𝑖

√
2ℎ𝑖

𝑜

𝑔
, where i = 1,… ,4

The fault hiding reconfigurable control approach is based on the idea of placing a

reconfiguration block between the nominal controller and the faulty plant at

reconfiguration time as shown in Figure 6.4.

Figure 6.4. Fault Hiding with Reconfiguration Block.

In Figure 6.4 the output signal from a faulty sensor (𝑦𝑓) is reconfigured to a correct

output signal (𝑦𝑐) for the nominal controller. The correct input from the nominal controller

131

(𝑢𝑐) is reconfigured to a signal (𝑢𝑓) that will compensate for the faulty actuator in the plant.

The reconfiguration block hides the fault from the controller and helps the faulty plant to

operate properly. The reconfiguration block contains a virtual sensor and a virtual actuator.

In the event of a sensor fault, the controller activates the virtual sensor as shown in Figure

6.5.

Figure 6.5. Faulty System with Virtual Sensor [12].

The derivation of the virtual sensor is similar to the design of a state observer (as

described in section 2.2.1). The derivation is given by:

𝑥̇̂ = 𝐴𝑥̂ + 𝐵𝑢𝑐 + 𝐿(𝑦𝑓 − 𝐶𝑥̂)

The parameter L is chosen so that all poles are within the design set 𝐶𝑔:

𝜎(𝐴 − 𝐿𝐶𝑓) ⊂ 𝐶𝑔

This resulting block is the virtual sensor and is actually a Luenberger observer with output

matrix 𝐶. In the event of an actuator fault, the virtual actuator uses the input signal meant

132

for the nominal process and transforms it into a signal useful for controlling the faulty plant

as shown in Figure 6.6.

Figure 6.6. Faulty Plant with Virtual Actuator [12].

As defined by the state-space model, the virtual actuator is described as:

𝑥̇Δ = (𝐴 − 𝐵𝑓𝑀)𝑥Δ + 𝐵𝑢𝑐

𝑦𝑐 = 𝑦𝑓 + 𝐶𝑥Δ

𝑢𝑓 = 𝑀𝑥Δ

where M is chosen so that all poles are within the designated set Cg where

𝜎(𝐴 − 𝐵𝑓𝑀) ⊂ 𝐶𝑔

When a fault occurs in both a sensor and an actuator at the same time, the

reconfiguration block is realized by the interconnection of a virtual sensor and a virtual

actuator as shown in Figure 6.7.

133

Figure 6.7. Virtual Sensor and Actuator with Faulty Plant [12].

As described previously, the virtual sensor is an observer for the state of the faulty

plant with an output error injection and the virtual actuator contains a reference model of

the nominal plant with feedback of the difference between the reference state and the

observed state, as well as feed through of the control input. In this configuration the state

space model equations are:

𝑥̇ = 𝐴𝑥 + 𝐵𝑢𝑐

𝑦𝑐 = 𝐶𝑥

𝑢𝑓 = 𝑀(𝑥 − 𝑥̂𝑓)

134

The authors of [12] use a simple fault detection mechanism. In the case of the virtual

sensor, a fault is indicated if 𝐶 ≠ 𝐶𝑓 . For the virtual actuator, a fault is indicated if 𝐵 ≠ 𝐵𝑓.

Both the virtual actuator and virtual sensor are engaged when 𝐶 ≠ 𝐶𝑓 and 𝐵 ≠ 𝐵𝑓. This

simplistic approach works fine in a sterile simulation environment, but does not allow for

the possibility of minor signal noise or minor fluctuation in these parameters that easily

occur when any change occurs in the system. In order to avoid excessive false positives,

we implement this comparison controller using a typical residual generator [11]. The

residual generator is simply sliding windows which tracks the sum of the difference

between 𝐶 and 𝐶𝑓 and between 𝐵 and 𝐵𝑓. The window sums the difference over the last

twenty iterations. This type of residual generator is commonly used in active FTC systems.

6.3 Comparison Controller Testing

For all testing, the system under test (SUT) and the associated control algorithm are

realized as MATLAB® scripts. The tests are performed on an Intel® Core i7 CPU platform

with 32 GB of RAM running Windows 10. Each test run is conducted by running the script

for 500 iterations. Prior to each run the attack/fault effects(s) (described previously) is/are

set to be activated at iteration number 250. The type of effect and magnitude of the effects

were identical to those used in testing the proposed controller.

The various effects are shown in Table 6.1 and Table 6.2. The Effect Number and

Effect Value fields will be used when discussing test results. Since the Fixed Value (#5)

and the No Value (#6) effects leave the actuator uncontrollable and the quadruple-tank

system design does not include redundant actuators, these two effects were not included in

the training or testing of the controller for the quadruple tank system.

135

Table 6.1. Summary of Sensor Effects Used in Testing the Comparison Controller.

Effect

Type

Effect

Number

Effect Value Add, Mult or

Replace

Abrupt or

Incipient

Increased 1 (1.00, 3.00) Mult Abrupt

Decreased 2 (0.15, 0.90) Mult Abrupt

Stochastic 3 (0.05, 0.55) Add Abrupt

Cyclical 4 (0.10, 1.10) (0.015, 1.015) Add Abrupt

Fixed 5 (0.00, 20.00) Replace Abrupt

No Value 6 (NaN) Replace Abrupt

Increased 7 (0.00, 1.00) Add & Mult Incipient

Decreased 8 (0.00, 1.00) Add & Mult Incipient

Table 6.2. Summary of Actuator Effects Used in Testing the Comparison Controller.

Effect

Type

Effect

Number

Effect Value Add, Mult or

Replace

Abrupt or

Incipient

Controllable

Increased 1 (1.05, 1.50) Mult Abrupt Yes

Decreased 2 (0.15, 0.90) Mult Abrupt Yes

Stochastic 3 (0.05, 0.55) Add Abrupt Yes

Cyclical 4 (0.50, 3.50)

(0.05, 0.55)

Add Abrupt Yes

Fixed 5 (0.00, 10.00) Replace Abrupt No

No Value 6 (NaN) Replace Abrupt No

Increased 7 (0.00, 1.00) Add & Mult Incipient Yes

Decreased 8 (0.00, 1.00) Add & Mult Incipient Yes

In each test run the onset of the effect is timed to begin after the system is in a

steady state condition (iteration #250). This is done to ensure an “apples to apples”

comparison of the different controllers and to allow clarity in identifying how the system

is controlled by each controller and how long it takes for the controller to return the system

to the steady state condition. The tests performed on this controller were identical to those

performed on the proposed controller in Chapter 5, and each test run used the same effect

variable values as were used to test the proposed controller and the ensemble variant of

that controller.

136

6.3.1 Comparison Controller Test Results

A total of 63 test runs were completed for the test; 1 with no effects applied, 8 with

a sensor effect applied, 6 with an actuator effect applied and 48 with both a sensor and an

actuator effect applied. The complete results of the testing are presented in Table 6.3. The

column headers are identical to those used in the tests in Chapter 5.

Table 6.3. Results of Tests on Comparison Controller.

T
es

t
R

u
n

 N
o
.

P
u

m
p

 1
 E

ff
ec

t

E
ff

ec
t

V
a
lu

e

S
en

so
r

1
 E

ff
ec

t

E
ff

ec
t

V
a
lu

e

C
o
m

p
o
n

en
ts

A
ff

ec
te

d

C
a
ta

st
ro

p
h

ic

F
a
il

u
re

M
a
in

ta
in

 P
ro

p
er

C
o
n

tr
o
l?

It
er

a
ti

o
n

s
to

R
eg

a
in

 P
ro

p
er

C
o
n

tr
o
l

It
er

a
ti

o
n

s
to

C
o
rr

ec
t

M
o
d

el

It
er

a
ti

o
n

s
U

si
n

g

C
o
rr

ec
t

M
o
d

el
 %

1 0 0 1 0 100.00%

2 1 2.96 1 0 0 250 1 99.67%

3 2 0.56 1 0 0 28 3 99.00%

4 3 0.48 1 0 0 46 inf 16.33%

5 4 0.71 1 0 0 18 inf 16.33%

6 5 15.72 1 0 0 22 2 99.33%

7 6 * 1 0 1 1 99.67%

8 7 0.05 1 0 0 49 77 74.33%

9 8 0.82 1 0 0 75 44 85.33%

10 1 1.44 1 0 1 19 93.67%

11 2 0.73 1 0 1 16 94.67%

12 3 4.48 1 0 1 21 93.00%

13 4 2.47 1 0 1 24 92.00%

14 7 0.62 1 0 1 13 95.67%

15 8 0.87 1 0 1 12 96.00%

16 1 1.14 1 2.21 2 0 0 250 22 92.67%

17 1 1.50 2 0.18 2 0 0 250 2 99.33%

18 1 1.11 3 1.16 2 0 0 35 13 95.67%

19 1 1.43 4 0.69 2 0 0 250 inf 16.33%

20 1 1.45 5 11.75 2 0 0 13 11 96.33%

21 1 1.20 6 * 2 0 0 222 24 92.00%

22 1 1.50 7 0.21 2 0 0 40 42 86.00%

23 1 1.18 8 0.83 2 0 0 250 26 91.33%

24 2 0.30 1 2.53 2 0 0 221 7 97.67%

25 2 0.61 2 0.87 2 0 0 23 8 97.33%

26 2 0.53 3 2.44 2 0 0 119 15 95.00%

27 2 0.52 4 0.35 2 0 0 1 25 91.67%

137

28 2 0.23 5 3.07 2 0 0 1 3 99.00%

29 2 0.80 6 * 2 0 0 219 24 92.00%

30 2 0.69 7 0.00 2 0 0 250 211 29.67%

31 2 0.76 8 0.25 2 0 0 29 41 86.33%

32 3 1.08 1 2.31 2 0 0 217 14 95.33%

33 3 4.91 2 0.67 2 0 0 228 4 98.67%

34 3 1.88 3 2.40 2 0 0 16 19 93.67%

35 3 2.45 4 0.92 2 0 0 20 22 92.67%

36 3 1.23 5 15.41 2 0 0 3 10 96.67%

37 3 1.86 6 * 2 0 0 228 17 94.33%

38 3 4.36 7 0.13 2 0 0 250 49 83.67%

39 3 4.50 8 0.73 2 0 0 250 28 90.67%

40 4 1.77 1 2.21 2 0 0 3 12 96.00%

41 4 2.79 2 0.89 2 0 0 24 10 96.67%

42 4 0.10 3 2.57 2 0 0 9 13 95.67%

43 4 2.96 4 0.96 2 0 0 4 23 92.33%

44 4 0.84 5 13.72 2 0 0 17 12 96.00%

45 4 2.48 6 * 2 0 1 13 95.67%

46 4 0.99 7 0.70 2 0 0 1 29 90.33%

47 4 1.84 8 0.97 2 0 0 40 26 91.33%

48 7 0.62 1 2.15 2 0 0 218 14 95.33%

49 7 0.65 2 0.25 2 0 0 11 3 99.00%

50 7 0.08 3 2.12 2 0 0 250 24 92.00%

51 7 0.84 4 0.03 2 0 0 16 15 95.00%

52 7 0.54 5 6.75 2 0 0 5 4 98.67%

53 7 0.80 6 * 2 0 0 218 14 95.33%

54 7 0.76 7 0.44 2 0 0 250 32 89.33%

55 7 0.87 8 0.82 2 0 0 17 30 90.00%

56 8 0.55 1 1.33 2 0 0 177 15 95.00%

57 8 0.63 2 0.83 2 0 0 19 6 98.00%

58 8 0.34 3 1.82 2 0 0 189 15 95.00%

59 8 0.10 4 0.26 2 0 0 2 32 89.33%

60 8 0.49 5 0.03 2 0 0 225 14 95.33%

61 8 0.27 6 * 2 0 0 224 14 95.33%

62 8 0.44 7 0.72 2 0 0 250 28 90.67%

63 8 0.82 8 0.24 2 0 0 250 44 85.33%

Reviewing the results of these tests, the value of the taxonomy of effects (from

Chapter 3) becomes more apparent. The comparison controller performed well when the

effects were presented as abrupt, multiplicative increases or decreases to the sensor and/or

actuator. In the article presenting this active, fault tolerant controller [12], these were the

138

only type of tests performed. In this research, the broader range effects identified conditions

that posed a challenge to the comparison controller as well as highlighting a weakness of

the active FTC; the inherent delay in responding to a fault or cyber-attack that is the result

of using a dedicated detection/identification mechanism. The test results are summarized

in Table 6.4.

Table 6.4. Test Result Summary for Comparison Controller.

Test

Runs

Component

Affected

Cat.

Fail

Proper

Control

Iterations to

Regain Proper

Control

Iterations to

Correct

Detection

Iterations

Using Correct

Detection %

A/S/Both % % Mean Median Mean Median Mean Median

6 Actuators 0 100.00 * * 17.50 17.50 94.17 94.17

8 Sensors 0 12.50 69.71 46.00 16.00 1.50 73.75 92.17

48 Both 0 2.08 123.49 119.00 22.48 15.00 90.76 95.00

Total 0 14.29 116.52 47.50 20.83 15.00 89.07 95.00

Using the same data summarized in the last two columns of Table 6.4, a confusion

matrix of the detection/identification results of the comparison controller is shown in Table

6.5. By way of review, fault type 1 is the correct choice when no component is being

affected. Fault type 2 is the correct choice when the actuator is being affected. Fault type

3 is the correct choice when the sensor is being affected and fault type 4 is the correct

choice when both are being affected.

Table 6.5. Confusion Matrix of Fault Detection in Comparison Controller.

 Fault Type Detected

C
o
rr

ec
t

F
a
u

lt
 T

y
p

e 3338 0 0 0 1

105 1401 0 0 2

624 4 1378 2 3

1284 27 19 10718 4

 1 2 3 4

139

6.4 Discussion of Test Results for All Three Controllers

The quadruple-tank test subject was subjected to 63 different tests in which a

system sensor and/or a system pump was subjected to the different effects of a cyber-attack

or fault. The tests were conducted on the system with the comparison controller and with

the proposed controller (both single LSTM and ensemble variants) separately, but

concurrently, so that the exact same effects were applied to each. The summary results of

these tests are provided for comparison across all three controllers in Table 6.6.

Table 6.6. Summary of Test Results on Quadruple-Tanks System.

Controller
Cat.

Fail

Proper

Control

Maintained

Iterations to

Regain Proper

Control

Iterations to

Correct Detection

or Model Selection

Iterations

Using Correct

Detection or

Model %

 % % Mean Median Mean Median Mean Median

Comparison 0 14.29 116.52 47.50 20.83 15.00 89.07 95.00

Proposed

(Ensemble)
0 56.25 7.47 2.00 4.19 1.00 98.60 99.67

Proposed

(Single

LSTM)

0 39.68 4.58 2.00 7.54 3.00 97.48 99.00

In no test did any controller allow a catastrophic failure of the system. Failure is

defined as allowing a tank to run dry or to overfill. Most of the results summarized in Table

6.6 are based on the performance of the system under control, and allow a ready

comparison of how well the three controllers perform their intended function. Whether the

priority is maintaining proper control or regaining that control after it is lost, the single

LSTM controller performed better on these tests than the comparative controller and the

140

ensemble based controller did somewhat better than the single LSTM controller, making it

the best of the three from a controller performance perspective.

6.4.1 Statistical Analysis of Test Results for All Three Controllers

In the area of active fault tolerant controls, “fault detection” is an ubiquitous term

and is usually paired with other terms like “identification”, “diagnosis” or “recognition”.

These terms all refer to the act of determining what type of fault has been detected. In the

case of the comparison controller described in this chapter, that determination identifies

the fault as being associated with a sensor, with an actuator or with both. In other words. It

is performing classification of the fault. Since the proposed controller is based on a

classification tool (LSTM) it is appropriate to compare both controllers as classifiers.

Precision and recall are both popular metrics for evaluating classifier performance.

Precision is the percentage that the classifier correctly predicts positive when making a

decision. More specifically, precision is the number of correctly identified positive

examples divided by the total number of examples that are classified as positive.

As presented in [110], given an 𝑛 × 𝑛 confusion matrix 𝑚, like the one shown in

Table 6.5, the precision measurement 𝑃 for the 𝑖𝑡ℎ class is given by

𝑃𝑖 =
𝑚𝑖𝑖

∑ 𝑚𝑖𝑥
𝑛
𝑥=1

Recall is the percentage of positives correctly identified out of all the existing positives; it

is the number of correctly classified positive examples divided by the total number of true

positive examples in the test set. The Recall measurement 𝑅 for the 𝑖𝑡ℎ class is given by

𝑅𝑖 =
𝑚𝑖𝑖

∑ 𝑚𝑥𝑖
𝑛
𝑥=1

141

Precision and recall are often achieved at the expense of the other, i.e., high precision is

achieved at the expense of recall and vice versa. An ideal classifier would have both high

recall and high precision.

The F-measure, sometimes called the F-statistic or F1-score, is the harmonic

measure of precision and recall in a single measurement. The F1-score ranges from 0 to 1,

with a measure of 1 being a classifier perfectly capturing both precision and recall. The F1-

Score (harmonic mean) for the 𝑖𝑡ℎ class is calculated using the precision and recall for that

class:

𝐹1𝑖 =
2𝑃𝑖𝑅𝑖

𝑃𝑖 + 𝑅𝑖

With these three scores, an overall F1-score for the entire classifier can be calculated.

There are three such overall F1-scores; Macro F1, Weighted F1 and Micro F1. The

Macro F1 (ℱ1) is simply the arithmetic mean of the individual class hormonic means:

ℱ1 =
1

𝑛
∑

2𝑃𝑥𝑅𝑥

𝑃𝑥 + 𝑅𝑥

𝑛

𝑥=1

When averaging the Macro F1, equal weight is given to each class even if the distribution

of data across those classes is unbalanced. Such is the case with the tests conducted on the

various controllers for the quadruple-tank system. This can cause the Macro F1 to skewed

by an over represented class on which the classifier performs poorly or exceptionally well.

To counter this, a Weighted F1 (WF1) score includes the number of samples in each

class (sx), known as the “support” to give equal weigh to each class.

𝑊𝐹1 =
∑

2𝑃𝑥𝑅𝑥

𝑃𝑥 + 𝑅𝑥

𝑛
𝑥=1 𝑠𝑥

∑ 𝑠𝑥
𝑛
𝑥=1

142

As with the Macro F1 there are also weighted averages for the Precision and Recall.

The final overall F1-score is the Micro-F1. Rather than being an average of F1-

scores, the Micro-F1 provides an overall accuracy for the classifier. It is simply the

proportion of correctly classified samples to all the samples. Looking back at the example

confusion matrix, the Micro-F1 is calculated as

𝔽1 =
∑ 𝑚𝑥𝑥

𝑛
𝑥=1

∑ ∑ 𝑚𝑥𝑦
𝑛
𝑥=1

𝑛
𝑦=1

The micro-precision and micro-recall scores are calculated in the exact same

manner, so micro-F1 = micro-precision = micro-recall = accuracy. For reference, all of

the scores discussed are presented in Table 6.7 through 6.9 for the comparison controller,

ensemble controller and LSTM controller respectively.

From the scores for the comparison controller (Table 6.7.) the impact of the

unbalanced precision and recall scores for classes 1 and 3 can be observed in the respective

F1-score for those two classes. Relying solely on the macro-F1 score as an overall

assessment of the classification performance would underrate the performance with a score

of 0.8682. Using the weighted-F1 improves the overall assessment, but the micro-F1 score

appears to be the best overall measure of the comparative controller’s classification ability.

The ensemble and single LSTM classifiers were more consistent across their overall

scores. For both of these the micro-F1-score is the preferred score. With scores of 0.9860

and 0.9748 respectively, the ensemble and LSTM controllers demonstrate they are more

accurate classifiers than the comparison controller. With a slightly higher accuracy score,

and the results discussed in section 6.3.1, the ensemble-based controller is shown to be the

more accurate classifier as well as the better overall controller.

143

Table 6.7. Precision, Recall and F1-Score Analysis for Comparison Controller.

Class Precision Recall F1-Score Support

1 0.6238 1.0000 0.7683 3338

2 0.9784 0.9303 0.9537 1506

3 0.9864 0.6863 0.8094 2008

4 0.9998 0.8896 0.9415 12048

Macro F1 0.8971 0.8765 0.8682

Weighted F1 0.9303 0.8907 0.8979

Micro F1 0.8907 0.8907 0.8907

Table 6.8. Precision, Recall and F1-Score Analysis for Ensemble-Based Controller.

Class Precision Recall F1-Score Support

1 0.9673 1.0000 0.9833 3338

2 0.9234 0.9841 0.9527 1506

3 1.0000 0.9771 0.9884 2008

4 0.9976 0.9839 0.9907 12048

Macro F1 0.9721 0.9863 0.9788

Weighted F1 0.9866 0.9860 0.9862

Micro F1 0.9860 0.9860 0.9860

Table 6.9. Precision, Recall and F1-Score Analysis for LSTM-Based Controller.

Class Precision Recall F1-Score Support

1 0.9670 1.0000 0.9832 3338

2 1.0000 0.9900 0.9950 1506

3 0.8463 0.9846 0.9102 2008

4 0.9997 0.9643 0.9817 12048

Macro F1 0.9533 0.9847 0.9675

Weighted F1 0.9777 0.9748 0.9754

Micro F1 0.9748 0.9748 0.9748

144

6.5 Testing with Stuxnet-Like Attacks

In the introductory section of this dissertation there is a reference to the Stuxnet

virus attack and the damage it caused. The Stuxnet virus was able to work undetected

because it not only was able to change the speed of the Iranian centrifuge motors, it also

caused the motor speed sensor to report to the human operators that the centrifuge was

operating within normal parameters.

6.5.1 Stuxnet-Like Test Design

Using the effects of the actual Stuxnet attack as an example, the comparison

controller, the ensemble controller and the proposed controller design were tested with five

different Stuxnet-like attacks on the quad-tank system. In all five tests the sensor value was

locked in at the reference amount of 10 cm. The pump was then affected to abruptly rise in

the first test and abruptly drop in the second test. The third test applied an oscillation to the

pump voltage which caused the pump speed to oscillate. The other two tests were

conducted applying an incipient effect to the pump; gradually increasing it in the fourth

test and gradually decreasing it in the fifth test.

In all five cases the attack occurred after the system had reached steady-state

operations and the response of the respective systems was monitored over a 1,000 iteration

window to allow the controllers more time to recover from the effects of the attack. All

five attack scenarios were run four times with changes to the randomly selected effect

variable values in the actuator effects. All three controllers were subjected to the exact

same tests.

145

6.5.2 Stuxnet-Like Test Results

To better visualize the differences in how these controllers handled the Stuxnet-like

attacks, the following figures are grouped by test. The first group of three figures are from

each of the three controllers showing performance during the first test and so on with each

subsequent test. Each figure has 2 panels. The panel on the left depicts the water level in

the tank (solid blue line) and the reported level from the tank sensor (dashed red line). The

panel on the right depicts the voltage to the pump. The Stuxnet-like attack affects the pump

voltage while the controller attempts to counter that effect. The quality of control in each

case is represented by how close the controller can keep the actual water level to the desired

(reference) level.

Figures 6.8 through 6.10 depict examples of the test #1 performance of the

comparison controller, the ensemble controller and the single LSTM controller

respectively. Comparing the plots of the first Stuxnet-like attack test, we see the

comparison controller never did recognize this as an attack on the sensor and the actuator.

As a result, it never responded to it. Both the Ensemble controller and the LSTM controller

quickly regained control of the system.

146

Figure 6.8. System Response to Stuxnet-like Attack #1 with Comparison Controller.

Figure 6.9. System Response to Stuxnet-like Attack #1 with LSTM Ensemble Controller.

Figures 6.11. through 6.13. depict examples of the test #2 performance of the

comparison controller, the ensemble controller and the single LSTM controller

respectively.

147

Figure 6.10. System Response to Stuxnet-like Attack #1 with Proposed Controller.

Figure 6.11. System Response to Stuxnet-like Attack #2 with Comparison Controller.

Figure 6.12. System Response to Stuxnet-like Attack #2 with LSTM Ensemble Controller

148

Figure 6.13. System Response to Stuxnet-like Attack #2 with Proposed Controller.

In the second attack, the comparison controller did detect and identify the attack

correctly and was able to regain proper control of the system before the test ended. The

ensemble controller caused a spike in pump voltage before bringing the system under

control and the LSTM controller regained proper control very quickly.

Figures 6.14 through 6.16 depict examples of the test #3 performance of the

comparison controller, the ensemble controller and the single LSTM controller

respectively.

Figure 6.14. System Response to Stuxnet-like Attack #3 with Comparison Controller.

149

Figure 6.15. System Response to Stuxnet-like Attack #3 with LSTM Ensemble Controller.

Figure 6.16. System Response to Stuxnet-like Attack #3 with Proposed Controller.

The third Stuxnet-like attack is the most similar to the actual Stuxnet attack in

which the Iranian centrifuges were subjected large swings in motor speed. In this test the

comparison controller did eventually detect the attack at iteration 542. The ensemble

controller regained control after a full cycle of the oscillation and the LSTM controller did

so almost immediately.

Figures 6.17 through 6.19 depict examples of the test #4 performance of the

comparison controller, the ensemble controller and the single LSTM controller

respectively.

150

Figure 6.17. System Response to Stuxnet-like Attack #4 with Comparison Controller.

Figure 6.18. System Response to Stuxnet-like Attack #4 with LSTM Ensemble Controller.

Figure 6.19. System Response to Stuxnet-like Attack #4 with Proposed Controller.

151

In the fourth test, the comparison controller did eventually detect the attack. This

case illustrates the challenge to active fault tolerant controllers posed be incipient effects

of cyber-attacks and faults. Because the onset of the effect was gradual, it took the

controller over 560 iterations to detect it. The other controllers handled the effect readily.

Figures 6.20 through 6.22 depict examples of the test #5 performance of the comparison

controller, the ensemble controller and the single LSTM controller respectively.

Figure 6.20. System Response to Stuxnet-like Attack #5 with Comparison Controller

Figure 6.21. System Response to Stuxnet-like Attack #5 with LSTM Ensemble Controller.

152

Figure 6.22. System Response to Stuxnet-like Attack #5 with Proposed Controller.

Similar to the fourth test, the fifth attack was eventually detected by the comparison

controller while the other controllers were able regain or maintain proper control

throughout the test.

The figures shown above allow us to visualize how the effects from the taxonomy

influence the system and how the controller behaves in the presence of those effects. The

numerical results of these tests allow us to better measure and analyze their performance.

The results on the test metrics for the comparison controller are presented in Table

6.10. In this test series there were no catastrophic failures. Of the 20 Stuxnet tests the

comparison controller detected and identified the attack as applying to both the sensor and

the actuator in 17. Those that were not detected are indicated by the term “inf” in that

column of the chart. Of those it did detect, it took between 138 to 587 iterations of the

control program to do so. Another indication that the comparison controller struggled to

perform under these conditions is the time required for the controller to bring the system

back into proper control which started at 623 iterations on the low end and there were 10

153

tests in which the controller did not regain proper control before the test ended (indicated

by 750 iterations in that column).

The same tests were run against the ensemble LSTM controller. The results are

presented in Table 6.11.

Table 6.10. Results of Stuxnet-Like Attack on Quadruple-Tank System with the

Comparison Controller.

T
es

t
R

u
n

 N
o
.

P
u

m
p

 E
ff

ec
t

E
ff

ec
t

V
a
lu

e

S
en

so
r

E
ff

ec
t

E
ff

ec
t

V
a
lu

e

C
o
m

p
o
n

en
ts

A
ff

ec
te

d

C
a
ta

st
ro

p
h

ic

F
a
il

u
re

M
a
in

ta
in

 P
ro

p
er

C
o
n

tr
o
l

It
er

a
ti

o
n

s
to

 R
eg

a
in

P
ro

p
er

 C
o
n

tr
o
l

It
er

a
ti

o
n

s
to

 C
o
rr

ec
t

D
et

ec
ti

o
n

It
er

a
ti

o
n

s
U

si
n

g

C
o
rr

ec
t

D
et

ec
ti

o
n

 %

1 1 1.36 5 10 2 0 0 739 179 77.63%

2 1 1.12 5 10 2 0 0 750 407 49.13%

3 1 1.10 5 10 2 0 0 750 587 26.63%

4 1 1.09 5 10 2 0 0 750 inf 6.13%

5 2 0.71 5 10 2 0 0 696 194 75.75%

6 2 0.77 5 10 2 0 0 701 223 72.13%

7 2 0.87 5 10 2 0 0 750 366 54.25%

8 2 0.45 5 10 2 0 0 706 138 82.75%

9 4 0.28 5 10 2 0 0 750 inf 6.13%

10 4 0.32 5 10 2 0 0 750 293 63.38%

11 4 0.05 5 10 2 0 0 723 103 87.13%

12 4 0.18 5 10 2 0 0 623 107 86.63%

13 7 0.23 5 10 2 0 0 750 561 29.88%

14 7 0.08 5 10 2 0 0 750 inf 6.13%

15 7 0.82 5 10 2 0 0 750 314 60.75%

16 7 0.43 5 10 2 0 0 750 411 48.63%

17 8 0.91 5 10 2 0 0 721 159 80.13%

18 8 0.44 5 10 2 0 0 710 166 79.25%

19 8 0.87 5 10 2 0 0 719 159 80.13%

20 8 0.91 5 10 2 0 0 720 159 80.13%

154

Table 6.11. Results of Stuxnet-like Attacks on the Quadruple-Tank System with the

LSTM Ensemble Controller.

T
es

t
R

u
n

 N
o
.

P
u

m
p

 E
ff

ec
t

E
ff

ec
t

V
a
lu

e

S
en

so
r

E
ff

ec
t

E
ff

ec
t

V
a
lu

e

C
o
m

p
o
n

en
ts

A
ff

ec
te

d

C
a
ta

st
ro

p
h

ic

F
a
il

u
re

M
a
in

ta
in

 P
ro

p
er

C
o
n

tr
o
l

It
er

a
ti

o
n

s
to

R
eg

a
in

 P
ro

p
er

C
o
n

tr
o
l

It
er

a
ti

o
n

s
to

C
o
rr

ec
t

M
o
d

el

 I
te

ra
ti

o
n

s
U

si
n

g

C
o
rr

ec
t

M
o
d

el
 %

1 1 1.36 5 10 2 0 0 15 13 98.38%

2 1 1.12 5 10 2 0 0 12 16 98.00%

3 1 1.10 5 10 2 0 0 10 16 98.00%

4 1 1.09 5 10 2 0 0 9 16 98.00%

5 2 0.71 5 10 2 0 0 23 23 97.13%

6 2 0.77 5 10 2 0 0 23 24 97.00%

7 2 0.87 5 10 2 0 0 21 24 97.00%

8 2 0.45 5 10 2 0 0 28 24 97.00%

9 4 0.28 5 10 2 0 0 11 16 98.00%

10 4 0.32 5 10 2 0 0 141 24 97.00%

11 4 0.05 5 10 2 0 0 34 13 98.38%

12 4 0.18 5 10 2 0 0 28 23 97.13%

13 7 0.23 5 10 2 0 0 15 14 98.25%

13 7 0.08 5 10 2 0 0 15 14 98.25%

15 7 0.82 5 10 2 0 0 15 14 98.25%

16 7 0.43 5 10 2 0 0 15 14 98.25%

17 8 0.91 5 10 2 0 0 15 14 98.25%

18 8 0.44 5 10 2 0 0 15 14 98.25%

19 8 0.87 5 10 2 0 0 15 14 98.25%

20 8 0.91 5 10 2 0 0 15 14 98.25%

The LSTM ensemble controller selected the correct model in each of the 20 tests.

The speed at which it did so ranged from as few as 13 iterations and up to 24 iterations.

The controller also regained proper control of the system in every test, requiring from 9 to

141 iterations to do so. In all 20 test cases the disruption to the system was minimal as the

LSTM ensemble controller using ensembles readily handled the Stuxnet-like attacks.

155

The same tests were also run against the proposed (single LSTM) controller as

summarized in Table 6.12. The proposed controller was able to maintain control of the

system during the simulated Stuxnet-like attacks. In five of the tests, the water level in the

tank was maintained within the ±1% range during the entire test. In the other tests, it was

quickly brought back into proper control with the worst case being test #8 in which 20

iterations were required to do so. In all cases, the controller selected the correct model in

only 2 to 4 iterations.

Table 6.12. Results of Stuxnet-like Attacks on the Quadruple-Tank System with the

Proposed Controller (Single LSTM).

T
es

t
R

u
n

 N
o
.

P
u

m
p

 E
ff

ec
t

E
ff

ec
t

V
a
lu

e

S
en

so
r

E
ff

ec
t

E
ff

ec
t

V
a
lu

e

C
o
m

p
o
n

en
ts

A
ff

ec
te

d

C
a
ta

st
ro

p
h

ic
 F

a
il

u
re

M
a
in

ta
in

 P
ro

p
er

C
o
n

tr
o
l

It
er

a
ti

o
n

s
to

 R
eg

a
in

P
ro

p
er

 C
o
n

tr
o
l

It
er

a
ti

o
n

s
to

 C
o
rr

ec
t

M
o
d

el

 I
te

ra
ti

o
n

s
U

si
n

g

C
o
rr

ec
t

M
o
d

el
 %

1 1 1.36 5 10 2 0 0 2 2 99.75%

2 1 1.12 5 10 2 0 1 * 4 99.50%

3 1 1.10 5 10 2 0 1 * 4 99.50%

4 1 1.09 5 10 2 0 1 * 4 99.50%

5 2 0.71 5 10 2 0 0 3 2 99.75%

6 2 0.77 5 10 2 0 0 2 3 99.63%

7 2 0.87 5 10 2 0 1 * 3 99.63%

8 2 0.45 5 10 2 0 0 20 2 99.75%

9 4 0.28 5 10 2 0 1 * 4 99.50%

10 4 0.32 5 10 2 0 0 17 2 99.75%

11 4 0.05 5 10 2 0 0 12 2 99.75%

12 4 0.18 5 10 2 0 0 3 2 99.75%

13 7 0.23 5 10 2 0 0 2 3 99.63%

14 7 0.08 5 10 2 0 0 2 3 99.63%

15 7 0.82 5 10 2 0 0 2 3 99.63%

16 7 0.43 5 10 2 0 0 2 3 99.63%

17 8 0.91 5 10 2 0 0 2 3 99.63%

18 8 0.44 5 10 2 0 0 2 3 99.63%

19 8 0.87 5 10 2 0 0 2 3 99.63%

20 8 0.91 5 10 2 0 0 2 3 99.63%

156

The tests results for all three controllers are summarized in Table 6.13. Using the

test data above, the confusion matrices for the three controllers are presented in Tables

6.14 through 6.16. By design, the Stuxnet attack is difficult to detect because the sensor

replay attack portion hides what the malware does to the actuators. The large number of

false negatives shown in Table 6.14 are consistent with expectations.

Table 6.13. Summary of Test Results for Stuxnet-Like Attacks.

Controller
Cat.

Fail

Proper

Control

Maintained

Iterations to

Regain Proper

Control

Iterations to

Correct

Detection or

Model

Selection

Iterations

Using Correct

Detection or

Model %

 % % Mean Median Mean Median Mean Median

Comparison 0 0.00 727.90 744.50 266.24 194.00 57.63 67.75

Proposed

(Ensemble)
0 0.00 23.75 15.00 17.20 15.00 97.85 98.13

Proposed

(Single LSTM)
0 25.00 5.00 2.00 2.90 3.00 99.64 99.63

Table 6.14. Confusion Matrix of Stuxnet Attack Detection in Comparison

Controller.

 Fault Type Selected

C
o
rr

ec
t

F
a
u

lt
 T

y
p

e 980 0 0 0 1

0 0 0 0 2

0 0 0 0 3

6776 0 3 8241 4

 1 2 3 4

157

Table 6.15. Confusion Matrix of Stuxnet Attack Classification of Ensemble

Controller.

 Model Selected

C
o
rr

ec
t

M
o
d

el
 980 0 0 0 1

0 0 0 0 2

0 0 0 0 3

58 268 0 14676 4

 1 2 3 4

The ensemble controller fared much better in correctly selecting the correct model

to use during the Stuxnet-like attacks. The 268 cases where model 2 was mistakenly

selected over model 4, indicate the effects of the attack on the system led the controller to

make decisions as if only the actuator was being affected.

Table 6.16. Confusion Matrix of Stuxnet Attack Classification of LSTM Controller.

 Model Selected

C
o
rr

ec
t

M
o
d

el
 980 0 0 0 1

0 0 0 0 2

0 0 0 0 3

58 0 0 14962 4

 1 2 3 4

158

The LSTM controller did not have the same problem as the ensemble controller.

Based on the data in Table 6.12 the 58 misclassifications shown here are fully attributable

to the 2 or 3 iterations that elapsed in every test between the onset of the attack and the

controller selecting the correct model. Based on the information in these confusion

matrices, we use the procedures described earlier in the chapter to calculate the micro-F1

score for each controller. Those scores are shown in Table 6.17

Table 6.17. Micro F1 Score for Controllers

Controller Micro F1 Score

Comparison 0.5763

Ensemble 0.9785

LSTM 0.9964

Based on the Stuxnet test results discussed thus far, it is not surprising that the

comparison controller has the lowest accuracy of the three when working with the Stuxnet-

like attack data. That controller’s reliance on detection of an attack specifically designed

to avoid detection poses a significant challenge to this and other active fault tolerant

controllers.

In the general test section, the ensemble-based controller showed the best accuracy

score for dealing with the array and combinations of effects on the system components.

Clearly the ensemble-based approach works very well for general purpose classification of

the various effects. The single larger LSTM-based controller showed remarkable accuracy

in working with the system inputs and interactions specific to the Stuxnet-like effects. This

would appear to support the idea that a large deep-learning network can learn the subtle

159

relationships and interactions between the various input provided to the controller when

working with a complex, non-linear system like the quadruple tank system.

6.6 Conclusions

The active comparison controller performed reasonably well in these tests. It is a

state-of-the-art, fault tolerant controller which encompasses some of the preferred methods

of fault detection and model switching. While it did take a while to detect and respond to

the Stuxnet-like attack, the fact that it did so at all is to the designers’ credit.

In comparison, both versions of the proposed passive, deep learning-based

controller did not suffer from the detection delays demonstrated in the active comparison

controller. This confirms one of the touted benefits of passive over active FTC; namely not

relying on a detection mechanism to initiate the fault tolerant behavior. Both variants of

the proposed controller showed improved performance over the comparison controller as

measured by every metric of the testing. This not only showed the efficacy of this controller

design, but also the value of the taxonomy representing the various effects of faults and

cyber-attacks in training and testing as was done in this research effort.

6.7 Chapter Summary

This chapter reviewed the comparison controller and its application to the

quadruple-tank system. The specific design of the comparison controller was presented and

the testing approach for the system was described. Results of that testing were also

discussed.

The results of testing performed on the quadruple-tank system using the comparison

controller and proposed controllers (as described in the previous chapters) has been

160

presented and discussed with analysis of their performance as controllers and as classifiers.

In addition, all three controllers were tested against 20 Stuxnet-like attacks. The wide

variety of variables and possible combinations of conditions demonstrated the value of the

effects taxonomy as a basis for building useful training data as well as comprehensive test

scenarios. The test results support the validity of the approach and show the efficacy of a

passive controller design for dealing with multiple simultaneous cyber-attacks and/or faults

in an ICS.

161

 Conclusions and Recommendations

7.1 Chapter Overview

This chapter summarizes the research documented in this dissertation. The original

research questions are revisited and the contributions of the research are presented along

with avenues of future work as it relates to this research effort.

7.2 Conclusions of Research

This dissertation presents a deep learning-based, passive controller designed to

keep the system under control operating properly, even when multiple components of the

system are experiencing the effects of faults and/or attacks. The various effects of these

faults and attacks are described and enumerated in a taxonomy so that they can be

considered in controller design and used in the testing.

7.2.1 Research Questions Revisited

Question 1. What are the physical layer effects in Cyber Physical System that could

result from a component fault or cyber-attack?

Answer 1. In this work we have presented the development and implementation of

a unique taxonomy of effects. This taxonomy addresses the possible effects a fault or cyber-

attack could have on the physical components (sensors and actuators) of an industrial

control system. It provides the building blocks for representing the wide variety of physical

layer effects when designing, training and/or testing control systems. By focusing on the

physical layer effects, the particular type of cyber-attack or how it occurred become

irrelevant.

162

Question 2. How could a passive Fault Tolerant Controller use deep learning to

maintain operations, and how could it be realized?

Answer 2. The controller proposed in this dissertation is a passive Fault Tolerant

Controller. The heart of the controller is a Long Short-Term Memory (LSTM) network. By

using this deep-learning network, control decisions are made by holistically considering

the entire state of the system under control and selecting the next command signal. The

command signal is chosen from options generated by internal models of the system. Since

no special action is required if an attack or fault is in effect, functioning in the presence of

an attack, or fault, are all in the normal course of operations for the controller.

There are two variants of this controller presented. One uses a single large LSTM

to make the control decision, while the other uses an ensemble of smaller LSTMs to

accomplish the same goal.

The taxonomy of effects described in the answer to Question 1 is pivotal to the

realization of this controller design. The LSTM requires large amounts of training data that

is representative of the input data that will be available to the network during operations.

With the development of the taxonomy, we can represent the various effects of cyber-

attacks and faults the system could experience and generate large amounts of data with

good variation. This made it possible to realize the passive FTC with restricting it to

particular types of faults or attack effects.

Question 3. Will the approach work for both linear and nonlinear systems?

Answer 3. As demonstrated in this research effort, the approach is equally adept at

controlling both linear and non-linear systems. The deep-learning network can separate out

the differences in the inputs (which are sometimes very subtle) and readily handle the

163

complexity of a non-linear system. In published literature, some designers have modelled

the non-linear system under control as a piecewise linear system to allow their controller

to work with it. Because the proposed controller in this dissertation is so capable, there was

no need to represent the non-linear system as piecewise linear.

Question 4. What benefit(s) does passive FTC with deep learning provide

compared to an active FTC?

Answer 4. The primary benefits of passive FTC, in comparison to active, are:

1. Simpler design. The passive FTC takes input from the system under control and

sends a control command at every iteration of the control program regardless of

any faults or cyber-attacks on the system. The active controller relies on a

dedicated fault detection/identification mechanism to trigger it into

reconfiguring the controller or to calculate alternative solutions. These

mechanisms add complexity to the active controller design.

2. Minimization of delays. Must take the extra steps described above, there is an

inherent delay from the time a fault or attack occurs until the active controller

can take corrective action. Depending on the severity of the effect of the fault

or attack, this delay could result in serious negative impact to the system to the

system. Passive controllers do not suffer from these delays.

3. Resilience to a broad array of effects. One of the greatest perceived limitations

of passive controllers is that some knowledge of the faults or attacks the

controller will face must me known a priori and passive controllers are,

therefore, limited in their utility. By basing this controller design on a deep-

learning network, the application of the controller is not limited to certain types

164

of faults or effects that fall within limited parameters. The deep-learning can be

trained to handle any conceivable effect from a fault or cyber-attack. Again, the

development of the taxonomy of effects was key to making this so.

7.2.2 Contributions of Research

The primary contribution of this research effort is the novel design of an ICS

controller unlike others in current research as follows:

1. The proposed controller is unique in that it uses one or more deep-learning

networks and does not require a fault or attack detection/identification function to operate

properly. It is a passive design that considers the entire state of the system and decides how

to control it based on that information, regardless of either the presence or absence of faults

and/or attacks. This deep learning-based approach to passive FTC is not found elsewhere

in controls literature.

2. This research challenges the notion that passive controllers cannot be broadly

applied because some knowledge of the types of faults and attacks the system may face is

required, a priori. This dissertation presents a unique taxonomy of effects that provides the

building blocks to represent any effect of a fault or cyber-attack on an ICS. This is done by

addressing those effects at how they are manifested at the physical component level of the

system.

3. The controller presented in this dissertation is not restricted in application to

linear or piecewise linear systems. It is also not limited to the type of fault or to a particular

component (sensor or actuator) fault. This makes the proposed controller exceptional

among passive fault tolerant controllers.

165

4. The results of the testing demonstrate the deep-learning based passive controller

can perform at least as well as its active FTC counterparts. The controller’s ability to handle

a Stuxnet-like attack on the system shows one of the primary advantages of the proposed

controller over the active FTC designs which must rely on the fault detection/identification

function in order to operate.

7.3 Recommendations for Future Research

The research presented here can be further explored in a number of different

directions.

1. Both example controllers described and tested in this work use a classification

type LSTM network to select from among the possible modeled commands to control the

system. Using a regression-type deep-learning network to determine the output signal to

the controller may allow this to be a purely data-drive (model-free) design. Early efforts to

use such a network this in this work were unsuccessful, but do not eliminate the possibility

of future success.

2. The use of an ensemble of deep-learning networks requires significant

computational overhead, as described in section 5.9. Further work focused on reducing the

computational demand of the ensemble or refining a single deep-learning network to

perform at the same (or higher) level as the ensemble presented here would be a marked

improvement.

3. The application and evaluation of this method to real world systems in a

laboratory, or range environments constitutes a logical reason for further continuation of

this effort. As pointed out in [111], there is a great need for facilities that incorporate real-

166

world industrial control systems and processes to provide training on the effects cyber-

initiated actions have on physical systems.

7.4 Summary

This chapter has revisited the original research questions and summarized how they

were addressed in the dissertation. The contributions of this research in passive fault

tolerant control using deep-learning methods have been discussed. Along with the pivotal

role played by the developed taxonomy of effects in making this controller design feasible.

Additionally, areas for potential further research have also been identified.

167

8 Bibliography

[1] Bundesampt fur Sicherheit in der Informationstechnik, "Die Lage der IT-

Sicherheit in Deutchland," Bundesampt fur Sicherheit in der Informationstechnik,

2014.

[2] K. Zetter, "A Cyberattack Has Caused Confirmed Physical Damage for the Second

Time Ever," Wired Online, 8 January 2015.

[3] M. Abrams and J. Weiss, "Malicious Control System Cyber Scurity Attack Case

Study - Maroochy Water Services," NIST Computer Security Resource Center,

Gaithersburg, MD., 2008.

[4] D. E. Sanger, "Utilities Cautioned About Potential for a Cyberattack After

Ukraine's," New York Times, New York, NY., 2016.

[5] United States Government Accounting Office, "DEFENSE INFRASTRUCTURE:

Management Issues Requiring Attention in Utility Privatization," GAO,

Washington D.C., 2005.

[6] Cyber Security Research Alliance, "Designed-In Cyber Security for Cyber-

Physical Systems," Cyber Security Research Alliance, Gaithersburg, MD, 2013.

[7] V. M. Igure, S. A. Laughter and R. D. Williams, "Security issues in SCADA

networks," Computers & Security, vol. 25, no. 6, pp. 498-506, 2006.

[8] D. H. Ryu, H. J. Kim and K. Um, "Reducing security vulnerabilities for critical

infrastructure," Journal of Loss Prevention in the Process Industries, vol. 22, pp.

1020-1024, 2009.

[9] E. Byers and J. Lowe, "The Myths and Facts behind Cyber Security Risks for

Industrial Control Systems," in Proceedings of the Verband der Elektrotechnik,

Elektronik und Informationstechnik (VDE) Congress, Frankfurt am Main,

Germany, 2004.

[10] J. Jiang and X. Yu, "Fault-tolerant control systems: A comparative study between

active and passive approaches," Annual Reviews in Control, vol. 36, no. 1, pp. 60-

72, 2012.

[11] J. F. Combita, J. Giraldo, A. A. Cardenas and N. Quijano, "Response and

Reconfiguration of Cyber-Physical Control Systems: A survey," in IEEE 2nd

Colombian Conference on Automatic Control (CCAC), Manizales, Colombia,

2015.

[12] I. Hameed, E. Elmadbouly and M. Abdo, "Sensor and Actuator Fault-Hiding

Reconfigurable Control Design for a Four-Tank System Benchmark,"

International Journal of Innovative Computing, Information and Control, vol. 11,

no. 2, pp. 679-690, 2015.

[13] M. Blanke, C. W. Frei, F. Kraus, R. J. Patton and M. Staroswiecki, "What is Fault-

Tolerant Control?," in Proceedings of the IFAC Fault Detection, Supervision and

Safety for Technical Processes, Budapest, Hungary, 2000.

168

[14] Y. M. Zhang and J. Jiang, "Issues on integration of fault diagnosis and

reconfigurable control in active fault-tolerant control systems," in IFAC

Symposium on Fault Detection, Supervision and Safety for Technical Processes,

Beijing, China, 2006.

[15] S. M. Tabatabaeipour, Fault Diagnosis and Fault Tolerant Control of Hybrid

Systems, Aalborg, Denmark: Aalborg University, 2010.

[16] M. Staroswiecki, "Actuator faults and the linear quadratic control problem," in

Proceedings of the 42nd IEEE International Conference on Decision & Control,

Maui, HI., 2003.

[17] R. Veillette, "Reliable linear-quadratic state-feedback control," Automatica, vol.

31, no. 1, pp. 137-144, 1995.

[18] F. Liao, J. Wang and G. Yang, "Reliable robust flight tracking control: an LMI

approach," IEEE Transactions on Control Systems Technology, vol. 10, no. 1, pp.

76-89, 2002.

[19] G. Yang, J. Wang and Y. Soh, "Reliable H-infinity controller design for linear

systems," Automatica, vol. 37, no. 5, pp. 717-725, 2001.

[20] G. H. Yang, J. Lam and J. Wang, "Reliable H-infinity control for affine nonlinear

systems," IEEE Transactions on Automatic Control, vol. 43, no. 8, pp. 1112-1117,

1998.

[21] G. H. Yang, J. Wang and Y. Soh, "Reliable guaranteed cost control for uncertain

nonlinear systems," IEEE Transactions on Automatic Control, vol. 45, no. 11, pp.

2188-2192, 2000.

[22] R. Wang, M. Liu and J. Zhao, "Reliable H∞ control for a class of switched

nonlinear systems with actuator failures," Nonlinear Analysis: Hybrid Systems,

vol. 1, no. 2, pp. 317-325, 2007.

[23] G. Feng, "Controller design and analysis of uncertain piecewise-linear systems,"

IEEE Transactions on Circuits and Systems I: Fundamental Theory and

Applications, vol. 49, no. 2, pp. 224-232, 2002.

[24] J. Zhang and W. Tang, "Output feedback H∞ control for uncertain piecewise

linear systems," Journal of Dynamical and Control Systems, vol. 14, no. 1, pp.

121-144, 2008.

[25] G. H. Yang, S. Y. Zhang, J. Lam and J. L. Wang, "Reliable control using

redundant controllers," IEEE Transactions on Automatic Control, vol. 43, no. 11,

pp. 1588-1593, 1998.

[26] A. Escada and M. Boukhnifer, "Experimental second order sliding mode fault

tolerant control for moment gyroscope system with sensor fault," in International

Conference on Control, Decision and Information Technology (CoDIT'14), Metz,

France, 2014.

[27] A. Ghodebane, M. Saad, C. Hobeika, J. F. Boland and C. and Thibeault, "Design

of a Tolerant Flight Control System in Response to Multiple Actuator Control

Signal Faults Induced by Cosmic Rays," IEEE Transactions on Aerospace and

Electronic Systems, vol. 52, no. 2, pp. 681-697, 2016.

169

[28] M. Polas and A. Fekih, "A Multi-Gain Sliding Mode Based Controller for the

Pitch Angle Control of a Civil Aircraft," in IEEE South Eastern Symposium on

System Theory, Tyler, TX., 2010.

[29] R. Ghazali, M. Rahmat and A. Hashim, "Performance Comparison between

Sliding Mode Control with PID Sliding Surface and PID Controller for an Electro-

hydraulic Positioning System," International Journal on Advanced Science,

Engineering and Information Technology, vol. 1, no. 4, pp. 447-452, 2011.

[30] S. Spurgeon, "Sliding mode control: a tutorial," in 2014 European Control

Conference (ECC), Strasbourg, France, 2014.

[31] A. Fekih and P. Pilla, "A Passive Fault Tolerant Control Strategy for the uncertain

MIMO Aircraft Model F-18," in 38th Southeastern Symposium on System Theory,

Macon, GA., 2007.

[32] U. Vaidya and M. Fardad, "On optimal sensor placement for mitigation of

vulnerabilities to cyberattacks in large-scale networks," in Proceedings of the 2013

European Control Conference (ECC), Zurich, Switzerland, 2013.

[33] O. Vukovic, K. Sou, G. Dan and H. Sandberg, "Network-aware mitigation of data

integrity attacks on power system state estimation," IEEE Journal on Selected

Areas in Communications, vol. 30, no. 6, pp. 1108-1118, 2012.

[34] Y. Mo and B. Sinopoli, "Secure estimation in the presence of integrity attacks,"

IEEE Transactions on Automatic Control, vol. 60, no. 4, pp. 1145-1151, 2015.

[35] Y. Yang, Y.-J. Wang, J.-Q. Qiu and Y.-R. Niu, "Robust H∞ Passive Fault-

Tolerant Control for Uncertain Singular Systems," in Proceedings of the 2011

International Conference on Machine Learning and Cybernetics, Guilin, China,

2011.

[36] A. Fekih, "Fault Tolerant Control Design for Complex Systems: Current Advances

and Open research Problems," in IEEE International Conference on Industrial

Technology (ICIT), Seville, Spain, 2015.

[37] M. Buciakowski, M. Witczak and J. Korbicz, "A quadratic boundedness approach

to fault tolerant control for nonlinear system," IFAC PapersOnLine, vol. 50, no. 1,

pp. 2101-2106, 2017.

[38] N. Bedioui, R. Houimli and M. Besbes, "Adaptive Observer Design for Actuator

and Sensor Faults Estimations: VTOL Air Craft System Application," in

Proceedings of the 2019 IEEE International Conference on Advanced Systems and

Emergent Technologies (IC_ASET), Hammamet, Tunisia, 2019.

[39] L. Xiao, Z. Meng, X. Huang and L. Ma, "Adaptive Observer based Fault Tolerant

Control for Aircraft Engine with Sensors and Actuators Faults," in Proceedings of

the 38th Chinese Control Conference, Guangzhou, China, 2019.

[40] Z. Qu, B. Dahhou and G. Roux, "Fault Tolerant control system based on subspace

predictive control and multiple model predictive control," in IEEE Proceedings of

the 3rd Conference on Control and Fault-Tolerant Systems (SysTol), Barcelona,

Spain, 2016.

170

[41] S. Narasimhan and G. Biswas, "Model-based diagnosis of hybrid systems," IEEE

Transactions on Systems, Man, and Cybernetics, Part A, vol. 37, no. 3, pp. 348-

361, 2007.

[42] H. Yang, V. Cocquempot and B. Jiang, "Robust fault tolerant tracking control with

application to hybrid nonlinear systems," IET Control Theory and Applications,

vol. 3, no. 2, pp. 211-224, 2011.

[43] A. R. Kodakkadan, V. Reppa and S. Olaru, "Switching-stable control mechanism

in the presence of guaranteed detectable sensor faults," in 3rd Conference on

Control and Fault-Tolerant Systems (SysTol), Barcelona, Spain, 2016.

[44] A. Arici and T. Kara, "Model Reference Adaptive Control of a Quadruple Tank

Process with Actuator Faults," in Proceedings of the 10th International

Conference On Electrical And Electronics Engineering, Bursa, Turkey, 2017.

[45] D. Xin and G.-H. Yang, "An adaptive approach to state feedback tracking control

of systems with actuator failures," in Proceedings of the American Control

Conference, New York, NY., 2007.

[46] G. Tao, S. Chen and S. M. Joshi, "An adaptive actuator failure compensation

controller using output feedback," IEEE Transactions on Automatic Control, vol.

47, no. 3, pp. 506-511, 2002.

[47] D. B. Doman and A. D. Ngo, "Dynamic inversion-based adaptive reconfigurable

control of the X-33 on ascent," Journal of Guidance, Control, and Dynamics, vol.

25, no. 2, pp. 275-284, 2002.

[48] T. Hartmann, F. Fouquet, J. Klein, G. Nain and Y. Le Traon, "Reactive security

for smart grids using models@run. time-based simulation and reasoning," in

Smart Grid Security, New York, NY., Springer, 2014, pp. 139-153.

[49] A. A. Cárdenas, S. Amin, Z. S. Lin, Y. L. Huang, C. Y. Huang and S. Sastry,

"Attacks against process control systems: Risk assessment detection and

response," in Proceedings of the 6th ACM Symposium on Information Computer

and Communications Security (ASIACCS '11), Hong Kong, China, 2011.

[50] L. Sha, "Using simplicity to control complexity," IEEE Software, vol. 18, no. 4,

pp. 20-28, 2001.

[51] Q. Chen and S. Abdelwahed, "A model-based approach to self-protection in scada

systems," in Proceedings of the 9th International Workshop on Feedback

Computing, Philadelphia, PA., 2014.

[52] S. Sridhar and M. Govindarasu, "Model-based attack detection and mitigation for

automatic generation control," IEEE Transactions on Smart Grid, vol. 5, no. 2, pp.

580-591, 2014.

[53] R. Isermann, "Fault diagnosis of machines via parameter estimation and

knowledge processing–tutorial paper," Automatica, vol. 29, no. 4, pp. 815-835,

1993.

[54] Z. S. Hou and Z. Wang, "From Model-Based to Data-Driven Control: Survey,

Classification and Perspective," Information Sciences, vol. 235, pp. 3-35, 2013.

171

[55] Z. S. Hou and J. X. Xu, "On data-driven control theory: the state of the art and

perspective," Acta Automatica Sinica, vol. 35, no. 6, pp. 650-667, 2009.

[56] B. Huang and R. Kadali, Dynamic Modeling, Predictive Control and Performance

Monitoring: A Data-Driven Subspace Approach, London, UK: Springer, 2008.

[57] W. Ma, X. Li, J. Wang, B. Wang and H. Lin, "Data-driven Unfalsification based

Robust Fault Tolerant Control," in Proceedings of the 35th Chinese Control

Conference, Chengdu, China, 2016.

[58] H. Izadi, B. Gordon and Y. Zhang, "A Data-Driven Fault Tolerant Model

Predictive Control with Fault Identification," in Proceedings of 2010 Conference

on Control and Fault Tolerant Systems, Nice, France, 2010.

[59] J. Wang and G. Yang, "Data-Driven Output-Feedback Fault-Tolerant

Compensation Control for Digital PID Control Systems With Unknown

Dynamics," IEEE Transactions On Industrial Electronics, vol. 63, no. 11, pp.

7029-7039, 2016.

[60] Z. Li and G.-H. Yang, "Data-driven adaptive fault-tolerant control for a class of

multiple-input–multiple-output linear discrete-time system," IET Control Theory

Applications, vol. 11, no. 16, pp. 2824-2833, 2017.

[61] L. Meneghetti, M. Terzi, S. Del Favero, G. Susto and C. Cobelli, "Data-Driven

Anomaly Recognition for Unsupervised Model-Free Fault Detection in Artificial

Pancreas," IEEE Transactions on Control Systems Technology, vol. 8, no. 1, pp.

33-47, 2020.

[62] H. Xie, C. Hu, Y. Zhang, X. Yang and Y. Li, "Comparison of Two Performance

Optimization Approaches for Data-driven Design of Fault-Tolerant Control

Systems," in IEEE 27th International Symposium on Industrial Electronics (ISIE),

Cairns, Australia, 2018.

[63] W. Kwong, K. Passino, E. Laukonen and S. Yurkovich, "Expert supervision of

fuzzy learning systems for fault tolerant aircraft control," Proceedings of the

IEEE, vol. 83, no. 3, pp. 466-483, 1995.

[64] K. Passino and S. Yurkovich, Fuzzy Control, Boston, MA.: Addison-Wesley

Longman, 1997.

[65] M. Holmes and A. Ray, "Fuzzy damage-mitigating control of a fossil power

plant," IEEE Transactions on Control Systems Technology, vol. 9, no. 1, pp. 140-

147, 2001.

[66] Q. Song and Y.-D. Song, "Data-Based Fault-Tolerant Control of High-Speed

Trains with Traction Braking Notch Nonlinearities and Actuator Failures," IEEE

Transactions on Neural Networks, vol. 2, no. 12, pp. 2250-2261, 2011.

[67] H. Patel and V. Shah, "Passive Fault-Tolerant Tracking for Nonlinear System with

intermittent Fault and Time Delay," IFAC PapersOnLine, vol. 52, no. 11, pp. 200-

205, 2019.

172

[68] F. Bastiani and I. Chen, "The role of artificial Intelligence in fault-tolerant

process-control systems," in Proceedings of the 1st international conference on

Industrial and engineering applications of artificial intelligence and expert

systems, Tullahoma, TN., 1988.

[69] D. Yu, T. Chang and D. Yu, "Adaptive neural model-based fault tolerant control

for multi-variable processes," Engineering Applications of Artificial Intelligence,

vol. 18, no. 4, pp. 393-411, 2005.

[70] M. Polyarpu and A. Vemuri, "Learning Approach to Fault Tolerant Control: an

Overview," in Proceedings of the 1998 IEEE ISIC/CIRA/ISAS Joint Conference,

Gaithersburg, MD., 1998.

[71] P. Ballé, M. Fischera, D. Fussel, O. Nells and R. Isermann, "Integrated control,

diagnosis and reconfiguration of a heat exchanger," IEEE Control Systems

Magazine, vol. 18, no. 3, pp. 52-63, 1998.

[72] X. Y. Zhang, H.-Y. Su and J. Chu, "Adaptive Sliding Mode-Like Fuzzy Logic

Control for High-Order Nonlinear Systems," in Proceedings of the IEEE

International Symposium on Intelligent Control, Houston, TX., 2003.

[73] B. R. Marquez, A. G. Loukianov and E. N. Sanchez, "Hierarchical Intelligent

Sliding Mode Control: Application to Stepper Motors," in Proceeding of the 2004

American Control Conference, Boston, MA., 2004.

[74] P. Schroder, A. Chipperfield, P. Fleming and N. Grum, "Fault tolerant control of

active magnetic bearings," in IEEE International Symposium on Industrial

Electronics, Pretoria, South Africa, 1998.

[75] E. Sugawara, M. Fukushi and S. Horiguchi, "Fault Tolerant Multi-layer Neural

Networks with GA Training," in The 18th IEEE International Symposium on

Defect and Fault Tolerance in VLSI systems, Boston, MA., 2003.

[76] A. Ashari, M. Yazdanpanah and A. Sedigh, "Reconfigurable sliding-mode control

design using genetic algorithms and eigenstructure assignment," in Proceedings of

the International Conference on Control and Automation, Budapest, Hungary,

2005.

[77] F. Lv, C. Wen, Z. Bao and M. Liu, "Fault diagnosis based on deep learning," in

Proceedings of the IEEE 2016 American Control Conference (ACC), Boston,

Mass., 2016.

[78] B. Eroglu, C. Sahin, B. Yuksek, N. K. Ure and G. Inalhan, "Deep Recurrent and

Convolutional Networks for Accelerated Fault Tolerant Adaptive Flight Control

Under Severe Failures," in Proceedings of the 2018 Annual American Control

Conference (ACC), Milwaukee, WI., 2018.

[79] K.-P. Lee, B.-H. Wu and S.-L. Peng, "Deep-learning-based fault detection and

diagnosis of air-handling units," Building and Environment, vol. 157, pp. 24-33,

2019.

[80] R. Iqbal, T. Maniak, F. Doctor and C. Karyotis, "Fault Detection and Isolation in

Industrial Processes Using Deep Learning Approaches," IEEE Transactions On

Industrial Informatics, vol. 15, no. 5, pp. 3077-3084, 2019.

173

[81] W. Liu and Z. Hu, "Aero-engine Sensor Fault Diagnosis Based on Convolutional

Neural Network," in Proceedings of the 2019 Chinese Control And Decision

Conference (CCDC), Nanchang, China, 2019.

[82] L. Gao, D. Li, D. Li and H. Yin, "An Improved LSTM Based Sensor Fault

Diagnosis Strategy for the Air-cooled Chiller System," in Proceedings of the 38th

Chinese Control Conference, Guangzhou, China, 2019.

[83] F. Aznar, M. Pujol and R. Rizo, "Obtaining fault tolerance avoidance behavior

using deep reinforcement learning," Neurocomputing, vol. 345, pp. 77-91, 2019.

[84] D.-T. Hoang and H.-J. Kang, "A Survey on Deep Learning based Bearing Fault

Diagnosis," Neurocomputing, vol. 335, pp. 327-335, 2019.

[85] P. F. Odgaard, J. Stoutstrup and M. Kinnaert, "Fault Tolerant Control of Wind

Turbines - a benchmark model," in Proceedings of the 7th IFAC Symposium on

Fault Detection, Supervision and Safety of Technical Processes, Barcelona, Spain,

2009.

[86] X. Liu and Y.-D. Song, "Robust adaptive fault-tolerant control of dynamic

systems with floating nonlinearities and fading actuators," in Proceedings of the

2011 Chinese Control Conference, Yantai, China, 2011.

[87] V. Gomathi, S. Muthumari, V. M. Nivedita and P. Vaishnavi, "Fault diagnosis in a

Quadruple tank system using Kalman Filter," Proceedings of the 2017

International Conference on Computation of Power, Energy, Information and

Communication (ICCPEIC), Melmaruvathur, Tamilnadu, India, 2017.

[88] B. Potteiger, W. Emfinger, H. Neema, X. Koutosukos and C. Tang, "Evaluating

the effects of cyber-attacks on cyber physical systems using a hardware-in-the-

loop simulation testbed," in 2017 Resilience Week (RWS), Wimington, DE., 2017.

[89] A. Humayed, J. Lin, F. Li and B. Luo, "Cyber-Physical Systems Security—A

Survey," IEEE Internet of Things Journal, vol. 4, no. 6, pp. 1802-1831, 2017.

[90] I. Friedberg, K. McLaughlin, P. Smith, D. Laverty and S. Sezer, "STPA-SafeSec:

Safety and security analysis for cyber-physical systems," Journal of Information

Security and Applications, vol. 34, no. 2, pp. 183-196, 2017.

[91] D. Wardell, R. Mills, G. Peterson and M. Oxley, "A Method for Revealing and

Addressing Security Vulnerabilities in Cyber-physical Systems by Modeling

Malicious Agent Interactions with Formal Verification," in Procedia Computer

Science, Redondo Beach, CA., 2016.

[92] M. Chiply, "WBDG," 21 Feb 2020. [Online]. Available:

https://www.wbdg.org/resources/cybersecurity. [Accessed 12 Sept 2020].

[93] International Electrotechnical Commission, "IEC 61158-1, Ed. 2.0, Industrial

communication networks - Fieldbus specifications," IEC, Zurich, 2019.

[94] I. N. Fovino, A. Carcano, M. Masera and A. Trombetta, "An Experimental

investigation of malware attacks on SCADA systems," International Journal of

Critical Infrastructure Protection, vol. 2, pp. 139-145, 2009.

174

[95] S. Gallagher, "ARS Technica," 25 January 2018. [Online]. Available:

https://arstechnica.com/information-technology/2018/01/the-internet-of-omg-

vulnerable-factory-and-power-grid-controls-on-internet/. [Accessed 20 February

2019].

[96] J. Wang, "Liquid Level Sensing Using Capacitive-to-Digital Converters," Analog,

15 April 2015. [Online]. Available: www,analog.com/en/analogue-

dialogue/articles/liquid-level-sensing-using-cdcs.html. [Accessed 24 Sept 2020].

[97] S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural

Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[98] J. Kafunah, "Vanishing and Exploding Gradient Problems," 21 May 2018.

[Online]. Available: https://www.jefkine.com/general/2018/05/21/2018-05-21-

vanishing-and-exploding-gradient-problems/. [Accessed 16 Nov 2019].

[99] MathWorks, "Long Short-Term Memory (LSTM)," MathWorks, undated.

[Online]. Available:

https://www.mathworks.com/discovery/lstm.html?s_tid=srchtitle. [Accessed 14

November 2019].

[100] MathWorks, "Help Center - Long Short-Term Memory Networks," MathWorks,

undated. [Online]. Available:

https://www.mathworks.com/help/deeplearning/ug/long-short-term-memory-

networks.html. [Accessed 14 November 2019].

[101] M. Dwarampudi and N. Reddy, "Effects of padding on LSTMs and CNNs," 18

March 2019. [Online]. Available: https://arxiv.org/abs/1903.07288. [Accessed 2

December 2019].

[102] ELPROCUS, "The Working Principles of a PID Controller Beginners,"

ELPROCUS, 2020. [Online]. Available: https://www.elprocus.com/the-working-

of-a-pid-controller/. [Accessed 13 Sept 2020].

[103] H. R. Bonab and F. Can, "A Theoretical Framework on the Ideal Number of

Classifiers for Online Ensembles in Data Streams," in Proceedings on the 2016

Conference on Information and Knowledge Management, Indianapolis, IN., 2016.

[104] J.-R. Abrial, E. Boerger and H. Langmaack, "The Steam Boiler Control

Specification Problem," 14 November 1996. [Online]. Available:

http://www.informatik.unikiel.de/~procos/dag9523/steam-boiler-problem.ps.Z.

[Accessed 22 June 2015].

[105] J.-R. Abrial, "Additional Information Concerning the Dynamic Behaviour of the

Steam Boiler," 14 November 1996. [Online]. Available:

http://www.informatik.uni-kiel.de/~procos/dag9523/steam-boiler-additional-

info.ps.Z. [Accessed 22 June 2015].

[106] K. Johansson, A. Horch, O. Wijk and A. Hansson, "Teaching Multivariable

Control Using the Quadruple-Tank Process," in Proceedings of the 38th IEEE

Conference on Decision & Control, Phoenix, AZ., 1999.

175

[107] R. S. M. Malar and T. Thyagarajan, "Design of Decentralized Fuzzy Controllers

for Quadruple Tank Process," IJCSNS International Journal of Computer Science

and Network Security, vol. 8, no. 11, pp. 163-168, 2008.

[108] G. Park, C. Lee and H. Shim, "On Stealthiness of Zero-dynamics Attacks against

Uncertain Nonlinear Systems: A Case study with Quadruple-tank Process," in

Proceedings of the 23rd International Symposium on Mathematical Theory of

Networks and Systems, Hong Kong, China, 2018.

[109] N. Rezk, M. Purnaprajna, T. Nordstrom and Z. Ul-Abdin, "Recurrent Neural

Networks: An Embedded Computing Perspective," IEEE Access, vol. 8, pp.

57967-57996, 2020.

[110] J. Opitz and S. Burst, "Macro F1 and Macro F1," 20 Nov 2019. [Online].

Available: https://arxiv.org/pdf/1911.03347.pdf. [Accessed 10 Oct 2020].

[111] J. Butts and M. Glover, "How Industrial Control System Security Training is

Falling Short," in Critical Infrastructure Protection IX, 9th IFIP 11.10

International Conference, ICCIP, Arlington, VA., 2015.

176

A. Appendix: Additional References

Active Fault Tolerant Controls

Principle component analysis: the work in [A1] presents an approach to process

and sensor fault detection, identification, and reconstruction via principal component

analysis. The principal component analysis model partitions the measurement space into a

principal component subspace where normal variation occurs, and a residual subspace that

faults may occupy. Both process faults and sensor faults are characterized by a direction

vector, which describes the behavior of the fault. Fault reconstruction is accomplished by

sliding the sample vector as close as possible to the principal component subspace. When

the actual fault is assumed, the maximum reduction in the squared prediction error is

achieved. A fault-identification index is defined in terms of the reconstructed squared

prediction error.

State Space Subspace approach to fault detection is presented in [A2] where a

method is proposed to detect, isolate, and compensate sensor degradation. A numerical

algorithm for subspace state space system identification is used to track the changes of the

time constants and gains of the sensor and the monitored system. Without requiring

redundant sensors and measurement devices, this method utilizes the fact that sensor

readings depict dynamic characteristics of the sensors as well as those of the monitored

system. The method is verified in angular sensor degradation detection using high-fidelity

simulations of an automotive electronic throttle system. This method is applied to linear

systems only. This method is not model-based, but uses input and output data. The

significance of this distinction is discussed in section 2.2.2.

Control Allocation [A3], [A4], [A5], [A6] takes on the problem of generating a

desired control effort and distributing it among multiple (usually redundant) actuators. This

method is popular in the field of aircraft control design. Control allocation was used for

multiple fault detection in [A7]. This work requires the addition of redundant smart

actuators which are networked together.

In systems based on game theory, the game between the attacker and defender can

be simultaneous (e.g., minimax) [A8] in which each side chooses an action based on the

assumed strategy of their adversary, or sequential (e.g., Stackelberg game) [A9] where one

side responds with an action based on the adversaries last action.

[A1] R. Dunia and S. J. Qin, “Joint diagnosis of process and sensor faults using principal

component analysis,” Control Eng. Pract., vol. 6, no. 4, pp. 457–469, Apr. 1998.

[A2] L. Jiang, D. Djurdjanovic, and J. Ni, “A new method for sensor degradation

detection, isolation and compensation in linear systems,” in Proc.ASME IMECE, Nov.

2007, vol. 9, pp. 1089–1101.

[A3] Y. Luo, A. Serrani, S. Yurkovich, "Model predictive dynamic control allocation

scheme for reentry vehicles", Journal of Guidance Control and Dynamics, vol. 30, no. 1,

pp. 100-113, 2007.

177

[A4] Q. Wang, L. Qing, C. Wong, S. Tingyan, "Robust control allocation method in the

presence of control effector failure", Proc. of IEEE Int. Conf. on Information Automation,

pp. 660-664, 2014.

[A5] Y. Zhang, C.A. Rabbath, C.Y. Su, "Reconfigurable control allocation applied to an

aircraft benchmark model", Proc. of American Control Conference, pp. 1052-1057, 2008.

[A6] D. Chen and G. Liu, "An adaptive control allocation algorithm for nonlinear

vehicles with parameter uncertainty," 2017 11th Asian Control Conference (ASCC), Gold

Coast, QLD, 2017, pp. 982-987.

doi: 10.1109/ASCC.2017.8287304

[A7] Inseok Yang and Dongik Lee, “Networked Fault-Tolerant Control Allocation for

Multiple Actuator Failures”, Mathematical Problems in Engineering, Volume 2015,

Article ID 249293, 14 pages

http://dx.doi.org/10.1155/2015/249293

[A8] A. Farraj, E. Hammad, A. A. Daoud, D. Kundur, "A game-theoretic control

approach to mitigate cyber switching attacks in smart grid systems", Proceedings of the

IEEE Smart Grid Communications, pp. 958-963, 2014.

[A9] Q. Zhu, T. Basar, "Game-theoretic methods for robustness security and resilience of

cyberphysical control systems: Games-in-games principle for optimal cross-layer resilient

control systems", IEEE Control Systems, vol. 35, no. 1, pp. 46-65, 2015.

[A10] T. Baúar, P. Bernard, H∞ Optimal Control and Related Minimax Design Problems,

Birkhäuser, 1995.

[A11] Y. Yuan, F. Sun, H. Liu, "Resilient control of cyber-physical systems against

intelligent attacker: a hierarchal stackelberg game approach", To appear on International

Journal of Systems Science, 2015.

[A12] A. Barth, B. Rubinstein, M. Sundararajan, J. Mitchell, D. Song, P. Bartlett, "A

learning-based approach to reactive security", IEEE Transactions on Dependable and

Secure Computing, vol. 9, no. 4, pp. 482-493, July 2012.

[A13] D. Shelar, S. Amin, "Analyzing vulnerability of electricity distribution networks to

der disruptions", American Control Conference (ACC) 2015, pp. 2461-2468, 2015.

[A14] P. Frank and X. Ding. Survey of robust residual generation and evaluation methods

in observer-based fault detection systems. Journal of Process Control, 7(6):403–424,

1997.

178

[A15] M.E. Romero, M.M. Seron, "Sensor fault tolerant control of doubly fed induction

machines using multiple switching mechanisms", Proceedings of Australian Control

Conference, pp. 191-197, 2011.

[A16] S. Aberkane, J.C. Ponsart, D. Sauter, "Robust output feedback stochastic

stabilization of active fault tolerant control systems", Proc. of IEEE Inter. Symposium on

Intelligent Control, pp. 1561-1566, 2005.

[A17] S. Aberkane, D. Sauter, J.C. Ponsart, D. Theilliol, "H∞ stochastic stabilization of

active fault tolerant control systems: convex approach", Proc. of IEEE European Control

Conference on Decision and Control, pp. 3783-3788, 2005.

[A18] A. Fekih, S. Seelem, "A Fault Tolerant Control Design for Automatic Steering

Control of Ground Vehicles", Proceedings of IEEE International Conference on Control

Applications, pp. 1491-1496, 2012.

[A19] B.J. Bacon, A.J. Ostroff, S.M. Joshi, "Reconfigurable NDI controller using inertial

sensor failure detection and isolation", IEEE Transactions on Aerospace and Electrical

Systems, vol. 37, no. 4, pp. 1373-1383, 2001.

[A20] Y. Bo, Y. Jun, "Parameter space approach for active fault tolerant control design",

Proc. of Intl. Conference on Intelligent Computation Technology and Automation, vol. 1,

pp. 409-412, 2008.

[A21] J.D. Boskovic, R.K. Mehra, S.H. Yu, "A decentralized scheme for accommodation

of multiple simultaneous actuator failures", Proc. of American Control Conference, pp.

5098-5103, 2002.

[A22] J. Chen, R.J. Patton, Z. Chen, "Active fault tolerant flight control systems design

using the linear matrix inequality method", Trans. of Institute of the Measurement and

Control, vol. 21, pp. 77-84, 1999.

[A23] S. Chen, G. Tao, S.M. Joshi, "On matching conditions for adaptive state tracking

control of systems with actuator failures", IEEE Transactions on Automatic Control, vol.

47, no. 3, pp. 473-478, 2002.

[A24] D.R. Espinoza-Trejo, D.U. Campos-Delgado, "Active fault-tolerant scheme for

variable speed drives under actuator and sensor faults", Proceedings of IEEE

International Conference on Control Applications, pp. 474-479, 2008.

[A25] S. Ganguly, A. Marcos, G. Balas, "Reconfigurable LPV control design for Boeing

pp.747-100/200 longitudinal Axis", Proc. of American Control Conference, pp. 3612-

3617, 2002.

179

[A26] S. Kanev, M. Verhaegen, "A bank of reconfigurable LQG controllers for linear

system subject to failures", Proc. of Conf. on Decision and Control, pp. 3684-3689, 2000.

[A27] G. Liu, D. Wang, Y. Li, "Active fault-tolerant control with actuation

reconfiguration", IEEE Trans. on Aerospace and Electronic Systems 40(3), pp. 1110-

1117, 2004.

[A28] Y.W. Kim, G. Rizzoni, V.I. Utkin, "Developing a fault tolerant power train control

system by integrating design of control and diagnostics", International. Journal of

Guidance. Control and Dynamics, vol. 11, no. 11, pp. 1095-1114, 2001.

[A29] M. Mahmoud, J. Jiang, Y.M. Zhang, "Stabilization of active fault tolerant control

systems with imperfect fault detection and diagnosis", Journal of Stochastic Analysis and

Applications, vol. 21, no. 3, pp. 673-701, 2003.

[A30] M. Maki, J. Jiang, K.A. Hagino, "Stability guaranteed active fault-tolerant control

against actuator failures", International Journal of Robust and Nonlinear Control, vol.

14, no. 2, pp. 1061-1077, 2004.

[A31] H. Niemann, "Fault tolerant control based on active fault diagnosis", Proc. of

American Control Conference, pp. 2224-2229, 2005.

[A32] G. Tao, S.M. Joshi, X. Ma, "Adaptive state feedback and tracking control of

systems with actuator failures", IEEE Trans. on Autom. Control, vol. 46, no. 1, pp. 78-95,

2001.

[A33] Z. Weng, R.J. Patton, P. Cui, "Active fault tolerant control of a double inverted

pendulum", Proc. of the Institution of Mech. Eng. Part I: J. of Sys. & Cont. Eng., vol.

221, no. 6, pp. 895-904, 2007.

[A34] W. Junsheng, W. Zhengxin, T. Zuohua, S. Songjiao, "An active fault tolerant

controller design method for time delay systems", Proc. of Chinese Control Conference,

pp. 422-425, 2007.

[A35] A. Fekih, Ben J. Hmida, "A self tuning adaptive approach for actuator failure

compensation in aircraft systems", IEEE Int. Conf. on Industrial Technology, pp. 10-14,

March 14-17 2010.

[A36] Y. Zhang, J. Jiang, "Integrated active fault-tolerant control using IMM approach",

IEEE Trans. on Aerospace and Electronics Systems, vol. 37, no. 4, pp. 1221-1235, 2001.

[A37] Y. Zhang, J. Jiang, "Issues on integration of fault diagnosis and reconfigurable

control in active fault-tolerant control systems", Symposium on Fault Detection

Supervision and Safety of Technical Processes, pp. 1437-1448, 2006.

180

[A38] A.L. Gehin, M. Assas, M. Staroswiecki, "Structural Analysis of system

reconfigurability", Symposium on Fault Detection Supervision and Safety for Technical

Processes, pp. 292-297, 2000.

[A39] G. Bajpai, B.C. Chang, A. Lau, "Reconfiguration of Flight Control Systems for

Actuator Failures", IEEE Aerospace and Electronic Systems Mag., vol. 16, no. 9, pp. 29-

33, 2000.

[A40] L-W. Ho, G.Y. Gary, "Reconfigurable control system Design for fault diagnosis

and accommodation", Proc. of IEEE Conference on Decision and Control, pp. 1873-

1878, 2001.

[A41] Wang Dan, Wu Zhiliang, Yao Yubin, Niu Xiaobing, "An FDI Approach for

Aircraft Actuator Partial Failure", Proc. of Chinese Control Conference, pp. 440-444,

2007.

[A42] Y. Zhang, V. S. Suresh, B. Jiang, D. Theilliol, "Reconfigurable control allocation

against aircraft control effector failures", Proc. of IEEE Int. Conference on Control

Applications, pp. 1197-1202, 2007.

[A43] H. Alawi, C. Edwards, "Fault tolerant sliding mode control design with piloted

simulator evaluation", Journal of Guidance Control and Dynamics, vol. 31, no. 5, pp.

1186-1201, 2008.

[A44] A. Fekih, "Integrated fault tolerant flight control design with application to an F-16

aircraft" in Journal of Control Science and Engineering, ACTA Press, vol. 39, no. 3, pp.

159-167, 2011.

[A45] J.D. Boskovic, N. Knoebel, R.K. Mehra, "An initial study of a combined robust

and adaptive control approach to guaranteed performance flight control", Proc. of

American Control Conference, pp. 5150-5155, 2008.

[A46] D. Shin, G. Moon, Y. Kim, "Design of reconfigurable flight control system using

adaptive sliding mode control: actuator fault", Proc. of the Institute of Mechanical

Engineers Part G. Journal of Aerospace Engineering, vol. 219, pp. 321-328, 2005.

[A47] A. Fekih, "Effective fault tolerant control design for a class of nonlinear systems:

Application to a class of motor control", IET Control Theory & Applications, vol. 2(9),

pp. 762-772, 2008.

[A48] J. Shtessel, J. Buffington, S. Banda, "Tailless aircraft flight control using multiple

time scale re-configurable sliding modes", IEEE Trans. on Contr. Syst. Technology, vol.

10, pp. 288-296, 2002.

181

[A49] S.R. Wells, R. A. Hess, "Multi-input/multi-output sliding mode control for a

tailless fighter aircraft", Journal of Guidance Control and Dynamics, vol. 26, pp. 463-

473, 2003.

[A50] X. Yu, Y. Li, X. Wang, K. Zhao, "An autonomous robust fault tolerant control

system", Proc. of IEEE Conf. on Information Acquisition, pp. 1191-1196, 2006.

[A51] Hwang, Insoek, Sungwan, Kim, Kim, Youdan and Seah, Chze Eng, “A Survey of

Fault Detection, Isolation, and Reconfiguration Methods”, IEEE Transactions on Control

Systems Technology, Vol. 18, No. 3, May 2010, pages 636-653.

[A52] Beard, R., Failure accommodation in linear systems through self-recognition, PhD

Thesis, MIT, 1971.

[A53] R. Patton and J. Chen. Observer-based fault detection and isolation: robustness and

applications. Control Eng. Prac., 5(5):671–682, 1997.

[A54] S. Simani, C. Fantuzzi, and R. J Patton. Model-based fault diagnosis in dynamic

systems using identification techniques. Springer Science & Business Media, 2003.

[A55] P. Frank. Advances in observer-based fault diagnosis. In International Conference

on Fault Diagnosis: TOOLDIAG, 1993.

[A56] H. Sneider and P. M. Frank. Observer-based supervision and fault detection in

robots using nonlinear and fuzzy logic residual evaluation. IEEE Trans. on Control

Systems Technology, 4(3):274–282, 1996.

[A57] H. Hammouri, M. Kinnaert, and E. H. El Yaagoubi. Observer-based approach to

fault detection and isolation for nonlinear systems. IEEE Transactions on Automatic

Control, 44(10):1879–1884, 1999.

[A58] S. Paoletti, A. Garulli, J. Roll, and A. Vicino. A necessary and sufficient condition

for input-output realization of switched affine state space models. In IEEE Conference on

Decision and Control, pages 935–940, 2008.

[A59] A. Abdo, S. X. Ding, J. Saijai, and W. Damlakhi. Fault detection for switched

systems based on a deterministic method. In IEEE Conference on Decision and Control

(CDC), pages 568–573, 2012.

[A60] W. Pan, Y. Yuan, H. Sandberg, J. Goncalves, and G. Stan. Online fault diagnosis

for nonlinear power systems. Automatica, 55:27–36, 2015.

[A61] S. Campbell and R. Nikoukhah. Auxiliary signal design for failure detection.

Princeton University Press, 2004.

182

[A62] J. K. Scott, R. Findeisen, R. D Braatz, and D. M. Raimondo. Input design for

guaranteed fault diagnosis using zonotopes. Automatica, 50(6):1580–1589, 2014.

[A63] P. Rosa, C. Silvestre, J. S. Shamma, and M. Athans. Fault detection and isolation

of ltv systems using set-valued observers. In IEEE Conference on Decision and Control

(CDC), pages 768–773, 2010.

[A64] F. Harirchi and N. Ozay. Model invalidation for switched affine systems with

applications to fault and anomaly detection. IFAC ADHS Conference, 48(27):260–266,

2015.

[A65] F. Harirchi, Z. Luo, and N. Ozay. Model (in)validation and fault detection for

systems with polynomial state-space models. In American Control Conference (ACC),

pages 1017–1023, July 2016.

[A66] J. Anderson and A. Papachristodoulou. On validation and invalidation of

biological models. BMC Bioinformatics, 10(1):1, 2009.

[A67] N. Ozay, M. Sznaier, and C. Lagoa. Convex certificates for model (in)validation of

switched affine systems with unknown switches. IEEE Transactions on Automatic

Control, 59(11):2921–2932, 2014.

[A68] H. Lou and P. Si. The distinguishability of linear control systems. Nonlinear

Analysis: Hybrid Systems, 3(1):21–38, 2009.

[A69] P. Rosa and C. Silvestre. On the distinguishability of discrete linear time-invariant

dynamic systems. In IEEE CDC-ECC, pages 3356– 3361, 2011.

[A70] M. Babaali and M. Egerstedt. Observability of switched linear systems. In

International Workshop on Hybrid Systems: Computation and Control, pages 48–63.

Springer, 2004.

[A71] Harirchi, Farshad and Ozay, Necmiye, “Model Invalidation for Switched Affine

Systems with Applications to Fault and Anomaly Detection”, International Federation of

Automatic Control (IFAC) 48-27 (2015) p260-266.

[A72] Harirchi, Farshad and Ozay, Necmiye, “Guaranteed Model-Based Fault Detection

in Cyber-Physical Systems: A Model Invalidation Approach”, Cornell University Library

archieve: 1609.05921v1, 19 Sep 2016, pp 1-34.

183

[A73] Farshad Harirchi and Sze Zheng Yong, Guaranteed Fault Detection and Isolation

for Switched Affine Models, Cornell University Library archive: 1704.05947v1, 19 April

2017, pp 1-8.

[A74] Oudghiri, M.; Chadli, M. & El Hajjaji, A. (2008). Sensors Active Fault Tolerant

Control For Vehicle Via Bank of Robust H∞ Observers. 17th International Federation of

Automatic Control (IFAC) World Congress, July 2008, IFAC, Seoul, Korea.

[A75] F-J. Hung, M-T. Tsai, "Fault-tolerant control for six-phase PMSM drive system

via intelligent complementary sliding-mode control using TSKFNN-AMF", IEEE Trans.

on Industrial Electronics, vol. 60, no. 12, pp. 5747-5762, 2013.

[A76] B. Genge, I. Kiss, P. Haller, "A system dynamics approach for assessing the

impact of cyber attacks on critical infrastructures", To appear on International Journal of

Critical Infrastructure Protection, 2015.

[A77] E. K. Wang, Y. Ye, X. Xu, S. Yiu, L. Hui, K. Chow, "Security issues and

challenges for cyber physical system", Proceedings of the 2010 IEEE/ACM Int'l

Conference on Green Computing and Communications & Int'l Conference on Cyber

Physical and Social Computing, pp. 733-738, 2010.

[A78] F. Pasqualetti, F. Dorfler, F. Bullo, "Attack detection and identification in cyber-

physical systems", IEEE Transactions on Automatic Control„, vol. 58, no. 11, pp. 2715-

2729, 2013.

[A79] R. Mitchell, I.-R. Chen, "A survey of intrusion detection techniques for cyber-

physical systems", ACM Computing Surveys, vol. 46, no. 4, pp. 55:1-55:29, Mar. 2014.

[A80] A. A. Cárdenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, S. Sastry,

"Attacks against process control systems: Risk assessment detection and

response", Proceedings of the 6th ACM Symposium on Information Computer and

Communications Security ser. ASIACCS '11, pp. 355-366, 2011.

[A81] C. Barreto, A. A. Cárdenas, N. Quijano, "Controllability of dynamical systems:

Threat models and reactive security" in Decision and Game Theory for Security,

Springer, pp. 45-64, 2013.

[A82] P. Hu, H. Li, H. Fu, D. Cansever, P. Mohapatra, Dynamic defense strategy against

advanced persistent threat with insiders. IEEE Xplore Digital Library. 747-755.

10.1109/INFOCOM.2015.7218444.

Data Driven Control

The work in [A88] is concerned with the problem of data-driven fault-tolerant

control for multiple simultaneous sensor drift faults in variable-gain digital PID systems

184

with very large time constants and long dead time, which are common characteristics of

process control systems. No existing data-driven residual generation method can allow

building (with low computational costs) residual variables independent of the state of these

systems, and meanwhile guarantee that each of the sensor faults is mapped uniquely and

entirely onto the associated residual variable. To solve the aforementioned technical

difficulty, a novel residual generation technique is devised via the dead time as well as the

coefficients and state of the variable gain PID controller. On this basis, a methodology is

developed for the purpose of the full-decoupling estimation of several sensor malfunctions

from the residual variables. Finally, a resulting data-driven approach to compensate for the

aforesaid faults is applied to a dual-chamber electric heating furnace (which is a typical

process plant), so that the effectiveness and advantages of the proposed methods are

verified by experiment.

In [A89] the same authors present a data-driven output-feedback fault-tolerant

tracking control design for unknown discrete-time linear systems with stochastic

measurement and process noise. With the aid of a proposed input-output data-based online

iterative identification algorithm, this study presents a fault detection strategy, an

approximate dynamic programming approach to performance optimization, and a method

for the achievement of tracking control via a pre-filter. The resulting fault-tolerant control

(FTC) scheme is applied to a practical DC servo motor system with load fluctuations and

nonlinearity. Finally, the experimental test demonstrates that the proposed FTC strategy

(including a methodology for compensating load variations and nonlinearity) has better

applicability and practicability than the one given by the previous work, where a load needs

to be held constant and it is required that the motor run in a nearly linear small working

region.

In [A86] the authors focus on the data-driven model-free adaptive fault detection

and estimation (FDE) and fault-tolerant control (FTC) problems for multi-input multi-

output (MIMO) discrete-time systems with unknown sensor faults. First, the initial systems

are transformed into a novel data-based model with only one unknown parameter. Second,

a fault estimator is established to detect the sensor faults. Noting that a time-varying

residual threshold is developed to determine whether the sensor faults occur or not. Then,

the unknown faults are approximated based on the approximation capability of a

generalized fuzzy hyperbolic model and the FTC approaches are reconstructed by applying

the optimality criterion. Given the use of a data-based model and the fuzzy hyperbolic

model, it questionable if this is really a data-driven method. This method is restricted to

single sensor faults.

The same authors presented similar work in [A87] using but used artificial neural

networks to apply the method to a Multiple-Input Single-Output (MISO) electromechanical

system.

The authors of [A85] propose a data driven fault tolerant strategy for nonlinear

systems. The core of the proposed strategy is a just-in-time learning (JITL) based soft

sensor. When a sensor fault is detected, the value of soft sensor is adopted as the

redundancy instead of the real faulty sensor value. Due to the complexity of mechanism

model for nonlinear system, a kind of just-in-time learning method is employed for the soft

sensor. The indexes are predicted by the just-in-time learning method using only historical

sample data. Instead of considering the system global model as normal the just-in-time

185

learning methods only consider the approximate system at the current time. Two nonlinear

systems, a numerical one and a benchmark of a wastewater treatment system, are employed

for experiments. Only single sensor faults are considered in this work. There was

discussion of tackling multiple faults.

[A84] H. Y. Yang, S. H. Lee, and M. G. Na, “Monitoring and uncertainty analysis of

feedwater flow rate using data-based modeling methods,” IEEE Trans. Nucl. Sci., vol. 56,

no. 4, pp. 2426–2433, Aug. 2009.

[A85] H. Yu, Y. Jiang and S. Yin, “A Data Driven Sensor Fault Tolerant Scheme for

Nonlinear Systems”, Proceedings of the 43rd Annual Conference of the Industrial

Electronics Society (IECON), 2017, pp 7055-7060.

[A86] L. Liu, Z. Wang and H. Zhang, “Data-Based Adaptive Fault Estimation and Fault-

Tolerant Control for MIMO Model-Free Systems Using Generalized Fuzzy Hyperbolic

Model”, IEEE Transactions on Fuzzy Systems, Vol. 26, No. 6, 2018, pp 3191-3205.

[A87] L. Liu, Z. Wang and H. Zhang, “Echo State Networks Based Data-Driven

Adaptive Fault Tolerant Control With Its Application to Electromechanical System”,

IEEE/ASME Transactions on Mechatronics, Vol. 23, No. 3, 2018, pp 1372-1382.

[A88] J-S Wang and G-H Yang, “Data-Driven Approach to Accommodating Multiple

Simultaneous Sensor Faults in Variable-Gain PID Systems”, IEEE Transactions on

Industrial Electronics, Vol. 66, No. 4, 2019, pp 3117-3126.

[A89] J-S Wang and G-H Yang, “Data-Driven Output-Feedback Fault-Tolerant Tracking

Control Method and Its Application to a DC Servo System”, IEEE/ASME Transactions

on Mechatronics, Vol. 24, No. 3, 2019, pp 1186-1196

[A90] H. Luo, S. Yin, T. Liu and A.Q. Khan, “A Data-Driven Realization of the Control

Performance-Oriented Process Monitoring System”, IEEE Transactions on Industrial

Electronics, Vol 67, No 1, Jan 2020. pp 521-530.

[A91] Luis E. Garza Castanon and Adriana Vargas Martinez (2009). Artificial

Intelligence Methods in Fault Tolerant Control, Automation Control - Theory and

Practice, A D Rodi (Ed.), ISBN: 978-953-307-039-1,

[A92] M. Chen, R. Mei, "Actuator fault tolerant control for a class of nonlinear systems

using neural networks", Proc. of IEEE Int. Conf. on Control & Automation, pp. 101-106,

2014.

[A93] P. Baldi, P. Castaldi, N. Mimmo, S. Simani, "Satellite attitude active FTC based on

Geometric Approach and RBF Neural Network", Proc. of Conf. on Control and Fault-

Tolerant Systems, pp. 667-673, 2013.

186

[A94] J. Frolik, M. Abdelrahman, and P. Kandasamy, “A confidence-based approach to

self-validation, fusion and reconstruction of quasi-redundant sensor data,” IEEE Trans.

Instrum. Meas., vol. 50, no. 6, pp. 1761–1768, Dec. 2001.

[A95] S. Alag, A. M. Aggogino, and M. Morjaria, “A methodology for intelligent sensor

measurement, validation, fusion, and fault detection for equipment monitoring and

diagnostics,” AI EDAM, vol. 15, no. 4, pp. 307–320, Sep. 2001.

Artificial Intelligence in Active FTC

The work in [A95] presents a comprehensive methodology based on a hybrid

system of AI and statistical techniques. The methodology is designed for monitoring

complex equipment systems, which validates the sensor data, associates a degree of

validity with each measurement, isolates faulty sensors, estimates the actual values despite

faulty measurements, and detects incipient sensor failures. The system consists of two

Bayesian networks. The first is used to provide a list of potentially faulty sensors, while

the second is used to isolate the fault.

The methodology consists of four steps: redundancy creation, state prediction,

sensor measurement validation and fusion, and fault detection through residue change

detection. These steps use the information obtained by looking at a sensor individually,

information from the sensor as part of a group of sensors, and the immediate history of the

process that is being monitored. Using a Kalman Filter, the methodology can detect

multiple sensor failures, both abrupt as well as incipient. It can also detect subtle sensor

failures such as drift in calibration and degradation of the sensor. The methodology is

applied to data from a gas turbine power plant.

The authors of [A97] use adaptive fuzzy models to detect and identify a fault, thus

providing fault tolerant control for a nonlinear system. The nonlinear fuzzy inference

system is based on the Takagi-Sugeno fuzzy models. This approach is limited to detecting

and identifying a single fault at a time. They later apply this method to a rail vehicle motor

controller in [A98].

An unspecified nonlinear system is controlled by a neural network in [*90]. Using

the residual signal generated by the fault detection module another neural network-based

control loop is introduced to compensate for the fault(s) detected.

Likewise, in [A96] genetic programming is used to increase the convergence rate

of the fault detection and identification routine applied to an evaporation station at a sugar

factory. This approach is specifically geared toward nonlinear systems.

In [A94-A96] the authors propose using an artificial neural network to compensate

for the unknown dynamics of the fault(s). The controller uses a sliding mode control signal

to keep the system performance in an acceptable range until the ANN can determine the

best response to the detected fault. A multiple-fault case is also addressed.

A Fault Detection and Identification (FDI) routine based on a wavelet neural net is

propose in [A102]. The network is trained using data from simulated fault scenarios. The

approach is designed to detect and identify only a single fault at a time.

187

The authors of [A103] and [A104] use component level models to generate system

data. Like [A97] a Takagi-Sugeno fuzzy model is used to capture the structure of the system

under control. Finally fuzzy/neural control is used in conjunction with a learning algorithm

to capture the dynamics caused by faults. This approach is applied to jet engine turbine

control.

In [A105] the authors use the flexibility of fuzzy logic to select from among several

models for the best fit to the conditions of the system when one or more faults occur.

In [A106-A108] the authors propose a neural network-based learning approach.

The Controller references a Dynamic Model bank when a fault is detected. If the bank

contains the appropriate model for the fault in question, that model is used. Otherwise the

supervisor module changes the initial conditions of the algorithm to keep system

performance within acceptable bounds. The controller is demonstrated on a nonlinear

system.

In [A109] the controller architecture uses a neural controller aiding an existing

conventional controller. The neural controller uses a feedback error learning mechanism

and employs a dynamic Radial Basis Function neural network called Extended Minimal

Resource Allocating Network (EMRAN), which uses only on-line learning and does not

need a priori training. The conventional controller is designed using a classical design

approach to achieve the desired autonomous landing profile with tight touchdown

dispersions. The system is demonstrated in cases with single and double faults.

The authors of [A110] demonstrate an application of neural estimators for detection

and identification of faults in sensors and actuators in flight controls. The actuator faults

are addressed using nonlinear dynamic inversion. The sensor faults are addressed by

replacing the sensor outputs with neural estimates computed during fault detection and

identification.

In [A111] a robust fault tolerant fuzzy control problem for continuous-time

nonlinear systems with time delay and sensor faults is addressed. The Takagi-Sugeno fuzzy

model is employed to represent a nonlinear system. Using a sensor fault model and fuzzy

state observer, the authors develop a fuzzy output feedback controller. The fuzzy control

system is reliable in the sense of that asymptotic stability is achieved not only when all

sensor components are operating properly, but also in the presence of some component

failures.

In [A112] a neural network state observer is trained by the actual nonlinear control

system. From the residual difference between outputs of actual system and neural network

observer, the fault of control system is detected and determined. Fault tolerant control is

realized by using a compensation controller to maintain the stability and performance of

the system. As an example of the application, a tracking control problem for the speed and

azimuth of a mobile robot driven by two independent wheels is addressed by using the

controller.

The authors of [A113] use an RBF neural network to compensate for the system

faults and disturbances using model reference adaptive control technology. The Lypanov

stability theory is used to tune the weights of the neural network.

 In [A114] the authors use an iterative learning algorithm combined with an

unknown input observer. The controller is applied to a satellite attitude control system.

188

 The work in [A115] uses a RBF neural net along with reference models for adaptive

control applied to wind turbines.

 The work in [A116] introduces a fault tolerant controller design for nonlinear

unknown systems with multiple actuators and bounded disturbance. The controller consists

of an adaptive learning-based control law and a switching function mechanism. The

adaptive control law is implemented by a two-layer neural network and the switching

function is designed to automatically search for the correct switching vector to turn off the

unknown faulty actuator if there is one. The stability of the system output under the

occurrence of actuator failure is proved through standard Lyapunov approach, while the

other signals are guaranteed to be bounded. The proposed controller design is implemented

on a simulation example using a continuous stirred tank reactor.

 Finally, the authors of [A117] propose an adaptive, active fault tolerant control for

a class of nonlinear systems with unknown actuator faults. The actuator fault is assumed to

have no traditional affine appearance of the system state variables and control input. A

radial basis function neural network (NN) is be used in the design of the fault tolerant

controller. The authors claim their fault-tolerant control scheme can minimize the time

delay between fault occurrence and accommodation and reduce the adverse effect on

system performance.

[A96] M. Witczak, A. Obuchowicz, J. Korbicz, “Genetic programming based approaches

to identification and fault diagnosis of nonlinear dynamic systems”, Int. Journal of

Control, vol. 75, no. 13, pp. 1012-1031, 2002.

[A97] Lopez-Toribio, C. J., Patton, R. J., and Uppal, F. J. “Artificial Intelligence

Approaches to Fault Diagnosis”, International Journal of Applied mathematics and

Computer Science, Vol. 9, No. 3, pp. 471-518, 1999.

[A98] Lopez-Toribio, C. J., Patton, R. J., and Daley, S. “Takagi-Sugeno fuzzy fault

tolerant control of an induction motor”, Neural Computing and Applications, Vol. 19,

No. I1, pp. 19–28, 2000.

[A99] G.G. Yen & L. W. Ho, “Intelligent Fault Tolerant Control Using Artificial Neural

Networks”, Proceedings of the IEEE-INNS-ENNS International Conference on Neural

Networks (IJCNN) Vol 1, 2000, pp 266-271.

[A100] G.G. Yen & L. W. Ho, “Fault Tolerant Control: An Intelligent Sliding Mode

Control Strategy”, Proceedings of the 2000 American Control Conference, 2000 ,pp

4204-4208.

[A101] Ho, L.-W., and Yen, G. G., “Reconfigurable control system design for fault

diagnosis and accommodation”, International Journal of Neural Systems, Vol. 12, No. 6,

pp. 497–520, 2002.

189

[A102] N.S. Clements, B. S. Heck and G. Vachtsevanos, “Component Based Modeling

and Fault Tolerant Control of Complex Systems”, Proceedings of the 19th Digital

Avionics Systems Conference (DASC), 2000 Vol 2, pp 6.F.4-1 – 6.F.4-4

[A103] Diao, Y. & Passino, K., “Stable fault-tolerant adaptive fuzzy/neural control for

turbine engine”, IEEE Transactions on Control Systems Technology, Vol. 9, No. 3, (May

2001) 494-509, ISSN: 1063-6536.

[A104] Diao,Y. & Passino, K., “Intelligent fault-tolerant control using adaptive and

learning methods”, Control Engineering Practice, Vol. 10, N. 8, (August 2002) 801-817,

ISSN: 0967-0661.

[A105] Ichtev, A., “Multiple fuzzy models for fault tolerant control”, International

Journal of Fuzzy Systems, Vol. 5, No. 1, pp. 31–40, 2003.

[A106] P. G. DeLima & G.G. Yen, “Addressing to Online Adaptive Controller

Malfunction in Fault Tolerant Control”, Proceedings of the 2004 IEEE International

Symposium on Intelligent Control, 2004, pp 1279-1284.

[A107] Yen, G. & DeLima, P., “An Integrated Fault Tolerant Control Framework Using

Adaptive Critic Design”, International Joint Conference on Neural Networks, Vol. 5, pp.

2983-2988, ISBN: 0-7803-9048-2.

[A108] G.G. Yen, P.G. DeLima, "Improving the performance of globalized dual heuristic

programming for fault-tolerant control through an online learning Supervisor", IEEE

Trans. on Automation Science and Engineering, vol. 2, no. 2, pp. 121-131, 2005.

[A109] Pashilkar,A.; Sundararajan, N.; Saratchandran, P., “A Fault-tolerant Neural Aided

Controller for Aircraft Auto-landing”, Aerospace Science and Technology, Vol. 10, pp. 49-

61.

[A110] Perhinschi, M.; Napolitano, M.; Campa, G., Fravolini, M.; & Seanor, B.,

“Integration of Sensor and Actuator Failure Detection, Identification, and

Accommodation Schemes within Fault Tolerant Control Laws”, Control and Intelligent

Systems, Vol. 35, No. 4, 309-318, ISSN: 1480-1752.

[A111] S-C. Tong, “Robust Fault Tolerant Fuzzy Control for Nonlinear Systems with

Sensor Failures”, Proceedings of the Sixth International Conference on Machine Learning

and Cybernetics, 2007, pp 604-609.

[A112] Z. Li, “Fault Diagnosis and Fault Tolerant Control of Mobile Robot Based on

Neural Networks”, Proceedings of the Eighth International Conference on Machine

Learning and Cybernetics, 2009, pp 1077-1081.

190

[A113] Z. Chuan, W. Yifei, C. Qingwei, "Adaptive fault-tolerant control for a class of

networked control system with random time delay based on neural network", Proc. of

Chinese Cont. Conf., pp. 4217-4222, 2011.

[A114] Q. Jia, Y. Guan, Y. Zhang, Y. Jiang and Y. Shen, "Active fault-tolerant control

for satellite system via learning unknown input observer", Proceedings of the 10th World

Congress on Intelligent Control and Automation, Beijing, 2012, pp. 2965-2967.

doi: 10.1109/WCICA.2012.6358378

[A115] L-L. Fan, Y-D. Song, "Neuro-adaptive model-reference fault-tolerant control

with application to wind turbines", IET Control Theory & Applications, vol. 6, no. 4, pp.

475-486, 2012.

[A116] Q. Yang, B. Liu & Z. Yu, “Adaptive Learning based Fault Tolerant Control for

Uncertain Nonlinear Systems”, Proceedings of the 2012 International Conference on

Machine Learning and Cybernetics, 2012, pp 1418-1423.

[A117] Shen, B. Jiang, P. Shi & C-C Lim, “Novel Neural Networks-Based Fault Tolerant

Control Scheme With Fault Alarms”, IEEE Transactions on Cybernetics, Vol 44, No 11,

2014, pp 2190-2201.

Detecting Multiple Faults and Attacks

[A118] Krishnamoorthy, Ganesh, Ashok, Pradeepkumar and Tesar, Delbert,

“Simultaneous Sensor and Process Fault Detection and Isolation in Multiple-Input-

Multiple-Output Systems”, IEEE Systems Journal, Vol. 9, No. 2, June 2015.

[A119] Li, Yumei, Voos, Holger, Darouach, Mohmed and Hua, Changchun, “An

Algebraic Detection Approach for Control Systems under Multiple Stochastic Cyber

attacks”, IEEE/CAA Journal of Automatica Sinica, Vol 2, No 3, July 2015, pages 258-

266.

[A120] Zhu, Jun-Wei and Yang, Guang-Hong, “Fault-tolerant control for linear systems

with multiple faults and disturbances based on augmented intermediate estimator”, IET

Control Theory and Applications, Vol. 11, Issue 2, 2017, pages 164-172.

[A121] Mukkamala, S., Yendrapalli, K., Basnet, R.B. and Sung A.H., “Detecting

Coordinated Distributed Multiple Attacks”, 21st International Conference on Advanced

Information Networking and Applications Workshops (AINAW ’07), Vol 1, 2007, pages

557-562.

[A122] Jasnetski, Artjom, et al, “High-Level Modeling and Testing of Multiple Control

Faults in Digital Systems”, IEEE 19th International Symposium on Design and

Diagnostics of Electronic Circuits & Systems (DDECS), 20-22 April 2016.

191

[A123] Ubar, Raimund, Oyeniran, and Stephen Adeboye, “Multiple Control Fault

Testing in Digital Systems with High-Level Decision Diagrams”, IEEE International

Conference on Automation, Quality and Testing, Robotics (AQTR), 19-21 May 2016

[A124] Paliath, Vivin and Shakarian, Paulo, “Modeling cyber attacks on Industrial

Control Systems” IEEE Conference on Intelligence and Security Informatics (ISI), 28-30

September 2016, pages 316-318.

[A125] M. Blanke, R. Izadi-Zamanabadi, S. A. Bogh, and Z. P. Lunau. Fault tolerant

control systems-a holistic view. Control Engineering Practice, 5(5):693–702, 1997.

[A126] R. J. Patton. Fault-tolerant control systems: The 1997 situation. In 3rd IFAC

symposium on fault detection supervision and safety for technical processes, volume 3,

pages 1033–1054, 1997.

Reconfigurable FTC

[A127] M. Blanke, C. Frei, F. Kraus, R. J. Patton, and M. Staroswiecki. What is fault

tolerant control? In 4th IFAC symposium on fault detection, supervision and safety for

technical processes, pages 40–51, 2000.

[A128] Calise, A. J., Lee, S., & Sharma, M., “Development of a reconfigurable flight

control law for tailless aircraft”, Journal of Guidance, Control, and Dynamics, 24(5), pp.

896–902, 2001.

[A129] M. Blanke, M. Staroswiecki, and N. E. Wu. Concepts and methods in fault-

tolerant control. In American Control Conference, volume 4, pages 2606–2620, 2001.

[A130] J. Jiang. Fault-tolerant control systems-an introductory overview. Acta

Automatica Sinica, 31(1):161–174, 2005.

[A131] Zhang, Y. and Jiang, J. “Bibliographical review on reconfigurable fault-tolerant

control systems,” Annual Reviews in Control, Vol.32, pp: 229–252. 2008.

[A132] Yang, H., Cocquempot, V., Jiang, B. “Optimal Fault-Tolerant Path-Tracking

Control for 4WS4WD Electric Vehicle,” IEEE Transactions on Intelligent

Transportation Systems, Vol. 11, No. 1, pp, 237-243, 2010.

[A133] R. Isermann. Fault-diagnosis systems. Springer Verlag, 2006.

[A134] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki. Diagnosis and Fault-

Tolerant Control. Springer-Verlag, 2006.

192

B. Appendix: Steam Boiler Test Results Chart

T
es

t
R

u
n

 N
o

.

S
en

so
r

E
ff

e
c
t

E
ff

ec
t

V
a
lu

e

P
u

m
p

 1
 E

ff
e
ct

E
ff

ec
t

V
a
lu

e

P
u

m
p

 2
 E

ff
e
ct

E
ff

ec
t

V
a
lu

e

C
o
m

p
o

n
en

ts

A
ff

ec
te

d

C
a
ta

st
ro

p
h

ic

F
a

il
u

re

M
o

d
e

1
4
 T

ri
g
g

er
ed

M
a

in
ta

in
 P

ro
p

er

C
o
n

tr
o
l?

It
er

a
ti

o
n

s
to

 R
eg

a
in

P
ro

p
er

 C
o
n

tr
o
l

It
er

a
ti

o
n

s
to

C
o
rr

ec
t

D
ec

is
io

n

It
er

a
ti

o
n

s
U

si
n

g

C
o
rr

ec
t

S
o
lu

ti
o
n

 %

1 0 0 0 1 * 0 100.00%

2 1 206.17 1 0 0 1 * 0 100.00%

3 2 0.71 1 0 0 1 * 0 100.00%

4 3 0.24 1 0 0 1 * 0 100.00%

5 4 0.50 1 0 0 1 * 0 100.00%

6 5 340.08 1 0 0 1 * 0 100.00%

7 6 * 1 0 0 1 * 0 100.00%

8 7 0.28 1 0 0 1 * 0 100.00%

9 8 0.50 1 0 0 1 * 0 100.00%

10 1 2.68 1 0 0 1 * 0 100.00%

11 2 0.74 1 0 0 1 * 0 100.00%

12 3 0.45 1 0 0 1 * 0 100.00%

13 4 0.40 1 0 0 1 * 0 99.33%

14 5 1.88 1 0 0 1 * 105 77.00%

15 6 * 1 0 0 1 * 0 100.00%

16 7 0.74 1 0 0 1 * 0 100.00%

17 8 0.10 1 0 0 1 * 0 100.00%

18 1 2.81 1 0 0 1 * 9 99.00%

19 2 0.49 1 0 0 1 * 0 100.00%

20 3 0.09 1 0 0 1 * 9 98.33%

21 4 0.54 1 0 0 0 250 9 92.67%

22 5 3.36 1 0 0 1 * 9 49.00%

23 6 * 1 0 0 1 * 0 100.00%

24 7 0.02 1 0 0 1 * 10 99.33%

25 8 0.72 1 0 0 1 * 10 99.33%

26 1 447.99 1 1.49 2 0 0 1 * 0 100.00%

27 1 297.91 2 0.61 2 0 0 1 * 0 100.00%

28 1 344.57 3 0.50 2 0 0 1 * 0 100.00%

29 1 485.93 4 0.26 2 0 0 0 250 151 92.00%

30 1 718.16 5 3.66 2 0 0 0 4 99 52.33%

31 1 140.89 6 * 2 0 0 1 * 0 100.00%

32 1 617.00 7 0.97 2 0 0 1 * 0 100.00%

33 1 376.34 8 0.50 2 0 0 1 * 0 100.00%

34 1 667.00 1 1.59 2 0 0 1 * 0 100.00%

35 1 670.79 2 0.69 2 0 0 1 * 0 100.00%

36 1 429.47 3 0.14 2 0 0 1 * 9 98.00%

37 1 672.76 4 0.34 2 0 0 0 250 9 93.33%

38 1 166.15 5 1.63 2 0 0 1 * 9 75.00%

193

39 1 668.67 6 * 2 0 0 1 * 0 100.00%

40 1 758.26 7 1.00 2 0 0 1 * 153 95.67%

41 1 281.74 8 0.26 2 0 0 1 * 10 99.33%

42 2 0.34 1 2.35 2 0 0 1 * 0 100.00%

43 2 0.47 2 0.66 2 0 0 1 * 0 100.00%

44 2 0.21 3 0.26 2 0 0 1 * 0 100.00%

45 2 0.68 4 0.47 2 0 0 0 250 187 92.33%

46 2 0.48 5 3.70 2 0 0 0 2 103 51.67%

47 2 0.17 6 * 2 0 0 1 * 0 100.00%

48 2 0.24 7 0.12 2 0 0 1 * 0 100.00%

49 2 0.36 8 0.32 2 0 0 1 * 0 100.00%

50 2 0.76 1 1.86 2 0 0 1 * 9 99.00%

51 2 0.14 2 0.42 2 0 1 1 * 9 99.33%

52 2 0.38 3 0.45 2 0 0 1 * 10 96.67%

53 2 0.77 4 0.11 2 0 0 1 * 10 91.00%

54 2 0.14 5 1.63 2 0 1 1 * 9 74.67%

55 2 0.49 6 * 2 0 0 1 * 0 100.00%

56 2 0.59 7 0.65 2 0 0 1 * 10 97.33%

57 2 0.73 8 0.47 2 0 0 1 * 10 99.33%

58 3 0.55 1 1.47 2 0 0 1 * 0 100.00%

59 3 0.36 2 0.37 2 0 0 1 * 0 100.00%

60 3 0.25 3 0.50 2 0 0 1 * 0 100.00%

61 3 0.18 4 0.30 2 0 0 1 * 0 99.33%

62 3 0.28 5 1.24 2 0 0 1 * 140 84.33%

63 3 0.13 6 * 2 0 0 1 * 0 100.00%

64 3 0.10 7 0.40 2 0 0 1 * 0 100.00%

65 3 0.41 8 0.01 2 0 0 1 * 0 100.00%

66 3 0.10 1 3.04 2 0 0 1 * 9 99.00%

67 3 0.38 2 0.37 2 0 0 1 * 0 100.00%

68 3 0.20 3 0.19 2 0 0 1 * 9 97.67%

69 3 0.25 4 0.48 2 0 0 0 71 10 77.00%

70 3 0.21 5 1.71 2 0 0 1 * 9 74.33%

71 3 0.23 6 * 2 0 0 1 * 0 100.00%

72 3 0.15 7 0.38 2 0 0 1 * 10 98.33%

73 3 0.30 8 0.44 2 0 0 1 * 10 99.33%

74 4 0.38 1 2.08 2 0 0 1 * 0 100.00%

75 4 0.22 2 0.35 2 0 0 1 * 0 100.00%

76 4 0.06 3 0.11 2 0 0 1 * 0 100.00%

77 4 0.09 4 0.29 2 0 0 1 * 0 99.67%

78 4 0.26 5 3.26 2 0 0 0 2 93 54.33%

79 4 0.21 6 * 2 0 0 1 * 0 100.00%

80 4 0.31 7 0.30 2 0 0 1 * 0 100.00%

81 4 0.34 8 0.17 2 0 0 1 * 0 100.00%

82 4 0.26 1 2.85 2 0 0 1 * 9 99.00%

83 4 0.08 2 0.66 2 0 0 1 * 9 99.33%

84 4 0.34 3 0.37 2 0 0 1 * 9 96.33%

85 4 0.51 4 0.50 2 0 0 0 45 9 71.67%

194

86 4 0.14 5 1.26 2 0 0 1 * 9 80.33%

87 4 0.32 6 * 2 0 0 1 * 0 100.00%

88 4 0.21 7 0.50 2 0 0 1 * 10 98.33%

89 4 0.52 8 0.21 2 0 0 1 * 10 99.33%

90 5 617.82 1 2.83 2 0 0 1 * 0 100.00%

91 5 806.00 2 0.13 2 0 0 1 * 0 100.00%

92 5 843.89 3 0.36 2 0 0 1 * 0 100.00%

93 5 113.62 4 0.38 2 0 0 1 * 0 99.67%

94 5 528.18 5 1.54 2 0 0 1 * 119 83.33%

95 5 225.07 6 * 2 0 0 1 * 0 100.00%

96 5 722.37 7 0.71 2 0 0 1 * 0 100.00%

97 5 130.29 8 0.07 2 0 0 1 * 0 100.00%

98 5 570.14 1 2.73 2 0 0 1 * 9 99.00%

99 5 606.40 2 0.59 2 0 0 1 * 0 100.00%

100 5 852.30 3 0.09 2 0 0 1 * 245 99.33%

101 5 298.13 4 0.43 2 0 0 0 250 10 96.33%

102 5 433.60 5 2.35 2 0 0 1 * 9 64.00%

103 5 801.63 6 * 2 0 0 1 * 0 100.00%

104 5 563.82 7 0.95 2 0 0 1 * 146 96.00%

105 5 790.12 8 0.36 2 0 0 1 * 0 100.00%

106 6 * 1 2.16 2 0 0 1 * 0 100.00%

107 6 * 2 0.79 2 0 0 1 * 0 100.00%

108 6 * 3 0.12 2 0 0 1 * 0 100.00%

109 6 * 4 0.35 2 0 0 0 6 163 80.00%

110 6 * 5 3.24 2 0 0 1 * 95 55.00%

111 6 * 6 * 2 0 0 1 * 0 100.00%

112 6 * 7 0.22 2 0 0 1 * 0 100.00%

113 6 * 8 0.89 2 0 0 1 * 0 100.00%

114 6 * 1 1.37 2 0 0 1 * 9 99.00%

115 6 * 2 0.40 2 0 0 1 * 9 99.00%

116 6 * 3 0.08 2 0 0 1 * 10 98.33%

117 6 * 4 0.08 2 0 0 0 132 10 82.67%

118 6 * 5 3.18 2 0 0 1 * 9 51.00%

119 6 * 6 * 2 0 0 1 * 0 100.00%

120 6 * 7 0.11 2 0 0 1 * 10 99.00%

121 6 * 8 0.61 2 0 0 1 * 10 99.00%

122 7 0.80 1 2.15 2 0 0 1 * 0 100.00%

123 7 0.02 2 0.10 2 0 0 1 * 0 100.00%

124 7 0.88 3 0.22 2 0 0 1 * 0 100.00%

125 7 0.11 4 0.36 2 0 0 1 * 0 99.33%

126 7 0.08 5 3.64 2 0 0 0 1 99 52.00%

127 7 0.54 6 * 2 0 0 1 * 0 100.00%

128 7 0.04 7 0.29 2 0 0 1 * 0 100.00%

129 7 0.12 8 0.81 2 0 0 1 * 0 100.00%

130 7 0.82 1 1.41 2 0 0 1 * 9 99.33%

131 7 0.99 2 0.19 2 0 0 1 * 0 100.00%

132 7 0.29 3 0.11 2 0 0 1 * 9 98.67%

195

133 7 0.41 4 0.51 2 0 0 0 250 9 92.00%

134 7 0.54 5 1.25 2 0 0 1 * 9 80.33%

135 7 0.59 6 * 2 0 0 1 * 0 100.00%

136 7 0.77 7 0.35 2 0 0 1 * 10 98.67%

137 7 0.55 8 0.77 2 0 0 1 * 10 99.33%

138 8 0.72 1 1.31 2 0 0 1 * 0 100.00%

139 8 0.11 2 0.33 2 0 0 1 * 0 100.00%

140 8 0.14 3 0.14 2 0 0 1 * 0 100.00%

141 8 0.16 4 0.10 2 0 0 1 * 0 100.00%

142 8 0.18 5 1.65 2 0 0 1 * 115 82.67%

143 8 0.52 6 * 2 0 0 1 * 0 100.00%

144 8 0.41 7 0.30 2 0 0 1 * 0 100.00%

145 8 0.50 8 0.90 2 0 0 1 * 0 100.00%

146 8 0.80 1 2.93 2 0 0 1 * 9 99.00%

147 8 0.90 2 0.19 2 0 0 1 * 0 100.00%

148 8 0.31 3 0.28 2 0 0 1 * 13 96.67%

149 8 0.23 4 0.37 2 0 0 0 250 9 93.33%

150 8 0.09 5 3.14 2 0 0 1 * 9 52.33%

151 8 0.25 6 * 2 0 0 1 * 0 100.00%

152 8 0.23 7 0.30 2 0 0 1 * 10 99.33%

153 8 0.10 8 0.18 2 0 0 1 * 10 99.33%

154 1 2.91 1 2.50 2 0 0 1 * 0 100.00%

155 1 2.94 2 0.49 2 0 0 1 * 0 100.00%

156 1 1.54 3 0.40 2 0 0 1 * 0 100.00%

157 1 2.15 4 0.26 2 0 0 0 250 143 91.33%

158 1 2.05 5 3.09 2 0 0 1 * 103 57.33%

159 1 1.56 6 * 2 0 0 1 * 0 100.00%

160 1 2.59 7 0.57 2 0 0 1 * 0 100.00%

161 1 1.69 8 1.00 2 0 0 1 * 0 100.00%

162 2 0.14 1 1.38 2 0 0 1 * 0 100.00%

163 2 0.24 2 0.34 2 0 0 1 * 0 100.00%

164 2 0.28 3 0.18 2 0 0 1 * 0 100.00%

165 2 0.52 4 0.33 2 0 0 1 * 0 99.00%

166 2 0.57 5 1.17 2 0 0 1 * 170 91.67%

167 2 0.32 6 * 2 0 0 1 * 0 100.00%

168 2 0.37 7 0.83 2 0 0 1 * 0 100.00%

169 2 0.21 8 0.78 2 0 0 1 * 0 100.00%

170 3 0.16 1 1.35 2 0 0 1 * 9 99.33%

171 3 0.33 2 0.26 2 0 0 1 * 0 100.00%

172 3 0.14 3 0.13 2 0 0 1 * 0 100.00%

173 3 0.16 4 0.22 2 0 0 1 * 0 99.00%

174 3 0.46 5 1.60 2 0 0 1 * 122 80.33%

175 3 0.48 6 * 2 0 0 1 * 0 100.00%

176 3 0.32 7 0.31 2 0 0 1 * 0 100.00%

177 3 0.33 8 0.02 2 0 0 1 * 0 100.00%

178 4 0.41 1 2.04 2 0 0 0 86 135 88.00%

179 4 0.38 2 0.44 2 0 0 1 * 0 99.00%

196

180 4 0.08 3 0.14 2 0 0 1 * 176 92.33%

181 4 0.17 4 0.45 2 0 0 1 * 0 99.00%

182 4 0.10 5 2.43 2 0 0 1 * 105 66.67%

183 4 0.49 6 * 2 0 0 1 * 0 100.00%

184 4 0.10 7 0.32 2 0 0 1 * 0 100.00%

185 4 0.22 8 0.97 2 0 0 1 * 0 99.00%

186 5 3.40 1 1.57 2 0 0 0 1 105 55.33%

187 5 2.12 2 0.32 2 0 0 1 * 112 73.33%

188 5 2.00 3 0.20 2 0 0 1 * 109 70.67%

189 5 1.73 4 0.20 2 0 0 1 * 0 99.00%

190 5 2.39 5 2.12 2 0 0 0 7 215 48.33%

191 5 3.20 6 * 2 0 0 1 * 0 100.00%

192 5 2.52 7 0.36 2 0 0 1 * 105 64.00%

193 5 2.12 8 0.73 2 0 0 1 * 110 73.00%

194 6 * 1 2.82 2 0 0 1 * 0 100.00%

195 6 * 2 0.80 2 0 0 1 * 0 100.00%

196 6 * 3 0.41 2 0 0 1 * 0 100.00%

197 6 * 4 0.23 2 0 0 1 * 0 100.00%

198 6 * 5 1.25 2 0 0 1 * 0 100.00%

199 6 * 6 * 2 0 0 1 * 0 100.00%

200 6 * 7 0.21 2 0 0 1 * 0 100.00%

201 6 * 8 0.12 2 0 0 1 * 0 100.00%

202 7 0.46 1 1.93 2 0 0 1 * 0 100.00%

203 7 0.22 2 0.51 2 0 0 1 * 0 100.00%

204 7 0.36 3 0.35 2 0 0 1 * 0 100.00%

205 7 0.39 4 0.26 2 0 0 1 * 0 92.67%

206 7 0.88 5 1.03 2 0 0 1 * 168 85.67%

207 7 0.64 6 * 2 0 0 1 * 0 100.00%

208 7 0.08 7 0.30 2 0 0 1 * 0 100.00%

209 7 0.86 8 0.66 2 0 0 1 * 0 100.00%

210 8 0.78 1 2.95 2 0 0 1 * 0 100.00%

211 8 0.72 2 0.16 2 0 0 1 * 0 100.00%

212 8 0.74 3 0.27 2 0 0 1 * 0 100.00%

213 8 0.93 4 0.24 2 0 0 1 * 0 99.00%

214 8 0.73 5 1.33 2 0 0 1 * 153 83.67%

215 8 0.70 6 * 2 0 0 1 * 0 100.00%

216 8 0.67 7 0.37 2 0 0 1 * 0 100.00%

217 8 0.99 8 0.64 2 0 0 1 * 0 100.00%

197

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense,
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

23-11-2020
2. REPORT TYPE

Dissertation
3. DATES COVERED (From – To)

June 2013 – Dec 2020

TITLE AND SUBTITLE

Deep Learning-Based, Passive Fault Tolerant Control Facilitated

by a Taxonomy of Cyber-Attack Effects

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Wardell, Dean C., Lt Col, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

 Air Force Institute of Technology

 Graduate School of Engineering and Management (AFIT/EN)

 2950 Hobson Way, Building 640

 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT-ENG-DS-20-D-013

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Intentionally left blank

10. SPONSOR/MONITOR’S
ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 DISTRUBTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright protection in the

United States.

There have been several cyber-attacks on the cyber-physical systems (CPS) that monitor and control

critical infrastructure over the last few years. The need for increased cyberspace security for these

industrial control systems (ICS) has been widely discussed extensively researched. This work presents a

novel controller design that does not rely on fault or attack detection. It incorporates deep learning and

ensemble learning techniques to holistically consider the state of the system under control and determine

which model to use for further control signals. This work also presents a taxonomy of effects for use in

designing training and testing FTC. The Taxonomy is foundational to the proposed controller. The

approach shows improved results over an active FTC even when the system is subjected to Stuxnet-like

attack conditions.

15. SUBJECT TERMS

Cyber-Physical Systems, Cyber-Security, Ensemble Learning, Deep Learning, Fault Tolerant Control

16. SECURITY CLASSIFICATION
OF: UNCLASSIFIED

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
OF PAGES

213

19a. NAME OF RESPONSIBLE PERSON

Dr. Robert F. Mills, AFIT/ENG
a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include area code)

(937) 255-6565, ext 4527

(robert.mills@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

