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1.0 SUMMARY 

The Space/Time Analysis for Cybersecurity (STAC) program aimed to develop techniques for 
detecting space and/or time side-channel vulnerabilities in compiled Java virtual-machine (JVM) 
bytecode programs. The Utah/Irvine team’s approach to the STAC program was focused on 
statically analyzing JVM bytecode.  It was one of the only teams that took a pure static analysis 
approach.  This approach uncovered limitations of the state of the art in static analysis, and the 
Utah/Irvine team developed multiple foundational techniques to address these limitations.  
However, more foundational work is required before static analysis can reach its potential. 
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2.0 INTRODUCTION 
 
Our project had two main efforts. The first was the development of the “Jaam” static analysis 
tool, the second was a contract extension to implement a well-tested Java decompiler, “Jade”.  
The code for Jaam is available at <https://github.com/ucombinator/jaam>, while the code for 
Jade is available at Jade is available at <https://github/ucombinator/jade>. 
 
Jaam is a suite of static-analysis tools to help analysts determine whether a compiled JVM 
bytecode application contains vulnerabilities. In particular it aids with detecting algorithmic-
complexity and side-channel vulnerabilities relating to resource usage (i.e., space) or running 
time (i.e., time). It does this via a number of tools described later in this document. 
 
During the course of the project we found decompiling the JVM bytecode to be useful when 
analyzing an application for vulnerabilities. From time to time, it was also helpful to modify the 
decompiled source code and then compile it producing a modified version of the application 
being analyzed. In particular this made it easier to test hypotheses that analysts about the 
behavior of the application and potential vulnerabilities in the application. This required 
decompilers to produce decompiled code that was not just human readable but also compilable 
by standard Java compilation tools. To our disappointment and surprise, we found that no 
publicly available decompilers reliably produces compilable Java code. Thus, we applied for an 
extension to the contract to develop such a decompiler. This became the Jade decompiler 
discussed later in this document.  

https://github.com/ucombinator/jaam
https://github/ucombinator/jade
https://github/ucombinator/jade
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3.0 METHODS ASSUMPTIONS AND PROCEDURES 
 
The project was organized around “engagements” that happened every six months. These were 
DARPA organized events in which we were provided with several JVM applications in the form 
of compiled JVM bytecode and a series of questions about whether certain types of 
vulnerabilities were present in that code. Our team focused on the use of static analysis to answer 
these questions. The results of these engagements were used to guide further development of the 
tools in preparation of the next engagement.  
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4.0 RESULTS AND DISCUSSIONS 
 
4.1 Jaam: Static Analysis for Java Bytecode 
 
With the conclusion of the main STAC program, development has ended. The code for this 
project is available at <https://github.com/ucombinator/jaam>.  With that tool, running 
’createJaam’ on a challenge apps directory runs all the analyses and records them in a file that 
can be loaded into the visualizer.  This integrates a control-flow analysis, a data-flow analysis, a 
decompiler, and a loop classifier. 
 
Additional information on building and running the tool is available in the README.md file at 
< https://github.com/ucombinator/jaam/README.md> 
 
Our approach to this program focused on statically analyzing programs unlike other teams that 
used dynamic analysis or fuzzing. This presented us with a unique set of issues. 
 
Early in the project we had issues with ensuring the analysis covered the entire program. This is 
because the analysis handled only code that could be directly reached from the program entry 
point. However, as the programs being analyzed were for JVM, most of the code in the programs 
is reached only from a callback. 
 
This lead to what we called the “library problem”. Namely, if our analysis skipped over library 
code, it would miss the callbacks, but if our analysis went into library code it would get lost in 
that code and never come back. This was due to the large size and interconnectedness of these 
libraries. 
 
This became a problem that we grappled with throughout the program. We developed a number 
of foundational techniques (e.g., Allocation Characterizes Polyvariance (ACP), Push-down for 
Free (P4F), and Demand Control-flow Analysis (DCA). See Section 5.0 Most-Significant-
Papers) that can help with this problem, but they did not entirely solve the problem. 
 
The one technique that did work well was using a “class-hierarchy analysis” (CHA). This type of 
analysis is able start in the middle of a program. This allows us to analyze callbacks even if we 
do not analyze library code that calls those callbacks. However, CHA is a low precision analysis 
and does not provide as much information about the code as the other analyses. 
 

https://github.com/ucombinator/jaam
https://github.com/ucombinator/jaam
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It may be possible to hybridize CHA with DCA so that more precise analyses are done on-
demand where needed. However, as DCA was developed late in the project, and thus we were 
unable to explore this and more research into this is necessary. 
 
Based on the CHA analysis, we developed a visualization that showed the hierarchy of what 
methods called what other methods. Selecting a particular method would then show the intra-
prodecural data flow of that method. 
 
To the method-call hierarchy, we added nodes for the various loops in the program. This made it 
easy to see what functions contained or were called from loops whether directly or indirectly. 
 
We further developed a loop classifier that color coded loop nodes according to their type. This 
classification allowed us to determine precisely what variables controlled the number of 
iterations taken by the loop. This classifier handled a number of standard types of loops (e.g., 
for-each loops, count-up loops, etc.) as well as a generic loop analysis that can handle any loop 
not already classified. While this generic loop analyzer does not report what type a loop is, it 
reports what variables control the loop. 
 
Based on these loop classifiers we modified the data-flow visualization to display the values 
controlling the number of iterations in specific loops. 
 
Finally, it is worth noting that throughout the project there were numerous changes and tweaks to 
streamline how the data-flow information is visualized to reduce the amount of information that 
the user has to sift through when exploring an application. Performance optimizations were 
implemented to improve interactive usability, and numerous small changes and tweaks were 
made in order to improve usability and present the data-flow information in a more 
comprehensible manner.  
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4.2 Jade: A Java Decompiler 
 
With the conclusion of the main STAC program, development has ended. The code for this 
project is available at <https://github.com/ucombinator/jade>. Information on building and 
running the tools is available in the README.md file at 
<https://github.com/ucombinator/jade/README.md> 
 
While there are a large number of JVM-to-Java decompilers available today, we have found that 
they are unreliable and often produce Java code that does not compile properly. We first 
discovered this during the DARPA STACSpace/Time Analysis for Cybersecurity engagements 
when none of the existing Java decompilers could be relied upon to produce valid Java code. 
Given the mature state of most of the Java ecosystem, we found this fact surprising. So we tested 
several decompilers against widely used Java applications and libraries. We tested JDCore, 
JadX, Procyon, Fernflower, and Jad. We tested them against several widely used Java 
applications and libraries. These include Junit, Apache Commons Lang, Spring Core, Apache 
Hadoop Common, and jEdit. All of the decompilers that we tested failed to reliably produce 
compilable Java code for the applications we tested. Note that these tests include the standard 
decompilers used by the IDEs IntelliJ (i.e., Fernflower) and Eclipse (i.e., JDCore, Procyon, 
FernFlower, or Jad depending on settings). 
 
Note that unlike a lower-level assembly like x86, JVM bytecode is designed to be easy to 
analyze. It is fully annotated with the types and structures of all values, and methods are 
explicitly marked with a complete method signature. Thus, decompiling JVM bytecode should 
be comparatively easy. The fact that these decompilers failed to produce valid Java code is both 
surprising and disappointing. 
 
A manual inspection of the decompiled code shows that the problems are not fundamental to 
decompilation. Indeed, the results are generally reasonable Java source code. The problems are 
minor errors that a human reading the code might overlook but cause errors when passed to a 
Java compiler. For example, we found missing local variable declarations, missing or incorrectly 
added casts, and even statements that the Java compiler flags as unreachable (which in Java is a 
compilation error). 
 
After examining the types of mistakes made by these decompilers, we believe this happened due 
to two causes. First, the designers of those decompilers may have focused on how the code looks 
to a human rather than what happens when that code is passed to a Java compiler. Second, they 
insufficiently tested what happens when the decompiled code is passed to a Java compiler. In the 
decompiler that we propose to develop, avoiding these mistakes is a primary goal. 
 

https://github.com/ucombinator/jade
https://github.com/ucombinator/jade/README.md
https://github.com/ucombinator/jade/README.md
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Thus we developed a JVM-to-Java decompiler that has as its primary goal the generation of 
valid, compilable Java. It was designed from the ground-up to to ensure the correctness of the 
Java it produces. Throughout development, we tested the decompiler against existing corpora of 
Java bytecode. For example, the Maven repository https://mvnrepository.com/ hosts over 8 
million artifacts that we could test against.  
 
The architecture for our decompiler and test suite consisted of multiple parts. The core 
decompilation consists of class structure decompilation, basic method decompilation and 
advanced method decompilation. Around this we wrap a testing system that, first, takes bytecode 
from the Maven repository then passes it through the decompiler to produce Java code. Then it 
passes the Java code though the javac compiler and compares the result for equivalence against 
the original bytecode. 
 
This architecture was designed so that during development we could do continuous integration 
and testing. This allowed us to monitor the progress of the tool and quickly detect unexpected 
failures. By the end of the project, we expected to be able to correctly decompile all Java projects 
in the Maven repository. This would give us a high confidence in the correctness of the resulting 
decompiler. 
 
In order to do the actual decompilation, we split the decompilation into three parts: class 
structure decompilation, basic method decompilation, and advanced method decompilation. 
 
With regard to class structure, JVM bytecode includes complete information about each class, 
interface or enum. This includes the types and signatures of all fields and methods. Thus 
decompiling this part of the code into Java is relatively straight forward. This leaves only the 
methods bodies to be decompile, which we leave as their own separate decompilation step. 
 
We further split method decompilation into basic decompilation and advanced decompilation. 
The goal of basic method decompilation is to do the simplest possible decompilation. This is 
done so that we have a decompilation that is correct even if not necessarily the most idiomatic. 
For example, it may decompile what was originally a for loop into an equivalent while loop. 
Since while loops are such a general constructs, decompiling all loops to them is relatively easy 
and thus less likely to fail. 
 
The goal of advanced method decompilation is to produce more idiomatic Java code than is 
produced by basic method decompilation. Advanced decompilation will contain multiple 
separate transformations for different Java idioms. For example, one transformation could (when 
possible) decompile into for loops instead of while loops. These transformations each have a 
higher risk of failing than basic decompilation. However, by separating advanced decompilation 
from basic decompilation, we can use basic decompilation as a backup for when a particular 
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advanced transformation fails, and thus maintain a high assurance of the decompiler as a whole 
producing correct Java code. 
 
The progress on this project proceeded well and many of the parts of this decompiler were in 
development, when funding was cut due to the principle investigator moving to a new institution 
and trouble with moving that contract the institution. Thus the project is in an incomplete state, 
but initial results were positive.  Thus it remains a project worth funding and developing.  
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5.0 MOST SIGNIFICANT PAPERS 
 
5.1 Push-down Control-flow Analysis for Free (P4F) 
 
Traditional control-flow analysis (CFA) for higher-order languages introduces spurious 
connections between callers and callees, and different invocations of a function may pollute each 
other’s return flows. Recently, three distinct approaches have been published that provide perfect 
call-stack precision in a computable manner:  Context-Free Approach to Control-Flow Analysis 
(CFA2), Push-Down Control-Flow Analysis (PDCFA), and Allocating Abstract Control (AAC). 
Unfortunately, implementing CFA2 and PDCFA requires significant engineering effort. 
Furthermore, all three are computationally expensive. For a monovariant analysis, CFA2 is in 
O(2^n), PDCFA is in O(n^6), and AAC is in O(n^8). 
 
In this paper, we describe a new technique that builds on these but is both straightforward to 
implement and computationally inexpensive. The crucial insight is an unusual state-dependent 
allocation strategy for the addresses of continuations. Our technique imposes only a constant-
factor overhead on the underlying analysis and costs only O(n^3) in the monovariant case. We 
present the intuitions behind this development, benchmarks demonstrating its efficacy, and a 
proof of the precision of this analysis. 
 
Thomas Gilray, Steven Lyde, Michael D. Adams, Matthew Might, and David Van Horn. 
Pushdown control-flow analysis for free. In Proceedings of the 43nd ACM SIGPLAN-SIGACT 
Symposium on Principles of Programming Languages, POPL ’16. ACM, New York, NY, USA, 
January 2016. doi: 10.1145/2837614.2837631. 
 
5.2 Allocation Characterizes Polyvariance (ACP) 
 
The polyvariance of a static analysis is the degree to which it structurally differentiates 
approximations of program values. Polyvariant techniques come in a number of different flavors 
that represent alternative heuristics for managing the trade-off an analysis strikes between 
precision and complexity. For example, call sensitivity supposes that values will tend to correlate 
with recent call sites, object sensitivity supposes that values will correlate with the allocation 
points of related objects, the Cartesian product algorithm supposes correlations between the 
values of arguments to the same function, and so forth. 
 
In this paper, we describe a unified methodology for implementing and understanding 
polyvariance in a higher-order setting (i.e., for control-flow analyses). We do this by extending 
the method of abstracting abstract machines (AAM), a systematic approach to producing an 
abstract interpretation of abstract-machine semantics. AAM eliminates recursion within a 
language’s semantics by passing around an explicit store, and thus places importance on the 
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strategy an analysis uses for allocating abstract addresses within the abstract heap or store. We 
build on AAM by showing that the design space of possible abstract allocators exactly and 
uniquely corresponds to the design space of polyvariant strategies. This allows us to both unify 
and generalize polyvariance as tunings of a single function. Changes to the behavior of this 
function easily recapitulate classic styles of analysis and produce novel variations, combinations 
of techniques, and fundamentally new techniques. 
 
Thomas Gilray, Michael D. Adams, and Matthew Might. Allocation characterizes polyvariance: 
A unified methodology for polyvariant control-flow analysis. In Proceedings of the 21st ACM 
SIGPLAN International Conference on Functional Programming, ICFP ’16, pages 407–420. 
ACM, New York, NY, USA, September 2016. ISBN 978-1-4503-4219-3. doi: 
10.1145/2951913.2951936. 
 
5.3 Demand Control-flow Analysis (DCA) 
 
Points-to analysis manifests in a functional setting as control-flow analysis. Despite the ubiquity 
of demand points-to analyses, there are no analogous demand control-flow analyses for 
functional languages in general. We present demand 0CFA, a demand control-flow analysis that 
offers clients in a functional setting the same pricing model that demand points-to analysis 
clients enjoy in an imperative setting. We establish demand 0CFA’s correctness via an 
intermediary exact semantics, demand evaluation, that can potentially support demand variants 
of more-precise analyses. 
 
Germane K., McCarthy J., Adams M.D., Might M. (2019) Demand Control-Flow Analysis. In: 
Enea C., Piskac R. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 
2019. Lecture Notes in Computer Science, vol 11388. Springer, Cham.  
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6.0 CONCLUSIONS 
 
Ours was one of the only teams that took a pure static analysis approach.  As we discovered, this 
hindered our team as the state of the art in static analysis is not yet well developed enough to 
work well for large scale analyses such as required by this project.  However, this stimulated 
foundational work to address these limitations.  Some of these, such as DCA, were developed 
late enough in the program that they were not able to be applied.  However, these pave the way 
for future programs in allowing static analysis to reach its potential. 
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AAC – Allocating Abstract Control 

ACP – Allocation Characterizes Polyvariance 

CFA2 – Context-Free Approach to Control-Flow Analysis 

CHA – Class-hierarchy analysis 

DARPA – Defense Advanced Research Projects Agency 

DCA – Demand Control-flow Analysis 

IDE – Integrated Development Environment 

JVM – Java virtual-machine 

PDCFA – Push-Down Control-Flow Analysis 

P4F – Push-down for Free 

STAC – Space/Time Analysis for Cybersecurity 

0CFA – Zero Control-flow Analysis 

 
 


