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Abstract    

 

With the long wars in Iraq and Afghanistan distracting the United States for the 

last two decades, China began chipping away at the U.S.’s conventional overmatch by 

rapidly developing and fielding a multitude of anti-access/area denial weapons in the 

Pacific Theater.  Meanwhile, Russia exploited the U.S.’s preoccupation to hone its 

methods for pursuing its global interests while avoiding direct U.S. confrontation.  

Concurrently in the private sector, the massive proliferation of user-generated data from 

smart phones and the Internet of Things contributed to a treasure trove of data from 

which to feed learning algorithm development.  With Great Power Competition now 

coloring nearly all U.S. national security policymaking, Lee Sedol’s defeat by AlphaGo, 

a machine learning algorithm, heightened the U.S.’s urgency to adopt artificial 

intelligence (AI) and autonomy technologies for defense.  However, the DoD’s sluggish 

adoption of these disruptive technologies prompted lawmakers to increase Congressional 

pressure and plow additional funding into research and development.  But funding and 

policy alone will not solve the DoD’s AI adoption problem.  Instead, the DoD must 

accelerate efforts to encourage widespread workforce literacy regarding AI and 

autonomy, challenge legacy acquisition practices ill-suited to support software 

development, and pursue safety policies emphasizing a systems-based approach to 

accident prevention and hazard mitigation.   
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Chapter 1: Introduction 

At the start of the 21st century, the United States continued to enjoy overwhelming 

conventional military supremacy, first demonstrated in the 1991 Gulf War and again 

during Operation Iraqi Freedom in 2003.  Since the September 11, 2001 terrorist attacks 

and for most of the 21st century, the United States’ national security strategy focused 

almost exclusively on defeating transnational terrorism and winning the wars in Iraq and 

Afghanistan.  But as the U.S. remained focused on its long wars in the Middle East, 

China’s military modernization began to chip away at U.S. military advantages by 

fielding anti-access and area-denial weapons systems capable of denying U.S. operational 

reach.1  Similarly, Russia began revitalizing its armed forces and renewing its methods 

and tactics for competing below the threshold of armed conflict.2  In response, then 

Secretary of Defense Chuck Hagel unveiled the Third Offset Strategy in 2014, a 

framework emphasizing affordable, distributed, and resilient approaches derived from 

commercial sources that leverage autonomy and artificial intelligence (AI) to deliver 

decisive effects to offset U.S. adversaries’ advantages.3   

Over the last decade, artificial intelligence research and development directed 

toward national security focused on small projects and investments intended to seed 

future defense innovations by adapting commercial approaches to spur advancement in 

 
1 U.S. Department of Defense, National Defense Strategy (Washington DC: Government Printing Office, 
June 2008), 3, https://archive.defense.gov/pubs/2008NationalDefenseStrategy.pdf (accessed February 2, 
2020). 
2 U.S. Department of Defense, National Defense Strategy, 4, 10. 
3 U.S. Department of Defense, Secretary of Defense Speech: Reagan National Defense Forum Keynote 
(Washington DC: Government Printing Office, 15 November 2014), 
https://www.defense.gov/Newsroom/Speeches/Speech/Article/606635/ (accessed February 2, 2020). 
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military-specific domains.4  Autonomy and AI portfolios featured prominently in the 

newly formed Defense Innovation Unit, an organization charged with fostering new DoD 

partnerships with Silicon Valley to inject cutting-edge information technology into the 

DoD’s shrinking technology base.  Following China’s 2017 declaration to lead global AI 

development by 2030, U.S. government pressure to accelerate AI research intensified.5  

The National Defense Authorization Act (NDAA) of 2019 directed specific AI research 

and reporting for national security applications.6  President Trump followed by signing 

Executive Order 13859 that directed government support and coordination for the 

American AI Initiative, a whole of government approach to promote and protect 

academic and commercial investment in mathematics, science, and engineering 

disciplines that enable AI advancement.7  Despite extraordinary progress in commercial 

AI products, the flood of ambitious policy initiatives seeking to rapidly apply AI to 

national security solutions risks another wave of hype, inflated expectations, and the 

renewed potential for disappointment.8   

 
4 Danielle C. Tarraf et al., The Department of Defense Posture for Artificial Intelligence (Santa Monica: 
RAND Corporation, 2019), 106, 129; Interview with a Defense Innovation Unit employee, December 28, 
2019. 
5 Tate Nurkin and Stephen Rodriguez, A Candle in the Dark: U.S. National Security Strategy for Artificial 
Intelligence (Washington DC: Atlantic Council, 10 December 2019) 6; Kelley M. Sayler, Artificial 
Intelligence and National Security, CRS Report No. R45178 Version 7 (Washington DC: Congressional 
Research Service, 2019), ii, 5-8. 
6 John S. McCain National Defense Authorization Act for Fiscal Year 2019, Public Law 115-232, 115th 
Congress, 2nd Session (August 13, 2018), § 238, 61-64, 
https://www.congress.gov/115/plaws/publ232/PLAW-115publ232.pdf (accessed January 23, 2020). 
7 Executive Order 13859, “Maintaining American Leadership in Artificial Intelligence,” Code of Federal 
Regulations, title 3 (February 11, 2019), 1-6, https://www.govinfo.gov/content/pkg/FR-2019-02-
14/pdf/2019-02544.pdf (accessed February 1, 2020). 
8 Danielle C. Tarraf et al., The Department of Defense Posture for Artificial Intelligence, 22, 32, 127, 130; 
Stoney Trent and Scott Lathrop, “A Primer on Artificial Intelligence for Military Leaders,” Small Wars 
Journal, https://smallwarsjournal.com/jrnl/art/primer-artificial-intelligence-military-leaders (accessed 
February 25, 2020). 
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Some characterize the intensity of government-directed AI research and 

development as a new arms race between the U.S. and China.9  Despite the increased 

interest, however, U.S. adoption of AI-enabled technology currently lags expectations.  

The RAND Corporation published a study in November 2019, sponsored by the Joint 

Artificial Intelligence Center (JAIC) as directed by the 2019 NDAA, assessing the DoD’s 

posture and progress toward AI implementation.10  The RAND study highlighted several 

systemic challenges and barriers slowing DoD advancement and assessed the DoD as 

largely unprepared and poorly postured to take advantage of the commercial advances in 

AI and autonomy.11  Google’s former CEO and chairman of the National Security 

Commission on AI, Eric Schmidt, commented that the DoD “does not have an innovation 

problem; it has an innovation adoption problem.”12   

Part of the adoption problem stems from a lack of AI literacy across a broad 

cross-section of the DoD.  Outside of science and engineering career fields dedicated to 

DoD’s AI and autonomy research, the Department lacks proficiency in depth with AI 

concepts, which often translates into cynical skepticism that undercuts trust in 

 
9 Franz-Stefan Gady, “Elsa B. Kania on Artificial Intelligence and Great Power Competition: On AI’s 
Potential, Military Uses, and the Fallacy of an AI Arms Race,” The Diplomat, December 31, 2019, 
https://thediplomat.com/2020/01/elsa-b-kania-on-artificial-intelligence-and-great-power-competition/ 
(accessed January 1, 2020); Heather M. Roff, “The Frame Problem: The AI ‘arms race’ Isn’t One,” Bulletin 
of the Atomic Scientists 75, no. 3 (2019): 95-98; Paul Scharre, “Killer Apps: The Real Dangers of an AI 
Arms Race,” Foreign Affairs 98, no. 3 (May/June 2019): 135-138.  
10 Danielle C. Tarraf et al., The Department of Defense Posture for Artificial Intelligence, xi-xiii, 2, 7, 9. 
11 Ibid, xii-xiii. 
12 Michael C. Horowitz and Lauren Kahn, “The AI Literacy Gap Hobbling American Officialdom,” War on 
the Rocks, January 14, 2020, https://warontherocks.com/2020/01/the-ai-literacy-gap-hobbling-american-
officialdom/ (accessed January 22, 2020); House Armed Services Committee, “Statement of Dr. Eric 
Schmidt,” Promoting DoD’s Culture of Innovation, April 17, 2018, 
https://docs.house.gov/meetings/AS/AS00/20180417/108132/HHRG-115-AS00-Wstate-SchmidtE-
20180417.pdf (accessed May 2, 2020). 
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autonomous systems.13  The currently widening gap between oversimplified popular 

articles and technical journals detailing an increasingly sophisticated technology 

exacerbates intellectual inaccessibility and presents obstacles to adoption.  Agreeing on a 

widely accepted definition for AI remains a principal barrier to widespread literacy.14  

The lack of general knowledge about AI constrains the DoD’s ability to meaningfully  

explain its future concepts for employing AI and autonomous systems, a practice that 

could help dispel myths while demonstrating realistic capabilities and limitations of these 

emerging technologies.   

AI also aggravates existing shortcomings and introduces new complications to 

legacy DoD acquisition policies, processes, and procedures.  Transforming AI concepts 

from theory into practical tools requires effective software development, a process 

declared broken by the Defense Innovation Board’s 2019 Software Acquisition and 

Practices study.15  Much of the existing Defense Acquisition System emphasizes a linear, 

waterfall acquisition approach to create a thorough set of weapon system requirements to 

mature technologies, reduce design risk, and improve production and deployment 

affordability.16  While well proven systems engineering principles, these processes 

 
13 Danielle C. Tarraf et al., The Department of Defense Posture for Artificial Intelligence, 52-54; National 
Science and Technology Council, Select Committee on Artificial Intelligence, The National Artificial 
Intelligence Research and Development Strategic Plan: 2019 Update, (Washington DC: Government 
Printing Office, June 2019), 23-28, https://www.nitrd.gov/pubs/National-AI-RD-Strategy-2019.pdf 
(accessed February 5, 2020); National Security Commission on Artificial Intelligence, Interim Report 
(Washington DC: Government Printing Office, November 2019), 22, https://www.nscai.gov/reports 
(accessed February 7, 2020). 
14 Danielle C. Tarraf et al., The Department of Defense Posture for Artificial Intelligence, 21-22, 147-153. 
15 U.S. Department of Defense, Defense Innovation Board, Software is Never Done: Refactoring the 
Acquisition Code for Competitive Advantage (Washington DC: Government Printing Office, May 3, 2019), 
i, https://media.defense.gov/2019/Apr/30/2002124828/-1/-
1/0/SOFTWAREISNEVERDONE_REFACTORINGTHEACQUISITIONCODEFORCOMPETITIVEAD
VANTAGE_FINAL.SWAP.REPORT.PDF (accessed March 26, 2020). 
16 U.S. Joint Chiefs of Staff, Charter of the Joint Requirements Oversights Council (JROC) and 
Implementation of the Joint Capabilities Integration and Development System (JCIDS), CJCSI 5123.01H 
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remain geared toward minimizing development and procurement risks for hardware-

intensive systems characterized by large capital investments.17  Even absent AI 

complications, the iterative nature of software development conforms poorly to the 

DoD’s many linear processes.18   

As the pace of AI research continues to accelerate, bringing increasingly capable 

AI into daily usage, the imperative for establishing norms and principles that guide the 

safe application of AI and autonomy increases.19  Companies seeking a competitive 

advantage may rush emerging technologies into the marketplace without adequate 

protections for consumer safety.20  Similarly, states fearing a strategic disadvantage and 

tempted by the allure of game-changing technologies might develop and field immature 

weapons systems without sufficient safety controls, endangering both service members 

and the public.21  With AI already crowned as the next revolution of military affairs, AI 

safety standards remain controversial and nascent.22  Furthermore, the growing specter of 

an AI arms race between the U.S. and China exacerbates pressure to take shortcuts with 

lax safety protocols.   
 

(Washington DC: Joint Chiefs of Staff, August 31, 2018), D-6, D-14, 
https://www.jcs.mil/Portals/36/Documents/Library/Instructions/CJCSI%205123.01H.pdf?ver=2018-10-26-
163922-137 (accessed March 1, 2020).  
17 Susanna V. Blume and Molly Parrish, Make Good Choices, DoD: Optimizing Core Decisionmaking 
Processes for Great-Power Competition (Washington DC: Center for a New American Security, November 
2019), 5. 
18 Defense Innovation Board, Software is Never Done: Refactoring the Acquisition Code for Competitive 
Advantage, viii, xi, 11, 14; National Security Commission on Artificial Intelligence, Interim Report, 30-34. 
19 Paul Scharre, “Killer Apps: The Real Dangers of an AI Arms Race,” 143-144. 
20 NOVA, “Look Who’s Driving,” season 46, episode 19 (originally aired October 23, 2019). 
21 Paul Scharre, “Killer Apps: The Real Dangers of an AI Arms Race,” 140-144; Susanna V. Blume and 
Molly Parrish, Make Good Choices, DoD: Optimizing Core Decisionmaking Processes for Great-Power 
Competition, 17. 
22 Christian Brose, “The New Revolution in Military Affairs: War’s Sci-Fi Future,” Foreign Affairs 98, no. 
3 (May/June 2019): 122-124; U.S. Department of Defense, Defense Innovation Board, AI Principles: 
Recommendation on the Ethical Use of Artificial Intelligence by the Department of Defense (Washington 
DC: Government Printing Office, October 31, 2019), 2-4, 
https://media.defense.gov/2019/Oct/31/2002204458/-1/-
1/0/DIB_AI_PRINCIPLES_PRIMARY_DOCUMENT.PDF (accessed March 13, 2020). 
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To combat these problems and accelerate AI adoption, the DoD must improve 

workforce literacy with AI and autonomy technologies to promote buy-in, widen 

accessibility to concept and tactics development, and democratize vulnerability 

evaluation.  The DoD must also continue to challenge legacy acquisition methodologies 

and mindsets by embracing recent reforms, empowering program managers, and 

creatively tailoring acquisition strategies within the bounds of existing statues and 

regulations.  And finally, the DoD should continue to lead and expand initiatives for the 

safe application of autonomous and AI systems.    
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Chapter 2: Why AI?  

Strategy and Policy 

Attempting to arrest the DoD’s technological decay and stagnant investments, 

then Secretary of Defense Chuck Hagel announced rebalanced priorities for the joint 

force in the 2014 Quadrennial Defense Review aimed at bolstering the U.S.’s ability to 

compete in Asia as China’s military modernization accelerated and U.S. military 

advantages eroded.1  By November of 2014, the DoD announced the Defense Innovation 

Initiative, a bold department-wide transformation intended to rethink business practices 

and operations in order to offset adversary advantages and restore sustainable, U.S. 

military dominance.2  The initiative, led by then Deputy Secretary of Defense Robert 

Work, formed the basis of the Third Offset Strategy, a plan to leverage commercial 

innovation to develop a suite of new operational concepts that revitalize U.S. 

conventional deterrence. 3   Under the specter of budget sequestration, the strategy 

recognized that the U.S. could not affordably match adversary competition by pursuing a 

conventional military build-up of traditional weapons systems that require open-ended 

budgets and decades to field. 

Instead, the strategy sought to offset U.S. adversaries’ growing space and 

cyberspace capabilities and fielded anti-access weapons by initiating an aggressive, 

technology innovation campaign to quickly fund and transition promising technologies 

 
1 U.S. Department of Defense, Quadrennial Defense Review Strategy (Washington DC: Government 
Printing Office, 2014), 17, 21, 27, 
https://archive.defense.gov/pubs/2014_Quadrennial_Defense_Review.pdf (accessed February 2, 2020). 
2 U.S. Department of Defense, Secretary of Defense Speech: Reagan National Defense Forum Keynote. 
3 “Innovation Strategies,” National Defense Industrial Association, https://www.ndia.org/policy/defense-
innovation/innovation-strategies (accessed January 7, 2020); U.S. Department of Defense, Secretary of 
Defense Speech: Reagan National Defense Forum Keynote. 
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while abandoning languishing concepts and programs.4  Emphasizing affordable, 

distributed, and resilient approaches to new warfighting concepts, Deputy Secretary 

Work focused the Third Offset on autonomous systems, collaborative human-machine 

teaming, machine learning, network-enabled weapons, and high-speed projectiles.5  The 

newly formed, Defense Innovation Unit Experiment (DIUx), teamed with industry in 

Silicon Valley, Austin, and Boston to begin tackling computer vision and machine 

learning projects to support autonomous systems and artificial intelligence (AI) 

portfolios.6   

In May 2016, the Obama administration announced a series of U.S. AI initiatives 

to foster public dialogue on issues of AI and promote research that fosters government 

adoption of AI technologies to improve the lives of its citizens.7  In October 2016, the 

National Science and Technology Council (NSTC) released the National AI Strategy, a 

whole-of-government approach spanning six lines of effort that included security, ethics, 

safety, education, and economic issues.8  Perhaps in response to the U.S. government’s 

increasing interest, China declared its intention to capture global leadership of AI 

development by 2030 in State Council Document No. 35, published in 2017.9  While 

 
4 Kathleen H. Hicks et al., Assessing the Third Offset Strategy (Washington DC: Center for Strategic & 
International Studies, 2017), 3. 
5 Kathleen H. Hicks et al., Assessing the Third Offset Strategy, 3. 
6 “Innovation Strategies,” National Defense Industrial Association, https://www.ndia.org/policy/defense-
innovation/innovation-strategies (accessed January 7, 2020). 
7 National Science and Technology Council, Networking and Information Technology Research and 
Development Subcommittee, The Artificial Intelligence Research and Development Plan (Washington DC: 
Government Printing Office, October 2016), v, 
https://www.nitrd.gov/pubs/national_ai_rd_strategic_plan.pdf (accessed February 5, 2020). 
8 National Science and Technology Council, Networking and Information Technology Research and 
Development Subcommittee, The Artificial Intelligence Research and Development Plan, 6-22. 
9 Chinese State Council, “Notice of the State Council Issuing the New Generation of Artificial Intelligence 
Development Plan,” trans. Flora Sapio, Weiming Chen, and Adrian Lo, (Washington DC: Foundation for 
Law & International Affairs, 2017), 6, https://flia.org/wp-content/uploads/2017/07/A-New-Generation-of-
Artificial-Intelligence-Development-Plan-1.pdf (accessed February 3, 2020). 
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China’s AI development plan reflects many areas of common interest between U.S. and 

Chinese entities, some of China’s proposed applications imply improved government 

surveillance in exchange for convenience.10  The plan proposes several initiatives aimed 

at improving AI-enabled judicial services, government administration, and social 

governance including pilot projects in evidence collection and case analysis.11   

With the transition from the Obama Administration to the Trump Administration, 

the DoD abandoned the Third Offset Strategy narrative, but retained and accelerated the 

portfolio of technology research focused on autonomy and AI intended to mitigate 

adversary advantages that contest U.S. capabilities across all domains—air, land, sea, 

space, and cyberspace—by targeting command and control networks, restricting 

operational reach with inexpensive missile systems, and intensifying competition below 

the threshold of armed conflict.12  In concert with the 2018 NDS, the 2019 NDAA 

directed the DoD to develop an AI strategy, established the Joint AI Center in June 2018, 

and formed the National Security Commission for AI to explore whole-of-government 

approaches to integrate AI into national security.13  In his 2018 State of the Union 

address, President Trump emphasized the importance of AI research and development 

 
10 Chinese State Council, “Notice of the State Council Issuing the New Generation of Artificial Intelligence 
Development Plan,” 18-20, 28. 
11 Ibid, 18-20, 28. 
12 U.S. Department of Defense, National Defense Strategy, (Washington DC: Government Printing Office, 
2018), 1-3, https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-Strategy-
Summary.pdf (accessed December 23, 2020).  
13 Terri Moon Cronk, “DoD Unveils Its Artificial Intelligence Strategy,” U.S. Department of Defense, 
https://www.defense.gov/Explore/News/Article/Article/1755942/dod-unveils-its-artificial-intelligence-
strategy/ (accessed February 5, 2020); National Security Commission on Artificial Intelligence, Interim 
Report (Washington DC: Government Printing Office, November 2019), 4; John S. McCain National 
Defense Authorization Act for Fiscal Year 2019. 
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and subsequently signed Executive Order 13859 ordering support for the American 

Artificial Intelligence Initiative, a refresh of the 2016 National AI R&D Strategic Plan.14   

Disappointment and Achievement 

AI research, as it is known today, began with the first academic conference on the 

topic at Dartmouth College in 1956.15  AI research progressed steadily across a wide 

range of approaches and methods until expectations for the technology exceeded 

performance in the late 1980s that contributed to hype, disappointment, and a collapse in 

funding.16  At the time, AI researchers developed so-called expert machines that encoded 

large knowledge bases using elaborate rules-engines to search for solutions.  The 

approach, which relied on software engineers to encode knowledge from domain experts, 

proved cumbersome and costly to update with new knowledge and logic.  The subsequent 

AI winter, a period when AI research and interest declined, began to thaw around 2010 as 

artificial neural networks returned to the fore with successes in image recognition 

problems.17  By the time of Work’s Third Offset strategy, AI interest and funding 

continued to grow, but awareness remained generally contained to the science and 

technology communities. 

 
14 Executive Order 13859, “Maintaining American Leadership in Artificial Intelligence;” National Science 
and Technology Council, Networking and Information Technology Research and Development 
Subcommittee, The Artificial Intelligence Research and Development Plan, 2. 
15 “J. McCarthy et al., “A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence,” 
(August 31, 1955), http://jmc.stanford.edu/articles/dartmouth/dartmouth.pdf (accessed May 4, 2020). 
16 Allen Newell, Intellectual Issues in the History of Artificial Intelligence (Pittsburgh: Carnegie-Mellon 
University, 1982), 5, 11-15, https://apps.dtic.mil/dtic/tr/fulltext/u2/a125318.pdf (accessed May 4, 2020); 
Chris Smith et al., “The History of Artificial Intelligence” (University of Washington History of 
Computing CSEP590A, December 2006), 1-4, 
https://courses.cs.washington.edu/courses/csep590/06au/projects/history-ai.pdf (accessed May 4, 2020). 
17 National Security Commission on Artificial Intelligence, Interim Report, 9; Danielle C. Tarraf et al., The 
Department of Defense Posture for Artificial Intelligence (Santa Monica: RAND Corporation, 2019), 31. 
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Then, in March of 2016, DeepMind’s AlphaGo, a deep learning algorithm, bested 

Go world champion, Nine-Dan Grandmaster Lee Sedol, in four out of five games in a 

globally broadcast tournament.18  While perhaps less startling to scientists and 

researchers in the field of deep learning, the journals Nature and Science both heralded 

the win as a definitive breakthrough for AI, defying expectations that machine dominance 

of Go remained at least a decade away.19  For policy makers outside of the machine 

learning field, the win served as a Sputnik moment.20  Played for thousands of years in 

Asia, Go, known as Wei-Chi in China, forms a core aspect of human identity.21  Unlike 

Chess, computational brute force approaches alone cannot defeat a professional human 

Wei-Chi player since the number of possible moves, ~1056, exceeds the capabilities of 

today’s fastest supercomputers.22  Unsurprisingly, AlphaGo’s mastery of Wei-Chi, 

previously considered a uniquely human endeavor introduced and energized new 

companies, universities, and government policy makers to the swiftly growing field of 

AI.  Three years after AlphaGo’s first victory, investment and expectations continued to 

climb, even as the first signs of academic caution began to appear.  In his year-end 
 

18 AlphaGo, directed by Greg Kohs, Moxie Pictures & Reel As Dirt, 2017, 1:31, 
https://www.youtube.com/watch?v=WXuK6gekU1Y (accessed January 26, 2020) 
19 David Silver et al., “Mastering the Game of Go with Deep Neural Networks and Tree Search,” Nature 
529 (January 28, 2016): 484-489; Science News Staff, “From AI to Protein Folding: Our Breakthrough 
Runners-Up,” Science, December 22, 2016, https://www.sciencemag.org/news/2016/12/ai-protein-folding-
our-breakthrough-runners (accessed February 5, 2020). 
20 Kelley M. Sayler, Artificial Intelligence and National Security, CRS Report No. R45178 Version 7 
(Washington DC: Congressional Research Service, 2019), 5; Georgia Perry, “The AI Cold War That 
Threatens Us All,” Wired, October 23, 2018, https://www.wired.com/story/ai-cold-war-china-could-doom-
us-all/ (accessed February 5, 2020); Henry A. Kissinger, “How the Enlightenment Ends,” The Atlantic, 
June 2018, https://www.theatlantic.com/magazine/archive/2018/06/henry-kissinger-ai-could-mean-the-end-
of-human-history/559124/ (accessed February 5, 2020); Graham Allison, “Is China Beating America to AI 
Supremacy?” The National Interest, December 22, 2019, https://nationalinterest.org/feature/china-beating-
america-ai-supremacy-106861 (accessed December 27, 2020). 
21 AlphaGo, directed by Greg Kohs, Moxie Pictures & Reel As Dirt, 2017, 1:31, 
https://www.youtube.com/watch?v=WXuK6gekU1Y (accessed January 26, 2020) 
22 David Silver et al., “Mastering the Game of Go with Deep Neural Networks and Tree Search,” Nature 
529 (January 28, 2016): 484; Paul Scharre, Army of None: Autonomous Weapons and the Future of War 
(New York: W.W. Norton & Company, Inc., 2018), 125.  
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summary lecture, Lex Fridman, an MIT autonomous vehicle researcher, declared 2019 

the year that AI criticism returned to the mainstream grabbing headlines reporting AI 

failures including two fatal Tesla autopilot accidents, Amazon’s automated resume 

screening biases, and Microsoft’s racist chatbots.23   

Notwithstanding the public failures, national security policy makers continue to 

accelerate funding for AI research in recognition of the fact that AI offers substantial 

opportunities for both coalition and adversary militaries alike.  Future operating concepts 

designed to restore U.S. military advantages call for distributed weapons systems that 

leverage high levels of autonomy and machine advantages in speed and persistence to 

enable fast-paced, long-range lethal fires in heavily contested environments.24  But 

imagining highly autonomous, lethal fires capable of operating in high-risk, anti-access 

environments is the most obvious of AI applications.   

AI advancements are also poised to reshape John Boyd’s Observe-Orient-Decide-

Act (OODA) Loop.  Reimagining the OODA Loop with AI, a common and appropriate 

avenue of contemplation, is often fundamentally misunderstood.  At first glance, most 

 
23 Lex Fridman, “Deep Learning State of the Art (2020),” MIT Deep Learning Series, January 10, 2020, 
https://www.youtube.com/watch?v=0VH1Lim8gL8 (accessed February 4, 2020); Jeffrey Dastin, “Amazon 
Scraps Secret AI Recruiting Tool That Showed Bias Against Women,” Reuters, October 9, 2018, 
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-
recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G (accessed May 4, 2020); Oscar 
Schwartz, “In 2016, Microsoft’s Racist Revealed the Dangers of Online Conversation,” IEEE Spectrum, 
November 25, 2019, https://spectrum.ieee.org/tech-talk/artificial-intelligence/machine-learning/in-2016-
microsofts-racist-chatbot-revealed-the-dangers-of-online-conversation (accessed May 4, 2020); NTSB, 
Collision Between a Sport Utility Vehicle Operating With Partial Driving Automation and a Crash 
Attenuator, Mountain View, California, March 23, 2018, NTSB/HAR-20/01 (Washington DC: Government 
Printing Office, February 25, 2020), 
https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR2001.pdf (accessed May 4, 2020); 
NTSB, Collision Between a Car Operating With Automated Vehicle Control Systems and a Tractor-
Semitrailer Truck Near Williston, Florida, May 7, 2016, NTSB/HAR-17/02 (Washington DC: Government 
Printing Office, September 12, 2017), 
https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR1702.pdf (accessed May 4, 2020); 
24 U.S. Joint Chiefs of Staff, Capstone Concept for Joint Operations Joint Force 2030 (Unclassified) 
(Washington DC: Joint Chiefs of Staff, June 18, 2019), 6-9. 
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believe that victory comes to those military commanders able to run through the OODA 

Loop faster than their opponent.25 Those people incorrectly interpret the OODA Loop.  

The power of the OODA Loop is only unlocked for those who appreciate that the 

operational art of paralyzing and dislocating the enemy occurs not by simply making 

decisions faster than the enemy, but by anticipating the enemy’s actions, distorting the 

enemy’s reality, and causing the collapse of the enemy’s OODA Loop through friendly 

decisive action.26  When appropriately and safely applied, AI offers commanders a new 

means of improving the OODA Loop.  Given those consequences, militaries that fail to 

embrace AI cannot risk conflict with militaries transformed by AI.27  AI offers the 

potential to disrupt the enemy’s decision-making process and achieve the pinnacle of 

warfighting: winning without fighting.28   

 

 
25 Frans Osinga, Science, Strategy, and War: The Strategic Theory of John Boyd (New York: Routledge, 
2007), 272-278. 
 
26 Frans Osinga, Science, Strategy, and War: The Strategic Theory of John Boyd, 272-278. 
27 Dr. Stephen K. Rogers, interview by author, January 23, 2020. 
28 Samuel B. Griffith, Sun Tzu: The Art of War (London: Oxford University Press, 1963), 78. 
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Chapter 3: Developing the Foundation of AI Literacy 

Why Literacy? 

The DoD remains poorly postured to adopt artificial intelligence (AI) 

technologies and benefit from AI’s enabling characteristics in part due to a lack of 

widespread AI literacy across its workforce.  Presently, islands filled with knowledgeable 

AI experts exist, though scattered across the DoD in places like DARPA, DIU, the JAIC, 

and the Services’ research labs.1  Aside from the proliferation of smart products enabled 

by machine learning algorithms, most of the DoD’s workforce remains AI illiterate and 

unable to access these growing islands of AI expertise.  Regardless, much of the DoD 

workforce and the US public remain uninformed about the highly technical scientific 

research reports or misinformed by the speculative predictions alerting society to the 

dangers of super-intelligent, lethal robots.2   

When encountering disruptive technologies, workforce literacy promotes buy-in, 

dispels myths, and facilitates organizational adoption.3  Increasing literacy guards against 

hype by enabling users and managers to decide for themselves whether a particular AI 

solution represents a new opportunity capable of offering a decisive combat advantage or 

a new vulnerability for the joint force.  By democratizing access to AI concepts and 

 
1 National Security Commission on Artificial Intelligence, Interim Report (Washington DC: Government 
Printing Office, November 2019), 22, 31, https://www.nscai.gov/reports (accessed February 7, 2020). 
2 U.S. Air Force, Office of the Chief Scientist, Autonomous Horizons: The Way Forward, by Dr. Greg L. 
Zacharias (Maxwell AFB: Air University Press, March 2019), 82; Sydney J. Freedberg, Jr., “Should We 
Ban ‘Killer Robots’? Can We?” Breaking Defense, March 11, 2019, 
https://breakingdefense.com/2019/03/should-we-ban-killer-robots-can-we/ (accessed February 5, 2020).  
3 Tatiana Sanches et al., “Education and Psychology Trends: Impact on Information Literacy,” In 
Information Literacy: Progress, Trends and Challenges, ed. Luis Freeman (New York: Nova Science 
Publishers, 2018), 1-16; Emmett Lombard and Vishal Arghode, “Information Literacy and Organizational 
Theory,” In Information Literacy: Progress, Trends and Challenges, ed. Luis Freeman (New York: Nova 
Science Publishers, 2018), 114-120; “What Exactly Is Information Literacy And What Role Does It Play In 
Education,” USC Marshall School of Business, https://librarysciencedegree.usc.edu/blog/what-exactly-is-
information-literacy-and-what-role-does-it-play-in-education/ (accessed May 4, 2020). 
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tailoring workforce education, the DoD can bridge the widening gulf between expert AI 

islands and the general workforce.4   

Founding lead of Google Brain, Andrew Ng tells companies interested in 

adopting AI to emphasize widespread workforce education.5  While the need for 

workforce development features prominently in the DoD’s 2018 AI strategy, the current 

focus appears centered on attracting and retaining expert talent onto the DoD’s AI expert 

islands rather than improving widespread literacy.6  In order to transform the DoD from a 

military with AI capabilities into an organization transformed by AI, the DoD must invest 

in workforce literacy.7  Failing to do so risks the growth of calcified skepticism, blind 

trust, or magical thinking that contributes to AI hype and incoherent investments capable 

of derailing DoD’s AI adoption.  The foundation for building workforce literacy begins 

with developing a common lexicon and plain language explanation. Yet, some of the 

challenges attributable to the development of a common lexicon stem from differences 

within the AI fields.8 

Lexicon 

Building a bridge for the Joint Force to access the AI expert islands begins with a 

common lexicon that avoids Service and career field jargon and biases.  One challenge to 
 

4 Pedro Domingos, The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake 
Our World (New York: Basic Books, 2015), xvi. 
5 Andrew Ng, “AI Transformation Playbook: How to Lead Your Company into the AI Era,” Landing AI, 
https://d6hi0znd7umn4.cloudfront.net/content/uploads/2019/11/LandingAI_Transformation_Playbook_11-
19.pdf (accessed January 30, 2020), 3.  
6 U.S. Department of Defense, Summary of the 2018 Department of Defense Artificial Intelligence Strategy 
(Washington DC: Government Printing Office, 2018), 12-14, 
https://media.defense.gov/2019/Feb/12/2002088963/-1/-1/1/SUMMARY-OF-DOD-AI-STRATEGY.PDF 
(accessed November 7, 2019). 
7 Andrew Ng, “AI Transformation Playbook: How to Lead Your Company into the AI Era,” 5; National 
Security Commission on Artificial Intelligence, Interim Report (Washington DC: Government Printing 
Office, November 2019), 36-39, https://www.nscai.gov/reports (accessed February 7, 2020). 
8 Pedro Domingos, The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake 
Our World, 46. 
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developing literacy stems from the lack of consensus regarding the definition of artificial 

intelligence; many researchers define AI in terms of the type of algorithm.9  Outside 

technical journals, AI definitions frequently compare machines’ abilities to human 

intelligence to form the basis for defining AI.  A side effect of this approach contributes 

to AI hype and misunderstanding as machine capabilities relative to human intelligence 

constantly improves.10  The DoD’s AI strategy, the National Security Commission on AI’s 

Interim Report, and the National Artificial Intelligence R&D Strategic Plan all define AI 

as some variation of the “ability of machines to solve problems and perform tasks that 

would otherwise require human intelligence.”11  RAND found little interest among 

government, industry, and academia to spend time developing a formal definition of AI 

despite some interviewees noting that a standardized vernacular within an organization 

improved team communication.12  Despite a lack of consensus across researchers, 

Congress directed the DoD to develop a definition for use within the department, and 

seeded the discussion with a very broad definition in the FY2019 NDAA by defining 

artificial intelligence as including the following:  

(1) Any artificial system that performs tasks under varying and unpredictable 
circumstances without significant human oversight, or that can learn from 
experience and improve performance when exposed to data sets.  

(2) An artificial system developed in computer software, physical hardware, or 
other context that solves tasks requiring human-like perception, cognition, 
planning, learning, communication, or physical action.  

 
9 Danielle C. Tarraf et al., The Department of Defense Posture for Artificial Intelligence (Santa Monica: 
RAND Corporation, 2019), 22, 149-152.  
10 Danielle C. Tarraf et al., The Department of Defense Posture for Artificial Intelligence, 22. 
11 U.S. Department of Defense, Summary of the 2018 Department of Defense Artificial Intelligence 
Strategy, 5; National Security Commission on Artificial Intelligence, Interim Report, 7; National Science 
and Technology Council, Select Committee on Artificial Intelligence, The National Artificial Intelligence 
Research and Development Strategic Plan: 2019 Update, (Washington DC: Government Printing Office, 
June 2019), iv, https://www.nitrd.gov/pubs/National-AI-RD-Strategy-2019.pdf (accessed February 5, 
2020). 
12 Danielle C. Tarraf et al., The Department of Defense Posture for Artificial Intelligence, 21-22. 
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(3) An artificial system designed to think or act like a human, including cognitive 
architectures and neural networks.  

(4) A set of techniques, including machine learning, designed to approximate a 
human cognitive task.  

(5) An artificial system designed to act rationally, including an intelligent 
software agent or embodied robot, that achieves goals using perception, planning, 
reasoning, learning, communicating, decision making, and acting.13 

One of the most succinct definitions for AI, provided by the Air Force Chief Scientist in 

Autonomous Horizons, approaches the definition in the opposite direction by defining AI 

as “any machine that possesses intelligence, and intelligence is the ability to gather 

observations, create knowledge, and appropriately apply that knowledge to accomplish 

tasks.”14  Part of the confusion over lexicon stems from the explosion of machine 

learning, a specialized subfield of AI, currently dominating commercial information 

technology research and development.15  Recognizing that a straightforward lexicon 

provides a unifying and accessible foundation for literacy, the DoD should prioritize 

simplicity and stability as it develops its AI vernacular.   

Autonomy and AI 

Explanations of artificial intelligence frequently overlook autonomy and 

automation, specifically automating increasingly complex tasks, as a principle 

motivation.16   Similar to the definition of AI, definitions of autonomy and autonomous 

systems vary between communities carrying different nuances and connotations 

depending on the context.  From the 2016 Defense Science Board study, “autonomy 
 

13 John S. McCain National Defense Authorization Act for Fiscal Year 2019, Public Law 115-232, 115th 
Congress, 2nd Session (August 13, 2018), § 238, 64, https://www.congress.gov/115/plaws/publ232/PLAW-
115publ232.pdf (accessed January 23, 2020). 
14 U.S. Air Force, Office of the Chief Scientist, Autonomous Horizons: The Way Forward, 270. 
15 Pedro Domingos, The Master Algorithm: How the Quest for the Ultimate Learning Machine Will 
Remake Our World, 8. 
16 U.S. Department of Defense, Defense Science Board, Summer Study on Autonomy (Washington DC: 
Government Printing Office, June 2016), iii, 1, 4-6,  
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results from delegation of a decision to an authorized entity to take action within specific 

boundaries.”17   The study makes a point to differentiate autonomous systems capable of 

developing and selecting courses of actions based on knowledge from automated systems 

governed by prescribed rules that inhibit deviation.18   

Paul Scharre, a senior fellow at the Center for New American Security and former 

Special Assistant to the Under Secretary of Defense for Policy who led the DoD's 

autonomy working group, offers an introductory model of autonomous concepts 

organized along three, orthogonal dimensions: task complexity, human supervision, and 

algorithm sophistication.19  To illustrate task complexity along the first dimension, 

Scharre compares simple tasks such as temperature regulation to extremely complex 

tasks like driverless cars negotiating congested streets.20  Along the second dimension of 

his model, human supervision, Scharre describes a continuum between semi-autonomy, 

supervised autonomy, and full autonomy.21  During semi-autonomous operation, called 

human-in-the-loop, machines automatically accomplish prescribed functions, but then 

stop and wait for additional human input prior to continuing.22  Supervised-autonomy or 

human-on-the-loop operation allows the machine to sense, decide, and act without any 

additional human input.23  When operating with humans-on-the-loop, machines do not 

stop and wait for human permission to continue, instead humans must monitor and 

 
17 U.S. Department of Defense, Defense Science Board, Summer Study on Autonomy, 4. 
18 Ibid, 4. 
19 Paul Scharre, “Between A Roomba and a Terminator: What is Autonomy?” War on the Rocks, February 
18, 2015, https://warontherocks.com/2015/02/between-a-roomba-and-a-terminator-what-is-autonomy/ 
(accessed January 2, 2020). 
20 Paul Scharre, Army of None: Autonomous Weapons and the Future of War (New York: W.W. Norton & 
Company, Inc., 2018), 28. 
21 Paul Scharre, Army of None: Autonomous Weapons and the Future of War, 28-30. 
22 Ibid, 29. 
23 Ibid, 29-30. 
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intervene to change the machine’s behavior.24  For example, airline pilots, monitoring an 

autopilot, but capable of intervention, constitute supervised, human-on-the-loop 

autonomy in Scharre’s model.  Fully autonomous human-outside-the-loop operation 

transfers full control over to the machine in situations where a human is either unable or 

unwilling to intervene.25  According to Scharre, differentiating between levels of machine 

autonomy depends upon context, not on the capability of the underlying automation 

scheme.  Scharre illustrates this point using a Roomba vacuum cleaner.  In Scharre’s 

model, a human sitting on the couch while a Roomba vacuums the floor constitutes 

supervised, human-on-the-loop autonomy.26  If, however, the human leaves the house for 

work while the Roomba continues to vacuum, then the relationship changes to human-

out-of-the-loop autonomy even though nothing about the complexity of the task or the 

intelligence of the robot changed.27   

The final dimension of autonomy in Scharre’s model refers to the complexity of 

the automation scheme. The complexity dimension ranges from simple, threshold-based 

systems on the low end to complex, goal-oriented, self-directed, and adaptive systems on 

the high end.28  According to Scharre, high task complexity does not necessarily dictate 

applying an adaptive and complex AI algorithm using human-outside-the-loop 

automation.  As an example, astronauts landed on the moon, an extremely complex task, 

using only simple, rule-based software programs governing linear feedback control 

systems executing semi- and supervised autonomous operations.   

 
24 Ibid, 29. 
25 Ibid, 30. 
26 Ibid, 30. 
27 Ibid, 30. 
28 Ibid, 31. 
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The human supervision dimension finds significant commonality with the DoD’s 

policy directive governing the development of autonomous weapons systems and the 

Society of Automotive Engineers’ (SAE) model of autonomy.29  The DoD’s policy 

directive matches Scharre’s terminology to differentiate between weapon systems 

covered by the policy and those exempted based on the human-machine relationship.  To 

extend the analogy, the SAE model defines six discrete levels of autonomy to describe 

the division of responsibility for the driving task between the driver and the car.30  

Defining discrete levels of autonomy may serve as a useful policy shorthand, but such 

models do little to advance discussion and development of the key attributes of autonomy 

and assist in the division of cognitive functions between human and machine.31  The 2012 

Defense Science Board proposed replacing the DoD’s autonomy levels with a three-view 

framework to assist developers specifically allocate cognitive functions to human or 

machine, recognizing that allocations may vary by mission phase and provide visibility 

into high-level system trades inherent in the design.32  The Air Force’s recent 

Autonomous Horizons built upon the DSB’s conclusions and developed three key 

attributes for autonomous systems: proficiency, trust, and flexibility.33 Autonomous 

Horizons provides a detailed discussion about the properties of proficiency, the tenets of 

 
29 U.S. Department of Defense, Autonomy in Weapon Systems, DoD Directive 3000.09 (Washington DC: 
Government Printing Office, November 21, 2012 Incorporating Change 1, May 8, 2017), 13-15, 
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodd/300009p.pdf (accessed January 2, 
2020). 
30 “Taxonomy and Definition for Terms Related to Driving Automation Systems for On-Road Motor 
Vehicles,” SAE, https://www.sae.org/standards/content/j3016_201806/ (accessed March 26, 2020). 
31 U.S. Department of Defense, Defense Science Board, The Role of Autonomy in DoD Systems 
(Washington DC: Government Printing Office, July 2012), 3; Paul Scharre, “Between A Roomba and a 
Terminator: What is Autonomy?” 
32 U.S. Department of Defense, Defense Science Board, The Role of Autonomy in DoD Systems, 4. 
33 U.S. Air Force, Office of the Chief Scientist, Autonomous Horizons: The Way Forward, 1-2, 24, 269. 
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trust, and principals of flexibility.34  The study examines autonomous system flexibility in 

terms of task, peer, and cognitive flexibility to both generalize and simplify the Scharre 

model and avoid developing new levels of autonomy.35   

Narrow AI Versus General AI 

To date, Google, Facebook, Apple, Amazon, IBM, and Microsoft, driven by 

market forces, lead commercial AI research and development with approaches exceling at 

product recommendation, targeted advertising, speech recognition, and decision-making 

assistance.36  So-called narrow AI approaches, which encompass all current AI 

technologies, exhibit relatively low task flexibility capable of solving only narrowly 

defined problems and unable to contextualize outputs.37  Unlike narrow AI, definitions 

for artificial general intelligence (AGI), the ability of machines to perform all the same 

intellectual tasks of humans including reasoning, analogic thinking, and metacognition, 

continue to use humans as the benchmark.38  Predicting when AGI may become a reality 

remains a deeply speculative topic.  Regardless of when AGI may be realized, 

incremental advancements in AI will continue to improve the intelligence of machines 

and challenge human concepts on the limitations of machines.  In the case of autonomous 

weapons, Deputy Secretary Work commented that he would be “extremely careful in 

 
34 Ibid, 269. 
35 Ibid, 2. 
36 “Overview of Artificial Intelligence,” CRS In Focus, IF10608, October 27, 2017, 1, 
https://crsreports.congress.gov/product/pdf/IF/IF10608 (accessed February 7, 2020). 
37 National Security Commission on Artificial Intelligence, Interim Report, 7; Kelley M. Sayler, Artificial 
Intelligence and National Security, CRS Report No. R45178 Version 7 (Washington DC: Congressional 
Research Service, 2019), 2, 35; Greg Allen and Taniel Chen, Artificial Intelligence and National Security 
(Cambridge: Belfer Center for Science and International Affairs, 2017), 8; U.S. Air Force, Office of the 
Chief Scientist, Autonomous Horizons: The Way Forward, 139, 155; Paul Scharre, Army of None: 
Autonomous Weapons and the Future of War, 6-7, 231. 
38 National Security Commission on Artificial Intelligence, Interim Report, 7; U.S. Air Force, Office of the 
Chief Scientist, Autonomous Horizons: The Way Forward, 57; Paul Scharre, Army of None: Autonomous 
Weapons and the Future of War, 6-7, 231. 
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trying to put general AI into an autonomous weapon.”39  While not yet capable of 

producing AGI, many of the technologies that will enable increased weapon system 

autonomy to accomplish future DoD mission concepts closely align with the hallmarks of 

AGI, and a system that possesses all three key attributes of proficiency, trust, and flexibly 

might qualify as AGI.  Accordingly, the imperative for improving DoD literacy increases 

to enable an informed Joint Force capable of meaningful contributions to the evolving 

policy framework guiding the safe and effective application of AI and autonomous 

systems.   

Modern AI Family Tree 

 Before the last AI winter in the 1990s, expert systems, also known as rules 

engines, dominated the AI ecosystem.40  These methods required programmers to 

symbolically encode vast quantities of knowledge into large databases and develop 

elaborate rule-based algorithms to search for knowledge, such as TurboTax and spell-

checking software.41  The programmers had to update the knowledge base and rule 

engines to accommodate new and changing environments.42  Research, development, and 

commercial interest tanked as the cost to maintain staffs of domain experts and 

programmers to maintain the rules engine ballooned.43    

In contrast, machine learning, a subfield of AI, focuses on computer software and 

algorithms able to modify their own structure and output behavior based on new data.  In 

the field of machine learning, programmers do not explicitly define output responses that 

 
39 Paul Scharre, Army of None: Autonomous Weapons and the Future of War, 98-99. 
40 U.S. Air Force, Office of the Chief Scientist, Autonomous Horizons: The Way Forward, 130. 
41 Ibid, 73. 
42 Ibid, 72-73. 
43 Ibid, 130. 
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account for all the possible environmental situations.  A rapidly growing discipline, 

machine learning draws heavily upon mathematics, statistics, computer science, and 

engineering to develop algorithms capable of making accurate predictions using 

statistical models trained on large datasets.44  While the differences between machine 

learning and statistics remains an active debate, since both disciplines rely on overlapping 

mathematical underpinnings to interpret and use data, statistics focuses primarily on 

forming hypotheses and proving relationships between parameters for making 

inferences.45  Machine learning, in contrast, focuses primarily on making predictions, 

largely avoiding inference, causality relationships, and model interpretability.46 

Regardless of the technique, all machine learning systems consist of a model 

representation, output evaluation, and an optimization method.47  The representation 

consists of the model’s structure and parameters for encoding knowledge.  The evaluation 

component measures the effectiveness of the model’s output, often quantified in terms of 

an error function.  Finally, the optimization method applies an algorithm to adjust the 

parameters in the model’s representation to minimize or maximize the model’s evaluation 

function based on the model’s goal.  Determining how to adjust the model parameters 

refers generically to the credit assignment problem, an increasingly complicated problem 

for larger models with thousands of parameters in its representation.48     

 
44 Kelley M. Sayler, Artificial Intelligence and National Security, 2.  
45 Danilo Bzdok et al., “Statistics Versus Machine Learning,” Nature Methods 15, no. 4 (April 2018), 233-
234, https://www.nature.com/articles/nmeth.4642.pdf (accessed February 5, 2020). 
46 Danilo Bzdok et al., “Statistics Versus Machine Learning,” Nature Methods. 
47 Ryan Hefron, “RDT&E of Autonomous Systems” (U.S. Air Force Test Pilot School Short Course Charts, 
August 23, 2019); Pedro Domingos, The Master Algorithm: How the Quest for the Ultimate Learning 
Machine Will Remake Our World, 240. 
48 U.S. Air Force, Office of the Chief Scientist, Autonomous Horizons: The Way Forward, 132; Richard S. 
Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction, 2nd ed. (Cambridge: MIT Press, 
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At a high level, machine learning algorithms, grouped by the method of learning, 

typically fall into three categories: supervised, unsupervised, and reinforcement learning.  

For supervised learning, large, labeled datasets in which there exists an observed 

response for every measured prediction provide the developer a truth source for 

constructing the evaluation function to quantify the error or accuracy of the model’s 

prediction.   Developers divide the dataset into a training dataset and test dataset.  During 

training, the optimization algorithm updates the model’s parameters to minimize error 

based on the training data.49  With the model’s parameters frozen after training, the 

developer then checks the model’s accuracy using only the test data.  Supervised learning 

methods are typically applied to classification and regression problems, such as 

identifying objects in an image (classification) or predicting life expectancy based on 

demographic data (regression).50  When labeled data do not exist, the more challenging 

problem of unsupervised learning cannot train a model using a truth source to fit the 

parameters.  Instead, unsupervised learning uses clustering methods to discern patterns in 

the data and group unlabeled data into distinct categories.51  Unsupervised learning is 

often applied to anomaly detection and dimensionality reduction, a method of 

compressing the number of model parameters.52   

 
2018), 17; Pedro Domingos, The Master Algorithm: How the Quest for the Ultimate Learning Machine 
Will Remake Our World, 101. 
49 U.S. Air Force, Office of the Chief Scientist, Autonomous Horizons: The Way Forward, 71-72; Vijay 
Gadepally et al., AI Enabling Technologies: A Survey (Lexington, MA: MIT Lincoln Laboratory, 2019), 
16-17, 20, https://arxiv.org/ftp/arxiv/papers/1905/1905.03592.pdf (accessed March 13, 2020). 
50 Danielle C. Tarraf et al., The Department of Defense Posture for Artificial Intelligence, 31; Gareth James 
et al., An Introduction to Statistical Learning: With Applications in R. (New York: Springer, 2017), 1, 
https://link.springer.com/content/pdf/10.1007%2F978-1-4614-7138-7.pdf (accessed February 12, 2020); 
Vijay Gadepally et al., AI Enabling Technologies: A Survey, 16-17. 
51 Vijay Gadepally et al., AI Enabling Technologies: A Survey, 16-17. 
52 Ryan Hefron, “RDT&E of Autonomous Systems;” Vijay Gadepally et al., AI Enabling Technologies: A 
Survey, 10, 15, 17. 
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The last major category of machine learning, reinforcement learning (RL), differs 

by focusing on goal-oriented approaches to determine the actions of a decision-making 

agent interacting with its environment.  The main components of a reinforcement 

learning problem are the policy, reward function, and value function.53  The policy maps 

the agent’s immediate behavior by translating the agent’s perception of the environment 

into responses, which could be a simple look up table.54  The reward function maps 

perceived states to desirability; the more desirable the state, the higher the agent’s 

reward.55   Value functions determine the long-term desirable state and provide a 

mechanism for predicting possible rewards in future states.56  In order to maximize 

reward over the long-term, reinforcement learning methods must estimate the value 

function that predicts states of maximum value.57   

The explosion in AI research and products over the last decade, which contributed 

to the success of Netflix, Amazon Alexa, Google Images, and Tesla’s autopilot, is largely 

based on the renewed viability of artificial neural networks (ANNs).58  Neural networks, 

inspired by the interconnected neurons of the human brain, owe their origins to the 

perceptron, a simple logical operator conceived by two researchers McCullough and Pitts 

in the 1940s.59  While the concept of ANNs existed for decades, the technology 

experienced modest advancement until the convergence of improved parallel computing 

 
53 Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction, 6-7. 
54 Ibid, 7. 
55 Ibid.  
56 Ibid. 
57 Ibid. 
58 Danielle C. Tarraf et al., The Department of Defense Posture for Artificial Intelligence, 28; U.S. Air 
Force, Office of the Chief Scientist, Autonomous Horizons: The Way Forward, 6-7. 
59 Ibid, 131-132. 
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and large data repositories generated from increasing network connectivity afforded by 

the Internet.60   

Due to the transformative effect ANNs have had on AI over the last decade, 

gaining a summary understanding of ANNs provides a significant improvement in AI 

literacy.  ANNs refer to a general connectionist architecture for defining a model 

representation that can be applied in each of the categories (supervised, unsupervised, and 

RL).61  Artificial neural networks consist of vast numbers of artificial neurons, virtual 

nodes that accept multiple, weighted inputs to compute a single output value, arranged 

into arrays called layers.  Generally, the output from each neuron in one layer is 

connected to each of the neurons’ inputs in the next layer, but many variations on the 

architecture exist based on the specific application.62  Network nomenclature typically 

refers to the first layer as the input layer and the last layer as the output layer and 

designates the layers in between as hidden layers.  Networks called deep learning 

networks simply have many hidden layers.  Gaining literacy with recent advancements in 

connectionist learning algorithms, such as ANNs, remains a critical aspect of any AI 

literacy effort, but a robust AI literacy curriculum would be incomplete without inclusion 

of other learning algorithm techniques.  Although beyond the scope of this paper, Pedro 

Domingos, a computer science professor and machine learning expert, thoroughly 

 
60 Ibid, 7; Vijay Gadepally et al., AI Enabling Technologies: A Survey, 25-26; National Science and 
Technology Council, Select Committee on Artificial Intelligence, The National Artificial Intelligence 
Research and Development Strategic Plan: 2019 Update, (Washington DC: Government Printing Office, 
June 2019), 12-13, https://www.nitrd.gov/pubs/National-AI-RD-Strategy-2019.pdf (accessed February 5, 
2020). 
61 U.S. Air Force, Office of the Chief Scientist, Autonomous Horizons: The Way Forward, 131-132; Jurgen 
Schmidhuber, Deep Learning in Neural Networks: An Overview (Switzerland: University of Lugano, 
October 8, 2014) https://arxiv.org/pdf/1404.7828.pdf (accessed February 10, 2020).   
62 Jurgen Schmidhuber, Deep Learning in Neural Networks: An Overview; Vijay Gadepally et al., AI 
Enabling Technologies: A Survey, 19-22. 
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explains and explores each of the five major machine learning approaches: symbolists, 

connectionists, evolutionaries, Bayesians, and analogizers.63   

 
63 Pedro Domingos, The Master Algorithm: How the Quest for the Ultimate Learning Machine Will 
Remake Our World, xvii. 
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Chapter 4: Enabling Acquisition Reforms 

The 2018 National Defense Strategy fully reframed the 21st century strategic 

security environment towards Great Power Competition and prioritized acquisition 

efforts to build a more lethal force capable of exploiting rapid commercial information 

technology advances.  In order to reap the benefits of artificial intelligence and leverage 

the speed and agility of commercial innovation, the DoD has challenged the role and 

importance of legacy systems.1  The Defense Acquisition System (DAS) produces lethal 

and capable weapon systems, but its processes remain tethered to a Cold War mindset 

focused on large-scale, hardware-intensive weapons systems.2  The hardware-centric 

mindset emphasizes generating firm, upfront requirements from warfighters to feed 

lengthy acquisition programs.  While AI and autonomous systems rely on a robust and 

diverse stack of technologies, including modern computing hardware for advanced 

processing and data storage, a significant portion of AI advancement depends upon quick 

and effective software development.   The adoption of AI and autonomous systems 

requires a culture that embraces DAS reforms, permitting rapid and iterative software 

capability development and deployment instead of defaulting to linear, hardware-centric 

waterfall processes.3   

 
1 Paul Mcleary, “SecDef Eyeing Moving Billions By Eliminating Offices, Legacy Systems,” Breaking 
Defense, February 5, 2020, https://breakingdefense.com/2020/02/secdefs-review-is-in-and-hes-willing-to-
shut-down-entire-offices/ (accessed May 1, 2020). 
2 Susanna V. Blume and Molly Parrish, Make Good Choices, DoD: Optimizing Core Decisionmaking 
Processes for Great-Power Competition (Washington DC: Center for a New American Security, November 
2019), 5; National Security Commission on Artificial Intelligence, Interim Report (Washington DC: 
Government Printing Office, November 2019), 22-24, https://www.nscai.gov/reports (accessed February 7, 
2020). 
3 U.S. Department of Defense, Defense Innovation Board, Software is Never Done: Refactoring the 
Acquisition Code for Competitive Advantage (Washington DC: Government Printing Office, May 3, 2019), 
vii-15, https://media.defense.gov/2019/Apr/30/2002124828/-1/-
1/0/SOFTWAREISNEVERDONE_REFACTORINGTHEACQUISITIONCODEFORCOMPETITIVEAD
VANTAGE_FINAL.SWAP.REPORT.PDF (accessed March 26, 2020). 
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As the U.S. began the war in Afghanistan in 2001, the still-deflating Internet Dot-

Com bubble continued to bankrupt information technology companies. Apple’s market 

share shrank, Microsoft fought the government over its alleged monopoly, and most 

consumers remained wary of Internet shopping.  By 2007, the trend reversed, and 

Facebook, founded in 2004, dominated education-related social media with over 30 

million users.4  Apple launched the first iPhone in 2007 and accelerated its mobile phone 

development and sales by joining with AT&T’s 3G offering for unlimited data service.5  

Google’s Android OS debuted in 2008 enabling hardware companies, lacking their own 

software platforms, to rapidly enter the mobile phone market.  Soon Android-enabled 

Samsung and Nokia phones exploded onto the market and contributed to an exponential 

increase in user-generated data, a new commodity that forms the basis of many 

commercial AI applications.  During approximately the same period of commercial 

information technology transformation, the U.S. military focused its modernization on 

struggling, but traditional programs like the F-22, KC-46, F-18E/F, the Littoral Combat 

Ship, and the Ford Class Carrier.  Juxtaposing the DoD’s largest acquisition program, the 

F-35, the subject of constant OSD, Service, and Congressional oversight, with Silicon 

Valley’s industry transformation serves to highlight the disparity in agility between U.S. 

information technology companies and the traditional U.S. military-industrial base.   

Many of the DAS’s cumbersome processes owe their roots to massive Cold War 

programs aimed at matching, exceeding, or offsetting Soviet capabilities.6  During the 

 
4 Sarah Phillips, “A Brief History of Facebook,” The Guardian, July 25, 2007, 
https://www.theguardian.com/technology/2007/jul/25/media.newmedia (accessed February 5, 2020). 
5 Woyke, Elizabeth, The Smartphone:Anatomy of an Industry (New York: The New Press, 2014), 146. 
6 Kathleen H. Hicks et al., Assessing the Third Offset Strategy (Washington DC: Center for Strategic & 
International Studies, 2017), 2. 
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Cold War, government funded research pushing new technologies into increasingly 

exotic weapon systems peaked.  As the Cold War ended, defense budgets tightened and 

government research for cutting edge science and high-risk technology maturation 

dwindled, resulting in more and more groundbreaking technologies originating outside of 

government contracts.7  As the hub of innovation shifted from government labs to 

commercial and university labs, the DAS failed to adjust and keep pace with the 

accelerating tempo of information technology and software development in particular.  

Inertia in the DAS did not go unnoticed, however.  As of 2002, RAND’s list of 

publications recommending acquisition reforms topped 63 reports.8  The 2019 Defense 

Innovation Board’s software report concluded that the DoD’s software development 

process remains broken despite fifteen previous studies also dedicated to improving DoD 

software acquisition practices.9   

Never Finished - Agile & DevSecOps 

Developing increasingly sophisticated systems featuring the behaviors and 

attributes of autonomous systems demands an increasingly flexible software framework 

from which to host continuously evolving algorithms.10   Recognizing that successful AI 

grows from effective software development, the DoD’s default hardware mindset, built 

on linear processes, becomes a major impediment to implementing processes that support 

the continuous, iterative nature of software development.  The Defense Innovation 
 

7 Susanna V. Blume and Molly Parrish, Make Good Choices, DoD: Optimizing Core Decisionmaking 
Processes for Great-Power Competition, 9. 
8 J. Ronald Fox, Defense Acquisition Reform 1960-2009: An Elusive Goal (Washington DC: Center of 
Military History, U.S. Army, 2011), 231. 
9 U.S. Department of Defense, Defense Innovation Board, Software is Never Done: Refactoring the 
Acquisition Code for Competitive Advantage, i. 
10 National Security Commission on Artificial Intelligence, Interim Report (Washington DC: Government 
Printing Office, November 2019), 22; U.S. Air Force, Office of the Chief Scientist, Autonomous Horizons: 
The Way Forward, by Dr. Greg L. Zacharias (Maxwell AFB: Air University Press, March 2019), 269. 
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Board’s conclusions--that software is never done and an ongoing software project does 

not equate to poorly defined requirements—calls for the DoD to adopt Agile and 

DevSecOps approaches to software development.11   

Agile software development, born out of a manifesto published in 2001, sought to 

improve the relationship between the user and the developer by emphasizing a new 

software development mindset based on frequent deliveries of smaller, functional 

software releases instead of large-scale monolithic projects.  Agile's manifesto 

emphasizes face-to-face collaboration and engagement with customers over cumbersome 

documentation and up front planning.12  Agile differs significantly from the traditional 

waterfall management process by eschewing linear, serial processes and instead 

embracing an iterative approach building and adding capability in small, easily testable 

batches.13  Instead of delivering a shrink-wrapped software package after months or years 

of serial development with little interaction and end user engagement, Agile encourages 

developers to seek early feedback and embrace customer requirement changes instead of 

viewing change requests as a worrisome project risk.14  Agile practices tightly couple 

design, development, and verification to test functionality as early as possible to avoid 

large software branches.15  By delivering a Minimally Viable Product (MVP) for user 

 
11 U.S. Department of Defense, Defense Innovation Board, Software is Never Done: Refactoring the 
Acquisition Code for Competitive Advantage, v-xiii, 6, 9-12. 
12 Caroline Mimbs Nyce, “The Winter Getaway That Turned the Software World Upside Down,” The 
Atlantic, December 8, 2017, https://www.theatlantic.com/technology/archive/2017/12/agile-manifesto-a-
history/547715/ (accessed February 7, 2020); “Manifesto for Agile Software Development,” 
https://agilemanifesto.org/ (accessed February 7, 2020). 
13 Caroline Mimbs Nyce, “The Winter Getaway That Turned the Software World Upside Down,” The 
Atlantic. 
14 U.S. General Accounting Office, Software Development: Effective Practices and Federal Challenges in 
Applying Agile Methods (Washington DC: Government Printing Office, July 2012), 4-6, 8, 26, 
https://www.gao.gov/assets/600/593091.pdf (accessed March 8, 2020). 
15 U.S. Department of Defense, Defense Innovation Board, Software is Never Done: Refactoring the 
Acquisition Code for Competitive Advantage, 10. 
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demonstration as soon as possible, software developers can rapidly fix, update, and 

change the software based on early user feedback.16  Even though the MVP may lack 

must-have features, the Agile mindset places a premium on direct user feedback to 

correct deficiencies and adds features using a collaborative approach as both the users' 

and developers' mutual understanding improves.  The resultant cooperative and iterative 

feedback-design-develop-release framework helps avoid lengthy, end-of-project 

requirement verification checklists to satisfy contracts.  Agile’s goal focuses on 

delivering functioning software not paperwork.   

DevSecOps, now considered an industry best practice, refers to the mindset and 

set of tools, processes, and workflows that seek to unify software development, security, 

and operations into a continuous, integrated pipeline rather than distinct communities 

using separate processes.17  With DevSecOps, security is baked into the software design 

from the beginning and continuously monitored and improved throughout the software 

lifecycle instead of using compliance checklists or an overreliance on network scans 

during operation.18  Continuous Integration and Continuous Delivery (CI/CD) form two 

fundamental cornerstones of DevSecOps practices.   CI/CD workflows enable software 

factories to scale up the scope of work across a development project, but avoid long 

integration, test, and delivery delays typical of traditional approaches.19  Traditional 

waterfall requirement processes emphasize thorough and stable requirements definition 

 
16 U.S. Department of Defense, Defense Innovation Board, Software is Never Done: Refactoring the 
Acquisition Code for Competitive Advantage, 7-11; Section 809 Panel, Report of the Advisory Panel on 
Streamlining and Codifying Acquisition Regulations, 2 (Washington DC: Government Printing Office, June 
2018), 57, https://discover.dtic.mil/section-809-panel/ (accessed February 25, 2020). 
17 U.S. Air Force, “DoD Enterprise DevSecOps Initiative (Software Factory) v4.7,” by Nicolas Chaillan, 
https://software.af.mil/dsop/documents/ (accessed February 23, 2020). 
18 “Manifesto,” https://www.devsecops.org/ (accessed February 23, 2020). 
19 Martin Fowler, “Continuous Integration,” https://martinfowler.com/articles/continuousIntegration.html 
(accessed February 23, 2020). 
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before beginning a project.  After gathering and documenting detailed user requirements, 

the team writes an in-depth plan to map out the project assigning tasks to specific 

functional teams.  As teams complete their assigned projects, integration teams build the 

software baseline and verification teams begin system-level testing to identify customer 

requirement deficiencies and initiate fixes.  Major fixes typically generate software forks 

that serve to exacerbate mainline software build and integration challenges.  Attempts to 

scale legacy software development approaches lacking continuous integration practices 

frequently suffer significant delays or collapse as the communication and collaboration 

overhead increases when the team tries to integrate code changes from multiple 

development teams back into a functioning mainline.20   

Continuous delivery extends continuous integration by flowing software as 

quickly as possible to customers, but preserves a human decision gate prior to 

deployment.21  Continuous deployment closes the loop entirely by leveraging increasing 

levels of automated testing and verification tools to enable large scale software 

deployment without human intervention.22  Continuous deployment deletes the notion of 

a release day; as soon as software passes its automated testing the changes flow to 

production.23   

Based on the Defense Innovation Board’s software report, the DoD recognizes the 

challenges associated with software development, but changing the DoD’s hardware-

 
20 Max Rehkopf, “What Is Continuous Integration,” https://www.atlassian.com/continuous-
delivery/continuous-integration (accessed May 15, 2020). 
21 Sten Pittet, “Continuous Integration vs. Continuous Delivery vs. Continuous Deployment,” 
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-
deployment (accessed February 23, 2020); U.S. Department of Defense, Defense Innovation Board, 
Software is Never Done: Refactoring the Acquisition Code for Competitive Advantage, 6-7. 
22 Ibid, 6. 
23 Sten Pittet, “Continuous Integration vs. Continuous Delivery vs. Continuous Deployment;”  
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focused culture to a culture embracing Agile and DevSecOps software practices, even as 

part of hardware intensive programs, remains daunting.   The DoD, spurred to action by 

some of the interim findings of the Section 809 panel, seems eager to continue reforms 

with the completion of the Defense Innovation Board’s 2019 software report.24  By 

September 2019, the DoD Chief Information Officer (CIO) released the DevSecOps 

Reference Design initiative aimed at implementing a DevSecOps mindset and 

proliferating CI/CD pipelines across the DoD.25  In early January 2020, the Under 

Secretary for Defense Acquisition and Sustainment (USD A&S) released an interim 

policy aimed at simplifying software acquisition processes and enabling continuous 

integration and delivery.26 The interim policy delegates the decision to use the software 

pathway to the component acquisition executive and permits exemption from the Joint 

Capabilities and Integration Development (JCIDS) process.  Instead, the sponsoring 

organization and the program manager develop a capability need statement and user 

agreement that maps mission use cases, negotiates trade space for demonstration and test 

of the MVP, and identifies metrics to support the subsequent deployment of the 

Minimum Viable Capability Release (MVCR), the first iteration of mission-ready 

software.27  While the policy does not require or prescribe set timelines for development, 

 
24 Section 809 Panel, Report of the Advisory Panel on Streamlining and Codifying Acquisition Regulations, 
2; U.S. Department of Defense, Defense Innovation Board, Software is Never Done: Refactoring the 
Acquisition Code for Competitive Advantage. 
25 U.S. Department of Defense, DoD Chief Information Officer, DoD Enterprise DevSecOps Reference 
Design Version 1.0 (Washington DC: Government Printing Office, August 12, 2019), 1-3. 15-17, 
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20De
sign%20v1.0_Public%20Release.pdf?ver=2019-09-26-115824-583 (accessed February 25, 2020). 
26 U.S. Department of Defense, Under Secretary of Defense for Acquisition and Sustainment, “Software 
Acquisition Pathway Interim Policy and Procedures,” January 3, 2020, 
https://www.acq.osd.mil/ae/assets/docs/USA002825-19%20Signed%20Memo%20(Software).pdf (accessed 
February 25, 2020).  
27 Ibid. 
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the software pathway graphic depicts the policy’s intent for speed by emphasizing 

delivery of the MVP using months as the unit for time.   

The new software policy seeks to mainstream gains made on software-only 

projects demonstrated at unique organizations like the Defense Digital Service and the 

Air Force’s Kessel Run.28  The new policy widens the DoD’s aperture for improving 

software acquisition beyond small scale, niche areas and promotes a DevSecOps 

approach to a wider array of programs, including traditional weapon systems.  Shortly 

after the interim software policy publication, USD A&S also released new policy 

guidance for the rewrite of DoDI 5000.02, the instruction that governs DoD’s acquisition 

operations.29  The new instruction, retitled, “Operation of the Adaptative Acquisition 

Framework,” outlines the transition plan for the new instruction and consolidates a series 

of policy reforms that comprise the new Agile Acquisition Framework (AAF).30  The 

AAF restructures the legacy system into six acquisition pathways: Urgent Capability, 

Middle Tier, Major Capability, Software, Defense Business Systems, and Services.  

Under the legacy process, now known as the Major Capability Acquisition pathway, 

program managers (PMs) were encouraged to tailor acquisition strategies to the unique 

needs of their program.31  Aggressive and creative tailoring, however, often created 

 
28 U.S. Department of Defense, Defense Innovation Board, Software is Never Done: Refactoring the 
Acquisition Code for Competitive Advantage, 31, 57-63. 
29 “DoD Rewrite of 5000 Series to Include a Software Acquisition Pathway,” National Defense Industrial 
Association, https://www.ndia.org/policy/recent-posts/2019/7/26/dod-rewrite-of-5000-series-to-include-a-
software-acquisition-pathway, July 26, 2019 (accessed February 4, 2020).  
30 U.S. Department of Defense, Under Secretary of Defense for Acquisition and Sustainment, Operation of 
the Defense Acquisition System, DoD Instruction 5000.02T (Washington DC, Government Printing Office, 
January 7, 2020, Incorporating Change 6, January 23, 2020),  
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500002T.PDF?ver=2020-01-24-
100028-310 (accessed February 4, 2020). 
31 U.S. Department of Defense, Under Secretary of Defense for Acquisition and Sustainment, Operational 
of the Adaptive Acquisition Framework, DoD Instruction 5000.02 (Washington DC, Government Printing 
Office, January 23, 2020), 9, 
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significant friction as PMs tried to justify novel approaches that did not conform to 

traditional practices.  Under the AAF, PMs now have a stable of ready-made tools, a 

common vocabulary, and an outlined set of approval authorities from which to assemble 

a custom acquisition program.   

Enterprise Data 

While the AAF’s new software policy should certainly improve the DoD’s 

software development efforts and by extension AI and autonomous system algorithm 

development, the AAF also stands to improve other AI-supporting technologies and 

systems.  To match private industry’s success, part of the DoD strategy for adoption 

includes ingraining a culture that leverages enterprise data across Service and 

organizational seams.  Through the acquisition of services and business systems, enabled 

by the AAF, the DoD can foster the production and sustainment of well-curated 

collections of data accessible across the DoD enterprise.  By transforming the DoD’s 

current information architecture of disparate computing enclaves into a cloud-based 

enterprise platform, the DoD will better position itself to take advantage of large-scale 

data services and tools.   

The Joint Enterprise Defense Infrastructure (JEDI) contract award to Microsoft in 

October 2019 is part of a strategy to transform the DoD's IT infrastructure from a 

fractured, poorly integrated collection of island enclaves into a modern, distributed cloud 

storage and computing environment.32  Part of the impetus for such a widespread policy, 

 
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500002p.pdf?ver=2020-01-23-144114-
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32 Andrew Eversden, “So What Problems Does JEDI Solve, Really?” Federal Times, October 30, 2019, 
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moving the DoD to a common cloud, was to enable the necessary data pooling and 

sharing across the Services that will power data-hungry, supervised machine learning 

algorithms.  To bridge the gap until JEDI implementation, Service CIO’s are authorizing 

cloud storage in the interim.33  Transforming the DoD’s IT infrastructure from a locally 

managed, hardware focused endeavor to a platform as a service architecture ties in with 

the AAF’s pathway for the acquisition of services enabling the DoD to shed duplicative 

and often ineffective methods of operating its IT enterprise.34  Instead, the JEDI service 

will contribute to a solid foundation for improved DoD software development and 

deployment that provides an environment for unifying databases and fostering AI 

advancement. 

As noted in Chapter 3, supervised machine learning methods such as artificial 

neural networks power industry achievements solving difficult classification and 

regression problems.  Specifically, the success of applications like Alexa, Siri, Google 

Images, Amazon, and Netflix recommendations depends largely upon a cornucopia of 

data generated by individual user behaviors interacting with the Internet, smart phones, 

and the Internet of Things (IoT).  Considering that every button click or status message 

on an Internet-connected device represents an opportunity to collect potential training 

data for machine learning, it is no surprise that an availability of user data fueled a 

 
33 U.S. Department of Defense, Chief Information Officer, “Updated Guidance on the Acquisition and Use 
of Commercial Cloud Computing Services,” December 15, 2014, 
https://dodcio.defense.gov/portals/0/documents/cloud/dod%20cio%20-%20updated%20guidance%20-
%20acquisition%20and%20use%20of%20commercial%20cloud%20serviices_20141215.pdf (accessed 
February 25, 2020); Department of the Navy, Chief Information Officer, “Acquisition and Use of 
Commercial Cloud Computing Services,” May 15, 2015, 
https://www.doncio.navy.mil/TagResults.aspx?ID=104 (accessed February 25, 2020). 
34 U.S. Air Force, “DoD Enterprise DevSecOps Initiative (Software Factory) v4.7,” by Nicolas Chaillan; 
U.S. Air Force, Chief Software Officer, “Preferred Agile Framework,” December 28, 2019, 
https://software.af.mil/wp-content/uploads/2019/12/CSO-MFR-on-Agile-Frameworks-12282019.pdf 
(accessed February 25, 2020). 
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learning algorithm boom across the information technology industry.  Companies like 

Google, Facebook, Apple, Microsoft, and Amazon dominate the commercial AI field 

largely because they offer free or low-cost convenient services in exchange for user 

data.35  When a user tags a friend in a Facebook image, the user provided Facebook with 

clean, high-fidelity training data at no cost.  In other applications, acquiring clean, labeled 

data represents one of the largest barriers to entry for many machine learning 

applications.  Whole industries have sprung up in the commercial sector offering services 

to dig manually through a company’s data, organize, and label it, a unique challenge for 

the DoD.36     

Presently, the DoD lacks the culture, infrastructure, and policy needed to mirror 

industry’s success in leveraging large data repositories and enforcing labeling at the point 

of production.37  Over the last two decades, the Services pushed large scale efforts to 

eliminate paper-based processes and data storage in favor of digital methods.  While 

storing personnel records in PDF files and mandating the use of electronic 

correspondence certainly reduces the DoD’s paper consumption, policies that lack data 

curation enforcement fail to capitalize on the utility of the digital medium.38  Widespread 

digital and data literacy as well as deep culture change are necessary for the DoD to 

achieve AI implementation. 

 
35 Rani Molla, “Why Your Free Software Is Never Free,” Vox, January 29, 2020 (accessed May 15, 2020). 
36 “China’s Success at AI Has Relied on Good Data,” The Economist, January 2, 2020, Technology 
Quarterly, https://www.economist.com/technology-quarterly/2020/01/02/chinas-success-at-ai-has-relied-
on-good-data (accessed February 4, 2020). 
37 Danielle C. Tarraf et al., The Department of Defense Posture for Artificial Intelligence (Santa Monica: 
RAND Corporation, 2019), 57-60; National Security Commission on Artificial Intelligence, Interim 
Report, 25-28, 34. 
38 Interviews with two U.S. Air Force machine learning experts, November 4, 2019 and February 21, 2020. 
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Sustainment 

Identifying clean, labeled data to enable supervised learning methods for 

classification and prediction applications presents one of the largest barriers to entry.  

Airlines have already recognized the need for data-driven analytics to minimize aircraft 

downtime and schedule disruptions while maximizing profits by avoiding costly 

excessive maintenance and supply chain overhead.39  Recognizing aircraft maintenance 

as one of the most straightforward areas for direct transfer from industry, the Air Force, 

Navy, DIU,  and JAIC all quickly began working toward leveraging industry advances.  

In 2018, Air Force Materiel Command announced initiatives to leverage predictive 

maintenance tools demonstrated by Delta Airlines to improve C-5, B-1, and C-130 

aircraft maintenance.40  In the case of the B-1, General Pawlikowski, then AFMC 

commander, noted that the government originally purchased the data rights to the aircraft, 

but failed to make use of the data.41  Recognizing the tension between government and 

industry on data rights, General Pawlikowski acknowledged that some implementation 

efforts will require entirely organic resources.42  Organic approaches by the Services to 

adopt machine learning methods for predictive maintenance is enabled by the DoD’s 

supply catalog and Service-specific databases that already track maintenance activity.  

With the exception of contractor-supported weapons systems, supply orders for organic 

maintenance activity use national stock numbers to track inventory using the Defense 

 
39 “7 Ways Airlines Use Artificial Intelligence and Data Science to Improve Operations,” Altexsoft, July 
10, 2018, https://www.altexsoft.com/blog/datascience/7-ways-how-airlines-use-artificial-intelligence-and-
data-science-to-improve-their-operations/ (accessed January 2, 2020).  
40 Marcus Weisgerber, “The U.S. Air Force Is Adding Algorithms to Predict When Planes Will Break,” 
Defense One, May 15, 2018, https://www.defenseone.com/business/2018/05/us-air-force-adding-
algorithms-predict-when-planes-will-break/148234/ (accessed January 2, 2020); 
41 Marcus Weisgerber, “The U.S. Air Force Is Adding Algorithms to Predict When Planes Will Break,” 
Defense One. (accessed January 2, 2020). 
42 Ibid. 
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Logistics Agency’s database, FED LOG.43  By constraining data entry to specific fields 

and logging supply and maintenance transactions, these databases give the Services a 

head start on adopting machine learning tools by avoiding data contracting services with 

manufacturers.44   

Intelligence 

Similar to the maintenance community, the intelligence community generates 

tremendous volumes of data.  Often unable to process all the data, the intelligence 

community increasingly looks to automated, machine learning tools to assist the human 

analyst.  The first publicly known initiative, the Algorithmic Warfare Cross Functional 

Team, known as Project Maven, began in April 2017.45  Motivated by overwhelmed 

intelligence analysts combing through hundreds of hours of video, the DoD sought to 

automate mundane tasks such as searching for objects of interests in otherwise 

uninteresting video.46  Project Maven teamed with AI industry leader, Google, to label 

video and image data gathered from drones, train a neural network to classify the images, 

 
43 “Information Operations (J6),” Defense Logistics Agency, 
https://www.dla.mil/HQ/InformationOperations/Offers/Products/LogisticsApplications/FEDLOG.aspx 
(accessed February 24, 2020).   
44 “DISA Developed Application Chosen to Consolidate Several Air Force Aircraft Maintenance Systems,” 
Defense Information Systems Agency, October 21, 2019, 
https://disa.mil/NewsandEvents/2019/application-consolidate-Air-Force-maintenance-systems (accessed 
February 25, 2020). 
45 U.S. Department of Defense, Under Secretary of Defense for Intelligence & Security, “Disruption in 
UAS: The Algorithmic Warfare Cross-Functional Team (Project Maven),” by Lieutenant General Jack 
Shanahan, http://airpower.airforce.gov.au/APDC/media/Events-
Media/RAAF%20AP%20CONF%202018/1130-1200-Shanahan-Disruption-in-UAS-The-AWCFT.pdf 
(accessed January 12, 2020).    
46 Marcus Weisgerber, “The Pentagon’s New Algorithmic Warfare Cell Gets Its First Mission: Hunt ISIS,” 
Defense One, May 14, 2017, https://www.defenseone.com/technology/2017/05/pentagons-new-
algorithmic-warfare-cell-gets-its-first-mission-hunt-isis/137833/ (accessed January 12, 2020). 
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and enable downstream analytics.47  Project Maven, heralded as an early success for the 

DoD, faced many challenges in the early stages including clear, uniform data labeling.48   

Security constraints in the intelligence community pose another challenge to 

adoption.  Imagery data collected from overhead sources typically reside on highly 

classified, compartmentalized network enclaves that significantly restrict user access to 

large, labeled data sets.  Similarly, obtaining security clearances and accrediting 

contractor facilities to process sensitive intelligence data presents high cost burdens on 

contractors and lengthy timelines for approval.  High capital costs for security combined 

with low profit potential and few opportunities for algorithm reuse in a commercial 

setting, disincentivizes small, AI startup companies from pursing DoD contracts in the 

intelligence enterprise.49 

The challenge facing the achievement of future Agile and DevSecOps approaches 

will be shifting the mindset for programs that manage the intersection of software 

development and hardware.  Even though the future certainly holds more and more 

software-centric programs, developing and procuring systems capable of producing 

physical, kinetic effects, such as ships, aircraft, and armor, will remain a mainstay of 

 
47 Danielle C. Tarraf et al., The Department of Defense Posture for Artificial Intelligence, 27; Tom 
Simonite, “Pentagon Will Expand AI Project Prompting Protests at Google,” May 29, 2018, 
https://www.wired.com/story/googles-contentious-pentagon-project-is-likely-to-expand/ (accessed January 
12, 2020).  
48 Interview with two machine practitioners familiar with Project Maven, December 28, 2019 and January 
29, 2020. 
49 Interview with two machine practitioners familiar with Project Maven, December 28, 2019 and January 
29, 2020. 
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lethal force.  Resolving friction between the warfighter requirements generation, contract 

fulfillment, and independent OT&E pinch points will likely intensify.50   

 
50 U.S. Department of Defense, Defense Innovation Board, Software is Never Done: Refactoring the 
Acquisition Code for Competitive Advantage, x-xi, 23, 39; Susanna V. Blume and Molly Parrish, Make 
Good Choices, DoD: Optimizing Core Decisionmaking Processes for Great-Power Competition, 6-7. 
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Chapter 5: Safety-Critical AI Development 

Rushing the adoption of machine learning AI to accelerate autonomous system 

development risks pushing immature technologies into operations and, without adequate 

safety controls, could increase the potential for accidents.  Armed with the Agile 

Acquisition Framework (AAF) and an improved software development enterprise, 

program managers, pressured by DoD and Service leadership to accelerate AI adoption, 

may unwittingly provide fertile ground for introducing new hazards into decision-

making, training, support, and combat operations.  Autonomous systems incorporating AI 

methods are not inherently unsafe, but the character of human interaction with these 

systems can lead to misplaced trust, unsafe practices, and the increased potential for 

accidents.1  The system safety community defines an accident as an “undesired or 

unplanned loss, including a loss of human life or human injury, property damage, 

environmental pollution, or mission loss.”2  The DoD currently emphasizes reliability 

based approaches to safety rather than embracing a systems-based safety methodology 

aimed at addressing the inherent complexities and dynamics between component, 

environment, and user psychology.  Incorporating learning AI into increasingly 

sophisticated automated systems and DoD missions requires considering the whole socio-

 
1 U.S. Department of Defense, Defense Innovation Board, AI Principles: Recommendation on the Ethical 
Use of Artificial Intelligence by the Department of Defense (Washington DC: Government Printing Office, 
October 31, 2019), 5, https://media.defense.gov/2019/Oct/31/2002204458/-1/-
1/0/DIB_AI_PRINCIPLES_PRIMARY_DOCUMENT.PDF (accessed March 13, 2020). 
2 Nancy G. Leveson, Engineering a Safer World: Systems Thinking Applied to Safety (Cambridge: MIT 
Press, 2011), 181. 
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technical system, deliberately deriving safety requirements, and enforcing safety 

constraints and controls to reduce the risk of accidents.3   

Humans Versus Automated Systems 

Automated control of safety-critical processes is nothing new, but learning AI 

adds complexity to accident prevention that requires developers and users rethink the 

relationship between humans and automation.  Automation often creeps into our lives to 

boost profitability by cutting human labor costs and increasing productivity through 

improved process optimization.4  Companies seeking to boost profits frequently target 

dull, dirty, or dangerous jobs for automation.5  Repetitive tasks typical in manufacturing 

and logistics sectors translate easily into quantifiable rules that engineers use to program 

computers and robots.  The automotive industry offers many examples of computer-

controlled manufacturing replacing machinists, welders, and assembly workers with 

robots.  Previously, limited task proficiency and flexibility confined automated systems 

to controlling processes through clearly, statically-defined logical rules.  Increasingly 

capable automation enabled by learning algorithms expands the reach of the technology 

into a variety of industries otherwise thought immune to automation, including retail 

customer service, transportation, and healthcare.  Militaries across the globe, seeking to 

gain a competitive advantage, have rushed to apply industry’s AI advances to automated 

systems on the battlefield. 
 

3 Nancy G. Leveson, Engineering a Safer World: Systems Thinking Applied to Safety, 82; Nancy G. 
Leveson and John P. Thomas, STPA Handbook, (March 2018), 1, 
https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf (accessed March 28, 2020). 
4 Mark Muro et al., Automation and Artificial Intelligence: How Machines Are Affecting People and Places 
(Washington DC: Brookings, January 2019), 13, https://www.brookings.edu/wp-
content/uploads/2019/01/2019.01_BrookingsMetro_Automation-AI-Workforce_Report_Muro-Maxim-
Whiton.pdf (accessed January 17, 2020). 
5 Kelley M. Sayler, Artificial Intelligence and National Security, CRS Report No. R45178 Version 7 
(Washington DC: Congressional Research Service, 2019), 27 
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Increased automation on the battlefield is a natural ally for militaries seeking to 

protect their forces from casualties and to extend their operational reach.6  The U.S. 

military uses automation across all domains to protect its forces and enhance lethality.  

Systems such as the RQ-4 remotely piloted aircraft (RPA), Aegis cruisers, and Patriot 

missile batteries all incorporate advanced automated control systems to enhance their 

effectiveness.   

These systems’ architectures, each compliant with the DoD’s policy on 

autonomous weapons, require humans either in or on the decision-making loop to ensure 

that the system executes human intent.  Most automated systems require human 

supervision to deal with edge and corner cases not specified in the system’s original 

programming and to serve as an emergency backup able to take over if the automation 

fails.  Humans, however, make poor monitors of automated systems due to the 

psychology of the interaction.7  For humans, monitoring automated processes makes for 

boring work that leads to further mental disengagement from the controlled process.  

Additionally, when automated systems fail, requiring human intervention to prevent an 

accident, operators typically require time to orient themselves to assess the situation and 

affect corrective action.8  The disengagement between human monitors and automated 

systems can lead to significant divergence between the human’s mental model of the 

system and the system’s actual state.  To guard against overreliance, automated systems 

cannot rely on humans exclusively as a crutch to resolve automated system failures and 

shortcomings.  Developers and operators will face the challenge of tailoring system 

 
6 Paul J. Springer, Outsourcing War to Machines: The Military Robotics Revolution (Santa Barbara: 
Praeger, 2018), 74-114. 
7 Nancy G. Leveson, Engineering a Safer World: Systems Thinking Applied to Safety, 275. 
8 Ibid, 276-278. 
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design and usage to balance the division of tasks between human and machine that 

engages humans in the controlled task and simultaneously leverages the enabling 

endurance and precision of machines.   

Misplaced Trust 

Human reliance on predictable and reliable automated systems can lead to 

overreliance and complacency via misplaced trust.  Calibrating human trust to 

autonomous system performance remains an active area of research.  In Autonomous 

Horizons, the USAF dedicates significant consideration to the development of the tenants 

of trust for autonomous systems.9  Overtrust and undertrust in autonomous systems 

requires careful consideration.  On the one hand, overtrust contributes to complacency 

and overreliance typical of accidents involving aviation autopilots.10  For instance, while 

automated driver-assistance technologies have become increasingly capable, no vehicle 

today offers autonomy greater than SAE Level 2, requiring drivers to remain fully 

engaged in the driving task.11  Despite warnings from the NTSB and manufactures, users 

tend to overtrust driver-assistance features based on their increasing capability and 

 
9 U.S. Air Force, Office of the Chief Scientist, Autonomous Horizons: The Way Forward, by Dr. Greg L. 
Zacharias (Maxwell AFB: Air University Press, March 2019), 77. 
10 NTSB, China Airlines Boeing 747-SP, N4522V, 300 Nautical Miles Northwest of San Francisco, 
California, February 19, 1985, NTSB/AAR-86/03 (Washington DC: Government Printing Office, March 
29, 1986) 
https://www.faa.gov/about/initiatives/maintenance_hf/library/documents/media/human_factors_maintenanc
e/china_airlines_boeing_747-
sp.n4522v.300_nautical_miles_northwest_of_san_francisco.california.february_19.1985.pdf (accessed 
March 23, 2020);  Nick Oliver et al., “The Tragic Crash of Flight AF447 Shows the Unlikely But 
Catastrophic Consequences of Automation,” Harvard Business Review, September 15, 2017, 
https://hbr.org/2017/09/the-tragic-crash-of-flight-af447-shows-the-unlikely-but-catastrophic-consequences-
of-automation (accessed March 23, 2020). 
11 “Tesla Crash Investigation Yields 9 NTSB Safety Recommendation,” National Transportation Safety 
Board, February 25, 2020, https://www.ntsb.gov/news/press-releases/Pages/NR20200225.aspx (accessed 
March 7, 2020). 
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reliability.12  On the other hand, undertrust typically leads to the automated systems 

falling into disuse and may contribute to accidents resulting from situations where 

humans became saturated or confused by numerous or noisy inputs.13  For non-learning 

systems, standardized procedures, user training, and human-centered design form many 

of the primary socio-technical tools developers and operators use to guard against 

overreliance, complacency, and misplaced trust, manifesting as overtrust and 

undertrust.14  Learning algorithms compound complications in this dynamic by adapting 

their output behavior based on the accumulation of experience in the form of data.  The 

novel and notably surprising, non-human solutions presented by deep learning algorithms 

to the games Go (Wei-Chi) and several Atari games foreshadow challenges for 

developing human trust in algorithms that lack cognitive congruence with humans.15   

DARPA is presently working to advance many aspect of AI including algorithm 

development and explainable AI initiatives.16  A DARPA project aimed at developing 

algorithms for autonomous air-to-air combat supports both efforts.  The program seeks to 

develop AI agents capable of executing air-to-air visual-range basic fighter maneuvers 

(BFM)–dogfighting.17  The program also aims to calibrate pilot trust in algorithm 

 
12 “Driver Errors, Overreliance on Automation, Lack of Safeguard, Led to Fatal Tesla Crash,” National 
Transportation Safety Board, September 12, 2017, https://www.ntsb.gov/news/press-
releases/Pages/PR20170912.aspx (accessed March 7, 2020). 
13 Paul Scharre, Army of None: Autonomous Weapons and the Future of War (New York: W.W. Norton & 
Company, Inc., 2018), 166. 
14 Nancy G. Leveson, CAST Handbook: How to Learn More from Incidents and Accidents, (2019), 8, 
http://sunnyday.mit.edu/CAST-Handbook.pdf (accessed February 25, 2020).  
15 AlphaGo, directed by Greg Kohs, Moxie Pictures & Reel As Dirt, 2017, 1:31, 
https://www.youtube.com/watch?v=WXuK6gekU1Y (accessed January 26, 2020); Lex Fridman, “Deep 
Learning State of the Art (2020),” MIT Deep Learning Series, January 10, 2020, 
https://www.youtube.com/watch?v=0VH1Lim8gL8 (accessed February 4, 2020); U.S. Air Force, Office of 
the Chief Scientist, Autonomous Horizons: The Way Forward, 84. 
16 Kelley M. Sayler, Artificial Intelligence and National Security, 31. 
17 Graham Warwick, “DARPA Automated Dogfighting to Develop Pilot Trust in AI in Combat,” Aviation 
Week and Space Technology, April 20-May 3, 2020, 36-37. 
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performance with the ultimate aim of promoting synergy between human and machine 

rather than cultivating an adversarial human-machine relationship.18  Researchers are 

examining cognitive congruence from both the perspective of human attitudes towards AI 

and adapting AI to humans.  Dr. Javorsek, program manager of the Alpha Dogfight 

program, plans to measure pilot trust by measuring and quantifying the degree to which 

the human pilot delegates control of the BFM fight to the AI in favor of accomplishing 

human-specific battle management tasks.19  At present most explainable AI research 

focuses on helping the human adapt to the autonomous system.  Dr. Ayanna Howard, a 

roboticist at Georgia Tech, notes that historically designers focused on controlling and 

accommodating human behavior when designing automated safety-critical processes.20  

She emphasizes that most safety systems incorporating robots center on controlled 

environments to encourage predictable human-machine dynamics.  However, she notes 

that robots capable of adapting to humans may provide options for safety-critical human-

machine solutions, but such solutions have only been demonstrated in a laboratory 

environment.21     

A Systems-Based Approach 

In order to foster safe and effective interactions between humans and autonomous 

systems supporting military missions, the DoD must continue to develop and apply 

deliberate processes for resolving or mitigating automated system safety hazards and 

risks.  As the DoD moves to accelerate adoption of AI learning algorithms using rapid 

 
18 Daniel Javorsek, e-mail message to author, May 16, 2020. 
19 Graham Warwick, “DARPA Automated Dogfighting to Develop Pilot Trust in AI in Combat,” 36-37. 
20 Ayanna Howard, interview by Lex Fridman, January 17, 2020, AI Podcast 
https://www.youtube.com/watch?v=J21-7AsUcgM (accessed April 11, 2020). 
21 Ayanna Howard, interview by Lex Fridman, January 17, 2020.    
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software acquisition methods, the DoD must cultivate a safety culture that recognizes and 

appreciates the complexity introduced by learning AI, and it must embrace an accident 

prevention framework capable of dealing with the associated increase in system 

complexity.  Dr. Nancy Leveson, an MIT professor and researcher, contributed to 

developing improved models of accident causation and new methodologies for safety 

analysis and accident prevention.  Her models and methods leverage systems theory and 

emphasize analysis of system interactions and dynamics as a whole system.   

Approaches like Dr. Leveson’s Systems-Theoretic Accident Model and Processes 

(STAMP) frames accident causality and prevention in terms of system states and 

interactions bounded by a set of top-down system safety constraints designed to avoid 

hazards that contribute to accidents.22  STAMP eschews event-chain methodologies that 

focus on breaking the cascade of failures leading to an accident.  Legacy models such as 

the Domino and Swiss Cheese theories conceptualize accident causation as a chain of 

events initiated by a single root-cause.23  Thus, mishap prevention strategies based on 

these models emphasize recognizing and stopping the chain of events leading to an 

accident rather than addressing the systemic pressures and dynamics that promote the 

conditions for an emergent accident.  Event-chain models also tend to accentuate a 

culture of blame and liability since human error remains one of the easiest causes to 

pinpoint.24  Accident investigations based on event-chain models trace a series of events 

backward in time from the proximate cause of the mishap and typically stop when the 

 
22 Nancy G. Leveson, Engineering a Safer World: Systems Thinking Applied to Safety, 73. 
23 Ibid, 16-18, 34, 91.  
24 Ibid, 16-18. 
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investigation reaches the first human in the chain.25  Continuing to apply legacy mishap 

prevention safety practices that emphasize root cause analysis based on event chains will 

fail to mitigate the novel hazards that will arise from machine learning AI.  Dr. Leveson 

suggests that assigning blame for accidents does little to prevent future accidents.26  

Instead, investigations need to widen their scope beyond the proximate causes of the 

mishap and deemphasize blame to capture systemic pressures and interactions that 

contributed to the system’s migration into a hazardous state from which an accident 

emerged.  Emphasizing a blameless approach to system safety melds well with Agile 

software development approaches that prize solutions over blame.27  However, 

investigations and reporting on accidents involving automated systems indicate a trend in 

the opposition direction.28 

Reliability Versus Safety 

In general, policy and regulation aimed at improving safety commonly centers on 

reliability analysis and improvements to mitigate the risk of accidents.29  Too often, 

designers and users equate reliability with safety, thinking that fewer accidents will result 

from increased component or system reliability.30  Restated using the autonomy 

vocabulary from Chapter 3, developers frequently rely on improved autonomous system 

 
25 Ibid, 21-47. 
26 Ibid, 57. 
27 U.S. Department of Defense, Defense Innovation Board, Software is Never Done: Refactoring the 
Acquisition Code for Competitive Advantage (Washington DC: Government Printing Office, May 3, 2019), 
10, S79, S108, S192, https://media.defense.gov/2019/Apr/30/2002124828/-1/-
1/0/SOFTWAREISNEVERDONE_REFACTORINGTHEACQUISITIONCODEFORCOMPETITIVEAD
VANTAGE_FINAL.SWAP.REPORT.PDF (accessed March 26, 2020). 
28 Ian Bogost, “Can You Sue a Robocar?” The Atlantic, March 20, 2018, 
https://www.theatlantic.com/technology/archive/2018/03/can-you-sue-a-robocar/556007/ (accessed 
February 25, 2020).  
29 Nancy Leveson, “Are You Sure Your Software Will Not Kill Anyone?” Communications of the ACM 63, 
no. 2 (February 2020), 26. 
30 Nancy G. Leveson, Engineering a Safer World: Systems Thinking Applied to Safety, 57, 64, 73, 173. 
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task proficiency to advance safety.  However, improving proficiency or reliability alone 

is insufficient to enhance system safety.  Reliability refers to the rate of failure for 

components or systems under specified conditions.   Reliability measures, such as mean 

time between failure, quantify the frequency of component or system failures and form 

the basis of failure modes and effects analysis (FMEA) and system accident predictions 

such as probability of loss of aircraft (PLOA).  Despite the widespread inappropriate 

assumption of equivalence between safety and reliability, a reliable system does not 

equate to a safe system.31  In some cases, increasing reliability may even reduce system 

safety.32  The confusion between safety and reliability may stem from the significant 

attention that avoiding component failure receives in traditional engineering disciplines.33    

Material, mechanical, electrical, and semiconductor hardware failure rates tend to 

dominate safety analysis.  Safety review boards often focus on the potential for single-

point failures, placing undue emphasis on reliability figures when assessing the risk of 

integrated system accidents.   

Dr. Leveson cites many examples of accidents caused by interactions rather than 

by component failures.  In one example, an auto ferry, not suffering from any component 

failures, capsized killing 193 people after unanticipated interactions between vessel and 

harbor designs, scheduling and operations, and crew dynamics led to a hazardous system 

state.34  In 1993, an Airbus A320 landing in heavy rains and crosswinds with no failed 

systems, but unable to decelerate, ran off the runway killing one crew member and one 

passenger.  Anticipating the crosswind landing, the pilot correctly landed the aircraft in a 

 
31 Ibid, 7.   
32 Ibid, 11-12. 
33 Ibid, 8. 
34 Ibid, 13. 
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banked attitude to minimize the aircraft’s lateral drift over the runway.  With the banked 

attitude, the aircraft touched down on only one of the main landing gear.  To prevent the 

dangerous possibility of thrust reverser deployment in-flight, the A320’s flight control 

software locked out thrust reverser deployment until it detected weight on both of the 

main landing gear.35  The aircraft continued its ground run on one wheel for several 

seconds, thus inhibiting activation of the thrust reversers.  The A320 flight controls 

performed exactly as designed without failure yet the system migrated into a hazardous 

state from which an accident resulted.  Similarly, the Mars Polar Lander (MPL) crashed 

into the Martian surface after the descent engine cut off prematurely when the landing 

legs deployed.  The probe’s normal deployment of the landing legs during descent 

generated a noisy transient signal on each of the leg’s touch down sensors.  The descent 

control software interpreted the transient signal as contact with the Martian surface and 

shutdown the descent engine, and the spacecraft crashed into the planet’s surface.36  In 

this scenario, none of the individual components of the probe failed, but their interactions 

contributed to a hazardous system state that led to the crash.37  Since the probe’s 

components all functioned without failure and as programmed, the proximate cause of the 

crash was an insufficiently robust logic scheme to detect the surface of the planet and 

reject false detections.  Improved component reliability or sensor redundancy would not 

have avoided the crash.   

 
35 R.D. Hawkins et al., “The Principles of Software Safety Assurance” (31st International System Safety 
Conference, 2013), 3, https://www-users.cs.york.ac.uk/~rhawkins/papers/HawkinsISSC13.pdf (accessed 
April 18, 2020). 
36 JPL Special Review Board, Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions 
(Jet Propulsion Laboratory, March 22, 2000), 26 
https://spaceflight.nasa.gov/spacenews/releases/2000/mpl/mpl_report_1.pdf (accessed April 11, 2020). 
37 Nancy G. Leveson, Engineering a Safer World: Systems Thinking Applied to Safety, 8. 
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In each of these examples, no variety of bottom-up component reliability or fault 

tree methods, analyzing each component in isolation, could predict these hazards or 

protect these complex systems from mishap.38   The accidents emerged from complex 

component, system, and environmental interactions.  Applying a systems theory approach 

to accidents reframes safety as an emergent property that results from the interactions of 

the elements of the system.39  Dr. Leveson’s systems-based approach views safety as a 

control problem itself.40  Rather than focusing on reducing failures through reliability 

improvements or pinning mishap prevention solely on the detection and arrest of 

proximate causes, Dr. Leveson reframes the design problem as a top-down safety control 

problem.  Instead of breaking mishap chains to avoid an accident, users and operators, 

developers and engineers collaborate to identify hazardous system states, describe system 

safety constraints, and then design and implement specific controls to prevent the system 

from migrating into a hazardous states.  When analyzing system hazards and designing 

system controls and constraints to guard against unsafe actions, Dr. Leveson emphasizes 

the importance of considering both technical and non-technical aspects of the system.  

She emphasizes this point in her detailed analysis of the 1994 friendly fire shootdown of 

two U.S. Army UH-60 Blackhawks in Iraq.  Dr. Leveson’s analysis of the unsafe control 

actions that led to the accident included detailed consideration of technical, engineered 

components as well as behavior-shaping mechanisms that influenced human decision 

making.41  Most safety investigations focus on operations and the proximate accident 

 
38 Ibid, 61-67. 
39 Ibid, 67. 
40 Ibid. 
41 Ibid, 103-167. 
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causes and fail to thoroughly analyze interactions across the entire developmental and 

operational socio-technical system.42   

Software System Safety 

Prior to roughly 1980, engineers typically avoided software in safety-critical 

control applications and instead relied on hardware-based, analog, electro-mechanical 

control systems to govern safety-critical processes.43  Unlike software-based controllers, 

hardware controllers offered engineers devices with a finite and manageable set of 

physical states characterized by well understood and quantified failure modes and 

reliability metrics.  This enabled exhaustive testing and allowed engineers to confidently 

apply these controllers to safety-critical processes and devise specific procedures 

accounting for a finite set of failure modes.  However, the increasing flexibility and 

decreasing costs offered by software drove the incorporation of software-based 

controllers in safety-critical applications.  While the increased flexibility afforded by 

software permitted developers to devise increasingly sophisticated engineered systems, 

the resultant architectures became too difficult for humans to intellectually manage.44  

Software introduces an exponential increase in the number of possible states of the 

system making exhaustive developmental testing impossible and leaving potentially 

hazardous system states for the user to discover during operation.45  Dr. Leveson refers to 

this predicament as software’s “curse of flexibility.”46  With the introduction of software, 

 
42 Ibid, 82, 103. 
43 Nancy Leveson, “Are You Sure Your Software Will Not Kill Anyone?” 25. 
44 James Somers, “The Coming Software Apocalypse,” The Atlantic, September 26, 2017, 
https://www.theatlantic.com/technology/archive/2017/09/saving-the-world-from-code/540393/ (accessed 
April 10, 2020).   
45 Nancy Leveson, “Are You Sure Your Software Will Not Kill Anyone?” 27-28. 
46 Nancy G. Leveson, Engineering a Safer World: Systems Thinking Applied to Safety, 50. 
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a piece of silicon can become either an aircraft autopilot or lawn sprinkler controller each 

with vastly different safety consequences.47  However, when contemplating the 

contribution of software to system safety, software is an abstraction.  Software does not 

contain energy, it cannot catch fire or maim people or damage property.48  Software 

safety is a misleading term since software, divorced from its physical hardware can 

neither be safe or unsafe.49   

In 1991, a numerical round-off error contributed to the inability of a Patriot 

missile to shoot down an incoming SCUD missile that killed 28 Americans.50  At the time 

of the accident, the Patriot’s software stored time as an integer count of tenths of seconds 

that required multiplication by 0.1 to convert time into seconds when calculating an 

incoming missile’s trajectory to support tracking and interception.51  Because binary 

cannot exactly represent 0.1, the round-off error associated with the 24-bit representation 

of 0.1 is 0.000000095.52  At the time of the SCUD launch, the Patriot had been in 

operation for approximately 100 hours, resulting in a 0.34 second error in the Patriot’s 

time computation (0.000000095 x 100 x 60 x 60 x 10 = 0.34).53  The Patriot could not 

accurately track the 1,676 meter per second SCUD because the 0.34 second error meant 

that the missile flew approximately 500 meters outside of the radar’s track.  In the Patriot 

example, when developers translated the tracking algorithm into software requirements, 

 
47 James Somers, “The Coming Software Apocalypse.”  
48 Nancy Leveson, “Are You Sure Your Software Will Not Kill Anyone?” 26. 
49 Ibid. 
50 U.S. General Accounting Office, Patriot Missile Defense: Software Problem Led to System Failure at 
Dhahran, Saudi Arabia (Washington DC: Government Printing Office, February 1992), 1-4, 
https://www.gao.gov/products/IMTEC-92-26 (accessed April 8, 2020). 
51 Douglas N. Arnold, “The Patriot Missile Failure,” http://www-
users.math.umn.edu/~arnold//disasters/patriot.html (accessed April 10, 2020). 
52 Douglas N. Arnold, “The Patriot Missile Failure.” 
53 Ibid. 
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they failed to consider the integrated hardware-software system’s limitations.  Porting 

software from one application to another, known as software reuse, a common cost-

saving measure, can contribute to accidents when software is considered in isolation and 

without consideration for the combined hardware-software system.54 

 In most instances, discipline engineers design control systems and translate the 

design into software requirements for programmers to implement in software code.55  

Software programmers, often lacking depth in the engineering discipline that provided 

the software’s requirements, typically focus their effort on coding to specified 

requirements.  For decades, writing software required the dedication of uniquely talented 

individuals capable of thinking like computers to translate requirements into code, a 

perspective that often further divorces programmers from the design they are 

implementing in code.56  Writing software code can be so frustrating and challenging that 

programmers become preoccupied with simply getting their programs to run that they 

have little capacity left over to contribute to feedback on system design.57  

In the case of the Mar Polar Lander, engineers verified that the software met its 

requirement specification, but failed to validate that the resultant design would function 

as intended.  While nuanced definitions of verification and validation vary across 

technical disciplines, the following themes persist across a majority of fields.  On the one 

hand, verification refers to the process of ensuring that a system meets its specified build-

 
54 Nancy Leveson, “Are You Sure Your Software Will Not Kill Anyone?” 26. 
55 Nancy G. Leveson, Engineering a Safer World: Systems Thinking Applied to Safety, 48. 
56 James Somers, “The Coming Software Apocalypse.”  
57 Ibid. 
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to requirements.58  Validation, on the other hand, refers to how well the realized system 

performs its intended task.59   Verification determines whether or not the system was built 

correctly; validation evaluates whether or not the correct system was built.60  According 

to DoDD 5000.59, the governing directive for modeling and simulation, verification 

refers to determining whether a model meets the developer’s specification and 

conceptualization, whereas validation refers to the degree to which the model matches its 

intended real world application.61  In the MPL example, the JPL team verified that the 

flight control software was coded as specified to shut down the engine when a touchdown 

signal was received.  However, the team failed to specify, develop, and integrate logical 

protections that guard against spurious signals.  The subsequent investigation revealed 

that noise from the touchdown sensors was a known issue, but systemic pressure to move 

quickly while keeping costs low drove the team to curtail system level validations.62   

Modern software tools, including improved debugging and automated testing 

utilities and scripts, help to speed up specification verification and reduce build-to errors, 

but do little to prevent inherent design shortfalls and account for the increasing 

complexity of engineered systems.   Recent efforts to expand model-based design tools 

and encourage thorough, logical planning before typing a single line of code aim to 

 
58 Avner Engel, Verification, Validation, and Testing of Engineered Systems (Hoboken: John Wiley & 
Sons, Inc., 2010), 16-17; C. Warren Axelrod, Engineering Safe and Secure Software Systems (Boston: 
Artech House, 2013), 49. 
59 Avner Engel, Verification, Validation, and Testing of Engineered Systems, 16-17. 
60 Ibid. 
61 U.S. Department of Defense, Under Secretary of Defense of Research & Engineering, DoD Modeling 
and Simulation (M&S) Management, DoDD 5000.59 (Washington DC: Government Printing Office, 
August 8, 2007, Incorporating Change 1, October 15, 2018), 8, 
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodd/500059p.pdf (accessed April 10, 
2020). 
62 JPL Special Review Board, Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions, 6; 
Nancy G. Leveson, Engineering a Safer World: Systems Thinking Applied to Safety, 85-86. 
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ameliorate these challenges.63  Engineers using model-based design tools prototype their 

algorithms and control systems using discipline-specific computational tools capable of 

generating autocode output for implementation.  These approaches avoid time-consuming 

and error-prone requirements translation processes between engineers and software 

developers.  Model-based methods also offer engineers and scientists simulation 

environments to check the capability of the design by testing use cases.  Promoting 

deliberate and thorough planning that is logically complete is another means of reducing 

software development errors.64  One such tool, TLA+, uses formal mathematical and 

logical notation to describe an algorithm helping developers examine and validate the 

design before typing a single line of code.65   

With the DoD’s recent acquisition policy reforms formalizing incorporation of 

Agile software development approaches, the DoD must integrate a robust system safety 

approach to mitigate the novel safety risks that emerge from software development 

supporting learning AI algorithms hosted in automated weapons systems.  In fact, control 

of safety-critical systems using software from Agile methods remains an open area of 

research.66  On the surface, Agile software development methods’ emphasis on rapid 

prototyping and cultural resistance to formal requirements analysis seems ill-suited to 

software development efforts integrating learning algorithms in safety-critical 

applications.67  However, Agile and DevSecOps practices need not contradict the 

integrated, multidisciplinary safety requirements analysis dictated by the systems-based 
 

63 James Somers, “The Coming Software Apocalypse.” 
64 Ibid. 
65 Ibid. 
66 Rashidah Kasauli, et al., “Safety-Critical Systems and Agile Development: A Mapping Study,” (44th 
Euromicro Conference on Software Engineering and Advanced Applications, 2018), 470-477, 
https://arxiv.org/pdf/1807.07800.pdf (accessed April 13, 2020). 
67 Autonomy, directed by Alex Horwitz, A Car & Driver Film, Haven Entertainment, 2019, 1:20. 
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approach called for by Dr. Leveson.  By acknowledging and embracing the inherent 

flexibility of software, developers, users, testers, and operators can cooperate to build a 

robust socio-technical system, rooted in Agile and DevSecOps practices, that accounts 

for the design and enforcement of top-down system safety controls.  Instead of expanding 

the requirements and specification waterfall to address every permutation of system 

states, shown to be an impossibility, developers can replace the waterfall with continuous 

integration and continuous delivery such that prototype software is frequently returned to 

the customer for operational, validation testing with the recognition that feedback from 

the field will necessarily require additional iterations to improve the system’s safety for 

continuous delivery.    
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Chapter 6: Conclusion 

Today, the DoD continues its struggle to adopt Artificial Intelligence (AI) 

technologies despite increasing pressure from executive policy makers and Congressional 

leaders.   AlphaGo’s 2016 defeat of Lee Sedol and China’s subsequent 2017 declaration 

to dominate AI research and development served as a Sputnik moment for U.S. policy 

makers, spooking them into action over fears of losing an AI-arms race.1  Despite 

growing Congressional and Presidential attention and increases in government funding 

for AI and autonomy technologies, RAND found that the DoD was poorly postured to 

take advantage of AI technologies advanced in the last decade in the commercial sector.2   

Much of the struggle stems from the DoD’s lack of widespread familiarity and 

literacy with the emerging technologies.  Already algorithms shape our perception of 

reality and constrain our choices across a variety of sectors and applications ranging from 

entertainment choices to financial product offerings.  As the technologies continue to 

mature, the mechanics of their function grow increasingly opaque to the average user.  

The trend is particularly problematic for the DoD, an organization seeking to leverage 

machine advantages to offset adversary anti-access threats that erode U.S. operational 

reach and coalition decision-making.  Part of the challenge of developing widespread AI 

literacy stems from the lack of a unified AI vocabulary, accessible to non-experts 

 
1 Georgia Perry, “The AI Cold War That Threatens Us All,” Wired, October 23, 2018, 
https://www.wired.com/story/ai-cold-war-china-could-doom-us-all/ (accessed February 5, 2020); Henry A. 
Kissinger, “How the Enlightenment Ends,” The Atlantic, June 2018, 
https://www.theatlantic.com/magazine/archive/2018/06/henry-kissinger-ai-could-mean-the-end-of-human-
history/559124/ (accessed February 5, 2020); Graham Allison, “Is China Beating America to AI 
Supremacy?” The National Interest, December 22, 2019, https://nationalinterest.org/feature/china-beating-
america-ai-supremacy-106861 (accessed December 27, 2020). 
2 Danielle C. Tarraf et al., The Department of Defense Posture for Artificial Intelligence (Santa Monica: 
RAND Corporation, 2019), 106, 129; Interview with a Defense Innovation Unit employee, December 28, 
2019. 
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throughout the Department.  As RAND noted, however, even among AI practitioners and 

experts there is little agreement on the definition of AI and whether or not developing one 

is worth it.  For a massive organization like the DoD, charged with integrating the game-

changing capabilities of a complex and disruptive emergent technology, a common 

lexicon establishes a necessary cultural cornerstone upon which to build literacy.  

Establishing a baseline level of workforce literacy and understanding, as well as targeted 

education for key stakeholders, would help accelerate organizational adoption by 

dispelling myths and fears to increase confidence and familiarity with the applications 

and limitations of AI and autonomy.  Without concentrating on improving widespread 

workforce literacy for learning algorithms and autonomous system concepts, the DoD 

will continue to struggle to integrate these disruptive technologies as a fearful or 

oblivious workforce either neglects or resists the transformative tools.   

But literacy alone will not transform the DoD into an AI-ready institution.  

Widespread adoption and integration of AI and autonomous systems require deliberate 

investments in hardware and software platforms to support machine learning algorithms 

and cultivate productive automated systems.  The DoD’s sclerotic acquisition system, 

geared toward avoiding manufacturing risks on large-scale, capital-intensive major 

weapons system acquisitions, has for too long applied a one-size fits all approach to 

gathering warfighter requirements, securing definitive funding portfolios, and 

establishing time-certain program schedules each with federated communities scattered 

across OSD and the Services focused on requirements, development, testing, support, 

training, and operations.  The problem at the root of the scattered, federated approach is 

that it prevents the collection, curation, and aggregation of data. The serial, stove-piped 
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approaches will not work for developing learning AI algorithms that leverage vast, 

enterprise-level data to feed learning algorithms.3  Additionally, software constitutes an 

essential building block of AI systems, and the 2019 Defense Innovation Board’s (DIB) 

software report declared the DoD software development broken.4  Recently, the DoD 

made significant operational changes to the Defense Acquisition System.  At the start of 

2020, the Undersecretary for Defense for Acquisition and Sustainment (USD A&S) 

released interim policy guidance specifically for software development to stimulate Agile 

software management approaches within the DoD and the traditional industrial base.  The 

software policy, along with the rewrite of DODI 5000.02, the instruction governing 

defense acquisition, marked a major step toward challenging legacy acquisition practices, 

thawing the frozen middle, and encouraging new ways of rapidly integrating and fielding 

disruptive technologies that give the warfighter a decisive advantage.5  The recent 

software policy in particular indicates that the DoD acknowledges the DIB’s finding that 

“software is never done,” thereby enabling program managers to embrace Agile and 

DevSecOps practices capable of delivering improved capabilities at the speed of 

relevance through continuous integration and continuous delivery.6   

 
3 Danielle C. Tarraf et al., The Department of Defense Posture for Artificial Intelligence, 57-60. 
4 U.S. Department of Defense, Defense Innovation Board, Software is Never Done: Refactoring the 
Acquisition Code for Competitive Advantage (Washington DC: Government Printing Office, May 3, 2019), 
i, https://media.defense.gov/2019/Apr/30/2002124828/-1/-
1/0/SOFTWAREISNEVERDONE_REFACTORINGTHEACQUISITIONCODEFORCOMPETITIVEAD
VANTAGE_FINAL.SWAP.REPORT.PDF (accessed March 26, 2020). 
5 U.S. Department of Defense, Defense Innovation Board, Software is Never Done: Refactoring the 
Acquisition Code for Competitive Advantage, 26. 
6 U.S. Department of Defense, Defense Innovation Board, Software is Never Done: Refactoring the 
Acquisition Code for Competitive Advantage, ix; U.S. Department of Defense, National Defense Strategy, 
(Washington DC: Government Printing Office, 2018), 10, 
https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-Strategy-Summary.pdf 
(accessed December 23, 2020).  
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Arming PMs with the new Agile Acquisition Framework (AAF) and encouraging 

iterative software development aimed at continuously delivering updated software to the 

warfighter presents new challenges and risks.  While rapid acquisition frameworks and 

iterative software development projects using early user testing are not inherently unsafe, 

these methods introduce the potential for new process seams that careless or 

unscrupulous managers and developers could exploit to shortcut safety and rush 

immature systems into the field.  Low AI literacy across the DoD could exacerbate the 

temptation to speed decision making.  Decision makers who lack sufficient familiarity 

with AI and autonomy technologies may not detect inflated promises or appreciate 

nuanced safety pitfalls when introducing learning algorithms into safety-critical 

applications.  Too often hardware-focused legacy acquisition practices lead developers to 

pursue reliability improvements to boost safety.  But reliability-focused methods using 

bottom-up analysis of isolated components cannot deal with the myriad complex system 

interactions and can lead to accidents otherwise deemed improbable.  Already the 

complexity of today’s weapon systems deranges system-level accident predictions based 

on bottom-up reliability approaches, therefore confounding accident prevention 

measures.7  Thus, developers and operators need to collaborate across the entire socio-

technical system to ensure that systemic pressures in one area do not drive the entire 

system into a hazardous state and unnecessarily risk increased accident potential.8  

Failing to adopt systems-based approaches capable of contending with increasing 

complexity tempts disaster by ignoring decades of experience with automated systems in 

 
7 Nancy G. Leveson, Engineering a Safer World: Systems Thinking Applied to Safety (Cambridge: MIT 
Press, 2011), 62-63.  
8 Nancy G. Leveson, Engineering a Safer World: Systems Thinking Applied to Safety, 75-82. 
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aviation and overlooks recent driverless car disasters involving learning algorithms that 

highlight the technology’s limitations and the human tendency to overtrust automation.   

Given the shortage of machine learning experts, industry and university machine 

learning programs have sprung up everywhere.  Using the AAF’s acquisition pathway for 

services, the DoD could work to resolve its literacy shortfall by contracting small scale 

online subscriptions or instruction from industry and academic institutions in order to 

develop an organic, DoD literacy curriculum.9   Regardless of the approach, the DoD’s 

literacy curriculum should ensure basic understanding of the algorithms, capabilities and 

applications, long-term sustainment considerations, and limitations.  With improved 

workforce literacy, individuals working seemingly unrelated projects to AI and autonomy 

will recognize the importance of data collection and curation.  Since massive quantities of 

labeled data powers learning algorithms, reinforcing the importance of accurately 

collecting data at the point of production will enable machine learning experts and data 

scientists to improve algorithm utility and applicability across the Joint Force.  In fact, the 

need for centralized data curation across the DoD demands a joint approach free of 

Service parochialism.  Feeding learning algorithms with data from across the Joint Force 

necessitates centralized data curation for the benefit of national security.  Breaking down 

data sharing barriers and encouraging data pooling remains an essential task for DoD 

leaders.   

Sustainment, a joint function common to all Services, offers an excellent example 

from which the DoD can model its literacy education.  Unlike other joint functions, 

 
9 Chris Telley, “Info Ops Officer Offers Artificial Intelligence Roadmap,” Breaking Defense, July 11, 2017, 
https://breakingdefense.com/2017/07/info-ops-officer-offers-artificial-intelligence-roadmap/ (accessed May 
3, 2020).  
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sustainment and logistics remains a largely unclassified endeavor with few security 

barriers.  Furthermore, sustainment offers concrete examples familiar to nearly every 

Soldier, Sailor, Airman, and Marine.  And unlike many of the other joint functions, the 

DoD already has a head start on the collection and curation of data from which to 

leverage the power of learning algorithms.   

Regardless of whether or not the DoD’s path for AI adoption is smooth, learning 

algorithms will persist and become more prominent.  They are changing and influencing 

our choices and reshaping our world.  Militaries who understand AI will leverage 

algorithms to master the art of winning without fighting.10  It is a false dilemma to 

suggest that the DoD’s slow adoption of AI technologies places the U.S. at a 

disadvantage.  The U.S. should avoid taking China’s bait and needlessly pouring money 

into an AI arms race.  Instead, the U.S. should patiently and deliberately invest in 

widespread AI literacy education.  Seeding workforce literacy and interest with the 

fundamental concepts of learning algorithms will cement sustainable AI and autonomy 

adoption across the DoD at a faster rate than top-down and peripheral approaches.  Only 

with a knowledgeable workforce will acquisition reforms enable the safe, rapid, 

responsive, and continuous development, testing, and operation of weapon systems 

capable of restoring U.S. access to contested environments and meaningfully assist 

decision makers sifting through the cacophony of disinformation and noise.  With 

widespread workforce literacy underpinning a competent Joint Force, leaders will be able 

to confidently rely on the decisions of commanders and managers at all echelons to safely 

 
10 Samuel B. Griffith, Sun Tzu: The Art of War (London: Oxford University Press, 1963), 78. 
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and effectively employ future AI and autonomous systems and maintain advantage over 

peer competitors.   
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