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1. Introduction

Every introductory calculus student solves the problem of a projectile trajectory in a gravitational
field for the case when there are no drag forces on the projectile. For that simplified case, the
trajectory traces out a parabolic path in the atmosphere over time, while the horizontal component
of velocity remains undiminished. In the real world, however, the projectile is subject to drag
forces, which, at high Reynolds number, are estimated to be proportional to the square of the
velocity. This drag force complicates the solution of the trajectory. Nonetheless, for certain
special cases, an analytical solution by way of the calculus is still achievable.

An analytical study was conducted to determine the distance a hyper velocity projectile would
travel in air. The projectile could be the tip particle of a shaped charge jet, an explosively formed
penetrator, a bullet, or a similar device. Four cases were considered, namely, firing the projectile
vertically upward, firing it horizontally under the restriction of “very small α” (where α is the
time-dependent trajectory angle), firing it horizontally under a small α restriction, and finally,
firing the projectile at a shallow trajectory (i.e., a small positive or negative launch angle). The
model is based on Newton’s Law and the forces acting on the projectile are drag and gravity.
Erosion, ablation, and strength of the projectile are not considered. This study is useful for
experimental-range safety considerations and possibly jet-particle recovery.

2. Flight Retardation Equations

Consider a projectile of mass m (kg) launched at an initial velocity V = V0 (m/s), at an angle α0

with respect to the horizon, subject to the initial (time t = 0 s) conditions that the horizontal
position x = 0 m, and with the vertical position y taking on a value of H , representing the height
above ground (m) of the launch.

The velocity components at any given moment are given as

vx = ẋ = V cosα (1)

and
vy = ẏ = V sinα . (2)
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where α is the time-dependent trajectory angle with respect to the horizon, and the overdot
denotes time differentiation. The aerodynamic drag force on the projectile is ρACdV 2/2, where
ρ is the density of air at sea level (1.293 kg/m3), g is the acceleration due to gravity (9.806 m/s2),
Cd is the drag coefficient, and A is the effective cross-sectional area (m2). The governing
equations, accounting for the effects of aerodynamic drag and gravity and neglecting ablation,
according to Newton’s 2nd Law, are:

mẍ = −ρACdV
2

2
cosα = −ρACd

2
ẋ
√
ẋ2 + ẏ2 (3)

and
mÿ = −ρACdV

2

2
sinα−mg = −ρACd

2
ẏ
√
ẋ2 + ẏ2 −mg . (4)

By lumping the term, B = ρACd/2m, we may restate the governing set of equations as

ẍ = −Bẋ
√
ẋ2 + ẏ2 (5)

ÿ = −Bẏ
√
ẋ2 + ẏ2 − g . (6)

The grouping within B, given by m/A, represents the areal density along the flight axis of the
projectile, and may be alternately expressed as ρpLp, where ρp is the projectile density and Lp is
the characteristic length of the projectile. Thus, an alternative expression for B is given by
B = ρCd/2ρpLp.

We do not propose here to solve this full set of highly nonlinear governing equations for arbitrary
launch angle α0. However, we will use equations 5 and 6 to generate simplified governing
equations for various special cases of the general problem.

3. The Vertical Model

For the case where the projectile is fired in the vertical direction, α remains at 90◦ throughout the
projectile ascent. Equation 5 becomes trivial, and the governing equation 6 becomes

ÿ = −(ρACd/2m)ẏ2 − g = −(Bẏ2 + g) , (7)

From straightforward integration, references (1–3), we may obtain the vertical velocity ẏ as a
function of time t:

ẏ(t) =

√
g

B
tan

[√
gB (tf − t)

]
. (8)
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For this special case, the subscript f denotes the extremum condition when the projectile reaches
maximum altitude. The time to reach the peak altitude is determined from equation 8 by the
condition ẏ(0) = V0:

tf =
1√
gB

tan−1

(
V0

√
B

g

)
. (9)

Assuming the projectile is launched from ground level, the altitude as a function of time is given
as

y(t) =
1

B

{
ln cos

[√
gB (tf − t)

]
− ln cos

(√
gB tf

)}
. (10)

The projectile’s peak altitude, which is reached at t = tf , is therefore

yf = −
1

B

{
ln cos

(√
gB tf

)}
. (11)

Upon the projectile’s return trip to the ground, the sense of y (and thus ẏ and ÿ) is reversed in
equation 7. The terminal velocity of the downward falling projectile is achieved when ÿ = 0.
This condition allows for the well-known algebraic solution for the terminal velocity as

ẏterm =

√
2mg

ρACd
=
√
g/B . (12)

4. The “Very Small α” Horizontal-Launch Model

Consider a projectile fired parallel to the x-axis as another special case of the governing
equations, where the initial height y(0) = H of the launch is very small, such that, over the
duration of the flight, the vertical velocity ẏ and, thus, the angle of attack α remain very small.
Specifically, we require constraints that both ẏ � ẋ and BV 2 sinα� g. Under the first
constraint, the velocity V =

√
ẋ2 + ẏ2 may be approximated as ẋ. Employing this

approximation, the second constraint may be restated as Bẋẏ � g, which effectively discards the
first term on the right-hand side of equation 6 (the vertical component of aerodynamic drag) as
insignificant relative to the second term (gravity g).

For this simplified case, in which the vertical component of aerodynamic drag is insignificant
with respect to the projectile weight, the governing equations (equations 5 and 6) become

ẍ = −Bẋ2 (13)
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ÿ = −g . (14)

From equation 14, ẏ = −gt and
y = −gt2/2 +H . (15)

Here, we denote the terminal condition with a subscript f when the projectile reaches the ground
(i.e., the x-axis), we have, as y → 0, that

tf =
√
2H/g . (16)

In the x direction, we may integrate equation 13 once to obtain

ẋ = V0/(BV0t+ 1) . (17)

Separate the variables and integrate again:

x = ln[BV0t+ 1]/B . (18)

Finally, as y → 0 at t = tf from equation 16, we obtain the velocity as
ẋf = V0/(BV0

√
2H/g + 1) and the position as

xf = ln[BV0
√
2H/g + 1]/B . (19)

The term xf represents the horizontal distance the projectile is anticipated to travel prior to
reaching the ground. As it reaches the ground, its horizontal velocity is not zero, but will be
given by equation 17 evaluated at t = tf .
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5. The Small α Horizontal-Launch Model

While the “very small α” horizontal-launch model allows for a closed-form solution of all terms,
it is overly restrictive to assume that the vertical component of aerodynamic drag force is
negligible relative to the projectile weight. As the projectile velocity becomes hypersonic, this
restrictive assumption becomes even less applicable. A more general solution to the governing
equations 5 and 6 may be obtained by relaxing this constraint.

With this revised approach, we still assume a small-angle constraint, α ≈ 0, which is equivalent
to ẏ � ẋ. However, we enforce no restrictions on the magnitude of the drag force relative to the
projectile weight. In this revised approach to the horizontal-launch model, the governing
equations become

ẍ = −Bẋ2 (20)

ÿ = −Bẋẏ − g . (21)

Equation 20 is the same as equation 13, which, in turn, will lead to the same results for ẋ and x,
governing the horizontal motion of the projectile. Thus, equations 17 and 18 likewise apply to
this more general horizontal-launch model, which we restate here for convenience:

ẋ = V0/(BV0t+ 1) (22)

x = ln[BV0t+ 1]/B . (23)

Turning to the equation 21, we use the chain rule to express ÿ as dẏ/dx · dx/dt, or ẋ dẏ/dx. This
equation may then be re-expressed as

dẏ

dx
+Bẏ = −g

ẋ
. (24)

However, from equations 22 and 23, we observe that 1/ẋ = eBx/V0. Thus, substituting into
equation 24,

dẏ

dx
+Bẏ = − g

V0
eBx . (25)

While equation 25 reveals that ẏ will clearly be exponential in x, it must also satisfy the initial
horizontal-launch condition that ẏ = 0 at t = 0 (which also coincides with x = 0).
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A solution is found in the expression

ẏ = − g

BV0
sinh(Bx) . (26)

Since eBx = BV0t+ 1, equation 26 may be integrated again for y, as

y =
gx

2BV 2
0

− gt2

4
− gt

2BV0
+H . (27)

Note that the term x has been used to replace a logarithmic expression, which arises in the
integration, ln(BV0t+ 1)/B, in equation 27. A Taylor expansion of this first term of equation 27
can be shown (to three terms) to be

gx

2BV 2
0

=
g

2B2V 2
0

ln(BV0t+ 1) = 0 +
gt

2BV0
− gt2

4
+ . . . (−1 < BV0t ≤ 1) . (28)

If only the first three terms of the expansion are taken, then equation 27 becomes
y = −gt2/2 +H , which is precisely the “very small α” horizontal-launch model of section 4.
Seeing that the “very small α” model uses only three expansion terms of the more accurate
logarithmic form and that it can be inadvertently applied when BV0t > 1, outside the zone of
convergence, provides additional emphasis on just how limited the “very small α” model is in its
utility. In contrast, the logarithmic form of x, as part of the full solution given by equation 27,
plays a significant role at later values of t, as the projectile travels downrange (i.e., at larger x).

Unlike the “very small α” horizontal-launch model of section 4, we cannot solve, in closed form,
for the time, tf , at which the projectile strikes the ground (i.e., when y = 0). However, a rapidly
converging iteration may be set up to obtain tf . Start with x = 0 and quadratically solve
equation 27 for a trial value of t for which y = 0. This trial value of time may be substituted into
equation 23 to obtain an updated value of projectile travel distance x. The updated value of x
may be employed as the iteration alternately employs equation 27 and equation 23. Convergence
is achieved rapidly, because of the logarithmic response of equation 23 is relatively insensitive to
large changes in x.
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6. The Shallow-Trajectory Model

We consider now the case where the projectile is fired essentially in the horizontal direction,
except for a slight perturbation in the initial elevation angle at launch, α0, such that α0 � 1.
Because α remains small, we retain the “small α” assumption (cosα ≈ 1, sinα ≈ α) and thus the
simplifications to the governing equations employed for the small α horizontal-launch model, as
given by equations 20 and 21.

Therefore, the solution to equation 20 remains unchanged, and the expressions given in
equations 22 and 23 remain in force for the shallow-trajectory model. The difference between
this case and the small α horizontal-launch model is in the initial condition on ẏ. Whereas
ẏ(0) = 0 identically in the horizontal-launch case, here we have

ẏ(0) = V0 sinα0 ≈ V0α0 . (29)

The solution, in this case, is generalized from the approach of section 5 and amounts to resolving
equation 25 under a different initial condition. The solution is given as

ẏ = −ge
−γ

BV0
sinh(Bx− γ) , (30)

where

γ =
1

2
ln

(
1 +

2BV 2
0 α0

g

)
. (31)

When α0 is zero, γ = 0 and equation 30 returns to the horizontal-launch form of equation 26.

With ẏ known through equation 30, the angle of attack α may also be expressed. It is given as

tanα =
ẏ

ẋ
=

g

2BV 2
0

(
e2γ − e2Bx

)
. (32)

Knowledge of α can be used to gauge when the governing constraint of the “small α” assumption
no longer applies.

Likewise, equation 30 may be integrated to obtain y as

y =

(
g

2BV 2
0

+ α0

)
x− gt2

4
− gt

2BV0
+H . (33)
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Analogous to the small α horizontal-launch model, the solution for impact time tf in the
shallow-trajectory model may be obtained through iteration of t and x, by initially assuming
xf = 0. This technique will converge when (g/2BV 2

o + α0) is nonnegative. The form of
equation 33 that quadratically solves for t when y = 0 is given by

tf = −
1

BV0
+

√√√√( 1

BV0

)2

+
4

g

[
H +

(
g

2BV 2
0

+ α0

)
xf

]
. (34)

Thus, the iteration is performed on equations 34 and

xf = ln[BV0tf + 1]/B (35)

to obtain tf and xf , respectively (since the projectile range will be obtained as xf = x(tf ) through
equation 23). For all the equations presented in this section, when α0 = 0, the small α
horizontal-launch model is recovered.

For negative-α0 cases where (g/2BV 2
o + α0) is negative, other techniques may be used to solve

for xf and tf if the iteration described above fails. For example, t may be progressively advanced
by small increments, with the corresponding x being calculated via equation 23. These
incremental values for t and x may be substituted into equation 33 until such time is reached
where y becomes negative. A suitably small time increment may be used to achieve the desired
resolution. The values of t and x when y changes sign are, in fact, tf and xf , respectively.

7. Computational Results

The cases studied in this section are based on reported drag coefficients for various shaped-
charge jet particles (4) or else constitute particles of a hypothetical construct. In all cases, the
particles considered are projected in air at or near the surface of the Earth. While cases 1 through
4 are based on the experimental data of Chou et al. (4), case 5 is hypothetically constructed as a
representative explosively formed penetrator (EFP) particle.

Results for the vertical-launch model are given in table 1. The particulate projectiles are
imagined to have been launched vertically from the surface of the Earth (Note: the drag
coefficients are based on the given “particle profile” figures, as if flying from left to right across
the page). The third column of the table denotes the particles’ areal density along their flight
axis. It can be obtained as mass per unit cross-sectional area or alternately as projectile density
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times effective length, depending on which data were measured/estimated. In the table, the
columns yf and tf , respectively, indicate the maximum altitude reached by the particle, and the
time to reach that altitude. The ẏterm column indicates the maximum (terminal) velocity with
which the particle returns back to the Earth’s surface.

Table 1. Cases studied using the vertical model (section 3).

Case V0 m/A = ρpLp Cd B Liner Shape Particle yf tf ẏterm

(m/s) (kg/m2) (m−1) Profile (m) (s) (m/s)

1 4650 27.0 0.68 0.0163 38 mm hemi 321.8 3.9 24.5

2 4250 156.8 2.11 0.0087 127 mm hemi 556.3 5.4 33.6

3 4230 146.3 2.31 0.0102 127 mm hemi(P) 481.5 4.9 31.0

4 7670 88.2 2.29 0.0168 81.3 mm cone 343.1 3.9 24.2

5 2000 445.0 1.00 0.00145 Hypothetical EFP 2197.9 13. 82.2

Results for the “very small α” horizontal-launch model are given in table 2 and may be compared
to those results for the small α horizontal-launch model, given in table 3. The parameter B is
constructed, in part, using the areal density along the flight axis of the projectile. The axial areal
density can be given as either m/A or ρpLp, which accounts for the two formulae for calculating
B, as mentioned in section 2. This also accounts for why cases 1–4 provide m and A, whereas
case 5 provides Lp and ρp.

Table 2. Cases studied using the “very small α” horizontal-launch model (section 4).

Case H V0 A m Cd B Liner Shape Particle xf tf

(m) (m/s) (m2) (kg) (m−1) (P=Precision) Profile (m) (s)

1 1 4650 0.152×10−4 0.00041 0.68 0.0163 38.1 mm hemi 218.5 0.45

2 1 4250 1.094×10−4 0.01715 2.11 0.0087 127 mm hemi 330.2 0.45

3 1 4230 1.150×10−4 0.01682 2.31 0.0102 127 mm hemi(P) 295.8 0.45

4 1 7670 0.322×10−4 0.00284 2.29 0.0168 81.3 mm cone 243.1 0.45

Lp ρp

(m) (kg/m3)

5 1 2000 0.05 8900 1.0 0.00145 Hypothetical EFP 577.0 0.45
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Table 3. Cases studied using the small α horizontal-launch model (section 5).

Case H V0 A m Cd B Liner Shape Particle xf tf

(m) (m/s) (m2) (kg) (m−1) (P=Precision) Profile (m) (s)

1 1 4650 0.152×10−4 0.00041 0.68 0.0163 38.1 mm hemi 238.2 0.63

2 1 4250 1.094×10−4 0.01715 2.11 0.0087 127 mm hemi 364.1 0.62

3 1 4230 1.150×10−4 0.01682 2.31 0.0102 127 mm hemi(P) 325.4 0.62

4 1 7670 0.322×10−4 0.00284 2.29 0.0168 81.3 mm cone 262.7 0.63

Lp ρp

(m) (kg/m3)

5 1 2000 0.05 8900 1.0 0.00145 Hypothetical EFP 632.4 0.52

For all horizontal cases studied here, the particles were imagined to have been launched
(horizontally) from an elevation of 1 m above the Earth. For the particles whose characteristics
were drawn from Chou et al. (4), the shape of the particle (as projected upon an x-ray) is shown in
the “Particle Profile” column. As before, the orientation of the particle used to calculate the drag
coefficient assumes the given particle shapes are travelling across the page from left to right. The
column listed as xf shows the predicted travel range of the particle, while the tf column gives the
time at which the particle impacts the Earth’s surface. In the “very small α” horizontal-launch
model, all impact times are identical at 0.45 s, because they are all launched at 1 m of altitude
and, in the vertical direction, are subject only to downward gravitational forces. The more
general small α horizontal-launch model reveals longer times and larger distances traveled, by
comparison. This extension of the flight duration is because the downward motion of the particle
towards the Earth is retarded by a component of the particle’s drag force.

Finally, the case of shallow trajectory was studied for these five cases. Initial launch angle (α0)
was varied from −0.5◦ to 2◦, and the resulting horizontal travel range was calculated. The results
are presented in figure 1, for the five particles already studied. For positive launch elevations, the
range increases rapidly as elevation increases. However, the range eventually flattens out, with
increasing elevation, in a manner more severe than would be expected from a drag-free parabolic
trajectory. In essence, the range is being saturated as a result of horizontal deceleration rate,
despite the additional vertical boost provided by an increase in elevation angle. Nonetheless, for
particles with a high length-to-diameter ratio, which remain aerodynamically stable in flight (for
example, case 5), drag plays a lesser role in the projectile’s flight. In such cases, travel range can
be significantly increased by even small changes in the initial elevation angle.
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Figure 1. Influence of small elevation angle upon projectile
range for projectiles fired from 1 m in elevation.

The figure also shows the effect of negative launch elevation, down to −0.5◦. As launch
elevation becomes more negative, all cases converge toward the same curve. Such behavior is
also expected, since for negative elevations, the range is increasingly determined by launch
orientation and less by drag. In the limit, for high-speed launches at negative elevation, the range
will approach xf → H cot(−α0). This result is independent of the specific characteristics of
particle geometry, drag, etc., and will depend upon only the initial launch height H and the launch
angle α0, if the launch velocity is sufficiently large to overwhelm the effects of gravity.

8. Summary and Conclusions

It is of interest to know how far a jet particle from a shaped charge or similar device will travel if
fired into air. This interest stems from the fact that some test ranges are located near bodies of
water, highways, or structures and the possibility exists that the projectile may miss or perforate
the intended target. Toward this end, models were constructed to predict projectile travel in a
horizontal, vertical, or shallow angle trajectory based on the measured particle characteristics and
calculated drag coefficients from Chou et al. (4). For the five particular cases studied, a projectile
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could travel from 320 to 2200 m in the vertical direction with a terminal velocity of 24 to 82 m/s.
Under horizontal launch, according to the small α model, the projectile could travel from 238 to
632 m in the horizontal direction. Using the less accurate “very small α” model, the estimated
ranges are 217 to 577 m, which, for the test cases studied, is about a 10% underprediction as
compared to the more accurate small α model. When the shallow-trajectory model was
employed, these same test cases studied could travel from 314 to 1880 m for shallow launch
trajectories of 2◦.
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G SIMONSON L-099
R BARKER L-020 PO BOX 808
LIVERMORE CA 94550

5 LOS ALAMOS NATL LABORATORY
L HULL MS A133
C WINGATE MS D413
C RAGAN MS D449
E J CHAPYAK MS F664
J BOLSTAD MS G787
PO BOX 1663
LOS ALAMOS NM 87545

3 SOUTHWEST RSRCH INST
C ANDERSON
S A MULLIN
J WALKER
PO DRAWER 28510
SAN ANTONIO TX 78228-0510

3 DE TECHNOLOGIES
R CICCARELLI
W FLIS
W CLARK
100 QUEENS DR
KING OF PRUSSIA PA 19406

1 TEXTRON DEFNS SYS
C MILLER
201 LOWELL ST
WILMINGTON MA 01887-4113

1 LOCKHEED MARTIN ELECT & MIS
G W BROOKS
5600 SAND LAKE RD MP 544
ORLANDO FL 32819-8907

1 GD OTS
J OSBORN
4565 COMMERCIAL DR A
NICEVILLE FL 32578

2 GD OTS
D BOEKA
N OUYE
2950 MERCED ST STE 131
SAN LEANDRO CA 94577

1 JAMS PROJECT OFFICE
ATTN: SFAE-MSLS-JAMS-SYS-O
C ALLEN
5250 MARTIN RD
REDSTONE ARSENAL AL
35898

1 HALLIBURTON ENERGY SVCS
JET RESEARCH CTR
D LEIDEL
PO BOX 327
ALVARADO TX 76009-9775

1 NORTHROP GRUMMAN
DR D PILLASCH B57 D3700
PO BOX 296
1100 W HOLLYVALE ST
AZUSA CA 91702
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NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

1 INTRNTL RSRCH ASSOC
D ORPHAL
4450 BLACK AVE
PLEASANTON CA 94566-6105

ABERDEEN PROVING GROUND

67 DIR USARL
RDRL SL

P TANENBAUM
RDRL SLB

R BOWEN
RDRL SLB D

R GROTE
L MOSS
J POLESNE

RDRL SLB E
M PERRY
C BARKER
D FORDYCE
P HORTON
D HOWLE
D LYNCH
M MAHAFFEY
R SAUCIER

RDRL SLB G
P MERGLER

RDRL SLB S
R BOWERS
M OMALLEY

RDRL SLB W
L ROACH
J ABELL
W MERMAGEN

RDRL WM
P PLOSTINS

RDRL WMS
T ROSENBERGER

RDRL WML
M ZOLTOSKI

RDRL WML C
K MCNESBY

RDRL WML H
T EHLERS
T FARRAND
E KENNEDY
L MAGNESS
C MEYER
B SORENSEN
R SUMMERS

RDRL WMM B

G GAZONAS
RDRL WMP

P BAKER
S SCHOENFELD

RDRL WMP B
C HOPPEL
S R BILYK
D CASEM
M GREENFIELD
C WILLIAMS

RDRL WMP C
T BJERKE
J BARB
N BRUCHEY
T DIGLIANI
R MUDD
S SEGLETES (5 COPIES)
W WALTERS (5 COPIES)

RDRL WMP D
J RUNYEON
R FREY
D KLEPONIS
H W MEYER
B SCOTT
K STOFFEL

RDRL WMP E
M BURKINS
W A GOOCH
E HORWATH
B LOVE

RDRL WMP F
N GNIAZDOWSKI
E FIORAVANTE

RDRL WMP G
N ELDREDGE
S KUKUCK
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