

The Soldier and Squad Trade Space Analysis
Framework (SSTAF)

by Ronald A. Bowers

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

DEVCOM DAC-TR-2021-007
January 2021

DESTRUCTION NOTICE

Destroy by any method that will prevent disclosure of contents or reconstruction of the
document.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position
unless so specified by other official documentation.

WARNING

Information and data contained in this document are based on the input available at the time of
preparation.

TRADE NAMES

The use of trade names in this report does not constitute an official endorsement or approval of
the use of such commercial hardware or software. The report may not be cited for purposes of
advertisement.

The Soldier and Squad Trade Space Analysis
Framework (SSTAF)

by Ronald A. Bowers
DEVCOM Data & Analysis Center

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

DEVCOM DAC-TR-2021-007
January 2021

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for
Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE
January 2021

2. REPORT TYPE
Technical Report

3. DATES COVERED (From - To)
 February 2019–September 2020

4. TITLE AND SUBTITLE
The Soldier and Squad Trade Space Analysis Framework (SSTAF)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Ronald A. Bowers

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Director
U.S. Army DEVCOM Data & Analysis Center
6896 Mauchly Street
Aberdeen Proving Ground, MD 21005-5071

8. PERFORMING ORGANIZATION REPORT
 NUMBER

DEVCOM DAC-TR-2021-007

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The U.S. Army is seeking to accelerate the development of systems to counter near-peer adversaries in a multi-domain environment. To do
so, the Army plans to leverage modeling and simulation to help guide its research, development, engineering and acquisition efforts. One
particularly difficult modeling problem is estimating Soldier performance in a combat environment. To provide the required capability, the
U.S. Army Combat Capabilities Development Command Data & Analysis Center is developing the Soldier and Squad Trade Space
Analysis Framework (SSTAF). SSTAF is a software infrastructure system for integrating multiple human performance and other models to
provide a unified representation of Soldier state, capability and behavior. SSTAF models the Soldier as a system, where the results of one
model can affect the results of other models, and both the positive and negative effects of Soldier equipment can be captured.

15. SUBJECT TERMS
Soldier performance, squad performance, Soldier lethality, modeling and simulation
16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT
18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Ronald A. Bowers

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

SAME AS
REPORT

119 19b. TELEPHONE NUMBER
(include area code)
(410) 278-3348
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

iii

Table of Contents

List of Figures ..v
List of Code Listings .. vi
Acknowledgements .. viii
Executive Summary ... ix

1. INTRODUCTION ..1
1.1 Motivation ..2
1.2 Purpose and Organization of the Report ..3

2. TECHNOLOGIES ..4
2.1 Java ...4

2.1.1 Java Module System ...4
2.1.2 Method References and Lambdas ..5

2.2 JavaScript Object Notation ...5
2.3 Gradle ...6

3. ARCHITECTURE OVERVIEW ...7
3.1 Requirements for the SSTAF Architecture ..7
3.2 Overview and Key Concepts ..8

3.2.1 Functional Concepts ...10
3.2.2 Structural Concepts ..12

3.3 Features, Handlers and Agents ...15
3.3.1 The Feature Interface ...16
3.3.2 The Handler Interface ...18
3.3.3 The Agent Interface ..20
3.3.4 Feature Specification ...20
3.3.5 The Requires Annotation ...22

3.4 Entities ..24
3.4.1 The Entity Class ...26
3.4.2 Humans, Soldiers and Units ...32

3.5 Enhancing Entities with Features ...32
3.6 Messages and Addresses ..46
3.7 Session and Session Messages ..48
3.8 EntityController ..51
3.9 Repeatability ...54
3.10 Verification ...55

4. IMPLEMENTING FEATURES ..56
4.1 Blackboard ..56

4.1.1 Requirements ..56
4.1.2 Build Configuration ..56
4.1.3 Blackboard Interface ...58
4.1.4 Message Classes ...60
4.1.5 Implementation Class ...61

iv

Table of Contents

4.1.6 Module Configuration ..65
4.2 TelemetryAgent ..66

4.2.1 Requirements ..66
4.2.2 The StateProperty Annotation ...67
4.2.3 Implementation ...67
4.2.4 Configuration and Initialization ...69

4.3 ManeuverEntityAgent and ManeuverCentralAgent72
4.3.1 Requirements ..72
4.3.2 Build Configuration ..73
4.3.3 The API Module ...74
4.3.4 Implementation ...77

5. ASSEMBLING A SIMPLE APPLICATION ..84
5.1 Build Configuration ..84
5.2 Implementation Classes ..86

5.2.1 Building the AnalysisRunner ..86
5.2.2 Command File and Parsing ..87
5.2.3 The Run Method ..89

6. IMPLEMENTED MODELS ..91
6.1 Operational Requirements-based Casualty Assessment ...92
6.2 Anthropometry ...93
6.3 Physiology ..93
6.4 Equipment Management ...94
6.5 Fatigue Aim ..94
6.6 ACQUIRE ..95
6.7 Telemetry ..95

7. FUTURE WORK ...96
7.1 Santos ...96
7.2 SSTAF-as-a-Service ...96
7.3 Squad Operational Value Evaluation using Realistic Metrics and Tactical Capability

Hierarchies ..97

8. CONCLUSION ..99

9. REFERENCES AND DOCUMENTS ...100

 – Building the Soldier and Squad Trade Space Analysis Framework (SSTAF) ... A-1

 – List of Acronyms ... B-1

 – Distribution List ... C-1

 v

List of Figures

Figure 1. SSTAF concept .. 2
Figure 2. SSTAF system architecture .. 9
Figure 3. Entities and features ... 11
Figure 4. Core module ... 14
Figure 5. Session module .. 14
Figure 6. Feature class hierarchy .. 16
Figure 7. Feature interface .. 17
Figure 8. Handler interface .. 18
Figure 9. ProcessingResult ... 20
Figure 10. Agent interface ... 20
Figure 11. Feature specification ... 21
Figure 12. Requires annotation ... 22
Figure 13. Entity class hierarchy .. 25
Figure 14. Entity class ... 27
Figure 15. MessageDriven interface.. 28
Figure 16. FeatureManager class ... 29
Figure 17. EntityHandle class .. 31
Figure 18. Message hierarchy ... 47
Figure 19. Session class and its inner classes ... 49
Figure 20. SSTAFCommand and SSTAFEvent ... 50
Figure 21. TickResult class ... 50
Figure 22. SSTAFResult and SSTAFError .. 51
Figure 23. EntityController class and its inner classes .. 52
Figure 24. Inheritance hierarchy for the Blackboard interface .. 59
Figure 25. AddEntryRequest class ... 60
Figure 26. GetEntryRequest class ... 61
Figure 27. AddEntryResponse class ... 61
Figure 28. GetEntryResponse class ... 61
Figure 29. RemoveEntryRequest class .. 61
Figure 30. RemoveEntryResponse class ... 61
Figure 31. The InMemBlackboard class hierarchy .. 62
Figure 32. The TelemetryAgent class hierarchy .. 68
Figure 33. Position class .. 75
Figure 34. Speed class ... 75
Figure 35. Heading class .. 75
Figure 36. ManeuverState class .. 76
Figure 37. ManeuverStateMap class ... 76
Figure 38. ManeuverProvider class ... 77
Figure 39. SSTAF models ... 92
Figure 40. Fatigue aim model .. 95
Figure 41. The Squad OVERMATCH system .. 97

 vi

List of Code Listings

Code Listing 1. JSON Configuration File ..6
Code Listing 2. Constructor for the BaseFeature Class ..18
Code Listing 3. Idiomatic No-Arg Constructor for a Feature ..18
Code Listing 4. Method Signature for the Process Method ..19
Code Listing 5. Example of Requires Annotation Use ...23
Code Listing 6. Requires Annotation with Minimum Version Specification23
Code Listing 7. Requires Annotation with Exact Version Specification23
Code Listing 8. Fluent Builder Statement ...30
Code Listing 9. Soldier Configuration File ..33
Code Listing 10. Soldier Construction Example ...34
Code Listing 11. Soldier.Factory..35
Code Listing 12. Soldier.Builder..36
Code Listing 13. Human.Factory ..37
Code Listing 14. EntityFactory Parse Method ...38
Code Listing 15. Entity Builder ...39
Code Listing 16. Soldier Constructor ...39
Code Listing 17. Human Constructor ..40
Code Listing 18. Entity Constructor ...40
Code Listing 19. FeatureManager Constructor ..41
Code Listing 20. Resolver LoadAndResolveDependencies Method42
Code Listing 21. Resolver resolveDependencies Method ...43
Code Listing 22. The loadRequiredServices Method ...44
Code Listing 23. The tick Method ...53
Code Listing 24. The build.gradle file for the Blackboard API Module57
Code Listing 25. The build.gradle file for the Blackboard Implementation Module .57
Code Listing 26. The Blackboard Interface ...60
Code Listing 27. The ContentHandled Method ...64
Code Listing 28. The Process Method ..64
Code Listing 29. The AddEntry Method ..65
Code Listing 30. The Module_info.java File for the Blackboard API65
Code Listing 31. Module_info.java File for the Blackboard Implementation Module ...66
Code Listing 32. The build.gradle File for TelemetryAgent69
Code Listing 33. Excerpt from TelemetryAgent ..69
Code Listing 34. TelemetryAgent Configuration ..70
Code Listing 35. The configure Method ...71
Code Listing 36. The init Method ...71
Code Listing 37. The tick Method ...72
Code Listing 38. Build Configuration for the Maneuver API ...74
Code Listing 39. Build Configuration for ManeuverEntityAgent74
Code Listing 40. Build Configuration for ManeuverCentralAgent.................................74
Code Listing 41. The ContentHandled Method ...77
Code Listing 42. The ManeuverEntityAgent Tick Method ...79

 vii

Code Listing 43. The ManeuverCentralAgent Process Method80
Code Listing 44. The ManeuverCentralAgent Tick Method ...80
Code Listing 45. The ManeuverEntityAgent Process Method ..82
Code Listing 46. Application Build File..85
Code Listing 47. The Factory Method ..87
Code Listing 48. Command File for the Example Application ...88
Code Listing 49. The ProcessObject Method ..88
Code Listing 50. The makeContents Method ..89
Code Listing 51. The Run Method ..90

 viii

Acknowledgements

The U.S. Army Combat Capabilities Development Command Data & Analysis Center
recognizes the following individuals for their contributions to this report:

The author is

Ronald Bowers, DEVCOM Data & Analysis Center

The author wishes to acknowledge the contributions of the following individuals for their
assistance in the creation of this report:

Timothy Myers, DAC

Gregory Dietrich, DAC

Dr. Karim Abdel-Malek, University of Iowa

Dr. Rajan Bhatt, University of Iowa

 ix

Executive Summary

This report documents the Soldier and Squad Trade Space Analysis Framework (SSTAF).
SSTAF is a software infrastructure system for integrating multiple human performance and other
models to provide a unified representation of Soldier state, capability and behavior. SSTAF
models the Soldier as a system where the behavior of one model can affect the behavior of other
models, and both the positive and negative effects of Soldier equipment are represented. The
ultimate goal of SSTAF is to provide an architecture that enables the development of digital
twins for specific Soldiers.

The report details the architecture of the SSTAF software and the technology used to develop the
system, and provides multiple examples to explain how to integrate human performance and
other models into SSTAF and how to integrate SSTAF into higher-level systems such as force-
level models. It also discusses the models that have been developed or adapted to work with
SSTAF as well as planned future efforts.

 1

1. INTRODUCTION

In this report, I document the architecture of the Soldier and Squad Trade Space Analysis
Framework (SSTAF). SSTAF is a software infrastructure system for integrating multiple human
performance and other models to provide a unified representation of Soldier state, capability and
behavior. SSTAF models the Soldier as a system, where the results of one model can affect the
results of other models, and both the positive and negative effects of Soldier equipment can be
captured. The ultimate goal of SSTAF is to provide an architecture that enables the development
of digital twins for specific Soldiers. These digital twins can be used not only for material trade
space analysis but also for interactive training and mission planning.

The key capabilities of SSTAF are the following:

• Model Soldier state and capability, update the state according to simulation events and
modify the behavior of integrated models according to the current state.

• Support flexible anthropometric, human performance and equipment configurations to
enable modeling at multiple levels of resolution to include modeling specific individual
Soldiers.

• Provide an extensible application programming interface (API) usable for both interactive
systems and force-on-force models.

Figure 1 shows an overview of the SSTAF concept. The box at the bottom shows the SSTAF
system. Multiple models that predict various aspects of the Soldier can be loaded into the
framework. SSTAF models can depend on other models. SSTAF provides mechanisms to
reconcile dependencies between models and enable models to update each other according to
what has occurred in the simulation.

The upper box shows how SSTAF can be integrated into client applications to fulfill user-
specific purposes. This aspect of SSTAF illustrates one of its primary merits. SSTAF provides
model developers with a single target for integration. Rather than having to integrate models
into multiple environments, models can be integrated into SSTAF and SSTAF provides the
integration into higher-level constructs. This approach provides two significant benefits. First, it
reduces development costs and repeated work since both models and client applications can
program to stable SSTAF interfaces. Second, this approach helps ensure that human
performance and behavior are represented consistently across different environments.

 2

Figure 1. SSTAF concept

1.1 Motivation

SSTAF was inspired by the stated requirements of the Soldier Lethality (SL) Cross Functional
Team (CFT). These requirements were specified in 2018 through the SL CFT modeling and
simulation strategy and were reaffirmed in August 2020. The strategy is expressed by the
following vision and objective:

• Vision Statement
Develop a modeling and simulation system that is able to provide timely, affordable trade
space analysis at the Squad level with enough fidelity to enable decision-making.

• Long-Term Objective
Develop a squad modeling and simulation system with a single front-end user interface,
preloaded with multiple approved vignettes and capable of running closed form, to
conduct trade analysis. Update the system with emerging technologies/techniques
(friendly and adversary) as they emerge.

I designed SSTAF to enable the vision by providing the mechanisms to model the Soldier with
enough fidelity to enable decision-making. The CFT’s long-term objective to develop a
complete trade space analysis environment will be realized by the Squad Operational Value

 3

Evaluation using Realistic Metrics and Tactical Capability Hierarchies (Squad OVERMATCH)
system. Squad OVERMATCH is discussed in Section 7.3.

1.2 Purpose and Organization of the Report

This report serves two primary purposes. First, it documents the architecture of SSTAF Version
1.0 to help those who might maintain and extend it. Second, it instructs developers on how to
develop SSTAF-compliant models and integrate SSTAF into higher-level models and
applications.

The report comprises four parts. The first part consists of Sections 2 and 3, which discuss the
architecture of the SSTAF system and the technologies that I used to enable it. In the second
part, Sections 4 and 5, I use multiple examples to explain how to implement SSTAF-compliant
models and build SSTAF-based applications. In the third part, Section 6, I briefly discuss some
of the models that have been adapted and integrated into SSTAF. In the final part, Section 7, I
discuss planned future directions for the project.

 4

2. TECHNOLOGIES

In this section, I describe the technologies that I used to implement SSTAF. In general, I chose
these technologies to enable quick and low-risk development of the core system architecture.

2.1 Java

I implemented the SSTAF core system in Java. I chose Java for several reasons. First, I am
most fluent in Java and can implement concepts very rapidly using the Java platform. Second,
integrated development environments (IDEs) for Java enable rapid development and easy
refactoring. This is particularly important early in development when concepts, architectures and
APIs are most likely to change, as they did several times in the early stages of development.
Next, the Java continuous integration tool chain is mature and well supported in cloud
environments like DI2E and the U.S. Army Futures Command Modernization Application and
Data Environment (MADE). Two of the three combat simulations targets for integration,
specifically One Semi-Automated Force (OneSAF) and Combat XXI, are implemented in Java,
so integration with those systems will be easier. Finally, after a period of stagnation, the Java
platform is now receiving frequent improvements in response to developer needs. These
improvements include ahead-of-time compilation to native applications and libraries.

I implemented and tested SSTAF Version 1.0 using Java 11. I chose this version because it is
the first long-term support version that includes the features upon which SSTAF relies. I discuss
those features in the following two sections. An additional reason for using Java 11 is that it is
the version that OneSAF is currently using. Since OneSAF will be the first integration target for
SSTAF, it is appropriate to run on the same platform.

2.1.1 Java Module System

SSTAF makes extensive use of the Java Module System (JMS). JMS is an enhancement to the
Java language and platform that facilitates the development of reusable software components.

Introduced in Java 9 as a way to shrink the size of Java applications, JMS establishes the module
as a first-class Java language and platform construct. Modules comprise one or more packages
that are bundled together in a single jar file along with a module-info.java file that specifies
the properties of the module.

Through the module-info.java file, the module can specify which packages the module
exports, that is, made visible to other modules. This provides a layer of visibility control beyond
the private, package and public visibility specifications of earlier Java versions. The effect is
that classes within the module that are declared public but are not in an exported package are
effectively private to the entire module. Such classes can be accessed freely from within the

 5

module but are not accessible from other modules. This extra level of access control facilitates
building modules with narrow, well-defined interfaces that hide their internal implementations.

Modules can declare dependencies on other modules. This is done using a Requires
specification in the module-info.java file. If a module specifies a requirement for another
module and that module is not found when the referring module is loaded, the virtual machine
will throw an error and exit. Modules are made accessible to an application by placing them on
the module path. The module path is the module-oriented successor to the legacy Java class
path.

The JMS aligns strongly to the Java service paradigm and SSTAF utilizes this alignment to
enable dynamic loading of models and other features. Modules can declare that they implement
a service interface by providing a provides statement in the module-info.java. This
support for service architectures enables an application to use a ServiceLoader to find
implementations of desired interfaces among the modules provided on the module path. SSTAF
leverages the service paradigm to enable the dynamic loading of models and flexible assembly of
Soldier configurations. The details of this mechanism are discussed in Section 3.4.

2.1.2 Method References and Lambdas

SSTAF use two additional recently added Java features. These are method references and
lambdas. Both features were introduced in Java 8. The primary motivation for the addition of
these features was to support stream processing; however, both are very helpful in other use
cases.

Method references are approximately equivalent to function pointers in C and C++. They
specify the name and the containing object of a method and they can be passed as parameters to
other methods. The most common use of method references in SSTAF is in input parsers where
they are used to reference setters in builder objects. This construct is described in more detail in
Section 3.3.1.

Lambdas are anonymous blocks of code that can also be passed as parameters to methods.
Lambdas have the additional feature of having read access to variables in the code block in
which the lambda is defined. Thus, lambdas can be passed as snapshots of the object state to
other methods. The most common use of lambda expressions in SSTAF is as the argument to
internal iteration methods such as Collections.forEach().

2.2 JavaScript Object Notation

SSTAF uses JavaScript Object Notation (JSON) for its configuration files. I chose JSON for this
role because it is relatively easy for a human to read and write, especially in an IDE.

 6

Furthermore, it requires much less ceremony, that is, fewer superfluous symbols and tags than
Extensible Markup Language (XML).

To simplify processing JSON configuration files, SSTAF includes the JSONUtilities class.
JSONUtilities includes numerous static methods for loading JSON files and processing the
contents. One particularly useful feature of JSONUtilities is its ability to handle file
references in place of embedded objects. This enables the user to split analysis inputs into
smaller files and reuse them rather than embedding numerous copies of the same information.
For example, the configuration for an M4 carbine and its magazines can be defined once and
included by file reference in each Soldier. Code Listing 1 shows an extracted section from a
SSTAF demonstration input file and demonstrates mixing file references and in-line object
definitions.

Code Listing 1. JSON Configuration File

{
 "configurations": {
 "Simple Anthropometry": "Anthropometry.json",
 "Kit Manager": "../common/StandardKit.json",
 "Dynamic Aim": "dynamicAimConfig.json",
 "Telemetry Agent": {
 "statesToRecord": [
 "Aim Internals",
 "Muscle Metrics"
]
 }
}

Note that although SSTAF-compliant models are not required to use JSON for configuration, as
part of the model initialization sequence, SSTAF will attempt to provide a JSON configuration to
the model. Therefore, if the model uses a different configuration mechanism, it is best practice
that the model support receiving at least the filename for the model-specific configuration file
through the JSON configuration mechanism. This will enable a single input file graph to
configure the SSTAF system and models. The details of the configuration mechanism are
discussed in Section 3.4.

2.3 Gradle

SSTAF uses Gradle for its build system. I chose Gradle was over Maven, because it is
somewhat more flexible and faster. However, the main advantage is that Gradle uses Groovy for
its configuration language whereas Maven uses XML. The Appendix provides instructions on
how to obtain and build the SSTAF source code.

 7

3. ARCHITECTURE OVERVIEW

This section describes the details of the SSTAF architecture and consists of four parts. The first
part describes the requirements and goals that guided the development of the architecture. The
second is a high-level overview of the architecture and its key concepts. The third part drills
down to describe the details of the architecture, including model implementation and
configuration. The fourth section describes other topics such as stochastic analysis and its
corollary, repeatability.

Unified Modeling Language (UML) diagrams are used throughout this and later sections to
represent elements of the architecture. UML provides a standard way to represent object-
oriented systems like SSTAF as well as the processes that are executed on the system. A simple
reference for UML can be found at http://holub.com/uml/.

3.1 Requirements for the SSTAF Architecture

The SSTAF concept shown in Section 1 reveals several requirements for the architecture. From
the conceptually architecture, it is apparent that the system is required to do the following:

• represent a Soldier,
• enable multiple models of various aspects of Soldier state and capability to be integrated

into the system,
• synchronize Soldier state and capability between models, and
• interact with different types of client applications.

In addition to these requirements, another requirement arose during early conversations with the
Soldier performance community. This requirement was that models simply “plug into” SSTAF
rather than be hard-wired into it. This requirement was intended to allow models to be
developed independently from the framework and eliminate the need for U.S. Army Combat
Capabilities Development Command Data & Analysis Center to manage integration of all of the
models.

Solely in themselves, these requirements were not sufficient to force architectural decisions.
Additional conversations with the community, analysis and experience with previous systems led
to the derivation of more detailed requirements that did enable development. The derived
requirements for SSTAF include the following:

• Dynamic (i.e., runtime) extensibility
• Clean separation of the core system from the models
• Simple and stable plugin and application interfaces
• The ability for models to interact with other models
• The ability to represent both Soldiers and noncombatants

https://holub.com/uml/

 8

• The ability to aggregate Soldiers into units and units into hierarchies to enable Squad-
and higher-level models and performance metrics

• The ability to scale the analysis to large numbers of Soldiers to support force-on-force
models

• The ability to exploit multi-core, multi-CPU and multi-computer (cloud and high-
performance computing) systems to maximize performance

• Repeatable analyses
• Support for distributed development of both models and the core system
• Robust verification infrastructure

With the exception of multi-computer deployment, SSTAF 1.0 meets all of these requirements.
How each requirement is achieved is discussed throughout the report.

3.2 Overview and Key Concepts

The architecture of SSTAF-based systems is illustrated in Figure 2. Each system can be
envisioned as comprising three levels. At the top level are the SSTAF-based applications. These
include force-level models such as OneSAF, interactive visual simulation such as the Synthetic
Training Environment and other custom applications. At the bottom level are the SSTAF-
compliant models. These models respond to requests from the application and calculate the state
and capabilities of the Soldiers or other humans in the simulation. The SSTAF system modules
sit in the middle and provide the infrastructure for loading and using the models. The SSTAF
system connects the models together and enables the client application to make requests from
them.

The diagram in Figure 2 reflects several of the major system requirements. First, the layered
separation between application, framework and models addresses the requirement for clean
separation between the framework and models. The framework has no dependencies on the
models and the models have a single dependency on the framework that enables them to work in
the system. The diagram also shows that dynamic extensibility is achieved using runtime
plugins and that models are able to interact with each other using arbitrary interfaces defined by
the models. Furthermore, the diagram illustrates that the interfaces between the application,
framework and plugin layers are simple and owned by the SSTAF framework. Since the
framework has no dependencies on the models or the applications, these interfaces will be very
stable.

 9

Figure 2. SSTAF system architecture

Some key aspects of the SSTAF system modules are that they are small and contain no sensitive
information. This enables the SSTAF core to be shared with non-DOD organizations so that
they can develop SSTAF-compliant models. Furthermore, because models are not hard-wired
into SSTAF, SSTAF can be integrated into models like OneSAF without forcing the set of
SSTAF-compliant performance models to be included with it. This makes distribution easier and
facilitates distributed development of models as specified in the requirements. Finally, I
implemented the SSTAF system using well-established technologies and an uncomplicated
design. This reduced risk and enabled DEVCOM Data & Analysis Center to reach initial
capability quickly. Thus, going forward, development effort can be concentrated on the models
and the applications.

 10

To organize the presentation of the architecture, the core concepts that guide the implementation
of SSTAF and SSTAF-based systems are divided into two categories. The first category consists
of the functional concepts. These concepts establish how objects in the analytic domain, such as
weapons, humans, Soldiers and units, are represented. The second category consists of the
structural concepts. This category describes how the SSTAF core, SSTAF-compliant models
and SSTAF-based applications are constructed. It includes the architectural patterns that were
used in the design. The structural and functional concepts overlap to define how SSTAF-
compliant models such as those for mobility, injury or target detection are implemented.

3.2.1 Functional Concepts

There are three functional constructs that are central to SSTAF. These are entities, features and
messages. Entities represent real-world things in SSTAF, specifically humans, Soldiers and
units. Features implement models and add capabilities to entities. They are loaded into the
system dynamically using plugins. Messages are used to communicate between individual
entities or between the client environment and an entity. Features, specifically the Handler
subtype, process messages when they are received by an entity. Figure 3 shows the Entity
class hierarchy and its relationship to features and messages.

 11

Figure 3. Entities and features

At the base of the Entity class hierarchy is the MessageDriven interface. MessageDriven
defines the contract for objects that consume and emit messages. MessageDriven objects have
two message queues, one for messages going into the object and the other for messages coming
out.

 12

Messages are objects passed between entities to issue a request for information or involve a
command. The Message interface describes the essential behavior of a message object in
SSTAF. A message object is described more precisely as an envelope because the important part
of the message is not the outer class but its content. The content for a message can be of any
type. This arrangement enables feature modules to add new types for communication without
sub-classing Message.

Features are classes used to implement models or to add other capabilities to entities. They are
implemented as plugins and packaged as JMS modules as described in Section 3.2. The features
used by an entity during a run are specified in the analysis configuration files and added to the
entity when the configuration files are read and the entity is created.

There are three types of features. The simplest feature type implements the base Feature
interface. Implementing Feature enables a class to be loaded by the ServiceLoader and
added to an Entity. The second type of feature implements the Handler interface. Handler
extends Feature and adds the ability to receive, process and emit messages. The third type of
feature is the Agent. The Agent interface extends Handler and adds a method that will be
invoked on every tick of the simulation clock. The details of the Feature, Handler and Agent
interfaces and their implementations are described in Sections 3.2.1, 3.2.2 and 3.2.3,
respectively.

The Entity class is the base class for all simulation participants. It provides the core
implementation for the MessageDriven architecture by providing the queues for receiving and
returning messages and a mechanism for dispatching the messages to the appropriate loaded
Handler. The Entity class and its subtypes are discussed in more detail in Section 3.3.

The programmatically declared interfaces for Entity and its descendants are simple. Entities
are enhanced through composition rather than inheritance. They are enhanced at runtime by the
features that have been added to the entity and the messages to which those features respond.
The differences between Human, Soldier and Unit are small and are related solely to the
ability to construct military hierarchies.

3.2.2 Structural Concepts

The core structural concepts employed in the SSTAF architecture might be apparent from the
name of the project. SSTAF is a software framework that is enhanced by user-defined plugins.

A framework is a software scaffolding. It provides infrastructure and support services that
facilitate further development but it is not itself a complete application. To produce a useful
application or library, a framework must be extended. A key feature of a framework is that it
defines the contract to which extensions must comply in order to work in the framework.
Usually these contracts consist of an API that the extension must implement in order to be usable

 13

in the framework. In the case of SSTAF, the required API is defined by the Feature interface
hierarchy.

Frameworks can be extended either at compile time by adding code or linking in additional
libraries, or at runtime by making dynamically loaded plugins available to the framework. For
SSTAF, the plugin approach is used. Plugins are used to implement Soldier performance and
other models as well as optional services such as telemetry services.

Plugins enable the models to be decoupled fully from the SSTAF core and for models and core
to evolve at different rates. The plugin architecture allows SSTAF users to develop their own
model suites and use them without changing the SSTAF core or impacting other SSTAF users.
This arrangement also enables the SSTAF core to be configuration managed independently of
the models or applications.

The SSTAF core is very small and divided into two modules. The first module,
mil.sstaf.core, defines all of the core classes and interfaces. It also defines some common
utilities for functions such as the JSONUtilities class for parsing and the dependency
injection system. SSTAF plugin modules will depend on the core module and the model
implementations that they provide must extend one of the Feature interfaces defined in the
core module. The second module, mil.sstaf.session, defines the interface layer between
client applications and the SSTAF environment. Package diagrams of the two modules are
shown in Figures 4 and 5.

 14

Figure 4. Core module

Figure 5. Session module

 15

3.3 Features, Handlers and Agents

Features add capabilities to entities through dynamic composition. They implement the models
that provide analytic capability to SSTAF. Features are loaded into the system at runtime based
on configurations provided by the analyst or other subject-matter experts. Because the models
are specified via configuration files rather than being hardwired into SSTAF, it is easy to change
the models used in a simulation run. It is also possible to provide different models of the same
phenomena. For example, different Soldiers could be configured to use different aim models.

A key capability of the feature system, indeed the basis for building interaction between models
in SSTAF, is the ability of a feature to declare a dependency on other features. This dependency
is expressed in the source code for the dependent Feature class by using a Requires
annotation (see Section 3.3.5) and is resolved at runtime by a dependency-injection mechanism
(see Section 3.5).

As shown in the class hierarchy in Figure 6, there are three types of features. These types are
defined by the Feature, Handler and Agent interfaces. Each of the interfaces is partially
implemented by an abstract base class, specifically BaseFeature, BaseHandler and
BaseAgent.

 16

Figure 6. Feature class hierarchy

Although the primary purpose of the classes in the feature hierarchy is to add performance and
other models to Humans, Soldiers and Units, implementations of Feature can be used to
provide other functions. One example is the TelemetryAgent that can be added to any
Entity to provide configurable logging of the state of the Entity. The TelemetryAgent is
discussed in detail in Section 6.7.

Feature classes are specified and identified in SSTAF using a set of four parameters. These
parameters are the name of the feature and its version number. The version number is expressed
as major, minor and patch-level values. Although the feature name can be the class name, it is
not required to be. Since these values are used in the SSTAF input files to specify which
features to load, it can be helpful to give features names that can be easily understood by normal
people, rather than obtuse names only understood by developers. The mechanisms for
specifying, loading and adding features to entities are described in Section 3.5.

3.3.1 The Feature Interface

The Feature interface provides the API necessary for a plugin to be loaded into the system.
Models and other plugins extend Feature to provide custom capabilities. The signature of
methods of the Feature interface are shown in Figure 7.

 17

Figure 7. Feature interface

Four of the methods in the API are dedicated to providing the identification information for the
Feature. These are the getName, getMajorVersion, getMinorVersion and
getPatchVersion methods. These methods return the value for the feature name, major
version, minor version and patch version of the plugin. The getDescription method provides
a more verbose description of the feature. It is intended primarily to support interactive input
preparation tools. The init, configure, isInitialized and isConfigured methods
support preparing the Feature for use once it has been instantiated by the service loader and
assigned to an Entity. The final method, getOwner, provides a reference to the Entity to
which the Feature has been added.

The Feature interface can and should be extended by model developers to provide the desired
functionality for their feature. Other features can interact with this feature using the extended
interface. The mechanism for binding models together so that they can interact is discussed in
Section 3.3.5.

Referring back to Section 2.2, note that the configure method takes two arguments. The first
is a JSONObject. This object is the configuration information for the Feature. It is specified
in the system input and provided to the Feature during startup. The second argument is the
seed to be used if the Feature includes a random number generator.

Models and other plugins are free to extend the Feature interface in any way. However,
developers will likely find it convenient to extend the abstract BaseFeature class. A
requirement of the Java service loader mechanism is that plugins must provide a no-argument
(no-arg) constructor. To help with this requirement, the BaseFeature class provides a

 18

constructor that extensions can use to initialize their identification information as final values. It
also provides the required methods for accessing the identification values.

The signature for the constructor in BaseFeature is shown in Code Listing 2.

Code Listing 2. Constructor for the BaseFeature Class

protected BaseFeature(String featureName, int majorVersion,
 int minorVersion, int patchVersion,
 boolean requiresConfiguration, String description);

Code Listing 3 shows an idiomatic no-arg constructor for a class that extends BaseFeature.
Extensions of BaseHandler and BaseAgent follow the same pattern.

Code Listing 3. Idiomatic No-Arg Constructor for a Feature

class MyFeatureImpl extends BaseFeature implements MyFeature {
 public MyFeatureImpl() {
 super(“MyFeature”, 3, 1, 4, true, “This is my feature.”);
 }
}

3.3.2 The Handler Interface

Handler is a subtype of Feature that has the ability to process Message objects. As stated
previously, Message objects are used to communicate between Entity objects or between an
Entity and the client application. The methods of the Handler interface are shown in
Figure 8.

Figure 8. Handler interface

The Handler interface adds two methods to the Feature interface, contentHandled and
process. Each Handler handles one or more message types and the contentHandled

 19

method provides the message content classes that are handled by the Handler. This list is used
by the message dispatch mechanism to route messages to their destination.

The process method causes a Message content object to be processed. The signature of the
process method is shown in Code Listing 4.

Code Listing 4. Method Signature for the Process Method

ProcessingResult process(Object arg, long scheduledTime_ms,
 long currentTime_ms, Address from,
 long id, Address respondTo);

The first argument is the content object delivered by the Message. The second argument,
scheduledTime_ms, is used with scheduled events and specifies what time the Event was
supposed to occur. The third argument is the current simulation time. Both times are provided
to enable the Handler to adjust results if a scheduled event is overdue. Events and other
Message types are discussed in Section 3.6. The fourth argument is the source of the message.
The fifth argument is a unique sequence number for the message. The final argument is the
Address to which the results of the process invocation should be sent. It is not necessary for
the results to go back to the sender of the original message.

The result of a process call is a ProcessingResult, the details of which are shown in Figure 9.
A ProcessingResult contains two public final fields. One is a list of new Message objects
that were generated by the Handler. The ProcessingResult contains a list rather than just a
single Message to enable a Handler to send out messages to multiple recipients. The second
field contains the time for earliest Event in the list of messages. This value is used to enqueue
the messages for processing. The ProcessingResult class also contains four static factory
methods to simplify construction.

 20

Figure 9. ProcessingResult

3.3.3 The Agent Interface

The Agent interface extends Handler and adds single method, tick. The tick method will
be invoked on every on every simulation tick, that is, every iteration of the simulation event
loop, regardless of whether or not the Agent has received a Message. The details of the Agent
interface are shown in Figure 10.

Figure 10. Agent interface

Like the process method in Handler, the tick method in Agent returns a
ProcessingResult. Consequently, each tick can generate multiple messages that will be
promulgated to the rest of the system. Agent will probably be the most commonly implemented
Feature type because it offers the most flexibility.

3.3.4 Feature Specification

As stated in Section 3.3.1, instances of Feature are identified by the tuple of name, major,
minor and patch version numbers, as well as their implementation class. When it is necessary to
specify a Feature to be loaded, these parameters are encapsulated in the
FeatureSpecification class, which is shown in Figure 11.

 21

Figure 11. Feature specification

 22

This approach of using names and versions to specify service gives SSTAF more flexibility than
is normally found in Java service-based system. Typically, in a service-based system, the
required service is identified simply by an interface or abstract class and the desired
implementation is selected by placing the desired version on the classpath. The approach used
by SSTAF enables different implementations of the same interface to be used concurrently
within the system. The operation of this mechanism is discussed in Section 3.5.

One limitation of the approach is that all implementations must have a unique class name. This
is because SSTAF currently does not create additional class loaders to partition the class
namespace. If this limitation becomes a problem, future versions of SSTAF will address it.

The FeatureSpecification diagram also demonstrates one of the idioms used through
SSTAF, specifically the use of inner Builder and Factory classes to assist in the construction
of the class. This idiom is discussed in Section 3.4.1.1.

3.3.5 The Requires Annotation

The Requires annotation specifies an insertion point for a Feature in another Feature. Its
contents are shown in Figure 12. When combined with the type of the field to which the
annotation is attached, the fields in the annotation enable the generation of a
FeatureSpecification that can be used for loading a Feature implementation. Both the
requiring and required features can be of any Feature type (i.e., Feature, Handler, Agent or
any subtype).

Figure 12. Requires annotation

Annotations support default values. The default value for the name field is the empty string.
The default value for the majorVersion field is 1 and for the minorVersion field is 0. The
requireExact field specifies whether candidate Feature must match the version number
requirement exactly to be used or if a more recent version is acceptable. The default value for
requireExact is false.

The following listings show some examples for using Requires.

 23

Code Listing 5 uses all default values. The first Blackboard implementation found with a
majorVersion greater than or equal to one will be assigned to the blackboard reference.

Code Listing 5. Example of Requires Annotation Use

public class MyAgent extends BaseAgent implements Awesome {
 @Requires
 Blackboard blackboard;
 //...
}

This example in Code Listing 6 sets name, majorVersion and minorVersion. The value of
requireExact remains false, so the system will load the first PhysiologyModel
implementation found with the name “Simple Physiology” and a version number greater than or
equal to 3.7.0.

Code Listing 6. Requires Annotation with Minimum Version Specification

public class MyAgent extends BaseAgent implements Awesome {
 @Requires(name=“Simple Physiology”, majorVersion = 3,
 minorVersion = 7)
 PhysiologyModel physiology;
 //...
}

Code Listing 7 sets the requireExact flag to true, so only a Feature named “Simple
Physiology” with a major version of 3 and a minor version of 7 will be accepted. Note that
currently SSTAF does not use the patch-level value from the version number when matching
requirements.

Code Listing 7. Requires Annotation with Exact Version Specification

public class MyAgent extends BaseAgent implements Awesome {

 @Requires(name=“Simple Physiology”, majorVersion = 3,
 minorVersion = 7, requireExact = true)
 PhysiologyModel physiology;
 //...
}

 24

3.4 Entities

Within SSTAF, the primary items in the analysis are represented using the Entity class. This
includes items such as humans, Soldiers and units. The Entity class hierarchy is shown in
Figure 13. The Entity class itself is discussed in Section 3.4.1.

 25

Figure 13. Entity class hierarchy

 26

3.4.1 The Entity Class

At the base of the entity class hierarchy is the abstract Entity class, which is shown in
Figure 14. The Entity class provides several capabilities that are central to how SSTAF works.

 27

Figure 14. Entity class

 28

Entity implements the MessageDriven interface. MessageDriven defines the API for
objects that receive, process and emit messages. Figure 15 shows the MessageDriven
interface. To support message-driven behavior, Entity includes both an inbound and an
outbound queue. The inbound queue is a PriorityQueue and the outbound is a
ConcurrentLinkedQueue. As is described in Section 3.9, the use of the PriorityQueue
along with its associated MessageComparator is one of the mechanisms that help ensure
repeatable analyses.

Figure 15. MessageDriven interface

The Entity class contains an instance of FeatureManager. FeatureManager is a utility
class that is responsible for loading and holding features. It is also responsible for routing
messages to the correct Handler, returning Handler results and propagating tick invocations
from the event loop to the agents. The UML for the FeatureManager is shown in Figure 16.

 29

Figure 16. FeatureManager class

3.4.1.1 The Factory and Builder Inner Classes

One software idiom that is widely used in SSTAF is creating objects using a builder or factory
method rather than using the new operator. The Entity class with its inner Factory and
Builder classes demonstrates this idiom.

A builder is an object that is used to construct another object. A builder enables establishing the
configuration for the object sequentially, usually through a series of setter methods. Once the
configuration is complete, the object is instantiated by invoking a method on the builder (often
build) that invokes the constructor for the desired object. When using the builder idiom, it is
best practice to make the constructor for the class private to force the use of the builder.

There are several advantages to using builders rather than constructors. First, a builder can be
configured incrementally; this eliminates the need to keep multiple temporary values to deliver
to the constructor. The builder easily supports default and optional values. In Java, optional
construction parameters often lead to an explosion of constructor methods. Using a builder with
default values eliminates this problem. Another advantage of the builder is that, by convention, a
setter in a builder returns the builder rather than void. This enables a more fluent style of code
as is shown in Code Listing 8.

 30

Code Listing 8. Fluent Builder Statement

SimpleMessage msg = SimpleMessage.builder().withDestination(d)
 .withRespondTo(this).withContents(stuff).build();

There are some complexities and limitations with builders in Java. In particular, extending a
class that includes a builder can be tricky. Since the setter methods in the base class builder
return the base class, one cannot arbitrarily mix base and derived class setters in a fluent
configuration statement. This problem can be solved with some complex Java generics
constructs but it is difficult to get correct. There are some classes in SSTAF 1.0 that still have
issues with builder inheritance.

In SSTAF, Factory classes parse JSON input files and use builders to construct analysis
domain objects. The factories instantiate builders and feed the configuration values from the
JSON into the builders. The combination of the factories and the builders works well because
the factories process the key-value pairs in the JSON incrementally.

3.4.1.2 Path

All Entity instances are identified by a unique path. The path is simply a colon-delimited
string that starts at the top-level unit and proceeds down to the lowest unit. Within the lowest
unit, Soldiers are identified by their position. The path mechanisms enable specific entities to be
identified and accessed in a concise, human-readable way. A representative path is
“3rdPlatoon:1stSquad:FireTeamAlpha:Grenadier”.

3.4.1.3 EntityHandle

The EntityHandle class provides an indirect reference to an Entity. It also acts as a proxy
for some of the entity’s methods. EntityHandle objects, rather than direct Entity
references, are used throughout SSTAF. This approach was taken in order to maintain strict
control on Entity-to-Entity communication. To ensure repeatable analyses, it is necessary to
control the order in which operations occurs. This would be very difficult if entities were able to
make direct mutating calls to other entities in a concurrent environment. Using EntityHandle
in the various APIs and interfaces helps ensure that communication is done through messages
rather than through direct invocation. The details of the EntityHandle class are shown in
Figure 17.

 31

Figure 17. EntityHandle class

3.4.1.4 The Injected Annotation

Another small bit of infrastructure that helps with the configuration of the entities and features is
the combination of the Injected annotation and the Injector utility class. Like the
Requires annotation, these classes enable a simple dependency injection mechanism.
However, Injected differs from Requires in two respects. First, Injected does not require
the target to be a Feature; the injected object may be of any type. Second, Injected fields
are not resolved automatically during construction. The owning object must use the methods in
the Injector class to push values into the fields that have been annotated with Injected. For
example, the Entity object used Injector to push its EntityHandle into the
FeatureManager.

The Injected and Injector system acts as a setter for values that might or might not be
required. This is cleaner than using setter methods, since the methods would have to be declared
in the object interface. This would require the SSTAF framework to know the setter methods
and thus would break the required independence of framework and features. The Injector

 32

ignores unused injected values, so items can be injected eagerly without worrying about whether
there is an annotated field to receive it.

3.4.2 Humans, Soldiers and Units

There are three existing sub-classes of Entity that are used to represent real-life items in
SSTAF. These are the Human, Soldier and Unit classes.

The Human class is a thing wrapper over the Entity class. It adds one property,
definitionName, which is the name associated with the configuration used to define the
human. Multiple Human objects can be based on the same definition.

Soldier extends Human and adds several fields relevant to Soldiers, specifically rank, unit and
position. The rank property holds the Soldier’s rank. The Rank class is an enumeration of all
Army ranks E1 to O10. The unit property is a reference to the unit to which this Soldier
belongs. The position property is a String that specifies the role of the Soldier in the unit, for
example Commander, Grenadier or Clerk.

The Unit class extends Entity directly. A unit contains a commander, organic Soldiers and
optionally sub-units. The Unit class contains several methods for accessing and manipulating
its member Soldiers and any sub-units.

3.5 Enhancing Entities with Features

At this point, all of the prerequisites have been presented and it is possible to discuss how entities
are instantiated, features are added to them and dependencies between features are resolved. I
illustrate the process by walking through a specific example of preparing a Soldier for use in the
system.

To begin with, we have the JSON configuration file for the Soldier shown in Code Listing 9.
The configuration file contains a single top-level JSON object that defines the Soldier. The
JSONObject contains four fields, name, rank, features and configurations. As expected, the
name and rank fields set the name and rank values for the Soldier. These values are optional.
The features and configurations fields are required. However, with some restrictions either or
both may be empty.

 33

Code Listing 9. Soldier Configuration File

{
 "name": "Alvin York",
 "rank": "E5",
 "features": [
 {
 "featureName": "Dynamic Aim",
 "majorVersion": 0,
 "minorVersion": 1,
 "requireExact": "false"
 },
 {
 "featureName": "Soldier Task Agent",
 "majorVersion": 0,
 "minorVersion": 1,
 "requireExact": "false"
 },
 {
 "featureName": "Telemetry Agent",
 "majorVersion": 0,
 "minorVersion": 1,
 "requireExact": "false"
 }
],
 "configurations": {
 "Simple Anthropometry": "Anthropometry.json",
 "Kit Manager": "../common/StandardKit.json",
 "Dynamic Aim": "dynamicAimConfig.json",
 "Telemetry Agent": {
 "statesToRecord": [
 "Aim Internals",
 "Muscle Metrics"
]
 },
 "Soldier Task Agent": {
 "tickAim": true,
 "tickAim.range_m": 100,
 "tickAim.gun": "M4",
 "tickAim.mode": "STANDING"
 }
 }
}

The features array declares the features to be added to the entity. It contains a list of JSON
objects, each of which will later be used to generate a FeatureSpecification object. Note
that the specification blocks do not specify a Feature class. This is because all Features
added to an Entity must be at least a Handler and are loaded as Handler instances. This is

 34

because the only mechanism an Entity has to interact with a Feature is through messages and
the Handler class is the lowest class in the Feature hierarchy that supports that capability.

In this example, the Soldier is declared to have three features: the Dynamic Aim model, the
Soldier Task Agent and the Telemetry Agent. All three of these are demonstration features and
are not ready for production use. They are discussed in Section 6.

The configurations object specifies the configurations to be provided to each of the features
loaded into the Soldier. The configuration object mechanism leverages that JSON objects are
key-value pairs. For feature configuration, the key is the name of the feature, as specified in the
FeatureSpecification object, not its implementation class. The value of the configuration
entry can be either a JSONObject with the configuration settings or a string that specifies a
separate file that contains the settings.

In this example, five configuration objects are provided. There are the configurations for the
three declared features. There are also two additional configurations. The first is for “Simple
Anthropometry” and the second for “Kit Manager”. Neither of these features was declared to be
used, however; both are required by the “Dynamic Aim” model and are loaded automatically
when that model is loaded.

As stated previously, the features and configurations sections can be empty under specific
circumstances. If the feature block is empty, the configurations block may be empty. In this
scenario, any content in the configurations block will be ignored since there are no features to
which to apply the settings. If a feature is specified and that feature, or any of its dependencies,
requires configuration and a configuration is not provided, an exception will be thrown.

To instantiate the Soldier, we use code such as that shown in Code Listing 10.

Code Listing 10. Soldier Construction Example

String filename = “input/soldiers/AlvinYork.json";
Soldier soldier = Soldier.Factory.from(filename, null)
 .parse().build();

A Soldier instance is constructed using the Factory and Builder classes mentioned earlier.
The from method creates a new Soldier.Factory object from the given filename. The null
value in the from invocation indicates that there is no parent JSONObject for the configuration.
When the JSONUtilities class loads a JSONObject from a file, it embeds the filename and
directory into the loaded object. Passing a parent object into a factory enables JSONUtilities
to handle relative paths in file references as the system traverses input graphs. The factory in

 35

turn instantiates a Soldier.Builder. The code for the Soldier.Factory and
Soldier.Builder classes are shown in Code Listings 11 and 12.

Code Listing 11. Soldier.Factory

public static class Factory {
 private final JSONObject rootObject;
 private final Builder builder;

 private Factory(JSONObject definition) {
 rootObject = Objects.requireNonNull(definition,
 "JSONObject must not be null");
 builder = builder();
 }

 public static Factory from(final Object obj,
 final JSONObject parent) {

 if (obj instanceof JSONObject) {
 return new Factory(JSONUtilities.propagateFileInfo(
 (JSONObject) obj, parent));
 } else if (obj instanceof String) {
 JSONObject jsonObject = JSONUtilities.loadObjectFromFile(
 (String) obj, parent);
 return new Factory(jsonObject);
 } else {
 throw new SSTAFException("Value " + obj
 + " was not a String or JSONObject");
 }
 }

 public Factory parse() {
 new Human.Factory(rootObject, builder).parse();
 setOption(rootObject, RANK_KEY, String.class,
 builder::withRank);
 return this;
 }

 public Soldier build() {
 return builder.build();
 }
}

 36

Code Listing 12. Soldier.Builder

public static class Builder extends Human.Builder {
 private Rank rank = Rank.E1;

 protected Builder() {
 super();
 }

 public void withRank(String rank) {
 this.rank = Rank.findMatch(rank);
 }

 public void withRank(Rank rank) {
 this.rank = Objects.requireNonNull(rank);
 }

 public Soldier build() {
 return new Soldier(this);
 }
}

There are two things to note in the parse method. First, the Soldier.Factory creates a
Human.Factory and uses it to parse the configuration and put human-specific values into the
Soldier.Builder. Second is the setOption method. The setOption method is a static
method in JSONUtilities that reads a field of the specified type from the provided
JSONObject and sends the read value to the method reference provided in the final argument.
In this case, the method reference points to the withRank method in the Builder. The
setOption method is used in this case because the rank value is optional. Similar methods in
JSONUtilities are used to read mandatory values. These methods throw an exception if the
required value is not found.

An excerpt from the Human.Factory class is shown in Code Listing 13. In its parse method,
we see that it follows the same pattern as the Soldier.Factory class and invokes an
EntityFactory to read entity-level values. After delegating to the EntityFactory, the
Human.Factory reads the optional definitionName value.

 37

Code Listing 13. Human.Factory

public static class Factory {
 //...
 public Factory parse() {
 new EntityFactory(rootObject, builder).parse();
 setOption(rootObject, CK_DEF_NAME, String.class,
 builder::withDefinitionName);
 return this;
 }
}

Code Listing 14 shows the parse method from the EntityFactory. In this method, we see that
the name of the Entity is read if it exists. Additionally, a random number seed is read if it has
been provided. SSTAF will use this seed to initialize, either directly or indirectly, all of the
random number generators within this Entity. Random number management is discussed in
Section 3.9.

Next, the JSONArray of features is read using the iterateOverMandatoryJSONObjects
method. This method checks if the “features” tag exists and, if it does, iterates over all of the
specifications declared within it. For each JSONObject within the list, it uses the
FeatureSpecification.Factory to create a FeatureSpecification instance and add it
to the builder. Finally, the factory reads the mandatory configurations field and passes that
JSONObject to the builder’s withConfigurations method.

 38

Code Listing 14. EntityFactory Parse Method

public EntityFactory parse() {

 setOption(rootObject, NAME_KEY_, String.class, builder::withName);

 JSONUtilities.setOption(rootObject, RANDOM_SEED_KEY, Long.class,
 builder::withRandomSeed);

 iterateOverMandatoryJSONObjects(rootObject, FEATURES_KEY,
 spec -> {
 FeatureSpecification featureSpecification =
 new FeatureSpecification.Factory(spec)
 .parse().build();
 builder.withSpecification(featureSpecification);
 });

 setMandatoryOrThrow(rootObject, CONFIGURATIONS_KEY,
 JSONObject.class, builder::withConfigurations);

 return this;
}

The builder for the base Entity is shown in Code Listing 15. The builder for the Human class
extends this builder, and the builder for Soldier extends Human.Builder. In this class, we see
that the features to add are held as a list of specifications and the configurations are retained as
the original JSONObject. The build method is abstract because Entity itself is an abstract
class.

 39

Code Listing 15. Entity Builder

public abstract static class Builder {

 protected Long id = BlockCounter.userCounter.getID();
 protected String name = UUID.randomUUID().toString();
 protected Long randomSeed = System.currentTimeMillis();

 protected List<FeatureSpecification> specifications =
 new ArrayList<>();
 protected JSONObject configurations = new JSONObject();

 public void withSpecification(FeatureSpecification spec) {
 specifications.add(Objects.requireNonNull(spec,
 "Service specification must not be null"));
 }

 public void withConfigurations(final JSONObject configurations) {
 this.configurations = Objects.requireNonNull(configurations,
 "Feature configurations must not be null");
 }

 public void withRandomSeed(final long randomSeed) {
 this.randomSeed = randomSeed;
 }

 public void withName(String val) {
 this.name = Objects.requireNonNull(val,
 "Name must not be null");
 }

 public abstract Entity build();
}

At this point, the Soldier can be constructed using the build method. Referring back to the
Soldier.Builder, we see that the build method simply calls the Soldier constructor and
provides itself as the only argument. The three relevant constructors, Soldier, Human and
Entity are shown in Code Listings 16, 17, and 18.

Code Listing 16. Soldier Constructor

protected Soldier(Builder builder) {
 super(builder);
 this.rank = Objects.requireNonNull(builder.rank);
}

 40

Code Listing 17. Human Constructor

protected Human(Builder builder) {
 super(builder);
 this.definitionName = builder.definitionName;
 this.uuid = builder.uuid;
}

Code Listing 18. Entity Constructor

protected Entity(Builder builder) {
 logger.trace("Constructing Entity from builder {}",
 builder::toString);

 myID = builder.id;
 handle = new EntityHandle(this);
 randomGenerator = new MersenneTwister();
 randomSeed = builder.randomSeed == null ? myID :
 builder.randomSeed;
 this.name = builder.name;

 featureManager = new FeatureManager(builder.specifications,
 builder.configurations, handle,
 RNGUtilities.generateSubSeed(randomGenerator));
 logger.debug("Entity '{}' constructed, features = {}", name,
 featureManager.generateConfigurationReport());
}

As can be seen, the Soldier and Human constructors invoke their superclass constructor and
then they set their field values. Two interesting things happen in the Entity constructor. First,
the constructor creates a random number generator. The generator is a MersenneTwister
provided by the Apache Commons Math library. The random number generator is then seeded
using the value from the configuration file if one was provided, or, if a seed was not provided,
the entity identification number (myID). Entity identification numbers are unique and repeatable,
so random number seeds will be consistent from run to run even if a seed is not provided. The
second interesting action is the creation of a FeatureManager, which, in turn, creates a
Resolver. This is where loading features and resolving dependencies occurs.

Code Listing 19 shows the constructor for the FeatureManager. The FeatureManager sets
its owner to be an EntityHandle to its containing an Entity. It then creates a new random
number generator using the provided seed. Next, the constructor creates a Resolver. This is
the class that does all of the heavy lifting for managing dependencies. Finally,
FeatureManager iterates over the list of FeatureSpecifications that the configuration
file defined and uses the Resolver to load each Feature and any transitive dependencies.

 41

Code Listing 19. FeatureManager Constructor

public FeatureManager(List<FeatureSpecification> features, JSONObject
configurations, EntityHandle owner, long randomSeed) {

 this.owner = owner;
 RandomGenerator generator = new MersenneTwister(randomSeed);
 Resolver resolver = new Resolver(this.features, configurations,
 owner, RNGUtilities._generateSubSeed_(generator));

 features.forEach(spec -> {
 Feature f = resolver.loadAndResolveDependencies(spec);
 if (f instanceof Agent) {
 register((Agent) f);
 } else if (f instanceof Handler) {
 register((Handler) f);
 } else {
 register(f);
 }
 });
}

Code Listing 20 shows the loadAndResolveDependencies method for the Resolver class.
This method begins by first checking to see if the required Feature has already been loaded by
querying the feature cache. The feature cache is a map of FeatureSpecifications to
Features held by the FeatureManager. If the Resolver does not find a match, it uses the
ServiceLoader mechanism to load a Feature matching the specification. If that operation is
successful, loadAndResolveDependencies adds the loaded Feature to the cache and then
passes it to the resolveDependencies method. Otherwise, the method throws an exception.

 42

Code Listing 20. Resolver LoadAndResolveDependencies Method

public Feature
 loadAndResolveDependencies(FeatureSpecification specification) {
 logger.debug("{} - Loading and resolving for {}",
 owner.getPath(), specification);
 Feature feature = findMatchInCache(specification, featureCache);
 if (feature == null) {
 logger.trace("{} - Feature not in cache, loading {}",
 owner.getPath(), specification);
 Optional<Feature> optionalFeature = _load_(Feature.class,
 specification);
 if (optionalFeature.isPresent()) {
 feature = optionalFeature.get();
 featureCache.put(FeatureSpecification._from_(feature),
 feature);
 logger.debug("{} - Feature loaded and added to cache. {}"
,
 owner.getPath(), featureCache.keySet());
 resolveDependencies(feature);
 } else {
 logger.error("Could not load service {}",
 specification.toString());
 Loaders._printAvailableServices_(Feature.class);
 throw new SSTAFException("Could not load service '"
 + specification.toString() + "'");
 }
 }
 return feature;
}

Code Listing 21 shows the resolveDependencies method. For the specified Feature, this
method invokes loadRequiredServices to find and load all dependencies. It then caches all
of the loaded dependencies and finally applies the configuration object to the Feature.

 43

Code Listing 21. Resolver resolveDependencies Method

public void resolveDependencies(Feature feature) {
 logger.trace("Resolving dependencies for {}",
 feature.getClass().getName());
 var rv = loadRequiredServices(feature, featureCache);
 featureCache.putAll(rv);
 //... Logging
 Optional<JSONObject> optConfig = getConfiguration(
 feature.getName());
 optConfig.ifPresent(configuration ->
 feature.configure(configuration,
 RNGUtilities.generateSubSeed(generator)));
}

The most complex part of the Feature resolution system is the loadRequiredServices
method shown in Code Listing 22. Given an initial Feature and a FeatureCache, this
method recursively follows Feature dependencies specified by the Requires annotations.
The method begins by creating its own cache that is a copy of the parent cache. This is
necessary because Java maps do not allow modification in recursive methods. Next, Java
reflection is used to find all fields that are annotated with the Requires tag. If
loadRequiredServices finds one, it checks the field to see if a value is assigned to it. If so,
it is skipped. If not, a FeatureSpecification is generated from the Requires annotation
and the field type. The specification is then checked against the cache. If a match is found, it is
used. If no match is found, the Loaders class is used to load the required Feature. If that
fails, the method throws an exception. If it succeeds, the newly loaded Feature is added to the
cache and the method then calls itself, using the newly loaded Feature as the source for new
requirements. Once a Feature is loaded and its dependencies resolved, it is configured using
the configuration object from the input if one was provided.

 44

Code Listing 22. The loadRequiredServices Method

private Map<FeatureSpecification, Feature>
 loadRequiredServices(Feature target,
 Map<FeatureSpecification, Feature> parentCache) {
 logger.trace("Loading required services for {}",
 target.getName());
 Map<FeatureSpecification, Feature> myCache =
 new HashMap<>(parentCache);

 for (Field field : getFieldsWithRequires(target)) {
 logger.trace("{} - Processing Requires field {}",
 target.getName(), field.getName());
 Requires requires = field.getAnnotation(Requires.class);
 Class<?> rawClass = field.getType();

 if (isFieldSet(target, field)) {
 logger.trace(
 "{} - Skipping field {} because it is already set",
 target.getName(), field.getName());
 } else {
 Class<? extends Feature> clazz =
 rawClass.asSubclass(Feature.class);
 FeatureSpecification spec =
 FeatureSpecification.from(requires, clazz);

 Feature toInject = findMatchInCache(spec, myCache);
 if (toInject != null) {
 logger.debug("{}/{} Found match in cache, reusing {}",
 target.getName(), field.getName(),
 spec.toString());
 } else {
 logger.debug("{}/{} Getting new instantiation of {}",
 target.getName(), field.getName(),
 spec.toString());
 final Feature newlyLoaded =
 Loaders.loadAsRef(clazz, spec.featureName,
 spec.majorVersion, spec.minorVersion,
 spec.requireExact);
 if (newlyLoaded == null) {
 String identifier =
 spec.featureName == null ||
 spec.featureName.length() == 0
 ? spec.featureClass.getName()
 : spec.featureName;
 throw new SSTAFException(
 "Could not load an implementation for "

 45

 + identifier);
 }

 //
 // Since this is a new load, recurse to fill it in.
 //
 FeatureSpecification fs =
 FeatureSpecification.from(newlyLoaded);
 myCache.put(fs, newlyLoaded);
 logger.trace(
 "{} - Registered {} in cache, {} entries",
 target.getName(), fs.toString(), myCache.size());
 logger.trace("{} - Recursing now for {}",
 target.getName(), newlyLoaded.getName());
 var childCache = loadRequiredServices(newlyLoaded,
 myCache);
 myCache.putAll(childCache);
 logger.trace("{} – done with {}, {} entries",
 target.getName(), newlyLoaded.getName(),
 myCache.size());

 //
 // Inject the ownerHandle into the feature.
 // This must be done before configuration
 // or an NPE might occur. Some feature loggers
 // reference owner paths.
 //
 logger.trace("{} - Injecting owner handle {}",
 target.getName(), owner.getPath());
 Injector._inject_(newlyLoaded, owner);

 Optional<JSONObject> optConfig =
 getConfiguration(newlyLoaded.getName());
 optConfig.ifPresentOrElse(
 configuration -> {
 logger.trace("{} - Configuring {} with {}",
 target.getName(), newlyLoaded.getName(),
 configuration.toString(2));
 newlyLoaded.configure(configuration,
 RNGUtilities.generateSubSeed(generator));
 },
 () -> logger.info("{} - No configuration for {}",
 target.getName(), newlyLoaded.getName())
);
 toInject = newlyLoaded;
 }
 //
 // Inject the service into the field.
 //
 logger.debug("{} - Injecting {} into field {}",
 target.getName(), toInject.getName(),

 46

 field.getName());
 Injector._injectField_(target, field, toInject);
 }
 }
 return myCache;
}

Once the FeatureManager construction has completed, all of the requirements for the Entity
have been loaded and configured.

3.6 Messages and Addresses

As stated previously, a Message is an object that is used to invoke a command or request
information from an Entity, Also, the Message instance itself is just an envelope. The
important part is the message content. That said, there is a small Message class hierarchy.
Figure 18 shows the Message hierarchy.

 47

Figure 18. Message hierarchy

At the base of the hierarchy is the Message interface. It provides the methods necessary for
routing the message, uniquely identifying it and retrieving the contents.

 48

The sequenceNumber method returns the message number generated by the source Entity.
Each Entity has its own message counter, so the combination of Entity and
sequenceNumber is a unique identifier for the Message. The contents method returns the
object that is the payload of the message. The three remaining methods, destination,
source and respondTo, each return an Address object. The Address class is exactly what
its name implies, a specific location in the system. In Message, the addresses specify the
source of the message, the recipient of the message and the destination for any message resulting
from the processing of the original message. The respondTo location need not be the same as
the source address.

The Address class consists of two values, an EntityHandle and a String, which specify the
name of a Handler. If a destination Address includes a Handler name, the
FeatureManager routes the message to that specified Handler, regardless if it is the
registered Handler for the content type.

SimpleMessage is an abstract implementation of Message that includes all of the necessary
fields and accessors. It also includes a builder to help with construction.

There are two concrete implementations of SimpleMessage. The first, EntityAction,
specifies messages that are to be processed immediately by the recipient. Once the
EntityAction is delivered, the Entity will process it the next time the processMessages
method is invoked. The second class, EntityEvent, includes an additional field to specify the
time of the event. This class is used to schedule an action that will be processed in the future.
The content of an EntityEvent is processed when the simulation clock meets or exceeds the
specified eventTime_ms value.

3.7 Session and Session Messages

The Session class provides the surface API between client applications and the SSTAF system.
Recall from the discussion on requirements that one requirement was to have a simple and stable
API. As shown in Figure 19, the Session class is indeed simple. It contains only three
significant methods: submit, tick and asyncTick.

 49

Figure 19. Session class and its inner classes

The submit command pushes a SSTAFCommand message into the EntityController for
routing. Session use a different set of message classes than that used between entities (see
Section 3.5). Using different message types helps ensure a firewall between the client
application and SSTAF internals.

Figure 20 shows the SSTAFCommand class hierarchy. The hierarchy consists of two classes,
SSTAFCommand and SSTAFEvent. These classes parallel the EntityAction and
EntityEvent message classes. SSTAFCommand and SSTAFEvent differ from their entity
peers in that rather than using an Address object to specify the recipient, the SSTAF messages
use an EntityHandle. This simplification is reasonable since the application should not
override the default Handler mappings by specifying a Handler name. SSTAFCommand also
eliminates the source and respondTo fields, since all SSTAFCommand messages originate
from and return to the client application. Like the EntityEvent, the SSTAFEvent adds the
event time.

 50

Figure 20. SSTAFCommand and SSTAFEvent

In SSTAF, a tick is the process of advancing the simulation clock. SSTAF does not control the
time step of a tick. The client application controls the time step. Therefore, all tick methods
include an argument for the new simulation time. The Session can process a tick either
synchronously or asynchronously. The synchronous mode is invoked with the tick method,
while the asynchronous mode is invoked using the asyncTick method. In synchronous mode,
Session invokes the tick method of the EntityController directly, the main thread blocks
and a TickResult object is returned, eventually. In asynchronous mode, the Session creates
a TickCallable object to wrap the call to the EntityController. The TickCallable
object is dispatched to a separate thread. The asyncTick method returns a Future for the
TickResult immediately. This enables the main thread to perform additional work while the
SSTAF threads do their job.

Figure 21 shows the TickResult returned from the tick. It contains two values, a list of
SSTAFResult objects and the time of the next event that is queued within system.

Figure 21. TickResult class

 51

The SSTAFResult hierarchy is separate from the SSTAFCommand and entity message
hierarchies. The two SSTAFResult types are shown in Figure 22. The SSTAFResult contains
the successful result of a previously issued SSTAFCommand or SSTAFEvent. The result
contains the ID of the original message. If something failed during execution, a SSTAFError is
returned.

Figure 22. SSTAFResult and SSTAFError

3.8 EntityController

The EntityController, shown in Figure 23, is the master controller for the SSTAF system.
It has many responsibilities, including the following:

• loading entities,
• routing messages between entities,
• processing simulation ticks, and
• routing messages to and from the client application.

 52

Figure 23. EntityController class and its inner classes

An important aspect of the EntityController is that it is also an Entity itself. This means
that it can be extended with features. An important difference between features loaded into a
regular entity as opposed to those loaded into the EntityController is that the
EntityController injects its features with the EntityRegistry. The EntityRegistry is
an object that contains references to all of the entities in the system. This enables
EntityController features to access every Entity and act as coordination agents for
features in the individual entities. Section 4.3 provides an example of an Agent for the
EntityController that acts as a coordinator.

The central method in the SSTAF system is the tick method in EntityController. This
method is responsible for driving all of the activity within entities and their features. Because of

 53

the importance and the method and some of its complexities, I walk through it in detail.
Code Listing 23 shows the tick method in its entirety.

Code Listing 23. The tick Method

public TickResult tick(long currentTime_ms) {
 logger.debug("Executing tick at {}", currentTime_ms);

 List<Future<Long>> nextTimes1;
 try {
 runAgentsTasks.forEach(task ->
 task.setCurrentTime(currentTime_ms));
 nextTimes1 = executorService.invokeAll(runAgentsTasks);
 } catch (InterruptedException e) {
 e.printStackTrace();
 nextTimes1 = List.of();
 }
 routeMessages();

 this.processMessages(currentTime_ms);
 this.runAgents(currentTime_ms);
 routeMessages();

 List<Future<Long>> nextTimes2;
 try {
 processEventsTasks.forEach(task ->
 task.setCurrentTime_ms(currentTime_ms));
 nextTimes2 = executorService.invokeAll(processEventsTasks);
 } catch (InterruptedException e) {
 e.printStackTrace();
 nextTimes2 = List.of();
 }
 routeMessages();

 List<SSTAFResult> toSession = getMessagesToSession();
 long nextEventTime_ms = Long.min(getMinTime(nextTimes1),
 getMinTime(nextTimes2));
 return new TickResult(nextEventTime_ms, toSession);
}

The tick method begins by invoking the agents in the analysis entities. Starting with the first
try block, tick iterates over the runAgentTasks list and sets the current simulation time in
each task. The next step is to submit the list of tasks to an ExecutorService that uses a pool
of threads to run all of the tasks.

To maximize performance, the EntityController uses multiple threads to perform
processing within the individual entities. The runAgentsTask list contains an instance of the

 54

RunAgentCallable class for each Entity in the system. The RunAgentCallable is an
implementation of java.util.concurrent.Callable that wraps the invocation of one
entity’s runAgents method in its call method. The result of the runAgents call is the time
for next simulation event created by agents for the Entity. The ExecutorService returns a
list of Future objects to those results.

The next step is to route any messages generated by the agents to the appropriate destination.
The routeMessages method takes messages from the outboundQueue in each entity and
moves it to the inboundQueue in the destination entity.

At this point, tick switches to invoking the features in the EntityController. First, any
messages and executable events are processed. Next, all of the agents in the
EntityController are activated and then any new messages are routed. Note that this section
of tick is single-threaded.

In the second try block, the messages and events for each entity are processed identically to
how the entity agents were dispatched. The processEventsTask list contains
ProcessEventsCallable objects that wrap the processMessages method in the Entity.

Again, the method routes messages to the appropriate destinations. The
getMessagesToSession method gathers the messages that are destined for the Session and
converts outbound messages from their internal classes to the appropriate Session message
class.

The next step is to determine the next event time by computing the minimum from both time
lists. Finally, the method creates a TickResult object and returns it to the Session.

3.9 Repeatability

The ability to repeat a run and generate consistent results is important for analyses. I designed
SSTAF to produce repeatable results even when Session is using multiple threads to process
Entity actions and events. I accomplished this using several techniques including careful
management of random number generators and draw order.

First, each Entity has its own random number generator that is seeded from a single parent
generator. The parent generator is seeded from the session configuration file. Instantiation of
the entities happens in the same order each time, because the entity graph is defined in the input
files and entities are instantiated by a single thread when the session is loaded. Thus, each
Entity starts with a repeatable, and independent, random state.

Next, communication between entities is only through messages and messages have a
deterministic and repeatable execution order. The repeatable execution order is enforced by the

 55

PriorityQueue and MessageComparator mentioned in Section 3.4.1. This mechanism
ensures that on each tick, the messages will be executed in the same order for each run. Since
the messages will be executed in the same order, the state changes within an entity will be
executed in the same order and thus the state of the Entity after every tick will be repeatable.

Finally, SSTAF makes direct access of one Entity by another difficult. Direct access would
enable one Entity to manipulate the state of another outside of the message-passing
mechanism. This could change the order of operations and break repeatability. This is
especially true if the Session is using multiple threads.

3.10 Verification

SSTAF is not a model. SSTAF does not simulate anything unless the system has been
augmented with user-specified models. Therefore, it is not necessary to validate SSTAF.
However, it is a complex software system, so verification of its functional correctness is
imperative.

To ensure functional correctness, multiple layers of testing are used. These layers include unit,
module and integration tests. SSTAF uses the Junit testing framework and follows the Java
convention of placing the unit and module tests within the src/test directory within each
module. Integration tests are contained within the mil.sstaf.integration module.

 56

4. IMPLEMENTING FEATURES

As stated previously, the primary mechanism for adding capability to SSTAF is through the
addition of features to entities. In this section, I discuss the design, implementation and testing
of features using a series of examples:

1. Blackboard
Provides a cache that other Features within an Entity can use. The entries on the
Blackboard can be set to expire at a specific simulation time.

2. TelemetryAgent
Provides the ability to log values from the Blackboard.

3. MobilityEntityAgent
Provides the ability for an entity to move on a two-dimensional surface.

4. MobilityCentralAgent
Tracks the current position of all entities in the simulation. This agent is an
EntityController feature.

4.1 Blackboard

The Blackboard addresses the need for the features within an entity to be able to post values to
a central location so that other features can read them. Initially, this capability was built directly
into the Entity class; however, later it was refactored as a Feature.

4.1.1 Requirements

The following are the requirements for the Blackboard feature:

• Enable transient storage of arbitrary objects using a String as an identification key.
• Enable retrieval of an object that is associated with a String key.
• Enable removal of an object that is associated with a String key.
• Enable each stored object to have a time range for which it is valid.
• Expired objects are eligible for removal.
• Enable stored objects to be perpetually valid.
• Enable storage action to be invoked either directly or through a message.
• Enable retrieval action to be invoked either directly or through a message.
• Enable removal action to be invoked either directly or through a message.

4.1.2 Build Configuration

Although not required, it is advisable to use test-driven development (TDD) when implementing
features for SSTAF. In order to do TDD, it is first necessary to have a minimal structure in place
so that one can build the code and execute the tests. Once one has the minimal structure in place,

 57

developing the feature is simply a matter of developing tests to check requirements and writing
code to pass the tests.

As stated previously, SSTAF features are implemented as Java modules. The idiomatic
approach for SSTAF is to divide the code for the feature into two modules. The first module
specifies the API for the feature. If the feature has a custom interface, that interface class is
included in the API module. Additionally, any custom classes that are used in the interface or as
message content must be included in the API module. The API module is a compile-time
dependency for any SSTAF-based component that uses that feature. The second module
contains the implementation for the feature. It depends on the API module and must be available
on the module path at runtime.

Given this idiom, we create two directory hierarchies for the Blackboard using the Gradle-
standard “src/main/java/…, src/test/java/…” pattern. The API module is under
mil.sstaf.blackboard.api. Because the implementation is to be solely in memory, the
implementation module is called mil.sstaf.blackboard.inmem.

The build.gradle file for the API module is simple and is shown in Code Listing 24. It
shows that the API depends only on the SSTAF core module, the JSON module, and the Apache
Commons Math module.

Code Listing 24. The build.gradle file for the Blackboard API Module

ext.moduleName = 'mil.sstaf.blackboard.api'
dependencies {
 implementation project(':framework:mil.sstaf.core')
 compile "org.json:json:20190722"
 compile group: 'org.apache.commons', name: 'commons-math3',
 version: '3.6.1'
}

Similarly, the build.gradle for the implementation module is also simple (Code Listing 25).

Code Listing 25. The build.gradle file for the Blackboard Implementation Module

ext.moduleName = 'mil.sstaf.blackboard.inmem'
dependencies {
 implementation project(':framework:mil.sstaf.core')
 implementation project(':features:support:mil.sstaf.blackboard.api
')
}

At this point, it is possible to start developing tests and code.

 58

4.1.3 Blackboard Interface

Given that the requirements specified in Section 4.1.1 specify that the Blackboard must
support interaction through messages, the appropriate type of Feature to implement is the
Handler. The new Blackboard interface thus extends the Handler interface. This gives us
the class inheritance hierarchy shown in Figure 24.

 59

Figure 24. Inheritance hierarchy for the Blackboard interface

To support the requirements, the Blackboard interface includes five methods as shown in
Code Listing 26. The first two support retrieval of an object. The two addEntry methods
register an object with the Blackboard. The intent of the first version is that the object is
available beginning at timestamp_ms and never expires. In the second version, the object is
available at timestamp_ms and expires at expiration_ms. The two getEntry methods
enable retrieval from the Blackboard. In both methods, the entry key and current simulation

 60

time are provided to locate the value and determine if it is valid. In the first form, the stored
object is returned as simple Object. In the second form, a match is checked against the
specified type and returned as that type. In both methods, the Optional class is used to wrap
the return value rather than returning a null if no match is found. The final method, remove,
deletes the specified object from the Blackboard.

Code Listing 26. The Blackboard Interface

public interface Blackboard extends Handler {

 void addEntry(final String key, final Object value,
 final long timestamp_ms);

 void addEntry(final String key, final Object value,
 final long timestamp_ms, final long expiration_ms);

 Optional<Object> getEntry(final String key,
 final long currentTime_ms);

 <T> Optional<T> getEntry(final String key,
 final long currentTime_ms, Class<T> type);

 void remove(final String key);
}

4.1.4 Message Classes

To enable the Blackboard to accept commands through messages, it is necessary to create the
messages. To convey the commands, there are three classes: AddEntryRequest,
GetEntryRequest and RemoveEntryRequest. Similarly, there are three class to convey the
results of the commands: AddEntryResponse, GetEntryResponse and
RemoveEntryResponse. The contents of these classes are shown in Figures 25 through 30.

Figure 25. AddEntryRequest class

 61

Figure 26. GetEntryRequest class

Figure 27. AddEntryResponse class

Figure 28. GetEntryResponse class

Figure 29. RemoveEntryRequest class

Figure 30. RemoveEntryResponse class

4.1.5 Implementation Class

At this point, it is possible to present the implementation of the Blackboard interface in the
InMemBlackboard class. Because the class must implement Handler, it is appropriate to
extend BaseHandler. This gives the class inheritance hierarchy shown in Figure 31.

 62

Figure 31. The InMemBlackboard class hierarchy

 63

From the diagram, we can see that in addition to the methods specified in the Blackboard
interface, the InMemBlackboard must implement the contentHandled and process
methods. Code Listing 27 shows the contentHandled method. Code Listing 28 shows the
process method.

 64

Code Listing 27. The ContentHandled Method

public List<Class<?>> contentHandled() {
 return List.of(EntityHandle.class, AddEntryRequest.class,
 GetEntryRequest.class, RemoveEntryRequest.class);
}

Code Listing 28. The Process Method

public ProcessingResult process(Object arg, long scheduledTime_ms,
 long currentTime_ms, Address from, long id, Address respondTo) {
 Message output;
 if (arg instanceof GetEntryRequest) {
 GetEntryRequest<?> message = (GetEntryRequest<?>) arg;
 Object value = internalGetEntry(message.key, message.time_ms);
 GetEntryResponse response = new GetEntryResponse(value,
 message.key, message.time_ms, message.type);
 output = buildNormalResponse(response, id, respondTo);
 } else if (arg instanceof RemoveEntryRequest) {
 RemoveEntryRequest rer = (RemoveEntryRequest) arg;
 remove(rer.key);
 RemoveEntryResponse response =
 new RemoveEntryResponse(entryMap.size());
 output = buildNormalResponse(response, id, respondTo);
 } else if (arg instanceof AddEntryRequest) {
 AddEntryRequest aer = (AddEntryRequest) arg;
 addEntry(aer.key, aer.value, aer.timestamp_ms,
 aer.expiration_ms);
 AddEntryResponse response =
 new AddEntryResponse(entryMap.size());
 output = buildNormalResponse(response, id, respondTo);
 } else if (arg instanceof EntityHandle) {
 EntityHandle entityHandle = (EntityHandle) arg;
 addEntry(entityHandle.getPath(), entityHandle, BIGBANG,
 FOREVER);
 AddEntryResponse response =
 new AddEntryResponse(entryMap.size());
 output = buildNormalResponse(response, id, respondTo);
 } else {
 output = this.buildErrorResponse("Message class '"
 + arg.getClass() + "' is not supported.",
 new IllegalArgumentException(), id, respondTo);
 }
 return ProcessingResult.of(output);
}

Note that in addition to the three request classes, InMemBlackboard also accepts an
EntityHandle as a message. As shown in the process method, if an EntityHandle is
received, it is added to the Blackboard with the entity path as the key. It is also always valid,

 65

with its valid period ranging from BIGBANG to FOREVER. In retrospect, this was a mistake and it
will be removed in the next version. It is more appropriate for the caller to use the
AddEntryRequest message rather than add this special case for a single scenario.

To support the storage and retrieval of entries, InMemBlackboard uses a standard HashMap.
Each submitted object is wrapped in an Entry class that also contains the beginning and ending
times for the validity of the object. Code Listing 29 shows the addEntry method.

Code Listing 29. The AddEntry Method

public void addEntry(final String key, final Object value,
 final long timestamp_ms, final long expiration_ms) {
 Objects.requireNonNull(key, "Blackboard entry may not have a null
key");
 Objects.requireNonNull(value,
 "Blackboard entry may not have a null value");
 if (logger.isDebugEnabled()) {
 logger.debug("Adding '{}':'{}'; valid {} to {}",
 key, value, timestamp_ms, expiration_ms);
 }
 entryMap.put(key, new Entry(value, timestamp_ms, expiration_ms));
}

The InMemBlackboard class does not require configuration nor does it require initialization.
Therefore, it is sufficient to use the implementations for the configure and init methods
provided in the base classes.

4.1.6 Module Configuration

The module_info.java file for the API module is shown in Code Listing 30. It shows that
the API module requires only the mil.sstaf.core module. Additionally, the module exports
the mil.sstaf.blackboard.api package to make it publicly available.

Code Listing 30. The Module_info.java File for the Blackboard API

module mil.sstaf.blackboard.api {
 exports mil.sstaf.blackboard.api;
 requires transitive mil.sstaf.core;
}

The module_info.java file for the implementation module (Code Listing 31) is more
interesting. It shows that the implementation requires the Blackboard API and JSON modules
and that it exports the mil.sstaf.blackboard.inmem package. The provides and opens

 66

statements support service loading. The provides statements indicate that the module provides
specific services with an implementations of the specified class. In this case, the Feature,
Handler and Blackboard capabilities are all provided by the InMemBlackboard class. The
opens statement enables the mil.sstaf.core module to use the Java reflection mechanism to
interact with the mil.sstaf.blackboard.inmem module. This access is required in order to
do the dependency injection provided by the Requires and Injected mechanisms.

Code Listing 31. Module_info.java File for the Blackboard Implementation Module

import mil.sstaf.blackboard.api.Blackboard;
import mil.sstaf.blackboard.inmem.InMemBlackboard;
import mil.sstaf.core.features.Feature;
import mil.sstaf.core.features.Handler;

module mil.sstaf.blackboard.inmem {
 exports mil.sstaf.blackboard.inmem;

 requires mil.sstaf.blackboard.api;
 requires org.json;

 provides Feature with InMemBlackboard;
 provides Handler with InMemBlackboard;
 provides Blackboard with InMemBlackboard;

 opens mil.sstaf.blackboard.inmem to mil.sstaf.core;
}

4.2 TelemetryAgent

During development, I discovered that it would be very useful to be able to read the values in the
Blackboard and record them in a structured form. The TelemetryAgent reads values from
its entity’s Blackboard and writes the values to a file.

4.2.1 Requirements

The requirements for the TelemetryAgent are the following:

• Enable the user to specify which values for each Entity are recorded.
• Record the telemetry for each value in a separate file.
• Place all telemetry files for an Entity in a separate directory.
• Build a directory hierarchy based on Entity paths.
• Record telemetry on each tick.
• Record telemetry in a comma-separated value (CSV) file.
• Automatically generate column headers.

 67

4.2.2 The StateProperty Annotation

The StateProperty annotation is used to mark fields in an object so that they can be written
by the TelemetryAgent. StateProperty contains one parameter, headerLabel, the value
of which is used to for the column header in the output file. If the value is not set, the name of
the field is used as the column header.

4.2.3 Implementation

Because the TelemetryAgent does not provide capabilities beyond automatically recording
data, it is not necessary to develop a new interface. It is sufficient to implement it as a simple
extension of BaseAgent. Figure 32 shows an abbreviated version of the inheritance hierarchy
for TelemetryAgent.

 68

Figure 32. The TelemetryAgent class hierarchy

Furthermore, since there is no need to create a separate API, only a single module is required.
Code Listing 32 shows the build.gradle file. Note that the file specifies that the module has
an implementation dependency on the Blackboard API as well as a test dependency on the
Blackboard implementation module.

 69

Code Listing 32. The build.gradle File for TelemetryAgent

ext.moduleName = 'mil.sstaf.telemetry'

dependencies {
 implementation project(':framework:mil.sstaf.core')
 implementation project(
 ':features:support:mil.sstaf.blackboard.api')
 testRuntimeOnly project(
 ':features:support:mil.sstaf.blackboard.inmem')
}

The dependencies on the Blackboard modules arise because TelemetryAgent declares a
requirement for a Blackboard through a Requires annotation, as shown in the excerpt in
Code Listing 33. TelemetryAgent uses this reference to access the Blackboard to read the
values to record. The test dependency is required because an implementation of Blackboard
must be supplied to the TelemetryAgent during the tests.

Code Listing 33. Excerpt from TelemetryAgent

public class TelemetryAgent extends BaseAgent {
 public static final String FEATURE_NAME = "Telemetry Agent";
 public static final int MAJOR_VERSION = 0;
 public static final int MINOR_VERSION = 1;
 public static final int PATCH_VERSION = 0;

 public static final String CK_STATES_LIST_= "statesToRecord";

 // ...

 @Requires
 Blackboard blackboard;

 public TelemetryAgent() {
 super(FEATURE_NAME, MAJOR_VERSION, MINOR_VERSION,
 PATCH_VERSION, true, "CSV telemetry writer");
 }
 // ...
}

4.2.4 Configuration and Initialization

Unlike the Blackboard, TelemetryAgent does require configuration and initialization.
Configuration is necessary to set the keys that the agent will use to retrieve the desired values.
Initialization is required to prepare the agent to write the values.

 70

Code Listing 34 shows an example JSON configuration that sets up a TelemetryAgent.
Recall that the features array specifies the features to be added to an entity. The configurations
object defines the configuration parameters that will be provided to the Feature. The
FeatureHandler provides the JSONObject associated with the key “Telemetry Agent” to the
TelemetryAgent when it is loaded. Thus, TelemetryAgent records the values associated
with “Aim Internals” and “Muscle Metrics”.

Code Listing 34. TelemetryAgent Configuration

{
 "features": [
 {
 "featureName": "Telemetry Agent",
 "majorVersion": 0,
 "minorVersion": 1,
 "requireExact": "false"
 }
],
 "configurations": {
 "Telemetry Agent": {
 "statesToRecord": [
 "Aim Internals",
 "Muscle Metrics"
]
 }
 }

Code Listing 35 shows the configure method in TelemetryAgent. The method uses the
iterateOverObjs method to retrieve the list from the configuration object. It then iterates
over the objects in the list and if the object is a String, it is added to the list of Blackboard
keys to use. The value of CK_STATES_LIST is “statesToRecord”, which corresponds to the key
in the configuration.

 71

Code Listing 35. The configure Method

@Override
public void configure(JSONObject configuration, long randomSeed) {
 super.configure(configuration, randomSeed);
 JSONUtilities.iterateOverObjs(configuration, CK_STATES_LIST,
 object -> {
 if (object instanceof String) {
 String stateName = (String) object;
 stateKeys.add(stateName);
 }
 });
}

Code Listing 36 shows the init method in TelemetryAgent. This method performs two
actions. First, it creates the directory into which the CSV files will be written. Then, for each
key in the stateKeys list it creates a new StateWriter. Each StateWriter instance is
responsible for the following:

1. Creating the output file.
2. Retrieving the object from the Blackboard with the key.
3. Finding the fields in the object that are marked with StateProperty annotations.
4. Writing the column headers.
5. Writing the StateProperty values to the output file.

Code Listing 36. The init Method

@Override
public void init() {
 super.init();
 try {
 File outputDir = makeOutputDir();
 stateKeys.forEach(key -> writerMap.put(key,
 new StateWriter(key, outputDir)));
 } catch (FileNotFoundException e) {
 throw new SSTAFException(e);
 }
}

The final method to discuss is the tick method shown in Code Listing 37. This method is
simple. On each invocation, it iterates over the StateWriter instances and has each process its
object.

 72

Code Listing 37. The tick Method

@Override
public ProcessingResult tick(long currentTime_ms) {
 if (logger.isDebugEnabled()) {
 logger.debug("{}:{} - Ticking at {}", ownerHandle.getPath(),
 featureName, currentTime_ms);
 }
 writerMap.values().forEach(writer ->
 writer.writeValues(currentTime_ms));
 return ProcessingResult.empty();
}

4.3 ManeuverEntityAgent and ManeuverCentralAgent

In the final example, I present two features that are designed to work together, the
ManeuverEntityAgent and the ManeuverCentralAgent. The purpose of the
ManeuverEntityAgent is to maintain the position and velocity of individual entities. The
purpose of the ManeuverCentralAgent is to track all of the entities and update each entity on
the position of the others. The ManeuverCentralAgent resides in the EntityController,

These agents were developed to demonstrate how to provide state information from one entity to
all of the other entities in a way that did not violate the strict order-of-operations rules required to
ensure repeatability. These agents were motivated by an early sub-model that accessed state data
from other entities directly. As stated previously, direct access makes it difficult to guarantee
repeatability under multiple threads.

Since these features are simple demonstration models, the environment in which the entities
maneuver is trivially simple. Entities maneuver on an infinite, unobstructed plane.

4.3.1 Requirements

The requirements for the two agents are simple. For the MobilityEntityAgent, they are the
following:

• Accept messages to set the current position, heading and speed of the Entity.
• Retain the current position, heading and speed of the Entity on a two-dimensional

surface.
• On every tick, calculate the new position of the Entity based on its current position and

velocity.
• On every tick, provide the ManeuverCentralAgent with the current maneuver state of

the Entity.
• Accept and process messages to provide the current maneuver state of the Entity.

 73

For the ManeuverCentralAgent, the requirements are the following:

• Accept messages for the current maneuver state of all entities in the simulation.
• On each tick, provide a collection of all of the maneuver states to every entity.

4.3.2 Build Configuration

EntityController process messages and perform actions on every simulation tick. Thus, the
appropriate Feature type is Agent.

We also see that the two agents accept messages and send them back and forth to each other.
This indicates that we should have an API module that defines the message and response classes.
It should define any classes shared between the two agents as well. Thus, with the API module
and the two agents we have three modules: mil.sstaf.maneuver.api,
mil.sstaf.maneuver.entityagent and mil.sstaf.maneuver.centralagent.

Code Listing 38 shows the build configuration for the API module. The build configuration for
ManeuverEntityAgent and ManeuverCentralAgent are shown in Code Listings 39 and
40, respectively. As should be expected, the API module depends only on the SSTAF core
module. The modules for the two agents depend on SSTAF core, the API module and the
Blackboard. It is interesting that the ManeuverCentralAgent lacks a
testImplementation line. This is because I violated TDD and forgot to write tests for that
module!

 74

Code Listing 38. Build Configuration for the Maneuver API

ext.moduleName = 'mil.sstaf.maneuver.api'
dependencies {
 implementation project(':framework:mil.sstaf.core')
}

Code Listing 39. Build Configuration for ManeuverEntityAgent

ext.moduleName = 'mil.sstaf.maneuver.entityagent'

dependencies {
 implementation project(':framework:mil.sstaf.core')
 implementation project(
 ':features:military:mil.sstaf.maneuver.api')
 implementation project(
 ':features:support:mil.sstaf.blackboard.api')
 testImplementation project(
 ':features:support:mil.sstaf.blackboard.inmem')
}

Code Listing 40. Build Configuration for ManeuverCentralAgent

ext.moduleName = 'mil.sstaf.maneuver.centralagent'

dependencies {
 implementation project(':framework:mil.sstaf.core')
 implementation project(
 ':features:support:mil.sstaf.blackboard.api')
 implementation project(
 ':features:military:mil.sstaf.maneuver.api')
}

4.3.3 The API Module

To support the requirements to accept, process and dispatch messages, the API module includes
six classes for use as message content. The first three are the Position, Speed and Heading
classes. These classes are shown in Figures 33, 34 and 35, respectively. As expected, these
classes hold the position, speed and heading values for the Entity. They can be used to set the
maneuver state of the Entity.

 75

Figure 33. Position class

Figure 34. Speed class

Figure 35. Heading class

The fourth class, ManeuverState, is used to bundle Position, Speed and Heading objects.
Like the previous classes, ManeuverState can be used both to set state and report state. It is
shown in Figure 36.

 76

Figure 36. ManeuverState class

The fifth class is the ManeuverStateMap class. This is the class sent from the
ManeuverCentralAgent to every Entity. It contains a map of EntityHandles to
ManeuverState objects to provide the required state information. Figure 37 shows the
ManevuerStateMap.

Figure 37. ManeuverStateMap class

The sixth class, ManeuverStateQuery is used to request the current ManeuverState from an
Entity. It is simply an extension of Object so that it can be used in an instanceof test.

The API module also contains an interface that enables other Features within the Entity to
access the ManeuverEntityAgent capabilities directly and load them using the Requires
construct. Figure 38 shows the ManeuverProvider interface.

 77

Figure 38. ManeuverProvider class

4.3.4 Implementation

Implementation of the two agents is uncomplicated. Neither class supports JSON configuration
and neither requires special initialization.

For the ManeuverEntityClass, we need to specify the messages it supports. Thus, we have
the contentsHandled method shown in Code Listing 41. The Heading, Position, Speed
and ManeuverState objects set the state of the Entity. The ManeuverStateQuery requests
the current state. The ManeuverStateMap message provides the Entity with the
ManeuverStates for all of the other entities.

Code Listing 41. The ContentHandled Method

@Override
public List<Class<?>> contentHandled() {
 return List.of(Heading.class, Position.class, Speed.class,
 ManeuverStateQuery.class, ManeuverState.class,
 ManeuverStateMap.class);
}

As stated previously, these two agents are designed to work together. To show how they do so, I
walk through the four methods that perform the collaboration. These are the tick and process
methods in both the ManeuverEntityAgent and ManeuverCentralAgent. These four
methods are all executed within one invocation of the tick method in the EntityController.

Recall from Section 3.8 the order of execution for tick and process for Entity-level features
and EntityController features. The order is the following:

1. Entity feature tick
2. EntityController feature process
3. EntityController feature tick

 78

4. Entity feature process

The tick method for the ManeuverEntityAgent is shown in Code Listing 42. The method
begins by checking that the position and heading have been initialized. It then updates the
position of the Entity and creates a new ManeuverState. Next, it looks in the Blackboard
for the EntityHandle for the EntityController. The handle is needed to produce the
address for the outgoing message. If the handle for the EntityController is found, an
EntityEvent is created to hold the ManeuverState object and carry it to the
EntityController. An EntityEvent is used rather than an EntityAction because the
ManeuverState is associated with a specific time. A ProcessingResult that contains the
ManeuverState is returned.

 79

Code Listing 42. The ManeuverEntityAgent Tick Method

@Override
public ProcessingResult tick(long currentTime_ms) {
 logger.trace("{} ticking at {}", getInfoString(), currentTime_ms);
 double deltaT = currentTime_ms - lastTimeStamp_ms;
 lastTimeStamp_ms = currentTime_ms;

 if (position == null || heading == null) {
 throw new IllegalStateException(
 "Initial Position and/or Heading are not set!");
 }
 position = updatePosition(position, heading, speed, deltaT);
 ManeuverState state = updateManeuverState(currentTime_ms);

 if (centralAgentHandle == null) {
 Optional<EntityHandle> optHandle =
 blackboard.getEntry("SYSTEM:EntityController",
 currentTime_ms, EntityHandle.class);
 optHandle.ifPresentOrElse(
 obj -> centralAgentHandle = obj,
 () -> logger.warn(
 "EntityController not set"));
 }

 if (centralAgentHandle == null) {
 logger.debug("{} centralAgent handle is null, “
 + ”returning empty ProcessingResult", getInfoString());
 return ProcessingResult.empty();
 } else {
 EntityEvent.Builder builder = EntityEvent.builder();
 builder.withEventTime_ms(currentTime_ms);
 builder.withSource(Address.makeAddress(ownerHandle,
 getName()));
 builder.withDestination(
 Address.makeExternalAddress(centralAgentHandle));
 builder.withContents(state);
 EntityEvent event = builder.build();
 logger.trace("{} returning state {}", getInfoString(), state);
 return ProcessingResult.of(event);
 }
}

After all of the entities have completed their tick, all of the messages generated are routed to
their destinations. Consequently, all of the ManeuverState messages will be queued for
processing in the EntityController.

 80

The next method to be invoked is the process method in the ManeuverCentralAgent that is
assigned to the EntityContoller. Code Listing 43 shows the source for the method. The
method is simple. If the received object is a ManeuverState, it is added to a
ManeuverStateMap that is retained by the agent.

Code Listing 43. The ManeuverCentralAgent Process Method

@Override
public ProcessingResult process(Object arg, long scheduledTime_ms,
 long currentTime_ms, Address from, long id, Address respondTo) {
 if (arg instanceof ManeuverState) {
 ManeuverState maneuverState = (ManeuverState) arg;
 if (maneuverStateMap == null) {
 maneuverStateMap = new ManeuverStateMap();
 }
 maneuverStateMap.addManeuverState(maneuverState);
 } else {
 throw new SSTAFException(arg.getClass()
 + " is not supported by this Handler");
 }
 return ProcessingResult.empty();
}

The next method to be invoked is the tick method for the ManeuverCentralAgent. Code
Listing 44 shows this method. This method is also simple. It iterates over all of the keys in the
ManeuverStateMap and uses those EntityHandle objects to form addresses for new
messages. A message that contains the ManeuverStateMap is created for each Entity in the
map. These messages are returned in the ProcessingResult and then routed to the entities.

Code Listing 44. The ManeuverCentralAgent Tick Method

@Override
public ProcessingResult tick(long currentTime_ms) {
 List<Message> output = new ArrayList<>();
 if (maneuverStateMap != null) {
 maneuverStateMap.getStateMap().keySet().
 forEach(entityHandle ->
 output.add(prepareMessage(entityHandle)));
 }
 maneuverStateMap = null;
 return ProcessingResult.of(output);
}

 81

The final method is the ManeuverEntityAgent.process method shown in Code Listing 45.
It handles the ManeuverStateMap objects by registering them in the Blackboard. In addition
to the ManeuverStateMap, the process method handles the classes that change maneuver
settings. It also responds to direct requests for maneuver state.

 82

Code Listing 45. The ManeuverEntityAgent Process Method

@Override
public ProcessingResult process(Object arg, long scheduledTime_ms,
 long currentTime_ms, Address from, long id, Address respondTo) {

 logger.debug("{} processing {} value = '{}'",
 getInfoString(), arg.getClass(), arg);

 boolean update = true;
 if (arg instanceof ManeuverState) {
 ManeuverState maneuverState = (ManeuverState) arg;
 logger.trace("{} updating with {}", getInfoString(),
 maneuverState);
 this.position = maneuverState.position;
 this.heading = maneuverState.heading;
 this.speed = maneuverState.speed;
 logger.trace("{} state = {} {} {}", getInfoString(),
 this.position, this.heading, this.speed);
 } else if (arg instanceof Position) {
 this.position = (Position) arg;
 logger.trace("{} state = {} {} {}", getInfoString(),
 this.position, this.heading, this.speed);
 } else if (arg instanceof Heading) {
 this.heading = (Heading) arg;
 logger.trace("{}, state = {} {} {}", getInfoString(),
 this.position, this.heading, this.speed);
 } else if (arg instanceof Speed) {
 this.speed = (Speed) arg;
 logger.trace("{} state = {} {} {}", getInfoString(),
 this.position, this.heading, this.speed);
 } else if (arg instanceof ManeuverStateQuery) {
 double deltaT = currentTime_ms - lastTimeStamp_ms;
 updatePosition(position, heading, speed, deltaT);
 } else if (arg instanceof ManeuverStateMap) {
 update = false;
 blackboard.addEntry("ManeuverStateMap", arg, currentTime_ms);
 } else {
 throw new SSTAFException("Can't process "
 + arg.getClass().getSimpleName());
 }

 if (update) {
 ManeuverState ms = updateManeuverState(currentTime_ms);
 logger.trace("{} returning current state {}", getInfoString(),
 ms);
 Message response = this.buildNormalResponse(ms, id,

 83

 respondTo);
 return ProcessingResult.of(response);
 } else {
 return ProcessingResult.empty();
 }
}

At this point, the major concepts of SSTAF features should be clear. In the next section, I
discuss creating an application that uses SSTAF.

 84

5. ASSEMBLING A SIMPLE APPLICATION

To illustrate how to construct a SSTAF-based application, I walk through a simple application
that is included in the SSTAF source repository. The application loads a set of units and Soldiers
and a set of initial commands and events. The application submits the commands and events to
the specified units or Soldiers. The simulation then enters an event-processing loop. The
simulation processes one tick at a time with a user-specified interval for a user-specified
duration. When the duration has been achieved, the application exits.

The simulation does not produce any results except those that are captured by the telemetry
feature. The purpose of the application is to exercise the SSTAF system from top to bottom.

5.1 Build Configuration

Code Listing 46 shows the build file for the application. It is much more complicated than the
previous examples. The top half of the file loads the Gradle application plugin and configures it
to build the desired application. The second half specifies the dependencies for the application.

Within the dependency block are three groups of dependencies. In the first block, the two
SSTAF framework modules are specified. In the second, additional implementation
dependencies are declared on the API modules for several features. These dependencies exist
because an application can instantiate feature-specific message objects to interact with loaded
features. The third group of dependencies are runtime dependencies for the models and support
features that are loaded dynamically by the system.

 85

Code Listing 46. Application Build File

plugins {
 id 'application'
}

ext.moduleName = 'mil.sstaf.analysis'

apply plugin: 'application'

application {
 mainClassName = 'mil.sstaf.analysis.Main'
 applicationDefaultJvmArgs = ["log4j.configurationFile=/Users/rbowe
rs/Desktop/Projects/Overmatch/sstaf-master/system/application/mil.ssta
f.analysis/src/main/resources/log4j2.xml"]
}

dependencies {
 implementation project(':framework:mil.sstaf.core')
 implementation project(':framework:mil.sstaf.session')

 implementation project(':features:military:mil.sstaf.aim.api')
 implementation project(':features:military:mil.sstaf.injury.api')
 implementation project(':features:human:mil.sstaf.kinematics.api')
 implementation project(
 ':features:military:mil.sstaf.targeting.api')
 implementation project(':features:human:mil.sstaf.physiology.api')
 implementation project(':features:human:mil.sstaf.equipment.api')
 implementation project(
 ':features:human:mil.sstaf.anthropometry.api')
 implementation project(':features:military:mil.sstaf.soldiertasks.
api')

 runtimeOnly project(':features:military:mil.sstaf.aim.dynamic')
 runtimeOnly project(':features:military:mil.sstaf.aim.standard')
 runtimeOnly project(':features:military:mil.sstaf.injury.orca')
 runtimeOnly project(':features:support:mil.sstaf.blackboard.inmem'
)
 runtimeOnly project(':features:human:mil.sstaf.kinematics.simple')
 runtimeOnly project(':features:human:mil.sstaf.equipment.manager')
 runtimeOnly project(
 ':features:military:mil.sstaf.targeting.acquire')
 runtimeOnly project(':features:human:mil.sstaf.physiology.agent')
 runtimeOnly project(
 ':features:human:mil.sstaf.physiology.models.cardiovascular')
 runtimeOnly project(
 ':features:human:mil.sstaf.physiology.models.cognition')
 runtimeOnly project(
 ':features:human:mil.sstaf.physiology.models.energy')
 runtimeOnly project(

 86

 ':features:human:mil.sstaf.physiology.models.hydration')
 runtimeOnly project(
 ':features:human:mil.sstaf.physiology.models.musculature')
 runtimeOnly project(
 ':features:human:mil.sstaf.physiology.models.respiration')
 runtimeOnly project(
 ':features:human:mil.sstaf.physiology.models.vision')
 runtimeOnly project(
 ':features:military:mil.sstaf.soldiertasks.entity')
 runtimeOnly project(':features:support:mil.sstaf.telemetry')
}

5.2 Implementation Classes

The entire application consists of two public classes: Main and AnalysisRunner.

The Main class is simple. Its only responsibilities are to check the command-line arguments,
print a usage message if they arguments are bad, create the AnalysisRunner and start the
AnalysisRunner.

5.2.1 Building the AnalysisRunner

The AnalysisRunner is created and configured using the factory and builder idiom described
previously.

Code Listing 47 shows the Factory constructor in the AnalysisRunner. The method begins
by creating the Session object by using its factory method to parse and load the
JSONObject that defines the units and Soldiers.

Once the Session is loaded, the EntityHandles are retrieved and a map of paths to handles is
built. This is used later when the commands are loaded. The Session is then added to the
AnalysisRunner.Builder and the method moves on to read the command file.

 87

Code Listing 47. The Factory Method

private Factory(JSONObject sessionObj, JSONObject configObj) {
 builder = builder();

 Session session = Session.factory(sessionObj).build();
 SortedSet<EntityHandle> handles = session.getEntities();
 handles.forEach(handle ->
 handleMap.put(handle.getPath(), handle));
 builder.withSession(session);

 JSONUtilities.setOption(configObj, "tickInterval",
 Long.class, builder::withTickInterval);
 JSONUtilities.setOption(configObj, "runDuration",
 Long.class, builder::withRunDuration);
 JSONUtilities.iterateOverJSONObjects(configObj, "commands",
 this::processObject);
}

5.2.2 Command File and Parsing

Code Listing 48 shows a sample command file. Like all other files used by SSTAF, it is
implemented in JSON. The file consists of three elements. The first, “tickInterval”, specifies the
simulation time between simulation ticks. The second element, “runDuration”, specifies how
long the simulation will run in simulated time. The third element, “commands”, is a list of JSON
object blocks that define commands and events to be added to the system and processed.

Code Listing 49 shows an example command file that is loaded by the AnalysisRunner
factory. First, the tickInterval and runDuration values are loaded, then the list provided by the
commands element are processed.

The form of each command object varies according to the object created. Two common
elements are the recipient and type elements. Recipient specifies which Entity is to receive the
message. It is specified as a path to the Entity. The type element specifies the class of the
object and is used to select how to process the remaining elements in the object.

 88

Code Listing 48. Command File for the Example Application

{
 "tickInterval": 1000,
 "runDuration": 36000000,
 "commands": [
 {
 "recipient": "Tango Squad:SL",
 "type": "ReloadTask",
 "weaponName": "M4"
 },
 {
 "recipient": "Tango Squad:SL",
 "type": "UseItemTask",
 "itemName": "M4",
 "dominantArmFraction": 0.45,
 "nonDominantArmFraction": 0.55
 }
]
}

Code Listing 49. The ProcessObject Method

private void processObject(JSONObject jsonObject) {
 logger.debug("Processing {}", jsonObject.toString(2));

 makeContents(jsonObject).ifPresent(content -> {
 if (commandIsEvent(jsonObject)) {
 logger.warn("Event is not supported yet");
 } else {
 var cmdBuilder = SSTAFCommand.builder();
 JSONUtilities.setMandatoryOrThrow(jsonObject,
 "recipient", String.class, path -> {
 if (handleMap.containsKey(path)) {
 cmdBuilder.withRecipient(handleMap.get(path));
 } else {
 throw new SSTAFException("The recipient path '"
 + path
 + "' does not exist in the session configuration."
);
 }
 cmdBuilder.withContent(content);
 });
 SSTAFCommand command = cmdBuilder.build();
 builder.withCommand(command);
 logger.info("Queued: {}", command);
 }
 });
}

 89

For each object in the commands list, the ProcessObject method shown in Code Listing 49 is
invoked. If the object defines a SSTAFEvent, it is skipped for now. If the object defines a
command, another builder is instantiated to build the command. The content of the command is
then constructed using the makeContents method shown in Code Listing 50. Then, the content
is added to the command and the command is added to the AnalysisRunner builder.

Code Listing 50. The makeContents Method

Optional<Object> makeContents(JSONObject jsonObject) {

 String commandType = jsonObject.getString("type");

 Object rv = null;
 if ("MarchTask".equalsIgnoreCase(commandType)) {
 logger.warn("MarchTask is not supported yet");
 } else if ("UseItemTask".equalsIgnoreCase(commandType)) {
 rv = UseItemTask.factory(jsonObject).build();
 } else if ("ReloadTask".equalsIgnoreCase(commandType)) {
 rv = ReloadTask.factory(jsonObject).build();
 } else if ("AimErrorTask".equalsIgnoreCase(commandType)) {
 rv = AimErrorTask.factory(jsonObject).build();
 }
 return Optional.ofNullable(rv);
}

After all of the commands have been read, the AnalysisRunner can be constructed. The next
step is for the main method to invoke run on the AnalysisRunner.

5.2.3 The Run Method

The event loop for the simulation is found in the run method of the AnalysisRunner class
and, as revealed in Code Listing 51, it is not complicated.

The method begins by submitting all of the commands that were read from the command file into
the Session. Within the Session, the messages are routed to the correct entities. Next, the
method enters the event loop itself, looping from 0 ms to the runDuration at tickInterval
intervals. Within the loop, the tick method for the Session is invoked, which in turn invokes
the tick method in the EntityController. Any messages that are returned from tick are
logged. When the loop completes the method, the application exits.

 90

Code Listing 51. The Run Method

public void run() {

 for (SSTAFCommand command : commands) {
 session.submit(command);
 }

 logger.info("Run started: tickInterval={} runDuration={}",
 tickInterval, runDuration);
 for (long time_ms = 0; time_ms <= runDuration;
 time_ms += tickInterval) {
 if (logger.isInfoEnabled()) {
 logger.info("Tick: {} -> {}",
 time_ms, Formatter.millisToDHMS(time_ms));
 }
 TickResult tickResult = session.tick(time_ms);
 for (SSTAFResult result : tickResult.getMessagesToClient()) {
 logger.info("{}", result);
 }
 }
 logger.info("Run completed");
}

The easiest way to extend the template provided by this application is to feed additional
commands and events in through the Session and do something with the results that come
back. I used this approach to develop an application that can use SSTAF to generate static data
files for use in legacy models. In that application, each iteration of the event loop performs a
status query on each entity. The application recorded the results of those queries as time-
dependent capability records in standard file format files.

 91

6. IMPLEMENTED MODELS

The real value of SSTAF is not in the framework, but in the models that it can access and tie
together. In this section, I present a summary of the models that have been implemented and can
be used within SSTAF. These models have come from numerous organizations including the
DEVCOM Soldier Center, the U.S. Army Research Institute of Environmental Medicine and
DAC itself.

Figure 39 shows the models expressed in terms of their maturity and the degree to which they
have been integrated into the SSTAF environment. For discussion, the models are divided into
three categories: (1) accredited models, (2) models under development and (3) experimental
models. The three categories are indicated by the three colors of stars.

The accredited models and models under development have their origins outside of SSTAF. The
SSTAF project is working to make those models accessible within the environment and work
with other models. The experimental models are models that I developed as proofs of concept
and to help test the system. These models provide behavior that appears realistic, at least on the
surface, but they are not necessarily valid. As we go forward, these models could be corrected,
extended or even discarded.

Because this document is focused on the SSTAF architecture rather than the models, the
descriptions are brief. Future documents will descript the details of each model, including
verification and validation support.

 92

Figure 39. SSTAF models

6.1 Operational Requirements-based Casualty Assessment

The first model integrated into SSTAF was DAC’s Operational Requirements-based Casualty
Assessment (ORCA) model. ORCA predicts injury and incapacitation for several battlefield
insult types at varying degrees of fidelity. These include penetration, blast, thermal, directed
energy and toxic gas threats.

The current version is implemented as a simple Feature and thus cannot respond to messages.
Therefore, in order for it to be used within an analysis, it must be loaded into a Handler or
Agent that can interact with it through the InjuryProvider interface.

Currently, SSTAF can create insults from ballistic threats and access the injury and
incapacitation state of the Soldier. Injury due to blast will be added soon.

 93

6.2 Anthropometry

A simple, experimental Feature was developed to hold the anthropometric information for the
humans and Soldiers in the simulation. The Anthropometry Feature is a simple collection of
the physical characteristics of the person.

The current version includes only a small number of values, specifically the following:

• Sex
• Age
• Height
• Weight
• Arm span
• Handedness

This collection is a small subset of the values available through real data sets such as
Anthropometric Survey of U.S. Army Personnel (ANSUR) II. However, these few values are
enough to demonstrate the ability of the system to use anthropometric data to affect results.

6.3 Physiology

The PhysiologyAgent is another experimental model. This model calculates and provides all
of the instantaneous physical states of the human. The PhysiologyAgent is a composite of
several other models that handle specific aspects of physiology. These aspects are the following:

• Musculature
• Vision
• Cardiovascular
• Respiration
• Cognition
• Energy
• Hydration

Currently, only the musculature model has any capability, and that capability is limited to
calculating arm strength and endurance. The arm strength and endurance model is simple and
makes numerous assumptions.

The initial arm strength values are based on the assumption that Soldiers can do pull-ups;
therefore, the initial total arm strength value is primarily a function of weight. The dominant arm
is able to maintain 85% of total arm strength, while the non-dominant arm can maintain 72% of
body weight. Endurance and strength are gradually lost due to carrying a load. Arm endurance

 94

is expressed as the total impulse that the arm can exert before it fatigues. Initial arm for all
Soldiers was assumed to be the maximum arm strength maintained for 100 s.

6.4 Equipment Management

Since the primary purpose of SSTAF is to enable trade studies of Soldier equipment, we have
implemented a model for specifying the equipment. Each Soldier can be configured with their
own equipment, and that equipment is used by the other models to affect performance.

Currently, the EquipmentManagment Feature supports three types of equipment: packs, guns
and magazines. It includes a mechanism for changing the weight of a gun as rounds are
expended. The kit model also tracks the number of rounds in a loaded magazine and can prevent
a shot from being fired if the gun is empty.

6.5 Fatigue Aim

I used evaluating the effects of fatigue on Soldier aim error as the driver for implementing and
demonstrating SSTAF capability. Soldier aim error is the component of shot accuracy that
expresses the ability of the Soldier to point the weapon at the right spot to get a hit. It is distinct
from other components such as the mechanical accuracy of the weapon or environmental effects.

The issue that we hope to address is that fatigue is underrepresented in combat simulations. In
particular, fatigue does not affect the ability of the Soldier to put bullets on adversaries.
Additionally, usually there is variability in aim accuracy between Soldiers or between weapons.
It is likely, although hard to verify, that modeled accuracy overpredicts real-world performance.

Ideally, we would like to have an aim model that is sensitive to fatigue, that can change during a
simulation and that is configurable for each Soldier and each weapon used by that Soldier.

To investigate whether we could improve the aim behavior and test drive SSTAF, I developed an
experimental fatigue aim model. This model is a simple physics-based model. It assumes that as
the Soldier fatigues, their arms will weaken and the aim error will expand. Also the center of
error might drift off of the intended aim point. Figure 40 illustrates the basic concept of the
model.

 95

Figure 40. Fatigue aim model

To implement this model, I tied together three experimental models, specifically the
anthropometry, physiology and aim models.

Anthropometry specified the physical characteristics of the Soldier. The physiology model used
these values to determine an estimate of arm strength and arm endurance. When the simulated
Soldier fires a shot, the aim model calculates the aim error. It is calculated based on the arm
strength, the weight of the gun, range to the target and Soldier-specific performance parameters.

6.6 ACQUIRE

The ACQUIRE target acquisition and tracking model was implemented early in SSTAF
development. ACQUIRE was implemented directly from the Physical Model Knowledge
Acquisition Document (PKAD) and the implementation passes the reference tests in the PKAD.

The initial ACQUIRE implementation highlighted several architectural and idiomatic issues with
early SSTAF. In particular, it revealed that direct communication between Entity instances
broke repeatability. This resulted in the introduction of the EntityHandle and elimination of
easy access to other Entity instances.

6.7 Telemetry

As discussed earlier, the TelemetryAgent provides the ability to retrieve and record state
records from objects stored in the Blackboard.

 96

7. FUTURE WORK

Although the core SSTAF system is stable and usable, there is considerable work still to be done.
Most of the work will be on the models and other features that run within SSTAF. Other efforts
will focus on enabling the use of SSTAF for analyses.

7.1 Santos

The most significant model that we are working to integrate with SSTAF is the Iowa Technology
Institute’s Santos™ human kinematics simulation.

Santos is a high-resolution simulation of dynamics of the human muscle and skeletal system. It
can predict motion through a task using an optimization strategy that can be constrained by
burdens and encumbrances. Santos will provide us with the ability to predict the motion of
Soldiers through tasks and maneuvers. It will give us the ability to look at the effects of loads
and encumbrances on Soldiers, helping us to identify and quantify some of the negative effects
of Soldier equipment.

Our approach with Santos will be to use it as an interactive service. After selecting the avatar
based on anthropometry and configuring it based on the kit configuration, we will issue
simulation commands to Santos based on the movements required by the combat simulation.
After Santos models the motion, we will get several metrics including time to completion, energy
expenditure and muscle fatigue. We can then propagate the Santos results to other models.

In order to be able to model the motions a Soldier might be tasked to perform, we are working on
developing a library of motion models, to include individual movement techniques. A previous
project enabled Santos to be enhanced with models of the motions used when a Soldier executes
the exercises required in the Load Effects Assessment Program (LEAP) obstacle course.

7.2 SSTAF-as-a-Service

Although SSTAF is designed to be embedded as a library, at a higher level, another approach to
using SSTAF is possible. This approach is to build SSTAF into a web application and make it
available as an interactive network service.

Deploying SSTAF as a web service has several benefits. It can make SSTAF available to
applications into which direct integration would be difficult. It facilitates integrating SSTAF into
cloud-based simulations. It also makes it easier to scale SSTAF analyses by spreading them
across multiple computers.

 97

7.3 Squad Operational Value Evaluation using Realistic Metrics and Tactical
Capability Hierarchies

Finally, we will move to the top of the stack and look at possible application of SSTAF.

Referring back to the modeling simulation vision that I presented in Section 1.1, Figure 41 shows
our vision of a system to meet the requirement for a turn-key analytic system for performing
trades space and acquisition analysis of Soldier equipment. We call this system Squad
OVERMATCH.

Figure 41. The Squad OVERMATCH system

The Squad OVERMATCH system is centered on SSTAF embedded in OneSAF. This
combination provides us with the means to model Soldiers and units in an operational context.
We then propose to wrap that system with custom input and output tooling. On the input side,
we will have the ability to select scenarios and configure each of the Soldiers in the simulation.

 98

On the output side, we will have statistical tools to dig into the results. We will also leverage
Santos visualization components so as to be able to play back Soldiers’ activities during the
simulation.

To date, we have done some initial planning and research for this project. In particular, the Iowa
Technology Institute has been evaluating leveraging some of their existing components for input
preparation. More significantly, they have been investigating migrating their visualization
system from their current system to using the Unreal Engine. This would facilitate integrating
the Santos avatars into other environments.

 99

8. CONCLUSION

SSTAF provides a flexible architecture for developing and integrating human performance and
integrating those models into applications. However, despite its capabilities, the real value of
SSTAF might be in rallying model developers to use it as a government-owned platform for
interactive interoperability. If SSTAF became a widely used platform, progress in Soldier
modeling, including digital twinning, would likely accelerate.

One way to maximize adoption of SSTAF is to simplify getting it. Currently, SSTAF is hosted
on a government system that is difficult for non-DOD developers to access. This makes it
difficult to expand the development of SSTAF models to university and corporate partners. I
therefore recommend that the core modules of the SSTAF be reviewed and approved for public
release, distributed under an open-source license and hosted on a public development site.

 100

9. REFERENCES AND DOCUMENTS

Bloch, J. (2008). Effective Java (2nd ed.). Pearson Education.
Bloch, J., Bowbeer, J., Lea, D., Holmes, D., Peierls, T., & Goetz, B. (2006). Java concurrency

in practice. Pearson Education.
Helm, R., Vlissides, J., Gamma, E., & Johnson, R. (1994). Design patterns: elements of

reusable object-oriented software. Pearson Education.
Martin, R. C. (2009). Clean code: a handbook of agile software craftsmanship. Prentice Hall.
Pressman, R. S. (2001). Software engineering: a practitioner's approach (5th ed.). McGraw

Hill.
Schmidt, D., Stal, M., Rohnert, H., & Buschman, F. (2000). Pattern-oriented software

architectures: patterns for concurrent and networked objects. John Wiley & Sons.

 A-1

 – Building the Soldier and Squad Trade Space Analysis
Framework (SSTAF)

A-2

1) Squad Operational Value Evaluation using Realistic Metrics and Tactical Capability
Hierarchies (Squad OVERMATCH). Obtaining the Code:

a) The SSTAF source code is currently hosted on the DI2E site. To access to the code:

i) Obtain a DI2E account.

ii) Request access to the SSTAF-ReadWrite and SSTAF-STASH-ReadWrite groups. The
DI2E system will notify one of the project administrators and they will grant access.

2) Required Tools. The following tools are required to build SSTAF:

a) Java JDK, Version 11 or later.

b) Gradle, Version 5.x.

c) I recommend the use of an integrated development environment. My strong preference is
JetBrains IntelliJ/IDEA.

3) Dependencies

SSTAF carries all dependencies with the project in the repository directory. This was
required because DI2E does not allow artifact resolution to access external sites and thus the
system could not build using Jenkins continuous integration system on DI2E. There was no
apparent mechanism to deploy artifacts to the DI2E artifact repository, so the most
expeditious approach was to keep the artifacts in the project.

4) Building the System

 From the SSTAF root directory, invoke “gradle build”.

B-1

 – List of Acronyms

B-2

ANSUR Anthropometric Survey of U.S. Army Personnel

API application programming interface

CFT Cross Functional Team

CPU central processing unit

CSV comma-separated value

DAC Data & Analysis Center

DEVCOM Combat Capabilities Development Command

DOD Department of Defense

IDE integrated development environment

JMS Java Module System

JSON JavaScript Object Notation

LEAP Load Effects Assessment Program

MADE Modernization Application and Data Environment

no-arg no-argument

OneSAF One Semi-Automated Force

ORCA Operational Requirements-based Casualty Assessment

PKAD Physical Model Knowledge Acquisition Document

SL Soldier Lethality

Squad OVERMATCH Squad Operational Value Evaluation using Realistic Metrics and
Tactical Capability Hierarchies

SSTAF Soldier and Squad Trade Space Analysis Framework

TDD test-driven development

UML Unified Modeling Language

B-3

XML Extensible Markup Language

C-1

 – Distribution List

C-2

ORGANIZATION

 DEVCOM Data & Analysis Center
 FCDD-DAW-W/R. Bowers
 FCDD-DAD-TP/G. Dietrich
 FCDD-DAW-W/L. Hall
 FCDD-DAW-W/T. Fargus
 FCDD-DAW-W/K. Jubb
 FCDD-DAW-W/A. Kulaga
 FCDD-DAW-W/T. Myers
 FCDD-DAW-G/K. Burley
 FCDD-DAW-W/J. Collins
 FCDD-DAW-W/Z. Steelman
 FCDD-DAG-S/J. Acheson
 FCDD-DAG-S/R. Vanamburg
 FCDD-DAG-S/J. Way
 FCDD-DAH-W/A. Boynton
 FCDD-DAH-W/J. Sperlein
 6896 Mauchly St.
 Aberdeen Proving Ground, MD 21005-5071

 DEVCOM Army Research Laboratory
 FCDD-RLW-B/P. Gillich
 FCDD-RLW-B/C. Hoppel
 328 Hopkins Rd
 Aberdeen Proving Ground, MD 21005-5066

 DEVCOM Army Research Laboratory
 FCDD-RLD-DCI/Tech Library
 2800 Powder Mill Rd.
 Adelphi, MD 20783-1138

 Defense Technical Information Center
 ATTN: DTIC-O
 8725 John J. Kingman Rd.
 Fort Belvoir, VA 22060-6218

 PEO Soldier
 PEO-SOLDIER/T. Coleman
 5901 Putnam Rd
 Ft. Belvoir, VA 22060-5422

 DEVCOM Soldier Center
 FCDD-SCD-EY/G. Matook
 10 General Greene Ave
 Natick, MA 01760-2612

C-3

 DEVCOM Soldier Center
 FCDD-SCD-ETA/C. McGroarty
 12423 Research Parkway
 Orlando, FL 32826

	1. INTRODUCTION 1
	2. TECHNOLOGIES 4
	3. ARCHITECTURE OVERVIEW 7
	4. IMPLEMENTING FEATURES 56
	5. ASSEMBLING A SIMPLE APPLICATION 84
	6. IMPLEMENTED MODELS 91
	7. FUTURE WORK 96
	8. CONCLUSION 99
	9. REFERENCES AND DOCUMENTS 100
	List of Figures

	List of Code Listings
	Acknowledgements
	Executive Summary
	1. Introduction
	1.1 Motivation
	1.2 Purpose and Organization of the Report

	2. TECHNOLOGIES
	2.1 Java
	2.1.1 Java Module System
	2.1.2 Method References and Lambdas

	2.2 JavaScript Object Notation
	2.3 Gradle

	3. ARCHITECTURE OVERVIEW
	3.1 Requirements for the SSTAF Architecture
	3.2 Overview and Key Concepts
	3.2.1 Functional Concepts
	3.2.2 Structural Concepts

	3.3 Features, Handlers and Agents
	3.3.1 The Feature Interface
	3.3.2 The Handler Interface
	3.3.3 The Agent Interface
	3.3.4 Feature Specification
	3.3.5 The Requires Annotation

	3.4 Entities
	3.4.1 The Entity Class
	3.4.1.1 The Factory and Builder Inner Classes
	3.4.1.2 Path
	3.4.1.3 EntityHandle
	3.4.1.4 The Injected Annotation

	3.4.2 Humans, Soldiers and Units

	3.5 Enhancing Entities with Features
	3.6 Messages and Addresses
	3.7 Session and Session Messages
	3.8 EntityController
	3.9 Repeatability
	3.10 Verification

	4. IMPLEMENTING FEATURES
	4.1 Blackboard
	4.1.1 Requirements
	4.1.2 Build Configuration
	4.1.3 Blackboard Interface
	4.1.4 Message Classes
	4.1.5 Implementation Class
	4.1.6 Module Configuration

	4.2 TelemetryAgent
	4.2.1 Requirements
	4.2.2 The StateProperty Annotation
	4.2.3 Implementation
	4.2.4 Configuration and Initialization

	4.3 ManeuverEntityAgent and ManeuverCentralAgent
	4.3.1 Requirements
	4.3.2 Build Configuration
	4.3.3 The API Module
	4.3.4 Implementation

	5. Assembling a Simple Application
	5.1 Build Configuration
	5.2 Implementation Classes
	5.2.1 Building the AnalysisRunner
	5.2.2 Command File and Parsing
	5.2.3 The Run Method

	6. IMPLEMENTED MODELS
	6.1 Operational Requirements-based Casualty Assessment
	6.2 Anthropometry
	6.3 Physiology
	6.4 Equipment Management
	6.5 Fatigue Aim
	6.6 ACQUIRE
	6.7 Telemetry

	7. Future Work
	7.1 Santos
	7.2 SSTAF-as-a-Service
	7.3 Squad Operational Value Evaluation using Realistic Metrics and Tactical Capability Hierarchies

	8. Conclusion
	9. References And Documents
	Appendix A – Building the Soldier and Squad Trade Space Analysis Framework (SSTAF)
	Appendix B – List of Acronyms
	Appendix C – Distribution List

