
AFRL-RY-WP-TR-2020-0357

A CROSS-LAYER FRAMEWORK FOR COST-EFFECTIVE
INTELLECTUAL PROPERTY (IP) PROTECTION
Farinaz Koushanfar
University of California, San Diego

Jeyavijayan (JV) Rajendran and Yiorgos Makris
University of Texas at Dallas

Ozgur Sinanoglu
New York University

FEBRUARY 2021
Final Report

Approved for public release; distribution is unlimited.

See additional restrictions described on inside pages.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact
that the Government formulated or supplied the drawings, specifications, or other data does not
license the holder or any other person or corporation; or convey any rights or permission to
manufacture, use, or sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs
security and policy review in accordance with The Under Secretary of Defense memorandum dated
24 May 2010 and AFRL/DSO policy clarification email dated 13 January 2020. This report is
available to the general public, including foreign nationals.

Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RY-WP-TR-2020-0357 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

POMPEI L. ORLANDO MARY E. LOCKHART, Chief
Program Manager Trusted Electronics Branch
Trusted Electronics Branch Aerospace Components & Subsystems Division
Aerospace Components & Subsystems Division

ADAM L. BROOKS, Lt Col, USAF
Deputy
Aerospace Components & Subsystems Division
Sensors Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

ORLANDO.POM
PEI.L.III.108594
9701

Digitally signed by
ORLANDO.POMPEI.L.III.10
85949701
Date: 2021.01.27 15:28:45
-05'00'

LOCKHART.MA
RY.E.138079278
4

Digitally signed by
LOCKHART.MARY.E.13807
92784
Date: 2021.01.28 08:52:48
-05'00'

BROOKS.ADAM
.L.1270115205

Digitally signed by
BROOKS.ADAM.L.12701152
05
Date: 2021.02.03 17:28:03
-05'00'

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

February2021 Final 7 June 2018 – 7 December 2019
4. TITLE AND SUBTITLE

A CROSS-LAYER FRAMEWORK FOR COST-EFFECTIVE
INTELLECTUAL PROPERTY (IP) PROTECTION

5a. CONTRACT NUMBER
FA8650-18-1-7827

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
62716E

6. AUTHOR(S)

Farinaz Koushanfar (University of California, San Diego)
Jeyavijayan (JV) Rajendran and Yiorgos Makris (University of Texas at
Dallas)
Ozgur Sinanoglu (New York University)

5d. PROJECT NUMBER
N/A

5e. TASK NUMBER
N/A

5f. WORK UNIT NUMBER
 Y1RY

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

University of California, San Diego
Office of Contract and Grant Administration
9500 Gilman Drive, Dept. 621
La Jolla, CA 92093-0621

University of Texas at Dallas

New York University

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY ACRONYM(S)

Air Force Research Laboratory
Sensors Directorate
Wright-Patterson Air Force Base, OH
45433-7320
Air Force Materiel Command
United States Air Force

Defense Advanced Research
Projects Agency
(DARPA/MTO)
675 North Randolph Street
Arlington, VA 22203

AFRL/RYDT
11. SPONSORING/MONITORING

AGENCY REPORT NUMBER(S)
AFRL-RY-WP-TR-2020-0357

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
This material is based on research sponsored by the Air Force Research Lab (AFRL) and the Defense Advanced Research Projects
Agency (DARPA) under agreement number FA8650-18-1-7827. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon." "The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the Air Force Research Labs (AFRL), the Defense Advanced Research Projects Agency (DARPA) or the
U.S. Government. Report contains color.

14. ABSTRACT
This report summarizes the progress on the Efficient Cross-Layered IP Protection Scheme (ECLIPSE) project. In
addition to developing security metrics and proofs, we apply the proposed stripped-functionality logic locking (SFLL)
technique and demonstrate it on a field-programmable gate array (FPGA) platform. The report also highlights our efforts
towards protecting multiple outputs of circuit, unlocking circuits using machine learning, and developing a logic tool that
implements different variants of logic locking. The report also summarizes the latest benchmarking and red-teaming
efforts on our defense as part of Cybersecurity Awareness Worldwide 2019 competition, which was the first logic
locking contest. The key takeaway is that our proposed locking technique, SFLL-rem, withstands the test-of-time

15. SUBJECT TERMS
intellectual property, stripped-functionality logic locking, threat model, integrated circuit fabrication

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT:

SAR

8. NUMBER OF
PAGES
 40

19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

 Pompei Orlando
19b. TELEPHONE NUMBER (Include Area Code)

N/A
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

i
Approved for public release; distribution is unlimited.

Table of Contents

Section Page

List of Figures ... ii
List of Tables .. ii
1 INTRODUCTION .. 1

1.1 Threat Models ... 1
1.2 Defense Objectives ... 2
1.3 Metrics and Attack Resilience .. 3
1.4 Organization ... 4

2 FORMAL SECURITY ANALYSIS .. 5
2.1 Security Definitions .. 5
2.2 An Overview of SFLL-rem .. 7
2.3 SAT Attack Resilience ... 8
2.4 Removal Attack Resilience .. 9

3 CASE-STUDY ON COMMON EVALUATION PLATFORM .. 10
4 APPROXIMATE LOGIC UNLOCKING USING MACHINE LEARNING 13

4.1 Problem Statement ... 13
4.2 Attack Methodology ... 14
4.3 Hardware Optimization for Attack Acceleration ... 17
4.4 Experimental Results .. 18

5 PROTECTING MULTIPLE OUTPUTS .. 19
5.1 Problem Description ... 19
5.2 Experimental Results .. 20

6 LOGIC LOCKING TOOL .. 22
7 FPGA DEMONSTRATION ... 23

7.1 Evaluation ... 24
7.1.1 Experimental Setup .. 24
7.1.2 Performance Locked Design Results ... 25

7.2 Results .. 25
8 NYU CSAW 2019: LOGIC LOCKING CONQUEST ... 26

8.1 Combinational Logic Locking Defense in Competition: Our SFLL-rem [38] 26
8.2 Red-Teams for Combinational Logic ... 28
8.3 Hamming Distance-based Attack ... 28

9 CONCLUSION ... 30
10 REFERENCES ... 31
LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS ... 34

ii
Approved for public release; distribution is unlimited.

List of Figures

Figure Page

Figure 1: Threat Model for Logic Locking ... 1
Figure 2: General Logic Locked Circuit: Modified Function along with the Restore Circuitry 3
Figure 3: c17 Circuit with Stuck-at-0 Fault shown in Red (a), Fault-injected Circuit Ff (b),
List of Test Patterns (c), and Final Locked Circuit with the Restore Unit (d) 8
Figure 4: Architecture of CEP consisting of CRYPTO, DSP, and GPS blocks 10
Figure 5: PPA Overhead for the Locked Blocks and the Entire SoC ... 11
Figure 6: DRC/LVS-clean Layout of the CEP SoC .. 12
Figure 7: Global Flow of GenUnlock Framework for Logic Unlocking 14
Figure 8: Overview of GenUnlock’s Hardware Design ... 17
Figure 9: Pipelining Optimization deployed in GenUnlock’s Genetic Algorithm Accelerator
for Logic Unlocking .. 17
Figure 10: Average Runtime comparison between GenUnlock and the Baseline SAT
Attack [16] .. 18
Figure 11: The Original Circuit (a), Traditional Application of SFLL (only one output is
protected, which is marked in green) (b), and Proposed Protection using Multiple Restore Units
(leading to the protection of multiple primary outputs as well as higher output entropy) (c) 19
Figure 12: Output ER for One Restore Unit (a), Two Restore Units, for Three Node Selection
Strategies (b), and the Number of Outputs Protected (c) .. 20
Figure 13: Interface to the SFLL Tool that Implements Three Variants of Stripped-
Functionality Logic Locking... 22
Figure 14: Demonstration of the Features provided by the Current Version of the Logic
Obfuscation Tool .. 22
Figure 15: Performance Locking Implemented in the Control Unit of the mor1kx-cappuccino
Microprocessor ... 23
Figure 16: FPGA-based Hardware Implementation Setup for Performance Locking 24
Figure 17: Overall IPC Degradation in FPGA Implementation ... 25

List of Tables

Table Page

Table 1. Different Threat Models showing Attacker’s Capabilities ... 2
Table 2. How to Lock the Individual Blocks of SoC .. 10
Table 3. Highest Average ER (AC) achieved and Configuration (K, HD) for Different
Circuits and Strategies .. 21
Table 4. Statistics of the Benchmarks used for the Combinational Logic Locking Challenge 27
Table 5. Combinational Locking Attack Results .. 29

1
Approved for public release; distribution is unlimited.

1 INTRODUCTION

As the trend of outsourcing integrated circuit (IC) fabrication consolidates, the semiconductor
industry faces new challenges. Reliance on off-site untrusted fabrication facilities, though
economical, has given rise to several threats ranging from intellectual property (IP) piracy to
hardware Trojans [1]. As the design houses share their valuable IP in the form of GDSII with
the untrusted foundry, the foundry can reverse-engineer the gate-level netlist from it with
malicious intentions. At the same time, lack of adequate state-of-the-art IP protection techniques
has only made the problem worse. It is estimated that several billions of dollars are lost each year
due to these threats [2]. Many government/military organizations along with leading
semiconductor companies are currently trying to address these concerns [3-5].

To safeguard designs at the silicon layer, designers have resorted to several design-for-trust
(DfT) techniques such as IC camouflaging [6], split manufacturing [7], watermarking [8], IC
metering [9], and logic locking [10-13]. Recently, logic locking has gained popularity due to its
ease of implementation and it being a holistic solution to multiple threats (fab, end-user, etc.). In
logic locking, the original design is locked by introducing additional logic that expects a secret
key. The key bits are securely fused in a tamper-proof [14] memory which needs to be correctly
configured for the IC to be functional. The threat model for logic locking is illustrated in
Figure 1.

Figure 1: Threat Model for Logic Locking

Every entity in the IC supply chain except the design house can be untrusted

After the initial work [10], a plethora of works advanced the state-of-the-art in logic locking
[11, 15]. Nevertheless, a Boolean satisfiability (SAT) based attack broke all the logic locking
techniques existing at that time [16]. Though several SAT-resilient works were presented
afterwards [17-19], most of them had structural flaws that were eventually exploited to break
these schemes [20, 21]. Among these attacks, removal attack can isolate and remove the
protection logic from the original design. Only recently, a set of works, known as stripped-
functionality logic locking (SFLL), were presented that were shown to successfully thwart all the
state-of-the-art attacks [12, 13].

1.1 Threat Models

A threat model defines the attacker’s capabilities. We define several threat models for logic
locking, as presented in Table 1. In the first threat model, we assume that the attacker has access
to a working chip, which in the context of logic locking, is a chip that has the secret key loaded
on its memory. In this case, the attacker can use the chip as an oracle, apply input patterns to it,
and collect the responses from the chip. From these input-output pairs, the attacker can do an
analysis to infer the logic locking key. In this threat model, a likely attacker with the working

2
Approved for public release; distribution is unlimited.

chip would be the end-user; his/her approach would simply be applying inputs in a brute-force
fashion possibly in addition to side-channel analysis.

In the second threat model, we assume that the attacker has access to the GDSII representation of
the logic locked design IP. So, the attacker can reverse engineer the GDSII to obtain the locked
netlist in an effort to pirate the design IP. The attacker’s goal is to isolate the key logic to remove
it, or from its structure, infer the secret key values [21]. The likely attacker in this threat model is
the untrusted fab.

The third threat model is a union of the attacker capabilities in the first two threat models,
assuming a powerful attacker who has access to not only the working chip with the key inside,
but also the reverse engineered netlist that includes the key logic. Now the attacker can simulate
the netlist to produce meaningful input patterns rather than brute-forcing and can apply these
input patterns to the working chip to collect the responses. He/she can then figure out the secret
key. In fact, many attacks assume this threat model; well-known examples include sensitization
attack [15] and SAT attack [16].

Table 1. Different Threat Models showing Attacker’s Capabilities

Attacker’s capabilities

Objective RE
netlist

Working chip
(oracle)

1 no yes Corrupt outputs for incorrect keys (high error rate (ER))
2 yes no Make key logic difficult to isolate and corrupt outputs for

incorrect keys (high ER)
3 yes yes Both of the above and protect IP from all attacks

(e.g., SAT: low ER)

1.2 Defense Objectives

The business model of a chip design company dictates the trusted and the untrusted entities, and
thus, the threat model. There may also be features specific to the system on a chip (SoC) design
or its blocks that guide the chip or block designer in choosing the appropriate threat model for
the chip/block. Depending on the threat model, the designer then determines the objectives of the
logic locking defense.

In the first threat model, the designer needs a logic locking solution to corrupt the chip outputs
for wrong keys. This prevents an attacker from using the working chip as a black-box and
collecting hints about the secret key every time he/she applies an input pattern on a chip.

Considering the second threat model, where the attacker has only the reverse-engineered but
locked netlist, the proper defense would be to make the protection logic difficult to isolate in
addition to creating corruption for incorrect keys (to still prevent black box usage of pirated IP).
Actually, a better strategy would be to modify the IP design before implementing it on silicon,
with a secret key loaded post-fabrication restoring the original functionality. This way, the
reverse engineered netlist without the knowledge of the key would actually reveal the modified

3
Approved for public release; distribution is unlimited.

IP, and not the original IP that the designer is trying to hide from the untrusted parties, e.g., the
fab.

As for the third threat model, which is consistent with Kerckhoff’s principle of assuming that the
attacker knows everything but the key, the defense must meet all the objectives of the previous
two threat models, and in addition, thwart all attacks, such as the sensitization and the SAT
attack.

1.3 Metrics and Attack Resilience

The basic idea of SFLL is to change the original IP by removing and modifying logic, i.e.,
stripping away some functionality from it. This operation creates a discrepancy between the
original and the modified logic function, which on a working chip is fixed by a restore unit
controlled by the secret key as illustrated in Figure 2. The input patterns for which the original
and the modified functions differ are referred to as the protected input patterns (PIPs). The
modified function produces an error for the protected input patterns. Error rate (ER) is defined
as the ratio of PIPs to all input patterns. The removal attack that simply isolates and removes the
restore circuitry would be left with the modified function with these errors. The higher the ER,
the more resilient the logic locking technique is against the removal attack. Intuitively, it can
also be stated that a locked chip with a high ER is more useless as a black box.

Figure 2: General Logic Locked Circuit: Modified Function along with the Restore

Circuitry

Latest research in logic locking has shown that the SAT attack [16] works better when ER is
higher [12]; the SAT solver learns more in every iteration when an incorrect key leads to many
errors, resulting in quicker convergence for the attack. ER is therefore a fundamental metric that,
when controlled, can enable a trade-off between conflicting logic locking objectives. A proper
logic locking technique is one that can control ER and give the designer the control over
resilience against all attacks. In SFLL-fault, the modified function is obtained from the original
one by injecting a fault, and the failing patterns for this fault are the PIPs. By selecting the
proper fault to inject into the design (and remove logic from the design), ER can be controlled.

4
Approved for public release; distribution is unlimited.

Next we connect the security metric, namely ER, to resilience to different classes of attacks.
Obviously, the brute-force attack that requires trying all keys blindly will have a complexity that
is exponential in the size of the key. When the concern is removal attacks or the black-box
usage of the locked chips, the resilience can be defined in terms of the output corruption level,
which can be computed as the ratio of input patterns for which the outputs show error.1

Obviously, the outputs that are not locked will not contribute to the corruption, while the locked
outputs will. SAT attack resilience of a locked output can be approximated to ER 1 on that
output. The overall SAT attack resilience of the chip can be conservatively defined as the
maximum ER 1 overall outputs, assuming that the attacker can target different outputs in
parallel. This is a generous assumption in terms of attacker capabilities.

1.4 Organization

This report summarizes our research over the entire span of the Efficient Cross-Layered IP
Protection SchemE (ECLIPSE) project. We organize the report into the following sections:

1. Security definitions and formal security analysis (Section 2).
2. Implementation of SFLL on the Defense Advanced Research Projects Agency (DARPA)

Common Evaluation Platform (CEP) SoC. We report only on the latest and secure version of
SFLL, referred to as SFLL-rem (Section 3).

3. Exploratory research on approximate logic unlocking using machine learning (Section 4).
4. Preliminary study on improving ER and protecting multiple outputs of a circuit (Section 5).
5. Development of a logic locking tool that inputs a netlist and outputs its locked version

(Section 6).
6. Demonstration of logic locking on a field-programmable gate array (FPGA) (Section 7).
7. Cybersecurity Awareness Worldwide (CSAW) logic locking competition (Section 8).

1This would be the collective ER for all the outputs, while an alternative definition could be the average ER across
all the outputs, or equivalently, the Hamming Distance between the corrupted and the correct outputs.

5
Approved for public release; distribution is unlimited.

2 FORMAL SECURITY ANALYSIS

2.1 Security Definitions

In the following sections we prove the security of SFLL-rem with rigorous details. However,
first we introduce the notations that is extensively used for the remainder of this section.

Notation. A set is defined as S, whereas its elements are denoted as s S. The event of drawing

sample s uniformly randomly from the set S is written as s
$

 S. Moreover, the cardinality of the
set S is denoted by |S|. A combinational circuit is denoted by ckt, while cktlock, cktactv, and cktrec
denote a logic-locked, an activated, and a recovered circuit, respectively. A denotes a
probabilistic polynomial time (PPT) adversary A
generality, we assume inputs of size n, outputs of size m, and key size of k.

Next, the definition of logic locking is presented. Note that the definition was introduced in [22],
however, for the sake of reading, we repeat it below.

Definition 1. A combinational circuit ckt is a netlist that implements a Boolean function

 n m
2 (Gen, Lock, Activate)

1. Gen z
$

 Gen(1k) the key-

2. Lock lock Lockz(ckt)

3. Activate
cktactv Activatez(cktlock) such that i actv

Next, we provide the definition of security for a logic locking technique L with the help of the
following experiment. Note that attack-specific security definitions were introduced in [22, 23].
However, no generic notion of security exists, and thus adapting the notion from [23], we
establish it with the help of Experiment 1.

2Note that we only provide the definition for combination circuits, but this can be readily extended for sequential
designs.

6
Approved for public release; distribution is unlimited.

The INITIALIZE function picks the k-bit secret key z randomly from a uniform distribution
over k-bit binary strings. After the selection of the key, the circuit ckt is locked using a logic
locking algorithm L with the key z . Afterwards, the secret key is loaded on the memory of the
chip to activate the circuit, denoted by cktactv. Next, we initialize a variable = 0. The
ATTACK(cktlock, cktactv) function takes two entities as input, a reverse-engineered locked netlist
cktlock, and a working chip cktactv with correct key embedded onto its memory. The attacker A
initializes the auxiliary information set S. Next, he/she analyzes the locked circuit, and records
the observation in pL. Further, he/she makes a query to the oracle, and records this information in
p L which is gained from the physical implementation of L following strategy . For example, the
observable for a SAT attack could be the outputs from the chip. Afterwards, the attacker updates
the auxiliary information set S from the observations pL, and p L. Note that as the attacker is
computationally bounded, his inability to iterate an exponential number of queries forces him to
make only a polynomial number of queries q(k) to the oracle, k being the key size. The attacker
is allowed to make further queries to the locked and activated circuits, and update the observable.
Note that an attacker is allowed to choose different sets of queries q (k), and q (k) for the locked
and the activated circuits, respectively. Finally, reinforced with all the information S, pL and p L,
the attacker returns cktrec.

7
Approved for public release; distribution is unlimited.

A logic locking scheme is said to be secure if for any PPT attacker A ,

where (k) is a negligible quantity in k, k being the key size.3 For the rest of the paper, we will
as Pr[SUCCESSA (k) = 1] for simplicity.abbreviate

2.2 An Overview of SFLL-rem

In this section, we present a secure methodology for SFLL-rem that has minimal reliance on
physical synthesis tools. Yet this technique delivers the same control over ER that the other
versions of SFLL do.

To effect functionality stripping, we take a similar approach to SFLL-fault, where we work with
stuck-at faults.4 While SFLL-fault [13] must find and store all the failing patterns for a fault as
keys, all we need is a fault f which has at least one failing pattern with a sufficiently large
number of care bits. Our goal is to make this failing pattern tsecure Tf the one and only secret
key. The fault is injected and logic is removed from F to obtain Ff. Note that finding all the
failing patterns for Ff is critical to have a logically equivalent locked circuit. However, a
complete enumeration of all the failing patterns for Ff could be computationally infeasible. As
the discrepancy between F and Ff includes not only tsecure, but all the other failing patterns of f as
well ({Tf tsecure}), we utilize formal equivalence checking to restore the functionality for all the
other failing patterns.5 Instead of explicitly storing all the failing patterns in LUTs, the formal
equivalence checker essentially generates the logic which restores all the failing patterns, except
for the protected pattern/secret key tsecure. The logic added to Ff through the formal equivalence
checking process helps create an Ff that differs from F for only the correct key tsecure. It is Ff
that is implemented on silicon along with the restore circuitry. This approach, in contrast to
SFLL-fault, eliminates the need for a tamper-proof LUT, as only one test pattern tsecure needs to
be stored as the secret key. The restore circuitry is a simple comparator that flips the output of Ff
when the input pattern matches tsecure.

Example. The original IP is the c17 circuit from the ISCAS benchmark suite [25]. A stuck-at-0
fault is injected at the output of the inverter as shown in Figure 3a to modify F into Ff in
Figure 3b. This causes the circuit to fail on the output O23 for the test patterns listed in
Figure 3c. Out of these test patterns, we select the pattern x0111 to be tsecure, i.e., the key shows
with the red box. Next, engineering change order (ECO) is performed to restore F for all the test
vectors except for tsecure as shown in Figure 3d. This circuit implements Ff . Note that the circuits
in Figure 3a and Figure 3d only differ for tsecure x0111, which is the key for the locked circuit.
The final locked circuit is shown in Figure 3d, which includes the restore logic.

3A function is negligible if c N, 0 N such that 0, c.
4Note that our methodology is agnostic to the fault model used.
5Note that this type of design changes are typical for engineering change orders (ECOs) to minimize the turnaround
time for IC fabrication [24].

8
Approved for public release; distribution is unlimited.

Figure 3: c17 Circuit with Stuck-at-0 Fault shown in Red (a), Fault-injected Circuit Ff (b),
List of Test Patterns (c), and Final Locked Circuit with the Restore Unit (d)

2.3 SAT Attack Resilience

The following theorem establishes the security of SFLL-rem against SAT attacker.

Theorem 1. Proposed SFLL-

Pr[Success A (k (k)

Proof. From SFLL, we note that the success of SAT attack is determined by the probability of
encountering a protected pattern, i.e., any pattern i tsecure. This probability is equal to .
As previously stated tsecure is an n bit input pattern with k care bits, it contains (n k) don’t care
bits. Thus, by construction tsecure entails 2n-k input patterns, i.e., |tsecure| = 2n-k. Thus, for a PPT
attacker making q(k) queries to the oracle,

where (k) is a negligible quantity for a large key size.6 This concludes the proof.

6According to modern computing standard, a key size of 80-bits is considered secure.

9
Approved for public release; distribution is unlimited.

2.4 Removal Attack Resilience

Finally, we discuss the resilience of SFLL-rem to the latest removal attacks that compromised
SFLL hamming distance (SFLL-HD) and SFLL-flex [26, 27]. Note that SFLL-rem removes
logic by injecting fault f into F, thus obtaining Ff, and subsequently adding logic through ECOs
into Ff to limit the discrepancy to a single test pattern tsecure. Thus, contrary to the SFLL-HD and
SFLL-flex instances of SFLL, a skewed signal that would guide the attacker in her netlist
analysis is missing in SFLL-rem. The most recent removal attacks [26, 27] that SFLL-HD and
SFLL-flex are vulnerable to can thus be thwarted by SFLL-rem. Even if the attacker could
successfully identify and isolate the restore circuit, she is left with a circuit cktrec that implements
Ff such that:

For example, a functional analysis based logic locking (FALL) attack was proposed which first
identifies nodes that implement the functionality stripping by using structural traces and then
analyzes the functional properties, called unate property, of these nodes to shortlist a small
number of candidate locking keys [27]. Since SFLL-rem removes logic (functionality)
corresponding to a fault instead of explicitly adding an AND-tree [22], the FALL attack fails
during the functional analysis step.

Alternatively, an attacker can identify the traces for the logic added by ECOs, and remove this
added logic, she can obtain Ff from Ff . Recovering F from Ff, however, necessitates the attacker
to guess the logic removed in injecting fault f. The following theorem establishes the security of
SFLL-rem against such attack.

Theorem 2. SFLL-rem is secure against a PPT attacker following the removal attack strategy,
i.e.

Proof. Suppose that an attacker is able to trace the logic added by the ECO, and remove this
added logic, deriving Ff in the process. However, recovering F from Ff, necessitates the attacker
to guess the logic removed in injecting fault f. Nevertheless, the missing (stripped) logic could
implement one of 22k different possible Boolean functions. For a PPT attacker completely
oblivious to the functionality stripping, the probability of success is given by:

where (k) is a negligible quantity for a large key size. This concludes the proof.

10
Approved for public release; distribution is unlimited.

3 CASE-STUDY ON COMMON EVALUATION PLATFORM

In this section, we demonstrate the application of logic locking at a granular level on a multi-
million-gate SoC [28] provided by DARPA as a Common Evaluation Platform (CEP). An
overview of the SoC is depicted in Figure 4. It is a one-master twelve-slave system. The master
of the system is a version of the OpenRISC processor, OR1200, which runs its code from a
128KB static random access memory (SRAM). The SoC modules can be broadly categorized
into three classes: 1) cryptographic (CRYPTO) blocks, 2) digital signal processing (DSP) blocks,
and 3) a global positioning system (GPS) block.

Figure 4: Architecture of CEP consisting of CRYPTO, DSP, and GPS blocks

We finite impulse response () infinite impulse response ()

Protecting OR1200 and GPS. Note that only the OR1200 and GPS blocks need protection from
IP piracy, as the rest of the blocks are extensively used in the industry, and, thus of public
knowledge. In addition, there is full (scan) access to these blocks. We thus lock the OR1200 and
the GPS blocks with SFLL-rem along with FLL with respect to threat model three in Table 2.
SFLL-rem provides resilience against SAT attacks, and thus, IP piracy; FLL provides corruption
and protects against black-box usage and removal attacks.

Table 2. How to Lock the Individual Blocks of SoC

Block # Gates
(K) Type Threat

Model Defense

OR1200 29 RISC processor 3 SFLL-rem + FLL
GPS 156 Custom 3 SFLL-rem + FLL
FIR 16 DFT 2 Coefficient locking
IIR 18 DFT 2 Coefficient locking
Overall SoC 15,000 Mixed Mixed

Protecting DSP. Note that DSP blocks such as finite impulse response (FIR) filter are of public
knowledge, and thus, the circuits do not require any protection against IP piracy. However, the
secrecy and the working of these blocks lie on the careful choice of their coefficients, which
need to be protected from piracy. Moreover, direct access to the block input/outputs (IOs) is not
available to the attacker as they are embedded in the SoC; we thus assume threat model two in
Table 2. Rather than locking the internal structure of the circuit, we focus on hiding the

11
Approved for public release; distribution is unlimited.

coefficients so that an attacker is unable to meaningfully make use of the design. Thus, the
coefficients in the DSP blocks constitute the secret key [29].

Limitations of logic locking. Note that the CRYPTO blocks are also of public knowledge that
do not require any protection against IP piracy. Yet working oracles are readily available for the
attacker, pointing to the third threat model. In these designs, the output bits are affected only by a
small number of input bits. For example, in Advanced Encryption Standard (AES), the
substitution operation is applied on one byte of data. No matter how these or any other blocks
with small logic cones are locked, a high ER is guaranteed; an incorrect key will corrupt the
output frequently, as the number of inputs that drive an output is small. SAT attack is thus
guaranteed to be effective on designs with small logic cones, such as these CRYPTO blocks.

Overhead analysis. The power, performance, and area (PPA) overheads are plotted in Figure 5.

Figure 5: PPA Overhead for the Locked Blocks and the Entire SoC

 OR1200 and GPS. The overhead for implementing SFLL-rem+FLL for the OR1200 and

GPS blocks is 17.5%, 1.0%, 9.6% and 1.1%, 101.4%, 1.2%, respectively for power,
performance, and area. Note that all the blocks were synthesized with the global timing
constraint of 4 ns (250 MHz). The critical path length for GPS post-locking was only
2.84 ns, much lower than the SoC timing constraint of 4 ns; as such, we did not pay any
effort in optimizing timing in GPS further, and hence, the high performance overhead for
the GPS block.

 DSP. We hide the coefficients for two of the DSP blocks, namely, FIR and IIR, to

safeguard the designs. This comes at a large PPA overhead: 15.3%, -25.8%, and 40.9%
for FIR and 14.7%, -0.5%, and 37.7% for IIR, for power, performance, and area,
respectively. Without the locking of the coefficients, they are hardcoded in hardware (by
replacing multipliers driven by constant values by shifters and adders); while this leads to
optimized PPA, reverse-engineering can easily reveal the coefficient values from the
logic gates that hardcode them. However, as we hide the coefficients through logic
locking, the key in the tamper-proof memory drives the multipliers, disabling any logic
optimization through design by contraction. This way, we protect the coefficients from
reverse-engineering with a block-level impact on the area footprint, sometimes as high as
50%. However, at the same time, a multiplier in the locked design can sometimes replace

12
Approved for public release; distribution is unlimited.

multiple instances of cascaded adders and shifters, thereby, reducing the depth of the
circuit, and hence, improving timing.

 Overall SoC. The PPA overhead for the entire SoC is 0.45%, 15.3%, and 1.5%,

respectively. Even if the overheads are quite high at the block level, we see that the
impact of locking is quite reasonable at the SoC level.

 Run-time. The run-time to apply the SFLL-rem technique is 4632s and 7435s for

OR1200 and GPS, respectively, demonstrating the practicality of our technique as it takes
only a fraction of the IP design cycle. We performed coefficient locking for the DSP
blocks at the RTL; this was a very straightforward process that did not incur any run-time
cost.

 Generating layout. The SoC design netlist is taken through various stages of physical

design flow in order to create a design rule check/layout versus schematic DRC/LVS-
clean GDS for Global Foundries 65lpe technology. The place and route (PnR) was
performed with Synopsys IC Compiler, whereas Cadence Virtuoso and Cadence PVS
were used for the GDS creation and DRC/LVS checks, respectively. The layout of the
SoC is shown in Figure 6 with the locked blocks highlighted in different colors.

Figure 6: DRC/LVS-clean Layout of the CEP SoC

13
Approved for public release; distribution is unlimited.

4 APPROXIMATE LOGIC UNLOCKING USING MACHINE
LEARNING

Logic locking inserts additional key gates to the original circuit for protecting the intellectual
property of modern integrated circuits. Prior works have identified the vulnerability of logic
locking to SAT-based attacks. However, SAT attacks are ineffective on circuits with SAT-hard
structures. We develop GenUnlock, the first genetic algorithm-based logic unlocking attack
framework to address the above limitation of SAT attacks. GenUnlock formulates logic
unlocking (i.e., identifying the correct keys) as a combinatorial optimization problem and tackles
it using genetic algorithms (GAs). Multiple key sequences form the individuals in the population
and undergo the following main operations: circuit fitness evaluation, population selection,
crossover, and mutation. The key sequences with high fitness scores ‘survive’ the selection and
are transformed into the offspring. GenUnlock’s evolutionary process of key searching features
high scalability, exploration efficiency, and parallelizable fitness evaluation. We take an
Algorithm/Software/Hardware co-design approach to optimize GenUnlock’s runtime overhead.
More specifically, we (i) Pipeline each computation stage by automatically constructing auxiliary
circuitry for constraints checking, sorting, crossover, and mutation; (ii) Employ
emulation on programmable hardware for accelerating circuit fitness evaluation.

4.1 Problem Statement

Our objective is to design a systematic methodology for unlocking arbitrary unknown, encrypted
circuit. We denote the original unlocked circuit and its encrypted version as Co and Ce. The
primary input, output vector, and the encryption key of the circuit are denoted as M, N, k, respectively.

The functionality of the circuit is represented by the following deterministic mapping: Co () =
and Ce (,) = . The quality of a decryption key is quantified by the output fidelity (OF) that
defines the probability of the output vector of Ce being consistent with the one of Co given any
input :

 (1)

We consider logic unlocking as successful if the OF of the identified key is higher than the
attacker-). Note that two different key sequences might result in
the same circuit behavior (i.e., same mapping Ce). We define that and 2 belong to the same
equivalence class of keys [16] if the condition Ce (,) = Ce (, 2) is satisfied for any M.

Performance Metrics. We use effectiveness and efficiency as two main metrics to assess the
performance of a logic unlocking scheme. These two metrics are quantified by the attack success
rate (defined in Equation (1)) and the execution time, respectively. GenUnlock, for the first time,
provides the trade-off between effectiveness and efficiency by generating a set of keys with
evolving quality over time. In addition, we also use resource consumption as a metric to evaluate
our hardware design.

14
Approved for public release; distribution is unlimited.

Threat Model. We make the following assumptions about GenUnlock framework: (i) The
attacker has black-box access to the active IC. We assume that the adversary can purchase the
unlocked circuit from the market and obtains oracle access to it. As a result, the attacker is able
to query the active IC with arbitrary input challenges and observe the corresponding outputs,
which is the basis of GenUnlock’s training data generation phase.

 We assume the attacker can reverse engineer the netlist of Ce
from a physical circuit by performing depackaging, delayering, and imaging [30]. The obtained
netlist is converted to conjunctive normal form (CNF) and used in circuit fitness evaluation.

Real-world Use Cases. Existing works focus on unlocking the circuit with perfect accuracy,
thus may incur prohibitive runtime overhead to break large circuits. Here, we want to emphasize
that decryption of the target circuit can be more threatening than slow, full
decryption. This is particularly true for fault-tolerant applications. Let us consider block-chain
mining as a real-world example where the signature of the cryptocurrency is extracted from AES
and hashing operations [31] on the hardware miner. The resulting signature is continuously
checked against the pre-defined template to determine whether the cryptocurrency is legitimate.
As such, it is sufficient for the user to find a key that yields correct outputs with high probability
in order to obtain financial benefits. Emerging application-specific integrated circuit (ASIC)
accelerators for deep neural networks (DNNs) are also inherently fault-tolerant, which has been
exploited for parameter quantization or pruning.

4.2 Attack Methodology

Figure 7 illustrates the global flow of GenUnlock. Our framework consists of two stages: (i)
Offline pre-processing phase that generates training data for GA; and (ii) Key searching phase
that performs key evolution. The one-time pre-processing phase is performed via oracle access
while the key searching phase is accelerated using FPGA.

Figure 7: Global Flow of GenUnlock Framework for Logic Unlocking

Prior works have identified that there might be more than one correct keys to unlock the given
circuit [16]. This is due to the fact that logic locking schemes, by default, do not guarantee the
uniqueness of the decryption key. The collection of these key sequences is called ‘equivalent
class’ of the correct key sequence. GenUnlock leverages this fact and processes multiple keys
representing different equivalence classes in each iteration, thus features higher efficiency for

15
Approved for public release; distribution is unlimited.

K

space exploration. Note that GenUnlock is oblivious of the underlying encryption schemes used
by the defender, thus is genetic and applicable to arbitrary ICs. We detail the two key phases of
GenUnlock framework in the following of this section.

Phase I: Training data generation. This is an offline, one-time process, consisting of the
following two tasks:

(1) Generate input vectors. Given the netlist of the encrypted circuit, we craft input vectors
and filter the ones that result in the same circuit outputs when different keys are applied.
(2) Query active IC. The remaining input patterns from step 1 are then used to query the
active IC. The collected (IO pairs form the training dataset for our logic unlocking.

Phase II: Key evolution. Once the training data for the target circuit is generated in Phase I,
GenUnlock performs three subroutines during the key evolution phase as shown in the bottom of
Figure 7:

(1) Circuit fitness evolution. Analogous to natural selection, the key sequences with higher
fitness scores are maintained and transformed to offsprings at each iteration. The fitness of
each key is evaluated by the ratio of output matching on the training dataset when the
specific key is applied. We convert the netlist representation to CNF to facilitate fitness
evaluation.
(2) Population diversity computation. GenUnlock separates genetic operations into two
groups (‘exploitation’ or ‘exploration’) and determines which branch to take depending on
the population diversity. Since key sequences are binary-valued in logic locking, we use the
dispersion (i.e., variance) of the population as the measurement of diversity. The formula of
computing diversity is given in Equation (2).

 (2)

where () = =1 SK () is the sample average of all individuals at th bit. Here, P is the
population size, k is the key length, SK Pxk is the current population, and SK () denotes
the th bit of the ith individual in the population SK.
(3) Diversity-guided GA execution. Algorithm 2 outlines the steps of GenUnlock. We apply
genetic operations on the current population based on the computed diversity. As opposed to
traditional GAs that perform all genetic operations in each iteration, our -

 GA execution demonstrates better convergence.

16
Approved for public release; distribution is unlimited.

We detail the mechanism of core GA operations as follows:

 Fitness Evaluation. The definition of fitness is task-specific. Since our objective is to find (a

set of) feasible decryption keys with high OF, we use the matching ratio of the specific key
on the training data as the fitness measurement as shown in Equation (3). To facilitate the
computation, GenUnlock first automatically constructs auxiliary comparator components
that are added to the netlist of Ce, resulting in an evaluation netlist . Each comparator is
implemented as an XNOR gate with two inputs where one of them comes from the ground-
truth output in the training dataset. The auxiliary netlist is then converted to CNF to compute
the fitness score based on Equation (3).

FK = # # (3)

 Population Selection. As a step of ‘exploitation’, the diversity of the population decreases

after population selection. GenUnlock determines high-fitness individuals using the
tournament selection technique [32]. A random subset of the current population is selected to
participate in each round of the tournament. The individual with the highest fitness score is
maintained in the next generation. Such a selection process repeats until the size of the
resulting new generation reaches the desired number of high-fitness individuals (h). We also
incorporates several (l) ‘lucky’ individuals with relatively low fitness in the next generation
in order to increases the randomness and help GA escape local optima.

 Crossover. Crossover (also called ‘breeding’) is the other step in ‘exploitation’. In this
process, the ‘genome’ (encoding) of the parents are recombined to produce the offsprings.
Crossover consists of the following two subroutines: (i) Parent pairing: given the current
population, we randomly assign two individuals as a pair of parents without repeating the use
of an individual. (ii) Offspring generation: each bit of the child sequence is obtained from a
uniform random sampling of the corresponding bit from its parents.

17
Approved for public release; distribution is unlimited.

 Mutation. As such, mutation is performed in the ‘exploration’ mode of GenUnlock when the
population diversity is lower than the pre-defined threshold. There are two key parameters in
the mutation process: the chance of mutation and the level of mutation. The first parameter
determines the probability that mutation occurs on a particular individual. The second
parameter dictates how many bits in the key sequence will be flipped as a result of mutation.
A high chance and/or a large magnitude of mutation will result in large fluctuation of the
fitness scores of the population, making the GA training unstable.

4.3 Hardware Optimization for Attack Acceleration

We leverage an Algorithm/Software/Hardware approach to accelerate the key searching process
for the target circuit. Figure 8 illustrates the overview of GenUnlock’s hardware architecture
consisted of a computing engine for circuit emulation and an auxiliary circuitry for genetic
operations. We empirically identify that circuit fitness evaluation is the bottleneck of
GenUnlock’s execution time. To accelerate circuit evaluation, we deploy circuit emulation on
the programmable hardware to obtain the response of the encrypted circuit (Ce) for the given
input signals and the tested key. To reduce data communication between the off-chip DRAM and
the FPGA, we perform all computations of key evolution on-chip. Note that we do not include a
random number generator (RNG) in GenUnlock’s hardware design. Instead, we store a set of
random numbers pre-computed on a central processing unit (CPU) using the inherent variation of
the operating system. The results of circuit emulation are used for computing fitness scores using
Equation (3) during CNF evaluation. The clause checking process in CNF evaluation is
parallelized by accommodating multiple Checking Engine (CE) in GenUnlock’s design. The
workload for each CE is partitioned evenly offline. Furthermore, GenUnlock automatically
constructs the customized auxiliary circuitry to pipeline each computation stage and reduce the
runtime. As shown in Figure 9, the ping-pong buffer enables pipelined execution of hardware
emulation and CNF evaluation.

Figure 8: Overview of GenUnlock’s Hardware Design

Figure 9: Pipelining Optimization deployed in GenUnlock’s Genetic Algorithm Accelerator

for Logic Unlocking

18
Approved for public release; distribution is unlimited.

4.4 Experimental Results

Experimental Setup. We implement GenUnlock in Python and demonstrate its performance on
various bench-marks, including ISCAS’85 and Microelectronics Center of North Carolina
(MCNC) [33]. Experiments are run on an Intel i7-7700k processor with 32 GB of RAM and the
energy consumption is measured using pcm-monitor utility. We use the open-sourced code of the
SAT attack [16] as our baseline comparison. Note that [16] is implemented in C++ and tested on
a more powerful CPU (Intel Xeon E31320). As such, our empirical results serve as a
conservative relative speedup comparison.

Our FPGA prototype is implemented on Zynq ZC706 board using the high-level synthesize tool
Xilinx SDx 2018.2. GenUnlock’s CNF checking engine and the auxiliary GA accelerator
discussed in Section 4.3 are implemented using high-level programming language. Our design is
synthesized using a clock frequency of 100MHz. The power of FPGA is measure at the socket
using a power meter during the execution of the GenUnlock. Throughout our experiments, we set
the number of CEs to Nce = 16 and the encryption overhead to 10% with [11] as our default
setting. As for our GA, we use a key population size P = 80 and the total number of generations

 = 50. The number of high-fitness and low-fitness individuals are set to h = 54 and l = 6 for
selection. Each pair of parents produces c = 4 children during crossover. The mutation rate is set
to 2%. We generate 50 input/output pairs from the active IC to construct the training data.

Figure 10 shows the comparison between GenUnlock’s software/hardware implementation with
the baseline [16]. Note that we use the average runtime on each benchmark to visualize the
performance comparison in Figure 10. Several circuits cannot be decrypted by the baseline
algorithm within 10 hours. In this case, we use 10 hours as the estimated runtime of [16] in
Figure 10. With dedicated hardware design support, GenUnlock delivers on average 4.68x
speedup compared to the baseline method. For SAT-hard circuits (such as c2670, c7552, des),
our method engenders superior performance compared to SAT-based attacks, achieving 90x,13x,
2.1x speedup on CPU and 1014x, 153x, 31.2x speedup on the dedicated hardware. Besides the
latency comparison, we also measure the power consumption of different circuit deobfuscation
methods. The power consumption of ‘GenUnlock+HW’ on Zynq SoC is measured via the socket
when the application is running. On average, GenUnlock with hardware optimization consumes
13.6W power while our software implementation consumes 53.3W power on CPU. Considering
the runtime, the overall energy-efficiency of GenUnlock is 18.3x higher than the SAT-based
method.

Figure 10: Average Runtime comparison between GenUnlock and the

Baseline SAT Attack [16]
-

19
Approved for public release; distribution is unlimited.

5 PROTECTING MULTIPLE OUTPUTS

5.1 Problem Description

We can protect multiple input patterns for increased output entropy of a design while still
ensuring resilience to SAT attack. We first explore cost-effective hardware implementations; for
SFLL-HD the modified logic cone will fail for multiple input patterns that are of a certain
Hamming Distance d to the secret key and the restore logic will recover the output to its correct
value when the Hamming Distance of an input pattern from the key equals d. Such an
implementation will protect multiple patterns through a cost-effective use of a multi-point
function. One of the options to increase output entropy and simultaneously protect a larger
number of outputs is to protect a circuits multiple instances of the restore circuit. Accordingly,
we study the impact of protecting a circuit using 1) a single restore unit and 2) two restore units.
The core idea is explained in Figure 11. The circuit in Figure 11(b) is locked circuit with a single
restore unit, whereas the circuit in Figure 11(c) is locked using two restore units. K and K2 are
the two keys for two restore units, respectively. While traditionally SFLL protects only the
primary outputs, we also explore protecting internal nodes in the circuit. To select the nodes-to-
be-protected, i.e., the nodes where functionality-stripping is effected without impacting the
desired security level, we deploy and compare the following three strategies:

1. MaxPO selects nodes that lead to the protection of the maximum number of outputs.
2. MaxFI is inspired by FLL [34] and uses the “fault impact (FI)” metric to select the node(s)-to-
be-protected.
3. MinCn captures the influence of a node on the primary outputs using the notion of normalized
controllability. The lower the normalized controllability of a node, the higher its influence on the
outputs.

Figure 11: The Original Circuit (a), Traditional Application of SFLL (only

one output is protected, which is marked in green) (b), and Proposed Protection using
Multiple Restore Units (leading to the protection of multiple primary outputs as well as

higher output entropy) (c)

20
Approved for public release; distribution is unlimited.

5.2 Experimental Results

ER vs. # of protected outputs Figure 12(a) and Figure 12(b) report the output ER for one and
two restore unit(s), whereas, Figure 12(c) reports the number of outputs that are protected. In this
set of experiments, each restore unit has a key size of 32. The circuits we considered are
controllers of UltraSPARC processor. Let’s first compare the strategies in terms of the number of
outputs protected. As expected, MaxPO almost always outperforms MaxPI and MinCn in this
respect. However, we emphasize that for K=32, the maximum number of outputs any scheme
could protect is only three. We attribute this to the “isolated” nature of the circuit graphs in the
processor controllers. MaxPO may be a simple and effective strategy to maximize the number of
protected outputs, especially in circuits with inherent logic sharing. MaxPO, however, fails to
achieve high output ER.

Figure 12: Output ER for One Restore Unit (a), Two Restore Units, for Three Node

Selection Strategies (b), and the Number of Outputs Protected (c)

When it comes to output ER, MinCn clearly outperforms the other strategies. We observe that
MinCn tends to choose nodes close to primary outputs. In many cases, it chooses a primary
output, which implies that the error injected by SFLL appears as is on the circuit. MaxPO and
MaxFI, however, tend to select internal nodes and exhibit much lower output ER. When

21
Approved for public release; distribution is unlimited.

intermediate nodes are selected, the error injected may be masked by the logic between the
protected node and the primary outputs.

Discussion: Most practical strategy In the aforementioned results, the key size is set to 32 for
each restore unit. A consequence of key size is that the AC rate remain low for certain circuits
and may be unacceptable for certain applications. In the following set of experiments, we report
the AC upon changing both key size and HD. Two restore units, each with key size K, are
inserted in the circuit. We compute the AC rate by randomly applying 100,000 test patterns to
each locked circuit. Table 3 reports the configuration (K, HD) that leads to the highest AC rate
for a given strategy and circuit. Note that the highest key size is achieved mostly for K=8. When
we consider only

Table 3 also shows that when using the strategy MaxPO or MaxFI, a high AC is achieved for
only small key sizes. Thus, these strategies can achieve a high AC albeit at the expense of the
security level. The strategy MinCn, however, allows us achieve both a high AC rate and a
reasonable security level. Recall that these are mainly the controllers of UltraSPARC processor.
The optimal strategy may vary depending for other classes of circuits.

Table 3. Highest Average ER (AC) achieved and Configuration (K, HD) for Different
Circuits and Strategies

 Single restore unit Two restore units
Circuit Strategy AC (%) K HD AC (%) K HD

fpu_in

MaxPO 3.42×10 2 8 4 0.187 8 4
MaxFI 0.143 8 8 0.311 8 4
MinCn 3.11 32 4 5.99 32 32

ifu_dcl

MaxPO 6.80×10 2 8 8 0.105 8 8
MaxFI 0.197 8 4 0.297 8 4
MinCn 3.24 32 0 3.83 32 8

ifu_fqi

MaxPO 2.68×10 2 8 8 4.12×10 2 8 4
MaxFI 8.77×10 2 8 4 0.244 8 8
MinCn 3.78 16 0 3.40 32 16

k2

MaxPO 0.136 8 8 0.334 8 8
MaxFI 1.57 8 8 1.54 8 8
MinCn 5.76 8 4 3.78 8 8

lsu_rw

MaxPO 3.52×10 2 8 8 5.22×10 2 8 4
MaxFI 0.204 8 4 0.294 8 8
MinCn 3.74 8 8 6.79 16 0

s5378

MaxPO 3.05×10 2 8 4 4.66×10 2 8 8
MaxFI 0.337 8 4 0.699 8 4
MinCn 3.89 8 8 2.48 16 12

seq

MaxPO 0.174 8 8 0.306 8 8
MaxFI 0.172 8 8 0.428 8 4
MinCn 5.34 16 16 5.35 16 12

tlu_mmu

MaxPO 1.55×10 2 8 8 3.75×10 2 8 8
MaxFI 0.106 8 4 0.533 8 8
MinCn 2.69 16 12 2.40 32 16

22
Approved for public release; distribution is unlimited.

6 LOGIC LOCKING TOOL

Figure 13 presents an overview of the logic obfuscation tool that we developed. The tool can
incorporate different variants of logic locking. The tool takes as input an RTL (Verilog/VHDL)
file along with the relevant security parameters and outputs a locked/protected file along with the
relevant security metrics and the implementation overhead. Note that the security parameters and
metrics can be specific to the logic locking technique. This is further illustrated in Figure 14 that
depicts the help screen of the current version of the tool.

Figure 13: Interface to the SFLL Tool that Implements Three Variants of Stripped-

Functionality Logic Locking

Figure 14: Demonstration of the Features provided by the Current Version of the Logic

Obfuscation Tool

23
Approved for public release; distribution is unlimited.

7 FPGA DEMONSTRATION

The key objective for this demonstration is to implement SFLL-HD logic locking technique and
quantify its effect using workloads running on the microprocessor. To that degree, we use
instruction per cycle (IPC) to measure the overall throughput of the design. Given the correct
key, the processor performs at its peak performance level.

However, with an incorrect key, the throughput is nearly halted, yielding an overly reduced IPC
value. This new implementation for the logic locking technique is hereafter addressed as
performance locking. In summary, the unique key provided by the authorized user unlocks the
performance locking inserted inside the design.

We have implemented performance locking in the mor1kx-cappuccino microprocessor pipeline
[35]. The highly parametrizable and in-order microprocessor is part of the CEP v1.2 SoC
framework [28]. Figure 15 shows the 6 stage, single-issue pipeline of the mor1kx-cappuccino
microprocessor. The fetch stage fetches a single instruction every clock cycle and the
combinational decode stage generates different opcodes for the remainder of the pipeline
modules. The execute module contains the arithmetic/logic unit (ALU) implementation for
arithmetic and register file destination operations. Most of the core’s functionality is controlled
in the control unit which is responsible for majority of the pipeline’s control signals. It also
issues access to the special purpose register (SPR) and the debug unit. Finally, the memory and
write-back module completes the instruction operation by finding and writing the result at the
memory location.

Figure 15: Performance Locking Implemented in the Control Unit of the

mor1kx-cappuccino Microprocessor
-

The lock is inserted inside the control module of the microprocessor’s pipeline. Specifically, we
modify the operation of the new fetch instruction signal, and implement the locking such that, if
the wrong key input is received and the protected input pattern appears at the module’s input, the
lock triggers and activates for N clock cycles. During this period, no new instruction is fetched,
essentially inserting bubbles in the pipeline. The injected non-computing bubbles ensures that the
overall IPC of the microprocessor is reduced significantly, resulting an effective performance
locking.

24
Approved for public release; distribution is unlimited.

7.1 Evaluation

7.1.1 Experimental Setup

The SoC with the performance locked mor1kx-cappuccino microprocessor is implemented on
the Virtex-7 series FPGA evaluation board. The framework contains RAM, universal
asynchronous receiver-transmitter (UART), clock generation, AES etc. modules, all connected
using the AXI bus interface and runs different benchmarks supported by the OpenRISC
toolchain. We have compiled three different benchmarks from the MiBench [36] suite using the
or1k-gcc compiler. The CEP framework also provides script to convert the binary files into
FPGA memory file which is used as the workload in the FPGA implementation. Each
benchmark is profiled for first 5M instructions in order to find benchmark specific protected
input patterns. These unique input patterns trigger the performance locking and reduces overall
IPC for an incorrect key input.

We then obtain the baseline performance results, which is logged by executing all three
benchmarks on the mor1kx-cappuccino microprocessor prior to implementing any performance
locking. Next, we implement the performance locked control module in the pipeline stage and
assess the degraded performance of the microprocessor. The program (.bit file) is loaded on the
board using the onboard JTAG interface. The LCD unit is modified to display the instantaneous
IPC value and the output of the benchmark is passed to the terminal via the UART interface. The
functional equivalency between the locked and baseline design is ensured by comparing each
benchmark’s output displayed on the terminal. The overall setup for the FPGA implementation is
shown in Figure 16.

Figure 16: FPGA-based Hardware Implementation Setup for Performance Locking

25
Approved for public release; distribution is unlimited.

7.1.2 Performance Locked Design Results

The effectiveness of the performance locking is evaluated for both 1K and 2K stall cycles for
each benchmark against the baseline performance. Figure 17 shows the result for the
performance locked design. On average, we achieve 44% and 58% performance degradation for
1K and 2K stall cycles, respectively.

Finally, the overhead analysis shows nominal (0.2%) power consumption and no fabric
utilization increase by the FPGA for the performance locked design. This affirms the minimal
power/area footprint by the SFLL-HD logic locking.

Figure 17: Overall IPC Degradation in FPGA Implementation

7.2 Results

SFLL-rem still stands.

26
Approved for public release; distribution is unlimited.

8 NYU CSAW 2019: LOGIC LOCKING CONQUEST

In an effort to usher logic locking towards greater maturity, New York University (NYU) (led by
Professor Karri) embarked on an initial community-guided benchmarking of logic locking. This
took the form of a red team/blue team benchmarking ”competition” that aimed to establish a
common framework for evaluating the security of locking techniques and efficacy of attacks on
logic locking. By bringing together different research groups with interested parties from
government agencies and private sector industry, this effort aimed to build capability towards
something akin to a National Institute of Standards and Technology (NIST)-style standardization
effort (for example, the currently ongoing post-quantum cryptography contest [37]).

In this competition, a third-party coordinator (Karri and his team) facilitated interaction between
red teams and blue teams. First, the members of the community were invited to propose, discuss,
and refine assessment criteria. Blue teams prepared sets of locked combinational and sequential
circuits, with accompanying collateral as requested by the red teams. Then, the red teams were
unleashed upon the common set of locked combinational and sequential circuits, where they
applied various attack strategies. The results from this endeavor provide the community with a
comparison of different techniques’ attack successes and a measure of the locking techniques’
resiliency in the face of such attacks.

The first ”Logic Locking Conquest” (LLC) was hosted by Karri’s team at NYU as part of the
annual student-run NYU CSAW 2019, with 18 teams from 14 affiliations participating over the
course of around 3 months.

8.1 Combinational Logic Locking Defense in Competition: Our SFLL-rem [38]

Blue team for combinational logic locking was our (Sinanoglu) team from NYU. In this
benchmarking effort, we adopted two techniques in tandem: Stripped Functionality Logic
Locking (SFLL-rem) [38], which is a fully auto-mated variant of SFLL-fault [13] and has all its
security properties, and random logic locking (RLL) [10]. The attackers need to circumvent both
layers of defense to break the overall defense.

27
Approved for public release; distribution is unlimited.

The first logic locking scheme is designed to mitigate the threat of Satisfiability-based attacks
(SAT attack); SFLL-rem uses point-functions to increase the effort of the SAT attack by
eliminating one key in each iteration out of a possible 2N keys, where N is the number of bits in
the key. While SAT attack resistant, this defense is vulnerable to approximate attacks.

Next, to thwart approximate attacks, we implemented RLL [10] on top of SFLL-rem to increase
the output corruption when an incorrect key is used (i.e., to produce incorrect functionality for a
partially recovered (approximate) key). RLL randomly inserts key gates into the netlist which
may or may not at times provide 50% output corruption.

The benchmark circuit statistics used for the challenge are shown in Table 4. To prepare the
combinational locking benchmark circuits, we apply SFLL-rem + RLL to 7 different circuits
comprising two variants per reference design (i.e., one provided with an oracle, the other
without) derived from academic benchmark circuits (taken from ITC ’99), and a locked
Cortex-M0 microprocessor (as the bonus challenge). The circuits are named small, medium, and
large based on their relative gate counts. The original circuits from the ITC ’99 website are first
modified by changing the gate types of randomly selected gates. These modified versions
prevent known-circuit based functionality recovery attack.

Table 4. Statistics of the Benchmarks used for the Combinational Logic Locking Challenge

Competition benchmark Academic Benchmark # Inputs # Outputs # Gates
small b20_C 522 512 20226

medium b22_C 767 757 29951
large b17_C 1452 1445 32326

We choose key sizes for each of the small, medium, large, and bonus circuits, according to their
gate count. For the small, medium, and large circuits, we choose 40, 60, and 80 bits of security,
respectively, in part to make the competition approachable. The bonus circuit, however, is locked
with 128-bit security. Thus, small benchmarks are locked with 40-bit RLL key and 40-bit
SFLL-rem key; medium benchmarks are locked with 60-bit RLL key and 60-bit SFLL-rem key;
and large benchmarks are locked with 80-bit RLL key and 80-bit SFLL-rem key. The Bonus
circuit was locked with 128-bit RLL key and 128-bit SFLL-rem key. The locking process
involves the following steps:

1. Lock the modified benchfiles with SFLL-rem.
2. Lock the SFLL-rem locked benchfiles with RLL.
3. Remove traces of the original benchfile, e.g. Input and output port names.
4. Convert this file to and-inverter graph (AIG) format to rename all the internal net names as
well.7

7Note: We removed all the traces of the benchmark identity to prevent attacks based on similarity. Tools such as
Cadence LEC can provide a patch file to recover the original functionality. As this threat model is not realistic, we
chose this approach even for the red teams who would have launched a functionality recovery attack.

28
Approved for public release; distribution is unlimited.

To prepare an oracle for the locked circuits, we then convert the modified benchfile to executable
to only permit access to I/Os and not the internal circuitry; this mimics access to a working chip
obtained from the market.

After locking, we verify the unlocking of the design using an open source LCMP equivalence
checker [16]; it requires the locked netlist, the unlocked or original netlist, and the key value.
Since we do not provide the original netlist, but only the oracle with access to only PIs and POs,
the red teams cannot use this equivalence checker tool to verify their key bits. Hence, they report
it back to us and we provide them with the analysis of how many key bits recovered are correct.

8.2 Red-Teams for Combinational Logic

Bit-Flipping (Oracle-guided attack) the team from Northwestern University used their
previously devised Bit-Flipping attack [39] on the combinational locking benchmarks.

Automatic Test Pattern Generation (ATPG)-based (Oracle-guided attack) the team from
Carnegie Mellon University applied a sensitization-based attack [11] on the combinational
locking benchmarks.

Hamming Distance-based Attack (Oracle-guided attack) the team from Texas A&M University
proposed a Divide and Conquer approach to attack the combinational locking.

Automated SAT (Oracle-guided attack) the team from University of Texas at Dallas also
attempted a divide-and-conquer-style approach by trying to divide the circuit into smaller logic
cones, starting with primary outputs and identifying the fan-in logic.

Redundancy (Oracle-less attack) the team from University of California San Diego used their
Redundancy attack [40] to attack the combinational locking benchmarks.

Unit Function Search Attack (Oracle-less attack) the team at Auburn University proposed a
Unit Function Search Attack on the combinational locking benchmarks.

Sub-circuit SAT (Oracle-guided attack) the team from the Indian Institute of Technology
Guwahati proposed a Sub-circuit SAT attack on the combinational locking benchmarks.

8.3 Hamming Distance-based Attack

As part of this competition, the Texas A&M team has developed a divide-and-conquer approach
to attack the combinational locking. There are three steps to perform this attack, which are
identifying the type of key inputs, stripping partial RLL key inputs, and launching the HD-based
attack.

For the locked netlist, we first split it into several individual logic cones (ILCs). Then by
counting the number of key bits in each cone, we can tell the ILC’s protection type and the type
of each key input. Since we get all ILCs and each cone’s protection type, we can get the valid
RLL key value. We select all RLL cones and merge them and get a netlist with fewer primary

29
Approved for public release; distribution is unlimited.

outputs. Then let us run the SAT attack on this netlist, and it returns a valid RLL key with partial
RLL key inputs.

By applying this valid RLL key value on the initially locked netlist, it becomes a simplified
locked circuit. Now, let us pick one cone which is only protected by SFLL-fault on this
simplified locked circuit, as shown in Algorithm 3. First, we extract FSC from the locked cone.
Then, it needs to be transformed into PLA format using ABC. With this PLA being the input file
of ESPRESSO, we can get the reduced PI table for FSC. The tool ABC and ESPRESSO are both
logic synthesis tools. ABC can change the circuit format from benchmark to PLA. PLA is a
cover of the circuit written as a PI table, and the tool ESPRESSO aims at simplifying the PI table
and returning one reduced PI table. Then, we collect all candidate PIPs who’s HDs no greater
than threshold d to at least one PI in FSC’s reduced PI table. Then we verify if there exists a PIP
that results in different outputs of oracle and FSC. If we can find one verified PIP, then we use
this PIP as the first input pattern into the SAT-based attack and grab the correct key from the
attack. This key is also valid for other locked cones.

We present the combinational locking attack results in Table 5. In the combinational locking
attacks, several teams were able to recover the RLL key bits in their entirety. No team was able
to recover the complete SFLL key bits. This competition helped us gain further confidence in
our defense as it helped validate our theoretical findings and expectations.

Table 5. Combinational Locking Attack Results

Where the result is stated as (–

Team Approach Small (40+40) Medium (60+60) Large (80+80) Bonus (128+128) Attack

Scenario
RLL SFLL RLL SFLL RLL SFLL RLL SFLL

CMU Key Sensitization 40/40 - 60/60 - 80/80 - Oracle
TAMU Hamming Distance-based Attack 30/30 - 50/50 - 72/72 - Oracle
UTD Automated Analysis + SAT 11/18 - 31/50 - 10/34 - Oracle
IITG Sub-circuit SAT 17/17 - 29/29 - - - Oracle

UCSD Redundancy-based 28/28 4/12 35/35 23/28 45/45 0/51 66/66 8/27 Oracle-less
Northwestern Bit-flipping Attack 40/40 - 60/60 - 80/80 - Oracle

Auburn Topology guided attack 15/32 - 19/50 - 36/73 - 75/108 - Oracle-less

30
Approved for public release; distribution is unlimited.

9 CONCLUSION

This report summarizes the progress on the ECLIPSE project. In addition to developing security
metrics and proofs, we apply the proposed SFLL technique on DARPA CEP and demonstrate it
on an FPGA platform. The report also highlights our efforts towards protecting multiple outputs
of circuit, unlocking circuits using machine learning, and developing a logic tool that implements
different variants of logic locking. The report also summarizes the latest benchmarking and red-
teaming efforts on our defense as part of NYU CSAW 2019 competition, which was the first
logic locking contest. The key takeaway is that our proposed locking technique, SFLL-rem,
withstands the test-of-time.

31
Approved for public release; distribution is unlimited.

10 REFERENCES

[1] M. Rostami, F. Koushanfar, and R. Karri, “A Primer on Hardware Security: Models,
Methods, and Metrics,” IEEE, vol. 102, no. 8, pp. 1283–1295, 2014.
[2] SEMI, “Innovation is at Risk Losses of up to $4 Billion Annually due to IP
Infringement,” 2008, [June 10, 2015]. [Online]. Available:
www.semi.org/en/Issues/IntellectualProperty/ssLINK/P043785
[3] J. P. Skudlarek, T. Katsioulas, and M. Chen, “A Platform Solution for Secure Supply-
Chain and Chip Life-Cycle Management,” Computer, vol. 49, no. 8, pp. 28–34, 2016.
[4] S. Leef, “In Pursuit of Secure Silicon,” http://textlab.io/doc/22959027/mr.-serge-
leef--vp-new-ventures--mentor-graphics, 2017.
[5] ARM, “Physical Security Solutions,” https://www.arm.com/products/security-on-
arm/ physical-security-solutions, 2017.
[6] SypherMedia, “Circuit camouflage technology,”
https://www.insidesecure.com/Products/Silicon-IP/ Circuit-Camouflage-Technology,
2017.
[7] R. Jarvis and M. McIntyre, “Split Manufacturing Method for Advanced
Semiconductor Circuits,” 2007, US Patent 7,195,931.
[8] A. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. Markov, M. Potkonjak, P. Tucker, H.
Wang, and G. Wolfe, “Watermarking Techniques for Intellectual Property Protection,” in
IEEE/ACM Design Automation Conference, 1998, pp. 776–781.
[9] Y. Alkabani and F. Koushanfar, “Active Hardware Metering for Intellectual Property
Protection and Security,” in , 2007, pp. 291–306.
[10] J. Roy, F. Koushanfar, and I. L. Markov, “Ending Piracy of Integrated Circuits,”
IEEE Computer, vol. 43, no. 10, pp. 30–38, 2010.
[11] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security Analysis of Logic
Obfuscation,” in IEEE/ACM Design Automation Conference, 2012, pp. 83–89.
[12] M. Yasin, A. Sengupta, M. Nabeel, M. Ashraf, J. Rajendran, and O. Sinanoglu, “Provably-
secure logic locking: From theory to practice,” in
Communications Security, 2017, pp. 1601–1618.
[13] A. Sengupta, M. Nabeel, M. Yasin, and O. Sinanoglu, “ATPG-based cost-effective, secure
logic locking,” in , 2018, pp. 1–6.
[14] P. Tuyls, G. Schrijen, B. Skoric, J. van Geloven, N. Verhaegh, and R. Wolters, “Read-Proof
Hardware from Protective Coatings,” in International Conference on Crypt
and Embedded Systems, 2006, pp. 369–383.
[15] M. Yasin, J. Rajendran, O. Sinanoglu, and R. Karri, “On Improving the Security of Logic
Locking,” IEEE Transactions on CAD of Integrated Circuits and Systems, vol. 35, no. 9, pp.
1411–1424, 2016.
[16] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the Security of Logic Encryption
Algorithms,” in , 2015,
pp. 137–143.
[17] Y. Xie and A. Srivastava, “Mitigating SAT Attack on Logic Locking,” in International
Conference on Crypto , 2016, pp. 127–146.
[18] M. Yasin, B. Mazumdar, J. Rajendran, and O. Sinanoglu, “SARLock: SAT Attack
Resistant Logic Locking,” in IEEE International Symposium on
Trust, 2016, pp. 236–241.

32
Approved for public release; distribution is unlimited.

[19] H. Zhou, R. Jiang, and S. Kong, “CYCSAT: Sat-based attack on cyclic logic encryptions,”
in Conference on Computer-Aided Design (ICCAD), 2017, pp.
49–56.
[20] X. Xu, B. Shakya, M. Tehranipoor, and D. Forte, “Novel Bypass Attack and BDD-based
Tradeoff Analysis Against All Known Logic Locking Attacks,” in International Conference on
Cryptographic and Embedded Systems, 2017, pp. 189–210.
[21] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Security Analysis of Anti-SAT,”
IEEE Asia and South Pacific Design Automation Conference, pp. 342–347, 2016.
[22] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran, and O. Sinanoglu,
“Provably-secure logic locking: From theory to practice,” in ACM

, 2017, pp. 1601–1618.
[23] A. Sengupta, B. Mazumdar, M. Yasin, and O. Sinanoglu, “Logic locking with provable
security against power analysis attacks,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 4, pp. 766–778, 2019.
[24] E. Sperling, “Engineering Change Orders Revisited,” https://semiengineering.com/
engineering-change-orders-revisited, 2012.
[25] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-85 Benchmarks: A Case
Study in Reverse Engineering,” IEEE Design Test of Computers, vol. 16, no. 3, pp. 72–80,
1999.
[26] F. Yang, M. Tang, and O. Sinanoglu, “Stripped functionality logic locking with hamming
distance-based restore unit (SFLL-HD)–unlocked,” IEEE Transactions on Information Forensics
and Security, vol. 14, no. 10, pp. 2778– 2786, 2019.
[27] D. Sirone and P. Subramanyan, “Functional analysis attacks on logic locking,” IEEE
Transactions on Information Forensics and Security, vol. 15, pp. 2514–2527, 2020.
[28] A. S. of Defense for Research and Engineering, “Common Evaluation Platform,”
https://github.com/mit-ll/CEP, 2018.
[29] M. Yasin, T. Tekeste, H. Saleh, B. Mohammad, O. Sinanoglu, and M. Ismail, “Ultra-low
power, secure IOT platform for predicting cardiovascular diseases,” IEEE Transactions on

Papers, vol. 64, no. 9, pp. 2624–2637, 2017.
[30] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the iscas-85 benchmarks: A case study
in reverse engineering,” IEEE Design Test of Computers, vol. 16, no. 3, pp. 72–80, 1999.
[31] D.T. Heide, A Closer Look At Ethereum Signatures, Feb, 2018. [Online]. Available:
https: //hackernoon.com/a-closer-look-at-ethereum-signatures-5784c14abecc
[32] B. L. Miller, D. E. Goldberg , “Genetic algorithms, tournament selection, and the
effects of noise,” Complex systems, vol. 9, no. 3, pp. 193–212, 1995.
[33] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of sequential benchmark
circuits,” in IEEE international symposium on circuits and systems, vol. 3, 1989, pp. 1929–1934.
[34] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Logic Encryption: A Fault Analysis
Perspective,” in Test in Europe, 2012, pp. 953–958.
[35] GitHub, “mor1kx - an OpenRISC processor IP core,” https://github.com/openrisc/mor1kx.
[36] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown,
“Mibench: A free, commercially representative embedded benchmark suite,” in IEEE
International Workshop on Workload Characterization (WWC-4), 2001.
[37] NIST, “Post-quantum cryptography: Round 1 submissions,” https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography, 2018.

33
Approved for public release; distribution is unlimited.

[38] A. Sengupta, M. Nabeel, N. Limaye, M. Ashraf, and O. Sinanoglu, “Truly stripping
functionality for logic locking: A fault-based perspective,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2020.
[39] Y. Shen, A. Rezaei, and H. Zhou, “Sat-based bit-flipping attack on logic encryptions,” in

. IEEE, 2018, pp.
629–632.
[40] L. Li and A. Orailoglu, “Piercing logic locking keys through redundancy identification,” in

, 2019, pp. 540–545.

34
Approved for public release; distribution is unlimited.

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS

ACRONYM DESCRIPTION
AES Advanced Encryption Standard
AIG and-inverter graph
ALU arithmetic/logic unit
ASIC application-specific integrated circuit
ATPG automatic test pattern generation
Ce encrypted circuit
CE checking engine
CEP Common Evaluation Platform
CNF conjunctive normal form
CPU central processing unit
CRYPTO cryptographic
CSAW Cybersecurity Awareness Worldwide
DARPA Defense Advanced Research Projects Agency
DfT design for trust
DNN deep neural network
DRC design rule check
DSP digital signal processing
ECLIPSE Efficient Cross-Layered IP Protection SchemE
ECO engineering change order
ER error rate
FALL functional analysis based logic locking
FI fault impact
FIR finite impulse response
FPGA field-programmable gate array
GA genetic algorithm
GPS global positioning system
HD hamming distance
IC integrated circuit
ILC individual logic cone
IO input/output
IP intellectual property
IPC instruction per cycle
IRR infinite impulse response
LLC Logic Locking Contest
LVS layout versus schematic
MCNC Microelectronics Center of North Carolina
NIST National Institute of Standards and Technology
NYU New York University
OF output fidelity
PIP protected input patterns
PnR place and route
PPA power, performance, and area
PPT probabilistic polynomial time

35
Approved for public release; distribution is unlimited.

ACRONYM DESCRIPTION
RAM random access memory
RLL random logic locking
RNG random number generator
SAT satisfiability
SFLL stripped-functionality logic locking
SoC system on a chip
SPR special purpose register
SRAM static random access memory
UART universal asynchronous receiver-transmitter

