
AFRL-RY-WP-TR-2020-0357 

A CROSS-LAYER FRAMEWORK FOR COST-EFFECTIVE 
INTELLECTUAL PROPERTY (IP) PROTECTION 
Farinaz Koushanfar 
University of California, San Diego 

Jeyavijayan (JV) Rajendran and Yiorgos Makris 
University of Texas at Dallas 

Ozgur Sinanoglu 
New York University 

FEBRUARY 2021 
Final Report 

Approved for public release; distribution is unlimited. 

See additional restrictions described on inside pages. 

STINFO COPY 

AIR FORCE RESEARCH LABORATORY 
SENSORS DIRECTORATE 

WRIGHT-PATTERSON AIR FORCE BASE, OH  45433-7320 
AIR FORCE MATERIEL COMMAND 

UNITED STATES AIR FORCE 



NOTICE AND SIGNATURE PAGE 

Using Government drawings, specifications, or other data included in this document for any purpose 
other than Government procurement does not in any way obligate the U.S. Government. The fact 
that the Government formulated or supplied the drawings, specifications, or other data does not 
license the holder or any other person or corporation; or convey any rights or permission to 
manufacture, use, or sell any patented invention that may relate to them.  

This report is the result of contracted fundamental research deemed exempt from public affairs 
security and policy review in accordance with The Under Secretary of Defense memorandum dated 
24 May 2010 and AFRL/DSO policy clarification email dated 13 January 2020.  This report is 
available to the general public, including foreign nationals. 

Copies may be obtained from the Defense Technical Information Center (DTIC) 
(http://www.dtic.mil).   

AFRL-RY-WP-TR-2020-0357 HAS BEEN REVIEWED AND IS APPROVED FOR 
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 

 
 
  
POMPEI L. ORLANDO MARY E. LOCKHART, Chief 
Program Manager Trusted Electronics Branch 
Trusted Electronics Branch Aerospace Components & Subsystems Division 
Aerospace Components & Subsystems Division 

 
 
ADAM L. BROOKS, Lt Col, USAF 
Deputy  
Aerospace Components & Subsystems Division 
Sensors Directorate 

This report is published in the interest of scientific and technical information exchange, and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings. 

ORLANDO.POM
PEI.L.III.108594
9701

Digitally signed by 
ORLANDO.POMPEI.L.III.10
85949701
Date: 2021.01.27 15:28:45 
-05'00'

LOCKHART.MA
RY.E.138079278
4

Digitally signed by 
LOCKHART.MARY.E.13807
92784
Date: 2021.01.28 08:52:48 
-05'00'

BROOKS.ADAM
.L.1270115205

Digitally signed by 
BROOKS.ADAM.L.12701152
05
Date: 2021.02.03 17:28:03 
-05'00'



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a 
collection of information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE  (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

February2021 Final 7 June 2018 – 7 December 2019
4. TITLE AND SUBTITLE

A CROSS-LAYER FRAMEWORK FOR COST-EFFECTIVE
INTELLECTUAL PROPERTY (IP) PROTECTION 

5a.  CONTRACT NUMBER 
FA8650-18-1-7827 

5b.  GRANT NUMBER 

5c.  PROGRAM ELEMENT NUMBER 
62716E 

6. AUTHOR(S)

Farinaz Koushanfar (University of California, San Diego)
Jeyavijayan (JV) Rajendran and Yiorgos Makris (University of Texas at 
Dallas)
Ozgur Sinanoglu (New York University)

5d.  PROJECT NUMBER 
N/A 

5e.  TASK NUMBER 
N/A 

5f.  WORK UNIT NUMBER 
 Y1RY 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

University of California, San Diego
Office of Contract and Grant Administration 
9500 Gilman Drive, Dept. 621 
La Jolla, CA 92093-0621 

University of Texas at Dallas 

New York University 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY ACRONYM(S)

Air Force Research Laboratory 
Sensors Directorate 
Wright-Patterson Air Force Base, OH 
45433-7320 
Air Force Materiel Command 
United States Air Force 

Defense Advanced Research 
Projects Agency 
(DARPA/MTO) 
675 North Randolph Street 
Arlington, VA 22203 

AFRL/RYDT
11. SPONSORING/MONITORING

AGENCY REPORT NUMBER(S)
AFRL-RY-WP-TR-2020-0357

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
This material is based on research sponsored by the Air Force Research Lab (AFRL) and the Defense Advanced Research Projects
Agency (DARPA) under agreement number FA8650-18-1-7827. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon."  "The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the Air Force Research Labs (AFRL), the Defense Advanced Research Projects Agency (DARPA) or the
U.S. Government. Report contains color.

14. ABSTRACT
This report summarizes the progress on the Efficient Cross-Layered IP Protection Scheme (ECLIPSE) project. In
addition to developing security metrics and proofs, we apply the proposed stripped-functionality logic locking (SFLL)
technique and demonstrate it on a field-programmable gate array (FPGA) platform. The report also highlights our efforts
towards protecting multiple outputs of circuit, unlocking circuits using machine learning, and developing a logic tool that
implements different variants of logic locking. The report also summarizes the latest benchmarking and red-teaming
efforts on our defense as part of Cybersecurity Awareness Worldwide 2019 competition, which was the first logic
locking contest. The key takeaway is that our proposed locking technique, SFLL-rem, withstands the test-of-time

15. SUBJECT TERMS
intellectual property, stripped-functionality logic locking, threat model, integrated circuit fabrication

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT:

SAR 

8. NUMBER OF
PAGES
  40 

19a.  NAME OF RESPONSIBLE PERSON (Monitor) 
a. REPORT
Unclassified 

b. ABSTRACT
Unclassified 

c. THIS PAGE
Unclassified 

 Pompei Orlando 
19b.  TELEPHONE NUMBER (Include Area Code) 

N/A
Standard Form 298 (Rev. 8-98)   
Prescribed by ANSI Std. Z39-18 



i 
Approved for public release; distribution is unlimited. 

Table of Contents 

Section               Page 
 
List of Figures ................................................................................................................................. ii 
List of Tables .................................................................................................................................. ii 
1 INTRODUCTION .................................................................................................................... 1 

1.1 Threat Models ....................................................................................................................... 1 
1.2 Defense Objectives ............................................................................................................... 2 
1.3 Metrics and Attack Resilience .............................................................................................. 3 
1.4 Organization ......................................................................................................................... 4 

2 FORMAL SECURITY ANALYSIS ........................................................................................ 5 
2.1 Security Definitions .............................................................................................................. 5 
2.2 An Overview of SFLL-rem .................................................................................................. 7 
2.3 SAT Attack Resilience ......................................................................................................... 8 
2.4 Removal Attack Resilience .................................................................................................. 9 

3 CASE-STUDY ON COMMON EVALUATION PLATFORM ............................................ 10 
4 APPROXIMATE LOGIC UNLOCKING USING MACHINE LEARNING ........................ 13 

4.1 Problem Statement ............................................................................................................. 13 
4.2 Attack Methodology ........................................................................................................... 14 
4.3 Hardware Optimization for Attack Acceleration ............................................................... 17 
4.4 Experimental Results .......................................................................................................... 18 

5 PROTECTING MULTIPLE OUTPUTS ................................................................................ 19 
5.1 Problem Description ........................................................................................................... 19 
5.2 Experimental Results .......................................................................................................... 20 

6 LOGIC LOCKING TOOL ...................................................................................................... 22 
7 FPGA DEMONSTRATION ................................................................................................... 23 

7.1 Evaluation ........................................................................................................................... 24 
7.1.1 Experimental Setup ...................................................................................................... 24 
7.1.2 Performance Locked Design Results ........................................................................... 25 

7.2 Results ................................................................................................................................ 25 
8 NYU CSAW 2019: LOGIC LOCKING CONQUEST ........................................................... 26 

8.1 Combinational Logic Locking Defense in Competition: Our SFLL-rem [38] .................. 26 
8.2 Red-Teams for Combinational Logic ................................................................................. 28 
8.3 Hamming Distance-based Attack ....................................................................................... 28 

9 CONCLUSION ....................................................................................................................... 30 
10 REFERENCES ....................................................................................................................... 31 
LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS ............................................... 34 
 
 
 



ii 
Approved for public release; distribution is unlimited. 

List of Figures 
 
Figure               Page 
 
Figure 1: Threat Model for Logic Locking ..................................................................................... 1 
Figure 2: General Logic Locked Circuit: Modified Function along with the Restore Circuitry .... 3 
Figure 3: c17 Circuit with Stuck-at-0 Fault shown in Red (a), Fault-injected Circuit Ff (b),  
List of Test Patterns (c), and Final Locked Circuit with the Restore Unit (d) ................................ 8 
Figure 4: Architecture of CEP consisting of CRYPTO, DSP, and GPS blocks ............................ 10 
Figure 5: PPA Overhead for the Locked Blocks and the Entire SoC ........................................... 11 
Figure 6: DRC/LVS-clean Layout of the CEP SoC ...................................................................... 12 
Figure 7: Global Flow of GenUnlock Framework for Logic Unlocking ...................................... 14 
Figure 8: Overview of GenUnlock’s Hardware Design ............................................................... 17 
Figure 9: Pipelining Optimization deployed in GenUnlock’s Genetic Algorithm Accelerator  
for Logic Unlocking ...................................................................................................................... 17 
Figure 10: Average Runtime comparison between GenUnlock and the  Baseline SAT  
Attack [16] .................................................................................................................................... 18 
Figure 11: The Original Circuit (a), Traditional Application of SFLL (only one output is 
protected, which is marked in green) (b), and Proposed Protection using Multiple Restore Units 
(leading to the protection of multiple primary outputs as well as higher output entropy) (c) ...... 19 
Figure 12: Output ER for One Restore Unit (a), Two Restore Units, for Three Node Selection 
Strategies (b), and the Number of Outputs Protected (c) .............................................................. 20 
Figure 13: Interface to the SFLL Tool that Implements Three Variants of Stripped- 
Functionality Logic Locking......................................................................................................... 22 
Figure 14: Demonstration of the Features provided by the Current Version of the Logic 
Obfuscation Tool .......................................................................................................................... 22 
Figure 15: Performance Locking Implemented in the Control Unit of the mor1kx-cappuccino 
Microprocessor ............................................................................................................................. 23 
Figure 16: FPGA-based Hardware Implementation Setup for Performance Locking .................. 24 
Figure 17: Overall IPC Degradation in FPGA Implementation ................................................... 25 
 

List of Tables 
 
Table               Page 
 
Table 1. Different Threat Models showing Attacker’s Capabilities ............................................... 2 
Table 2. How to Lock the Individual Blocks of SoC .................................................................... 10 
Table 3. Highest Average ER (AC) achieved and Configuration (K, HD) for Different  
Circuits and Strategies .................................................................................................................. 21 
Table 4. Statistics of the Benchmarks used for the Combinational Logic Locking Challenge .... 27 
Table 5. Combinational Locking Attack Results .......................................................................... 29 
 
  



1
Approved for public release; distribution is unlimited. 

1 INTRODUCTION 

As the trend of outsourcing integrated circuit (IC) fabrication consolidates, the semiconductor 
industry faces new challenges. Reliance on off-site untrusted fabrication facilities, though 
economical, has given rise to several threats ranging from intellectual property (IP) piracy to 
hardware Trojans [1].  As the design houses share their valuable IP in the form of GDSII with 
the untrusted foundry, the foundry can reverse-engineer the gate-level netlist from it with 
malicious intentions.  At the same time, lack of adequate state-of-the-art IP protection techniques 
has only made the problem worse. It is estimated that several billions of dollars are lost each year 
due to these threats [2]. Many government/military organizations along with leading 
semiconductor companies are currently trying to address these concerns [3-5]. 
 
To safeguard designs at the silicon layer, designers have resorted to several design-for-trust 
(DfT) techniques such as IC camouflaging [6], split manufacturing [7], watermarking [8], IC 
metering [9], and logic locking [10-13]. Recently, logic locking has gained popularity due to its 
ease of implementation and it being a holistic solution to multiple threats (fab, end-user, etc.).  In 
logic locking, the original design is locked by introducing additional logic that expects a secret 
key. The key bits are securely fused in a tamper-proof [14] memory which needs to be correctly 
configured for the IC to be functional. The threat model for logic locking is illustrated in  
Figure 1. 
 

 
Figure 1: Threat Model for Logic Locking 

Every entity in the IC supply chain except the design house can be untrusted 
 
After the initial work [10], a plethora of works advanced the state-of-the-art in logic locking  
[11, 15]. Nevertheless, a Boolean satisfiability (SAT) based attack broke all the logic locking 
techniques existing at that time [16]. Though several SAT-resilient works were presented 
afterwards [17-19], most of them had structural flaws that were eventually exploited to break 
these schemes [20, 21].  Among these attacks, removal attack can isolate and remove the 
protection logic from the original design. Only recently, a set of works, known as stripped-
functionality logic locking (SFLL), were presented that were shown to successfully thwart all the 
state-of-the-art attacks [12, 13]. 

1.1 Threat Models 

A threat model defines the attacker’s capabilities. We define several threat models for logic 
locking, as presented in Table 1. In the first threat model, we assume that the attacker has access 
to a working chip, which in the context of logic locking, is a chip that has the secret key loaded 
on its memory. In this case, the attacker can use the chip as an oracle, apply input patterns to it, 
and collect the responses from the chip. From these input-output pairs, the attacker can do an 
analysis to infer the logic locking key.  In this threat model, a likely attacker with the working 
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chip would be the end-user; his/her approach would simply be applying inputs in a brute-force 
fashion possibly in addition to side-channel analysis. 
 
In the second threat model, we assume that the attacker has access to the GDSII representation of 
the logic locked design IP.  So, the attacker can reverse engineer the GDSII to obtain the locked 
netlist in an effort to pirate the design IP. The attacker’s goal is to isolate the key logic to remove 
it, or from its structure, infer the secret key values [21]. The likely attacker in this threat model is 
the untrusted fab. 
 
The third threat model is a union of the attacker capabilities in the first two threat models, 
assuming a powerful attacker who has access to not only the working chip with the key inside, 
but also the reverse engineered netlist that includes the key logic.  Now the attacker can simulate 
the netlist to produce meaningful input patterns rather than brute-forcing and can apply these 
input patterns to the working chip to collect the responses. He/she can then figure out the secret 
key. In fact, many attacks assume this threat model; well-known examples include sensitization 
attack [15] and SAT attack [16]. 
 

Table 1. Different Threat Models showing Attacker’s Capabilities 

# 
Attacker’s capabilities 

Objective RE 
netlist 

Working chip 
(oracle) 

1 no yes Corrupt outputs for incorrect keys (high error rate (ER)) 
2 yes no Make key logic difficult to isolate and corrupt outputs for 

incorrect keys (high ER) 
3 yes yes Both of the above and protect IP from all attacks  

(e.g., SAT: low ER) 

1.2 Defense Objectives 

The business model of a chip design company dictates the trusted and the untrusted entities, and 
thus, the threat model.  There may also be features specific to the system on a chip (SoC) design 
or its blocks that guide the chip or block designer in choosing the appropriate threat model for 
the chip/block. Depending on the threat model, the designer then determines the objectives of the 
logic locking defense. 
 
In the first threat model, the designer needs a logic locking solution to corrupt the chip outputs 
for wrong keys. This prevents an attacker from using the working chip as a black-box and 
collecting hints about the secret key every time he/she applies an input pattern on a chip. 
 
Considering the second threat model, where the attacker has only the reverse-engineered but 
locked netlist, the proper defense would be to make the protection logic difficult to isolate in 
addition to creating corruption for incorrect keys (to still prevent black box usage of pirated IP). 
Actually, a better strategy would be to modify the IP design before implementing it on silicon, 
with a secret key loaded post-fabrication restoring the original functionality. This way, the 
reverse engineered netlist without the knowledge of the key would actually reveal the modified 
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IP, and not the original IP that the designer is trying to hide from the untrusted parties, e.g., the 
fab. 
 
As for the third threat model, which is consistent with Kerckhoff’s principle of assuming that the 
attacker knows everything but the key, the defense must meet all the objectives of the previous 
two threat models, and in addition, thwart all attacks, such as the sensitization and the SAT 
attack. 

1.3 Metrics and Attack Resilience 

The basic idea of SFLL is to change the original IP by removing and modifying logic, i.e., 
stripping away some functionality from it.  This operation creates a discrepancy between the 
original and the modified logic function, which on a working chip is fixed by a restore unit 
controlled by the secret key as illustrated in Figure 2. The input patterns for which the original 
and the modified functions differ are referred to as the protected input patterns (PIPs). The 
modified function produces an error for the protected input patterns.  Error rate (ER) is defined 
as the ratio of PIPs to all input patterns.  The removal attack that simply isolates and removes the 
restore circuitry would be left with the modified function with these errors. The higher the ER, 
the more resilient the logic locking technique is against the removal attack.  Intuitively, it can 
also be stated that a locked chip with a high ER is more useless as a black box. 
 

 
Figure 2: General Logic Locked Circuit: Modified Function along with the Restore 

Circuitry 
 
Latest research in logic locking has shown that the SAT attack [16] works better when ER is 
higher [12]; the SAT solver learns more in every iteration when an incorrect key leads to many 
errors, resulting in quicker convergence for the attack. ER is therefore a fundamental metric that, 
when controlled, can enable a trade-off between conflicting logic locking objectives.  A proper 
logic locking technique is one that can control ER and give the designer the control over 
resilience against all attacks. In SFLL-fault, the modified function is obtained from the original 
one by injecting a fault, and the failing patterns for this fault are the PIPs.  By selecting the 
proper fault to inject into the design (and remove logic from the design), ER can be controlled. 
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Next we connect the security metric, namely ER, to resilience to different classes of attacks. 
Obviously, the brute-force attack that requires trying all keys blindly will have a complexity that 
is exponential in the size of the key.  When the concern is removal attacks or the black-box 
usage of the locked chips, the resilience can be defined in terms of the output corruption level, 
which can be computed as the ratio of input patterns for which the outputs show error.1   
 
Obviously, the outputs that are not locked will not contribute to the corruption, while the locked 
outputs will. SAT attack resilience of a locked output can be approximated to ER 1 on that 
output. The overall SAT attack resilience of the chip can be conservatively defined as the 
maximum ER 1 overall outputs, assuming that the attacker can target different outputs in 
parallel. This is a generous assumption in terms of attacker capabilities. 

1.4 Organization 

This report summarizes our research over the entire span of the Efficient Cross-Layered IP 
Protection SchemE (ECLIPSE) project. We organize the report into the following sections: 
 
1. Security definitions and formal security analysis (Section 2). 
2. Implementation of SFLL on the Defense Advanced Research Projects Agency (DARPA) 

Common Evaluation Platform (CEP) SoC. We report only on the latest and secure version of 
SFLL, referred to as SFLL-rem (Section 3). 

3. Exploratory research on approximate logic unlocking using machine learning (Section 4). 
4. Preliminary study on improving ER and protecting multiple outputs of a circuit (Section 5). 
5. Development of a logic locking tool that inputs a netlist and outputs its locked version 

(Section 6). 
6. Demonstration of logic locking on a field-programmable gate array (FPGA) (Section 7). 
7. Cybersecurity Awareness Worldwide (CSAW) logic locking competition (Section 8). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1This would be the collective ER for all the outputs, while an alternative definition could be the average ER across 
all the outputs, or equivalently, the Hamming Distance between the corrupted and the correct outputs. 
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2 FORMAL SECURITY ANALYSIS 

2.1 Security Definitions 

In the following sections we prove the security of SFLL-rem with rigorous details. However, 
first we introduce the notations that is extensively used for the remainder of this section. 
 
Notation. A set is defined as S, whereas its elements are denoted as s  S. The event of drawing 

sample s uniformly randomly from the set S is written as s 
$

 S. Moreover, the cardinality of the 
set S is denoted by |S|. A combinational circuit is denoted by ckt, while cktlock, cktactv, and cktrec 
denote a logic-locked, an activated, and a recovered circuit, respectively. A  denotes a 
probabilistic polynomial time (PPT) adversary A 
generality, we assume inputs of size n, outputs of size m, and key size of k. 
 
Next, the definition of logic locking is presented. Note that the definition was introduced in [22], 
however, for the sake of reading, we repeat it below. 
 
Definition 1. A combinational circuit ckt is a netlist that implements a Boolean function  

 n  m 
2 (Gen, Lock, Activate)  

 

1. Gen  z 
$

 Gen(1k) the key-  
 
2. Lock lock Lockz(ckt)  
 
3. Activate  
cktactv  Activatez(cktlock) such that i  actv  
 
Next, we provide the definition of security for a logic locking technique L with the help of the 
following experiment. Note that attack-specific security definitions were introduced in [22, 23]. 
However, no generic notion of security exists, and thus adapting the notion from [23], we 
establish it with the help of Experiment 1. 
 
 
 
 
 
 
 
 
 
 
 
2Note that we only provide the definition for combination circuits, but this can be readily extended for sequential 
designs. 
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The INITIALIZE function picks the k-bit secret key z  randomly from a uniform distribution 
over k-bit binary strings. After the selection of the key, the circuit ckt is locked using a logic 
locking algorithm L with the key z . Afterwards, the secret key is loaded on the memory of the 
chip to activate the circuit, denoted by cktactv. Next, we initialize a variable  = 0. The 
ATTACK(cktlock, cktactv) function takes two entities as input, a reverse-engineered locked netlist 
cktlock, and a working chip cktactv with correct key embedded onto its memory. The attacker A  
initializes the auxiliary information set S. Next, he/she analyzes the locked circuit, and records 
the observation in pL. Further, he/she makes a query to the oracle, and records this information in 
p L which is gained from the physical implementation of L following strategy . For example, the 
observable for a SAT attack could be the outputs from the chip. Afterwards, the attacker updates 
the auxiliary information set S from the observations pL, and p L. Note that as the attacker is 
computationally bounded, his inability to iterate an exponential number of queries forces him to 
make only a polynomial number of queries q(k) to the oracle, k being the key size. The attacker 
is allowed to make further queries to the locked and activated circuits, and update the observable. 
Note that an attacker is allowed to choose different sets of queries q (k), and q (k) for the locked 
and the activated circuits, respectively. Finally, reinforced with all the information S, pL and p L, 
the attacker returns cktrec.  
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A logic locking scheme is said to be secure if for any PPT attacker A , 

 

where (k) is a negligible quantity in k, k being the key size.3 For the rest of the paper, we will 
as Pr[SUCCESSA (k) = 1] for simplicity.abbreviate 

2.2 An Overview of SFLL-rem 

In this section, we present a secure methodology for SFLL-rem that has minimal reliance on 
physical synthesis tools. Yet this technique delivers the same control over ER that the other 
versions of SFLL do.

To effect functionality stripping, we take a similar approach to SFLL-fault, where we work with 
stuck-at faults.4 While SFLL-fault [13] must find and store all the failing patterns for a fault as 
keys, all we need is a fault f which has at least one failing pattern with a sufficiently large 
number of care bits. Our goal is to make this failing pattern tsecure  Tf the one and only secret 
key. The fault is injected and logic is removed from F to obtain Ff. Note that finding all the 
failing patterns for Ff is critical to have a logically equivalent locked circuit. However, a 
complete enumeration of all the failing patterns for Ff could be computationally infeasible. As 
the discrepancy between F and Ff includes not only tsecure, but all the other failing patterns of f as 
well ({Tf tsecure}), we utilize formal equivalence checking to restore the functionality for all the 
other failing patterns.5 Instead of explicitly storing all the failing patterns in LUTs, the formal 
equivalence checker essentially generates the logic which restores all the failing patterns, except 
for the protected pattern/secret key tsecure. The logic added to Ff through the formal equivalence 
checking process helps create an Ff  that differs from F for only the correct key tsecure. It is Ff  
that is implemented on silicon along with the restore circuitry. This approach, in contrast to 
SFLL-fault, eliminates the need for a tamper-proof LUT, as only one test pattern tsecure needs to 
be stored as the secret key. The restore circuitry is a simple comparator that flips the output of Ff  
when the input pattern matches tsecure. 
 
Example. The original IP is the c17 circuit from the ISCAS benchmark suite [25]. A stuck-at-0 
fault is injected at the output of the inverter as shown in Figure 3a to modify F into Ff in  
Figure 3b. This causes the circuit to fail on the output O23 for the test patterns listed in  
Figure 3c. Out of these test patterns, we select the pattern x0111 to be tsecure, i.e., the key shows 
with the red box. Next, engineering change order (ECO) is performed to restore F for all the test 
vectors except for tsecure as shown in Figure 3d. This circuit implements Ff . Note that the circuits 
in Figure 3a and Figure 3d only differ for tsecure x0111, which is the key for the locked circuit. 
The final locked circuit is shown in Figure 3d, which includes the restore logic. 

3A function  is negligible if c  N, 0  N such that   0, c. 
4Note that our methodology is agnostic to the fault model used. 
5Note that this type of design changes are typical for engineering change orders (ECOs) to minimize the turnaround 
time for IC fabrication [24]. 
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Figure 3: c17 Circuit with Stuck-at-0 Fault shown in Red (a), Fault-injected Circuit Ff (b), 
List of Test Patterns (c), and Final Locked Circuit with the Restore Unit (d) 

2.3 SAT Attack Resilience 

The following theorem establishes the security of SFLL-rem against SAT attacker. 
 
Theorem 1. Proposed SFLL-

 
 

Pr[Success A  (k (k) 

Proof. From SFLL, we note that the success of SAT attack is determined by the probability of 
encountering a protected pattern, i.e., any pattern i  tsecure. This probability is equal to            . 
As previously stated tsecure is an n bit input pattern with k care bits, it contains (n k) don’t care 
bits. Thus, by construction tsecure entails 2n-k input patterns, i.e., |tsecure| = 2n-k. Thus, for a PPT 
attacker making q(k) queries to the oracle, 

 

where (k) is a negligible quantity for a large key size.6 This concludes the proof. 
 
 
 
 
 
 
 
 
 
6According to modern computing standard, a key size of 80-bits is considered secure. 
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2.4 Removal Attack Resilience 

Finally, we discuss the resilience of SFLL-rem to the latest removal attacks that compromised 
SFLL hamming distance (SFLL-HD) and SFLL-flex [26, 27]. Note that SFLL-rem removes 
logic by injecting fault f into F, thus obtaining Ff, and subsequently adding logic through ECOs 
into Ff to limit the discrepancy to a single test pattern tsecure. Thus, contrary to the SFLL-HD and 
SFLL-flex instances of SFLL, a skewed signal that would guide the attacker in her netlist 
analysis is missing in SFLL-rem. The most recent removal attacks [26, 27] that SFLL-HD and 
SFLL-flex are vulnerable to can thus be thwarted by SFLL-rem. Even if the attacker could 
successfully identify and isolate the restore circuit, she is left with a circuit cktrec that implements 
Ff  such that: 

 

For example, a functional analysis based logic locking (FALL) attack was proposed which first 
identifies nodes that implement the functionality stripping by using structural traces and then 
analyzes the functional properties, called unate property, of these nodes to shortlist a small 
number of candidate locking keys [27]. Since SFLL-rem removes logic (functionality) 
corresponding to a fault instead of explicitly adding an AND-tree [22], the FALL attack fails 
during the functional analysis step. 
 
Alternatively, an attacker can identify the traces for the logic added by ECOs, and remove this 
added logic, she can obtain Ff from Ff . Recovering F from Ff, however, necessitates the attacker 
to guess the logic removed in injecting fault f. The following theorem establishes the security of 
SFLL-rem against such attack. 
 
Theorem 2. SFLL-rem is secure against a PPT attacker following the removal attack strategy, 
i.e. 
 

 
 
Proof. Suppose that an attacker is able to trace the logic added by the ECO, and remove this 
added logic, deriving Ff in the process. However, recovering F from Ff, necessitates the attacker 
to guess the logic removed in injecting fault f. Nevertheless, the missing (stripped) logic could 
implement one of 22k different possible Boolean functions. For a PPT attacker completely 
oblivious to the functionality stripping, the probability of success is given by:

 

where (k) is a negligible quantity for a large key size. This concludes the proof. 
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3 CASE-STUDY ON COMMON EVALUATION PLATFORM 

In this section, we demonstrate the application of logic locking at a granular level on a multi-
million-gate SoC [28] provided by DARPA as a Common Evaluation Platform (CEP). An 
overview of the SoC is depicted in Figure 4. It is a one-master twelve-slave system. The master 
of the system is a version of the OpenRISC processor, OR1200, which runs its code from a 
128KB static random access memory (SRAM). The SoC modules can be broadly categorized 
into three classes: 1) cryptographic (CRYPTO) blocks, 2) digital signal processing (DSP) blocks, 
and 3) a global positioning system (GPS) block. 
 

 
Figure 4: Architecture of CEP consisting of CRYPTO, DSP, and GPS blocks 

We finite impulse response ( ) infinite impulse response ( )  
 
Protecting OR1200 and GPS. Note that only the OR1200 and GPS blocks need protection from 
IP piracy, as the rest of the blocks are extensively used in the industry, and, thus of public 
knowledge. In addition, there is full (scan) access to these blocks. We thus lock the OR1200 and 
the GPS blocks with SFLL-rem along with FLL with respect to threat model three in Table 2. 
SFLL-rem provides resilience against SAT attacks, and thus, IP piracy; FLL provides corruption 
and protects against black-box usage and removal attacks. 
 

Table 2. How to Lock the Individual Blocks of SoC 

Block # Gates 
(K) Type Threat 

Model Defense 

OR1200 29 RISC processor 3 SFLL-rem + FLL 
GPS 156 Custom 3 SFLL-rem + FLL 
FIR 16 DFT 2 Coefficient locking
IIR 18 DFT 2 Coefficient locking
Overall SoC 15,000  Mixed Mixed 

Protecting DSP. Note that DSP blocks such as finite impulse response (FIR) filter are of public 
knowledge, and thus, the circuits do not require any protection against IP piracy. However, the 
secrecy and the working of these blocks lie on the careful choice of their coefficients, which 
need to be protected from piracy. Moreover, direct access to the block input/outputs (IOs) is not 
available to the attacker as they are embedded in the SoC; we thus assume threat model two in 
Table 2. Rather than locking the internal structure of the circuit, we focus on hiding the 
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coefficients so that an attacker is unable to meaningfully make use of the design. Thus, the 
coefficients in the DSP blocks constitute the secret key [29]. 
 
Limitations of logic locking. Note that the CRYPTO blocks are also of public knowledge that 
do not require any protection against IP piracy. Yet working oracles are readily available for the 
attacker, pointing to the third threat model. In these designs, the output bits are affected only by a 
small number of input bits. For example, in Advanced Encryption Standard (AES), the 
substitution operation is applied on one byte of data. No matter how these or any other blocks 
with small logic cones are locked, a high ER is guaranteed; an incorrect key will corrupt the 
output frequently, as the number of inputs that drive an output is small. SAT attack is thus 
guaranteed to be effective on designs with small logic cones, such as these CRYPTO blocks. 
 
Overhead analysis. The power, performance, and area (PPA) overheads are plotted in Figure 5. 
 

 
Figure 5: PPA Overhead for the Locked Blocks and the Entire SoC 

 
 OR1200 and GPS. The overhead for implementing SFLL-rem+FLL for the OR1200 and 

GPS blocks is 17.5%, 1.0%, 9.6% and 1.1%, 101.4%, 1.2%, respectively for power, 
performance, and area. Note that all the blocks were synthesized with the global timing 
constraint of 4 ns (250 MHz). The critical path length for GPS post-locking was only 
2.84 ns, much lower than the SoC timing constraint of 4 ns; as such, we did not pay any 
effort in optimizing timing in GPS further, and hence, the high performance overhead for 
the GPS block. 

 
 DSP. We hide the coefficients for two of the DSP blocks, namely, FIR and IIR, to 

safeguard the designs. This comes at a large PPA overhead: 15.3%, -25.8%, and 40.9% 
for FIR and 14.7%, -0.5%, and 37.7% for IIR, for power, performance, and area, 
respectively. Without the locking of the coefficients, they are hardcoded in hardware (by 
replacing multipliers driven by constant values by shifters and adders); while this leads to 
optimized PPA, reverse-engineering can easily reveal the coefficient values from the 
logic gates that hardcode them. However, as we hide the coefficients through logic 
locking, the key in the tamper-proof memory drives the multipliers, disabling any logic 
optimization through design by contraction. This way, we protect the coefficients from 
reverse-engineering with a block-level impact on the area footprint, sometimes as high as 
50%. However, at the same time, a multiplier in the locked design can sometimes replace 
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multiple instances of cascaded adders and shifters, thereby, reducing the depth of the 
circuit, and hence, improving timing. 

 
 Overall SoC. The PPA overhead for the entire SoC is 0.45%, 15.3%, and 1.5%, 

respectively. Even if the overheads are quite high at the block level, we see that the 
impact of locking is quite reasonable at the SoC level. 

 
 Run-time. The run-time to apply the SFLL-rem technique is 4632s and 7435s for 

OR1200 and GPS, respectively, demonstrating the practicality of our technique as it takes 
only a fraction of the IP design cycle. We performed coefficient locking for the DSP 
blocks at the RTL; this was a very straightforward process that did not incur any run-time 
cost. 

 
 Generating layout. The SoC design netlist is taken through various stages of physical 

design flow in order to create a design rule check/layout versus schematic DRC/LVS-
clean GDS for Global Foundries 65lpe technology. The place and route (PnR) was 
performed with Synopsys IC Compiler, whereas Cadence Virtuoso and Cadence PVS 
were used for the GDS creation and DRC/LVS checks, respectively. The layout of the 
SoC is shown in Figure 6 with the locked blocks highlighted in different colors. 

 

 
Figure 6: DRC/LVS-clean Layout of the CEP SoC 
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4 APPROXIMATE LOGIC UNLOCKING USING MACHINE 
LEARNING 

Logic locking inserts additional key gates to the original circuit for protecting the intellectual 
property of modern integrated circuits. Prior works have identified the vulnerability of logic 
locking to SAT-based attacks. However, SAT attacks are ineffective on circuits with SAT-hard 
structures. We develop GenUnlock, the first genetic algorithm-based logic unlocking attack 
framework to address the above limitation of SAT attacks. GenUnlock formulates logic 
unlocking (i.e., identifying the correct keys) as a combinatorial optimization problem and tackles 
it using genetic algorithms (GAs). Multiple key sequences form the individuals in the population 
and undergo the following main operations: circuit fitness evaluation, population selection, 
crossover, and mutation. The key sequences with high fitness scores ‘survive’ the selection and 
are transformed into the offspring. GenUnlock’s evolutionary process of key searching features 
high scalability, exploration efficiency, and parallelizable fitness evaluation. We take an 
Algorithm/Software/Hardware co-design approach to optimize GenUnlock’s runtime overhead. 
More specifically, we (i) Pipeline each computation stage by automatically constructing auxiliary 
circuitry for constraints checking, sorting, crossover, and mutation; (ii) Employ 
emulation on programmable hardware for accelerating circuit fitness evaluation. 

4.1 Problem Statement 

Our objective is to design a systematic methodology for unlocking arbitrary unknown, encrypted 
circuit. We denote the original unlocked circuit and its encrypted version as Co and Ce. The 
primary input, output vector, and the encryption key of the circuit are denoted as  M,  N,   k, respectively.

The functionality of the circuit is represented by the following deterministic mapping: Co ( ) =  
and Ce ( , ) = . The quality of a decryption key is quantified by the output fidelity (OF) that 
defines the probability of the output vector of Ce being consistent with the one of Co given any 
input : 

                        (1)

We consider logic unlocking as successful if the OF of the identified key is higher than the 
attacker- ). Note that two different key sequences might result in 
the same circuit behavior (i.e., same mapping Ce). We define that  and 2 belong to the same 
equivalence class of keys [16] if the condition Ce ( , ) = Ce ( , 2) is satisfied for any   M. 

Performance Metrics. We use effectiveness and efficiency as two main metrics to assess the 
performance of a logic unlocking scheme. These two metrics are quantified by the attack success 
rate (defined in Equation (1)) and the execution time, respectively. GenUnlock, for the first time, 
provides the trade-off between effectiveness and efficiency by generating a set of keys with 
evolving quality over time. In addition, we also use resource consumption as a metric to evaluate 
our hardware design. 
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Threat Model. We make the following assumptions about GenUnlock framework: (i) The 
attacker has black-box access to the active IC. We assume that the adversary can purchase the 
unlocked circuit from the market and obtains oracle access to it. As a result, the attacker is able 
to query the active IC with arbitrary input challenges and observe the corresponding outputs, 
which is the basis of GenUnlock’s training data generation phase. 

 We assume the attacker can reverse engineer the netlist of Ce 
from a physical circuit by performing depackaging, delayering, and imaging [30]. The obtained 
netlist is converted to conjunctive normal form (CNF) and used in circuit fitness evaluation. 

Real-world Use Cases. Existing works focus on unlocking the circuit with perfect accuracy, 
thus may incur prohibitive runtime overhead to break large circuits. Here, we want to emphasize 
that  decryption of the target circuit can be more threatening than slow, full 
decryption. This is particularly true for fault-tolerant applications. Let us consider block-chain 
mining as a real-world example where the signature of the cryptocurrency is extracted from AES 
and hashing operations [31] on the hardware miner. The resulting signature is continuously 
checked against the pre-defined template to determine whether the cryptocurrency is legitimate. 
As such, it is sufficient for the user to find a key that yields correct outputs with high probability 
in order to obtain financial benefits. Emerging application-specific integrated circuit (ASIC) 
accelerators for deep neural networks (DNNs) are also inherently fault-tolerant, which has been 
exploited for parameter quantization or pruning. 

4.2 Attack Methodology 

Figure 7 illustrates the global flow of GenUnlock. Our framework consists of two stages: (i) 
Offline pre-processing phase that generates training data for GA; and (ii) Key searching phase 
that performs key evolution. The one-time pre-processing phase is performed via oracle access 
while the key searching phase is accelerated using FPGA. 

 
Figure 7: Global Flow of GenUnlock Framework for Logic Unlocking 

 
Prior works have identified that there might be more than one correct keys to unlock the given 
circuit [16]. This is due to the fact that logic locking schemes, by default, do not guarantee the 
uniqueness of the decryption key. The collection of these key sequences is called ‘equivalent 
class’ of the correct key sequence. GenUnlock leverages this fact and processes multiple keys 
representing different equivalence classes in each iteration, thus features higher efficiency for 
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K 

space exploration. Note that GenUnlock is oblivious of the underlying encryption schemes used 
by the defender, thus is genetic and applicable to arbitrary ICs. We detail the two key phases of 
GenUnlock framework in the following of this section. 

Phase I: Training data generation. This is an offline, one-time process, consisting of the 
following two tasks: 

(1) Generate input vectors. Given the netlist of the encrypted circuit, we craft input vectors 
and filter the ones that result in the same circuit outputs when different keys are applied. 
(2) Query active IC. The remaining input patterns from step 1 are then used to query the 
active IC. The collected (IO pairs form the training dataset for our logic unlocking. 

Phase II: Key evolution. Once the training data for the target circuit is generated in Phase I, 
GenUnlock performs three subroutines during the key evolution phase as shown in the bottom of 
Figure 7: 
 

(1) Circuit fitness evolution. Analogous to natural selection, the key sequences with higher 
fitness scores are maintained and transformed to offsprings at each iteration. The fitness of 
each key is evaluated by the ratio of output matching on the training dataset when the 
specific key is applied. We convert the netlist representation to CNF to facilitate fitness 
evaluation. 
(2) Population diversity computation. GenUnlock separates genetic operations into two 
groups (‘exploitation’ or ‘exploration’) and determines which branch to take depending on 
the population diversity. Since key sequences are binary-valued in logic locking, we use the 
dispersion (i.e., variance) of the population as the measurement of diversity. The formula of 
computing diversity is given in Equation (2). 

 

                            (2) 
 

where   ( ) =   =1 SK ( ) is the sample average of all individuals at th bit. Here, P is the 
population size, k is the key length, SK  Pxk is the current population, and SK ( ) denotes 
the th bit of the ith individual in the population SK. 
(3) Diversity-guided GA execution. Algorithm 2 outlines the steps of GenUnlock. We apply 
genetic operations on the current population based on the computed diversity. As opposed to 
traditional GAs that perform all genetic operations in each iteration, our -

 GA execution demonstrates better convergence. 
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We detail the mechanism of core GA operations as follows: 
 
 Fitness Evaluation. The definition of fitness is task-specific. Since our objective is to find (a 

set of) feasible decryption keys with high OF, we use the matching ratio of the specific key 
on the training data as the fitness measurement as shown in Equation (3). To facilitate the 
computation, GenUnlock first automatically constructs auxiliary comparator components 
that are added to the netlist of Ce, resulting in an evaluation netlist . Each comparator is 
implemented as an XNOR gate with two inputs where one of them comes from the ground-
truth output in the training dataset. The auxiliary netlist is then converted to CNF to compute 
the fitness score based on Equation (3). 

 

FK = #   #                                      (3) 
 
 Population Selection. As a step of ‘exploitation’, the diversity of the population decreases 

after population selection. GenUnlock determines high-fitness individuals using the 
tournament selection technique [32]. A random subset of the current population is selected to 
participate in each round of the tournament. The individual with the highest fitness score is 
maintained in the next generation. Such a selection process repeats until the size of the 
resulting new generation reaches the desired number of high-fitness individuals (h). We also 
incorporates several (l) ‘lucky’ individuals with relatively low fitness in the next generation 
in order to increases the randomness and help GA escape local optima. 

 Crossover. Crossover (also called ‘breeding’) is the other step in ‘exploitation’. In this 
process, the ‘genome’ (encoding) of the parents are recombined to produce the offsprings. 
Crossover consists of the following two subroutines: (i) Parent pairing: given the current 
population, we randomly assign two individuals as a pair of parents without repeating the use 
of an individual. (ii) Offspring generation: each bit of the child sequence is obtained from a 
uniform random sampling of the corresponding bit from its parents. 
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 Mutation. As such, mutation is performed in the ‘exploration’ mode of GenUnlock when the 
population diversity is lower than the pre-defined threshold. There are two key parameters in 
the mutation process: the chance of mutation and the level of mutation. The first parameter 
determines the probability that mutation occurs on a particular individual. The second 
parameter dictates how many bits in the key sequence will be flipped as a result of mutation. 
A high chance and/or a large magnitude of mutation will result in large fluctuation of the 
fitness scores of the population, making the GA training unstable. 

4.3 Hardware Optimization for Attack Acceleration 

We leverage an Algorithm/Software/Hardware approach to accelerate the key searching process 
for the target circuit. Figure 8 illustrates the overview of GenUnlock’s hardware architecture 
consisted of a computing engine for circuit emulation and an auxiliary circuitry for genetic 
operations. We empirically identify that circuit fitness evaluation is the bottleneck of 
GenUnlock’s execution time. To accelerate circuit evaluation, we deploy circuit emulation on 
the programmable hardware to obtain the response of the encrypted circuit (Ce) for the given 
input signals and the tested key. To reduce data communication between the off-chip DRAM and 
the FPGA, we perform all computations of key evolution on-chip. Note that we do not include a 
random number generator (RNG) in GenUnlock’s hardware design. Instead, we store a set of 
random numbers pre-computed on a central processing unit (CPU) using the inherent variation of 
the operating system. The results of circuit emulation are used for computing fitness scores using 
Equation (3) during CNF evaluation. The clause checking process in CNF evaluation is 
parallelized by accommodating multiple Checking Engine (CE) in GenUnlock’s design. The 
workload for each CE is partitioned evenly offline. Furthermore, GenUnlock automatically 
constructs the customized auxiliary circuitry to pipeline each computation stage and reduce the 
runtime. As shown in Figure 9, the ping-pong buffer enables pipelined execution of hardware 
emulation and CNF evaluation. 
 

 
Figure 8: Overview of GenUnlock’s Hardware Design 

 
 

 
Figure 9: Pipelining Optimization deployed in GenUnlock’s Genetic Algorithm Accelerator 

for Logic Unlocking 
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4.4 Experimental Results 

Experimental Setup. We implement GenUnlock in Python and demonstrate its performance on 
various bench-marks, including ISCAS’85 and Microelectronics Center of North Carolina 
(MCNC) [33]. Experiments are run on an Intel i7-7700k processor with 32 GB of RAM and the 
energy consumption is measured using pcm-monitor utility. We use the open-sourced code of the 
SAT attack [16] as our baseline comparison. Note that [16] is implemented in C++ and tested on 
a more powerful CPU (Intel Xeon E31320). As such, our empirical results serve as a 
conservative relative speedup comparison. 
 
Our FPGA prototype is implemented on Zynq ZC706 board using the high-level synthesize tool 
Xilinx SDx 2018.2. GenUnlock’s CNF checking engine and the auxiliary GA accelerator 
discussed in Section 4.3 are implemented using high-level programming language. Our design is 
synthesized using a clock frequency of 100MHz. The power of FPGA is measure at the socket 
using a power meter during the execution of the GenUnlock. Throughout our experiments, we set 
the number of CEs to Nce = 16 and the encryption overhead to 10% with [11] as our default 
setting. As for our GA, we use a key population size P = 80 and the total number of generations 

 = 50. The number of high-fitness and low-fitness individuals are set to h = 54 and l = 6 for 
selection. Each pair of parents produces c = 4 children during crossover. The mutation rate is set 
to 2%. We generate 50 input/output pairs from the active IC to construct the training data. 
 
Figure 10 shows the comparison between GenUnlock’s software/hardware implementation with 
the baseline [16]. Note that we use the average runtime on each benchmark to visualize the 
performance comparison in Figure 10. Several circuits cannot be decrypted by the baseline 
algorithm within 10 hours. In this case, we use 10 hours as the estimated runtime of [16] in 
Figure 10. With dedicated hardware design support, GenUnlock delivers on average 4.68x 
speedup compared to the baseline method. For SAT-hard circuits (such as c2670, c7552, des), 
our method engenders superior performance compared to SAT-based attacks, achieving 90x,13x, 
2.1x speedup on CPU and 1014x, 153x, 31.2x speedup on the dedicated hardware. Besides the 
latency comparison, we also measure the power consumption of different circuit deobfuscation 
methods. The power consumption of ‘GenUnlock+HW’ on Zynq SoC is measured via the socket 
when the application is running. On average, GenUnlock with hardware optimization consumes 
13.6W power while our software implementation consumes 53.3W power on CPU. Considering 
the runtime, the overall energy-efficiency of GenUnlock is 18.3x higher than the SAT-based 
method. 
 

 
Figure 10: Average Runtime comparison between GenUnlock and the  

Baseline SAT Attack [16] 
-
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5 PROTECTING MULTIPLE OUTPUTS 

5.1 Problem Description 

We can protect multiple input patterns for increased output entropy of a design while still 
ensuring resilience to SAT attack. We first explore cost-effective hardware implementations; for 
SFLL-HD the modified logic cone will fail for multiple input patterns that are of a certain 
Hamming Distance d to the secret key and the restore logic will recover the output to its correct 
value when the Hamming Distance of an input pattern from the key equals d. Such an 
implementation will protect multiple patterns through a cost-effective use of a multi-point 
function. One of the options to increase output entropy and simultaneously protect a larger 
number of outputs is to protect a circuits multiple instances of the restore circuit. Accordingly, 
we study the impact of protecting a circuit using 1) a single restore unit and 2) two restore units. 
The core idea is explained in Figure 11. The circuit in Figure 11(b) is locked circuit with a single 
restore unit, whereas the circuit in Figure 11(c) is locked using two restore units. K  and K2 are 
the two keys for two restore units, respectively. While traditionally SFLL protects only the 
primary outputs, we also explore protecting internal nodes in the circuit. To select the nodes-to-
be-protected, i.e., the nodes where functionality-stripping is effected without impacting the 
desired security level, we deploy and compare the following three strategies: 
 
1. MaxPO selects nodes that lead to the protection of the maximum number of outputs. 
2. MaxFI is inspired by FLL [34] and uses the “fault impact (FI)” metric to select the node(s)-to-
be-protected. 
3. MinCn captures the influence of a node on the primary outputs using the notion of normalized 
controllability. The lower the normalized controllability of a node, the higher its influence on the 
outputs. 
 

 
Figure 11: The Original Circuit (a), Traditional Application of SFLL (only  

one output is protected, which is marked in green) (b), and Proposed Protection using 
Multiple Restore Units (leading to the protection of multiple primary outputs as well as 

higher output entropy) (c) 
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5.2 Experimental Results 

ER vs. # of protected outputs Figure 12(a) and Figure 12(b) report the output ER for one and 
two restore unit(s), whereas, Figure 12(c) reports the number of outputs that are protected. In this 
set of experiments, each restore unit has a key size of 32. The circuits we considered are 
controllers of UltraSPARC processor. Let’s first compare the strategies in terms of the number of 
outputs protected. As expected, MaxPO almost always outperforms MaxPI and MinCn in this 
respect. However, we emphasize that for K=32, the maximum number of outputs any scheme 
could protect is only three. We attribute this to the “isolated” nature of the circuit graphs in the 
processor controllers. MaxPO may be a simple and effective strategy to maximize the number of 
protected outputs, especially in circuits with inherent logic sharing. MaxPO, however, fails to 
achieve high output ER. 
 

 
Figure 12: Output ER for One Restore Unit (a), Two Restore Units, for Three Node 

Selection Strategies (b), and the Number of Outputs Protected (c) 
 
When it comes to output ER, MinCn clearly outperforms the other strategies. We observe that 
MinCn tends to choose nodes close to primary outputs. In many cases, it chooses a primary 
output, which implies that the error injected by SFLL appears as is on the circuit. MaxPO and 
MaxFI, however, tend to select internal nodes and exhibit much lower output ER. When 
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intermediate nodes are selected, the error injected may be masked by the logic between the 
protected node and the primary outputs. 
 
Discussion: Most practical strategy In the aforementioned results, the key size is set to 32 for 
each restore unit. A consequence of key size is that the AC rate remain low for certain circuits 
and may be unacceptable for certain applications. In the following set of experiments, we report 
the AC upon changing both key size and HD. Two restore units, each with key size K, are 
inserted in the circuit. We compute the AC rate by randomly applying 100,000 test patterns to 
each locked circuit. Table 3 reports the configuration (K, HD) that leads to the highest AC rate 
for a given strategy and circuit. Note that the highest key size is achieved mostly for K=8. When 
we consider only  
 
Table 3 also shows that when using the strategy MaxPO or MaxFI, a high AC is achieved for 
only small key sizes. Thus, these strategies can achieve a high AC albeit at the expense of the 
security level. The strategy MinCn, however, allows us achieve both a high AC rate and a 
reasonable security level. Recall that these are mainly the controllers of UltraSPARC processor. 
The optimal strategy may vary depending for other classes of circuits. 
 

Table 3. Highest Average ER (AC) achieved and Configuration (K, HD) for Different 
Circuits and Strategies 

 Single restore unit Two restore units 
Circuit Strategy AC (%) K HD AC (%) K HD 

 
fpu_in 

MaxPO 3.42×10 2 8 4 0.187 8 4 
MaxFI 0.143 8 8 0.311 8 4 
MinCn 3.11 32 4 5.99 32 32 

 
ifu_dcl 

MaxPO 6.80×10 2 8 8 0.105 8 8 
MaxFI 0.197 8 4 0.297 8 4 
MinCn 3.24 32 0 3.83 32 8 

 
ifu_fqi 

MaxPO 2.68×10 2 8 8 4.12×10 2 8 4 
MaxFI 8.77×10 2 8 4 0.244 8 8 
MinCn 3.78 16 0 3.40 32 16 

 
k2 

MaxPO 0.136 8 8 0.334 8 8 
MaxFI 1.57 8 8 1.54 8 8 
MinCn 5.76 8 4 3.78 8 8 

 
lsu_rw 

MaxPO 3.52×10 2 8 8 5.22×10 2 8 4 
MaxFI 0.204 8 4 0.294 8 8 
MinCn 3.74 8 8 6.79 16 0 

 
s5378 

MaxPO 3.05×10 2 8 4 4.66×10 2 8 8 
MaxFI 0.337 8 4 0.699 8 4 
MinCn 3.89 8 8 2.48 16 12 

 
seq 

MaxPO 0.174 8 8 0.306 8 8 
MaxFI 0.172 8 8 0.428 8 4 
MinCn 5.34 16 16 5.35 16 12 

 
tlu_mmu 

MaxPO 1.55×10 2 8 8 3.75×10 2 8 8 
MaxFI 0.106 8 4 0.533 8 8 
MinCn 2.69 16 12 2.40 32 16 
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6 LOGIC LOCKING TOOL 

Figure 13 presents an overview of the logic obfuscation tool that we developed. The tool can 
incorporate different variants of logic locking. The tool takes as input an RTL (Verilog/VHDL) 
file along with the relevant security parameters and outputs a locked/protected file along with the 
relevant security metrics and the implementation overhead. Note that the security parameters and 
metrics can be specific to the logic locking technique. This is further illustrated in Figure 14 that 
depicts the help screen of the current version of the tool. 

 
Figure 13: Interface to the SFLL Tool that Implements Three Variants of Stripped-

Functionality Logic Locking 
 

 
Figure 14: Demonstration of the Features provided by the Current Version of the Logic 

Obfuscation Tool 
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7 FPGA DEMONSTRATION 

The key objective for this demonstration is to implement SFLL-HD logic locking technique and 
quantify its effect using workloads running on the microprocessor. To that degree, we use 
instruction per cycle (IPC) to measure the overall throughput of the design. Given the correct 
key, the processor performs at its peak performance level. 
 
However, with an incorrect key, the throughput is nearly halted, yielding an overly reduced IPC 
value. This new implementation for the logic locking technique is hereafter addressed as 
performance locking. In summary, the unique key provided by the authorized user unlocks the 
performance locking inserted inside the design. 
 
We have implemented performance locking in the mor1kx-cappuccino microprocessor pipeline 
[35]. The highly parametrizable and in-order microprocessor is part of the CEP v1.2 SoC 
framework [28]. Figure 15 shows the 6 stage, single-issue pipeline of the mor1kx-cappuccino 
microprocessor. The fetch stage fetches a single instruction every clock cycle and the 
combinational decode stage generates different opcodes for the remainder of the pipeline 
modules. The execute module contains the arithmetic/logic unit (ALU) implementation for 
arithmetic and register file destination operations. Most of the core’s functionality is controlled 
in the control unit which is responsible for majority of the pipeline’s control signals. It also 
issues access to the special purpose register (SPR) and the debug unit. Finally, the memory and 
write-back module completes the instruction operation by finding and writing the result at the 
memory location. 
 

 
Figure 15: Performance Locking Implemented in the Control Unit of the  

mor1kx-cappuccino Microprocessor 
-  

 
The lock is inserted inside the control module of the microprocessor’s pipeline. Specifically, we 
modify the operation of the new fetch instruction signal, and implement the locking such that, if 
the wrong key input is received and the protected input pattern appears at the module’s input, the 
lock triggers and activates for N clock cycles. During this period, no new instruction is fetched, 
essentially inserting bubbles in the pipeline. The injected non-computing bubbles ensures that the 
overall IPC of the microprocessor is reduced significantly, resulting an effective performance 
locking. 
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7.1 Evaluation 

7.1.1 Experimental Setup 

The SoC with the performance locked mor1kx-cappuccino microprocessor is implemented on 
the Virtex-7 series FPGA evaluation board. The framework contains RAM, universal 
asynchronous receiver-transmitter (UART), clock generation, AES etc. modules, all connected 
using the AXI bus interface and runs different benchmarks supported by the OpenRISC 
toolchain. We have compiled three different benchmarks from the MiBench [36] suite using the 
or1k-gcc compiler. The CEP framework also provides script to convert the binary files into 
FPGA memory file which is used as the workload in the FPGA implementation. Each 
benchmark is profiled for first 5M instructions in order to find benchmark specific protected 
input patterns. These unique input patterns trigger the performance locking and reduces overall 
IPC for an incorrect key input. 
 
We then obtain the baseline performance results, which is logged by executing all three 
benchmarks on the mor1kx-cappuccino microprocessor prior to implementing any performance 
locking. Next, we implement the performance locked control module in the pipeline stage and 
assess the degraded performance of the microprocessor. The program (.bit file) is loaded on the 
board using the onboard JTAG interface. The LCD unit is modified to display the instantaneous 
IPC value and the output of the benchmark is passed to the terminal via the UART interface. The 
functional equivalency between the locked and baseline design is ensured by comparing each 
benchmark’s output displayed on the terminal. The overall setup for the FPGA implementation is 
shown in Figure 16. 
 

 
Figure 16: FPGA-based Hardware Implementation Setup for Performance Locking 
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7.1.2 Performance Locked Design Results 

The effectiveness of the performance locking is evaluated for both 1K and 2K stall cycles for 
each benchmark against the baseline performance. Figure 17 shows the result for the 
performance locked design. On average, we achieve 44% and 58% performance degradation for 
1K and 2K stall cycles, respectively. 
 
Finally, the overhead analysis shows nominal (0.2%) power consumption and no fabric 
utilization increase by the FPGA for the performance locked design. This affirms the minimal 
power/area footprint by the SFLL-HD logic locking. 
 

 
Figure 17: Overall IPC Degradation in FPGA Implementation 

7.2 Results 

SFLL-rem still stands. 
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8 NYU CSAW 2019: LOGIC LOCKING CONQUEST 

In an effort to usher logic locking towards greater maturity, New York University (NYU) (led by 
Professor Karri) embarked on an initial community-guided benchmarking of logic locking. This 
took the form of a red team/blue team benchmarking ”competition” that aimed to establish a 
common framework for evaluating the security of locking techniques and efficacy of attacks on 
logic locking. By bringing together different research groups with interested parties from 
government agencies and private sector industry, this effort aimed to build capability towards 
something akin to a National Institute of Standards and Technology (NIST)-style standardization 
effort (for example, the currently ongoing post-quantum cryptography contest [37]). 
 
In this competition, a third-party coordinator (Karri and his team) facilitated interaction between 
red teams and blue teams. First, the members of the community were invited to propose, discuss, 
and refine assessment criteria. Blue teams prepared sets of locked combinational and sequential 
circuits, with accompanying collateral as requested by the red teams. Then, the red teams were 
unleashed upon the common set of locked combinational and sequential circuits, where they 
applied various attack strategies. The results from this endeavor provide the community with a 
comparison of different techniques’ attack successes and a measure of the locking techniques’ 
resiliency in the face of such attacks. 
 
The first ”Logic Locking Conquest” (LLC) was hosted by Karri’s team at NYU as part of the 
annual student-run NYU CSAW 2019, with 18 teams from 14 affiliations participating over the 
course of around 3 months. 
 

 

8.1 Combinational Logic Locking Defense in Competition: Our SFLL-rem [38] 

Blue team for combinational logic locking was our (Sinanoglu) team from NYU. In this 
benchmarking effort, we adopted two techniques in tandem: Stripped Functionality Logic 
Locking (SFLL-rem) [38], which is a fully auto-mated variant of SFLL-fault [13] and has all its 
security properties, and random logic locking (RLL) [10]. The attackers need to circumvent both 
layers of defense to break the overall defense. 
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The first logic locking scheme is designed to mitigate the threat of Satisfiability-based attacks 
(SAT attack); SFLL-rem uses point-functions to increase the effort of the SAT attack by 
eliminating one key in each iteration out of a possible 2N keys, where N is the number of bits in 
the key. While SAT attack resistant, this defense is vulnerable to approximate attacks. 
 
Next, to thwart approximate attacks, we implemented RLL [10] on top of SFLL-rem to increase 
the output corruption when an incorrect key is used (i.e., to produce incorrect functionality for a 
partially recovered (approximate) key). RLL randomly inserts key gates into the netlist which 
may or may not at times provide 50% output corruption. 
 
The benchmark circuit statistics used for the challenge are shown in Table 4. To prepare the 
combinational locking benchmark circuits, we apply SFLL-rem + RLL to 7 different circuits 
comprising two variants per reference design (i.e., one provided with an oracle, the other 
without) derived from academic benchmark circuits (taken from ITC ’99), and a locked  
Cortex-M0 microprocessor (as the bonus challenge). The circuits are named small, medium, and 
large based on their relative gate counts. The original circuits from the ITC ’99 website are first 
modified by changing the gate types of randomly selected gates. These modified versions 
prevent known-circuit based functionality recovery attack. 
 
Table 4. Statistics of the Benchmarks used for the Combinational Logic Locking Challenge 

Competition benchmark Academic Benchmark # Inputs # Outputs # Gates 
small b20_C 522 512 20226 

medium b22_C 767 757 29951 
large b17_C 1452 1445 32326 

 
We choose key sizes for each of the small, medium, large, and bonus circuits, according to their 
gate count. For the small, medium, and large circuits, we choose 40, 60, and 80 bits of security, 
respectively, in part to make the competition approachable. The bonus circuit, however, is locked 
with 128-bit security. Thus, small benchmarks are locked with 40-bit RLL key and 40-bit  
SFLL-rem key; medium benchmarks are locked with 60-bit RLL key and 60-bit SFLL-rem key; 
and large benchmarks are locked with 80-bit RLL key and 80-bit SFLL-rem key. The Bonus 
circuit was locked with 128-bit RLL key and 128-bit SFLL-rem key. The locking process 
involves the following steps: 
 
1. Lock the modified benchfiles with SFLL-rem. 
2. Lock the SFLL-rem locked benchfiles with RLL. 
3. Remove traces of the original benchfile, e.g. Input and output port names. 
4. Convert this file to and-inverter graph (AIG) format to rename all the internal net names as 
well.7 
 
 
 
 
7Note: We removed all the traces of the benchmark identity to prevent attacks based on similarity. Tools such as 
Cadence LEC can provide a patch file to recover the original functionality. As this threat model is not realistic, we 
chose this approach even for the red teams who would have launched a functionality recovery attack. 
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To prepare an oracle for the locked circuits, we then convert the modified benchfile to executable 
to only permit access to I/Os and not the internal circuitry; this mimics access to a working chip 
obtained from the market. 
 
After locking, we verify the unlocking of the design using an open source LCMP equivalence 
checker [16]; it requires the locked netlist, the unlocked or original netlist, and the key value. 
Since we do not provide the original netlist, but only the oracle with access to only PIs and POs, 
the red teams cannot use this equivalence checker tool to verify their key bits. Hence, they report 
it back to us and we provide them with the analysis of how many key bits recovered are correct. 

8.2 Red-Teams for Combinational Logic 

Bit-Flipping (Oracle-guided attack) the team from Northwestern University used their 
previously devised Bit-Flipping attack [39] on the combinational locking benchmarks. 
 
Automatic Test Pattern Generation (ATPG)-based (Oracle-guided attack) the team from 
Carnegie Mellon University applied a sensitization-based attack [11] on the combinational 
locking benchmarks. 
 
Hamming Distance-based Attack (Oracle-guided attack) the team from Texas A&M University 
proposed a Divide and Conquer approach to attack the combinational locking. 
 
Automated SAT (Oracle-guided attack) the team from University of Texas at Dallas also 
attempted a divide-and-conquer-style approach by trying to divide the circuit into smaller logic 
cones, starting with primary outputs and identifying the fan-in logic. 
 
Redundancy (Oracle-less attack) the team from University of California San Diego used their 
Redundancy attack [40] to attack the combinational locking benchmarks. 
 
Unit Function Search Attack (Oracle-less attack) the team at Auburn University proposed a 
Unit Function Search Attack on the combinational locking benchmarks. 
 
Sub-circuit SAT (Oracle-guided attack) the team from the Indian Institute of Technology 
Guwahati proposed a Sub-circuit SAT attack on the combinational locking benchmarks. 

8.3 Hamming Distance-based Attack 

As part of this competition, the Texas A&M team has developed a divide-and-conquer approach 
to attack the combinational locking. There are three steps to perform this attack, which are 
identifying the type of key inputs, stripping partial RLL key inputs, and launching the HD-based 
attack. 
 
For the locked netlist, we first split it into several individual logic cones (ILCs). Then by 
counting the number of key bits in each cone, we can tell the ILC’s protection type and the type 
of each key input. Since we get all ILCs and each cone’s protection type, we can get the valid 
RLL key value. We select all RLL cones and merge them and get a netlist with fewer primary 
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outputs. Then let us run the SAT attack on this netlist, and it returns a valid RLL key with partial 
RLL key inputs. 
 
By applying this valid RLL key value on the initially locked netlist, it becomes a simplified 
locked circuit. Now, let us pick one cone which is only protected by SFLL-fault on this 
simplified locked circuit, as shown in Algorithm 3. First, we extract FSC from the locked cone. 
Then, it needs to be transformed into PLA format using ABC. With this PLA being the input file 
of ESPRESSO, we can get the reduced PI table for FSC. The tool ABC and ESPRESSO are both 
logic synthesis tools. ABC can change the circuit format from benchmark to PLA. PLA is a 
cover of the circuit written as a PI table, and the tool ESPRESSO aims at simplifying the PI table 
and returning one reduced PI table. Then, we collect all candidate PIPs who’s HDs no greater 
than threshold d to at least one PI in FSC’s reduced PI table. Then we verify if there exists a PIP 
that results in different outputs of oracle and FSC. If we can find one verified PIP, then we use 
this PIP as the first input pattern into the SAT-based attack and grab the correct key from the 
attack. This key is also valid for other locked cones. 
 
We present the combinational locking attack results in Table 5. In the combinational locking 
attacks, several teams were able to recover the RLL key bits in their entirety. No team was able 
to recover the complete SFLL key bits. This competition helped us gain further confidence in 
our defense as it helped validate our theoretical findings and expectations. 
 

Table 5. Combinational Locking Attack Results 

Where the result is stated as ( – 
 

 
Team Approach Small (40+40) Medium (60+60) Large (80+80) Bonus (128+128) Attack 

Scenario 
RLL SFLL RLL SFLL RLL SFLL RLL SFLL 

CMU Key Sensitization 40/40 - 60/60 - 80/80 - Oracle 
TAMU Hamming Distance-based Attack 30/30 - 50/50 - 72/72 - Oracle 
UTD Automated Analysis + SAT 11/18 - 31/50 - 10/34 - Oracle 
IITG Sub-circuit SAT 17/17 - 29/29 - - - Oracle 

UCSD Redundancy-based 28/28 4/12 35/35 23/28 45/45 0/51 66/66 8/27 Oracle-less 
Northwestern Bit-flipping Attack 40/40 - 60/60 - 80/80 - Oracle 

Auburn Topology guided attack 15/32 - 19/50 - 36/73 - 75/108 - Oracle-less 
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9 CONCLUSION 

This report summarizes the progress on the ECLIPSE project. In addition to developing security 
metrics and proofs, we apply the proposed SFLL technique on DARPA CEP and demonstrate it 
on an FPGA platform. The report also highlights our efforts towards protecting multiple outputs 
of circuit, unlocking circuits using machine learning, and developing a logic tool that implements 
different variants of logic locking. The report also summarizes the latest benchmarking and red-
teaming efforts on our defense as part of NYU CSAW 2019 competition, which was the first 
logic locking contest. The key takeaway is that our proposed locking technique, SFLL-rem, 
withstands the test-of-time. 
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 

ACRONYM DESCRIPTION 
AES Advanced Encryption Standard 
AIG and-inverter graph 
ALU arithmetic/logic unit 
ASIC application-specific integrated circuit 
ATPG automatic test pattern generation 
Ce encrypted circuit 
CE checking engine 
CEP Common Evaluation Platform 
CNF conjunctive normal form 
CPU central processing unit 
CRYPTO cryptographic 
CSAW Cybersecurity Awareness Worldwide 
DARPA Defense Advanced Research Projects Agency 
DfT design for trust 
DNN deep neural network 
DRC design rule check 
DSP digital signal processing 
ECLIPSE Efficient Cross-Layered IP Protection SchemE 
ECO engineering change order 
ER error rate 
FALL functional analysis based logic locking 
FI fault impact 
FIR finite impulse response 
FPGA field-programmable gate array 
GA genetic algorithm 
GPS global positioning system 
HD hamming distance 
IC integrated circuit 
ILC individual logic cone 
IO input/output 
IP intellectual property 
IPC instruction per cycle 
IRR infinite impulse response 
LLC Logic Locking Contest 
LVS layout versus schematic 
MCNC Microelectronics Center of North Carolina 
NIST National Institute of Standards and Technology 
NYU New York University 
OF output fidelity 
PIP protected input patterns 
PnR place and route 
PPA power, performance, and area 
PPT probabilistic polynomial time 
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ACRONYM DESCRIPTION 
RAM random access memory 
RLL random logic locking 
RNG random number generator 
SAT satisfiability 
SFLL stripped-functionality logic locking 
SoC system on a chip 
SPR special purpose register 
SRAM static random access memory 
UART universal asynchronous receiver-transmitter 

 
 


