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Acquire Training Data
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Bootstrap the GNN (syntax)
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Train Using Simulation (semantics)
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Including Behavior in Design Space

Behavior is as critical as form in identifying “good” designs
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Topics

• Sail-Rock (UNITY to train AI)
• Generative design of valid geometry & learning the underlying physics 

(syntax & semantics)
• Spatial grammars & watercraft (simultaneous form & behavior)
• Dynamic soaring (RL discovers new trajectories)
• Multi-rotor control (transfer learning of RL)

• Physical prototyping throughout

8



3D Watercraft
Validate using 
UNITY for physics

Sail-Rock



First simulation-to-design and fabrication 
experiment
• Applied shape-morphing strategy to transform a primitive sphere 
• Evaluated watercraft in UNITY-based simulation
• 3D Printed best performing design
• Evaluate design in physical experiments
• Verified project goals

seed base object physics evaluationmorph object database

genetic evolution

experiment



Unity Game Engine : Strengths
Use Third Party Assets 
for Rapid Development

Reinforcement Learning 
for In-Game Agents

Unity physics capabilities
• Core physics engine

• Colliders
• Joints
• Material Properties (friction, 

drag)
• Particle Systems

• Many 3rd party assets from highly 
active user community

• Readily scriptable for new physics
• Provides custom development 

for additional physics-based 
capabilities ex: ObiRope : Cable Simulation

Support tether analysis
Unity ML Agent Framework

Supports quad copter analysis 

https://www.youtube.com/watch?v=--oTQCysVTs

https://assetstore.unity.com/

custom scripts to simulate 
aerodynamic and hydrodynamic forces



Evolving a Boat from a Sphere
• Multi-objective optimization to design a shape that can 

sail crosswind quickly
• Genetic evolution of “push/pull” on the “ball of clay” 

shows emergent sails and keels

Design Evolution



Prototyping the Simulation

Rapid Prototypes of Design

Rapid Physical Testing

goal-direction
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Fidelity of the Physics
Above the Water
• Air resistance from motion over mesh
• Wind loading is treated as momentum transfer applied orthogonal to 

the mesh “facing” the wind
Below the Water
• Buoyancy computes split-mesh triangular-prism volumes
• Viscous resistance computes mesh-level drag
• Pressure drag uses empirical quadratic relation
• Slamming forces uses the objects acceleration and swept water volume
Electro- & Magneto-statics
• Lorentz force where the body has a known charge

Adding new Physics is a simple process of writing a little C# code and 
enabling the computation into the physics update
• e.g., the EM took less than 2days to implement, test, and deploy



Impact

• Proved game engines are suitable for conceptual 
design
• Demonstrated multi-physics, and creating and adding 

new physics
• Inexpensive (free for academia!)
• Can spread across cores, in batch
• Incorporate reinforcement learning (used later)
• Generates valid results as confirmed by experiments

• Surprising design result validated by experiment!
• Efficacy of Sail-Rock was unexpected



Objective:
• Train a neural network to be 

an expert 3D modeler and be 
able to explore (and generate 
surprise!) in the design 
domain

• The neural network modeler 
takes both the form and the 
function into consideration in 
its design process

Generative Design using AI



http://www.engr.psu.edu/datalab/
17

BLUF: successfully trained Neural Networks to 
organize 3D Points into geometries of interest

Creates valid geometries 
that are manifold

Learns the relationship 
between form and function

Bridge classes of objects to 
create variety (sea/air/land)



Generative Design with Multiple Classes of 3D Objects
• Training a GAN on a variety of classes of 3D objects, the GAN can learn to 

generate a wide variety of designs and interpolate between them
• Use a Generative Adversarial Network to learn how to generate designs 

that are not incorrect

training data

discriminator

likelihood 
value

latent variable

generator

generated data

training data

discriminator

likelihood 
value

TRAINING

laatent variable

generator

generated datad d

EVALUATING



Examples of multi-class generated designs

aircraft:

watercraft:

ground vehicle:



AApproach: Generative Adversarial Networks (GANs) create arbitrary 
geometries that can be combined to form novel shapes



Can Mix Different Classes of Designs to Create New Designs

• Design transformation via linear combination of three latent variables
• Mixtures of air, land, & sea

transformation of design 
derived from 

variation of 
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Accomplishments & Impacts
• Single trained GAN can generate a 

wide range of geometries
• Geometries meshable, enabling analysis

• Can interpolate between disparate 
classes
• Air, land, and sea

• Can extrapolate beyond the convex 
hull of the design space
• Control direction
• Generate surprise = 0.4   0.4   0.2

= 0.6   0.2   0.2
= 0.2   0.6   0.2

= 0.4   0.2   0.4 = 0.2   0.4   0.4

= 0.2   0.2   0.6



AI to Learn Physics

23



AAccomplishment: demonstrated NN learning 
relationship between shape and physics (e.g., drag)



Fluid Flow

Fluid Flow

High Drag Orientation

Low Drag Orientation

Example Demonstrating Breakthrough: Learning 
Drag-reducing Orientations of 3D Geometries



Autoencoder

1D Feature Vector

1-D ResNet-12

Loss

Rotated Geometries

[ , , ]True Drag Coefficients 
(From Unity)

Predicted Drag Coefficients [ , , ]

Training stage: learning drag coefficient versus 
orientation from database of geometries



Autoencoder

1D Feature Vector

1-D ResNet-12

Rotated Geometries

Predicted Drag Coefficients 

[ , , ]

Testing stage: evaluating predictions on new 
geometries & orientations



Training set of 1000 Geometries

Evaluate at 25 spherically 
equidistant rotations

Classification Network Learning Curve

Epochs

Log
Mean 
Absolute 
Error

training loss

validation loss

Performance Results/Metrics



Predicted 
optimal 
orientation

Matches True Optimal Orientation

Performance Results/Metrics



EExample  Predictions

Predicted 
optimal 
orientation

Matches True Optimal Orientation



• Demonstrated AI internalizing the 
knowledge of a designer
• In previous effort, demonstrated AI 

creating valid shapes (syntax)
• Now demonstrated AI can arbitrarily 

attach physical phenomena to the 
shapes (semantics)

• Impact: can use AI for design, at 
vastly greater scales of application
• Millions of AI versus tens of designers

Accomplishments & Impacts



Grammar-Based Design
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Spatial Grammars & Sail Craft

Spatial Grammars  and RNN :  
Spatial grammars define 
assembly designs (as strings) 
and RNNs learn the language 
of good designs

Game Engines : Evaluate Designs 
with Reinforcement Learning

Additive Manufacturing : 3D 
Polymer prototypes

Fun Design Goal : Give the designer the ability to evolve and adapt designs rapidly in response to changing 
requirements and provide a thorough understanding of trade-offs early in the design process.



• Defining boat assemblies as strings to train a 
charRNN

• AI learns the language of design and assembly 
as
• Production Rules 
• Geometric Constraints 

• Using a context-free grammar to define the 
components and connections of a boat 
assembly

Generative Grammar for Boat Assembly

sail

floater/sinker/joiner

main
foil

slots

Example of Validated String

main { small none none } { { empty foil { rod joiner { empty foil foil empty 
empty } } empty foil } { empty foil empty foil empty } { { rod sinker { empty 
empty empty empty empty } } foil empty empty empty } } 

Rules in BNF format:



Grammar 2.0 : Specify Arbitrary #s Control Surfaces

ex. h1_5_1 { s4_4_sy+ s2_2 s4 } { { f { r lc3_4_4 { f-- e f e 
e } } f { f hc2 { e e e f_sx e } } f } { e e { r lc4_4 { f e e { r hc4 

{ e f f e e } } e } } { r hc3 { e e f f f } } e } { e f e e f } }

Spatial Grammar : a set of rules to 
that an algorithm can use to 
generate  example assemblies

• Assembly layout

• Manifold geometry shape of 
each component (database ids 
for geometry files)

• Density of components

• Component scaling

• Control surface behavior



Teaching the AI the language of feasible design (syntax) 
• Disallowance of collocation of components is a 

simple, but exemplar case
• Codifying this is nontrivial (= HARD)
• not a context free grammar

• Designing the AI architecture is dependent on 
data and hyperparameter tuning
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Framework to learn form and function
• Learn the feasible grammar (syntax)
• Learn the grammar of high-performing designs (semantics)

• Inner-Loop learns to control a design (RL)
• Outer-Loop learns the grammar (RNN)

• Optimize concurrently using AI inside and out

Tensor Flow Model

Evaluate Designs in 
Unity Game EngineSample 

new designs

Retrain char-RNN using Good Performing Designs, 
Modified Good Designs, and Random Design in 

Early Iterations 

Sample to 
generate training 
document

Initial training of 
char-RNN with 

random samples char-RNN

outer-loop

inner-loop

Tensor Flow Model

RL Behavior Analysis



Char-RNN Optimization Test Cases (no RL)

Problem and Optimization Best Design = maximum velocity of 1.51 m/s

Earth : 
Crosswind  : 

No actuators, 
No waves, 

wind speed = 
10 m/s 

h8- { n s2_3_4--
s1+ } { { e e e f- f+ 
} { e e e f++ e } { e 
e e f+ f+ } } 

Char-RNN 
generates a 
sailboat that 
captures wind 
energy by lifting 
the boat using 
two back sails and 
minimizing the 
size of the hull to 
reduce drag 

Goal : Show that the RNN optimizes the design by retraining itself on good performing designs from previous generations

Goal : Maximize crosswind velocity

Best Design

Best scores

Mean scores

Number of 
floating designs

Learns the language of feasible design



h9_8_2--- { s1_sy-- s2+++ 
s2+++++ } { { f- f-- f- f- e } { f++ f----
f+++++ e { r lc1_2_4+ { e e e e e } } 
} { f- f+ f+ e e } }

Form naturally turn sailboat : score = 1829.9

without 
actuator 

policy

reward

Travel path

front sail actuator 
holds downwind 

direction

without 
actuator 

policy

with 
actuators

Behavior policy

h6_0_9 { s3_sx s2 s1_4_4---- } { { f_sx+ e f_sx---- e f- } { e e { 
f_sy lc1 { f e f f e } } f f- } { e e e e f- } }

reward

Travel path

Actuators turn sailboat : score = 839.2

Behavior policy

foils
sail

x location : 
change reward 

direction

x location : 
change 
reward 

direction

wind

wind

z

x

x

z

an
gl

e

time

90

-90

an
gl

e

time

90

0

By learning both form and behavior, the AI develops a naturally turning 
boat that is augmented by the control policy



Optimization with Actuated Surfaces using 
Reinforcement Learning

Shows the progression of best performing designs by generation
• Generations 1-4 : good 

crosswind behavior 
without a turn to travel 
downwind. 

• Generations 5-6 : turn 
based on its form with 
no actuators. 

• Generations 7-9 : turns 
with middle sail rotating 
horizontally about its x-
axis. 

• Generation 10 : uses 
one actuator sail, which 
rotates around its 
vertical axis, to 
straighten the turn



3D Polymer Prints : Lulzbot Mini 2.0



Verify Designs Using Water Testing

wind

Simulated curve path



Verify Design Using Different Environmental Conditions

No Waves : 
Good 
Crosswind 
Performance

Waves : 
Capsizes

Test designs in multiple environments within a game engine for robust design 

Char-RNN 
Optimizes 
Design for 
Crosswind Travel 
with Waves

wind



3D Printed Prototype with Actuated Sail

• Printed using polymer-based 
3D printer (PLA)
• Hull printed in 4 sections, 

based on build plate 
dimensional constraints

• Sails are 3D printed as one 
piece

• Raspberry Pi 3 Model B
• Python code controls angle 

positions for the servo motor 
• Servo Motor

• 180 degree turn capability
• Battery

• Portable battery for the 
Raspberry Pi with a lifetime of 
4 to 8 hours

• Waterproofed design by 
applying clear tape over 
hardware

Raspberry Pi : 
Controls the actuated 

sail using RL policy 
calculated with the 

Unity ML agent library

Actuated Sail

Servo Motor

Battery



3D Printed Prototype : Test in Pool

Used Python code on the Raspberry Pi to fix crosswind and downwind sail actuated 
positions, alternating 5 seconds at each orientation, based on control policy calculated in 
the Unity Game Engine 



Behavior: Dynamic Soaring
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Aircraft Example : Maximize Energy

Reinforcement 
Learning : Object 
learns behavior 
by observing a 
state (or 
environmental 
condition) and 
applies an action 
to maximize a 
reward

Example

Object : aircraft

State : velocity, height, 
orientation

Action : roll and/or 
pitch (min and max 
rates)

Reward : maximize 
kinetic and/or potential 
energy



Aircraft Example : Travel Into the Wind

Changed the reward function to be a 
mix of excess energy and forward 
movement into the wind

AI generated a flight profile that was 
previously unknown (SURPRISE!)

Off-line analysis verified the 
feasibility of the discovered 
trajectory

Demonstrates ability of AI to learn 
and generalize beyond known 
solutions 



Behavior: Multi-rotors & transfer 
learning

49



IImpact: demonstrated trained Neural Network controller 
generalizing to multiple configurations (transfer learning)

Assemble Design
Tune/optimize control 

algorithm for configuration

Modify Design Based On 
Performance

Transfer knowledge from 
this control algorithm to 

the next one

50



States:
• Waypoint 

Position
• Drone’s 

Position
• Velocity
• Angular 

Velocity
• Acceleration

Actions:
• Vector of 

thrusts for 
each rotor

Environment

Hovering Reward

New State
51

Evidence of Claims: RL Training: Hovering with Quadcopter

Waypoint



Quadcopter Controller Easier Than Tricopter
Trained RL Quadcopter Controller From Scratch 

for 240k training steps
Trained RL Tricopter Controller From Scratch for 

690k training steps



RL Transfer Learning Achieves Control of 
Tricopter

Initialized Tricopter Policy with a successful quadcopter policy 
(transfer learning), then trained for additional  340k steps



Manual Control

OOngoing Experiments: Transfer of trained AI Controller to 
real-world flight controller

Hypothesize that the AI ability to 
generalize controllers will lead to a 
robust control policy

Series of experiments to explore
• Robustness of trained controller
• Robustness with modeling error
• Robustness to failure



Summary: some key lessons learned so far*
• AI with video game engines can execute conceptual design rapidly, cheaply, and effectively
• Crafting the reward function (the “carrot”) is key, and can and will lead to surprises
• Continued tension between max design freedom and moving off of “top dead center”

• Total freedom: points clouds of geometry
• Countably infinite: spatial grammars as tinkertoy systems

• When form and behavior are simultaneously optimized, you will see a sharing of reward achievement
• Training history matters: curriculum learning (easy then hard) can accelerate (or even make feasible) the 

training process
• AI demonstrates the ability to learn valid designs (syntax) that then perform well (semantics) in multi-physics 

problems for both point clouds and spatial grammars
• AI can interpolate within and extrapolate beyond the convex hull of the design space - generate surprise
• Critical part of the effort was in “reducing to practice” the concepts through physical prototyping, 

• Early and often, across domains
• Accept a constrained design space that is implementable
• Mesh the analyses with the testability

• Energy harvesting provides challenging problems: multi-physics, non-intuitive solution space

55* NCE to 30 Sept 2019



Things to Do
• Develop better understanding and methods to accommodate reward functions

• Results of AI highly sensitive to reward functions – requires user expertise to achieve best results
• Desire less human shaping of reward functions
• moving more towards a biologically-inspired approach of rewards and penalties (e.g., digital version of human endorphins)

• Life-long learning: extend the curriculum training onto the physical platform
• Off-line learning: post-mission assessment and update
• On-line learning: failure mode response and recovery

• Using RNNs to address the Spatial Grammar Maintenance Problem
• Feasible grammar more easily expressed as intersection of rules and constraints, which RNN can effectively learn

• Recommend choosing problems that are complicated enough to generalize from, but simple enough to build, and reduce to 
practice
• The plan will not survive first contact with reality
• Be prepared to be surprised throughout the process and respond

• Explore interaction between AIs, e.g., the RL for behavior and GAN for form
• Currently interacting in the inner/outer loop process
• Poorly understood

• Networks that can introspect on their own structure and their neighbor’s
• Network structure locks in potential
• Could (for example) have the RNN or GAN tune the RL in the inner/outer loop optimization

56
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