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Abstract. This work describes a framework for control of attention and for pattern categorization using a robot
platform consisting of an articulated stereo-head with four degrees of freedom (pan, tilt, left verge, and right verge).
As a practical result of this work, the system can select a region of interest, perform attention shifts involving
saccadic movements, perform efficient feature extraction and recognition, incrementally construct a world map,
and keep the map consistent with a current perception of the world. Another important result for the attentional
mechanism is that the system is capable of analyzing all regions of its world, selected according to a salience map.
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1 Introduction

This work presents a robotic system that performs tasks in-
volving attention and pattern categorization. We use a real-
time stereo vision platform to provide abstracted informa-
tion about the environment. Based on this information, the
system can select actions resulting in a behaviorally active
system controlled by its perceptual state. Our goal is to
develop a robotic system able to foveate (verge) the eyes
on a region of interest, to maintain attention on the region
as needed, and to shift attention when the current region is
no longer of interest. Possible tasks include object recog-
nition and identification for inspection, spatial orientation,
or navigation. An environmental map containing pattern
representation, position, and orientation information is in-
crementally constructed and dynamically updated. Using
this map, the robot can perform more specific tasks. More-
over, by adopting an active behavioral strategy we provide
dynamic interaction with changing environments.

This research is not intended to suggest or describe bi-
ological models or to explain biological systems. However,
most parts of the computational architecture are inspired
by biological systems, with some modification. Therefore,
some biological terminology is used to refer to parts of the
robot hardware.

Briefly, a bottom-up salience map directs attention and
selects a region of interest. Saccadic movements are com-
puted and executed for the eyes (possibly including pan
and/or tilt movements) to foveate on the selected region.
Feature extraction is then performed, producing changes in
the perceptual state. An associative memory maps the fea-
tures into a pattern address, allowing the system to recog-
nize and identify an existing representation or to discover
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new categories (unknown objects). An efficient mapping
algorithm completes the system architecture.

2 Related work

Attention, feature mapping, and pattern categorization has
been widely studied in the last two decades. Van der Laar
et al. [12] provides a good approach to a computational
model explaining the neuro-physiology of attention. An
attentional neural network gathers information from fea-
ture maps to produce a salience map. The region of in-
terest is determined by taking the most salient position in
the salience map. Itti et al. [4] propose a model for at-
tention that uses linear filters tuned for various orientations
and spatial periods to compute a phase-independent linear
response to visual stimuli. On joining attention and identi-
fication topics, Rybak et al. [10], also using a simple model
with monocular stationary images, treat perception and cog-
nition as behavioral processes. Kosslyn [6] suggests a good
descriptive model to explain how identification and recog-
nition happen. The model suggests that features extracted
from visual images are combined with mental image com-
pletion. Rao and Ballard [8] presents a model using Gaus-
sian operators for feature extraction. The operators are sug-
gested to be similar to biological models.

Except for [6], which is a descriptive model and not a
working system, all the above approaches fail in at least one
of the following aspects: (i) it is not provided a reasonably
complete model for cognition, including at least attention
and categorization; (ii) it is not considered a reasonable set
of features for attention and/or categorization; (iii) it is con-
sidered only stationary image frames, not including tempo-
ral aspects like motion or functional and behavioral aspects,
nor does the approach provide real-time feedback to envi-
ronmental stimuli.

For attention, we use features from an image filtered



with Gaussian partial derivatives combined with motion and
stereo to generate a salience map and determine the next re-
gion of interest. We also convert saccadic vergence move-
ments to pan and tilt motion as necessary to foveate on an
attention window. For pattern categorization, appearance-
based features derived using the Gaussian operators plus
stereo and motion patterns are used as input to an asso-
ciative memory which remembers addresses into a pattern
storage memory. The main difference between our work
and the above is real time application in an active vision
framework. Moreover, we have implemented a more com-
plete cognitive model involving the control of attention and
pattern categorization.

3 Stereo Head and Image Processing Devices

Our robot, shown in Figure 1, consists of two video cameras
mounted on a TRC Bisight head, providing four mechanical
degrees of freedom: pan, tilt, and left and right vergence.
Motion is controlled via a PMAC/Delta TAU interface.

Figure 1: Stereo Head platform with 4 mechanical degrees
of freedom.

Images from each camera are input to a Datacube pipe-
lined array (image) processor (IP). Images are stored as in-
teger arrays in any of six surfaces (memories) for each of
the two stereo boards. Pipes take data from one or more
surfaces, perform image processing operations, and store
the result in another surface. Up to four pipes can run con-
currently, and pipes can be chained together with minimal
host computer intervention. The Datacube is used to reduce
and abstract image data, which is then used by the host com-
puter to decide which high-level actions to perform.

4 Controllers and the Architecture

We have developed a control architecture for a multi-modal
sensory system described in [1, 2]. Based on that architec-
ture, a ”Controller Oriented” approach is used for imple-
mentation of the active vision system. A controller operates
in a loop, transforming input into output to satisfy a control
strategy or policy. In general, input is information regarding
the current perceptual state. States are transformed using at-
tentional control. The output is an update to the robot pose

or the perceptual state. Once a controller finds an equilib-
rium condition satisfying the control strategy it asserts one
or more boolean variables which form a control state that
is shared among the working set of controllers. Depending
on the values of this state vector and on a task dependent
policy, another subset of controllers will run, changing the
boolean state vector again. In this way, a policy or behav-
ioral program is established by a set of controllers and a
control-based state [3].In a complex Markovian Decision
Process (MDP) [7], a policy for a given task consists of ac-
tivation of one or more controllers, subject to constraints on
allowable combinations, to reach the goal. A finite state su-
pervisor can be derived using reinforcement learning [11] or
some other approach, to solve such problems. In this work,
we adopt a hand-coded solution, a simple strategy, resulting
in the behavioral program shown in Figure 2.
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Figure 2: Behavioral program developed for attention and
categorization. Arrows indicate transitions between states
where a controller has not yet reached its convergence cri-
teria. Circles represents reference states due to convergence
events in the activated controllers.

5 A Multi-log-retina Representation (Visual Buffer)

A multi-scale representation is used to encode image data.
Logarithmic data reduction permits the host computer to
perform high-level processing in real time. Multiple images
support feature extraction for identification and attentional
behaviors. A biologically inspired approach for generation
of multi-scale images could use Gaussian filters with dif-
ferent scales ( � ) to compute derivatives directly from the
original images, and could sample the resulting images at
different resolutions within the area of interest. Alterna-
tively, a filter with a constant � could be used in a cascade
process to compute the next level from the previous one as
in [14]. We argue that the approach adopted in this work,
described below, achieves the same result as the above ap-
proaches with the same computational complexity. In the
experiments realized in this work, the Datacube IP device
generates 64 images (32 per eye) at 15 frames per second,
achieving reasonable performance for the real-time process-
ing necessary in an active vision system.

Figure 3 shows the multi-log-retina representation of



a sphere. Each of the eight image columns has four lev-
els of resolution differing by a factor

�
. Six columns are

modified Gaussian partial derivatives (order 0, 1, and 2 in
two directions each) and the remaining two columns are the
first partial derivatives of the frame differences in two di-
rections, representing motion. This transformation is per-
formed in two phases: multi-scale image generation and
derivative computation.

Figure 3: Multi-logarithm feature vector.

5.1 Multi-scale Image Generation

The original ��� �����	��

pixel stereo images are used directly

as input for multi-scale intensity image generation, and the
difference between two consecutive image frames is com-
puted for the motion images. Successive resolution levels
for both the intensity and motion images are computed by
applying a mean filter in the neighborhood of each pixel
and sampling with a level dependent factor. The size of the
neighborhood and the affected region of the input image
are also level dependent. For the coarsest resolution level,
an

���
�
pixel filter is applied to the whole image and sam-

pled at 8 pixel intervals. For the finest resolution level, the
central � ��� � 
 pixel region of the image is simply taken.
The result is multi-scale intensity and difference images for
each eye.

5.2 Computing the Derivatives

For the Gaussian images, the multi-scale intensity images
generated above are convoluted with Gaussian derivative
kernels, given by Equations 1, 2, and 3, in two directions
each, resulting in Equation 4. Four-pixel sampling is also
performed, reducing the images to ��� � ��� pixels. The mo-
tion images are computed using Equation 5. The same first
Gaussian derivative is applied to the motion images to help
reduce noise. An ideal approach could use the derivatives
of difference images to actually compute the motion field
for the whole images, using relaxation or other iterative ap-
proaches. However, the motion field computation is unnec-
essary for attentional purposes, and expensive for identifi-
cation purposes.
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5.3 Computing Stereo Disparity

Stereo disparity is computed in the host computer after the
multi-scale Gaussian image generation. One could use spa-
tial frequency information to compute the disparity directly
from the input images in the Datacube device. Such an ap-
proach using a phase shift model is presented in [14] on
a simulation platform. However, we use a simple cascade
approach (see Figure 4) to compute disparity by maximiz-
ing correlation measures using the second order Gaussian
derivative images. The cascade process substantially re-
duces the computations necessary to find the best match for
a point. Since the images are a multi-scale representation,
the results from one level are used to predict the disparity on
the next level. For the initial level, the range of disparity is
limited by vergence movement constraints (see section 6.3),
and by the relative symmetry of the images with respect to
the cyclopean axis (the line defined by the central point be-
tween the eyes and the horopter, point at which the eye axes
cross). Also, disparity is computed only for the
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/
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Figure 4: Stereo computation process in cascade. Each
level predicts disparities for the next level.

6 Attentional Behavior Control

The desired attentional behavior for our system is to fo-
cus attention on the most salient region in its environment.
This involves computing a salience map for each eye, tak-
ing the winning region, and generating saccadic eye (and
possibly pan and/or tilt) movements to foveate on that re-
gion. Salience maps are computed by using perceptual cues
and stimuli in the abstracted data from the Datacube, and
by interrogating the world map currently being constructed.
Note that by considering only perceptual cues in the field
of view, there is no guarantee that the system will attend
to all locations in the world. Therefore, previously visited
regions are given a low potential in an internal map to pre-
vent an immediate revisitation. This map also encodes other
information, allowing a fast check to detect changes in the
environment.

6.1 Defining a Target (Pre-attention)

Salience maps are generated in a pre-attentional phase. Like
the multi-log-retina images, salience maps have a cascade



structure. Starting at the coarse level, an activation value is
calculated for each position based on a normalized weight
function of the perceptual cues and the normalized world
map activation. The weight function is task dependent and
can be learned using neural networks [12] or reinforcement
learning [2]. The world map activation for a region is set to
zero when a region is visited, and is increased each time the
pre-attentional procedure runs. This technique makes the
system change its attention window from region to region,
covering the whole world but eventually returning to previ-
ously visited regions to detect possible changes. The result
is an inspection or surveillance behavior, in which the robot
maintains a representation of the world consistent with re-
ality. Note that a region is never visited twice in a row, but
(depending on the function used to update the world map
activation values) a region may be revisited before all other
regions are visited.
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The attentional features are stereo disparity (
� ;�� ), and

the magnitude of motion and Gaussian derivatives given
by Equations 6 (motion), 7 (intensity), 8 (edge features),
and 9 (Laplacian), respectively. After attentional features
are computed, Equation 10 computes the salience map by
a simple summation (the weights
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,

��� ��� �
,
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, and� � � ! � were previously applied in the magnitude computa-

tions). The
� ;�� factor represents proximity (the distance

between the position in the salience map and the fovea) and
gives regions close to the fovea a higher activation.

6.2 Shifting Attention (Coarse Saccade Generation)

Shifting the attention involves taking the most active region
over all levels in the salience maps and computing coarse
saccade movements to foveate each eye on the target. Each
eye has a salience map; the dominant eye is the eye whose
salience map contains the most active region. Features near
the target in the dominant eye are used to build a model
to aid in later fine saccadic corrections. For the dominant
eye, the target position is determined by the displacement
from the current position to the winning one. The target
for the non-dominant eye is computed by adding the stereo
disparity to the dominant eye target position. The displace-
ments for the four degrees of freedom of the stereo head are
computed from the eye displacements according to several
constraints. If the cyclopean angle exceeds 15 degrees, a
pan movement is initiated to reduce the angle. If the eye

axes diverge, or if they converge at more than 45 degrees,
a correction is applied to the non-dominant eye. Finally,
tilt motion is computed directly from the dominant eye; the
stereo head geometry ensures both eyes have the same tilt.

6.3 Adjusting Attention (Fine Saccade and Vergence)

After a coarse saccade, fine saccades are performed at in-
creasing levels of resolution to maximize the correlation be-
tween the target model and the dominant eye image center.
This process converges when the resolution level which de-
termined the attention shift reaches a maximum correlation
at the image center. Simultaneously, the vergence algorithm
calculates displacements for the non-dominant eye to max-
imize the correlation at the center of the two eye images. A
threshold is used to avoid situations where there is no match
in the field of view due to occlusions.

7 Identification

Once both image centers (one in the case of occlusions) are
focused on the region of interest, object categorization takes
place. Identification is done using an associative memory
implemented by a back-propagation neural network (BP)
(see Figure 5). The associative memory maps features ab-
stracted by the Datacube to an address in a long term mem-
ory which stores various information. Note that information
in the long term memory can be retrieved using features
from any resolution level. In general, the resolution level
depends on the task, available time, and image characteris-
tics, and is determined by the attentional mechanism.

  One
Output
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 Object

   112
  Input
Features

Figure 5: Backpropagation neural network used as associa-
tive memory. The output layer increases dynamically.

The BP network has one input node for each abstracted
feature. The number of nodes in the output layer changes
dynamically; a new node is created for each new represen-
tation. A weighted function of the minimum and maximum
error during training is used as a threshold to decide if a
representation is new. The number of hidden nodes is de-
termined empirically: 1.5 times the number of output nodes
gives good results. Equation 11 gives the best match. Equa-
tion 12 is used for the training.
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Note that other classifiers could be used, such as those

in [5, 13]. We argue that the BP network approach used
here gives good results on identification and also returns the
activation for a given index in the output layer (a normalized
value between 0 and 1). The activation value is used to
determine if a representation is new, and can also be used
in top-down attentional tasks to keep attention in a given
region.

7.1 Feature Extraction

Experiments using the multi-log-retina representation di-
rectly as features for associative memory lookup give good
results, but are computationally expensive. In those, eight
feature vectors (
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composed of �-� � ��� pixels each are used for each eye, giv-
ing a total of 3840 features. Therefore, abstraction is now
used to further reduce the input data. Several approaches
provide good abstraction (for example, see [9]). Our current
approach uses only four samples from the �-� � ��� images.
Both directions are used for Gaussian features, and the pre-
viously computed magnitude is used for motion. Instead of
feature image values, locally normalized mean and variance
in the vicinity of the Gaussian features are used (Equations
13 and 14). For a given level, this gives a total of 112 input
features
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for each eye. Also, as a result of the averaging and vari-
ance, feature matching is more tolerant of scaling, rotation,
and shift. Experiments indicate rotations up to 30 degrees
are acceptable.%
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7.2 Mapping Objects and Updating Memory

Once a representation is classified as new or identified, the
world map is updated. Attentional features sufficient to de-
tect changes are stored and the world map activation is set
to zero to allow a shift of attention to another region. If the
representation is new, supervised learning is invoked to in-
sert the new feature set into long term memory, create new
nodes in the hidden and output layers, and retrain the asso-
ciative memory network.
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Figure 6: Activations for objects in the BP network. Fig-
ure shows only trials with lowest and highest activations for
each winner object indicated on the upper right side.

8 Experiments and Results

Experiments involving attention, identification, and com-
bined tasks were performed. Basically, many instances of
objects of various types are placed on a table. On identi-
fication behavior, the robot learns the characteristics of all
objects, inserts a representation for each in the associative
memory, and updates the internal maps. Figure 6 shows
simultaneous activations experimented in the BP network,
using several instances of four types of objects placed on
the table in controled poses. For each instance, upper line
is highest activation (object on learned pose). The next line
is lowest activation, yet allowing identification (poses were
degraded with rotations up to 30 degrees when viewed from
the stereo head).

Figure 7: Pairs of images from finest resolution level of
retina showing only new types of objects detected in the
environment. Left to right: a red cylinder, a white golf ball,
a natural wood cube, a red triangular prism, a blue cube,
and a light green (dirty) tennis ball.

In attentional behavior, three experiments were tested.
In the first experiment, we indicate the objects by touching
them. The robot uses this motion cue followed by intensity
cues to foveate on the objects. In the second experiment,
there is no motion cue, so the robot relies solely on intensity
cues. The attentional mechanism works well, foveating on
each object in both the above tasks. In the third experiment,
after all objects are mapped, we either move or remove an
object. The robot updates the world map for the changed



Phase or process Min(sec) Max(sec)

%
(sec)

Computing retina 0.145 0.189 0.166
Transfer to host 0.017 0.059 0.020
Total acquiring 0.162 0.255 0.186
Pre-attention 0.139 0.205 0.149
Salience map 0.067 0.134 0.075
Total attention 0.324 0.395 0.334
Total saccade 0.466 0.903 0.485
Features for match 0.135 0.158 0.150
Memory match 0.012 0.028 0.019
Total matching 0.323 0.353 0.333

Table 1: Processing time required in each phase.

regions using motion and intensity cues for movements in
the field of view or by inspection behavior after all regions
have been visited (see subsection 6.1). In all three exper-
iments, the robot visits and maps all objects, discovering
new representations and identifying existing ones. Figure 7
shows both cameras verged on the different types of objects
detected in one of the experiments.

During some experiments, we also collected system
performance data. Table 1 shows the time required for each
of the processes involved in the inspection task. The first
column identifies the process, and the remaining columns
show the minimum, maximum, and average times required,
sampled over several hundred control cycles. Host com-
puter computation times shown are for a 40 MHz Sun Sparc
10; that host has since been replaced with a 300 MHz Sun
Ultra Sparc board that shares the Datacube bus for improved
data transfer rates. Saccade speed can also be improved
by adjusting PD controller gains in the stereo head PMAC,
making saccade as fast as a human being.

9 Conclusion, Discussion and Future Work

Although this work uses only visual information, our sys-
tem is more generally applicable, and could easily incor-
porate haptic, auditory, or other sensory maps to provide a
more discriminative feature set. We have developed the ba-
sic architecture integrating an attentional mechanism and a
neural network classifier. A “controller oriented” approach
to resource allocation would allow other process to be inte-
grated into this architecture. One might ask why attention
and identification are so important. Object categorization is
necessary in almost all tasks that one can imagine; “what”
is an important question in many tasks. The ability to fo-
cus attention is the basis for cognition. The two tasks are
interrelated, and a behaviorally active system needs both to
perform other tasks.

The simple approach used for directing attention can
be improved with a weight function that varies according to
the task. The use of reinforcement learning [11] can play an
important role in the weight function. Given a set of tasks
to be performed, the system can be rewarded for detection

and identification of new objects important to the task. The
result would be a more versatile function for directing at-
tention, perhaps closer to a biological model.
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Sweden. Dissertation No 379, ISBN 91–7871–530–X.


