

 ARL-TR-9129 ● DEC 2020

Hands-on Cybersecurity Studies: Uncovering
and Decoding Malware Communications—
Malware Analysis with Ghidra

by Jaime C Acosta and Daniel E Krych

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-9129 ● DEC 2020

Hands-on Cybersecurity Studies: Uncovering
and Decoding Malware Communications—
Malware Analysis with Ghidra

Jaime C Acosta and Daniel E Krych
Computational and Information Sciences Directorate,
DEVCOM Army Research Laboratory

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

December 2020
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

May 2019–March 2020
4. TITLE AND SUBTITLE

Hands-on Cybersecurity Studies: Uncovering and Decoding Malware
Communications—Malware Analysis with Ghidra

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Jaime C Acosta and Daniel E Krych
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

DEVCOM Army Research Laboratory
ATTN: FCDD-RLC-ND
Adelphi, MD 20783-1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-9129

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES
ORCID ID: Jaime C Acosta, 0000-0003-2555-9989
14. ABSTRACT

This report presents the second of three hands-on exercises on basic software reverse engineering with the ultimate objective
of learning the way a particular malware (malicious software) is communicating across a network, and developing software to
detect and reveal these communications in plaintext, in vivo. Remote access trojans (RATs) are a type of malware that persist
on the infected machine after compromise and provide the malicious actor in control of the malware with remote access to the
infected machine via established command-and-control channels. As with all malware, RATs are typically spread through
phishing emails or websites where the software is downloaded without the user knowing; it can also spread by taking
advantage of vulnerabilities in software running on the victim’s devices. This report details the second of three software
reverse-engineering exercises, which can be completed cumulatively or individually as each accomplishes a specific task and
builds off the previous exercise. The previous exercise identified and extracted malware using the open-source software tools
Wireshark and Volatility. Effects and communications of RATs are demonstrated, and participants are guided through a series
of steps focused on analyzing this extracted malware, an infection file, using the National Security Agency’s Ghidra binary
analysis software.
15. SUBJECT TERMS

Ghidra, binary analysis, decode, software reverse engineering, trojan, remote access trojan, RAT, malware, command-and-
control, C2, hands-on cybersecurity, Cybersecurity Rapid Innovation Group, CyberRIG

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

22

19a. NAME OF RESPONSIBLE PERSON

Jaime C Acosta
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(575) 993-2375
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

1. Introduction 1

2. Setup and Configuration 1

3. Learning Objectives 2

4. Methodology 3

5. Exercise 4

5.1 Mission Briefing 4

5.2 Gear Up: Reverse Engineer Malware Communications 5

5.3 Speak to the Ancients 11

6. Conclusion 13

7. References 14

List of Symbols, Abbreviations, and Acronyms 15

Distribution List 16

iv

List of Figures

Fig. 1 Reverse-engineering exercise network scenario 4

Fig. 2 Project window ... 6

Fig. 3 Create Project and Name Project windows ... 6

Fig. 4 Import windows .. 7

Fig. 5 Analysis Options window ... 7

Fig. 6 Code Browser window .. 8

Fig. 7 Search Memory window ... 9

Fig. 8 Code view for goog1e.com ... 9

Fig. 9 Cross-references window .. 10

Fig. 10 Decompiler window .. 11

1

1. Introduction

This report presents the second of three hands-on exercises on basic software
reverse engineering with the ultimate objective of learning the way that a particular
malware (malicious software) is communicating across a network and developing
software to detect and reveal these communications in plaintext, in vivo.

Remote access trojans (RATs) are a type of malware that persist on the infected
machine (“Bot”) after compromise and provide the malicious actor in control of the
malware with remote access to the infected machine via established command-and-
control (C2) channels. As with all malware, RATs are typically spread through
phishing emails or websites where the software is downloaded without the user
knowing; it can also spread by taking advantage of vulnerabilities in software
running on the victim’s devices. This report details the second of three software
reverse-engineering exercises, which can be completed cumulatively or
individually as each accomplishes a specific task and builds off the previous
exercise. These exercises and their reports demonstrate the effects and
communications of RATs and guide participants through a series of steps to
uncover, analyze, and develop software to detect the malware.1,2

In the first exercise, Wireshark, a network protocol analyzer, is used to analyze the
malware traffic between the C2 server and the infected machine (Bot), then
Volatility, a memory forensics tool, is used to analyze an image of the infected hard
drive (memory dump) and find and extract the malicious program (binary).3,4 In
this second exercise, Ghidra, the National Security Agency’s (NSA) open-source
software reverse-engineering framework, is used to reverse engineer the
communications between the C2 server and the Bot by analyzing the malicious
binary.5 In the third exercise, the US Army Combat Capabilities Development
Command (DEVCOM) Army Research Laboratory’s (ARL’s) open-source
network forensic analysis framework, Dshell, is used to develop a “Dshell plugin”
or “Dshell decoder” to decode the RAT malware communications, which will
enable detection and support mitigation.6

2. Setup and Configuration

The reverse-engineering hands-on exercises consist of three virtual machines
(VMs): one is used as the C2 server, one is used as the Bot, and one is used as the
Analysis VM, which is placed in between the C2 and Bot machines with a
promiscuous port, allowing it to see all traffic between the C2 and Bot machines.
This setup is seen in Section 5. Participants use the Analysis VM throughout these
exercises to analyze malware traffic between the machines, extract the malware

2

from the hard disk and analyze the memory dump, reverse engineer the
communications by analyzing the malware binary and, finally, develop software to
detect and reveal these communications in plaintext.

The setup configuration consists of the following software elements:

• VirtualBox7 (Version 6.0)

• Two Windows 7 Home Basic 32-bit VMs8

• One Ubuntu 18.04 LTS Linux 64-bit VM9

• Wireshark3 (Version 3.0)

• Volatility4 (Version 2.1)

• Ghidra5 (Version 9.1.2)

• Dshell6 (Python 2)

• ArchDeus (a set of scripts that mimic communications notional to RATs)

The Analysis VM was set up as an Ubuntu Linux machine with Wireshark,
Volatility, Ghidra, and Dshell installed. The C2 machine was set up with scripts to
communicate commands to the Bot machine. A promiscuous port was set up to
allow the Analysis VM to view all of the traffic between the C2 and Bot machines.

The entire exercise runs on the DEVCOM Army Research Laboratory South
Cybersecurity Rapid Innovation Group (CyberRIG) Collaborative Innovation
Testbed, which provides an isolated environment, ensuring that all the
environmental artifacts are segregated from any real systems. Participants access
the Analysis VM via a web-based interface to allow any system with a web browser
to be used, and to isolate the exercise and its contents from the participants’
machines.

3. Learning Objectives

This exercise teaches participants the following:

• Participants gain a better understating of how RATs work, which entails
malicious actors using C2 channels to remotely control infected machines.
The effects of the malware on the sandbox environment should emphasize
the importance of securing computer systems and detecting and preventing
malware.

• Participants gain experience in software reverse-engineering basics,
including the ability to use a disassembler to convert binary code into

3

human-readable instructions; specifically, in this case, the Intel x86
instruction set architecture. While there is less emphasis on the assembly in
this exercise, there are many steps in the exercise that provide additional
information for more advanced participants, including the reasoning behind
the x86 stack and how it works.

• Participants learn about the Microsoft Portable Executable format, and how
executables and dynamic-link libraries are wrapped in this file format.

• Participants learn how to use Ghidra and several of its features, including its
decompiler, automated binary analysis, textual and graphical view modes,
and how to find and cross-reference strings in binaries. An understanding of
these capabilities and their usage provides the knowledge needed to
decompose and then reconstruct simple communication schemes used by
malware samples.

4. Methodology

In creating these software reverse-engineering exercises, we started with the desire
to provide a hands-on learning approach to the development of a Dshell malware
decoder. By leveraging multiple analysis tools and techniques to analyze the
malware and its communications, we provide a way for participants to learn and
practice forensic techniques and gain enough knowledge about the malicious binary
and its actions to understand its inner workings and develop a uniquely crafted
Dshell decoder, which enables detection and supports mitigation.

While developing these exercises, we intended for them to be educational for
participants with varying levels of experience in network security, forensics, and
programming. We chose to create scripts that mimic C2 communications notional
to RATs and leverage a simple rotational cipher to encrypt the data, which provide
an approachable, but still educational, malware binary to uncover, analyze, and
decode. Novices will learn a breadth of knowledge and be able to step through the
exercise instructions, understand the overall scenario, and develop the basic Dshell
decoder. Experts will move more quickly through the exercises, but still learn new
tools and analysis techniques, and can aim for going above and beyond in analysis,
forensics, practicing using these tools, and in developing an efficient and effective
Dshell decoder. We purposely used simple encryption and code so all participants
can follow along, but more versed participants will notice the applicability of these
same techniques for analyzing and decoding highly complex, encrypted, and
obfuscated malware. This exercise could be modified to use a more complex
encryption method or malware to increase its difficulty and provide more advanced
educational material.

4

In creating this exercise, we began by creating a VM installed with the Ubuntu
18.04 LTS Linux 64-bit operating system. Subsequently, we installed Java,
specifically OpenJDK, using the standard Ubuntu apt repositories using the
following command:

sudo apt-get install default-jdk

Afterward, we installed the NSA’s Ghidra software reverse-engineering tool and
its dependencies using the binary installation package provided on their Ghidra
website.5 Lastly, we created a shortcut script in the user’s home directory called
ghidraRun that would instantiate the software.

5. Exercise

5.1 Mission Briefing

The briefing for the software reverse-engineering exercise is as follows:

You are a member of the special task force Weltall-42. You have been charged with
uncovering a new and deadly RAT known as ArchDeus. Your team was able to 1)
recover an infected hard drive with the infection and 2) place yourselves between a
malware “command and control” (C2) and a “Bot” (or victim machine) as seen in
Fig. 1.

Fig. 1 Reverse-engineering exercise network scenario

38.127.177.107 38.127.171.107

5

The overall software reverse-engineering exercise series is separated into three
main exercises, which build off each other to determine key information but can
also be stand-alone exercises. This report covers the second exercise.

1) a. Analyze malware traffic between the C2 server and the Bot using a tool
called Wireshark.

b. Extract malware from a hard disk by analyzing the hard drive and pulling
out the infected process using a tool called Volatility.

2) Reverse engineer the communications between the C2 server and Bot by
analyzing the malware with a tool called Ghidra.

3) Develop a decoder for the malware traffic (Detection and Decoding
Mechanism) using a tool called Dshell.

This exercise requires about 1.5–2 h to complete.

5.2 Gear Up: Reverse Engineer Malware Communications

You must now reverse engineer the binary you found to learn the encoding used in
the communication.

1) Start the Ghidra binary analysis tool by opening a terminal and executing
the following command in the terminal:

ghidraRun

After the splash screen and tip screen, you should see the window in Fig. 2.

6

Fig. 2 Project window

2) Click on File-> New Project, select Non-Shared Project, and press Next.

Name the project archdeus and press the Finish button as shown in Fig. 3.

Fig. 3 Create Project and Name Project windows

3) At the main screen, select File-> Import File… and then choose the file that
you moved to the desktop in the previous exercise:
module.3144.1fd64520.6f4d0000.dll. Leave all settings as defaults and click
OK on the remaining windows as shown in Fig 4.

7

Fig. 4 Import windows

4) Double-click on the file you imported. Eventually, Ghidra will bring up the
Analysis Options window (shown in Fig. 5). Do not change any settings, just
click Analyze.

Fig. 5 Analysis Options window

5) Once the analysis is complete, you will see an Auto Analysis Summary
window. Click OK until you see the Code Browser window shown in Fig. 6.

8

Fig. 6 Code Browser window

**
Ghidra is a very powerful tool that allows an analyst to look at the inner workings
of compiled applications. It was publicly released in 2019 by the NSA and is unique
in that it is open-source (free), has a nice graphical interface, has extensive support
for various binary files, and comes prepackaged with a decompiler. Its features
include disassembly, which converts the bytes of a file into readable assembly
instructions, as well as a decompiler, which converts the bytes to high-level coding
language. Other features include instruction cross-reference, as well as function,
string, and class identification.5

In this exercise, we want to know how the malware is encoding the
communication. We will start with what we know: the domain name
(goog1e.com), so we will use the string search feature and then we will see where
in the code it is being used.

**

9

6) On the menu bar select Search -> Memory. Click on the String radio button
and enter goog1e.com as the search value (see Fig. 7). Click Search All.

Fig. 7 Search Memory window

7) Double-click on the result (there should be only one) and then go back to the
Code Browser window. You will now see the string in the code as shown in
Fig. 8.

Fig. 8 Code view for goog1e.com

this is a
number
“one”

10

8) Highlight and right click on s_goog1e.com_6f540da0 and then select
References -> Show References to s_goog1e.com_6f540da0. Double-click
on the result (there should only be one, as shown in Fig. 9).

Fig. 9 Cross-references window

9) Close the Search window and expand the Decompiler subwindow (this is the
right-most window). Notice the use of the string at line 62. Look through the
code at your leisure and then scroll down to line 117 and double-click on
thunk_FUN_6f4faac0.

Now the Code Browser is showing the contents of FUN_6f4faac0. It seems
the author of this malware printed some cleartext to the screen.

10) Look for the line of code where the author calls a function to print the results
of the decoded string “decoding string:…”. What is the name of the function
and variable_name? (Hint: function format resembles:
function_name(<"printable-text">, (char) <variable-name>);)

function_name: _____________ variable_name: _____________

11) It turns out that the variable you found in 10) contains the decoded
communication string. Look for the function above this, where it is likely that
the string was actually decoded (it should have the same variable name).

function_name: ______________________

11

12) Double-click on the function name you found in 11). If your decompiler
screen looks like Fig. 10, you have found the encoding/decoding code! It
seems that the encoding is a simple shift cipher. Write a short description
(preferably pseudo-code) of the encoding. (Hint 1: an ASCII chart like this
may help: https://www.petefreitag.com/cheatsheets/ascii-codes/.) (Hint 2: the
ascii character \r is the decimal number 13.)

Fig. 10 Decompiler window

5.3 Speak to the Ancients

Test what you have learned: send a message to the C2 server and decode its
language.

1) By hand, encode the text “list commands” using the cipher algorithm that
you identified (spaces are not encoded, and do not include the quotation
marks).

2) Start a new terminal by pressing Ctrl+Alt+t

12

**
Netcat (or nc) is a powerful network testing tool that allows analysts to quickly start
clients and servers, and has many more Transmission Control Protocol/User
Datagram Protocol (TCP/UDP) uses.10 You can check out a listing of some of these
here: https://www.sans.org/security-resources/sec560/netcat_cheat_sheet_v1.pdf.

**

3) Use the Netcat tool to establish a connection with the C2 server by executing
the following command:

nc <ip address of C2 server> 9999

Recall that the client is constantly connecting and disconnecting to the server
(at 30-second intervals in fact). If you do not receive a message within 3
seconds, press Ctrl+c and keep trying.

Once you receive a message, type in your answer to question 1) and press Enter.

4) Write the response that you get here:

__

5) Decode the response and write it here:

__

6) Describe the response and what you think it is:

__

**
Uber question: Can you list any other masters (C2 servers)? What are their IP
addresses?
**

Great job! You have successfully connected to the C2 server and obtained
some additional live information!

https://www.sans.org/security-resources/sec560/netcat_cheat_sheet_v1.pdf

13

6. Conclusion

After completing this exercise, participants should have a better understanding of
how RATs work, specifically related to the way they communicate and how
obfuscation of the data is used in attempts to hide the encoding scheme. Participants
learned one possible way to uncover, deconstruct, and then reconstruct this
communication using the Ghidra reverse-engineering tool. This exercise and the
related reverse-engineering exercises have been, and will be, shared with
collaborators and partners (including professionals, faculty, and students) to help
establish a common ground for studying, researching, and learning about malware,
analysis tools, and analysis techniques to harden systems and to develop ways to
recover after compromise and detect and protect systems moving forward.

We received positive feedback on these software reverse-engineering exercises
from both cybersecurity novices and experts.

Future exercises could entail a broader scope of the many tools used throughout
these exercises including Wireshark, Volatility, Ghidra, and Dshell and how to fully
leverage the Dshell framework, such as by conducting advanced network forensics
and analysis on a network for threat hunting, learning how to modify and customize
existing decoders to fit an end-user’s analysis needs, learning how an existing
decoder was developed to decode a specific network protocol, or developing a
decoder to detect and decode real, complex network protocols found in the wild
today. Additionally, ARL developed and open-sourced a new and improved version
of Dshell written in Python 3, which was publicly released on GitHub6 in
September 2020, and could be used in future exercises.

We hope the information found herein will enlighten students, researchers, and
practitioners in the cybersecurity field with new analysis tools and techniques, and
help spawn ideas to better their security posture and develop new and unique Dshell
plugins/decoders.

14

7. References

1. Acosta JC, Krych DE. Hands-on cybersecurity studies: uncovering and
decoding malware communications—initial analysis with Wireshark and
Volatility. DEVCOM Army Research Laboratory (US); 2020 Dec. Report No.:
ARL-TR-9128.

2. Krych DE, Acosta JC. Hands-on cybersecurity studies: uncovering and
decoding malware communications with Dshell. DEVCOM Army Research
Laboratory (US); 2020 June. Report No.: ARL-TR-8986.

3. Wireshark [accessed 2020 Nov]. https://www.wireshark.org.

4. Volatility [accessed 2020 Nov]. https://www.volatilityfoundation.org.

5. Ghidra [accessed 2020 Nov]. https://ghidra-sre.org.

6. Dshell [accessed 2020 Nov]. https://github.com/USArmyResearchLab/
Dshell.

7. VirtualBox [accessed 2020 Nov]. https://www.virtualbox.org/.

8. Microsoft Windows 7 [accessed 2020 Mar]. https://www.microsoft.com/en-
us/software-download/windows7.

9. Ubuntu 18.04 [accessed 2020 Nov]. https://releases.ubuntu.com/18.04.4/.

10. Netcat [accessed 2020 Dec]. http://netcat.sourceforge.net/.

15

List of Symbols, Abbreviations, and Acronyms

ARL Army Research Laboratory

Bot infected machine

C2 command and control

CyberRIG Cybersecurity Rapid Innovation Group

DEVCOM US Army Combat Capabilities Development Command

IP Internet Protocol

nc Netcat

NSA National Security Agency

RAT remote access trojan

TCP Transmission Control Protocol

UDP User Datagram Protocol

VM virtual machine

16

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 1 DEVCOM ARL
 (PDF) FCDD RLD CL
 TECH LIB

 2 DEVCOM ARL
 (PDF) FCDD RLC ND
 J ACOSTA
 D KRYCH

	List of Figures
	1. Introduction
	2. Setup and Configuration
	3. Learning Objectives
	4. Methodology
	5. Exercise
	5.1 Mission Briefing
	5.2 Gear Up: Reverse Engineer Malware Communications
	5.3 Speak to the Ancients

	6. Conclusion
	7. References
	List of Symbols, Abbreviations, and Acronyms

