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Cyber-Physical Systems (CPS) are software-reliant systems that interact with the physical world. As such, 

their kinetic effects frequently have safety-critical consequences. The scientific community has 

recognized this challenge and created techniques to provide mathematical proof techniques for three 

main aspects (among many others) of their kinetic effect, namely (i) that the software calculates the 

correct action on the physical process (e.g., full braking) (ii) at the right time (e.g., 100ms after sensing 

braking threshold) ensuring the (iii) correct physical effect (e.g., dynamical system reach desired state –

stopped – before hitting the wall). Unfortunately, the application of these techniques become 

impractical due to scalability issues. In this paper we discuss three key scalability issues: (i) multi-

criticality, (ii) artifact size, and (ii) cognitive design overload. These issues are clearly not orthogonal and 

we will discuss their interactions when we describe them. 

Multi-Criticality 
The practitioner community has recognized for a long time that not all aspects of a CPS are safety-

critical. While the scientific community has been aware of this, the need to carve a reasonably isolated 

scope has force the community to sometimes ignore this characteristic focusing on strong guarantees 

but weak scalability. More recently the academic community has understood the need to combine 

assurance of different parts of the system at different levels of rigor. These efforts have been conducted 

from independent scientific disciplines such as mixed-criticality scheduling [1] for timing. These 

approaches allow the application of different degrees of rigor to different layers of functionality. For 

timing, for instance, it uses a larger over-approximation of the worst-case execution time (WCET) of 

tasks to reduce the likelihood of an overrun developing verification tests that only guarantees meeting 

the deadline of a subset of tasks (the higher-critical tasks) with the strictest WCET and guarantee the 

deadlines of more tasks with lower strictness of WCET (next layer of lower-criticality tasks). This requires 

new scheduling mechanisms that monitors CPU consumption of the tasks and stops lower-criticality 

tasks if an overload is detected to ensure that higher-criticality tasks are guaranteed to terminate by 

their deadlines. 

More recently, new efforts to combine logical and timing guarantees within the same platform have 

given birth to the real-time mixed-trust computation framework [2]. Moreover, in this framework not 

only different levels of verification rigor are supported (supporting both verified and unverified 

components) but also the protection of verified component from misbehavior of unverified ones is 

provided. In this case, the approach is to insert small pieces of verified components to monitor the 

output of the system for safety properties and replace these outputs for safe ones if they are deemed 

unsafe. This way we can (i) guarantee a system-wide safety property by only (ii) verifying small 

components. These components are known as enforcers. This framework is implemented with a VM 

where the unverified components run. This VM runs on top of a verified hypervisor (HV) [3] with a real-

time scheduler that ensures that if a unverified task does not finish on time, a corresponding verified 

hypertask issues a safe action. At the same time the hypervisor protects a verified component that 

checks if the unverified component output is safe. The combined unverified (guest) task running in a VM 
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and the verified hypertask running in the HV is know as a mixed-trust task and is scheduled with a 

combine VM and HV scheduler known as mixed-trust scheduler. 

Artifact Size 
The artifact size has been a problem for software-reliant system verification for a long time. It is well 

known that formal techniques like model checking cannot scale to large program sizes even with recent 

scalability advances. However, new tools (e.g., Frama-C) have allows us to apply these techniques to real 

programs in popular programming languages (e.g., C) for selective properties and components.  

The enforcer concept presented before allows us to ignore a large number of components in the system 

and focus only on small pieces of code that can make strong verification possible. However, as discussed 

before, it is necessary to understand and protect against misbehavior of unverified components.  

The concept of an enforcer has also been explored to verify dynamical system properties with the use of 

Lyapunov functions [5]. Lyapunov functions enables the evaluation of the tolerance of a system to a 

misbehavior of an unverified component. In particular, a Lyapunov function defines a positive invariant 

set that allows us to verify that if the misbehavior is eliminated (i.e., enforced) before the system leaves 

this set, the system can go back to its designated setpoint.  

The combination of the logical [4], temporal [6], and dynamical [5] enforcer techniques in a properly 

protected framework [2] allows us to scale this powerful verification techniques to sizes of practical 

systems. 

Cognitive Design Overload 
Perhaps a subtler challenge related to the size of a system is the cognitive design overload. More 

specifically, the design of large CPS starts with humans defining what the system should do at an 

abstract level. This first level includes the functional decomposition of the system and high-level 

properties that we want the system to exhibit. The first level typically involves the development of the 

specification that will be use for acquisition. After this first level of design, the system and its part are 

further refined requiring to keep track how the additional specified details interact with all the other 

parts of the system and how they relate to the desired system-level properties. Clearly, the human 

cognition quickly reaches its limit when faced with this task. Model-Based Engineering (MBE) techniques 

have been developed for this purpose. In this case, a model of the system is built at a high level and 

continuously refined as the system is developed. The purpose of this model is to use automated analysis 

to verify the desired properties of the system. The benefits of this continuous analysis yield benefits 

right in the early models when analyses can discover errors that can be very costly if discovered in later 

stages such as system integration or fielding [11].  

A number of modeling languages like SySML [7] and AADL [8] have been created for this purpose. AADL 

in particular, was created primarily for CPS systems with a strong core semantics to capture the 

interactions of software and hardware and its consequences to quality attributes like timing, reliability, 

and security. From the start AADL was designed to be extensible allowing, not only the incorporation of 

new analyses as natural plugins into its toolset, but also as extensions to the language itself in what is 

known as language annexes. However, this level of openness and the capacity to extend the 

expressiveness and analytic capability of AADL brings a new challenge to the cognitive design overload, 

namely analyses assumptions. Specifically, analysis make assumptions about the model that must be 
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verified, otherwise the results can be rendered invalid. The verification of these assumptions grows in 

complexity as analyses grow in sophistication. Moreover, as multiple analyses are applied on the model 

they can make conflicting assumptions. In addition, as analyses are used at different refinement levels, 

the analysis results at one level can be invalidated by refinements to the model. To address this problem 

a number of research efforts have created analyses contracts [9,10] that enables the definition of 

contracts in the form of assumption/guarantee pairs. The assumptions, define conditions that the model 

should exhibit before the analysis can be applied. The guarantees, on the other hand, define the 

conditions that a successful analysis guarantees on the model. With these contracts it is possible to 

automate the assumption verification and analyses interactions of a model reducing the cognitive load 

of a modeler. Moreover, analyses contracts are key to apply analyses coming from different scientific 

disciplines whose details can only be fully understood by a discipline specialist.  

The scalable assurance of CPS is by no means a solved issue. However, in this paper we presented a few 

of the key challenges that it entails.  
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