
[Distribution Statement A] Approved for public release and unlimited distribution.

Scalable Assurance of Cyber-Physical Systems
Dionisio de Niz

dionisio@sei.cmu.edu

Cyber-Physical Systems (CPS) are software-reliant systems that interact with the physical world. As such,

their kinetic effects frequently have safety-critical consequences. The scientific community has

recognized this challenge and created techniques to provide mathematical proof techniques for three

main aspects (among many others) of their kinetic effect, namely (i) that the software calculates the

correct action on the physical process (e.g., full braking) (ii) at the right time (e.g., 100ms after sensing

braking threshold) ensuring the (iii) correct physical effect (e.g., dynamical system reach desired state –

stopped – before hitting the wall). Unfortunately, the application of these techniques become

impractical due to scalability issues. In this paper we discuss three key scalability issues: (i) multi-

criticality, (ii) artifact size, and (ii) cognitive design overload. These issues are clearly not orthogonal and

we will discuss their interactions when we describe them.

Multi-Criticality
The practitioner community has recognized for a long time that not all aspects of a CPS are safety-

critical. While the scientific community has been aware of this, the need to carve a reasonably isolated

scope has force the community to sometimes ignore this characteristic focusing on strong guarantees

but weak scalability. More recently the academic community has understood the need to combine

assurance of different parts of the system at different levels of rigor. These efforts have been conducted

from independent scientific disciplines such as mixed-criticality scheduling [1] for timing. These

approaches allow the application of different degrees of rigor to different layers of functionality. For

timing, for instance, it uses a larger over-approximation of the worst-case execution time (WCET) of

tasks to reduce the likelihood of an overrun developing verification tests that only guarantees meeting

the deadline of a subset of tasks (the higher-critical tasks) with the strictest WCET and guarantee the

deadlines of more tasks with lower strictness of WCET (next layer of lower-criticality tasks). This requires

new scheduling mechanisms that monitors CPU consumption of the tasks and stops lower-criticality

tasks if an overload is detected to ensure that higher-criticality tasks are guaranteed to terminate by

their deadlines.

More recently, new efforts to combine logical and timing guarantees within the same platform have

given birth to the real-time mixed-trust computation framework [2]. Moreover, in this framework not

only different levels of verification rigor are supported (supporting both verified and unverified

components) but also the protection of verified component from misbehavior of unverified ones is

provided. In this case, the approach is to insert small pieces of verified components to monitor the

output of the system for safety properties and replace these outputs for safe ones if they are deemed

unsafe. This way we can (i) guarantee a system-wide safety property by only (ii) verifying small

components. These components are known as enforcers. This framework is implemented with a VM

where the unverified components run. This VM runs on top of a verified hypervisor (HV) [3] with a real-

time scheduler that ensures that if a unverified task does not finish on time, a corresponding verified

hypertask issues a safe action. At the same time the hypervisor protects a verified component that

checks if the unverified component output is safe. The combined unverified (guest) task running in a VM

mailto:dionisio@sei.cmu.edu

[Distribution Statement A] Approved for public release and unlimited distribution.

and the verified hypertask running in the HV is know as a mixed-trust task and is scheduled with a

combine VM and HV scheduler known as mixed-trust scheduler.

Artifact Size
The artifact size has been a problem for software-reliant system verification for a long time. It is well

known that formal techniques like model checking cannot scale to large program sizes even with recent

scalability advances. However, new tools (e.g., Frama-C) have allows us to apply these techniques to real

programs in popular programming languages (e.g., C) for selective properties and components.

The enforcer concept presented before allows us to ignore a large number of components in the system

and focus only on small pieces of code that can make strong verification possible. However, as discussed

before, it is necessary to understand and protect against misbehavior of unverified components.

The concept of an enforcer has also been explored to verify dynamical system properties with the use of

Lyapunov functions [5]. Lyapunov functions enables the evaluation of the tolerance of a system to a

misbehavior of an unverified component. In particular, a Lyapunov function defines a positive invariant

set that allows us to verify that if the misbehavior is eliminated (i.e., enforced) before the system leaves

this set, the system can go back to its designated setpoint.

The combination of the logical [4], temporal [6], and dynamical [5] enforcer techniques in a properly

protected framework [2] allows us to scale this powerful verification techniques to sizes of practical

systems.

Cognitive Design Overload
Perhaps a subtler challenge related to the size of a system is the cognitive design overload. More

specifically, the design of large CPS starts with humans defining what the system should do at an

abstract level. This first level includes the functional decomposition of the system and high-level

properties that we want the system to exhibit. The first level typically involves the development of the

specification that will be use for acquisition. After this first level of design, the system and its part are

further refined requiring to keep track how the additional specified details interact with all the other

parts of the system and how they relate to the desired system-level properties. Clearly, the human

cognition quickly reaches its limit when faced with this task. Model-Based Engineering (MBE) techniques

have been developed for this purpose. In this case, a model of the system is built at a high level and

continuously refined as the system is developed. The purpose of this model is to use automated analysis

to verify the desired properties of the system. The benefits of this continuous analysis yield benefits

right in the early models when analyses can discover errors that can be very costly if discovered in later

stages such as system integration or fielding [11].

A number of modeling languages like SySML [7] and AADL [8] have been created for this purpose. AADL

in particular, was created primarily for CPS systems with a strong core semantics to capture the

interactions of software and hardware and its consequences to quality attributes like timing, reliability,

and security. From the start AADL was designed to be extensible allowing, not only the incorporation of

new analyses as natural plugins into its toolset, but also as extensions to the language itself in what is

known as language annexes. However, this level of openness and the capacity to extend the

expressiveness and analytic capability of AADL brings a new challenge to the cognitive design overload,

namely analyses assumptions. Specifically, analysis make assumptions about the model that must be

[Distribution Statement A] Approved for public release and unlimited distribution.

verified, otherwise the results can be rendered invalid. The verification of these assumptions grows in

complexity as analyses grow in sophistication. Moreover, as multiple analyses are applied on the model

they can make conflicting assumptions. In addition, as analyses are used at different refinement levels,

the analysis results at one level can be invalidated by refinements to the model. To address this problem

a number of research efforts have created analyses contracts [9,10] that enables the definition of

contracts in the form of assumption/guarantee pairs. The assumptions, define conditions that the model

should exhibit before the analysis can be applied. The guarantees, on the other hand, define the

conditions that a successful analysis guarantees on the model. With these contracts it is possible to

automate the assumption verification and analyses interactions of a model reducing the cognitive load

of a modeler. Moreover, analyses contracts are key to apply analyses coming from different scientific

disciplines whose details can only be fully understood by a discipline specialist.

The scalable assurance of CPS is by no means a solved issue. However, in this paper we presented a few

of the key challenges that it entails.

Acknowledgements
Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie

Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government

position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not

necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering

Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE

OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON

UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,

OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice

for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the

copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without

requesting formal permission. Permission is required for any other external and/or commercial use. Requests for permission should be directed to

the Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM20-1090

References
1. Dionisio de Niz, Karthik Lakshmanan, and Raj Rajkumar."On the Scheduling of Mixed-Criticality

Real-Time Tasksets." RTSS 09.

[Distribution Statement A] Approved for public release and unlimited distribution.

2. Dionisio de Niz, Bjorn Andersson, Mark Klein, John Lehoczky, Amit Vasudevan, Hyoseung Kim,

and Gabriel A. Moreno. Mixed-Trust Computing for Real-Time Systems. IEEE International

Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2019.

3. Design, implementation and verification of an extensible and modular hypervisor framework. A

Vasudevan, S Chaki, L Jia, J McCune, J Newsome, A Datta. 2013 IEEE Symposium on Security and

Privacy.

4. Bjorn Andersson, Sagar Chaki, and Dionisio de Niz. “Combining Symbolic Runtime Enforcers for

Cyber-Physical Systems.” International Conference in Runtime Verification. 2017.

5. R. Romagnoli, B. H. Krogh, B. Sinopoli (2019). Design of Software Rejuvenation for CPS Security

Using Invariant Sets. In 2019 American Control Conference (ACC).

6. Sagar Chaki and Dionisio de Niz. “Formal Verification of a Timing Enforcer Implementation.”

EMSOFT 2017.

7. https://www.sysml.org.

8. SAE Architecture Analysis & Design Language (AADL) AS5506C.

9. Ivan Ruchkin, Dionisio de Niz, Sagar Chaki, and David Garlan.”"Contract-Based Integration of

Cyber-Physical Analyses." EMSOFT 2014.

10. Ivan Ruchkin, Dionisio de Niz, Sagar Chaki, and David Garlan.”"ACTIVE: A Tool for Integrating

Analysis Contracts." AVICPS 2014.

11. Peter H. Feiler, Jorgen Hansson. Dionisio de Niz, and Lutz Wrage. “System Architecture Virtual

Integration: An Industrial Case Study.” TECHNICAL REPORT CMU/SEI-2009-TR-017 ESC-TR-2009-

017.

https://www.sysml.org/

