
 
 
 
 

 ARL-TR-9111 ● NOV 2020 
  
 
 
 

 
 
 
Human–Autonomy Teaming: Team Trust 
Metrics—Wingman Simulation Study 
 
by Kristin E Schaefer, Ralph W Brewer, Anthony L Baker, 
Andrea Krausman, Catherine Neubauer, David Chhan, Evan 
Carter, Jonroy Canady, Alyssa Milner, Dae Han Seong, Robert 
Thomson, and Ericka Rovira 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited. 



 

 

NOTICES 

Disclaimers 

The findings in this report are not to be construed as an official Department of the 
Army position unless so designated by other authorized documents. 

Citation of manufacturer’s or trade names does not constitute an official 
endorsement or approval of the use thereof. 

Destroy this report when it is no longer needed. Do not return it to the originator. 



 

 

 
 

 ARL-TR-9111 ● NOV 2020 

 

 
 
Human–Autonomy Teaming: Team Trust Metrics—
Wingman Simulation Study 
 
by Kristin E Schaefer, Andrea Krausman, Catherine Neubauer, David 
Chhan, Evan Carter, and Jonroy Canady 
Human Research and Engineering Directorate, DEVCOM Army Research 
Laboratory 
 
Ralph W Brewer 
Vehicle Technology Directorate, DEVCOM Army Research Laboratory 
 
Anthony L Baker 
Oak Ridge Associated Universities 
 
Alyssa Milner, Dae Han Seong, Robert Thomson, and Ericka Rovira 
US Military Academy at West Point 
 
 
 
 
 
 
Approved for public release; distribution is unlimited.



 

ii 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the 
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. 
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

November 2020  
2. REPORT TYPE 

Technical Report 
3. DATES COVERED (From - To) 

October 2019–October 2020 
4. TITLE AND SUBTITLE 

Human–Autonomy Teaming: Team Trust Metrics—Wingman Simulation Study 
5a. CONTRACT NUMBER 

 
5b. GRANT NUMBER 

 
5c. PROGRAM ELEMENT NUMBER 

 
6. AUTHOR(S) 

Kristin E Schaefer, Ralph W Brewer, Anthony L Baker, Andrea Krausman, 
Catherine Neubauer, David Chhan, Evan Carter, Jonroy Canady, Alyssa Milner, 
Dae Han Seong, Robert Thomson, and Ericka Rovira 

5d. PROJECT NUMBER 

 
5e. TASK NUMBER 

 
5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

DEVCOM Army Research Laboratory 
ATTN: FCDD-RLH-H 
Aberdeen Proving Ground MD, 21005 

8. PERFORMING ORGANIZATION REPORT NUMBER 

 
ARL-TR-9111 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 
10. SPONSOR/MONITOR'S ACRONYM(S) 

 
11. SPONSOR/MONITOR'S REPORT NUMBER(S) 

 
12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 
ORCID IDs: Kristin E Schaefer, 0000-0002-1342-3446; Catherine Neubauer, 0000-0002-6686-3576; Andrea Krausman, 000-
0003-1955-8867; Jonroy Canady, 0000-0003-3555-8779 
Approved HRPP No.: ARL-19-175 
14. ABSTRACT 

This report presents the results from collaborative exploratory research designed to identify and assess different metrics of 
team trust and team cohesion that may be relevant to military human–autonomy teams. This was a simulation study using the 
Wingman Joint Capabilities Technology Demonstration simulation testbed to conduct manned–unmanned teaming scenarios 
on Table VI gunnery evaluations. Participants worked as a team to operate a simulated robotic ground vehicle from a 
simulated command-and-control vehicle to identify and engage targets on a simulated Army gunnery range. Findings suggest 
the importance of a multimethod approach to analyzing team trust and team cohesion. Traditional metrics based on team 
performance ratings or self-report are not indicative of the full team-trust relationship. This research provides valuable insights 
into how different measurement techniques can provide a more global understanding of the trust relationship. 

15. SUBJECT TERMS 

human–autonomy teaming, Wingman, trust, wearable technologies, team effectiveness 

16. SECURITY CLASSIFICATION OF: 
17. LIMITATION 
    OF  
    ABSTRACT 

UU 

18. NUMBER 
    OF  
    PAGES 

61 

19a. NAME OF RESPONSIBLE PERSON 

Kristin E Schaefer-Lay 
a. REPORT 

Unclassified 
b. ABSTRACT 

Unclassified 
 

c. THIS PAGE 

Unclassified 
 

19b. TELEPHONE NUMBER (Include area code) 

(410)278-5972 
 Standard Form 298 (Rev. 8/98) 

 Prescribed by ANSI Std. Z39.18 



 

iii 

Contents 

List of Figures v 

List of Tables vi 

Executive Summary vii 

1.  Introduction 1 

1.1   Subjective Scales 2 

1.2   Performance 2 

1.3   Behavioral Indicators 3 

1.4   Communication 3 

1.5   Wearable Technologies: Physiological Indicators 4 

1.6  Current Work 5 

2.  Methods 6 

2.1  Participants 6 

2.2 Task 6 

2.3 Crew Roles 7 

2.4  Wingman Simulation Testbed 8 

2.4.1  WMI 9 

2.4.2  Gamepad Controllers 9 

2.5  Physiological and Behavioral Equipment 10 

2.5.1  Empatica 10 

2.5.2  Digital-Camera Facial Video and Microphone Audio 11 

2.6  Facilities 11 

2.7  Questionnaires 12 

2.8  Performance Metrics 13 

2.9  Behavioral and Communication Measures 14 

2.9.1 Facial Expressivity 14 

2.9.2 Crew Audio 15 

2.10 Physiological Metrics 15 



 

iv 

2.11 Procedure 16 

2.12 Design 17 

3.  Results 17 

3.1 Performance 17 

3.2  Self-Reported Ratings 18 

3.2.1  Self-Reported Differences between Exercises 1 and 2 19 

3.2.2 Self-Reported Differences between Lethality and Mobility 
Operators 19 

3.2.3 Team Readiness 20 

3.3  Detect, Identify, Decide, Engage, Assess (DIDEA) Communication 
Analysis 22 

3.4  Behavioral Indicators 25 

3.4.1  Facial Expressivity 25 

3.4.2  Correlates of Facial Expressivity 28 

3.5  Physiological Indicators 29 

3.6  Time Series Classification (TSC) 31 

4.  Discussion 33 

4.1  Review of Main Findings 33 

4.2  Path Forward 35 

5.  Conclusions 36 

6.  References 38 

Appendix A. Performance Scores 45 

Appendix B. Inter-Beat-Interval (IBI) and Heart-Rate (HR) Measures 
Incorrectly Derived by the Empatica 47 

List of Symbols, Abbreviations, and Acronyms 50 

Distribution List 52



 

v 

List of Figures 

Fig. 1 Cadets in the role of Robot Lethality Operator (left) and Robot 
Mobility Operator (right) ...................................................................... 8 

Fig. 2 Controller layout for robotic mobility operator’s controls ................... 9 

Fig. 3 Details of controller layout for robotic lethality operator’s controls .. 10 

Fig. 4 Empatica E4 Sensor ............................................................................ 11 

Fig. 5 Logitech C920 HD Pro Camera with autofocus and built-in stereo 
microphone; shown mounted on desktop monitor .............................. 11 

Fig. 6 Common Crew Score Sheet ................................................................ 14 

Fig. 7 Stress by role for positive affect, sensations seeking, and dysphoria . 19 

Fig. 8 Average times for all crews to fire on (black) and hit (white) targets; 
all 10 target engagements are in order of exposure, 5 engagements in 
Exercise 1, and 5 engagements in Exercise 2 ..................................... 23 

Fig. 9 CI analysis of time-to-first-fire; black bar is Exercise 1, white bar is 
Exercise 2 ............................................................................................ 24 

Fig. 10 CI analysis of time-to-first-hit; black bar is Exercise 1, white bar is 
Exercise 2 ............................................................................................ 25 

Fig. 11 Facial-expression evidence for seven universal emotions as function of 
exercise: means are somewhat higher in Exercise 2 than Exercise 1 
(except for “Surprise”); error bars are standard errors ........................ 26 

Fig. 12 Facial-expression evidence for seven universal emotions as function of 
role: means for all emotions are somewhat higher for lethality operator 
(except “Surprise” and “Disgust”); error bars are standard errors ...... 27 

Fig. 13 Change in lethality and mobility operators’ EDA during training and 
Exercises 1 and 2 shown as averages with CIs ................................... 30 

Fig. 14 Change in lethality and mobility operators’ HR during training and 
Exercises 1 and 2 shown as averages with CIs ................................... 30 

Fig. 15 Change in lethality and mobility operators’ HRV during training and 
Exercises 1 and 2 shown as averages with CIs ................................... 31 

Fig. B-1 Comparison of IBI time series using IBI.csv output by Empatica and 
our own processing pipelines derived from BVP signals ................... 48 

Fig. B-2 Comparison of HR time series using HR.csv output by Empatica and 
our own processing pipelines derived from BVP signals ................... 49 

 

  



 

vi 

List of Tables 

Table 1 Seven dimensions of stress from MAACL-R questionnaire .............. 13 

Table 2 Facial-expression emotion calculation from single AUs (adapted from 
Ekman and Friesen 1978) ................................................................... 15 

Table 3 Qualification scores ............................................................................ 18 

Table 4 Correlations among items on the TRQ ............................................... 20 

Table 5 Descriptive statistics for average crew time-to-first-fire and time-to-
first-hit................................................................................................. 24 

Table 6 “Happiness” and “Contempt” findings ............................................... 27 

Table 7 Correlations among facial expression and MAACL variables for 
lethality operator, Exercise 2 .............................................................. 28 

Table 8 Correlations among facial expression, MAACL, and physiological 
variables for mobility operator, Exercises 1 and 2 ............................. 29 

Table 9 Balanced accuracy, averaged over 14 sessions (and SDs) for each 
model trained on each unique combination of role and signal 
subsetting ............................................................................................ 33 

Table A-1 Performance scores by step ................................................................. 46 
  



 

vii 

Executive Summary 

US military leaders are exploring the implications of integrating  
manned–unmanned teams into combat-ready operations whereby a team consists 
of one or more crews interacting with multiple types of autonomy. One critical 
aspect of effectively integrating automation in a human–human or human–agent 
team is the effective development and assessment of trust. This simulation study 
examined team-trust and team-cohesion metrics building on a multimethod 
analytical approach including self-reported responses, behavioral and physiological 
indicators, and communication to explain team effectiveness during a manned–
unmanned team gunnery exercise.  

The Wingman simulation testbed is a software-in-the-loop version of actual  
real-world prototype vehicles using advanced mobility and weapon-system 
autonomy. Within this construct, participants work as a team to operate a simulated 
weaponized robotic ground vehicle from a simulated command-and-control vehicle 
to identify and engage targets on a virtual US Army gunnery range. While the 
original Wingman vehicle includes a 5-man team, the manned vehicle’s driver and 
Long-Range Advanced Scout Surveillance System operator were simulated roles, 
and the vehicle commander was a confederate, a retired US Army Master Gunner, 
leaving the participants to fulfill the roles of a robotic vehicle’s mobility operator 
and lethality operator. Our project recruited 28 cadets in groups of 2. Participants 
experienced two experimental conditions that varied in target exposure time of 
100 s and 50 s (50 s is the standard amount of time allotted for manned vehicle 
gunnery-qualification exercises) and completed 5 target engagements (2 offensive 
and 3 defensive postures per condition).  

Findings from this study provide a foundation for taking a multimethod analytical 
approach to quantifying team trust. Specifically, performance-based data, self-
report, communication, physiology, and behavioral data all provide different yet 
complimentary indicators explaining the elements that impact team trust and 
cohesion and, in turn, the effectiveness of the team.  
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1.  Introduction 

The US Army seeks to identify current and emerging technologies and projections 
of technology-enabled concepts that could provide significant military advantage 
during operations in complex, contested, or congested environments between now 
and 2028. These include advanced technologies that support integration of joint 
human–autonomy teaming initiatives. As unmanned or robotic technologies 
advance from traditional teleoperation to more interdependent operations with 
advanced autonomous decision-making capabilities, it is essential to develop 
appropriate collaboration between the human and autonomy-enabled team 
members (Phillips et al. 2011). A driving reason for this focus on effective teaming 
is that appropriate use of the technology depends on the human’s understanding of 
the system, its behaviors, and the reasoning behind those behaviors (Chen et al. 
2014). If human expectations do not match system behaviors, people will question 
the accuracy and effectiveness of the system’s action (Bitan and Meyer 2007; 
Seppelt and Lee 2007; Stanton et al. 2007). Such skepticism can lead to degraded 
trust which, in turn, can be directly linked to misuse or disuse of the system, even 
if it is operating effectively (Lee and See 2004; Schaefer and Straub 2016). 

Research to date has exposed a number of metrics of trust and cohesion for either 
human-only teams, or small 1:1 ratios of human–robot or human–autonomy teams 
(Schaefer et al. Forthcoming 2020). However, there is limited research available on 
identifying key metrics of team trust and team cohesion, especially for these Army-
relevant mission needs for human–autonomy teams. Further, it is critical to 
understand the coordination and cohesiveness of the team. Team cohesion is an 
emergent state that reflects the extent to which team members relate to each other 
as a group (Mullen and Copper 1994; Beal et al. 2003). It is affected by mission, 
environmental, and social context, and is a mediating factor in the relationship 
between team trust and team performance (Mach et al. 2010; Deortentiis et al. 
2013). It is also a critical factor in emotional resilience following periods of stress 
(Neubauer et al. 2016). Because team coordination and performance are closely 
related, insights into the cohesiveness of the team can shed light on how the team 
ultimately performs (Salas et al. 2009).  

Our earlier research has shown some promise that taking a multimethod approach 
(combination of subjective, performance, communication, and physiological 
measures) provides more information about the team than one measure alone 
(Schaefer et al. 2019a). This is supported by research that suggests that accurate 
team-trust and team-cohesion analyses are dependent on communication, 
physiological response, and emotional state evaluated through facial expressions, 
word choice, and heart-rate variability (Neubauer et al. 2016). Therefore, the goal 
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of this study is to conduct exploratory research to identify team-trust and team-
cohesion metrics related to performance, behavior, communication, and 
physiological indicators. 

1.1   Subjective Scales 

There are many different potential state-based trust scales available. However, most 
of these scales were developed from either human–interpersonal or human–
automation trust fields. Often, broad speculations of trust are made via self-reported 
items that range from a single question, "How much do you trust this robot?" to 
questionnaires that do not incorporate the complexities of human–robot 
collaborative interaction.  

Previous research examining changes in trust in the US Army Wingman Joint 
Capabilities Technology Demonstration’s (JCTD’s) scenarios found quality 
differences in trust when looking at the following types of items: perceived level of 
intelligence of the vehicle, perceived level of automation, perceived 
trustworthiness, and perceived safety (items were initially developed and tested in 
Schaefer et al. 2012, used in a previous U.S. Army Research Laboratory research 
study [ARL-18-165], and reported in Schaefer et al. 2019a). Since a validated scale 
of cohesion is not available for human–autonomy teams, team cohesion was 
previously assessed through an experimenter-created questionnaire on team 
readiness specific to operations within the Wingman context (ARL-18-165; 
Schaefer et al. 2019a). In addition, measures of stress and workload were collected 
as both of these factors are variable and unpredictable and can lead to degradations 
in trust (Biros et al. 2004; Cosenzo et al. 2006; Schaefer and Scribner 2015). 

1.2   Performance 

Performance is a direct result of the team interoperability, where the manned 
command-and-control vehicle is often located at a remote position with respect to 
the robotic Wingman vehicle. Therefore, in support of prior research (Chen et al. 
2014; Schaefer et al. 2017a), a technical solution for providing shared situation 
awareness* (SA) across the human–autonomy team is critical. Accomplishment of 
this goal rested with the development of the Warfighter Machine Interface (WMI), 
which provided interactive customizable displays for the commander, robot 

                                                 
*Team SA encompasses joint decisions and actions where each individual agent may have their own 
SA to carry out individual goals, but there is also a shared SA to enable the coordination needed 
such that accomplishment of individual subgoals supports the accomplishment of overall goals 
(Endsley 1995; Endsley and Jones 1997). This shared SA reflects the overlap of information upon 
which such team coordination is based. 
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operator, and robot-lethality operator to interact with the robotic vehicle. Each 
Wingman WMI has access to shared SA data, categorized by subsystem across the 
bottom of each display, including major subsystems such as map, sensor, alerts, 
and so on. The map screen provides an interactive aerial image, MIL-STD-2525B∗ 
symbols, mobility plans, sensor fields-of-view, and grid-reference lines. The sensor 
screen provides live video feeds with overlays providing SA such as azimuth, 
elevation, heading, and field-of-view. The commander and lethality operator use 
the sensor feeds to positively identify potential targets for engagement. Each WMI 
also has SA data available in a common toolbar and prioritized alerts visible as pop-
ups at the top of the screen. The WMI is set up to record all button presses and 
associated timing on each display.  

Objective measures associated with trust often relate to human behavior, such as 
number of interventions with the level of automation of a system or the amount of 
time interacting with or manually controlling a system (e.g., Spain and Bliss 2008). 
However, these measures, and their relationship with trust, are still being 
established. Therefore, we record specific interactions with the operation of the 
robotic Wingman vehicle, including frequency of interventions and duration of 
time relying on the vehicle, as well as provide standard scoring of the gunnery task 
using the Department of the Army (DA) Form 8265, the Common Crew Score 
Sheet.  

1.3   Behavioral Indicators 

There is a long history in psychological literature in understanding facial expression 
(Ekman and Friesen 1978). Facial expressivity has been shown to reliably relate to 
appraisal and coping mechanisms. Past studies by members of our team have found 
that automatic computations of facial expressivity are comparable to manual 
annotation of single action unit (AU) intensity (Neubauer et al. 2017) and have been 
used in a number of studies (Batrinca et al. 2013; DeVault et al. 2014; Chollet et al. 
2015; Scherer et al. 2016; Parra et al. 2017). As such, there is evidence that 
automatic behavior trackers can provide researchers with much-needed objective 
assessments of behavioral indicators of stress, fatigue, or even trust through a 
nonintrusive measurement modality on a continuous time scale.    

1.4   Communication 

Effective communication results in improvements in other team processes and 
outcomes (Mathieu et al. 2000; Kozlowski and Ilgen 2006). Efficient team 

                                                 
∗ DOD’s standard for common warfighting symbology, both for automated and hand-drawn graphic 
displays. 
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communication is critical for target engagement given the coordinated nature of 
gunnery operations. Since Wingman adds different types of autonomy to the 
equation, it is even more important to understand how team communication relates 
to performance, given that human–autonomy interaction still lacks the fluidity of 
human–human interaction (Bisk et al. 2016). As such, there is a need to test our 
methods for analyzing team communication to ensure they are applicable to the 
human–autonomy context. In general, understanding these changes in 
communication, as well as fluctuations in state, are important for human–autonomy 
team assessment because they provide continuous feedback regarding the nature of 
the interaction between the human and the system within a given environmental, 
mission, and social context (Marathe et al. 2020).  

Communication analysis is a critical part of the human–autonomy team analysis 
because effective communication undergirds team processes and successful 
outcomes (Mathieu et al. 2000; Kozlowski and Ilgen 2006). As a vehicle through 
which team members can distribute information, synchronize information from 
multiple sources, resolve disagreements, and align goals (Salas et al. 2005), 
communication is fundamental to team performance (Marks et al. 2001; Mesmer-
Magnus and DeChurch 2009).  

There are many approaches for evaluating team communication that can be applied 
to developing metrics for human–autonomy teams. Some initial metrics that are 
currently being explored for understanding team trust and team cohesion include 
latent semantic analysis (LSA; Gorman et al. 2003), language style matching (LSM; 
Gonzales et al. 2010), and turn-taking or communication flow (Baker et al. 2019, 
2020). For this study, because the crew’s communication largely comprised the 
commander’s instructions to the team, these communication-analysis approaches 
would not be suitable since they rely on naturalistic, diverse communication content 
(LSA and LSM) or on the existence of varied patterns of who speaks to whom 
(communication flow). Therefore, an alternate approach was used that derives 
information about the team’s gunnery performance from its communication during 
the gunnery process.  

1.5   Wearable Technologies: Physiological Indicators 

Previous research has suggested that there may be psychophysiological changes, as 
measured by electrodermal activity (EDA), heart rate (HR), and heart-rate 
variability (HRV), associated with a change in trust or the onset of a trust-based 
decision (Montague et al. 2014; Mitkidis et al. 2015). While this is new research, 
these types of measures have a long history of being associated with cognitive effort 
and decision-making capability that is critical to understanding interaction with 
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human–autonomy teams. Specifically, EDA, both tonic and phasic, is a measure of 
skin conductance and is a sensitive measure of emotional arousal such that levels 
increase during periods of anxiety and cognitive effort (Shi et al. 2007). Work by 
Bethel et al. (2007) was one of the first examples that used EDA during human–
robot interaction studies. They found that tonic EDA measures increased with 
increased engagement with the robot. EDA measurement has also been shown to 
be generalizable across similar participants. Montague et al. (2014) found that 
individuals with similar, high ratings of trust in technology showed similar changes 
in EDA patterns. For example, if EDA levels of one subject were low, and both 
subjects were in a trust state, the second subject's EDA would be expected to be 
low as well. Conversely, patterns of high EDA corresponding to low subjective 
trust measures were reported during interaction with an unreliable robot (Sanders 
et al. 2012).  

HR and HRV are often used in conjunction with EDA to infer the cognitive and 
affective response to a stimulus. Following a stimulus, an acute decrease in HRV, 
along with a simultaneous phasic response, has been associated with orienting 
behavior (Figner and Murphy 2011), which suggests that an event was salient to 
the subject. HRV may also be used in conjunction with EDA to infer levels of 
workload and trust (Matthews et al. 2005; Mehler 2009; Montague et al. 2014). 
Suggested from the previously cited literature, it can be posited that in a state of 
high trust it is unlikely one would feel anxious and, therefore, HRV would be high 
and HR low while tonic EDA levels would also be low. However, if there is an 
increase in cognitive workload and anxiety associated with the process of 
maintaining SA, such as what would occur in a state of low trust, it is likely HRV 
would fall and nonspecific phasic EDA levels would rise along with tonic EDA 
levels.  

1.6  Current Work 

This research was an exploratory study to identify possible team-trust and team-
cohesion metrics associated with human–autonomy teams for Army operations. 
The task goals and outcomes supported the Wingman JCTD to provide 
technological advances and experimentation to increase the autonomous 
capabilities of robotic combat-support vehicles. A goal of this program was to 
advance human–autonomy teaming initiatives by iteratively defining and 
decreasing the gap between autonomous vehicle control and required level of 
human interaction (Schaefer et al. 2019b; Brewer et al. 2020).  The larger research 
goals of team trust and cohesion were in line with the goals for the US Army 
Combat Capabilities Development Command (DEVCOM) Army Research 
Laboratory’s (ARL’s) Human–Autonomy Teaming Essential Research Program to 
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develop effective measurement techniques and metrics for team trust in human–
autonomy teams (Schaefer et al. 2020). Finally, this joint research supported a 
Senior Capstone Research Project for two US Military Academy (USMA) cadets.  

This simulation study used the software-in-the-loop Wingman simulation testbed 
that allows a human crew to interact with the actual robotic-vehicle autonomy on a 
realistic gunnery task. The original setup was designed to support a 5-man crew, 
but for this study, the manned vehicle driver and Long-Range Advanced Scout 
Surveillance System (LRAS3) operator were simulated roles and the vehicle 
commander was a member of the experimental teams. This allowed us to assess the 
robotic vehicle’s mobility- and lethality-operator dyad while providing consistency 
and repeatability across participants. This study provides a means to assess and 
identify the interdependencies of using a multimethod approach to quantify team 
trust and cohesion.  

2.  Methods 

Research was conducted under the oversight of DEVCOM ARL and the USMA 
institutional review boards and approved under ARL-19-175. 

2.1  Participants 

A total of 48 participants (36 from the original protocol and an additional 12 from 
an amendment) were recruited from the USMA cadet population enrolled in the 
Introduction to Psychology for Leaders course. After removing participants due to 
technical difficulties or no-shows of one or both team members, the results included 
the findings from 28 participants (14 dyads). Two of these dyads were unable to 
complete the study due to time constraints, and so their data sets were removed, 
resulting in a final data set of 24 participants (12 dyads). 

All participants had completed basic military training; some cadets were former 
enlisted Soldiers. While we did not collect demographic data for this study, cadets 
could range from 18 to 24 years of age, could represent all 50 states, and 23% of 
the Corps of Cadets are women. Cadets signed up to volunteer for this study through 
the SONA system. SONA is an online participant pool management system that 
provides for scheduling and management of research projects, including providing 
cadets with a description of research projects.  

2.2 Task  

Participants conducted three engagement runs: a practice session (target exposure 
time unlimited), Simulated Gunnery Exercise 1 (target exposure time doubled from 
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standard Army doctrine: 100 s), and Simulated Gunnery Exercise 2 (target exposure 
time set to Army standard for a Table VI gunnery exercise: 50 s). Each run 
contained a minimum of five target engagements (i.e., five different sets of targets) 
and included both offensive and defensive operations on both stationary and 
moving targets. Two different courses were created, matched for consistency and 
difficulty, and counterbalanced so that participants did not get the same set of 
targets for each exercise. The order of the conditions was set, Exercise 1 followed 
by Exercise 2.  

The purpose of the practice run was to familiarize participants with the task and 
role. All questions were answered during the practice run. Participants then 
completed the two simulated gunnery exercises in an assigned role. The 
commander role was fulfilled by a confederate who was trained in how to respond 
for a successful mission. 

2.3 Crew Roles  

The five crew-member roles were commander, robotic-vehicle lethality operator, 
robotic-vehicle mobility operator (Fig. 1), LRAS3 operator, and manned-vehicle 
driver. For the purpose of this experiment, the LRAS3 operator and manned-vehicle 
driver roles were simulated. The roles are described in detail as follows: 

Commander (confederate role filled by a member of the experimental team, a 
retired Armor Master Gunner in the US Army) is responsible for mission objectives 
and operational outcomes; issues the crew a fire command when enemy contact is 
reported and then reports battle damage assessment to the tower.  

Robot Lethality Operator (participant) is responsible for robotic gunnery 
operations, monitors autonomous targeting capability, and engages targets using a 
combination of touch commands and hand grip controls (e.g., initiates slew-to-cue 
gunnery movements, makes fine-grained gunnery movements to control for wind 
and terrain, and makes firing decisions). 

Robot Mobility Operator (participant) is responsible for robotic vehicle’s mobility, 
plans initial routes, monitors autonomous mobility of vehicle and terrain, adapts 
autonomy control allocation (switch between autonomous control modes, such as 
waypoint following or teleoperation), and pauses/resumes vehicle to support 
gunner. 

Manned Vehicle Driver (simulated) controls the mobility of the manned vehicle so 
that the sensors (such as the LRAS3) onboard this vehicle can support the gunnery 
task. 
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LRAS3 Operator (simulated) is responsible for locating and lasing targets, which 
updates the WMI and supports the crew’s SA and weapon-system autonomy 
features.  

 

Fig. 1 Cadets in the role of Robot Lethality Operator (left) and Robot Mobility Operator 
(right) 

2.4  Wingman Simulation Testbed 

The Wingman simulation testbed is a software-in-the-loop simulation environment. 
This means it integrates all of the real-world Wingman vehicle software into a lab-
based virtual setting. The design and development is available for review in ARL-
TN-0830 (Schaefer et al. 2017b), ARL-TR-8254 (Schaefer et al. 2017c), and ARL-
TR-8572 (Schaefer et al. 2018). It was designed to support the 5-man crew station 
on a command-and-control vehicle, where the roles could be manned roles or 
simulated. The virtual environment includes a virtual gunnery range from Camp 
Grayling, Michigan, and possible targets include both troop and vehicle (stationary 
and moving) targets.  
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The Wingman vehicle supports several levels of navigation autonomy, including 
teleoperation, waypoint finding, semiautonomous driving, and full autonomy. The 
operator’s goal is to effectively switch between the different control modes and 
qualify in several different scenarios. The Wingman vehicle can help operators find 
potential targets and even keep weapons aimed on those targets. Ultimately 
however, it is the lethality operator’s responsibility to decide whether to fire or not. 

2.4.1  WMI 

Participants interacted with a touchscreen computer. The software is the Wingman 
WMI developed by DCS Corporation for the Army. It provides an interactive 
platform that provides shared SA and cooperative team operations. The commander 
and two robotic operators each have a WMI display. This display provides a 
dynamic map showing the vehicle’s placement in the world, identified targets, and 
sensor data.  It also allows the robotic operators to interact with the vehicle and set 
different levels of autonomy.  

2.4.2  Gamepad Controllers 

Participants used a standard gamepad controller to teleoperate the robotic Wingman 
vehicle (Fig. 2) and operate the simulated weapon system (Fig. 3).  

 

 

Fig. 2 Controller layout for robotic mobility operator’s controls 
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Fig. 3 Details of controller layout for robotic lethality operator’s controls 

2.5  Physiological and Behavioral Equipment 

In order to assess potential physiological indicators of trust, the Empatica E4 sensor 
provided unobtrusive measures of HR and EDA. To assess additional behavioral 
indicators of trust (other than button presses on the WMI and autonomy use), the 
Logitech C920 HD Pro Web Camera was used to record changes in facial features.  

2.5.1  Empatica 

The Empatica E4 (Fig. 4) is a wrist-worn sensor with a photoplethysmography 
(PPG) sensor—providing blood volume pulse (BVP) from which HRV can be 
derived—and accelerometer, EDA sensor, and IR thermopile (skin temperature). 
For this study, we are interested in HR, HRV, and EDA. The Empatica E4 was 
cleaned with a sanitizing wipe after each participant and placed on the overnight 
charging device at the end of day. 

 



 

11 

 
Fig. 4 Empatica E4 Sensor 

2.5.2  Digital-Camera Facial Video and Microphone Audio 
Subject-oriented video and audio were continuously recorded during the 
experiment using a Logitech C920 HD Pro Web Camera.∗ The Logitech C920 is a 
commercially available, desktop-mounted stand-alone video camera and 
microphone from which metrics of posture, facial expression, eye blinks, brow 
raises, and speech semantics may be derived. As shown in Fig. 5, this system is 
mounted on a simulation computer monitor, and no part of the device is attached to 
the participant.  

 
Fig. 5 Logitech C920 HD Pro Camera with autofocus and built-in stereo microphone; 
shown mounted on desktop monitor 

2.6  Facilities 

An 8- × 10-ft laboratory was used for data collection. The laboratory was equipped 
with lab tables and chairs and located on the 2nd floor of Thayer Hall, USMA, West 

                                                 
∗ https://www.logitech.com/en-us/product/hd-pro-webcam-c920; Logitech, Switzerland. 
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Point, New York. Researchers coordinated with the Department of Behavioral 
Sciences and Leadership’s Research Psychologist to schedule laboratory use.  

2.7  Questionnaires 

Questionnaires’ topics included trust in the robotic vehicle, team readiness, stress, 
and workload.  

1) Trust in the team/robotic vehicle: Subjects rated their trust in the team and 
trust in the robotic vehicle. Items included 7-point Likert-type questions 
rating the perceived level of intelligence of the vehicle, perceived level of 
automation, perceived trustworthiness, and perceived safety.  These items 
were adapted from Schaefer et al. (2012) and were used in prior Wingman 
studies (ARL-18-165; Schaefer et al. 2019a).  

2) Team Readiness: Subjects rated their team readiness (7-point Likert-type 
questions). These items were developed for a previous protocol (ARL-18-
165; Schaefer et al., 2019a):  

a. Team readiness to operate the robotic vehicle  

b. Self-confidence in operating the robotic vehicle or robotic weapon 
system.  

c. Confidence in the team to operate the robotic vehicle 

d. Confidence in the team to operate the weapon-system autonomy 

e. Trust in the weapon-system autonomy of the robotic vehicle  

f. Trust in the mobility-system autonomy of the robotic vehicle  

g. Trust in the team to conduct gunnery operations with the robotic 
vehicle  

3) Stress: Because of the improved discriminant validity and the control of 
checking the response set, the Multiple Affect Adjective Checklist–Revised 
(MAACL-R; Lubin and Zuckerman 1999) form has been found to be 
particularly suitable for investigations that postulate changes in specific 
affects in response to stressful situations. This form consists of a list of 132 
adjectives for which participants are instructed to check all of those words 
describing how they “feel right now” or “during the simulation.” The 
MAACL-R assesses five affective dimensions: anxiety, depression, 
hostility, positive affect, and sensation seeking; also, two composite 
dimensions: dysphoria (DYS), and Positive Affect and Sensation Seeking 
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(PASS) (Lubin and Zuckerman 1999). Table 1 shows each of the 
dimensions and their associated adjectives. Raw scores are calculated for 
each dimension and converted to T-scores prior to analysis. 

Table 1 Seven dimensions of stress from MAACL-R questionnaire 

Dimension Adjectives 
Anxiety Afraid, fearful, frightened, panicky, shaky, 

tense 
Depression Alone, destroyed, forlorn, lonely, lost, 

miserable 
Hostility Annoyed, critical, cross, cruel, disagreeable 
Positive affect Measures a state/trait of low arousal or calm;  

adjectives include happy, joyful, pleasant 
Sensation seeking Measures a state/trait of arousal or positive 

level of activation; adjectives include 
adventurous, daring, and energetic 

DYS Anxiety + depression + hostility 
PASS Positive affect + sensation seeking 

 
4) Workload: The NASA-Task Load Index (NASA-TLX) six-item task-load 

index (Hart and Staveland 1988) provided workload assessment specific to 
mental demand, physical demand, temporal demand, performance, effort, 
and frustration. The NASA-TLX was used to evaluate participants’ 
perceived workload level in these areas on 10-point scales.  

2.8  Performance Metrics 

Specific interactions with the operation of the robotic Wingman vehicle were 
recorded, including frequency of interventions and duration of time relying on the 
vehicle. These metrics are automatically collected in the WMI log file for each user 
station. Screen-capture software was used to record the state of each of the robotic 
operators’ WMI screens to understand how each user interacted with their system. 

Each run was also evaluated using the DA Form 8265, the Common Crew Score 
Sheet (Fig 6). Each engagement within a run is worth a maximum of 100 points. 
Shortcomings, errors, and inaccurate or incorrect responses during conduct of fire 
were recorded. There are four categories of crew-duty penalties: 1) immediate 
disqualification (i.e., extremely hazardous conduct), 2) automatic zero (i.e., 
disregard for announced actions, conditions, or standards), 3) 30 point (i.e., failure 
to adhere to basic safety or personnel-protection precepts), and 4) 5 point (i.e., 
failure to perform fundamental leader–crew tasks). These penalties are subtracted 
from the score.  
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Fig. 6 Common Crew Score Sheet 

On the score sheet in Fig. 6 the kill time for each target is entered in (A). To 
calculate the modifier, the engagement modifier table is used, taking into account 
the platform, the vehicle posture, target type, target posture, and the range to the 
target. After entering that in (B), a defilade time is entered in (C) if the firing vehicle 
was in a defensive position. Then, the modifier and defilade time are subtracted 
from the kill time to determine the engagement time, which was then entered in (E). 
The points then are referenced from the target-engagement-time row on the top with 
the associated point underneath; that value is entered in (F). The total is divided by 
the total number of targets for determination of the base score. Then, any penalties 
are subtracted from the base score to get the engagement score. To qualify an 
engagement, the crew must score a minimum of 70 points per target and have an 
engagement score of at least 70 points (scores are provided in Appendix A). 

2.9  Behavioral and Communication Measures 

2.9.1 Facial Expressivity 

The participant’s face was continuously recorded throughout the task via a webcam 
mounted to the simulation screen. Features relating to emotional expression were 
quantified via the OpenFace software platform (Baltrušaitis et al. 2016). Overall, 
this platform provides automatic assessments of frame-by-frame, single-AU 
evidence following the Facial Action Coding System (FACS; Ekman and Friesen 
1978). Following FACS, facial expressions relating to universal emotions (i.e., 
happiness, sadness, surprise, fear, anger, disgust, and contempt) were manually 
calculated, on a frame-by-frame basis separately for each task, using computations 
of single-AU evidence. Table 2 outlines the specific AUs needed to calculate each 
universal emotion.  
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Table 2 Facial-expression emotion calculation from single AUs (adapted from Ekman and 
Friesen 1978) 

Emotion classification Action units 
Anger 4+5+7+23 
Contempt R12A+R14A 
Disgust 9+15+16 
Fear 1+2+4+5+7+20+26 
Happiness 6+12 
Sadness 1+4+15 
Surprise 1+2+5B+26 

2.9.2 Crew Audio 

Audio data files were assessed to provide insights into how crews worked through 
the crew gunnery-engagement process known as DIDEA (detect, identify, decide, 
engage, assess). Using this process, the crew must rapidly acquire targets, identify 
them as potential threats, make a decision to engage or not engage a target, engage 
the target(s), and then assess the effects of each firing action (Schaefer et al. 2019b). 
Therefore, audio recording from each dyad’s performance was used to identify 
times when crews a) first noticed targets, b) first acquired a target, c) first provided 
a fire command, d) first fired, and e) first registered a hit on a target. No participants 
opted out from audio data collection. 

2.10 Physiological Metrics 

The Empatica E4 uses a PPG sensor, which implements an optical measurement 
technique, to detect BVPs. While PPG-based, wrist-worn wearable sensors provide 
useful information related to the cardiovascular system, research has shown that its 
data are less reliable and more susceptible to noise when the wrist is moving. As a 
result, data reported here should be taken as more of a proof-of-concept and 
exploratory analysis on the use of wearables for objectively and unobtrusively 
tracking individual’s physiological activity that could dynamically reveal insights 
into their physiological conditions during task performance. In processing the inter-
beat-interval (IBI) and HR measures produced by the Empatica software package, 
we discovered that the two time-series data were incorrectly derived and the quality 
of these data was such that they could not be used for our analyses (see Appendix 
B for details). Therefore, we obtained IBI and HR metrics from the BVP signal 
instead with our processing pipelines. First, the 64-Hz sampled raw BVP signals 
were band-pass filtered between 0.8 Hz and 2.5 Hz, the frequency range that 
respectively corresponds to 48 and 150 beats per minute. The BioSPPy biosignal-
processing package (in Python) was then used to process the filtered BVP signals 
to obtain IBI time-series estimates. Subsequently, IBI values considered 
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abnormal/artifacts (any IBI values that are more or less than 30% of its neighboring 
IBI values) and outliers (IBI values that are not within 3 standard deviations (SDs) 
of the entire IBI distribution) were removed before further analysis. HR data were 
calculated from the IBI time series (HR = 60000/IBI), and the time-domain HRV, 
quantified here using Root Mean Square of Successive Differences (RMSSD), was 
calculated using IBI values over time periods of resting, training, Exercise 1, and 
Exercise 2. Averaged HR and EDA measures with confidence intervals (CIs) were 
also calculated. Each individual HR, HRV, and EDA data were normalized by their 
resting measures before combining measures across all dyads (i.e., grouping 
lethality operators or robotic mobility operators). 

2.11 Procedure 

Upon the arrival of the participants, researchers greeted the participants and 
thanked them for their time and participation. Each participant randomly sat in 
either chair before them, which determined which role they would take. They were 
asked to fully read and fill out the two copies of consent forms in front of them. 
After researchers collected signed consent forms, further instructions were 
provided. Each participant was fitted with an Empatica E4 wrist sensor and if they 
agreed to being recorded visually and auditorily, Logitech cameras were turned on 
and put on record. Researchers explained to the participants that they were to use 
the Wingman protocol interfaces to practice and then complete two exercises with 
five target engagements each on a simulated gunnery course. The participants had 
a 5-min training session with the researchers to go over fundamental controls and 
job specifications.∗ The robotic lethality operator and mobility operator had a 
practice exercise where they could go through their tasks without time restrictions. 

Each exercise started with one researcher giving a quick scenario and the 
participants verbalizing readiness to their confederate commander. Before 
beginning an iteration, both participants would reply with “REDCON 1” 
(Readiness Condition 1) to notify their confederate commander that they were 
ready to begin the iteration. Each exercise required the vehicle operator to 
maneuver the vehicle to specific battle positions. When targets eventually came up, 
the vehicle operator immediately stopped the vehicle and the lethality operator 
began to identify and shoot down targets. When the lethality operator had identified 
and lazed a target, they would notify the commander with “Target identified.” Once 
the confederate commander verified, he would give the command to “Fire” and the 
lethality operator responded with “On the way” as he squeezed the trigger. The 
commander could see the results of each action and either say “Target, target 

                                                 
∗ Traditional gunnery training requires 6 months.  
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destroyed” or make corrections for the lethality operator to adjust their aim. The 
first exercise allotted 100 s of exposure time for the targets, while the second 
exercise gave only 50 s to engage and destroy the targets.  

Through the different engagements, the researchers and cadet research assistants 
collected performance, physiological, auditory, visual, behavioral, and subjective 
data. The participants were graded based on qualification standards on a Table VI 
gunnery exercise. Subjective data were collected in the form of questionnaires that 
participants filled out on the completion of each exercise. Each participant 
completed three sets of questionnaires (after the training and each exercise) 
covering topics of trust in the Robotic Combat Vehicle (RCV), team readiness, 
stress, and workload. Upon the completion, the cadet dyads were released and 
thanked for their participation. 

2.12 Design 

This was a within-subjects design where dyads (+ confederate commander) 
completed the practice session (unlimited exposure time), Simulated Gunnery 
Exercise 1 (exposure time = 100 s), and Simulated Gunnery Exercise 2 (exposure 
time = 50 s).  The order of conditions was fixed; however, the virtual test courses 
were matched for difficulty and counterbalanced prior to arrival in the study. 
Participants maintained their role throughout the entire experiment.  

3.  Results 

These results provide an exploratory analysis of team trust for human–autonomy 
lethality teams. Analyses build on performance-based metrics for gunnery 
operations to explain team member perceptions of stress, workload, and trust as 
well as potential objective indicators of trust from communication, behavior, and 
physiological cues.   

3.1 Performance  

Performance scores included analysis from the standard scoring using the Army 
DA Form 8265, the Common Crew Score Sheet. Gunnery performance was 
measured as a crew and reported in Table 3 (see also Appendix A). Even though 
the length of the exercises was different, the standard for qualification remained the 
same.  
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Table 3 Qualification scores 

Dyad Exercise 1 Exercise 2 
No. qualified Total score Avg Score No. qualified Total score Avg score 

  2 3/5 272 54.4 3/5 340 68 
  3 2/5 265 53 5/5 478 95.6 
  4 2/5 309 61.8 3/5 314 62.8 
  5 3/5 384 76.8 3/5 277 55.4 
  6 3/5 393 78.6 0/5 191 38.2 
  7 3/5 316 63.2 3/5 420 84 
  8 1/5 200 40 3/5 324 64.8 
  9 1/5 236 47.2 2/5 284 56.8 
11 2/5 305 61 3/5 385 79 
12 3/5 398 79.6 2/5 338 67.6 
13 3/5 347 69.4 2/5 281 56.2 
14 1/5 233 52.4 2/5 262 46.6 

Note: Performance scores were calculated using Army guidelines in Training Circular 3-20.31. Each 
engagement had a maximum score of 100 points, where 70 are considered a qualifying score.  
 

A two-way analysis of variance (ANOVA) was conducted on the performance 
scores for exercise (Exercise 1 vs. Exercise 2) and posture (offensive vs. defensive). 
There was no significant difference in performance between Exercise 1 (M = 61.45, 
SD = 34.597) and Exercise 2 (M = 64.58, SD = 33.066), p = 0.613. There was a 
significant difference in posture, F(1, 116) =10.70, p = 0.001, where performance 
scores for defensive operations (M = 70.72, SD = 3.78) were significantly higher 
than offensive operation (M = 51.46, SD = 4.78). This is in line with standard 
gunnery findings where engagements in a defensive position were easier to qualify 
since timing for offense began once targets were locked in position. A significant 
interaction, F(1, 116) = 8.58, p = 0.004, showed that the difference between 
postures was only significant for Exercise 1 when participants had more time. 
Manned-platform crews are given a standard of 6 months to train on their system 
as a crew prior to qualification. This enables the members to gain trust in their crew 
and their weapon system. These findings suggest the cadets were able to show these 
same patterns with only two exercises totaling 55 min.  

3.2  Self-Reported Ratings 

Self-reported ratings of trust, stress, and workload can provide critical insights into 
performance-based scores. 
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3.2.1  Self-Reported Differences between Exercises 1 and 2 

Paired-samples t-tests were conducted to assess differences in subjective responses 
on trust, stress, and workload between Exercises 1 and 2. The only significant 
difference was in workload, t(23) = 2.30, p = 0.030, where participants experienced 
higher mental demand (M = 43.96, SD = 19.166) in Exercise 1 than Exercise 2 (M 
= 35.42, SD = 22.745). This result reinforces the performance findings. In 
particular, the workload score reinforces the effects of the minimal training time on 
the first exercise. The significant drop in mental demand suggests the technology 
and team dynamics for manned–unmanned gunnery operations is transparent and 
successful with minimal exposure to the task and autonomy.  

3.2.2 Self-Reported Differences between Lethality and Mobility 
Operators 

Paired-samples t-tests were conducted to assess the impact of the operator role 
(lethality or mobility) on self-reported ratings of trust, stress, and workload. When 
analyzing stress, we found that positive affect for the mobility operator was 
significantly higher, t(39.79) = –2.40, p = 0.021, whereas the lethality operator 
scored significantly higher on sensation seeking, t(44.39) = 2.08, p = 0.044. With 
respect to the DYS scale—a composite of anxiety, depression, and hostility 
scales—lethality operators scored significantly higher, t(34.82) = 2.35, p = 0.025, 
which may suggest the presence of emotional distress (Fig. 7) 

 

Fig. 7 Stress by role for positive affect, sensations seeking, and dysphoria 
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This matched with findings from the workload assessment, whereby the lethality 
operator had higher workload than the mobility operator—a significant main effect 
of role on total workload, F(1, 44) = 19.75, p < 0.001; mental demand, F(1, 44) = 
6.61, p = 0.014; temporal demand, F(1, 44) = 14.46, p < 0.001; frustration, F(1, 44) 
= 5.51, p = 0.24; and effort, F(1, 44) = 15.38, p < 0.001. 

3.2.3 Team Readiness 

To understand the level of cohesion between the operators, a Pearson correlation 
analysis was conducted for the Team Readiness questionnaire (TRQ) items—
assessing readiness, confidence, and trust when interacting with autonomy—for the 
different operator roles (Table 4) of the RCV. Positive correlations among team 
members suggest cohesion among the team members.  

Table 4 Correlations among items on the TRQ 

Role TRQ item Operate 
RCV 

Operate 
weapon 

Self-
confidence 

Team 
confidence 

Confidence 
weapon 

Trust 
weapon 

Trust 
mobility Team trust 

Le
th

al
ity

 o
pe

ra
to

r 

Operate 
RCV 

. . . . . .  . . .  . . .  . . .  . . .  . . .   . . . 

Operate 
weapon 

0.872a  . . . . . .  . . .  . . .  . . .  . . .   . . . 

Self-
confidence 

0.732a  0.837a  . . . . . .  . . .  . . .  . . .   . . . 

Team 
confidence 

0.786a  0.814a  0.863a  . . . . . .  . . .  . . .   . . . 

Confidence 
weapon 

0.721a  0.836a  0.933a  0.896a  . . . . . .  . . .   . . . 

Trust 
weapon 

0.418a  0.455a  0.496a  0.570a  0.572a  . . . . . .   . . . 

Trust 
mobility 

0.462a  0.280 0.442a  0.580a  0.502a  0.528a  . . .  . . . 

Team trust 0.662a  0.614a  0.766a  0.833a  0.807a  0.554a  0.553a  . . . 

M
ob

ili
ty

 o
pe

ra
to

r 

Operate 
RCV 

. . . . . .  . . .  . . .  . . .  . . .  . . .   . . . 

Operate 
weapon 

0.652a  . . . . . .  . . .  . . .  . . .  . . .   . . . 

Self-
confidence 

0.646a  0.569a  . . .       . . . . . .  . . .  . . .   . . . 

Team 
confidence 

0.624a  0.585a  0.857a  . . . . . .  . . .  . . .   . . . 

Confidence 
weapon 

0.718a  0.889a  0.627a  0.669a  . . . . . . . . .   . . . 

Trust 
weapon 

0.274 0.414a  0.200 0.203 0.431a  . . . . . .   . . . 

Trust 
mobility 

0.349b 0.365b 0.365b 0.458a  0.412a  0.438a  . . .  . . . 

Team trust 0.494a  0.661a  0.666a  0.671a  0.661a  0.424a  0.471a   . . . 
a Correlation is significant at the 0.01 level (2-tailed) 
b Correlation is significant at the 0.05 level (2-tailed) 
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Paired-samples t-tests were conducted to determine if there were any differences in 
lethality and mobility operators’ ratings of readiness, confidence, and trust when 
using the mobility autonomy and weapon autonomy. For the mobility autonomy, 
results showed no significant differences for team readiness (p = 0.512), confidence 
(p = 0.765), or trust (p = 0.365). Similar results were found for the weapon 
autonomy: no significant differences in ratings for readiness (p = 0.903), team 
confidence (p = 0.894), or trust (p = 0.636). Further, mean ratings for readiness, 
confidence, and trust for the mobility and weapon autonomy ranged from 5.3 to 
5.8, with the exception of trust ratings for the weapon-system autonomy, which was 
4.42 (SD = 1.61) for the lethality operator and 4.63 (SD = 1.64) for the mobility 
operator, indicating a relatively high level of readiness, confidence, and trust. Taken 
together, the lack of significant differences, coupled with relatively high mean 
ratings on the TRQ items, is promising and indicates that both operators were able 
to perform their tasks and developed confidence and trust in the mobility and 
weapon autonomy. This is critical because the operators only had a short time 
interacting with the systems (e.g., a total of 55 min, with 5 min of training) and no 
prior exposure, further reinforcing the performance findings and providing some 
initial insights for integrating autonomous assets into military teams. 

Since confidence can directly impact trust and readiness to team with autonomy, a 
2 × 3 repeated-measures ANOVA was conducted to understand if there were any 
significant effects of Role (lethality vs. mobility) and Condition (practice, Exercise 
1 vs. Exercise 2) on ratings of self-confidence and team confidence with the 
mobility autonomy and weapon autonomy. For ratings of self-confidence with the 
mobility and weapon autonomy, there was only a main effect of condition, 
F(2, 20) = 16.76, p < 0.001. Pairwise comparisons showed significantly lower self-
confidence ratings for Practice compared with Exercise 1 (mean difference = –1.36, 
p < 0.001) and Exercise 2 (mean difference = –1.64, p < 0.001); however, self-
confidence ratings did not significantly differ between Exercise 1 and 2 (p = 0.480). 
These findings indicate self-confidence with the mobility- and weapon-system 
autonomy increased with usage, which is an important finding when teaming 
humans and autonomous systems.  

For ratings of team confidence with the mobility autonomy, there was only a 
significant main effect of condition, F(2, 22) = 11.74, p < 0.001. Pairwise 
comparisons showed significantly lower team-confidence ratings for Practice 
compared with Exercise 1 (mean difference = –0.917, p = 0.010) and Exercise 2 
(mean difference = –1.42, p = 0.003), and significantly lower team-confidence 
ratings for Exercise 1 compared with Exercise 2 (mean difference = –0.500, p = 
0.026). Similarly, ratings of team confidence when using the weapon system 
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differed by Condition, F(2, 22) = 5.81, p = 0.002. Pairwise comparisons showed 
significantly lower-team confidence ratings for Practice than Exercise 1 (mean 
difference = –0.792, p = 0.020), and Exercise 2 (mean difference = –0.917, p = 
0.023), but no differences between Exercise 1 and 2 (p = 0.586). Lastly, a paired- 
samples t-test was performed to compare team confidence operating the RCV and 
team confidence operating the weapon.  Results showed a significant difference in 
team confidence between the two systems, t(47) = 2.86, p = 0.006, with 
significantly higher team-confidence ratings for the mobility autonomy (M = 5.63, 
SD = 1.00) than weapon autonomy (M = 5.40, SD = 1.14). These findings suggest 
that team confidence also increased with system usage for the mobility autonomy, 
but team members were able to reach a stable level of team confidence with the 
weapon system more quickly than with the mobility autonomy. Considering the 
total time interacting with the team was 55 min, these results are noteworthy and 
should be investigated further with a larger sample size to confirm these findings. 

3.3  Detect, Identify, Decide, Engage, Assess (DIDEA) 
Communication Analysis 

Audio recordings were assessed to provide insights into how crews worked through 
the DIDEA process. The audio was used to identify times when crews a) first 
detected targets, b) first acquired a target, c) first provided a fire command, d) first 
fired, and e) first registered a hit on a target. These times were used to determine 
how long it took the crews to go from first noticing a target to firing on it, which is 
an indicator for how well they performed crew gunnery and how quickly they 
moved through the DIDEA process. 

Figure 8 represents the average time between when a target was first detected and 
when the target was either first fired upon (blue dots) or hit (orange dots). The data 
are averaged across all crews and represent the time-to-fire for each engagement. 
The data are trending downward, indicating crews reduced their time-to-fire as they 
completed more engagements and providing evidence for a training effect over 
time. This trend also supports the finding that participants experienced higher 
mental demand in Exercise 1 than Exercise 2, indicating participants became more 
comfortable with the gunnery process, further reinforcing the finding from both the 
performance and self-reported analyses.  

Note the decrease in the difference between fire time and hit time as crews proceed 
through the engagements. A larger difference between the “fire time” (blue dots) 
and “hit time” (orange dots) indicates the shots likely missed and the crew had to 
readjust their aim in order to successfully hit the target. A smaller difference 
indicates the crew was able to hit the target in fewer attempts. Therefore, the 
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decrease in the difference between “fire times” and “hit times” between the first 
few engagements and the last few engagements suggests that crews became more 
accurate with their shots and efficient at the gunnery process. 

 

Fig. 8 Average times for all crews to fire on (black) and hit (white) targets; all 10 target 
engagements are in order of exposure, 5 engagements in Exercise 1, and 5 engagements in 
Exercise 2 

There was a significant negative correlation between crews’ average hit time in 
Exercise 2 and their self-reported trust in the weapon autonomy (r = –0.627, p= 
0.060, n = 12). In other words, for Exercise 2, as crews reduced their hit times (thus 
hitting targets more quickly), their trust in the weapon autonomy increased. This 
suggests that a primary driver of crews’ trust in the weapon autonomy is their ability 
to use it effectively to complete the mission. This also supports the earlier finding 
that crews reported a higher mental demand in Exercise 1 than in Exercise 2, 
suggesting these trends reveal crews’ improvement in gunnery and in the DIDEA 
process itself. 

CI analysis (Table 5) suggests no significant differences in time-to-first-fire or 
time-to-first-hit between engagements in Exercise 1, and no significant differences 
in engagements in Exercise 2 (Fig. 9). However, CI analysis suggests the time-to-
first-fire was significantly longer for Exercise 1 than Exercise 2 for Engagement 1 
and nearing significance for Engagement 4. For time-to-first-hit, Exercise 1 was 
significantly longer for Engagement 1 (Fig. 10).  The other point of note is that the 
variability in teams is much smaller for Exercise 2 than Exercise 1.  
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Table 5 Descriptive statistics for average crew time-to-first-fire and time-to-first-hit 

Crew time Exercise Engagement M SD CI low CI high 

First fire 

1 

1 37.75 13.03 30.38 45.12 
2 25.42 26.40 10.48 40.35 
3 26.83 15.51 18.06 35.61 
4 34.17 15.97 25.13 43.20 
5 33.92 33.05 15.22 52.62 

2 

1 21.42 6.07 17.98 24.85 
2 18.58 14.64 10.30 26.87 
3 18.17 8.35 13.44 22.89 
4 22.67 11.49 16.16 29.17 
5 18.67 12.97 11.33 26.01 

First hit 1 1 48.92 22.78 36.03 61.81 
2 35.50 25.27 21.20 49.80 
3 31.17 20.19 19.74 42.59 
4 35.67 15.93 26.65 44.68 
5 35.75 32.13 17.57 53.93 

2 1 28.17 9.93 22.55 33.78 
2 27.67 15.48 18.91 36.43 
3 24.33 12.82 17.08 31.58 
4 27.00 11.88 20.28 33.72 
5 20.92 13.13 13.49 28.35 

Note: Time in seconds. M = mean.  

 

 

Fig. 9 CI analysis of time-to-first-fire; black bar is Exercise 1, white bar is Exercise 2 
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Fig. 10 CI analysis of time-to-first-hit; black bar is Exercise 1, white bar is Exercise 2 

3.4  Behavioral Indicators 

Performance scores alone may not be enough to understand the crew’s interactions 
during the task. While subjective assessments provide inferences about what a 
person is consciously aware of, behavioral responses can be indicative of 
subconscious indicators of trust. Here, facial expressions are assessed as a metric 
of a person’s affective experiences in real time, which can build on and extend 
beyond the retrospective self-reported response of emotional perceptions.  

3.4.1  Facial Expressivity  

This analysis focused on analyzing mean facial expressivity as a function of 
exercise (i.e., Exercise 1 vs. Exercise 2) and role (i.e., mobility vs. lethality 
operator) to determine if there were affective differences between the exercises or 
according to the role the participant was engaged in. The facial expressions 
analyzed reflect changes in the seven universal emotions (i.e., happiness, sadness, 
surprise, fear, anger, disgust, and contempt). A 2 (exercise) × 7 (emotion) repeated-
measures ANOVA found no significant effect of exercise, F(1, 22) = 2.46, p = 
0.131, but inspection of the means indicated the evidence for emotional expression 
did increase somewhat from Exercise 1 to Exercise 2 for all emotions, except for 
the emotion of “Surprise” (Fig. 11). Additionally, the main effect of emotion was 
significant, F(6, 17) = 16.65, p < 0.001, indicating the evidence values for the seven 
universal emotions significantly differed from one another and the time × emotion 
interaction was significant, F(6, 17) = 3.08, p = 0.031. 
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Fig. 11 Facial-expression evidence for seven universal emotions as function of exercise: 
means are somewhat higher in Exercise 2 than Exercise 1 (except for “Surprise”); error bars 
are standard errors 

Additionally, a series of t-tests were performed to determine if there was a 
significant difference in the means of the facial expressivity according to role. From 
Fig. 12, we see that evidence for facial expressions was somewhat higher for the 
lethality operator (e.g., this operator was more outwardly expressive) for all 
emotions except “Surprise” and “Disgust”.  
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Fig. 12 Facial-expression evidence for seven universal emotions as function of role: means 
for all emotions are somewhat higher for lethality operator (except “Surprise” and “Disgust”); 
error bars are standard errors  

More specifically, when analyzing the difference in means we found the following 
emotions were significantly different from one another: For both Exercises 1 and 
2, “Happiness” and “Contempt” were significantly higher for the lethality operator 
than the mobility operator (see Table 6). From this, we can infer the significantly 
higher happiness and contempt emotions could be due to the level of responsibility 
and level of difficulty required of the lethality operator.  

Table 6 “Happiness” and “Contempt” findings 

 Lethality operator Mobility operator   
Emotion M SD M SD t p-value 
Exercise 1 
Happiness 0.27 0.19 0.14 0.11 2.19 0.039 

Exercise 1 
Contempt 

0.48 0.20 0.26 0.17 3.14 0.004 

Exercise 2 
Happiness 

0.37 0.29 0.16 0.10 2.35 0.029 

Exercise 2 
Contempt 

0.56 0.30 0.23 0.22 2.99 0.007 
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3.4.2  Correlates of Facial Expressivity 

Additionally, bivariate correlations among 1) the seven facial expressions, 2) the 
seven MAACL dimensions, and 3) the physiological variables mentioned 
previously were performed to determine if any directional relationships existed 
among the variables, according to participant role, across both exercises.  

For the lethality operator, no relationships were found during Exercise 1; however, 
there were some significant relationships among the facial expressions and 
previously mentioned variables during Exercise 2 (Table 7). From this, it appears 
positive relationships exist among the emotional expression “Contempt”, the 
MAACL dimension “Sensation seeking”, and the combined “PASS” dimension. 
The negative relationship between the anxiety dimension on the MAACL and the 
facial-expression data indicates higher nervousness was not outwardly expressed 
as disgust for the lethality operator.  

Table 7 Correlations among facial expression and MAACL variables for lethality 
operator, Exercise 2 

MAACL self-reported ratings 
Facial data 

Disgust Contempt 
Anxiety –0.688a . . . 
Sensation seeking  . . . 0.666a 
PASS . . . 0.591a 

a Correlation is significant at the 0.05 level 
Note: No relationships were found in Exercise 1 for the lethality operator 

 
For the mobility operator there were several significant relationships among the 
facial expressions and other variables in both Exercise 1 and 2 (Table 8). Negative 
relationships between the MAACL dimension “Sensation seeking” and 
“Happiness” were found to exist. Additionally, higher depression ratings were also 
related to more outward expressions of “Contempt”. Finally, positive relationships 
with the RMSSD measure (both resting baseline levels and Exercise 1) exist for the 
expression “Surprise”.  
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Table 8 Correlations among facial expression, MAACL, and physiological variables for 
mobility operator, Exercises 1 and 2 

  Exercise 1 Exercise 2 
Contempt Happiness Surprise Surprise Disgust 

Depression  0.586a … … … … 
Sensation seeking … –0.629 a  … … … 
Positive affect … … … … 0.608 a  
PASS … … … … 0.604 a  
Resting RMSSD … … 0.591a  … … 
RMSSD … … 0.557a  0.578a … 
a Correlation is significant at the 0.05 level 

 
In Exercise 2, significant relationships were found among the emotion “Disgust” 
and “Positive affect” and the combined “PASS” dimension. This may be indicative 
of frustration at having to participate in the monotonous nature of the task for this 
particular role. Finally, RMSSD and “surprise” were positively correlated.  

3.5  Physiological Indicators 

Results from our physiological analyses suggest that, relative to their resting 
baseline measures, both the mobility and lethality operators’ averaged HR, EDA, 
and HRV increased during training and while they engaged targets in both exercises 
(see Figs. 13–15). These results are consistent with the idea that as the participants 
performed the tasks in those periods, they were more engaged and alert. Increases 
in EDA for both roles indicated the dyad experienced higher arousal and increased 
cognitive workload. While the levels of EDA increases were similar in both 
exercises for the two roles, the mobility operator had significantly higher EDA 
during training (Fig. 13). Coupled with the mobility operator having higher HR 
than the lethality operator in all conditions (Fig. 14), these results suggest role 
differences in that the operator of the vehicle was more alert and cognitively 
burdened as (s)he constantly provided safe and secure mobility operation. Parallel 
increases over time in vagally mediated HRV (noninvasive measure of 
parasympathetic activity) for both roles (Fig. 15) suggest each dyad became more 
familiar with each other. Since research in animal models and humans suggest the 
parasympathetic nervous system is particularly important for the expression of 
social emotions and affiliative behaviors (Porges 2007), these findings suggest 
there may be some indication of positive social emotions and affiliative behaviors.  
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Fig. 13 Change in lethality and mobility operators’ EDA during training and Exercises 1 
and 2 shown as averages with CIs 

 

 

Fig. 14 Change in lethality and mobility operators’ HR during training and Exercises 1 and 
2 shown as averages with CIs 

 



 

31 

 

Fig. 15 Change in lethality and mobility operators’ HRV during training and Exercises 1 
and 2 shown as averages with CIs 

These physiological results were also consistent with other measures of team trust 
and cohesion, in that both lethality and mobility operators appeared to engage and 
stay alert (evidenced by increased HR and EDA) while performing the tasks and 
appeared to be relaxed (evidenced by decreased HRV) when between high-risk 
tasks, as evidenced in both exercises. While additional data and analysis are 
required to validate the use of physiological signals to infer team trust and cohesion, 
these results demonstrate its importance and application, as continuous tracking of 
these physiological signals could provide real-time estimates of team trust and 
cohesion that could be positively impacted with various interventions.  

3.6  Time Series Classification (TSC) 

The goal here was to build an algorithm to determine whether participants were 
engaged with a target on the basis of physiological signals measured from the wrist-
worn Empatica. In principle, this kind of algorithm could provide commanders with 
a binary outcome reflecting crew state that would be passively available at all times. 
Therefore, this goal was conceptualized as one of TSC; that is, given a short time 
series of physiological data measured from a participant, determine whether it was 
taken from a time when the participant was engaging with a target or not. To do so, 
data from seven signals (x, y, and z accelerometer signals, EDA, skin temperature, 
BVP, and IBI) over 14 sessions were divided into 3-s time series “epochs” to build 
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a model that maximally distinguished target-engaged and target-not-engaged 
epochs from one another. 

Using TSC techniques is an active area of work in machine learning; however, the 
best methods tend to be very time-consuming to train and tend not to scale to larger 
data sets (e.g., Fawaz et al. 2020). Recent work focusing on methods from the field 
of deep learning has identified several approaches that are equal to or better than 
these methods while being far less costly to implement. For example, prior research 
has conducted systematic studies of TSC deep-learning architectures that use the 
UCR/UEA archive (the largest time-series data repository; Chen et al. 2015, 
Bagnall et al. 2017) as a benchmark (Fawaz et al. 2019, 2020; Dempster et al. 2020).  

Therefore, in exploratory analyses we adopted and tuned the most promising of 
these methods to this specific data set. Initial findings clearly indicated that 
ROCKET (Random Convolutional Kernel Transform; Dempster et al. 2020) 
performed best compared to other state-of-the-art methods. However, ROCKET is 
applied specifically to univariate time series, so there was an option of applying 
this method to each physiological time series individually or creating an ensemble 
of ROCKETs to be applied to each time series simultaneously. In the former 
approach, ROCKET is applied exactly as it was originally conceived to each of the 
seven available signals separately. In the latter, the outputs of the individual 
ROCKET models are used as inputs to a single standard feedforward network 
trained to do the same classification task; that is, the feedforward network should 
learn an optimal mix of the original classifiers. The ensembling network 
architecture was designed using a Bayesian optimization algorithm implemented in 
KerasTuner (O’Malley et al. 2020). Furthermore, the models were trained on data 
sets either split by role (i.e., lethality operator vs. mobility operator) or not, as the 
prior analyses suggested it may be that different roles show different physiological 
profiles in the presence of a target. Thus, models were trained on four possible 
subsets of the data that followed from the four unique combinations of subsetting 
by single-signal versus ensemble and split-by-role versus roles-combined.  

A leave-one-session-out cross-validation approach was used whereby each session 
served as the test data while the remaining sessions served as the training data. As 
a result, these models are assessed in terms of an average of balanced accuracy over 
14 test cases (Table 9). The best-performing model was created by subsetting on 
both participant roles and making use of only a single physiological signal. 
Specifically, a model trained on only z-axis accelerometer data from lethality 
operator outperforms all other options. 
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Table 9 Balanced accuracy, averaged over 14 sessions (and SDs) for each model trained on 
each unique combination of role and signal subsetting 

  Signals 
Single  

M (SD) 
Ensemble 

M (SD) 

Roles 
Split 

0.55 (0.04) 0.54 (0.06) 
0.63 (0.06) 0.51 (0.02) 

Combo 0.54 (0.02) 0.53 (0.03) 
Note: In the case of role splits, the mobility operator is given first 
and then the lethality operator. In the case of the single signals, 
only results from the model trained on the best signal are shown. 
The best performance result is bolded.  

4.  Discussion 

Identifying possible trust-related metrics for effective human–autonomy team 
performance is difficult and complex. Performance scores alone do not provide any 
information about trust or the cohesion of the team. Even the traditional, self-
reported rating only provides a conscious state response to trust that is often 
confounded by the task and crew and suffers from reporting bias. This work 
provides further support that a multimethod approach is critical for quantifying 
team-trust and team-cohesion analyses. These results bring us one step closer to 
identifying key metrics for supporting human–autonomy team effectiveness. 

4.1  Review of Main Findings  

Traditional gunnery evaluations use the Common Crew Scoresheet to determine if 
a crew can qualify on a Table VI gunnery exercise. While this is traditionally used 
for human-only teams, this performance metric has more recently been applied to 
manned–unmanned lethality teams (Schaefer et al. 2019a; Baker et al. 2020). 
However, for this simulation study these metrics showed no difference between 
Exercise 1, where manned–unmanned lethality teams had twice as long to fire on 
target than normal, and Exercise 2, where the teams had the 50 s that is traditionally 
allowed. This finding contradicted expectations as Exercise 1 was twice as long, 
which should have led to better performance.  

However, prior research has suggested that in quantifying team trust and team 
cohesion for these manned–unmanned lethality teams, performance metrics alone 
do not tell the whole story. Specifically, a multimethod analytical approach is 
needed to understand the full implications on effective performance (Schaefer et al. 
2019a; Milner et al. Forthcoming 2021). Taking this approach, the data showed it 
is possible to glean information from very different measurement approaches to 
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understand the implications of role dynamics as they affect team trust, cohesion, 
and subsequently performance.  

Specifically, self-reported assessment occurs after the fact and takes into account a 
person’s conscious reflection about a task. These self-reported findings suggested 
higher mental demand for Exercise 1. While on the surface this could be a reflection 
of the limitations of training time, the significant drop in mental demand between 
the two exercises provides promising support in the current design of the autonomy 
and transparency of the WMI for successful team operations. Since the Wingman 
simulation testbed is a software-in-the-loop version of a real prototype system, this 
finding provides valuable feedback to the engineering team related to the current 
and future transparency of the system.  

Second, self-reported assessments brought to light critical similarities and 
differences between the lethality and mobility operators. An important finding was 
the presence of emotional distress and higher workload by the lethality operators 
were indicative of the differences in role responsibilities of the given task. 
However, the absence of significant differences between operators for team 
readiness, confidence, and trust in autonomy, coupled with relatively high mean 
ratings of these items, is promising and indicates both operators were able to 
perform their tasks and developed confidence and trust in the mobility and weapon 
autonomy. This is critical because the operators only had a short time interacting 
with the systems (e.g., a total of 55 min, with 5 min of training) and no prior 
exposure. This further reinforces the performance findings and provides some 
initial insights for integrating autonomous assets into military teams. 

Objective assessment of team communication with behavioral and physiological 
data can provide indicators of team trust and cohesion that occur during the 
interactions. Specifically with this data set, communication analysis demonstrated 
that crews reduced their time-to-fire as they completed more engagements. This is 
in line with the self-reported results of higher mental demand in Exercise 1 than 
Exercise 2 and indicates participants became more comfortable with the gunnery 
process. Further, crews became more accurate with their shots and efficient at the 
gunnery process. As their gunnery performance improved, they reported higher 
trust in the weapon autonomy, suggesting that a key to crews’ trust in the weapon 
autonomy is their ability to use it effectively to complete the mission. This links 
back to the gunnery score we discussed earlier by providing deeper context for why 
teams performed the way that they did.  

The facial and physiological analyses add additional layers on top of this to help 
explain the crew members’ physical and affective responses to what was happening 
on the task. Overall, the facial-expression analyses and physiological results are 
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somewhat corroborative. Here, HRV values increased overall, which may indicate 
that participants were able to better regulate their emotions and, thus, exhibit 
outwardly low facial expressions. HRV was somewhat higher for the lethality 
operator and somewhat lower for the mobility operator, further supporting previous 
self-reported findings related the divergence in the amount of effort for each 
operator. That said, one operator outwardly expressed high levels of emotional 
expression (i.e., facial expression values were comparatively low in this data set on 
a scale of 0–5). This may be due to the nature of the task, which was not particularly 
emotionally evocative; the task roles (e.g., the mobility operator had a very low 
task load and therefore may not have responded to task-related demands); or the 
subject population (e.g., cadets who may possess more self-control and emotional-
regulation abilities due to training). Further, the expressions were somewhat higher 
during Exercise 2, which may reflect the time constraints imposed on the team. 
These results will be investigated further in more realistic operational 
environments to better understand the linkages between behavioral and 
physiological measures.    

Together, all of these approaches give us a clearer perspective on the task as a whole 
and a better understanding of how the crew members functioned and interacted to 
achieve their goals on the task. In both exercises, with just 5 min of training to 
explain the features of the WMI and mission operations, teams almost reached 
qualification scores, and self-reported data related to team cohesion identified that 
team members were cohesive in their responses. This finding is promising in that 
the WMI and the capabilities of the autonomy lend themselves to appropriate and 
effective team dynamics. Additionally, the cohesive nature of ratings on the self-
reported measures could also indicate the “adoption” of autonomy as a team 
member rather than just as a tool to augment team performance. These claims will 
be verified and validated with larger data sets, including multiple team members 
both human and autonomous. 

4.2  Path Forward 

Trust-and-cohesion measurement alone is not enough to fully explain team 
performance or better facilitate effective team performance. Thus, the first step is 
to build on these approaches to identify and validate the key metrics needed to 
properly assess human–autonomy teaming with multiple humans and multiple 
types of autonomy for a variety of military operations. The second step is to 
determine how to use this type of data to provide trust-calibration interventions. 
More specifically, how can these different types of measures provide key markers 
as to when, how, and what changes should be implemented—from training, to 
machine-learning behaviors, to transparency displays or communication, to after-
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action reviews—to facilitate appropriate team dynamics. The third step is to 
develop and test the algorithms that classify these team dynamics.  

In line with the first two steps, approaches that use communication to understand 
trust and cohesion are promising; however, the structure of the crew 
communication from working with a novice and untrained team resulted in a 
hierarchical, commander-directed task allocation rather than a fully diversified 
team structure. Therefore, additional research is needed that investigates the 
relationships between human–autonomy team communication patterns with trust 
and cohesion. Better communication-based measures of trust and cohesion will 
allow for a unique window into the experiences of the team and will offer a means 
to identify when interventions are necessary as a result of communication 
breakdowns. In addition, future work examining physiological synchrony, 
behavioral coupling, and their association with self-reported measures is critical to 
inform near real-time measures of trust and cohesion that will support human–
autonomy teams in dynamic, uncertain environments and help inform appropriate 
and timely interventions to ensure properly calibrated trust within human–
autonomy teams. While these methods are currently only exploratory in nature, 
results described here and in previous work show promise for trust and cohesion 
measurement over time and will help fill an existing gap in the literature that needs 
to be addressed.     

In line with the third step, additional testing and development of engagement 
classification is needed to better understand the interplay between autonomy and 
the human as a sensor within a larger team. For this study, the choice of 
physiological equipment with the limited training scenario impacted the accuracy 
of classification approach for engagement classification. It was most likely due to 
insufficient data (e.g., limits of wrist-worn physiological sensors and limits of time 
synchronization of this data), insufficient task parameters (e.g., this simulated 
gunnery training did not elicit strong-enough responses during an engagement vs. 
baseline), limitations of the classification pipeline, or a combination of those. To 
address these limitations, near-term plans include 1) training and testing the 
classifier on upcoming data sets with more expansive physiologic data and different 
operational task scenarios and 2) evaluating the effects of changes to classifier 
parameters (e.g., epoch size). 

5.  Conclusions 

Overall, this study advanced general understanding of human–autonomy team trust 
and cohesion for lethality operations. It first reinforced that the current state of the 
actual prototype vehicle autonomy and transparency of the Warfighter Machine 
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Interface were promising for developing rapid team dynamics that resulted in 
performance scores that were in the range of gunnery-qualification metrics after 
only 5 min of training. This is a critical finding because traditional gunnery 
qualification occurs after six months of training. While additional training would 
ensure crews are well versed in the behaviors of the autonomy, WMI, and 
controllers, to allow Soldiers to become accustomed to the unmanned asset and 
more effectively facilitate appropriate trust in the team, the current findings are 
promising in that the inclusion of transparency-based displays and behaviors may 
drastically reduce this training time.  

The second key finding was that measuring team trust and cohesion for human–
autonomy teams is complex. Results from this laboratory study provided some 
initial insights regarding the utility of using a multimethod measurement approach. 
Further work is being done to determine how these methods translate to a more 
operationally relevant setting, adding to the perception of actual risk, given the 
challenges of data collection during field experiments. Specifically, understanding 
the interplay among mission context, environmental context, and social context will 
provide a more complete vision of the reasoning behind team decision-making. 
Thus, refinement of novel and exploratory measures, such as physiological 
synchrony and facial analysis, may provide near real-time indicators of trust and 
cohesion. In addition, communication can give a good window into understanding 
trust and cohesion in the team as well as providing additional reasoning behind 
team gunnery performance, leading to  more realized implications for expanding 
these methods to understand these team constructs in larger crews (e.g., larger than 
dyads, triads).  

Finally, the pipelines developed and lessons (as well as limits) learned through the 
physiological analysis and time-series classification of these data help inform what 
is currently feasible in these scenarios. This lays the groundwork for further 
investigation into using continuous physiology-based methods of state estimation 
to enable intelligent-technology adaptions and interventions. Going forward, we 
will iterate on these methods, apply them to other data sets, and test the efficacy of 
adapting systems in response to our real-time state estimations. 
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Appendix A. Performance Scores 



 

 

46 

Table A-1 Performance scores by step  

 
Note: Crew 101–102 did not complete Step 9 and Step 10 of Exercise 2 because of time constraints. Crew 1001–1002 were not able to complete any steps in Exercise 2 
because of technical issues with the simulation. The zero scores for these incomplete steps are noted by a black line through them. The crew rating is determined by score 
with 900–1000 as Distinguished (D), 800–899 as Superior (S), 700–799 as Qualified (Q), and 0–699 as Unqualified (U). 
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Appendix B. Inter-Beat-Interval (IBI) and Heart-Rate (HR) 
Measures Incorrectly Derived by the Empatica 
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Figures B-1 and B-2 showed comparisons of IBI and HR time-series data using 
IBI.csv and HR.csv that were output by the Empatica software package and data 
using our own processing pipelines. Compared with our derived estimates, the IBI 
data output by the Empatica showed big gaps of missing values, suggesting the 
algorithms used by the Empatica to derive its IBI values from the blood-volume-
pulse (BVP) signals were not robust and reliable. Our beat-to-beat HR signals’ 
processing pipelines outperformed the Empatica’s, producing IBI time-series data 
that were the basis for calculating HR and heart-rate-variability metrics. Similarly, 
not only did the HR data from the Empatica not show the appropriate inversed 
relationship with the IBI data, it also appeared to be too smooth to be true (see Fig. 
B-2).  

 

Fig. B-1 Comparison of IBI time series using IBI.csv output by Empatica and our own 
processing pipelines derived from BVP signals 
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Fig. B-2 Comparison of HR time series using HR.csv output by Empatica and our own 
processing pipelines derived from BVP signals
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ANOVA analysis of variance 

ARL Army Research Laboratory 
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BVP blood volume pulse 

CI confidence interval 

DA Department of the Army 

DEVCOM US Army Combat Capabilities Development Command 

DIDEA detect, identify, decide, engage, assess 

DOD US Department of Defense  

DYS dysphoria 

EDA electrodermal activity 

FACS Facial Action Coding System 

HR heart rate 
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JCTD Joint Capabilities Technology Demonstration 
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LSA latent semantic analysis 

LSM language style matching 

MAACL-R Multiple Affect Adjective Checklist–Revised 
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ROCKET Random Convolutional Kernel Transform 
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SD standard deviation 
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USMA US Military Academy 

WMI Warfighter Machine Interface 



 

52 

 1 DEFENSE TECHNICAL 
 (PDF) INFORMATION CTR 
  DTIC OCA 
 
 1 DEVCOM ARL 
 (PDF) FCDD RLD DCI 
   TECH LIB 
 
 1 DEVCOM ARL  
 (PDF) FCDD RLH B 
  T DAVIS 
  BLDG 5400 RM C242 
  REDSTONE ARSENAL AL  
  35898-7290 
 
 1 DEVCOM ARL 
 (PDF) FCDD HSI 
  J THOMAS 
  6662 GUNNER CIRCLE 

ABERDEEN PROVING  
GROUND MD 

  21005-5201 
 
 1 USAF 711 HPW 
 (PDF) 711 HPW/RH    K GEISS 
  2698 G ST BLDG 190   

WRIGHT PATTERSON AFB OH 
45433-7604 

 
      1 USN ONR 
  (PDF) ONR CODE 341    J TANGNEY 
  875 N RANDOLPH STREET 
  BLDG 87   

ARLINGTON VA  22203-1986 
 
      1 USA NSRDEC 
 (PDF) RDNS D    D TAMILIO 
  10 GENERAL GREENE AVE   

NATICK MA  01760-2642 
 

      1 OSD OUSD ATL 
  (PDF) HPT&B    B PETRO 
  4800 MARK CENTER DRIVE 
  SUITE 17E08 
  ALEXANDRIA VA 22350 
 
 3 USCENTCOM 
 (PDF)  A LESTER 
   G TIGHE 
   A VAID 
     
 2 US ARMY  
 (PDF) MILITARY ACADEMY 
   E ROVIRA 
   R THOMSON 

 
 5 GROUND VEHICLES  
 (PDF) SYSTEM CENTER 
  RTI GVR 
   T MICHALIK 
   K BRIGGS 
   E CERAME  
   K PIROZZO  
   J PALOMINO 
 
 1 NGCV CFT 
 (PDF)  C WALLACE 
 
 2 NAVAL SURFACE  
 (PDF) WARFARE CENTER 
   R BEALE 
   E PURSEL 

 
ABERDEEN PROVING GROUND 

 
 18 DEVCOM ARL 
 (PDF) FCDD RLH 
   J LANE 
   Y CHEN 
   P FRANASZCZUK 
   K MCDOWELL 
   K OIE 
   A MARATHE 
  FCDD RLH F 
   J GASTON 
  FCDD RLH FA 
   A DECONSTANZA 
   E CARTER 
   J CANADY 
   C NEUBAUER 
   D CHHAN 
  FCDD RLH FB 
   D BOOTHE 
  FCDD RLH FC 
   K COX 
  FCDD RLH FD 
   A FOOTS 
   A KRAUSMAN 
   A BAKER 
  FCDD RLH FE 
   D HEADLEY 
  FCDD RLH P 
   A EVANS 
  FCCD RLV 
   J RIDDICK 
   B PIEKARSKI 
  FCDD RLV A 
   K SCHAEFER-LAY 
   R W BREWER 


	List of Figures
	List of Tables
	Executive Summary
	1.  Introduction
	1.1   Subjective Scales
	1.2   Performance
	1.3   Behavioral Indicators
	1.4   Communication
	1.5   Wearable Technologies: Physiological Indicators
	1.6  Current Work

	2.  Methods
	2.1  Participants
	2.2 Task
	2.3 Crew Roles
	2.4  Wingman Simulation Testbed
	2.4.1  WMI
	2.4.2  Gamepad Controllers

	2.5  Physiological and Behavioral Equipment
	2.5.1  Empatica
	2.5.2  Digital-Camera Facial Video and Microphone Audio

	2.6  Facilities
	2.7  Questionnaires
	2.8  Performance Metrics
	2.9  Behavioral and Communication Measures
	2.9.1 Facial Expressivity
	2.9.2 Crew Audio

	2.10 Physiological Metrics
	2.11 Procedure
	2.12 Design

	3.  Results
	3.1 Performance
	3.2  Self-Reported Ratings
	3.2.1  Self-Reported Differences between Exercises 1 and 2
	3.2.2 Self-Reported Differences between Lethality and Mobility Operators
	3.2.3 Team Readiness

	3.3  Detect, Identify, Decide, Engage, Assess (DIDEA) Communication Analysis
	3.4  Behavioral Indicators
	3.4.1  Facial Expressivity
	3.4.2  Correlates of Facial Expressivity

	3.5  Physiological Indicators
	3.6  Time Series Classification (TSC)

	4.  Discussion
	4.1  Review of Main Findings
	4.2  Path Forward

	5.  Conclusions
	6.  References
	Appendix A. Performance Scores
	Appendix B. Inter-Beat-Interval (IBI) and Heart-Rate (HR) Measures Incorrectly Derived by the Empatica
	List of Symbols, Abbreviations, and Acronyms

