

REV-03.18.2016.0

Maintainability

Rick Kazman

Phil Bianco

James Ivers

John Klein

October 2020

TECHNICAL REPORT

CMU/SEI-2020-TR-006

DOI: 10.1184/R1/12954908

Software Solutions Division

[Distribution Statement A] Approved for public release and unlimited distribution.

http://www.sei.cmu.edu

CMU/SEI-2020-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[Distribution Statement A] Approved for public release and unlimited distribution.

Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No.

FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a

federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be con-

strued as an official Government position, policy, or decision, unless designated by other documentation.

This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom AFB, MA

01731-2100

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE

MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO

WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT

NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR

RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT

MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,

OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribu-

tion. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for in-

ternal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions

and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in

written or electronic form without requesting formal permission. Permission is required for any other external

and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at

permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Architecture Tradeoff Analysis Method® and ATAM® are registered in the U.S. Patent and Trademark Office

by Carnegie Mellon University.

DM20-0773

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i

[Distribution Statement A] Approved for public release and unlimited distribution.

Table of Contents

Abstract v

1 Goals of This Document 1

2 On Maintainability 3
2.1 Existing Definitions 3
2.2 Maintainability as a Quality Attribute 5

3 Evaluating the Maintainability of an Architecture 7
3.1 Measuring Maintainability 7

 Management of Dependencies 8
 Management of System State 11
 Management of Deployments 11
 Properties and Measures 12

3.2 Architectural Measures of Maintainability 13
3.3 Operationalizing the Measurement of Maintainability 14

4 Maintainability Scenarios 15
4.1 General Scenario for Maintainability 17
4.2 Example Scenarios for Maintainability 18

 Scenario 1: Apply Operating System Security Patches 18
 Scenario 2: Software Error Isolation and Correction 19
 Scenario 3: Planned Replacement of Radar Altimeter 19
 Scenario 4: Error During Update and Rollback to Previous State 20

5 Mechanisms for Achieving Maintainability 21
5.1 Tactics 22

 Managing Dependencies 24
 Controlling and Observing System State 26
 Deploying Software 27

5.2 Patterns 28
 Layers 30
 Pipe-and-Filter 31
 Publish-Subscribe 32
 Adapters 33
 Façade 33
 Model-View-Controller (MVC) 34
 Memento 35
 Blue-Green Deployment 36
 Canary Deployment 37

 Circuit Breaker 37
 Rolling Deployment 38
 Strategy 38
 Intercepting Filters 39

6 Analyzing for Maintainability 41
6.1 Tactics-Based Questionnaires 42
6.2 Architecture Analysis Checklist for Maintainability 46
6.3 Coupling and Cohesion Metrics 48

7 Playbook for an Architecture Analysis of Maintainability 50

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ii

[Distribution Statement A] Approved for public release and unlimited distribution.

7.1 Step 1–Collect Artifacts 50
7.2 Step 2–Identify the Mechanisms Used to Satisfy the Requirement 52
7.3 Step 3–Locate the Mechanisms in the Architecture 53
7.4 Step 4–Identify Derived Decisions and Special Cases 53
7.5 Step 5–Assess Requirement Satisfaction 55
7.6 Step 6–Assess the Impact on Other Quality Attribute Requirements 57
7.7 Step 7–Assess the Costs/Benefits of the Architecture Approach 58

8 Summary 59

9 Further Reading 60

Bibliography 61

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii

[Distribution Statement A] Approved for public release and unlimited distribution.

List of Figures

Figure 1: The Form of a General Scenario 16

Figure 2: Maintainability Tactics 22

Figure 3: Model-View-Controller Pattern 35

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iv

[Distribution Statement A] Approved for public release and unlimited distribution.

List of Tables

Table 1: Maintainability Properties and Example Measures 12

Table 2: Maintainability Tactics and Their Relationships to Measures of Interest 22

Table 3: Selected Maintainability Tactics and Their Impacts on Various Aspects of Coupling 23

Table 4: Maintainability Tactics Mapped to Common Patterns – I 29

Table 5: Maintainability Tactics Mapped to Common Patterns – II 29

Table 6: Maintainability Tactics Mapped to Common Patterns – III 30

Table 7: Lifecycle Phases and Possible Analyses for Maintainability 41

Table 8: Example Tactics-Based Maintainability Questions 42

Table 9: Checklist for Maintainability 47

Table 10: Phases and Steps to Analyze an Architecture 50

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY v

[Distribution Statement A] Approved for public release and unlimited distribution.

Abstract

This report summarizes how to systematically analyze a software architecture with respect to a quality

attribute requirement for maintainability. The report introduces maintainability and common forms of

maintainability requirements for software architectures. It provides a set of definitions, core concepts,

and a framework for reasoning about maintainability and the satisfaction (or not) of maintainability

requirements by an architecture and, eventually, a system. It describes a set of mechanisms, such as

patterns and tactics, that are commonly used to satisfy maintainability requirements. It also provides a

method by which an analyst can determine whether an architecture documentation package provides

enough information to support analysis and, if so, determine whether the architectural decisions con-

tain serious risks relative to maintainability requirements. An analyst can use this method to determine

whether those requirements, represented as a set of scenarios, have been sufficiently well specified to

support the needs of analysis. The reasoning around this quality attribute should allow an analyst,

armed with appropriate architectural documentation, to assess the risks inherent in today’s architec-

tural decisions in light of tomorrow’s anticipated needs.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1

[Distribution Statement A] Approved for public release and unlimited distribution.

1 Goals of This Document

This document serves several purposes. It is

 an introduction to maintainability and common forms of maintainability requirements

 a description of a set of mechanisms, such as patterns and tactics, that are commonly used to sat-

isfy maintainability requirements

 a means to aid an analyst in determining whether an architecture documentation package pro-

vides enough information to support analysis and, if so, whether the architectural decisions con-

tain serious risks related to maintainability requirements

 a means to aid an analyst in determining whether those maintainability requirements, represented

as a set of scenarios, have been sufficiently well specified to support the needs of analysis

This document is one in a series of documents that collectively represent our best understanding of

how to systematically analyze an architecture with respect to a set of well-specified quality attribute

requirements [Kazman 2020]. The purpose of this document, as with all of the documents in this se-

ries, is to provide a workable set of definitions, core concepts, and a framework for reasoning about

quality attribute requirements and their satisfaction (or not) by an architecture and, eventually, a sys-

tem. In this case, the quality attribute under scrutiny is maintainability. The reasoning around this

quality should allow an analyst, armed with appropriate architectural documentation, to assess the

risks inherent in today’s architectural decisions in light of tomorrow’s anticipated tasks.

There are several commonly used and documented views of software and system architectures [Clem-

ents 2010]. The Comprehensive Architecture Strategy, for example, proposes four levels of architec-

ture, each of which can be documented in terms of one or more views [Jacobs 2018]:

1. functional architecture: The Functional Architecture provides a method to document the func-

tions or capabilities in a domain by what they do, the data they require or produce, and the be-

havior of the data needed to perform the function.

2. hardware architecture: A Hardware Architecture specification describes the interconnection, in-

teraction, and relationship of computing hardware components to support specific business or

technical objectives.

3. software architecture: A Software Architecture describes the relationship of software components

and the way they interact to achieve specific business or technical objectives.

4. data architecture: A Data Architecture provides the language and tools necessary to create, edit,

and verify Data Models. A Data Model captures the semantic content of the information ex-

changed.

The focus of this document is almost entirely on the software architecture because a software architec-

ture is the major carrier and enabler of a system’s driving quality attributes. And since software typi-

cally changes much more frequently than hardware, it is often the focus of maintenance effort.

However, software decisions to improve maintainability may impact the other architecture views.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2

[Distribution Statement A] Approved for public release and unlimited distribution.

In addition, other important decisions within a project will impact maintainability—or any other qual-

ity attribute, for that matter. Even the best architecture will not ensure success if a project’s govern-

ance is not well thought out and disciplined; if the developers are not properly trained; if quality

assurance is not well executed; and if policies, procedures, and methods are not followed. Thus, we do

not see architecture as a panacea but rather as a necessary precondition to success—and one that de-

pends on many other aspects of a project being well executed.

As we will show, there is no single way to analyze for maintainability. We can (and should) analyze

for maintainability at different points in the software development lifecycle, and at each stage in the

lifecycle this analysis will take different forms and produce results accompanied by varying levels of

confidence. For example, if there are documented architecture views but no implementation, then the

analysis will be less detailed, and there will be less confidence in the results than if an existing imple-

mentation could be scrutinized, tested, and measured. We will return to this issue of types of analysis

and confidence in their outputs several times in this document.

For these reasons, we do not advocate a purely checklist-based approach to analyzing for maintaina-

bility or any other quality attribute (although we do use checklists, as we will discuss in Sections 6.1

and 6.2). The approach that we advocate guides an analyst in terms of questions to ask and architec-

tural characteristics to look for. In any analysis, context is crucial—the meaning of “maintainability”

or any other quality attribute must be interpreted in the context of the project, its stakeholders, and

their needs. We specify this context via scenarios, as we will show.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3

[Distribution Statement A] Approved for public release and unlimited distribution.

2 On Maintainability

We naturally think about the need to maintain physical equipment, but what does it mean to maintain

software? Physical equipment has elements that need to be adjusted or replaced. For example, in an

automobile, there are tires and belts that wear, lubricants and filters that get dirty, and washer fluid

and fuel that are consumed. Elements within the physical system change over time, and we perform

maintenance to remediate the effects of those changes. On the other hand, software does not change

over time. Every time we read a binary value, the ones do not wear down until they turn into halves

and eventually zeros. We don’t need to clean the dirt off our zeros so they don’t build up and turn into

ones. Nonetheless, software typically becomes harder to maintain over time, despite our desires and

best efforts to make our software maintainable.

Software in most organizations represents a long-term investment. And although the software itself

does not wear or degrade, the software’s environment changes. For example,

 the underlying hardware changes

 the software and ecosystem that we depend on can change

 software that we integrate may change

 an adversary’s knowledge may change so that a weakness in our software becomes a cyber vul-

nerability

Each of these environmental changes, along with newly introduced (or discovered) defects, will trig-

ger a need to maintain our software so that it can continue to operate.1 We use the quality attribute

term maintainability to refer to the property of our software that makes these changes possible within

acceptable ranges of cost, schedule, and risk. In addition, our knowledge of the design of the system

can degrade due to staff turnover, inadequate documentation, and the passage of time. While these

concerns are not triggers, they do increase the difficulty of maintaining our software system.

This report begins with a survey of definitions for maintainability. We introduce a set of quality attrib-

ute scenarios, including a general scenario, to more precisely define maintainability requirements. We

then discuss the mechanisms that can be employed in a software architecture to promote maintainabil-

ity. We conclude with a discussion of the various ways that an analyst can analyze for maintainability,

focusing on analysis checklists and analysis methods.

2.1 Existing Definitions

We create definitions for quality attributes, like maintainability, so that we can label and categorize

quality requirements. These labels are then used by several groups during the development phase:

1 We exclude considerations of new requirements, as these are catalysts to upgrade, rather than maintain, the soft-
ware.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4

[Distribution Statement A] Approved for public release and unlimited distribution.

 Stakeholders and requirements engineers use these labels during requirements elicitation to

create checklists, assess coverage and completeness, and collect similar requirements. This group

is often concerned with why the software must be maintained.2

 Architects use quality attribute labels to identify the relevant parts of the design body of

knowledge to help them choose and instantiate mechanisms that promote the desired quality and

satisfy the requirement.

 Analysts and evaluators use the labels to choose methods to apply, validate, and verify that the

requirement is achieved.

Architects, analysts, and evaluators are usually less concerned with the why of the requirement and

more concerned with the scope and impact of what must be maintained and constraints on how the

maintenance will be performed. Therefore, these groups need enough precision in the requirement def-

inition that it is actionable and verifiable.3

How can we define maintainability? It is certainly an important quality of software systems. A recent

literature survey found that maintainability was the most-studied design-time quality by academic re-

searchers [Arvanitou 2017], and it appears in practitioner-focused quality attribute taxonomies such as

SQuaRE [ISO/IEC 2011a] and dependable systems [Avizienis 2001]. However, the definitions used in

these taxonomies are somewhat broad:

 The standard ISO 25010(E) defines maintainability as the “degree of effectiveness and efficiency

with which a product or system can be modified by the intended maintainers” [ISO/IEC 2011a].

 Another standard, IEEE 14764-2006, defines it as the capability of the software product to be

modified, with the objective of software maintenance being to modify existing software while

preserving its integrity [IEEE 2006].

 Avizienis and colleagues define it as the “ability to undergo repairs and modifications” [Avi-

zienis 2001].

Other quality attribute taxonomies, such as those of NASA [Wilmot 2016] and the Carnegie Mellon

University Software Engineering Institute [Bass 2012], include the quality attribute of modifiability

but not maintainability. And a study of 15 years of architecture evaluation findings reported that modi-

fiability was the quality attribute of most concern to stakeholders for both cyber-physical and IT sys-

tems [Bellomo 2015]. Why do we mention this? Because these terms are often confused. While

modifiability is not the same as maintainability, as we will show, the goals of designing for modifia-

bility overlap significantly with the goals for maintainability. A more modifiable system will almost

certainly be a more maintainable system. This is because the mechanisms for achieving high levels of

modifiability in an architecture overlap considerably with the mechanisms for achieving high levels of

maintainability.

2 More formally, stakeholders and requirements engineers are concerned that a requirement is necessary and appro-
priate [BKCASE 2018, Table 3].

3 More formally, architects and analysts are concerned that the requirements are unambiguous, complete, and verifia-
ble [BKCASE 2018, Table 3].

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5

[Distribution Statement A] Approved for public release and unlimited distribution.

The Department of Defense (DoD) defines software maintenance in DoD Instruction 4151.20 as fol-

lows [USDAS 2018]:

Software Maintenance: Includes actions that change the software baseline (adaptive, correc-

tive, perfective, and preventative) as well as modification or upgrade that add capability or

functionality. Encompasses requirements development, architecture and design, coding, and

integration and test activities. Software maintenance and software sustainment are consid-

ered synonymous.

A U.S. Government Accountability Office report titled Weapon System Sustainment defines the four

types of changes as follows [GAO 2019]:

Corrective Sustainment Perfective Sustainment Adaptive Sustainment Preventive Sustainment

Corrective sustainment ac-

tivities diagnose and cor-

rect software errors after

the software is released.

Perfective sustainment ac-

tivities consist of upgrades

to software to support new

capabilities and functional-

ity.

Adaptive sustainment ac-

tivities modify software to

interface with changing en-

vironments.

Preventive sustainment ac-

tivities modify software to

improve future maintaina-

bility or reliability.

The authors of that GAO report further note that the categorization of a change depends on intention:

For example, an Army command is modifying software to incorporate Windows 10. This ac-

tion may be described as corrective in that it addresses errors in previous versions of Win-

dows; perfective in that it upgrades the software to support new capabilities and functionality

provided by Windows 10; adaptive in that it can accommodate changes to firmware and

hardware environments; and preventive in that it improves reliability. [GAO 2019]

2.2 Maintainability as a Quality Attribute

Synthesizing these definitions, we can make some statements about maintainability as a quality attrib-

ute:

 Maintainability, as a system-wide property, is achieved by paying close attention to three catego-

ries of characteristics: the management of dependencies, the management of system state, and the

management of deployments. Each of these categories is elaborated upon in Section 3.1.

 Maintainability is concerned with modifications after the software baseline is established.

 The goal of a maintenance activity is to correct defects, adapt to changing environments, or im-

prove a system’s future maintainability or other quality attributes.

 The description of a particular maintenance activity is in the eye of the beholder: A particular

change (or type of change) can be labeled differently, depending on the maintainer’s intention.

We measure maintainability as the amount of work required to modify, test, and maintain our software

base in response to changes in environmental elements. This measure may depend on who is perform-

ing the maintenance task and her level of skill or knowledge.

These statements are helpful and provide context and scope for a maintainability requirement. How-

ever, the definition does not have any criterion for satisfaction. For example, while the definition re-

fers to a measure, it does not specify any measure: How can we say that one architecture is more

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6

[Distribution Statement A] Approved for public release and unlimited distribution.

maintainable than another? How can we say that an architecture is sufficiently maintainable? Further,

the definition does not distinguish among modifications. For any software item, some modifications

will be easy, while others will be more difficult. This definition allows us to talk about maintainabil-

ity, but to specify requirements for maintainability we need a more precise definition.

Fortunately, we are not the first to encounter this challenge. Initially, philosophers and scientists in the

1920s [Suppe 1998], and engineers in the World War II era [Ackoff 1968], have had the challenge of

bridging from abstract concepts and properties to a quantitative, empirical reality. The approach used

is to create an operational definition of the property, which specifies the operations (i.e., steps and ac-

tions) needed to measure the phenomenon of interest. For example, there are at least three ways to op-

erationally define the strength of a given material:

1. the force, in pounds, required to break it

2. its resistance to penetration

3. hours of use in a particular application before failure

A casual reader would agree that each of these definitions describes “strength”; however, each defini-

tion provides a different criterion with which to measure that strength. Operational definitions are not

exclusive. In a particular system, the strength of a material might be judged using any (or several) of

these definitions. Further, operational definitions of a concept need not be exhaustive. There may be

other operational definitions of strength besides the three we mention above.

In addition to specifying the steps and actions needed to measure the phenomenon of interest, an oper-

ational definition must include the environmental conditions when the measurement is made. In the

example above, the temperature of the material will likely affect the measurement. Furthermore, an

operational definition should specify the details of the measurement actions. In Definition 1 above, are

we pulling or crushing the material? In Definition 2, is the penetration an impulse (e.g., a bullet) or a

sustained pressure? Operational definitions allow objective and repeatable specification and verifica-

tion of a property.

We approach the topic of maintainability from two perspectives: maintainability as an architectural

property and maintenance as a task. Maintainability is about the degree to which an architect has an-

ticipated and designed for the actual maintenance tasks that the system may undergo. A maintainabil-

ity analysis of an architecture is thus predictive in nature.

In the field of software quality attributes, we can use quality attribute scenarios to create operational

definitions. In Section 4, we define quality attribute scenarios for the quality attribute of maintainabil-

ity.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7

[Distribution Statement A] Approved for public release and unlimited distribution.

3 Evaluating the Maintainability of an Architecture

In engineering it is common to collect data on the “performance” of a component before applying it in

practice. We use evidence drawn from a component’s past in an attempt to predict its future—in par-

ticular we are interested in predicting the important properties of that component. This process is no

different when analyzing a software architecture. While we can evaluate the maintainability of an im-

plementation of an architecture by examining its past—its revision history—we do not have the bene-

fit of this rich historical record when evaluating new designs. Thus, we must analyze and evaluate new

architectural designs in terms of their discernable properties. We use concrete scenarios to guide this

analysis.

We cannot precisely evaluate the maintainability of an architecture any more than we can evaluate its

performance, availability, or integrability. All quality attribute names are categories, and categories

are too imprecise to be used for evaluation. Thus, we are better served by measuring the maintainabil-

ity of an architecture with respect to a set of anticipated maintenance tasks. We specify such tasks as

scenarios. We use scenarios to probe and analyze system characteristics, as we explain in Section 4. In

that section, we will define a template for maintainability scenarios and provide examples of the kinds

of maintenance tasks that a system might be subjected to. We need to understand the things that are

involved in conducting maintenance activities to understand what it means to measure the maintaina-

bility of a system. To this end, in Section 5, we survey the techniques that the software engineering

research literature has proposed for achieving maintainability. Finally, we will use these scenarios in

our architecture analysis playbook (in Section 7).

It is important to reiterate that while we restrict our attention in this report to analyzing architectural

information for maintainability, historically maintainability analyses have focused on richer sets of

information derived from a project’s code and its history. The advantage of these richer sets of infor-

mation is that we can potentially create more precise analyses. The disadvantage is that such rich in-

formation is available only after we have built, deployed, and actually maintained a system. At that

point it can be very expensive and time consuming to repair such problems. Thus, our objective in an-

alyzing an architecture for its maintainability properties is to find a sweet spot wherein we can gain

insight into the potential maintainability characteristics of a system before much, if any, code has been

developed.

3.1 Measuring Maintainability

When we refer to maintenance tasks, we are only considering actions taken to fix a defect, replace a

portion of a system with a newer version, or add something to improve a characteristic of the system

(but not change its function or capability). Given this context, performing a maintenance task on a

large, complex software-intensive system typically includes some combination of the following activi-

ties:

 determining what software elements need to change

 diagnosing the precise nature of the changes to be implemented in each element and designing

these changes

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8

[Distribution Statement A] Approved for public release and unlimited distribution.

 changing the software elements and any supporting artifacts, such as tests or build scripts

 validating that the changes were correct, potentially including recertification work as needed

 deploying4 the new software and rolling back versions if defects are discovered in the newly de-

ployed versions

These activities are supported by the following categories of system characteristics:

 The management of dependencies is about ensuring that the architecture has been designed to an-

ticipate a set of probable changes so that those changes are localized and do not “ripple” through-

out the system. In this way, the anticipated changes may be made efficiently and with

confidence.

 The management of system state aids in controlling the cost and complexity of identifying and

diagnosing problems (bugs) and aids in confirming the correctness of modifications.

 The management of deployments is about ensuring that the architecture includes support for effi-

ciently deploying a system or making modifications to a system in its operational environments.

Consequently, when evaluating maintainability, we need to assess the architecture in terms of these

characteristics (which we elaborate in the subsections below). Specifically, the analyst’s job is to

gauge the degree to which the architecture supports each of these characteristics.

Different scenarios will, of course, emphasize these concerns to different extents. For example, when

replacing commercial off-the-shelf (COTS) or open source software with a new release of the same

product, the concern and the effort typically center on validating that the new release did not break an-

ything that was previously working. This maintenance activity crucially relies on being able to man-

age the system state—putting the system into states that fully test the replaced software. The ability to

precisely manage the system state keeps the costs and time of testing the software to an acceptable

level.

Each of these concerns will now be discussed in more detail.

 Management of Dependencies

To assess how well the architecture supports the management of dependencies, we primarily focus on

the degree to which they are

 loosely coupled: How interdependent are the architectural elements (modules, packages,

threads/processes, deployable units, etc.)? This gives us insight into the probability that a change

to one element will ripple to other elements. In general, lower levels of coupling will reduce the

average cost of a change [Yourdon 1979]. But coupling may exist along multiple dimensions—

syntactic, semantic, temporal, resource based, and state based—and each of these can be man-

aged in slightly different ways [Kazman 2020].

 highly cohesive: Do elements have a small number of related responsibilities, or do they have

many unrelated responsibilities? The level of cohesion of an architecture (or any element of an

4 This deployment process consists of some combination of installing, updating, or replacing existing software; activat-
ing the software; and in some cases, deactivating, uninstalling, or rolling back software versions.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9

[Distribution Statement A] Approved for public release and unlimited distribution.

architecture) gives us insight into the likelihood that a given change will affect multiple elements.

Higher levels of cohesion will reduce the average cost of change [Yourdon 1979].

 understandable: How easy is it to determine where a particular piece of functionality resides

within the architecture? This gives us insight into how completely the responsibilities within the

system are documented and understood, which, in turn, affects the average cost of a change. If

responsibilities are well understood (because they are well documented), then modifications will,

on average, be more systematic and hence less costly [Glass 1992].5

Sidebar: The Role of Information in Reasoning About Maintainability

Providing maintainers with sufficient information to efficiently perform their tasks (e.g., de-

termining what changes are needed) improves the efficiency and quality of future mainte-

nance activities. While the meaning of “sufficient information” depends on a number of

factors, projects should strive to achieve several general goals.

1. The right information should be available to maintainers. What constitutes the right infor-

mation for a system depends on a number of factors, including the specific maintenance ac-

tivities being performed on a system, that system’s quality attribute requirements, and the

architectural decisions realized in the system.

Generally, the information required to understand quality attribute requirements is an excel-

lent starting point. This information is used to analyze whether particular decisions will meet

key requirements, guide development teams in realizing the architecture, and help maintain-

ers avoid accidentally undermining the satisfaction of those same requirements.

For example, if a goal is to make a sensor management package easy to maintain in the fu-

ture, then information that will help future maintainers includes the set of affected code mod-

ules, their responsibilities, the relationships among those modules, and the commit history of

those modules. Architecture documentation can capture all of this information—except for

the commit history—clearly and succinctly with good models and accompanying descrip-

tions.

Best practices for structuring architecture documentation recommend using different views

to address different concerns (e.g., as specified in publications by Clements or ISO/IEC

[Clements 2010, ISO/IEC 2011b]). The selection of views, and consequently what infor-

mation should be included in each, depends on the quality attribute requirements that a sys-

tem must satisfy. Clements and colleagues recommend documenting at least three types of

views, as each supports reasoning about different quality attributes.

 A module view, showing code elements and their relationships, is used to reason about

the difficulty of making code changes.

5 Creating and maintaining quality documentation is a governance issue. While these activities are very important to
project success, particularly for long-lived projects, this report will not further discuss these aspects of managing de-
pendencies as they are not about making and analyzing architectural design decisions.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10

[Distribution Statement A] Approved for public release and unlimited distribution.

 A component-and-connector view, showing runtime components (processes, threads,

services, etc.) and their interactions, is used to reason about use of protocols and

runtime coordination.

 An allocation view, showing how elements from a module or component-and-connector

view are allocated to the computing infrastructure, is used to reason about system prop-

erties such as latency and mean time to failure.

2. Information should be easy for maintainers to find. Any creator of documentation should

keep in mind the audience of that documentation—who they are writing the document for—

as well as the purpose of the documentation; typically one or more purposes include analy-

sis, construction, or education. In practice, architectural documentation is often spread across

multiple media. For example, models may be the primary representation of views, accompa-

nying documents may contain additional details like rationale, and some decisions about

how tactics and patterns are realized may be found only in the code.

Best practices make use of searchable media, establish common terminology among teams,

and clearly link information (e.g., how elements of different views relate to one another).

These practices make it easier to find critical information. As projects progress through their

lifecycles, it’s also important to document how code elements map to architectural elements,

which speeds understanding where tactics and patterns are used in code.

3. Information should be accurate. In practice, accuracy becomes more challenging once de-

velopers start writing code and even more so as a system ages and evolves. If teams are not

diligent about keeping documentation and models up to date with code changes, then docu-

mentation can quickly become an untrusted source.

Best practices in areas such as architecture knowledge management [Weinreich 2016], archi-

tecture training, and architecture recovery can dramatically improve the ability of maintain-

ers to understand the architecture that they are working with. Typically, the larger and more

complex the architecture, the greater the need for such practices.

Finally, some architecture decisions make architectures themselves easier to understand and

maintain. Code modules of an architecture should exhibit low coupling and high cohesion to

aid in understandability. In fact, for complex systems, these characteristics are structural pre-

requisites to understandability. If large numbers of code modules are highly coupled, it will

be more difficult to understand any one of them in isolation. And if the important code mod-

ules do not exhibit high cohesion, then even one of these modules will be challenging to

comprehend. These challenges can persist and drag down a project, irrespective of the qual-

ity of the documentation.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11

[Distribution Statement A] Approved for public release and unlimited distribution.

 Management of System State

To assess the degree to which the architecture supports the management of system state, we are pri-

marily concerned with assessing how the architecture influences the amount of work it takes to set up

and run test cases so that they are state controllable and state observable [Binder 2000]:

 state controllable: How well does the architecture support the control of system state? If the ar-

chitecture allows the state of the system to be precisely controlled, then testing effort is dramati-

cally reduced. Addressing this concern architecturally can minimize the effort to put the system

into a state that needs to be tested.

 state observable: How much does the architecture support the precise observation of system state

so that results of test cases can be verified? If the state of the system can be completely known,

then the testing effort is dramatically reduced.

The degree to which a system state is controllable is affected by the system’s degree of determinism,

which is the property that a set of inputs will always produce the same output. Some systems have in-

herent nondeterminism. For example, a system may use a processing algorithm that requires random

values for certain parameters. In other cases, architecture decisions can introduce nondeterminism, for

example, certain load-balancing strategies. In both cases, the architecture can reduce or eliminate the

nondeterminism by controlling parameters during testing, for example, by controlling the seed of a

pseudorandom number generator so that the generated sequence is repeatable.

The degree to which a system state is observable is also affected by the system’s degree of determin-

ism. In a deterministic system, observing its state only at the system boundary may be sufficient to de-

cide that test execution is correct. On the other hand, in a nondeterministic system, observing its

internal state (and often also performing analyses of the observed state) may be needed to determine

that test execution is correct.

 Management of Deployments

To assess and measure the degree to which an architecture supports the management of deployments,

we are primarily concerned with the degree to which they are granular, controllable, and efficient:

 granular: Can updates to parts of the system be deployed separately? Granularity manifests dif-

ferently, depending on the type of system. In a service-oriented architecture with multiple redun-

dant instances of a service executing at the same time, granular means that we can replace the

instances one at a time while the other instances continue executing. For example, in an avionics

system, granular could mean that we can update the cockpit display unit software now and up-

date the mission computer software later. If deployments are all or nothing (in these examples, all

instances of a service or all avionics software components), there is less opportunity for control

and hence there is greater technical risk [Lenhard 2013, Lewis 2014]. An architecture that pro-

vides options to deploy small units can reduce risk. When dependencies are managed effectively,

it is easier to manage deployments.

 controllable: How precisely can deployments be controlled and monitored? Does the architecture

provide the capability to deploy at varying levels of granularity, monitor the operation of the de-

ployed units, and roll back unsuccessful deployments [Lewis 2014]?

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12

[Distribution Statement A] Approved for public release and unlimited distribution.

 efficient: How quickly can new units be deployed (and, if needed, rolled back) and with what

level of effort?

 Properties and Measures

These properties, and potential measures for each of them, are summarized in Table 1. The metrics

referenced in Table 1 are further described in Section 6.3.

Table 1: Maintainability Properties and Example Measures

Concern Measurable Property Example Measure

Management of

dependencies

How tightly coupled are compo-

nents (e.g., modules, packages,

threads/processes, deployable

units)?

 Decoupling Level (DL) [Mo 2016], propagation cost (PC)

[MacCormack 2006], Quality Model for Object Oriented

Design (QMOOD), metrics to measure static coupling

[Goyal 2014]

 DL and PC metrics to measure dynamic coupling and his-

torical coupling

 average number of modules that need to be tested per

new deployment and standard deviation from the mean

How cohesive are component re-

sponsibilities?

 average number of modules affected by a change and

standard deviation from the mean

 Chidamber & Kemerer (CK) Lack of Cohesion of Methods

(LCOM) measure [Chidamber 1994]

How completely are the responsi-

bilities of each component under-

stood and documented?

 % of modules documented

 “completeness” of documentation (e.g., range of infor-

mation that is supplied for each element)

 % of documentation that is updated whenever compo-

nents change

Management of

system state

How much system state can be

observed?

 % of system elements that allow state to be observed

 % of stateful behavior that is observable for each element

 period of time over which data is available (e.g., logged

data is available for the last n minutes)

How much system state can be

controlled?

 % of system elements whose state/behavior can be con-

trolled

 % of state/behavior of each element that can be controlled

How efficient is testing? number of human interactions required per test

 amount of time and effort to determine root causes of

bugs

 time elapsed between code commit and testing complete

How deterministic is execution? % of bugs that can be reliably replicated

Management of

deployments

How fine-grained are deploy-

ments?

 number of deployed services

 ratio of deployable artifacts to code artifacts

How controllable is deployment? % of successful deployments

 % of deployments requiring human intervention

 level of human effort required per deployment

How efficient is deployment? number of human interactions required per deployed com-

ponent

 time between code commit and component deployment

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13

[Distribution Statement A] Approved for public release and unlimited distribution.

Analyzing for maintainability, then, is about predicting the mix of activities required for a set of main-

tainability scenarios and predicting how difficult—in terms of measures of cost and risk—those activi-

ties will be for a specific (existing or planned) architecture. These risks may be schedule related,

performance related, or technical.

We cannot give any specific guidance on target values for the measures presented in Table 1. The ana-

lyst needs to consider the values in the context of requirements and anticipated risks. For example, a

“best” number of deployed services cannot be determined; more services mean more overhead and a

more complex deployment, but they can provide benefits for performance and availability.

Many of the measures of maintainability in Table 1 cannot be estimated from architectural artifacts

alone. Many of these measures can only be measured from a built and deployed system. However, this

does not mean that we cannot perform a useful analysis of an architecture with respect to maintaina-

bility. As we will show in our “playbook” for architecture analysis in Section 7, even where a measure

does not exist or its value cannot be reliably obtained, an architecture can still be examined for its fit-

ness for purpose with respect to the properties described in Table 1.

3.2 Architectural Measures of Maintainability

Much of the prior research on assessing the maintainability of an architecture has focused on the fol-

lowing four properties of the components of a design: size, complexity, coupling, and cohesion [e.g.,

Bogner 2017, Seref 2016]. The size of a software system—and, in particular, the size of its compo-

nents—will affect how easy it is to modify. In addition, the complexity of each component will affect

the level of effort required. But the system’s components do not live in isolation, so the coupling be-

tween components and the cohesion of components will also affect the maintenance effort: high cou-

pling and low cohesion increase the likelihood that a maintenance-based modification will affect

multiple components, thus increasing the overall effort—the time to determine what to change, the

time to make the change, and the time to test and deploy the changed code. We elaborate on measures

of coupling and cohesion in Section 6.3.

What do we look for in an architecture to support these activities? And how do we measure (and

hence predict) the level of support for these activities from an architectural specification? We begin

addressing this question by enumerating the major concepts that architects (and others, such as main-

tainers) tend to use to perform, support, and manage maintenance activities. The techniques, architec-

tural decisions, and activities needed to make a system maintainable have much in common with other

quality attributes, and many of these concepts are themselves widely considered to be first-order qual-

ity attributes. For example, to make an architecture more maintainable, it is important to make it easy

to isolate and replicate faults and to deploy new versions of updated components. It is also important

to ensure that a bug fix affects only a localized part of the architecture and does not “ripple” through-

out the system.

In addition, it is important to ensure that architects and developers make decisions (and apply tactics

and patterns) at the appropriate level of granularity, as these can affect the achievement of specific ca-

pabilities. We gave an example of this with respect to the management of deployments in Section

3.1.3, but granularity is important for other measures as well. For example, two services might be

loosely coupled, but if we look inside each service, its code modules might be tightly coupled. If we

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14

[Distribution Statement A] Approved for public release and unlimited distribution.

want to replace one service without affecting the other, this level of granularity of coupling is appro-

priate. But if we want to modify the tightly coupled services, then the high coupling is problematic.

This situation could result as a consequence of applying a tactic that reduces coupling at the granular-

ity of services (e.g., using an intermediary) but does not affect coupling within services. This example

also reinforces the importance of applying measures with respect to specific scenarios rather than at

the level of an entire architecture.

3.3 Operationalizing the Measurement of Maintainability

When analyzing an architecture for maintainability, we have some analysis tradeoffs to make. We can

analyze with respect to a particular set of scenarios and obtain a reasonably precise understanding of

the architecture’s accommodation of those scenarios. But that understanding is necessarily narrow—

limited to just those scenarios that we have considered. Alternatively, we can analyze with respect to

metrics and get a broad understanding of the architecture’s overall level of predicted maintainability,

as measured by the metrics, but this gives us no insight into the specific risks involved in responding

to specific scenarios. Furthermore, scenario-based analyses and design-level structural metrics (like

DL and PC) can be used to gain insight into a design. This insight therefore can be achieved before

committing to an implementation, that is, by analyzing a design specification. But precisely because

these metrics measure early artifacts, like design specifications, they may not accurately reflect the

eventual state of the system. Measures of an implementation—accounting for its code, its commit his-

tory, its runtime behavior, its development costs, and other considerations—will be more precise, but

these measures can only be made later in the system’s lifetime.

For this reason, we recommend doing both: evaluating with respect to scenarios to get a deep under-

standing of some anticipated forms of maintenance and, later in the lifecycle, adding evaluations us-

ing measures from code, history, and project metrics to obtain a more precise understanding of the

qualities that the architecture (or any major subsystem within the architecture) helps to realize.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15

[Distribution Statement A] Approved for public release and unlimited distribution.

4 Maintainability Scenarios

As stated in the book Software Architecture in Practice, quality attribute names themselves are of lit-

tle use, as they are vague and subject to interpretation. The antidote to this vagueness is to specify

quality attribute requirements as scenarios [Bass 2012]. A quality attribute scenario is simply a brief

description of how a system is required to respond to some stimulus. Quality attribute scenarios are

not use cases—they are architectural test cases. That is, they provide insights into the qualities that the

architecture supports and any risks associated with the fulfillment of these scenarios.

A quality attribute scenario provides an operational definition (as introduced in Section 2.1) of a qual-

ity property of a system. We use scenarios to analyze and probe the system’s architectural

characteristics, as realized by the set of design mechanisms that have been chosen. Scenarios probe the

“characteristic space” of a system in much the same way that code tests cover the state space of a

system. Our goal, in traditional software testing, is to cover as much of the system’s state space as

possible with our test suite. However, for any nontrivial system, we cannot completely cover the state

space. Similarly, we cannot completely cover the characteristic space of a system, which is why we

need to prioritize scenarios. Our goal, in eliciting and prioritizing scenarios, is to cover enough of the

highest priority scenarios that the most important maintainability risks are considered and minimized.

The use of scenarios to specify quality attribute requirements for software has a long history, dating

back at least to the 1990s [Kazman 1994, 1996]. Published examples include scenarios to specify re-

quirements for seven of the most commonly occurring quality attributes [Bellomo 2015]—availability,

interoperability, modifiability, performance, security, usability, and testability, as described in the

work of Bass and colleagues [Bass 2012]—and Klein and Gorton’s use of scenarios to specify quality

attribute requirements for big data systems, including the qualities of scalability and consistency

[Klein 2015]. And quality attribute scenarios have had a long history of being used to “drive” architec-

ture analyses [Bengtsson 1999, Kazman 2002].

A quality attribute scenario has six parts [Bass 2012]. The two most important parts are a stimulus and

a response. The stimulus is some event that arrives at the system, either during runtime execution

(e.g., an invalid message arriving on a particular interface) or during development (e.g., a develop-

ment iteration completes). The response defines how the system should behave when the stimulus oc-

curs. For example, consider these two simple scenarios:

 In response to an invalid message arriving, the system should log the event and send an error re-

sponse message.

 In response to a development iteration completing, the unit and integration tests should be run

and the test results reported.

The stimulus and response form the core of our operational definition by specifying the operation that

we will measure. The third part of a scenario, the response measure, defines how we will measure the

response and the satisfaction criteria. The response measure includes a metric and a threshold.

The other three parts of the scenario provide more details. We specify the source of the stimulus, to

provide context for the scenario. We also specify the environment, which is the conditions under

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16

[Distribution Statement A] Approved for public release and unlimited distribution.

which the stimulus occurs and the response is measured. Finally, we specify the artifact, which is the

portion of the system to which the requirement applies. Often, the artifact is the entire system, but in

the example above, we might need to treat invalid messages on external interfaces differently from in-

valid messages on internal interfaces.

During requirements elicitation, we may specify the parts of a scenario in any order. We often begin

with stimulus and response, although environment, source, or artifact may be the initial trigger for the

requirement. In any case, once the scenario is specified, we usually arrange the parts to tell a story, as

shown in Figure 1.

Figure 1: The Form of a General Scenario

Sidebar: Scenarios as Architectural Test Cases

In architecture analysis, scenarios are “architectural test cases.” We use them to determine

whether the architecture—as envisioned or as created—is consistent with its specification.

Before the system is built, we use scenarios to assess the quality of the architectural deci-

sions. Once the system exists, we can continue to use scenarios to assess the quality of the

architecture as it evolves.

For runtime quality attributes, scenarios may become much more than simply guides for ana-

lysts. They can be used as acceptance tests and made part of the regression test suite. Or they

can even be manifested as system health measures that are logged or monitored continuously

at runtime. If the checks are at runtime, checking can be built into a system monitor; if the

checks are run at build time, checking can be built into a continuous integration pipeline. In

either case, checking requires appropriate visibility into system response measures (e.g., the

ability to track latency, resource usage, and mean time to failure). For non-runtime quality

attributes (assuming that source code is available), we can monitor the quality or degradation

of the architecture’s modular structure via architecture analysis tools, or we can monitor pro-

ject management measures of the effort required to make changes (e.g., expected mainte-

nance activities).

1
2

3
4

Artifact(s)

Response

Response
MeasureEnvironment

Stimulus

Source

1

5

64

2

3

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17

[Distribution Statement A] Approved for public release and unlimited distribution.

In this way, the quality of the architecture, including measures that reflect on its maintaina-

bility, can be continuously tracked and assessed. And if changes are made that undermine

some architectural property, the test case fails and appropriate remedial action can be taken.

4.1 General Scenario for Maintainability

As we noted in the previous section, operational definitions are not exclusive. No single scenario spec-

ifies all of the possible measurements that could characterize a property like maintainability. However,

if we look at the definitions of maintainability, we find some common themes. A general scenario

maps those common themes into the parts of a quality attribute scenario, providing a template that we

can use to create concrete scenarios for a particular system. The general scenario defines the type of

the values for each part of the scenario, and a concrete scenario for maintainability of a system is cre-

ated by specifying one or more system-specific values of the selected type for each part of the sce-

nario. (We say “values” because, for example, a scenario might have more than one response

measure.)

Here is the general scenario for maintainability6:

Scenario Part Possible Type for Each Value Discussion

Source Program Manager In the DoD software maintenance context, all

changes to the software baseline are gov-

erned by the authority of the program man-

ager, who collects information from a broad

set of stakeholders.

Stimulus Request to correct error (corrective change)

Request to modify the quality of a function, e.g.,

more efficient, faster calculation, fewer resources

required (perfective change)

Request to operate in a changed environment

(adaptive change)

Request to replace a software element with a new

version, e.g., apply a security patch (preventive

change)

Although it is not necessary to categorize the

request into one of the four categories of

change, such categorization can provide con-

text and motivation, and by considering all

four categories, we ensure completeness.

Changed environment can include changes to

the platform or infrastructure, or changes to

systems that our system interoperates with.

Artifact Single software element

Multiple software elements

Entire software system

This part of the scenario defines the scope of

the modification, if known.

Possible artifacts may extend beyond system

elements, e.g., tests and DevSecOps automa-

tion scripts.

6 This general scenario is adapted from Bass and colleague’s general scenario for modifiability [Bass 2012, Section
7.1].

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18

[Distribution Statement A] Approved for public release and unlimited distribution.

Scenario Part Possible Type for Each Value Discussion

Environment Original development organization

Contractor (not original developer)

Organic (not original developer)

In the DoD context, maintenance begins only

after a baseline has been established. This is

relevant to the scenario because we can as-

sume that code and associated development

processes have been established.

The environment value may include refine-

ments that enumerate the relevant capabilities

of the maintenance organization, such as

skills or access to networks or tools.

Response One or more of the following:

 Isolate the affected components and other arti-

facts.

 Modify the code, tests, or DevSecOps artifacts.

 Test and integrate the modification.

 Validate, verify, or certify the modification.

 Deliver or deploy the modification.

Deployment may be in scope for some types

of systems and out of scope for other types of

systems.

Response

Measure

Cost, in terms of one or more of the following:

 Number, size, or complexity of affected artifacts

 Effort

 Calendar time

 Money (direct outlay or opportunity cost)

 Extent to which this modification affects other

functions or quality attributes

 Introduction of new defects

Any modification will take time and cost

money. The first four types of cost are directly

associated with the modification, while the last

two consider future costs.

4.2 Example Scenarios for Maintainability

Each of the following example scenarios is constructed by selecting one or more of the types of values

from each of the six parts of the general scenario and specifying a system-specific value. For each ex-

ample, we will use an easy-to-understand “typical” system. In practice, an analyst would choose val-

ues that are as precise as possible, in the context of the system.

In each example, notes in square brackets are added to trace back to general scenario types in cases

where the traceability is not obvious.

 Scenario 1: Apply Operating System Security Patches

This example scenario describes how critical security patches are applied to a networked avionics sys-

tem such as a navigation system.

Scenario Part Value

Source Navigation System Program Manager

Stimulus Direction to apply critical security patches to the Red Hat Enterprise Linux (RHEL) operating system

(The vendor has asserted that these patches will not break any application functionality.)

Artifact RHEL operating system, navigation system

Environment CECOM Software Engineering Center (SEC) – This will be its first maintenance activity on this sys-

tem. [organic, not original developer]

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19

[Distribution Statement A] Approved for public release and unlimited distribution.

Scenario Part Value

Response Apply patches.

Update the build and install automation scripts.

Test the navigation system using existing automated test scripts.

Deliver the navigation system to integration testing.

Response

Measure

No changes are made to system application-level code. [affected artifacts]

The SEC delivers the navigation system to integration testing within 14 days. [calendar time]

In this scenario—as in many scenarios—multiple response measures are specified. Furthermore, in

some cases, multiple scenarios are needed to completely specify the quality attribute requirement. For

example, the environment in the example scenario above was the first maintenance activity that the

SEC performed, and one of the response measures was to deliver within 14 days. Another scenario,

with identical stimulus and response values, might specify an environment for subsequent activities by

the SEC, with a response measure of 5 days to deliver the modification.

 Scenario 2: Software Error Isolation and Correction

This example scenario describes maintenance to the Flight Management System to correct a software

error. The system clock cannot be set correctly on leap days (February 29).

Scenario Part Value

Source Navigation System Program Manager

Stimulus Direction to correct the system clock leap-day software error

Artifact System Initialization package

Environment CECOM Software Engineering Center (SEC) – It has been maintaining this system for 3 years. [or-

ganic, not original developer]

Response Isolate the error.

Modify the code and add automated tests.

Test the Flight Management System using automated tests.

Deliver the Flight Management System software to integration testing.

Response

Measure

The error is isolated and affected the artifacts identified within 14 days. [calendar time]

The affected code modules are all located in the System Initialization package. [affected artifacts]

The SEC delivers the navigation system to integration testing within 30 days. [calendar time]

 Scenario 3: Planned Replacement of Radar Altimeter

This example scenario describes maintenance to the Flight Management System software to adapt to a

planned replacement of the radar altimeter sensor. A lower cost, lower power sensor has become

available, as anticipated in the original architecture design, so this modification to the Flight Manage-

ment System is limited to replacing the Radar Altimeter Message Formatter module.

Scenario Part Value

Source Flight Management System Program Manager

Stimulus Direction to perform planned replacement to integrate with the new radar altimeter

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20

[Distribution Statement A] Approved for public release and unlimited distribution.

Scenario Part Value

Artifact Flight Management System–Radar Altimeter Message Formatter

Environment NewCon, Inc. [contractor, not original developer]

Response Replace with the new Message Formatter module, automated system tests, and automated build and

install scripts.

Test the Flight Management System using automated test scripts.

Perform an integration lab test with the new radar altimeter using automated install scripts.

Deliver the Flight Management System software to integration testing.

Response

Measure

No “dead code” is left in the Flight Management System from old radar altimeter interface. [affected

artifacts]

Only the Message Formatter module is changed. [affected artifacts]

The Modified Flight Management System is delivered within 60 days at cost of less than $250,000.

[calendar time and direct outlay]

 Scenario 4: Error During Update and Rollback to Previous State

This example scenario describes a failure occurring during an update with the system rolling back to a

previous error-free version.

Scenario Part Value

Source Flight Management System Program Manager

Stimulus Errors are detected during sensor manager update.

Artifact Flight Management System–Sensor Manager

Environment Maintenance phase; during update

Response The system is rolled back to a previous working state, and diagnostic logs are captured.

Response

Measure

Within “X” minutes

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21

[Distribution Statement A] Approved for public release and unlimited distribution.

5 Mechanisms for Achieving Maintainability

An architect must choose a set of design concepts to construct a solution for any quality attribute re-

quirement [Cervantes 2016], and the architecture that the analyst is given to examine will include de-

sign decisions about such concepts. We generically refer to these design concepts as mechanisms. We

will discuss and provide examples of two important kinds of architectural design mechanisms: tactics

and patterns.

A mechanism is an architectural approach that an architect may choose to achieve—and, ideally, con-

trol—a quality attribute response. Many discussions of mechanisms—for example, Bass and col-

leagues [Bass 2012]—focus on technical mechanisms, such as architectural patterns and tactics.

Technical mechanisms are sufficient to satisfy requirements for quality attributes such as availability

or consistency in a big data system. For other quality attributes, such as security and maintainability,

technical mechanisms are necessary but not sufficient to satisfy some system-level requirements, and

the technical mechanisms must be accompanied by governance mechanisms. For example, security

defense-in-depth might begin with physical security, which requires governance to enforce access pro-

cedures. For maintainability, any modification to the software will be extremely difficult without gov-

ernance, such as acquisition practices that ensure that appropriate architecture, design, and code

documentation are produced; code reviews are performed; test suites are maintained; and employees

are appropriately trained so that they do not undermine the integrity of the architecture with the

changes they implement.

Governance mechanisms related to maintainability in the DoD context appear in discussions of the

Modular Open System Approach (MOSA) [ODASD 2017] and DoD software acquisition practices

[DIB 2019]. The rest of this section focuses on technical mechanisms for maintainability. Architecture

approaches are commonly employed to satisfy the types of scenarios that we outlined in the previous

section.

In practice, the terminology used for technical mechanisms is informal, and often the term technical

mechanism itself is used to refer to any decision made during the architecture design process or to any

fragment of the architecture that is intended to address some particular functional or quality attribute-

related concern. In this report, we will consider two specific types of mechanisms:

 architectural patterns: Design patterns are conceptual solutions to recurring design problems that

exist in a defined context. A pattern is architectural when its use directly and substantially influ-

ences the satisfaction of an architecture driver such as a quality attribute scenario [Cervantes

2016]. An architectural pattern defines a set of element types and interactions, the topological

layout of the elements, and constraints on topology, element behavior, and interactions [Bass

2012].

 architectural tactics: Tactics are smaller building blocks of design than architectural patterns and

focus on a single element or interaction, in contrast to a pattern that defines a collection of ele-

ments [Bass 2012].

Since tactics are simpler and more fundamental than patterns, we begin our discussion of mechanisms

for maintainability with them.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22

[Distribution Statement A] Approved for public release and unlimited distribution.

5.1 Tactics

Tactics are the building blocks of design, the raw materials from which patterns are constructed. Each

set of tactics is grouped according to the quality attribute goal that it addresses. The goals for the

maintainability tactics shown in Figure 2 are to reduce the costs and risks of adding new components,

modifying existing components, testing, and integrating sets of components to fulfill evolutionary re-

quirements. As discussed in Section 3.1, the maintainability tactics achieve this by reducing the

amount of coupling between components, reducing the distance between components, and making the

testing and deployment of components easier, less costly, and more disciplined.

These tactics are known to influence the responses (and hence the costs) in the general scenario for

maintainability (e.g., number of components changed, percent of code changed, effort, calendar time).

The tactic descriptions presented below are derived, in part, from the third edition of Software Archi-

tecture in Practice [Bass 2012].

Figure 2: Maintainability Tactics

We discuss each of the tactics presented in Figure 2 in more detail below. For each tactic that we dis-

cuss, we describe the tactic and relate it to the measures defined in Section 3.1 as a way of characteriz-

ing the intent and impact of the tactic. The tactic descriptions are inspired by and derived, in part, from

the third edition of Software Architecture in Practice [Bass 2012]. Table 2 summarizes the tactics pre-

sented in this section and how each relates to the measures presented in Sections 3.1 and 3.2.

Table 2: Maintainability Tactics and Their Relationships to Measures of Interest

Tactic Coupling Cohesion Observ. of

State

Control of

State

Test

Efficiency

Controlla-

bility

Granular-

ity

Efficiency

Encapsulate + + * * +

Use an intermediary + * *

Restrict

dependencies

+ +

Abstract

common services

+ * * *

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23

[Distribution Statement A] Approved for public release and unlimited distribution.

Tactic Coupling Cohesion Observ. of

State

Control of

State

Test

Efficiency

Controlla-

bility

Granular-

ity

Efficiency

Split module * + +

Refactor + + * * *

Increase semantic

coherence

 +

Defer binding + −

Specialized interfaces + + +

Record/playback + +

Localize state storage + + +

Abstract data sources + +

Sandbox +

Executable assertions +

Segment

deployments

 + +

Rollback + +

Feature toggle + +

Command dispatcher +

Note: A plus sign indicates that the tactic positively addresses maintainability properties and hence measures, a minus

sign indicates that the tactic has a negative effect, and an asterisk indicates that the tactic might positively or negatively

address the measure, depending on its realization. A blank cell means that the property has no consistent effect on the

measure.

It is worth discussing some of the asterisk entries in Table 2. For example, the encapsulate tactic may

have positive or negative effects on the observation of state and control of state. Encapsulation may

positively affect these properties if the state variables are appropriately encapsulated, but it may nega-

tively affect those properties if the encapsulation hides the state variables. Similarly, refactoring may

have a positive or negative effect on the observation of state, control of state, and test efficiency, de-

pending on whether those were goals of the refactoring.

In addition, in Table 3, we show the anticipated effects of maintainability tactics on the various forms

of coupling introduced in the work of Kazman and colleagues [Kazman 2020]. These forms of cou-

pling are syntactic, data semantics, behavioral semantics, temporal distance, and resource distance.

Table 3: Selected Maintainability Tactics and Their Impacts on Various Aspects of Coupling

Tactic Syntactic

Distance

Data

Semantic

Distance

Behavioral

Semantic

Distance

Temporal

Distance

Resource

Distance

Encapsulate + + +

Use an intermediary

Restrict dependencies

Abstract common services + + + +

Split module

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24

[Distribution Statement A] Approved for public release and unlimited distribution.

Tactic Syntactic

Distance

Data

Semantic

Distance

Behavioral

Semantic

Distance

Temporal

Distance

Resource

Distance

Increase semantic coherence

Defer binding + + + + +

Note: A plus sign indicates that the tactic positively addresses maintainability properties and hence measures. A blank cell

means that the property has no consistent effect on the measure.

 Managing Dependencies

One category of maintainability tactics deals with managing dependencies to limit the complexity of

an anticipated change. The first five tactics in this category deal with structural decisions and con-

straints that inherently increase the maintainability of a software architecture.

Encapsulate: Encapsulation is the foundation upon which all other maintainability tactics are built. It

is, therefore, seldom seen on its own, but its use is implicit in the other tactics described here.

Encapsulation introduces an explicit interface to a module. This interface includes an application pro-

gramming interface (API) and its associated responsibilities. Encapsulation is also arguably the most

common modifiability tactic because encapsulation reduces the probability that a change to one mod-

ule propagates to other modules. This benefit is obtained because external dependencies are on the in-

terface and not the implementation. Encapsulation reduces coupling, particularly syntactic coupling.

Coupling that might have depended on the internals of the modules now depends only on the interface

for the module. The external responsibilities can now directly interact with the module only through

the exposed interface. Indirect couplings, however, such as temporal dependencies or dependence on

quality of service will likely remain unaffected. Interfaces designed to increase modifiability should

be abstract with respect to the details of the module that are likely to change—that is, they should hide

those details.

Use an intermediary: Intermediaries are used for breaking dependencies among a set of components.

Intermediaries can be used to intervene among (different types of) dependencies. For example, inter-

mediaries like a publish-subscribe bus, shared data repository, or dynamic service discovery service

all reduce dependencies among data producers and consumers by removing any need for either to

know the identity of the other party. Intermediaries decouple components from one another, and thus

may reduce coupling of all types.

Restrict dependencies: This tactic restricts the set of modules that a given module can interact with. In

practice, this tactic is achieved by restricting a module’s visibility (when developers cannot see an in-

terface, they cannot employ it) and by restricting authorization to access it (restricting access to only

authorized modules). This tactic, among others, is seen in service-oriented architectures, in which

point-to-point requests are discouraged in favor of forcing all requests to be routed through an enter-

prise service bus so that routing and preprocessing can be done consistently. This tactic is typically

used to limit syntactic coupling, although it could, in principle, restrict other forms of coupling as

well.

Abstract common services: Where two modules provide services that are similar but not quite the

same, it may be cost effective to implement the services just once in a more general (abstract) form.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25

[Distribution Statement A] Approved for public release and unlimited distribution.

Any modification to the (common) service would then need to occur just in one place, reducing modi-

fication costs. A typical way to introduce an abstraction is by parameterizing the description (and im-

plementation) of a module’s activities. The parameters can be as simple as values for key variables or

as complex as statements in a specialized language that are subsequently interpreted. This tactic in-

creases cohesion (the services that are abstracted must have a high degree of cohesion) and reduces all

forms of coupling between the services and their clients (since a client cannot depend on the particu-

lars of any given service).

Defer binding: When we bind the values of some parameters at a different phase in the lifecycle than

the one in which we declared the parameters, we are applying the defer binding tactic. Deferring bind-

ing reduces all forms of coupling, since a client of some functionality can only depend on the explicit

interface for the functionality that is exposed and not on, for example, its runtime behavior, memory

usage, or any other property or side effect.

The final three tactics in this category are not specific structural decisions or constraints but rather ar-

chitectural design techniques and approaches that, if done wisely, lead to greater maintainability.

Split module: If the module being modified includes a great deal of capability, the modification costs

will likely be high because such modules have high complexity. Refining the module into several

smaller modules should reduce the complexity and hence the average cost of future changes. This tac-

tic is typically employed to increase the cohesion of the parts that remain after splitting.

Increase semantic coherence: If responsibilities A and B in a module do not serve the same purpose,

they should be placed in different modules. This may involve creating a new module or moving a re-

sponsibility to an existing module. One method for identifying responsibilities to be moved is to hy-

pothesize likely changes that affect a module. If some responsibilities are not affected by these

changes, then those responsibilities should probably be removed. As its name suggests, the effect of

this tactic is to increase coherence.

Sidebar: Tactics for Managing Dependencies and Their Relationship to

Deployment Characteristics

Challenges in managing deployments are similar to those of managing a code base. The tac-

tics that have been created over the years to aid in managing dependencies have found new

life in the theory, practice, and tools for managing deployments. Tactics for managing de-

pendencies primarily focus on reducing coupling and increasing cohesion so that a change

made in one code element, such as a source file, is simple to understand and simple to do.

When deployments become complex—for example, in large microservice architectures or in

systems of systems—many of these same tactics have been found useful but are applied to

units of deployment (e.g., containers, VMs, and services) rather than units of development

(source code files).

Tactics such as encapsulation, restrict dependencies, abstract common services, and so forth

all help achieve this goal. This should not be surprising for two reasons:

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26

[Distribution Statement A] Approved for public release and unlimited distribution.

1. Tactics are abstract, so they are scale-free.

2. Microservices, being “micro,” are just another way of packaging and interconnecting

functionality, so it should be no surprise that the tactics that make sense for code pack-

aged in files are largely the same as for code packaged in microservices.

Thus “encapsulation” has been rebranded as “containerization” or “componentization”

[Lewis 2014]. The defer binding tactic is achieved in microservice architectures with a dis-

covery service, and the abstract common services tactic has been realized as service proxies

[Jamshidi 2018]. All of the tactics to manage the ever-growing complexity of architectures

are found in microservice architectures, such as refactor, split module, and increase semantic

coherence.

It must be stressed that these mechanisms, although they go by slightly different names, have

been created by the microservices community for the very reasons that the tactics existed in

the first place: to reduce coupling and increase cohesion among units of development and

deployment.

 Controlling and Observing System State

A second category of maintainability metrics deals with controlling and observing system state so that

it is easy to test a system after some change has been made.

Specialized interfaces: Specialized testing interfaces allow a system to control or capture variable

state values for a component either through a test harness or through normal execution. This tactic can

improve the speed of testing and can improve the effectiveness of the regression suite by allowing

modules to be more completely tested.

Record/playback: The state that caused a fault is often difficult to recreate. Recording the state when

it crosses an interface allows that state to be used to replay the data stream and to recreate the fault.

Record/playback refers to both capturing information crossing an interface and using it as input for

further testing. This tactic also allows system state to be used to analyze and isolate bugs.

Localize state storage: To start a system, subsystem, or module in an arbitrary state for a test, it is

most convenient if that state is stored in a single place. By contrast, if the state is buried or distributed,

initialization of the system to a specific starting point is much more difficult. Furthermore, having a

single storage location for all system states makes exporting a consistent state snapshot easier, reduc-

ing the time and effort to analyze and isolate failures.

Abstract data sources: Similar to controlling a program’s state, easily controlling its input data makes

it easier to test. Abstracting the interfaces makes it much easier to substitute test data. This can help

increase the speed at which defects are revealed.

Sandbox: “Sandboxing” refers to isolating an instance of the system from the real world to enable ex-

perimentation that is unconstrained by the worry about having to undo the consequences of the experi-

ment. Testing is helped by the ability to operate the system in a way that has no permanent

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27

[Distribution Statement A] Approved for public release and unlimited distribution.

consequences or that can be rolled back without consequences. This can help increase the speed at

which defects are revealed.

Executable assertions: Using this tactic, assertions are inserted at desired locations to indicate when

and where a program is in a faulty state. These assertions are often designed to check that data values

satisfy specified constraints or that the system is in an expected state. Such assertions can help in-

crease the speed and effectiveness of testing. They do this by identifying faults closer to the point

where they occur, improving isolation and hence remediation.

 Deploying Software

Finally, there is a category of tactics that aids in deploying software and in managing those deploy-

ments. When a release of software is available, it can be deployed to one or more target environments.

As previously mentioned, this deployment process consists of some combination of installing, updat-

ing, or replacing existing software; activating the software; and, in some cases, deactivating, unin-

stalling, or rolling back software versions.

Segment deployments: Rather than deploying in an all-or-nothing fashion, deployments are made

gradually, often with no explicit notification to users of the system. This tactic has been realized in

techniques such as phased rollout, incremental rollout, canary release, and blue/green deployment.

This rollout may be for instances of a system or for the component parts of the system, such as ser-

vices, that are gradually released. By gradually releasing, the effects of new deployments can be moni-

tored, measured, and, if necessary, rolled back. This tactic minimizes the potential negative impact of

an incorrect deployment by shrinking the granularity of deployments.

Rollback: If a deployment has defects or does not meet user expectations, then it can be rolled back to

its prior state. Since deployments can involve multiple coordinated updates of multiple services, appli-

cations, or components, the rollback mechanism must be able to keep track of all of these deployments

and must be able to reverse the consequences of any update made by a deployment. This tactic in-

creases the degree to which the deployment can be controlled.

Feature toggle: Even when code is fully tested, issues may arise after new features are deployed. For

that reason, it is convenient to be able to integrate a kill switch (or feature toggle) for new features.

The kill switch automatically disables a feature in the system at runtime, without having to make a

new deployment. If the new feature has any problem and needs to be removed, a software-enabled

trigger for the kill switch is sufficient, and there is no need to roll back the software. This provides

fine control over the granularity of deployments and increases the efficiency of deployments (particu-

larly when features must be rolled back).

Command dispatcher: Deployments are often complex and require many steps to be carried out and

orchestrated precisely. For this reason, deployment is often scripted, and deployment scripts should be

treated like code. A command dispatcher executes the deployment script so that human error is mini-

mized. This increases the degree of control and efficiency of deployments.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28

[Distribution Statement A] Approved for public release and unlimited distribution.

5.2 Patterns

As stated above, architectural tactics are the fundamental building blocks of design. Hence, they are

the building blocks of architectural patterns. By way of analogy, we say that tactics are “atoms” and

patterns are “molecules.” During analysis, it is often useful for analysts to break down complex pat-

terns into their component tactics so that they can better understand the specific set of quality attribute

concerns that patterns address and how they do so. This approach simplifies and regularizes analysis,

and it provides more confidence in the completeness of the analysis.

In the three tables below, we show the maintainability tactics that are used to build each of the patterns

described. Then we provide a brief description of each pattern, a discussion of how the pattern pro-

motes maintainability, and finally the other quality attributes that are negatively impacted by these

patterns (tradeoffs). It is important to understand the constituent tactics used in a pattern because no

pattern is applied in a pure form. Analysts need to recognize how the instantiation of a pattern may

compromise one or more constituent tactics, resulting in the pattern not actually achieving the desired

quality attribute response.

Note also that just because a pattern negatively impacts some other quality attribute, this does not

mean that the levels of that quality attribute will be unacceptable. Perhaps the added latency is negligi-

ble—only a small fraction of end-to-end latency—on the most important use cases. In such cases, the

tradeoff is a good one, providing benefits for maintainability and modifiability while costing only a

tiny amount of latency. For example, the use of an intermediary almost always negatively affects per-

formance (specifically latency). This is inevitable; the interposition of an intermediary adds processing

and communication steps. This is not to say, however, that the resulting latency of the system will be

unacceptable. The added latency may be “down in the noise,” and the benefit from having the inter-

mediary may be enormous. This is why we advocate consciously analyzing and, if possible, modeling

and measuring quality attribute responses to consider the merits and tradeoffs of each in context.

It is also important to note that the tradeoffs described below are generalizations. Other architectural

mechanisms or decisions applied with the pattern may change the impacts. For example, layering

might be affected by “layer bridging,” where an element in Layer n directly accesses an element in

Layer n − 2, without going through the abstraction provided by Layer n − 1. But if this layer bridging

is isolated to a small and well-understood set of dependencies, and if this bridging is done to achieve a

performance goal, then the tradeoff might be perfectly justified. These are the kinds of judgments that

analysts need to make when assessing the appropriateness of the patterns selected and implemented.

Finally, this pattern list is not exhaustive. The purpose of this section is to illustrate the most common

maintainability patterns—such as Model-View-Controller (MVC), Publish-Subscribe, Adapter, and

Blue-Green Deployment—and to show how analysts may, by identifying the tactics employed in pat-

terns, better understand a pattern’s quality attribute properties, strengths, weaknesses, and tradeoffs.

The tables below map the patterns to the maintainability tactics described above. The patterns them-

selves are described in the following subsections.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29

[Distribution Statement A] Approved for public release and unlimited distribution.

Table 4: Maintainability Tactics Mapped to Common Patterns – I

Tactic Layers Pipes and Filters Publish-Subscribe Adapter MVC

Encapsulate × × × × ×

Use an intermediary × × ×

Restrict dependencies × × × ×

Abstract common services × × ×

Split module ×

Increase semantic coherence × ×

Defer binding × ×

Specialized interfaces

Record/playback

Localize state storage

Abstract data sources ×

Sandbox

Executable assertions

Segment deployments

Rollback

Feature toggle ×

Command dispatcher

Table 5: Maintainability Tactics Mapped to Common Patterns – II

Tactic Memento Façade Strategy Intercepting

Filter

Encapsulate × × × ×

Use an intermediary ×

Restrict dependencies × × × ×

Abstract common services × ×

Split module ×

Increase semantic coherence ×

Defer binding × ×

Specialized interfaces ×

Record/playback

Localize state storage ×

Abstract data sources

Sandbox

Executable assertions ×

Segment deployments

Rollback ×

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30

[Distribution Statement A] Approved for public release and unlimited distribution.

Tactic Memento Façade Strategy Intercepting

Filter

Feature toggle

Command dispatcher

Table 6: Maintainability Tactics Mapped to Common Patterns – III

Tactic Blue-Green

Deployment

Canary

Deployment

Rolling

Deployment

Circuit Breaker

Encapsulate ×

Use an intermediary x

Restrict dependencies x

Abstract common services

Split module

Increase semantic coherence

Defer binding × × ×

Specialized interfaces

Record/playback

Localize state storage

Abstract data sources

Sandbox ×

Executable assertions

Segment deployments × × ×

Rollback × × ×

Feature toggle × × ×

Command dispatcher × × ×

 Layers

Layering is arguably the most common of all architectural patterns [Bass 2012, Buschmann 2007]. All

complex systems experience the need to develop and evolve portions of the system independently.

The developers of the system need a clear and well-documented separation of concerns so that mod-

ules of the system may be independently developed and maintained. Hence the software must be seg-

mented in such a way that the modules can be developed and evolved separately with little interaction

among the parts, supporting portability, modifiability, and reuse. To achieve this separation of con-

cerns, the Layers pattern divides the software into units called layers. Each layer is a grouping of mod-

ules that offers a cohesive set of services. The usage is, ideally, unidirectional. Layers completely

partition a defined set of software, and each partition is exposed through a public interface.

Layers restrict dependencies by placing a constraint that each layer is allowed to use only the lower

layer next to itself, which reduces the likelihood that changes to one layer will propagate past the next

higher layer. Layers are also often designed to abstract a set of common services into its own layer to

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31

[Distribution Statement A] Approved for public release and unlimited distribution.

promote consistency and avoid the duplication of code. It is also common to see a data abstraction

layer in data-intensive systems to reduce coupling with the underlying data store.

Benefits for maintainability

 Layered systems, if they contain only unidirectional dependencies, minimize the ripple effects of

changes.

 Layers promote consistency and reduce instances of replicated code.

 Layers are often deployed using tiers, which can be deployed and monitored independently to

detect and isolate issues.

Tradeoffs

 Layering can initially make a system more complex to build.

 Performance is typically negatively impacted because many invocations need to traverse addi-

tional layers. But in many cases, the actual impact on latency and throughput may be very small,

which is a good tradeoff.

 Pipe-and-Filter

Many systems are required to transform streams of discrete data items from input to output. Many

types of transformations occur repeatedly in practice, so it is desirable to develop these as independ-

ent, reusable parts. The architectures of such systems benefit if they can be divided into reusable,

loosely coupled components (filters) that share a common set of interaction mechanisms (pipes). In

this way, they can be flexibly combined with one another. The components are easily reused and can

be separately maintained and evolved.

The interaction in the Pipe-and-Filter pattern is characterized by a series of transformations of streams

of data. Data arrives at a filter’s input ports, is transformed, and then passes via output ports through a

pipe to the next filter. A single filter can consume data from, or produce data to, one or more ports.

The Pipe-and-Filter pattern uses the encapsulation tactic. The internals of filter processing are largely

hidden. In this type of architecture, a developer needs to understand only the inputs and outputs to

connect and use a filter. Another tactic that Pipe-and-Filter-based architectures usually use is defer

binding. It is common that pipes and filters are often specified in configuration files and connected us-

ing that information when the system is started.

Benefits for maintainability

 Filter implementations can be changed without affecting other filters or configurations.

 Pipe-and-Filter architectures support rolling deployments, which can allow fine-grained deploy-

ment. This deployment can allow single filters to be independently deployed and monitored.

Tradeoffs

 This pattern is typically not a good choice for an interactive system as it disallows cycles, which

are important for user feedback.

 Large numbers of independent filters can add substantial amounts of computational overhead

since each filter runs as its own thread or process.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32

[Distribution Statement A] Approved for public release and unlimited distribution.

 Pipe-and-Filter-based architectures may not be appropriate for long-running computations with-

out the addition of some form of checkpoint/restore functionality, as the failure of any filter (or

pipe) can cause the entire pipeline to fail.

 Publish-Subscribe

Publish-Subscribe is an architectural pattern where components communicate primarily through asyn-

chronous messages [Buschmann 2007], sometimes referred to as “events” or “topics.” The publishers

have no knowledge of the subscribers, and subscribers are only aware of message types. Systems us-

ing the Publish-Subscribe pattern rely on implicit invocation; that is, the component publishing a mes-

sage does not directly invoke any other component. Components publish messages on one or more

events or topics, and other components register an interest in the publication. At runtime, when a mes-

sage is published, the publish-subscribe (or event) “bus” notifies all of the elements that registered an

interest in the event or topic. In this way, the message publication causes an implicit invocation of

(methods in) other components. The result is a loose coupling between the publishers and the sub-

scribers.

The Publish-Subscribe pattern has three types of elements:

 publisher component: sends (publishes) messages

 subscriber component: subscribes to and then receives messages

 event bus: manages subscriptions and message dispatch as part of the runtime infrastructure (also

known as message-broker, message-oriented middleware, and enterprise service bus)

The Publish-Subscribe pattern incorporates many tactics. The publishers have no knowledge of the

subscribers and vice versa. They rely only on the publish-subscribe interface, which is a realization of

the encapsulation tactic. Pre- and post-processing of events allow architects to abstract common ser-

vices such as transformation and data validation. The event distribution mechanism is an intermediary

and restricts dependencies, which results in loose coupling among components. The publishing of top-

ics and the subscribing to topics can defer binding to runtime.

Benefits for maintainability

 Publishers and subscribers are independent and hence loosely coupled. Adding or changing sub-

scribers requires only registering for an event and causes no changes to the publisher.

 System behavior can be easily changed by changing the event or topic of a message being pub-

lished, consequently changing which subscribers might receive and act on the message. This

seemingly small change can have large consequences, as features may be turned on or off by

adding or suppressing messages. This capability supports the feature toggle tactic.

 Events can be logged easily to allow for record and playback to reproduce error conditions that

can be challenging to recreate manually.

Tradeoffs

 Some implementations of Publish-Subscribe can negatively impact performance (latency). For

example, in some cases, a component cannot be sure how long it will take to receive a published

message. In general, systemic performance and resource management are more difficult to reason

about in Publish-Subscribe systems.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33

[Distribution Statement A] Approved for public release and unlimited distribution.

 Publish-Subscribe can negatively impact the determinism produced by synchronous systems. The

order in which methods are invoked, as a result of an event, can vary in some implementations.

 Publish-Subscribe can negatively impact testability. Seemingly small changes in the event bus—

such as a change in which components are associated with which events—can have a wide im-

pact on system behavior and quality of service.

 Some Publish-Subscribe implementations limit the mechanisms available to improve security

(integrity). Since publishers do not know the identity of their subscribers and vice versa, end-to-

end encryption is limited. Messages from a publisher to the event bus can be uniquely encrypted,

and messages from the event bus to a subscriber can be uniquely encrypted; however, end-to-end

encryption requires all publishers and subscribers to share the same key.

 Adapters

An Adapter is a pattern that adds an abstraction—a component with its own interface—between a con-

crete service and clients of that service [Gamma 1994]. The Adapter pattern is commonly used when

clients should not change their behavior even as the services they use (and the interfaces of those ser-

vices) change. Clients can invoke the Adapter component, via its interface, which redirects them into

calls to existing components that are being reused. The Adapter functions as a wrapper on top of an

existing component, allowing two incompatible interfaces to interact and removing all knowledge of

the concrete service from the client. The client needs to depend only on the Adapter interface.

This pattern enables sets of components that provide similar functionality but expose different inter-

faces (for example, components that manage sensors from different manufacturers) to work together,

serving as an intermediary. The Adapter allows components with incompatible interfaces to work to-

gether by wrapping its own interface around an already defined component interface, promoting en-

capsulation. This helps isolate changes to underlying components by restricting dependencies that

require communication to go through the adapter. Developers need only to write a new adapter rather

than changing many components. This pattern is most useful for making software that was designed

previously to work in new environments.

Benefits for maintainability

 Adapters facilitate communication and interaction between two or more incompatible compo-

nents. This allows new sensors’ or components’ details to be hidden from the rest of the compo-

nents to localize changes to an underlying adapter implementation.

Tradeoffs

 Adapters may negatively impact performance (latency) by introducing additional calls and over-

head.

 Façade

The Façade pattern is quite similar in intent to the Adapter pattern. A Façade is an interface with an

explicit goal of hiding the complexity of the underlying modules [Gamma 1994]. A Façade is em-

ployed to hide complexity—to provide a simpler interface to a client than what the service exposes. In

contrast, the Adapter pattern provides a more generic interface—one that the client expects—so that

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34

[Distribution Statement A] Approved for public release and unlimited distribution.

the client does not need to adapt, but this interface may not be inherently simpler than what the ser-

vices expose.

A Façade is composed of several important tactics. This interface uses encapsulation by hiding the in-

teraction details of the underlying components. The façade restricts dependencies by serving as an in-

termediary (e.g., performing additional functionality before or after calls) between a set of

components and the rest of the system. A façade also isolates the changes to the rest of the system and

prevents ripple effects when systems are refactored to achieve other quality goals.

Benefits for maintainability

 The number of dependencies on subsystems are greatly reduced, preventing ripple effects from

changes such as COTS upgrades.

 The simple interface ensures that clients use the set of interfaces that are encapsulated in a con-

sistent manner, reducing potential defects.

Tradeoffs

 The indirection of going through a façade introduces overhead, as compared to direct calls to the

underlying functionality.

 The constraints imposed by the façade, which is typically simpler than the functionality it is hid-

ing, may not be appropriate for all use cases and could result in duplication of underlying compo-

nents or a loss of some functionality.

 Model-View-Controller (MVC)

User interface software is typically the most frequently modified portion of an interactive application.

For this reason, it is important to keep modifications to the user interface software separate from the

rest of the system. Users often wish to look at data from different perspectives, such as a bar graph or

a pie chart. Both representations should reflect the current state of the data.

The MVC pattern separates application functionality into three kinds of components [Krasner 1988]:

 a model, which contains the application’s state data and responds to state queries

 a view, which displays some portion of the underlying model and interacts with the user

 a controller, which mediates between the model and the view (or views), manages the notifica-

tions of state changes, and allows the user to switch among views

The MVC components are connected to each other via some form of notification, such as events or

callbacks. These notifications contain state updates. A change in the model needs to be communicated

to the views so that they can be updated. An external event, such as a user input, needs to be commu-

nicated to the controller, which may, in turn, update the view, the model, or both. Notifications may be

either push or pull.

The relationships between the components of MVC are shown in Figure 3.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35

[Distribution Statement A] Approved for public release and unlimited distribution.

Figure 3: Model-View-Controller Pattern

The model encapsulates the application state, and the controller defines application behavior and

serves as an intermediary. The restrict dependencies tactic is used since all interactions are defined by

the pattern. Semantic coherence is increased by having clearly defined responsibilities for each of the

major components.

Benefits for maintainability

 Because the MVC components are loosely coupled, it is easy to develop and test them separately.

 Changes to one of the MVC components have minimal impact on the others.

 Multiple views are relatively simple to implement and maintain separately.

Tradeoffs

 The design and implementation of three distinct kinds of components, along with their various

forms of interaction, can be costly, and this cost may not make sense for relatively simple user in-

terfaces.

 The match between the abstractions of MVC and commercial user interface tool kits is not per-

fect. The view and the controller split apart input and output, but these functions are often com-

bined into individual widgets. This splitting can result in a conceptual mismatch between the

architecture and the user interface tool kit.

 Memento

The Memento pattern was originally created to allow the state of an object to be saved externally so

that it can be restored later if necessary. This can be useful at different levels of abstraction for tactics

such as rollback when problems are found after deployment changes [Gamma 1994].

The Memento pattern is implemented with three elements:

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36

[Distribution Statement A] Approved for public release and unlimited distribution.

 An originator is an object that has an internal state that needs to be saved so that changes can be

undone.

 A caretaker can change the state of the originator but also needs to be able to undo those

changes.

 A memento is a copy of the originator’s state.

The caretaker applies some operation (or operations) that cause the state of the originator to change.

Before doing so, the caretaker requests a memento object from the originator. To roll back to the state

prior to these operations, the caretaker can return the memento to the originator, thus restoring it to its

previously saved state. Since only the originator is allowed to access the memento encapsulation, the

originator’s encapsulation is preserved.

The memento itself should never be modified by the caretaker. When using this pattern, care should

be taken because the originator can affect other objects or resources (“ripple” effects). The Memento

pattern is meant to operate on a single object, so those ripple effects will not be undone.

Benefits for maintainability

 Encapsulation of the originator is maintained since there is a constraint on access to the memento.

This is an example of the restrict dependencies tactic.

Tradeoffs:

 If very large data sets need to be saved by the originator, this may have a negative impact on sys-

tem resource utilization, including memory and processor utilization.

 Large data sets in originators can also impact system restart time, thus impacting availability.

 Blue-Green Deployment

The Blue-Green Deployment pattern promotes the use of two production environments and allows for

segmented deployment. These two environments should be identical whenever possible. Any time one

of the production environments is live, we call this the green environment. The blue environment is

used to finalize testing as developers prepare a new release. After the software passes all critical tests,

the developers switch to the blue environment with the upgrade and blue becomes live. If developers

have confidence that the upgrade is working in production in the blue environment, they start deploy-

ing upgrades to the idle green environment. On the other hand, if users experience any issues, they can

safely roll back to the green environment that has not been updated [Fowler 2010].

Benefits for maintainability

 When faults or errors are detected after deployment, rollback can be done quickly by switching

back to the environment that hasn’t been upgraded.

 This pattern allows for segmented deployment with a smaller scope that can be tested and moni-

tored more easily than a large deployment.

 Being able to switch easily minimizes the impacts on users when deployments fail and even when

they are successful. Deployment can be done with zero downtime.

Tradeoffs

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37

[Distribution Statement A] Approved for public release and unlimited distribution.

 Two identical production environments are not practical for some systems and can be prohibi-

tively costly.

 Some systems suffer from a lack of hardware for testing, and this pattern compounds that problem

by siphoning resources away from a test environment.

 Maintaining fidelity between the environments requires careful management.

 Canary Deployment

Canary deployment builds on the Blue-Green pattern. It is very similar but adds a further refinement

to the segment deployment tactic. In a canary release, a segmented deployment is often rolled out to a

subset of the deployed instances (such as servers). Then some subset of user requests is routed to the

new instances, while others continue to run on the previous (stable) version. This routing can be based

on organizations (for example, roll out internally before externally), a small percentage of instances,

or a more sophisticated classification of user profiles. Incrementally rolling out the upgrades mini-

mizes risk and allows for testing a new deployment and gathering detailed metrics about how the pro-

duction environment is affected as the load is gradually increased [Sato 2014].

Benefits for maintainability

 The Canary pattern has all the benefits of Blue-Green Deployment.

 It enables finer grained metrics collection as the number of users increases.

 It carries lower risk than simply switching all traffic to a new deployment (as is done with the

Blue-Green pattern).

Tradeoffs

 All of the tradeoffs from Blue-Green Deployment apply here.

 The Canary pattern adds complexity to managing routing rules or configurations. And small

changes in configurations may produce different results, which can lead to invalid or misinter-

preted metrics.

 Circuit Breaker

Since deployments may involve large numbers of moving parts and large numbers of dependencies, it

is often desired to decouple the effects of a failure of some part of the system from other parts. With a

Circuit Breaker, a service is wrapped and the wrapper monitors the state of the service [Nygard 2017].

If it is determined that the service is not operating consistently within its specification, the circuit

breaker is tripped, and all subsequent calls to the service return an error immediately. This ensures that

such dependencies do not slow down other parts of the system due to, for example, repeated timeouts,

which increase the degree of control over the deployment.

Benefits for maintainability

 The Circuit Breaker pattern makes it possible to deploy new (instances of) services with the

knowledge that they will not seriously undermine existing latency and availability properties.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38

[Distribution Statement A] Approved for public release and unlimited distribution.

Tradeoffs

 The Circuit Breaker pattern adds some up-front complexity in terms of the need to map the ser-

vice being deployed.

 Rolling Deployment

The Rolling Deployment pattern is used for systems that can be broken down into several nodes that

can be deployed independently. These nodes can be an entire server running a monolithic application

or a small container running a single component or a few components.

Whenever an update is ready for deployment, developers deploy a new node running the updated or

new functionality. The previous version runs at the same time as the new version while developers

monitor the behavior of the new node until they are confident that the new version is stable.

Rolling deployment allows for rollback since the previous version is still running until the new version

is monitored sufficiently. Feature toggle is also supported since the node can be easily brought offline

by a command or configuration change.

Benefits for maintainability

 This pattern minimizes the impact on users since developers can roll out deployments quickly

with almost no downtime.

 Finer grained deployments simplify the root cause analysis of faults or changes in the required

quality of the service.

Tradeoffs

 Since developers roll out changes in a production environment server by server, there will be mul-

tiple (at a minimum two) versions of the software running at the same time. This can lead to un-

predictable results, which can make it more difficult to determine the root cause of newly

emerging issues.

 Some servers will need to be offline while they are being upgraded, thus reducing processing ca-

pacity.

 Strategy

The Strategy pattern enables specific functionality (such as an algorithm) to be chosen at runtime, ra-

ther than being hard-wired in to the behavior of the system. This pattern is an instantiation of the defer

binding tactic. It allows for certain functionality (e.g., data validation) to vary independently from the

clients that use them. The pattern defines context components, strategy components, and concrete

strategy components. Some or all of the context components’ behavior is implemented by a concrete

strategy component. The strategy component will choose the concrete strategy components based on

parameters, configurations, or runtime conditions. This pattern provides value when interfaces are sta-

ble, but implementations change frequently [Gamma 1994]. The Strategy pattern is the basis for de-

pendency injection.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39

[Distribution Statement A] Approved for public release and unlimited distribution.

The Strategy pattern encapsulates underlying implementations and allows for changes based on the

desired quality of the service. This is also an instance of providing a specialized interface for testing

where test components can be substituted easily for operational components to inject error conditions.

Benefits for maintainability

 The Strategy pattern supports maintainability by allowing test components to be chosen when the

real components have yet to be implemented.

 Decoupling the implementation from the interface allows the client and component to be changed

independently.

 This pattern allows functionality to be added without changing the calling context in which the

pattern is invoked.

Tradeoffs

 The Strategy pattern can reduce code readability since additional files need to be examined to un-

derstand the complete runtime behavior.

 The Strategy pattern removes some complexity from components but introduces a dependency on

any framework used to implement the pattern (for example, the Spring Framework for depend-

ency injection in Java).

 The added indirection will increase latency, but as we have noted in other contexts, this increase

may be small and thus the tradeoff may be a good one.

 Intercepting Filters

An intercepting filter allows for a set of services to be implemented as a set of pre- or post-processing

filters without requiring changes to the core component that they serve. The binding of the processing

can be deferred until compile, load, or runtime. These filters may be woven in using technologies such

as aspects from aspect-oriented programming, in which functionality is woven in during compilation

or by language frameworks that weave aspects at runtime.

Intercepting filters have similar benefits to the Strategy pattern but have a different strategic use case.

The intercepting filter is more applicable for some standard functionality that needs to be invoked in

many places and in many different contexts, often requiring a chain of filters. The Strategy pattern is

more applicable for a stable interface with several useful implementations’ variants.

The intercepting filter is an example of splitting modules to simplify them by removing explicit pre-

and post-processing from a functional module. The pre- and post-processing are very similar to exe-

cutable assertions where input value ranges can be checked before or after execution.

Benefits for maintainability

 The Intercepting Filter pattern supports maintainability by allowing faults to be injected into com-

ponents via preprocessing so that conditions can easily be met for unit testing.

 Filters can be easily turned on when they are needed and off when they are not needed.

 This pattern allows functionality that will be used broadly to be added in many places without

changing the underlying components.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40

[Distribution Statement A] Approved for public release and unlimited distribution.

Tradeoffs

 The Intercepting Filter pattern can reduce code readability since additional (often nonlocal) files

need to be examined to understand the complete behavior in cases where important functionality

is required (e.g., security token checks, data validation).

 Intercepting filters remove the complexity of components but may introduce a dependency on a

framework that implements the pattern. The Spring framework is an example of a common de-

pendency injection framework.

 Long chains of filters can increase latency considerably.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41

[Distribution Statement A] Approved for public release and unlimited distribution.

6 Analyzing for Maintainability

An analyst’s job is to judge the appropriateness of the mechanisms built into the architecture of a sys-

tem in light of the set of maintenance tasks anticipated. The degree of appropriateness is a function of

the risks and costs of the anticipated maintenance tasks. Analysts can specify these potential or antici-

pated tasks using scenarios, as we exemplified above. For consistency and repeatability, analysts can

guide stakeholders to derive those scenarios from the general scenario for maintainability.

Analyzing for maintainability at different points in the software development lifecycle will take differ-

ent forms. The different analysis options are sketched in Table 7. If analysts are analyzing a system in

its early design stages, they may only have a reference architecture or a functional architecture, for ex-

ample. In this case, they cannot make detailed predictions or claims about the level of difficulty asso-

ciated with a specific anticipated maintenance task. What the analyst can employ, at that early stage, is

a checklist or tactics-based questionnaire. These analysis techniques will reveal the designer’s inten-

tions with respect to maintainability.

On the other hand, if the analysts have received a defined and documented product architecture—per-

haps including multiple hardware and software architecture views—but little or no coding has been

done, they can still employ checklists and tactics-based questionnaires to understand the design intent.

But, as shown in Table 7, the analysts can also begin to think about employing metrics to measure the

as-designed level of coupling in the system, in chosen subsets of the system, or between selected parts

of the system.

There is no one-size-fits-all analysis methodology or tools that we can recommend. The analysis team

needs to respond appropriately to whatever artifacts have been made available for analysis. And the

analysis team and the product owner need to understand that the accuracy of the analysis and the ex-

pected degree of confidence in the analysis results will vary according to the quality of the available

artifacts.

Table 7: Lifecycle Phases and Possible Analyses for Maintainability

Lifecycle Phase Typical Available Artifacts Possible Analyses

Early Design Set of selected mechanisms, tactics, and

patterns

Checklist

Tactics-based questionnaire

Software Architecture

Defined

Set of containers for functionality (e.g., mod-

ules, services, microservices) and their in-

terfaces

Checklist

Tactics-based questionnaire

Coupling metrics

 structural

 semantic

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42

[Distribution Statement A] Approved for public release and unlimited distribution.

Lifecycle Phase Typical Available Artifacts Possible Analyses

Implemented System Set of containers for functionality (e.g., mod-

ules, services, microservices) and their in-

terfaces

Commit history

Issue-tracking history

Runtime profiles/traces

Checklist

Coupling metrics

 structural

 semantic

 history based

 dynamic

6.1 Tactics-Based Questionnaires

Architectural tactics have been presented thus far as design primitives, following the work of Bass,

Cervantes, and their colleagues [Bass 2012, Cervantes 2016]. However, since tactics are meant to

cover the entire space of architectural design possibilities for a quality attribute, we can use them in

analysis as well. Each tactic is a design option for the architect at design time. But used in hindsight,

tactics represent a taxonomy of the entire abstract space of design possibilities for maintainability.

Specifically, we have found these tactics to be very useful guides for interviews with the architecture

team. These interviews help analysts gain rapid insight into the design approaches taken, or not taken,

by the architect and the risks therein. These risks might be one or more of the following:

 risks of omission, such as the architect did not use this tactic and should have

 risks of commission, such as this tactic is not really required, which increases costs with little or

no commensurate benefit

 risks on how a tactic was implemented, such as team members implemented a tactic themselves

when a better, more mature alternative already existed

 managerial risks, such as the tactic has not been properly communicated to the team

Although the information could be derived from other sources such as document review or reverse en-

gineering, interviews with the architect are typically quite efficient and can be very revealing. For ex-

ample, consider the list of maintainability tactics-inspired questions presented in Table 8. The analyst

asks each question and records the answers in the table.

Table 8: Tactics-Based Questionnaire for Maintainability

Tactics Group Tactics Question Supported?

(Y/N)

Risk

Design Decisions

and Location

Rationale and

Assumptions

Manage

Dependencies

Does the system consist-

ently encapsulate the func-

tionality? This typically

involves isolating the func-

tionality under scrutiny and

introducing an explicit inter-

face to it.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43

[Distribution Statement A] Approved for public release and unlimited distribution.

Tactics Group Tactics Question Supported?

(Y/N)

Risk

Design Decisions

and Location

Rationale and

Assumptions

Does the system consist-

ently use an intermediary

to keep modules from being

too tightly coupled? For ex-

ample, if A calls concrete

functionality C, the system

might use an abstraction B

that mediates between A

and C.

Does the system restrict

dependencies between

modules in a systematic

way? Or is any module free

to interact with any other

module?

When two or more unrelated

modules regularly change

together—that is, they are

consistently affected by the

same changes—do you reg-

ularly refactor to isolate the

shared functionality as com-

mon code in a distinct mod-

ule?

Does the system abstract

common services in cases

where it provides several

similar services? For exam-

ple, this technique is often

used when the system must

be portable across operating

systems, hardware, or other

environment variations.

Do you regularly make mod-

ules simpler by splitting the

module? For example, if the

system has evolved from a

large, complex module,

would you normally split it

into two (or more) smaller,

simpler modules?

Does the system consist-

ently support increasing se-

mantic coherence? For

example, if responsibilities in

a module do not serve the

same purpose, they should

be placed in different mod-

ules. This may involve creat-

ing a new module or moving

a responsibility to an existing

module.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44

[Distribution Statement A] Approved for public release and unlimited distribution.

Tactics Group Tactics Question Supported?

(Y/N)

Risk

Design Decisions

and Location

Rationale and

Assumptions

Does the system regularly

defer binding of an im-

portant functionality so that it

can be replaced later in the

lifecycle, perhaps even by

end users? For example,

does the system use plug-

ins, add-ons, or user script-

ing to extend the functional-

ity of the system?

Manage

System State

Does the system or do the

system components provide

specialized interfaces to

facilitate testing and monitor-

ing?

Does the system provide

mechanisms that allow infor-

mation that crosses an inter-

face to be recorded to use it

later on for testing purposes

(record/playback)?

Is the state of the system,

subsystem, or modules

stored in a single place to fa-

cilitate testing (localized

state storage)?

Does the system make it

easy to abstract data

sources, for example, by

abstracting interfaces? Ab-

stracting the interfaces

makes inserting test data

simpler.

Can the system be executed

in isolation (a sandbox) to

experiment with or test it

without worrying about hav-

ing to undo the conse-

quences of an experiment?

Are executable assertions

used in the system code to

indicate when and where a

program is in a faulty state?

Manage

Deployments

Do you segment deploy-

ments, rolling out new re-

leases gradually (in contrast

to releasing in an all-or-noth-

ing fashion)?

Can you automatically roll

back deployed components

if you determine that they

are not operating in a satis-

factory fashion?

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45

[Distribution Statement A] Approved for public release and unlimited distribution.

Tactics Group Tactics Question Supported?

(Y/N)

Risk

Design Decisions

and Location

Rationale and

Assumptions

Does the system employ

feature toggles to automati-

cally disable a newly re-

leased feature (rather than

rolling back the newly de-

ployed component) if the

feature is determined to be

problematic?

Does the system use a

command dispatcher to

script complex sequences of

deployment instructions?

These questionnaires can be used by an analyst, who poses each question to the architect and records

the responses, as a means of conducting an architecture analysis. To use these questionnaires, follow

these four steps:

1. For each tactics question, fill the “Supported” column with Y if the tactic is supported in the ar-

chitecture and with N otherwise. The tactic name in the “Tactics Question” column is bolded.

2. If the answer in the Supported column is Y, then in the “Design Decisions and Location” col-

umn, describe the specific design decisions made to support the tactic and enumerate where these

decisions are manifested (located) in the architecture. For example, indicate which code modules,

frameworks, or packages implement this tactic.

3. In the “Risk” column, indicate the anticipated or experienced difficulty or risk of implementing

the tactic using a (H = High, M = Medium, L = Low) scale. For example, a tactic that was of me-

dium difficulty or risk to implement (or which is anticipated to be of medium difficulty, if it has

not yet been implemented) would be labeled M.

4. In the “Rationale” column, describe the rationale for the design decisions made, including a deci-

sion not to use this tactic. Briefly explain the implications of this decision. For example, explain

the rationale and implications of the decision in terms of its effect on cost, schedule, evolution,

and so forth.

Thus, when using this set of questions in an interview, the analyst records whether or not each tactic is

supported by the system’s architecture, according to the opinions of the architect. When analyzing an

existing system, the analyst can additionally investigate the following:

 Are there are obvious risks in the use (or nonuse) of this tactic? If the tactic has been used, record

how it is realized in the system (e.g., via custom code, generic frameworks, or externally pro-

duced components).

 What are the specific design decisions made to realize the tactic, and where in the code base the

implementation (realization) is it found? This is useful for auditing and architecture reconstruc-

tion purposes.

 What rationale or assumptions are made in the realization of this tactic?

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 46

[Distribution Statement A] Approved for public release and unlimited distribution.

While this interview-based approach might seem simplistic, it can be very powerful and insightful. In

architects’ daily activities, they likely do not take the time to step back and consider the bigger picture.

A set of interview questions such as those in Table 8 forces the architect to do just that. This process

can be quite efficient; a typical interview for a single quality attribute takes between 30 and 90

minutes.

6.2 Architecture Analysis Checklist for Maintainability

As presented in the work of Bass and colleagues, one can view an architecture design as the result of

applying a collection of design decisions [Bass 2012]. We view architecture design and analysis as

two sides of the same coin [Cervantes 2016]. Design and analysis are not distinct activities—they are

intimately related. Any design decision made by an architect should be analyzed. What we present

next is a systematic categorization of these decisions so that an architect or analyst can focus attention

on the design dimensions likely to be most troublesome.

An architect faces seven major categories of design decisions. These decisions will affect both soft-

ware and, to a lesser extent, hardware architectures. These categories are

1. allocation of responsibilities

2. coordination model

3. data model

4. management of resources

5. mapping among architectural elements

6. binding time decisions

7. choice of technology

These categories are not the only way to classify architectural design decisions, but they do provide a

rational (and exhaustive) division of concerns. The concerns addressed in these categories might over-

lap, but it’s all right if a particular decision exists in two different categories because the duty of the

architect and the analyst is to ensure that every important decision has been considered.

Some of these design decisions might be trivial. For example, an architect may have no choice of tech-

nology decisions to make if he is required to implement the software on a prespecified platform over

which he has little or no control. Or for some applications, the data model might be trivial. But for

other categories of design decisions, the architect might have considerable latitude.

For each quality attribute, we enumerate a set of questions—a checklist—that will lead an analyst to

question the decisions made (or not made) by the architect and for some of these decisions to refine

the questions into a deeper analysis. The checklist for maintainability is presented below.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 47

[Distribution Statement A] Approved for public release and unlimited distribution.

Table 9: Checklist for Maintainability

Category Checklist

Allocation of

Responsibilities

Determine which changes or categories of changes are likely to occur through consideration

of changes in technical, legal, social, business, and customer forces. Do the following for

each potential change or category of changes:

 Determine the responsibilities that would need to be added, modified, or deleted to make

the change.

 Determine what other responsibilities are impacted by the change.

 Determine an allocation of responsibilities to modules that places, as much as possible,

responsibilities that will be changed (or impacted by the change) together in the same

module and places responsibilities that will be changed at different times in separate

modules.

Coordination Model Determine which functionality or quality attribute can vary at runtime and how this affects co-

ordination; for example, will the information being communicated change at runtime, or will

the communication protocol change at runtime? If so, ensure that such changes affect a

small number of modules.

Determine which devices, protocols, and communication paths used for coordination are

likely to change. For those devices, protocols, and communication paths, ensure that the im-

pact of changes will be limited to a small set of modules.

For those elements for which maintainability is a concern, use a coordination model that re-

duces coupling, such as publish-subscribe, defers bindings, such as enterprise service bus,

or restricts dependencies, such as broadcast, façade, or layering.

Data Model Determine which changes (or categories of changes) to the data abstractions, their opera-

tions, or their properties are likely to occur. Also determine which changes or categories of

changes to these data abstractions will involve their creation, initialization, persistence, ma-

nipulation, translation, or destruction.

For each change or category of change, determine if the changes will be made by an end

user, a system administrator, or a developer. For those changes to be made by an end user

or system administrator, ensure that the necessary attributes are visible to that user and that

the user has the correct privileges to modify the data, its operations, or its properties.

Do the following for each potential change or category of change:

 Determine which data abstractions would need to be added, modified, or deleted to make

the change.

 Determine whether there would be any changes to the creation, initialization, persistence,

manipulation, translation, or destruction of these data abstractions.

 Determine which other data abstractions are impacted by the change. For these addi-

tional data abstractions, determine whether the impact would be on the operations, their

properties, or their creation, initialization, persistence, manipulation, translation, or de-

struction.

 Ensure an allocation of data abstractions that minimizes the number and severity of mod-

ifications to the abstractions by the potential changes.

Design the data model so that items allocated to each element of the data model are likely

to change together.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 48

[Distribution Statement A] Approved for public release and unlimited distribution.

Mapping Among

Architectural

Elements

Determine if it is desirable to change the way in which functionality is mapped to computa-

tional elements (e.g., processes, threads, processors, virtual machines) at runtime, compile

time, design time, or build time.

Determine the extent of modifications necessary to accommodate the addition, deletion, or

modification of a function or a quality attribute. This might involve determining, for example,

 execution dependencies

 assignment of data to databases

 assignment of runtime elements to processes, threads, or processors

Ensure that such changes are performed with mechanisms that utilize deferred binding of

mapping decisions.

Resource

Management

Determine how the addition, deletion, or modification of a responsibility or quality attribute

will affect resource usage. This involves, for example,

 determining what changes might introduce new resources, remove old ones, or affect ex-

isting resource usage or contention

 determining what resource limits will change and how

Ensure that the resources after the modification are sufficient to meet the system require-

ments.

Encapsulate all resource managers, and ensure that the policies implemented by those re-

source managers are themselves encapsulated and bindings are deferred to the extent pos-

sible.

Binding Time Do the following for each change or category of change:

 Determine the latest time at which the change will need to be made.

 Choose a defer binding mechanism that delivers the appropriate capability at the time

chosen.

 Determine the cost of introducing the mechanism and the cost of making changes using

the chosen mechanism.

 Do not introduce so many binding choices that change is impeded because the depend-

encies among the choices are complex and unknown.

Choice of

Technology

Determine what maintenance tasks are made easier or harder by technology choices.

 Will technology choices help to make, test, and deploy modifications?

 How easy is it to modify the choice of technologies (in case some of these technologies

change or become obsolete)?

Choose technologies to support the most likely maintenance tasks. For example, an enter-

prise service bus makes it easier to change how elements are connected but may introduce

vendor lock-in.

6.3 Coupling and Cohesion Metrics

There are well-validated measures of some architecture properties that tend to lead to maintainability.

These measures may give us insight into the tendency of an architecture to be maintainable. For exam-

ple, there are several metrics for object-oriented designs, such as the Quality Model for Object-Ori-

ented Design (QMOOD) quality attributes [Goyal 2014] and the CK metrics suite [Chidamber 1994],

both of which include metrics for measuring coupling and cohesion.

Additionally, there are architecture-level coupling measures, such propagation cost (PC) [MacCor-

mack 2006] and Decoupling Level (DL) [Mo 2016]. PC measures how tightly the elements of a sys-

tem are coupled; the more tightly they are coupled, the higher the score. DL measures how well

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 49

[Distribution Statement A] Approved for public release and unlimited distribution.

components in a system are decoupled from one another; the more decoupled they are, the higher the

score.

In addition, the DL metric has been used to assess nonstructural coupling between components by

measuring “history coupling” [Xiao 2014, Cai 2019]. For example, Gall and colleagues showed that

logical relations among files can often be reflected by how they were changed together as recorded in

the revision history [Gall 1998]. History coupling is calculated based on a representation of a system

where two components are said to be “historically coupled” if they are changed together in a commit.

Thus, if a project has a recorded commit history, we can calculate this coupling measure. This meas-

ure is of interest because historical co-commit relations can reveal nonstructural forms of coupling,

such as control, data, timing, and resource-based coupling.

Each of these metrics has been extensively empirically validated, so they can be used with a reasona-

ble degree of confidence. Furthermore, the DL, PC, and QMOOD metrics can be applied when an ar-

chitecture description has been created but little or no coding has been done. These metrics can give

early insight into the properties of the design with respect to some important aspects of maintainabil-

ity.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 50

[Distribution Statement A] Approved for public release and unlimited distribution.

7 Playbook for an Architecture Analysis of Maintainability

This playbook outlines an approach to combine the checklists and questionnaires presented in the pre-

vious sections with information about mechanisms to analyze an architecture to validate the satisfac-

tion of a maintainability requirement. The playbook provides a process, illustrated with a running

example, that will guide experts to perform architecture analysis in a more repeatable way.

The process has three phases and seven steps. The Preparation phase gathers the artifacts needed to

perform the analysis and evaluation. The Orientation phase uses the information in the artifacts to un-

derstand the architecture approach to satisfying the quality attribute requirement. The process ends

with the Evaluation phase, when the analyst applies his understanding of the requirement and architec-

ture solution approach to make judgments about that approach. The phases and steps are summarized

in Table 10.

Table 10: Phases and Steps to Analyze an Architecture

Phase Step

Preparation Step 1–Collect artifacts.

Orientation

Step 2–Identify the mechanisms used to satisfy the requirement.

Step 3–Locate the mechanisms in the architecture.

Step 4–Identify derived decisions and special cases.

Evaluation

Step 5–Assess requirement satisfaction.

Step 6–Assess the impact on other quality attribute requirements.

Step 7–Assess the costs/benefits of the architecture approach.

The analyst might identify missing artifacts during the Preparation phase and missing or incomplete

information within those artifacts during the Orientation phase. At the end of each step in the Prepara-

tion and Orientation phases, the analyst must decide whether sufficient information is available to pro-

ceed with the process.

This process can be applied at almost any point in the development lifecycle. The quality of the archi-

tecture artifacts—breadth, depth, and completeness—will inform the type of analysis and evaluation

performed in Step 5 and the degree of confidence in the results. Early in the development lifecycle,

lower confidence may be acceptable, and the analyst can work with lower quality artifacts and simpler

analyses, as suggested in Table 7. Later in the lifecycle, the analyst needs higher confidence and there-

fore higher quality artifacts and more and deeper analyses.

7.1 Step 1–Collect Artifacts

In this step, the analyst collects the artifacts that she will need to perform the analysis. These include

quality attribute requirements and architecture documentation.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 51

[Distribution Statement A] Approved for public release and unlimited distribution.

The first artifact the analyst needs is the maintainability requirement that she wants to validate. The

requirement must be stated so that it is measurable, for example, as a quality attribute scenario (as dis-

cussed above). Let’s use a variant of the example in Scenario 4 from Section 4.2, where we have spec-

ified the artifact as “Flight Management System–Sensor Manager,” and we will add a new scenario in

which an error occurs, requiring rollback. Let’s call these Scenarios 5 and 6, respectively.

Scenario 5: Sensor Replacement

Scenario Part Value

Source Flight Management System Program Manager

Stimulus A sensor needs to be replaced.

Artifact Flight Management System–Sensor Manager

Environment Maintenance phase; new contractor, not the original developer

Response Code is modified and tests are completed. The system is ready for integration testing and able

to support rollback if issues are discovered.

Response measure Within 60 calendar days and no code changes required outside the Sensor Message Formatter

Scenario 6: Errors Requiring Rollback

Scenario Part Value

Source Flight Management System Program Manager

Stimulus Errors are detected during sensor manager update.

Artifact Flight Management System–Sensor Manager

Environment Maintenance phase; during update

Response The system is rolled back to a previous working state.

Response measure Within “X” minutes

Next, the analyst needs the other quality attribute requirements. As noted above, architecture designs

embody tradeoffs, and decisions that improve maintainability may have a negative impact on the satis-

faction of other quality attribute requirements. In Step 6, the analyst will check that the architecture

decisions made to satisfy this requirement do not adversely affect other quality attribute requirements,

and more information about the complete set of quality attribute requirements means greater confi-

dence in the results of that step.

Finally, the analyst needs architecture documentation. Early in the architecture development lifecycle,

the documentation may be just a list of mechanisms mapped to quality attribute requirements, perhaps

identifying tradeoffs. As the architecture is refined, partial models or structural diagrams become

available, accompanied by information about key interfaces, behaviors and interactions, and rationale

that provides a deeper link between the architecture decisions and quality attribute requirements.

When the architecture development iteration is finished, the documentation should include complete

models or structural diagrams, along with the specification of interfaces, behaviors and interactions,

and rationale.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 52

[Distribution Statement A] Approved for public release and unlimited distribution.

7.2 Step 2–Identify the Mechanisms Used to Satisfy the Requirement

To begin the Orientation phase, there are several places to look to identify mechanisms used in the ar-

chitecture. If the architecture documentation includes a discussion of rationale, that can provide unam-

biguous identification of the mechanisms used to satisfy a quality attribute requirement. Other

activities include looking at the structural and behavior diagrams or models and recognizing architec-

ture patterns. Naming of architecture elements may indicate the mechanism being used. The analyst

may also look at the file structure and naming of source code repositories, if they exist, to find mecha-

nisms. The analyst may need to use all of these to identify the mechanism or mechanisms that are be-

ing used to satisfy the maintainability requirement. Frequently, two or more mechanisms are needed to

satisfy a requirement. If the analyst has access to the architect(s), this is an excellent time to use the

tactics-based questionnaires, as described in Section 6.1. In a short period of time, the analyst can enu-

merate all of the relevant mechanisms chosen (and not chosen).

For the example requirement above about replacing a sensor, let’s say that the project is already par-

tially through the development, and parts are already deployed into a development environment. The

original development team created documentation that illustrates a desire to segment deployment and

a fairly robust rationale writeup justifying other decisions relating to maintainability. The rationale

states that the team used a Façade pattern to abstract the complexity of managing sensors from the rest

of the system to satisfy this maintainability requirement, along with a mechanism for rollback using

the Memento pattern. Since the development is underway and partially deployed in a development en-

vironment, a quick walkthrough with developers showed a set of deployment scripts that they created

to reduce human error during deployment. This mechanism is the command dispatcher tactic. Another

mechanism that has yet to be implemented is to use executable assertions to help determine when and

where a program is in a faulty state.

The analyst performs a quick check to decide if the referenced mechanisms are likely to contribute to

satisfying the maintainability requirement. In this case, all mechanisms that are enumerated above are

known to positively impact maintainability measures. They describe two patterns and three tactics for

maintainability—so the check passes.

In contrast, if the documented rationale (or the architect) stated that the architecture used a broker for

protocol translation and data format transformations to achieve this requirement, these choices would

raise a red flag since those mechanisms are usually associated with improving syntactic interoperabil-

ity, but not necessarily maintainability. The analyst might decide to stop the architecture analysis at

this point and gather more information from the architect. The point of this quick check is not to ana-

lyze the mechanism or decision in detail but simply to assess whether the architecture analysis is on

the right track before devoting more effort to it.

In some cases, the appropriateness of a mechanism is less clear. For example, the rationale in this case

might specify that a health monitoring mechanism is used. Simply checking if something is alive can

support maintainability in a crude sense but often is insufficient since it only uncovers failures and not

a faulty state. In cases like this, the analyst should proceed carefully; the architect may have chosen an

inappropriate mechanism, mislabeled the mechanism used, or used the mechanism in an atypical way

that may or may not be appropriate.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 53

[Distribution Statement A] Approved for public release and unlimited distribution.

7.3 Step 3–Locate the Mechanisms in the Architecture

Following our example, the analyst needs to use the architecture documentation, or an interview with

the architect(s), to find where these mechanisms are used in the architecture. As seen in the tactics-

based questionnaires, it is important to consider how a tactic or pattern is implemented.

Our scenario is concerned with the replacement of a sensor in the flight management system. The ana-

lyst may be able to look at the documentation and find a structural diagram that includes where the

sensor inputs and outputs are handled. With this diagram in hand, finding instances of the façade

mechanism for managing sets of sensors should not be difficult because it is a major abstraction in the

system. The analyst should also be able to locate a diagram that provides insight into the state capture

necessary for using the Memento pattern to allow maintainers to roll back to a previous build of the

whole sensor manager that was known to work properly.

The analyst should next look for documentation relating to the segmented deployment tactic and the

command dispatcher tactic that describes the partial and automated builds. This documentation is of-

ten separate from software architecture documentation. These mechanisms are often documented us-

ing flow charts and accompanying descriptions of each step of a release pipeline. Sometimes

automated build scripts are not specifically described in the architecture but found while walking

through the code repository. In this case, the developers recognized that the build process was com-

plex and error prone, which led them to solve the problems they encountered by using scripts.

Finally, the analyst must be able to conceptually integrate the mechanisms. The rationale for satisfying

the requirement (e.g., no code changes outside the sensor manager) said that the Façade pattern was

used to abstract sensor management and data formats from the rest of the system. This raises a ques-

tion: where in the system would you find responsibilities to determine if sensors’ values were in ex-

pected ranges? This is an issue of managing dependencies, one of the categories of questions in the

Tactics-Based Questionnaire. One answer could be that the sensor manager has the responsibility to

implement a circuit breaker to return errors whenever sensor data out of range is requested or pushed

to other components. However, the analyst finds that, in reality, faulty values are transmitted through-

out the system and a set of executable assertions are used in multiple components that check to see if

the sensor values are in expected ranges.

Before finishing this step, the analysts should check that the mechanisms are being used in parts of the

architecture that relate to the requirement that they are analyzing. To assess how well a mechanism

contributes to satisfying a quality attribute requirement, it is not sufficient to stop after the sanity

check in Step 2. That establishes only the presence of the mechanisms, not their suitability or ade-

quacy for the scenario being considered. The analysts must identify where and how the mechanism

was instantiated in the architecture to assess whether it will have the desired effect. For example, they

find a façade mechanism, but it is used to encapsulate a relatively straightforward group of compo-

nents and provides little to no simplification. This use of that mechanism is not likely to improve the

maintainability of the flight management system.

7.4 Step 4–Identify Derived Decisions and Special Cases

Most architecture mechanisms are not simple, one-size-fits-all constructs. The instantiation of a mech-

anism requires making a number of decisions, with some of those decisions involving choosing and

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 54

[Distribution Statement A] Approved for public release and unlimited distribution.

instantiating other mechanisms. For instance, our example employs a Façade pattern and Memento

pattern (employing the rollback tactic). One set of decisions about using that mechanism is concerned

with the scope or granularity. (Refer to the manage dependencies and manage system state categories

in the Tactics-Based Questionnaire).

This case includes several alternatives:

 Which modules are encapsulated by the façade? Should the system restrict dependencies by forc-

ing all other modules to go through the façade? If so, how does it enforce this? Will there be ex-

ceptions to support other qualities such as performance?

 Should the architect “split” the façade into finer grained pieces to reduce its complexity?

 How does the architect determine the components for where and how its state will be copied to

facilitate rollback (using the Memento pattern)?

 Should developers refactor modules to remove any responsibilities that serve different purposes

(e.g., they are not semantically coherent)?

 Will the system and/or façade provide specialized interfaces to support testing?

If the architect decided to support specialized interfaces (the last major alternative above), then there

is a set of subsequent derived decisions about how the specialized interfaces are realized. They can be

hard coded to always serve as checks at runtime, or they can be disabled through configuration or pa-

rameters to execute only during testing. Another option is to use a form of dependency injection to in-

sert checks during testing or diagnostic modes.

To assess how well a mechanism contributes to satisfying a quality attribute requirement, it is not suf-

ficient to stop after the quick check in Step 2. The analyst must verify that the mechanism meets the

requirement and hence must evaluate how the mechanism was instantiated, which usually involves

tracing the decisions about the mechanism instantiation to the derived decisions and the selected alter-

natives that address them.

As an analyst identified the mechanisms in Step 3 above, she also started to identify derived decisions.

For example, using the questions outlined above, the analyst identified that the façade’s granularity

may need to be refactored as the system evolves and hence she should pay attention to the dependen-

cies on the façade to achieve the maintainability objective of restricting code changes to the sensor

manager.

The analyst’s next derived decision might be “How did the architect determine the components where

the state will be copied to facilitate rollback (e.g., Memento pattern)?” This is a manage deployments

decision in the Tactics-Based Questionnaire. For the maintainability requirement that the analyst is

validating, a good answer to these questions includes the following:

 The architecture supports rolling out new releases gradually.

 The architecture supports rollback, and the system has a well-defined release pipeline.

 The system has a well-defined, flexible command dispatcher that supports automated builds

when release triggers occur.

If these are all true, then the analyst should be able to identify all the artifacts that need to be copied

when a release trigger occurs without huge manual effort. (On the other hand, if the driving quality

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 55

[Distribution Statement A] Approved for public release and unlimited distribution.

attribute requirement was, for example, reducing the cost of field service technicians rather than main-

tainability, then the architect might have chosen to make the release all or nothing, creating a line-re-

placeable unit [LRU]. Changing anything in the LRU would require a completely tested unit to be sent

into the field, and incremental updates would not be possible.)

Another derived decision could be to simplify modules by separating responsibilities (see the manage

dependencies categories in the Tactics-Based Questionnaire). The software might have sensor man-

agement and sensor fusion responsibilities intermingled and managed under the façade. This intro-

duces a large, complex set of responsibilities in modules managed under the façade that are costly to

change. This complexity also makes it, on average, more challenging to isolate where problems are

occurring. Separating sensor management and sensor fusion simplifies the modules and can reduce the

underlying implementation and root cause analysis complexity. However, it also creates another de-

rived decision: when splitting these responsibilities, should the architect continue to restrict the com-

munication paths using the façade to retrieve sensor values, or should he allow direct access to the

new modules, in effect removing responsibilities from the original façade?

Finally, some mechanisms have special cases that warrant special attention. For example, using a

mechanism to flexibly inject tests can lead to complexity. Problems can occur when different develop-

ers inject code into the same places. The issue is that developers often do not control which tests exe-

cute first. This can be especially difficult when one test is purposefully inserting a fault while the other

is testing normal functionality (happy cases). The functional test could fail and may result in wasted

effort to debug a false positive.

In this example, analysts should pay attention to changes to the release pipeline and the command dis-

patcher build scripts. These will help ensure that the state needed to roll back and the specialized test-

ing interfaces are managed appropriately. The façade, while important to isolating changes for the “no

code changes to other components” measures, is generally well understood. Deployment technologies,

on the other hand, are less well understood and changing rapidly.

7.5 Step 5–Assess Requirement Satisfaction

The analyst has completed preparation and orientation and begins the Evaluation phase. The analysis

performed to assess whether the architecture satisfies the quality attribute requirement will depend on

the nature of the requirement and the mechanism(s) being applied. For example, the analyst assesses a

quality attribute requirement for portability to a different hardware platform, and the mechanism used

is the Layers pattern with a hardware abstraction layer as the lowest layer. The analysis should include

checks for layer skipping, which introduces syntactic dependencies. The analysis should also include

examining the interface that the hardware abstraction layer provides to other layers and checking that

all those interface services could likely be constructed on other hardware platforms.

Recall that the requirement in Scenario 5 is to add a new sensor. Our measures are “within 60 calendar

days” and the code changes are isolated to the sensor manager. The architecture mechanisms are Fa-

çade, Memento, segment deployment, command dispatcher, and executable assertions. In Step 4, the

analyst identified several derived decisions that need to be considered in the analysis:

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 56

[Distribution Statement A] Approved for public release and unlimited distribution.

 Which modules are encapsulated by the façade? Should the system restrict dependencies by forc-

ing all other modules to go through the façade? Or will there be exceptions to support other qual-

ities such as performance?

 Should the architect “split the façade” into finer grained pieces to reduce complexity?

 How does the architect determine the components for where the state will be copied to facilitate

rollback (using the Memento pattern)?

 Should developers refactor modules to remove any responsibilities that serve different purposes

(e.g., they are not semantically coherent)?

 Will the system and/or façade provide specialized interfaces to support testing?

The analyst might begin with state management for rollback—a question of how to determine which

artifacts need to be preserved—since he wants to understand the scope of the state that needs to be

preserved. The segment deployments strategy and command dispatcher build files are not defined in

the architecture. The analyst begins recording analysis issues related to managing deployment:

 Issue 1: The build files are built in an ad hoc manner. The developers use different tools. Some

groups are using cmake and Jenkins for continuous integration while others are creating their

own make files and running them on the command line.

 Issue 2: The release pipeline is not defined. This is related to Issue 1. The developers should de-

termine which artifact sources the pipeline will accept (e.g., Jenkins versus Git repositories) and

what will trigger a release (e.g., continuous deployment, scheduled, pulled release).

This analysis thread is based on an observation that the teams use different tools and different release

triggers. For example, if the analyst found that a staged deployment had two teams using separate re-

lease pipelines, then considerable effort could be required to create custom approvals and gates for

each change or change type. Our maintainability measures for effort, calendar time, and number of hu-

man interactions would be higher every time this condition occurred.

Continuing our example, the analyst finds that the groups are permitted to use different versions of

shared libraries to maintain backward compatibility. This architecture decision allows the teams to de-

velop independently but increases complexity while incurring technical debt. The analyst records an

issue:

 Issue 3: Maintaining multiple versions of libraries for backward compatibility increases the com-

plexity of each update.

Next, in our simplified analysis example, the analyst investigates how the specialized testing inter-

faces are realized. The architecture documentation states that the test interfaces are realized by weav-

ing in aspects to execute code at defined join points.7 This practice can create challenges with

determinism when the developers write aspects for the same join points. The analyst identifies two ad-

ditional issues to record:

 Issue 4: You do not control which tests execute in what order since some join points may depend

on runtime conditions that cause problems even if you set the precedence you need. This issue

7 A join point is a point in program execution that is exposed by the language definition as an event.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 57

[Distribution Statement A] Approved for public release and unlimited distribution.

can occur when one test is purposefully inserting a fault while the other is testing functionality.

The functional test could fail and may result in wasted effort to debug a false positive.

 Issue 5: Aspects can impact the readability of code since the reader of the code may be oblivious

to advice8 that acts on a join point.

In this simple example, the analyst rapidly identified five issues where architecture decisions impact

the ability to achieve the desired response measures in Scenario 5. Some of the issues, such as Issue 3

about multiple versions of libraries, should be carefully managed to reduce future maintenance costs.

Other issues—such as Issue 1, where builds are managed in an ad hoc manner—can be fixed by defin-

ing a release pipeline and a set of tools to be used across groups.

7.6 Step 6–Assess the Impact on Other Quality Attribute Requirements

Architecture decisions rarely affect just one quality attribute requirement. The tradeoffs inherent in

design decisions mean that the mechanisms and decisions that the analyst found adequate to satisfy the

requirement being evaluated in Step 5 may be detrimental to the satisfaction of other quality attribute

requirements.

Typical tradeoffs impact software performance (throughput or latency), testability, maintainability,

availability, and usability. In Step 1–Collect Artifacts, the analyst collected other quality attribute re-

quirements that were available at this point in the development lifecycle. Now, she will scan those and

select the ones that might be impacted by the architecture mechanisms and decisions analyzed in Step

5–Assess Requirement Satisfaction. For example, there may be quality attribute requirements that

cover concerns such as the following:

 Is there a restart timing requirement for when a development team must roll back changes? Can

this restart requirement be met if there is a large amount of state that needs to be restored?

 Are there real-time latency requirements for sensor management and fusion? The ability to add

code at different join points introduces nondeterminism, which may affect deadlines.

 Does the architecture provide services for common concerns such as fault handling, communica-

tion, and logging for new sensors?

 Does the architecture prescribe security mechanisms for detecting and adding new connections to

other resources that serve logically as a new sensor (e.g., UAV video feeds)?

In this step, the analyst assesses how the mechanisms and decisions that make it easy to add a new

sensor impact the satisfaction of scenarios related to other quality attributes and concerns. For each

requirement, the analysis may be fast (e.g., securely adding a UAV was largely ignored by designers)

or more involved (e.g., assessing the restart time when rolling back during significant updates). In any

case, the analyst should expect to find at least a couple of additional issues.

8 Advice is a method meant to run when program execution encounters selected join points.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 58

[Distribution Statement A] Approved for public release and unlimited distribution.

7.7 Step 7–Assess the Costs/Benefits of the Architecture Approach

In carrying out the steps leading up to this point, the analyst should have developed a good under-

standing of the essential challenges of satisfying the quality attribute requirement, the approaches

taken by the architect (choice of mechanisms, instantiation of the mechanisms, and how derived con-

cerns are addressed), and the tradeoffs embodied in the approaches taken.

Any architecture approach adds new elements, interactions, or responsibilities and makes the solution

more complicated. Some approaches add new types of elements and interactions and, in doing so, may

make the solution substantially more complex. There is a level of complexity needed to solve real-

world problems; this is unavoidable. The final step is to judge whether the complexity (and hence ad-

ditional cost) introduced by this architecture approach is necessary and appropriate. This is a cost/ben-

efit analysis. In some cases, the answer will be clear. In our example, if the sensors are simple and

homogenous, then a façade introduces unnecessary complexity. If the sensors are diverse and fusion

involves many steps, then providing a simplified, coarse-grained interface through a façade is worth

the effort.

Often the cost/benefit analysis is not clear, but probing the design space and the design decisions taken

with this analytical perspective in mind is still worthwhile as it will catalyze important analysis ques-

tions.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 59

[Distribution Statement A] Approved for public release and unlimited distribution.

8 Summary

In this report, we defined maintainability and focused on analyzing maintenance difficulty and the cost

and risk of performing a set of desired maintenance tasks.

We provided a set of sample scenarios for maintainability and, from these and other examples, in-

ferred a general scenario. This general scenario can be used as an elicitation device and help with

analysis as it delineates the response measures that stakeholders will care about when they consider

this quality attribute. We also described the architectural mechanisms—tactics and patterns—for

maintainability. These mechanisms are useful in both design—to give a software architect a vocabu-

lary of design primitives from which to choose—and in analysis, so that an analyst can understand the

design decisions made (or not made), their rationale, and their potential consequences.

To address the needs of analysts, we described a set of analytical tools, discussed the artifacts upon

which each of these analyses depends, and identified the stage of the software development lifecycle

in which each of these analyses could be employed. And we delved into three specific architecture

analysis techniques for maintainability: tactics-based questionnaires, an Architecture Analysis Check-

list, and coupling metrics.

Finally, we provided a playbook for applying an architecture analysis for maintainability. This play-

book combines the checklists and questionnaires with information about architectural mechanisms to

analyze an architecture to validate the satisfaction of a maintainability requirement.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 60

[Distribution Statement A] Approved for public release and unlimited distribution.

9 Further Reading

A general discussion of quality attributes, quality attribute scenarios, tactics, and patterns that pro-

vided the foundation for much of this report can be found in the book Software Architecture in Prac-

tice [Bass 2012]. That book does not address maintainability specifically, but it does discuss

modifiability, which is closely related. Another general discussion of quality attributes, particularly

the vocabulary surrounding them, can be found in ISO/IEC/IEEE Standard 24765 [ISO/IEC 2011a].

A more in-depth discussion of the quality attribute of maintainability specifically can be found in the

work of Henttonen and colleagues [Henttonen 2007]. The notion of a “maintainability index”—a sin-

gle number that can characterize the level of maintainability for an entire code base—has existed for

several decades. However, these indices, which are a combination of code complexity and code size

measures, have not been widely adopted as they are not actionable, have not been empirically sup-

ported, and do not account for design complexity.

MacCormack, Mo, and their colleagues define and provide strong empirical evidence for architecture-

level coupling metrics that account for design complexity, measuring the complexity of an entire soft-

ware architecture based on its code components [MacCormack 2006, Mo 2016]. Similarly, the

QMOOD metrics, described by Goyal and Joshi, and the Chidamber and Kemerer metrics attempt to

measure the complexity of object-oriented designs, analyzing classes and their relationships [Goyal

2014, Chidamber 1994]. These, too, have had much more thorough empirical evaluations.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 61

[Distribution Statement A] Approved for public release and unlimited distribution.

Bibliography

URLs are valid as of the publication date of this document.

[Ackoff 1968]

Ackoff, R. L. & Sasieni, M. W. Fundamentals of Operations Research. John Wiley & Sons. 1968.

[Arvanitou 2017]

Arvanitou, E. M.; Ampatzoglou, A.; Chatzigeorgiou, A.; Galster, M.; & Avgeriou, P. A Mapping

Study on Design-Time Quality Attributes and Metrics. Journal of Systems and Software. Volume 127.

2017. Pages 52–77. doi: https://doi.org/10.1016/j.jss.2017.01.026

[Avizienis 2001]

Avizienis, A.; Laprie, J.-C.; & Randall, B. Fundamental Concepts of Computer System Dependability.

Presented at IARP/IEEE-RAS Workshop on Robot Dependability: Technological Challenge of De-

pendable Robots in Human Environments. May 2001.

[Bachmann 2007]

Bachmann, F.; Bass, L.; & Nord, R. Modifiability Tactics. CMU/SEI-2007-TR-002. Software Engi-

neering Institute, Carnegie Mellon University. 2007. http://resources.sei.cmu.edu/library/asset-

view.cfm?AssetID=8299

[Bass 2012]

Bass, L.; Clements, P; & Kazman, R. Software Architecture in Practice. Third edition. Addison-Wes-

ley. 2012.

[Bellomo 2015]

Bellomo, S.; Gorton, I.; & Kazman, R. Insights from 15 Years of ATAM Data: Towards Agile Archi-

tecture. IEEE Software. Volume 32. Number 5. 2015. Pages 38–45.

[Bengtsson 1999]

Bengtsson, P. & Bosch, J. Architecture-Level Prediction of Software Maintenance. In Proceedings of

the Third European Conference on Software Maintenance and Reengineering. IEEE Computer Soci-

ety Press. 1999. Pages 139–147.

[Binder 2000]

Binder, R. Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-Wesley. 2000.

[BKCASE 2018]

Body of Knowledge and Curriculum to Advance Systems Engineering. System Requirements. In

Guide to the Systems Engineering Body of Knowledge (SEBoK). 2018. https://www.se-

bokwiki.org/wiki/System_Requirements

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 62

[Distribution Statement A] Approved for public release and unlimited distribution.

[Bogner 2017]

Bogner, J.; Wagner, S.; & Zimmermann, A. Automatically Measuring the Maintainability of Service-

and Microservice-Based Systems—a Literature Review. In Proceedings of IWSM/Mensura ’17. ACM.

2017. Pages 107–115.

[Buschmann 2007]

Buschmann, F.; Schmidt, D. C.; Kircher, M.; et al. Pattern-Oriented Software Architecture. Volumes

1–5. Wiley. 1996–2007.

[Cai 2019]

Cai, Y.; Xiao, L.; Kazman, R.; Mo, R.; & Feng, Q. Design Rule Spaces: A New Model for Represent-

ing and Analyzing Software Architecture. IEEE Transactions on Software Engineering. Volume 45.

Number 7. July 2019. Pages 657–682.

[Cervantes 2016]

Cervantes, H. & Kazman, R. Designing Software Architectures: A Practical Approach. Addison-Wes-

ley. 2016.

[Chidamber 1994]

Chidamber, S. & Kemerer, C. Metrics Suite for Object Oriented Design. IEEE Transactions on Soft-

ware Engineering. Volume 20. Number 6. 1994. Pages 476–493.

[Clements 2010]

Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.; Little, R.; Merson, P.; Nord, R.; & Staf-

ford, J. Documenting Software Architectures: Views and Beyond. 2nd edition. Addison-Wesley. 2010.

[DIB 2019]

Defense Innovation Board. Software Is Never Done: Refactoring the Acquisition Code for Competitive

Advantage. DoD. 2019. https://media.defense.gov/2019/Apr/30/2002124828/-1/-

1/0/SOFTWAREISNEVERDONE_REFACTORINGTHEACQUISITIONCODEFORCOMPETITIV

EADVANTAGE_FINAL.SWAP.REPORT.PDF

[Fowler 2010]

Fowler, M. Blue Green Deployment [blog post]. martinFowler.com. 2010. https://martin-

fowler.com/bliki/BlueGreenDeployment.html

[GAO 2019]

U.S. Government Accountability Office. Weapon System Sustainment: DoD Needs to Better Capture

and Report Software Sustainment Costs. GAO-19-173. GAO. February 2019.

[Gall 1998]

Gall, H.; Hajek, K.; & Jazayeri, M. Detection of Logical Coupling Based on Product Release History.

In Proceedings of the 14th IEEE International Conference on Software Maintenance. November

1998. Pages 190–197.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 63

[Distribution Statement A] Approved for public release and unlimited distribution.

[Gamma 1994]

Gamma, E.; Helm, R.; Johnson, R.; & Vlissides, J. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison Wesley. 1994.

[Glass 1992]

Glass, R. Building Quality Software. Prentice-Hall. 1992.

[Goyal 2014]

Goyal, P. & Joshi, G. QMOOD Metric Sets to Assess Quality of Java Program. In Proceedings of the

2014 International Conference on Issues and Challenges in Intelligent Computing Techniques

(ICICT). 2014. Pages 520–533.

[Henttonen 2007]

Henttonen, K.; Matinlassi, M.; Niemelä, E.; & Kanstrén, T. Integrability and Extensibility Evaluation

from Software Architectural Models—A Case Study. The Open Software Engineering Journal. Vol-

ume 1. 2007. Pages 1−20.

[IEEE 2006]

IEEE. ISO/IEC/IEEE International Standard for Software Engineering – Software Life Cycle Pro-

cesses – Maintenance. Standard IEEE 14764-2006. IEEE Computer Society. 2006.

[ISO/IEC 2011a]

ISO/IEC. Systems and Software Engineering – Systems and Software Quality Requirements and Eval-

uation (SQuaRE) – System and Software Quality Models. International Standard ISO/IEC

25010:2011(E). 2011.

[ISO/IEC 2011b]

ISO/IEC/IEEE. Systems and Software Engineering – Architecture Description. International Standard

ISO/IEC/IEEE 42010:2011. 2011.

[ISO 2017]

ISO/IEC/IEEE. Systems and Software Engineering – Vocabulary. 2nd edition. ISO/IEC/IEEE 24765.

2017.

[Jacobs 2018]

Jacobs, W.; Wigginton, S.; & Padilla, M. Comprehensive Architecture Strategy (CAS). Defense Tech-

nical Information Center. 2018. https://apps.dtic.mil/sti/citations/AD1103295

[Jamshidi 2018]

Jamshidi, P.; Pahl, C.; Mendonça, N. C.; Lewis, J.; & Tilkov, S. Microservices: The Journey So Far

and Challenges Ahead. IEEE Software. Volume 36. Number 3. May/June 2018. Pages 24–35.

[Kazman 1994]

Kazman, R.; Abowd, G.; Bass, L.; & Webb, M. SAAM: A Method for Analyzing the Properties of

Software Architectures. In Proceedings of the 16th International Conference on Software Engineer-

ing. Sorrento, Italy. ACM. 1994. Pages 81–90.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 64

[Distribution Statement A] Approved for public release and unlimited distribution.

[Kazman 2002]

Kazman, R. & Bass, L. Making Architecture Reviews Work in the Real World. IEEE Software. Vol-

ume 19. Number 1. Jan./Feb. 2002. Pages 67–73.

[Kazman 2020]

Kazman, R.; Bianco, P.; Ivers, J.; & Klein, J. Integrability. CMU/SEI-2020-TR-001. Software Engi-

neering Institute, Carnegie Mellon University. 2020. http://resources.sei.cmu.edu/library/asset-

view.cfm?AssetID=637375

[Klein 2015]

Klein, J. & Gorton, I. Design Assistant for NoSQL Technology Selection. In Proceedings of the First

International Workshop on Future of Software Architecture Design Assistants. ACM. 2015. Pages 7–

12.

[Krasner 1988]

Krasner, G. & Pope, S. A Cookbook for Using the Model–View Controller User Interface Paradigm in

Smalltalk-80. Journal of Object Technology. Volume 1. Number 3. Aug./Sep. 1988. Pages 26–49.

[Lenhard 2013]

Lenhard, J.; Harrer, S.; & Wirtz, G. Measuring the Installability of Service Orchestrations Using the

SQuaRE Method. In Proceedings of the Sixth International Conference on Service-Oriented Compu-

ting and Applications. IEEE. 2013. Pages 118–125.

[Lewis 2014]

Lewis, J. & Fowler, M. Microservices [blog post]. martinFowler.com. 2014. https://martin-

fowler.com/articles/microservices.html

[MacCormack 2006]

MacCormack, A.; Rusnak, J.; & Baldwin, C. Y. Exploring the Structure of Complex Software De-

signs: An Empirical Study of Open Source and Proprietary Code. Management Science. Volume 52.

Issue 7. July 2006. Pages 1015–1030.

[Mo 2016]

Mo, R.; Cai, Y.; Kazman, R.; Xiao, L.; & Feng, Q. Decoupling Level: A New Metric for Architectural

Maintenance Complexity. In Proceedings of the International Conference on Software Engineering.

Austin, TX. May 2016. Pages 499−510.

[Nygard 2017]

Nygard, Michael. Release It! Design and Deploy Production-Ready Software. Pragmatic Program-

mers. 2017.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 65

[Distribution Statement A] Approved for public release and unlimited distribution.

[ODASD 2017]

Office of the Deputy Assistant Secretary of Defense. Initiatives: Modular Open Systems Approach.

2017.

[Oman 1992]

Oman, P. & Hagemeister, J. Metrics for Assessing a Software System’s Maintainability. In Proceed-

ings of the Conference on Software Maintenance. IEEE. 1992. Pages 337–344.

[Sato 2014]

Sato, D. Canary Deployment [blog post]. martinFowler.com. 2014. https://martinfowler.com/bliki/Ca-

naryRelease.html

[Seref 2016]

Seref, B. & Tanriover, O. Software Code Maintainability: A Literature Review. International Journal

of Software Engineering & Applications. Volume 7. Number 3. May 2016. Pages 69–87.

[Suppe 1998]

Suppe, F. Operationalism. In Routledge Encyclopedia of Philosophy. Edited by T. Crane. Taylor &

Francis. 1998. https://www.rep.routledge.com/articles/thematic/operationalism/v-1

[USDAS 2018]

Office of the Under Secretary of Defense for Acquisition and Sustainment. Depot Maintenance Core

Capabilities Determination Process. DoD Instruction 4151.20. 2018. https://www.esd.whs.mil/Por-

tals/54/Documents/DD/issuances/dodi/415120p.pdf

[Weinreich 2016]

Weinreich, R. & Groher, I. Software Architecture Knowledge Management Approaches and Their

Support for Knowledge Management Activities: A Systematic Literature Review. Information and

Software Technology. Volume 80. December 2016. Pages 265–286.

[Wilmot 2016]

Wilmot, J.; Fesq, L.; & Dvorak, D. Quality Attributes for Mission Flight Software: A Reference for

Architects. In 37th IEEE Aerospace Conference. Big Sky, Montana. March 2016. https://ieeex-

plore.ieee.org/document/7500850

[Wong 2011]

Wong, S.; Cai, Y.; Kim, M.; & Dalton, M. Detecting Software Modularity Violations. In Proceedings

of the International Conference on Software Engineering. Honolulu, HI. May 2011. Pages 411–420.

[Xiao 2014]

Xiao, L.; Cai, Y.; & Kazman, R. Design Rule Spaces: A New Form of Architecture Insight. In Pro-

ceedings of the International Conference on Software Engineering (ICSE). ACM. June 2014. Pages

967–977.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 66

[Distribution Statement A] Approved for public release and unlimited distribution.

[Yourdon 1979]

Yourdon, E. & Constantine, L. Structured Design: Fundamentals of a Discipline of Computer Pro-

gram and Systems Design. Yourdon Press. 1979.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 67

[Distribution Statement A] Approved for public release and unlimited distribution.

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

October 2020

3. REPORT TYPE AND DATES

COVERED

Final

4. TITLE AND SUBTITLE

Maintainability

5. FUNDING NUMBERS

FA8702-15-D-0002

6. AUTHOR(S)

Rick Kazman, Phil Bianco, James Ivers, and John Klein

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2020-TR-006

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

SEI Administrative Agent

AFLCMC/AZS

5 Eglin Street

Hanscom AFB, MA 01731-2100

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report summarizes how to systematically analyze a software architecture with respect to a quality attribute requirement for maintain-

ability. The report introduces maintainability and common forms of maintainability requirements for software architectures. It provides a

set of definitions, core concepts, and a framework for reasoning about maintainability and the satisfaction (or not) of maintainability re-

quirements by an architecture and, eventually, a system. It describes a set of mechanisms, such as pat-terns and tactics, that are com-

monly used to satisfy maintainability requirements. It also provides a method by which an analyst can determine whether an architecture

documentation package provides enough information to support analysis and, if so, determine whether the architectural decisions con-

tain serious risks relative to maintainability requirements. An analyst can use this method to determine whether those requirements,

represented as a set of scenarios, have been sufficiently well specified to support the needs of analysis. The reasoning around this qual-

ity attribute should allow an analyst, armed with appropriate architectural documentation, to assess the risks inherent in today’s architec-

tural decisions in light of tomorrow’s anticipated needs.

14. SUBJECT TERMS

architecture analysis, maintainability, quality attributes, quality attribute requirements, software

architecture

15. NUMBER OF PAGES

74

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

