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ABSTRACT 

The wave equat ion has been sol ved by using norma l mode theory .. The med i um 
i s assumed to be hori zontal ly strat if i ed . A closed form solution has 
been found i n the case of GANS - PEDERSEN types of dens i ty and sound-s peed 
prof i les. Fo r rea l profil es of any given shape a numerica l solution i s 
employed that makes us e of the VO LTERRA i nteg ral equati on . 
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1 - INTRODUCTION 

The use of normal modes theory for the calculation of shallow water 
sound propagation has first been developed by PEKERIS (Ref. 1, 2, 3) 
in 1948. His model was oversimplified as the sound speed was assumed 
to be constant in the water and the sea bottom was taken as an homo-
geneous fluid halfspace. A number of attempts have been made since to 
account for the variation of sound speed with depth : we can mention 
for instance a computer program worked out by NEI'J~1MI and INGEN ITO 
(Ref. 4) for a two fluid model with the speed of sound varying with 
depth in the first fluid. This program makes use of the finite 
differences technique. 

l\Je develop herein a more realistic model based on a mode formulation 
exposed chapter 2 which is valid for horizontally stratified media 
(physical characteristics depending on depth only). This assumption 
enables the initial propagation equation to be transformed into a 
HEU1HOLTZ type equation. 

In our development the medium is taken as follows: 

Sea water bounded by the atmosphere (plane surface) and infinitE elastic 
bottom with or without an intermediate fluid layer corresponding 

to the sediment. 

* . 1, avo A. Brland ARCUEIL 94110 FRANCE 
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In the "'later and the sediment the sound speed may vary with 
depth in any given manner. In the elastic bottom, both 
compressional and shear velocities are constant. 

The density may vary with depth in the sediment and it stays 
constant in the water and the elastic bottom (although it 
coul d va ry in the fomer if wanted). 

The sound field dealt with is that created by an omnidirectional 
monochromatic point source. 

The formulation developed in chapter 2 will be applied in chapter 
3 to analytic velocity and density profiles of the GANS-PEDERSEN 
type. In chapter 4, it will be applied to realistic profiles of 
any shape given by a discrete number of data points. 

2 - FORMULATION OF THE PROBLEM. 

2. 1 Sound propagation equation. 

Let'¥ (r,t) be the· velocity potential. 
By definition, the acoustic pressure p (1,t) and the displa-
cement velocity v (~,t) of a fluid element are given by . . 

-+ 
( I) P (~, t) = p g '¥ (r, t) -+ -+-+ v (r,t) = - grad '¥ (r,t) 

a t 

Taking into account the equations of motion and mass conserva-
tion and the state equation relating acoustic pressure to den-
sity variation, the potential '¥ (r,t) obeys the following 
equation (first order approximation). 

2 a '¥ 1 ---(2) t::. '¥ 1 

a t 2 p(z) dz az 
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where C(z) is the speed of sound in the fluids (water or 
sediment) and P (z) the fluid density. The second member of 
equation (2) represents the source term : 

rand re are the vectors joining the orlgln of the refer-
ential to the point of observation and to the source respec-
tively. Owing to the symmetry of revolution, one can make use 
of only two cylindrical coordinates rand z. 

Therefore, ~ (t,t) takes the form: 

(3) ~ (r, t) = . q/ (r, z) e j w t 

Equation 2 can be solved by using the H/\NKEL Transform of q, I (r,z).· 

The wanted fonction q, 1(r,z) is a solution of the equation 

(4) <!J '(r,z) = - 1 
J 'IT J

+ j 00 

<P (z,s) Ko (sr) sds 

- j 00 

where Ko (sr) is the zero order second kind modified BESSEL 
function. 

The q,(z,s) function is a solution of the equation 

d pd q, 
-- = ;;;; 2 'ITO (z - ze) 

dz dz 

where r is the horizontal range between source and observation 
point and z is the depth below sea level. 

The s variable is a parameter that comes in when applying the 
HANKEL transform and that physically corresponds to the hori-
zontal component of the wave vector. 

In order to obtain the velocity potential, it is therefore neces-
sary to first solve equation (5) and obtain the ~ (z,s) func-
tion,and then calculate inteoral (4). 
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The second order differential equation (5) obeys certain 
boundary conditions at the various interface levels: 
air-water, water-sediment, sediment-rock, which makes it a 
STUR~f-LIOUVILLE problem . 

Note: The Ko function is found here instead of the usual Jo 
function because of the choice we made in writing . 
+ s2 in equation 5 (instead of - s2). Changing s into 
- js would lead to the forms mostly encountered in the 
1 i terature. In the same "'lay, there wi 11 be a change from 
real to imaginary and vice-versa when speaking of 
poles, integration contours, etc 

2.2 Formulation of the boundary conditions. 

Crossing (or boundary) conditions arise at each change of 
medium : 
- ~!~:~~!~~_!~!~~!~~~ (z = 0 plane) : acoustic pressure is 

null 
- ~~!~~:~~~!~~~!_~~!~~!~~~ (z = zl plane) : pressure is conti-

nuous and the fluids undergo the same vertical motions on 
each side of the boundary 

- ~~~i~~~!:c~~~_i~!~c~~~~ (z = z2 plane) : the Tzz term of 
the stress tensor that acts on the elastic medium at z = z2+0 
must balance the pressure acting on the other side 
(at z = z2 - 0). Furthermore, the boundary must undergo the 
same displacement as seen from each side. These two condi-
tions lead to the following homogeneous condition: 

(6) 1 1 d<!J -- K( s) 
P2 Tzz az 
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where the function ~ is a solution of (5) and where PI and 
P2 are the specific masses in the sediment and the rock 
respectively. It can be demonstrated that the term K(s) may 
be expressed as a function of the compressional and shear 
velocities in the rock CL and CT, the variable s being the 
~ame as the one introduced in equation (4). 
One would find 

(7) K(s) 

where 

2 - abs 

The fact that the acoustic field must vanish at infinite dis-
tance leads the determinations to be taken for a and b. 

- ~Q~r~g_lgygl_Ql~Dg_(z = ze) : the source condition can be trans-
forrred intoaboundary condition at the source horizontal plane 
as follows: 
Continuity of pressure and opposite direction of the fluid 
motion on each side of the plane, leading : 

(8) ~ 
az 

z e-O 

Cl<f> 

az 
= - 2 

2.3 Solution of equation (5) 

Let ~ (z,s) be a solution of equation (5) that meets the pre-
viously exposed boundary conditions at z = 0, viz: 

(9) <j> (O~s) = 0 I a<j> (O,s) = I 
p(O) az 
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Let 1jJ (z,s) be a solution of equation (5) that meets the 
boundary conditions at z = z2' viz : 

1jJ (z,s) = 1jJ 1 (z,s) + K (s) 1jJ 2 (z,s) 

~'Jith : 

(10 ) 1jJ 1 (z2's) = 1 1jJ 2 (z2's) = 0 

1 aW 2 
= 1 1 aW l 

= 0 
P(z2) az P(z2) az 

z=z2 z-z - 2 

If these two functions ¢ (z,s) and 1jJ (z,s) are linearly in-
dependant, the solution of equation (5) that obeys the three 
sets of conditions : surface, bottom and source, is given by 
the GREEN'S function: 

(11 ) 

W(z ,s) <p (z,s) 
-2 e 

p(O) w(O,s) 

<p (z ,s )t/J (O,s) 
-2 e 

p(O)t/J(O,s) 

It must be emphasized that solution (11) to equation (5) is not 
analytically known. We have just expressed the conditions to be 
fulfilled by the functions that are solutions of the problem 
described. These conditions are necessary and sufficient for 
all functions ¢ and 1jJ that meet conditions (9) and (10) res-
pectively to give rise to a function ¢ ~ solution to the problem. 
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2.4 Solution of equation (4) - Choice of the integration contour 
in the complex s plane. 

The ¢ (z, z , s) function just described is a complex function e . 
that has a certain number of poles sn (complex, imaginary or 
real ). These poles are the zeros of ~ (O,s).(Here the STURM-
LIOUVILLE problem is not an hermitian one). 

From the expression for K(s) and the determinations chosen for 
a and b,the integration has to be made in the Re (s) ~O plane. 

The cuts at ± jw IC L and ± jw ICT have been chosen so that only 
two of them are in the halfspace Re(s) > 0 and they are parallel 
to the s real axis. The poles s of function ¢ are simple and . n 
located in the fourth quadrant of the complex plane and so are 
their symetricals with respect to the origin, located in the se-
cond quadrant . 

The chosen integration contour C is illustrated in figure 1. 

r,.., (oS) 

Itc (5) 

FIG. 1 
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Integration is made along the 1 + j straight path so that 
the second quadrant poles do not influence the ¢ function. 
(This is of consideration in the case of a numerical inte-
gration of (4)). 

With this integration contour, equation (4) may be written 

(12) cp '(r,z) 

where the Rn are the residues, given by 

(13 ) s n 

cp (z or ze,sn) ~ (ze or z,sn) 

p (O) a~ (O,sn)/ a s 

Expression (12) consists of two terms 
The first term corresponds to the branch-line integrals 
calculated along cuts f 1 and f2. Physically they represent waves 
that propagate along the sediment-rock interface at speeds CL and 
CT with amplitudes decreasing approximately as 1/r2 (ref.S). 

The second term is a summation of discrete values associated 
with the residues which correspond to the roots of the 
dispersion equation ~ (O,s) = O. Each term of this summation 
constitutes a propagation mode, i.e. a wave travelling with a 
horizontal wave vector given by sn' The amplitudes of these waves 
decrease as 1/ / r, so that at ranges large compared to the water 
depth the branch-line integrals contribution becomes negligible. 

In order to verify the above mathematical development, one may 
use it to solve the PEKERIS model. In this two layer model, the 
sea water is a fluid with constant sound speed C1 and constant 
density PI' bounded by pl anes at z = 0 and z = z2 and cQuntaining 
both the source (at Ze) and the receiver (at z). The sea bottom 
is taken as a fluid half-space v/ith constant veloci-ty C2 
and constant density P2' extending from z = z2 to z = infinity. 
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The ¢ (z.s) and ~ (z.s) functions are then given by 

(14) ct> (z,s) = PI 

(15) ljI(z,s) 

with 

Moreover, in this case of a fluid bottom, the expression for 
K(s) in (7) becomes : 

ct2 
K(s) = - j P2 With 

In the case z < ze' function ¢ (z, Ze' s) transforms into 

(16) x 
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which is identical to the formula obtained by PEKERIS. 
Similar values for the residues Rn would also be found 
by applying equation (13). 

3 - CLOSED FORM SOLUTIONS FOR THE GREEN'S FUNCTION 

A large amount of work has been devoted, especially in the 
U.S.A., to study classes of C(z) function that would lead to 
closed form solution? for ¢ (and a~/ as that enters into the 
residue calculation). 

In addition to C(z) = constant (PEKERIS) we can quote the 
GANS-PEDERSEN profile (Ref. 5 - 6), the parabolic profile 
(Ref. 7), the EPSTEIN profile (Ref. 8) . 

Among these various models we choose to program the GANS-PEDERSEN 
profile both as being of interest to solve a few practical cases 
we had to deal with, and in order to have a method for checking 
the program using the generalized numerical method exposed 
herunder. However, an improvement was brought to Pedersen's model 
as a density varying with depth could be introduced by the use 
of the exponential class of functions. 

The adopted GANS-PEDERSEN modelling corresponded to the following 
description 

a) Sea water (0 < z < zl) 
Constant density p = p 0 

Sound speed C(z) varying as 
2 3 C (z) = Co Ito - 2y Oz) 

where Co and y 0 are constants. 
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b) In the sediment (zl <z <z2) : 
I 

Dens ity : p (z) = p 1 exp ( P (z - z2) / P 1) 
1 

\'/here P 1 and p 11 / P 1 are constants. 

Sound speed : C2 (z) = C 3/(C1 - 2Y 1(z-z1D 
1 

where C1 and Y 1 are constants. 

Under these conditions, the <P and 1jJ functions that cons-
titute ¢ are given by the following expression 

with 

The 1jJ function may be written as 

with 
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TT 2 1/3 
Y = - l72 ( ss l) x 

3 

With 

TT 2 1/3 
Yl = - ~ ( ~~ 2) x 

3 

[ J_l/3( ~ )J-2!3( s 2) + Jl/3( ~ )J2!3( ~ 2) ] 
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dX 
_1 = 7T { ~ 2 ~ )1/3 x 
dz 3I72 2 

where the J ± 1/3 and J ± 2/3 are fractional order first kind BESSEL 
functions of the complex variable ~ or ~ 2' 
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The variables .S l' t;, and t;, 2 in the above expression~ are 
given by : 

C 3 2 2 3/2 1 (~+ ~l = s ) 
3Yl w 2 C 2 

1 

C 3 [ 2 2 p ' 2] 2/3 
~ 

1 W + s (_1) = 2 2 3Yl w C(z) 2Pl 

C 3 [ 2 2 P 'j 2J213 
~ 2 

1 W = 2 2 + s - (-) 
3Ylw C( z2) 2p 1 

The calculation of the residues corresponding to the sn poles 
of ~ (O,s) requires the knowledge of a~ / a s. This derivative 
can be calcul~ted in closed form without difficulty but this 
leads to a lengthy formula that will not be developed here. 

4 - NUMERICAL FORM OF THE GREEN'S FUNCTION: (propagation in an under-

water medium of any given characteristics). 

The classes of function for C(z) and p (z) which permit to obtain 
closed form solutions to the wave propagation problem are too 
limited to account for all possible laws of variations encountered in 
practice. One solution is to divide the medium into layers in 
which sound velocity and density vary differently by a proper choice 
of the parameters p. , pl. / p., C. , y .. Arrived at that degree of 

1 1 1 1 1 
complexity one may as "'Jell envisage a completely numerical solution 
allowing any sound speed and density profile to be used. This method 
has been developed, programmed and will be de~~ribed here~fter. 
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Let us rewrite equation (5) in a slightly different way by the 
system of two first order equations 

(19) 

2 
P (z) dU + ( w + s 2) P = 0 

dz C2(z) 

p(z)U dP - - = 0-
dz 

It can be shown that $ represents the solution P(z) with the 
bounding conditions : 

P (0) = 0 
U (0) = 1 

and that ljJ represents the solution P(z) with the conditions 

P (z2) = 1 
U (z2) = K (s) 

Let us now divide the medium into N horizontally stratified layers, 
the nth one being limited between z = zn and z = zn~1 -

In each layer, it is possible to define a mean sound speed Cn and 
a mean density Pn. By adding simil ar terms on each side of equations 
(19), these equations can be written as follows 

dU 2 2 2 2 dU 
( 20 ) P - + (~ + s ) P = (:-z -, -:2)P + (p - p) -

n dz cn
2 Cn C n dz 

dP - - = 
dz 

The advantage of this form is that in each layer (zn- zn+l)' the 
first member of the two equations (19) that were variable are now 
constant in (20). It becomes therefore possible to employ LAGRANGE's 
method of constan t s variation to solve equation (20). 
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This leads,after some arithmetic, to the following system 

(22) PnU(zn+1) = - P(zn) ansinan(zn+1- zn) + 

j Zn+r 2 2 
PnU(zn)cosan(zn+l- zn) + ([ ~n2 - C2(,) P( , ) 

Z n· 

+ [Pn - p ( s )]d~~ s )JcoSan(Zn+1-
+ [ Pn p(s U U( s )ansinan(zn+1 

2 
where: a = (~+ s2) 1/2 

n C 2 
n 

The functions ¢ and ~ are now solutions of a VOLTERRA type 
integral equation. If U(zn) and P (zn) are known, then 
U (zri+1) and P (zn+1) can be calculated,and thus from on~ 
layer to the next until U(z) and P(z). The values of U and P 
bei ng kno~m at the boundari es from the boundary conditi ons, 
these values serve to initialize the recurrent process. 

Expressions (21) and (22) cannot however be programmed on a 
computer as such, but if the 1 ayers' thi ckness is adjusted so 
that C(z) and p (z) do not vary too much around Cn and P n 
then a TAYLOR expansion under the integral signs of (21) and 
(22) leads to an analytical formulation of the integrals. 
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The following expressions are reached after some arithmetic 

b l K. l + 
i 1 nJ 

+ p(z ) I b.J. - I a l .K. 3 4 J 
n 1 1 In a 1 In 

(24) PnU(Zn+1) = p(Zn)f - ansinan(Zn+1 - Zn) + oI a.K. 1 1 1 n 

2 3 
+ p~~n) i b' iJin} + U(Zn){ pncoson(Zn+l - Zn) 

3 4 
+ p(z ) I b.K . + a n

2 I 
n 1 1 In a a I .J. } 

1 1 n 

These expres~ons can be easily programmed as the coefficients 
a

1
·, b., a l

. , b l
., J. andK. are analytical expressions that 

1 1 1 ln In 
present no difficulty for computation. They are not pre-
sented here for the sake of simplification. 

In order to calculate the residues corresponding to the poles 
sn of w (a,s) it is necessary to get the aw las values. 
This is done as follows: 

Equating aw I a s = 2 sx leads 

aP = aw __ x d aU 1 d aw 
~ -=---z an --z = - - ~ = y 
as - as as p dz qS 

Derivating system (19) with respect to s2 leads 

(25) 
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with this system of equations meeting the boundary conditions 

The analogy with the equations for U and P is obvious and the 
same recurrent methods can be used to get x(zn+1) and y(zn+1) 
as a function of x (zn) and y (zn)' 

5. COMPUTER PROGRAM 

From the models developed in chapters 3 and 4, different programs were 
written down for the calculation of propagation losses versus horizontal 
range at a fixed frequency. 

At the present time three main programs are available, namely (from the 
simplest to the most elaborate) : 

1) Program "PEKTO" (from the names of PEKERIS and TOLSTOY) 
sound speed and density in the water; Solid bottom 
without sediments. 

Constant 

2) Program "BESSEL II (because of the formul ati on in terms of J ~ 1/3 etc.): 
Sound speed and density varying as exposed in chapter 3; elastic 
bottom under the sediments. 

3) Program "VOLTERRA" : Sound speed and density profiles of any given 
shape (as exposed in chapter 4); elastic bottom under the sediments. 

The "VOLTERRA" program can obviously handle the computations corres-
pondi ng to the profil es dealt wi th by the t'BESSEL II and "PEKTO" programs 
but at greater cost. This was done however to check the accuracy 
of the IVOLTERRA"program. 
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These three programs have specific domains of ~pplication for which 
they are optimized. 
Optimization was in all cases taken care of. For instance,the 
VOLTERRA program had to be divided into two parts: one program 
permitti~g to calculate both the branch-line integrals and the residue 
series of equation (12) and one program dealing only with the residues, 
i .e. the r,lOdes. 

The reader will find hereunder a few details concerning the program 
s tructu res. 

In "PEKTO" and "BESSEL" the sound speed and density profiles are of 
course given by their analytic expressions while in VOLTERRA they 
are given by a set of data points. In this case the C(z) and p(z) 
values for any desired z during the computation are obtained from 
a subroutine that makes use of the natural cubic spline interpolation 
method. 

In "BESSEL" and "VOLTERRA" the possibility to account for an absorption 
coefficient in the sediment (and water if desired) was introduced by 
taking a complex value for the sound speed. I~ that case the real 
part of the sound speed is introduced as previously and the 
imaginary part is a constant depending on the frequency and the 
medium characteristics. 

All three programs use the same technique to search for the poles and 
perform the numerical integration if this is the case. They only 
differ in the way the GREEN's function ~ and the ~~ derivative 
(used in the residues calculation) are evaluated. 

- Calculation of the poles location in the complex plane and of the 
corresponding residues. 

It was mentioned in paragraph 2.4 that the poles sn were complex and 
located in the fourth gradiant. They can also be imaginary and 
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on the half axis Im(s) < O. 

The program performs the computation of the ~ (z s) function with 
s varying along 1m (s) by steps ~ s. At the same time it detects 
the minima of its denominator ~ (o,s). The corresponding value of s 
can be regarded as the first approximate value of the imaginary 
part of the pole sn . From this value the program searches · for the 
exact location of s in the complex plane by the use of a NEWTON ' s n 
method and then branches to the subroutine that computes the corres-
ponding value of a~/ a s, calls back to ~ and ~ components of ~ and 
gives the residue as in equation (13) . This procedure is carried out 

as long as s vary along Im(s) < 0 until a pre-established value send 
for which poles can no mo re exist. 

- Numerical integration 

Integral (4) is not directly computed in the program as this would 
present difficulties caused by too strong fluctuations of the 
GREEN's function along the imaginary axis. On the contrary the 
branch-line integrals of equation (12) are easier to calculate by an 
indirect method. 
It can be demonstrated that these branch-line integrals may be 
expressed by the integral 

J (l+j) oo 
(26) ( ~ - ~ I) Ko(sr) ds 

-j oo 

where ~ ' is given by 

~ ' = 2s I 
n s 2 2 - s n 

sn and Rn being the poles and corresponding residues. 

It is possible to obtain an analytical approarned value of (26) by 
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1 N [ M (S l M (Sp+l l] b 
- Sp+lK1 (Sp+lr~ ( 27) I P + SpKl(spr) 

2r p=O s sp+l p 

where Kl is the first order modified BESSEL function and 
where M =cp_ ~ I. 

The programming of equation (27) is easy. The achieved calculation 
accuracy is a functi on orthe number N of values that have been computed 
for ~ along the two half lines "s = 1 + j" and Im(s) < 0 of the 
integration contour. 

In order to obtain the total sound field as given by (4),one just 
needs to add to the previous results(branch-lines integrals) the · 
sum of the residues (eq.12). 

6. CONCLUS ION 

The various programs presented above have been written down on a 
CDC 6600 computer. The required computation time is a function of 
the given source frequency F. 
This is evident since the number n of poles that determine the number 
of modes to be added is roughly given by n = 2 FHjC where C is the 
mean sound velocity in the water and H the water depth. 

This computation time may hence reach large values. In spite of this 
it was found that the use of a 1.1 programs offered numerous advantages 
beyond the mere aspect of sound field calculation in a given situation. 
For example they can be used to study the influence of various sea 
floor parameters on the sound propagation (sediments, density and 
layering, compressional and shear velocities etc) and the influence 
of variations in the sound velocity and density profiles (by the use 
of the "VOLTERRA" program in particular). 
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The "BESSELI! program can also be employed for the study of various 
sound channels (ref.g). 

Finally it must pointed out that the complete sound field calculation 
may usefully help in the study of shadow zones and caustics where 
the geometrical optics approximation is no more valid. 
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