
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS

A STATISTICAL ANALYSIS AND ASSESSMENT OF
THE IMSI-CATCHING THREAT AGAINST MOBILE

SECURITY STANDARDS

by

Carmen A. Johnson

June 2020

Thesis Advisor: Chad A. Bollmann
Co-Advisor: Carson C. McAbee
Second Reader: John D. Roth

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
June 2020

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
A STATISTICAL ANALYSIS AND ASSESSMENT OF THE IMSI-
CATCHING THREAT AGAINST MOBILE SECURITY STANDARDS

5. FUNDING NUMBERS

6. AUTHOR(S) Carmen A. Johnson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
International mobile subscriber identity (IMSI) catching is a man-in-the-middle attack that utilizes

rogue base stations to intercept the IMSIs of mobile users. Attackers can use software-defined radios (SDR)
and open source software to create rogue base stations that geolocate or execute other malicious attacks
against their targets. Prior work proves that attackers are not limited to targeting either old or new cellular
devices since current devices are interoperable with older mobile networks, including GSM. The goal of this
thesis is to determine if cellular devices are susceptible to target profiling based on the model or
manufacturer of the device. If devices can be profiled, then can attackers improve rogue base stations to
capture devices faster? To answer this, we created an enclosed test network using SDRs and OpenBTS to
mimic GSM base stations. We strived to eliminate the factors that devices use to select base stations. We
then presented an IMSI-catching program that can configure base stations, capture IMSIs, and log base
station selection data for analysis. Finally, we conducted a set of experiments to assess if cellular devices
have connection preferences that can be profiled. The results of the experiments suggest that we were not
able to successfully eliminate some decision-making factors. However, more rounds and an examination of
the factors that could have affected the outcome are required to make any conclusions on the selections that
were exhibited.

14. SUBJECT TERMS
IMSI, IMSI-catching, mobile security, rogue base station, GSM

15. NUMBER OF
PAGES

129
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

A STATISTICAL ANALYSIS AND ASSESSMENT OF THE IMSI-CATCHING
THREAT AGAINST MOBILE SECURITY STANDARDS

Carmen A. Johnson
Lieutenant, United States Navy

BS, Utica College, 2013

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2020

Approved by: Chad A. Bollmann
Advisor

Carson C. McAbee
Co-Advisor

John D. Roth
Second Reader

Douglas J. Fouts
Chair, Department of Electrical and Computer Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 International mobile subscriber identity (IMSI) catching is a man-in-the-middle

attack that utilizes rogue base stations to intercept the IMSIs of mobile users. Attackers

can use software-defined radios (SDR) and open source software to create rogue base

stations that geolocate or execute other malicious attacks against their targets. Prior work

proves that attackers are not limited to targeting either old or new cellular devices since

current devices are interoperable with older mobile networks, including GSM. The goal

of this thesis is to determine if cellular devices are susceptible to target profiling based on

the model or manufacturer of the device. If devices can be profiled, then can attackers

improve rogue base stations to capture devices faster? To answer this, we created an

enclosed test network using SDRs and OpenBTS to mimic GSM base stations. We

strived to eliminate the factors that devices use to select base stations. We then presented

an IMSI-catching program that can configure base stations, capture IMSIs, and log base

station selection data for analysis. Finally, we conducted a set of experiments to assess if

cellular devices have connection preferences that can be profiled. The results of the

experiments suggest that we were not able to successfully eliminate some

decision-making factors. However, more rounds and an examination of the factors that

could have affected the outcome are required to make any conclusions on the selections

that were exhibited.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. THESIS OBJECTIVE ...2
B. RELATED WORK ..2
C. ORGANIZATION ...3

II. BACKGROUND ..5
A. MOBILE STATION ..5

1. User Equipment ...5
2. SIM Card ..9

B. NETWORK ARCHITECTURE...12
1. Base Station Subsystem ...13
2. Network and Switching Subsystem ..14
3. Public Land Mobile Network ..15

C. UM INTERFACE ..15
1. Physical and Logical Channels ...16
2. Cell Selection and Reselection...25

D. ROGUE BASE STATIONS ..27
1. Software-defined radios...27
2. OpenBTS ...28
3. Past Implementations ..28

III. EXPERIMENT SETUP...31
A. TEST QUESTIONS ...31
B. TEST ENVIRONMENT ...32

1. Test Network ..34
2. Control Network ..35

C. EQUIPMENT ...41

IV. RESULTS ...43
A. PRE-EXPERIMENT TESTING ..43

1. UE ..43
2. SIM Card Binaries ...45
3. Power Measurement, Harmonic Suppression, and

Attenuation ...48
4. Time Constraints ..51

B. EXPERIMENT 1: FREQUENCY BAND TEST53
C. EXPERIMENT 2: CHANNEL TEST ..57

viii

D. EXPERIMENT 2.1: CHANNEL TEST ...63
E. EXPERIMENT 2.2: CHANNEL TEST ...65
F. SUMMARY OF RESULTS ..70

V. CONCLUSIONS ..73
A. SIGNIFICANT CONTRIBUTIONS ..74
B. FUTURE WORK ...75

APPENDIX A. SIM CARD PYSIM CONFIGURATION ..77

APPENDIX B. SIM CARD MINICOM CONFIGURATION79
A. TEMPSIM.TXT ...79
B. SEESIM.TXT ...80
C. COMMANDS ...80

APPENDIX C. NTP CONFIGURATION ..81
A. NTP.CONF—PRIMARY ..81
B. NTP.CONF—SECONDARY ..82

APPENDIX D. NTP TROUBLESHOOTING ..85

APPENDIX E. OPENBTS BOX CONFIGURATION ..87

APPENDIX F. PRIMARY CODE...89
A. PRIMARY.C ..89
B. CSVLOG.PY ..96
C. RANDCHANNEL.PY ..97

APPENDIX G. SECONDARY CODE ..99
A. SECONDARY<#>.C ..99
B. TESTTIME.PY ..104

LIST OF REFERENCES ..105

INITIAL DISTRIBUTION LIST ...111

ix

LIST OF FIGURES

Figure 1. Inner Workings of a Quectel UC20 Modem ..7

Figure 2. Processor Communication Architectures. Adapted from [3].8

Figure 3. SIM Card Filesystem. Adapted from [12]. ..11

Figure 4. GSM Architecture. Adapted from [18]. ...13

Figure 5. Uplink and Downlink Spectrums for Band 900 ...17

Figure 6. Physical and Logical Channels. Adapted from [18].18

Figure 7. Burst Type Standards. Adapted from [18]. ..21

Figure 8. Combination V Example for C0T0 Downlink. Adapted from [18].21

Figure 9. Simplified Process for Initializing Location Update24

Figure 10. SDR daughterboard Outlined in White ..28

Figure 11. Experiment Environment ...33

Figure 12. UC20 for SIM Configuration ...34

Figure 13. Configuration Mode Flow Chart ..37

Figure 14. Capture Mode Flow Chart ...38

Figure 15. Wireshark Packet Capture Location Update Part I39

Figure 16. Wireshark Packet Capture Location Update Part II39

Figure 17. Spectrum Analyzer ...41

Figure 18. Workspace Diagram ...42

Figure 19. Samsung Galaxy SII: Spanish vs. English ...45

Figure 20. seeSIM.txt EFs ...46

Figure 21. Two Examples of EFBCCH and EFLOCI Post Cell Selection47

Figure 22. Template for SIM Cards ..48

Figure 23. Unfiltered and Unattenuated Downlink Spectrum49

x

Figure 24. Filtered, Unattenuated Downlink Spectrum ..49

Figure 25. Filtered and Attenuated Spectrum ...50

Figure 26. LPF (Green) and Attenuators ...50

Figure 27. Matched vs. Unmatched Downlink Power Peaks Observed During
Experiments ...51

Figure 28. SIM Card Template Procedure ..53

Figure 29. Experiment 1 Selection Results ...55

Figure 30. Experiment 1 Capture Time Results ..56

Figure 31. Matched vs. Unmatched Downlink Power Peaks, 900 MHz Band58

Figure 32. Experiment 2 Selection Results ...60

Figure 33. Experiment 2 Capture Time Results ..62

Figure 34. Experiment 2.2 Capture Results ..69

Figure A.1 SIM Card Configurations via pySim. ..77

Figure B.1 Picture of ntpq Output on Secondary Workstation.85

xi

LIST OF TABLES

Table 1. GSM Bands and Channels. Adapted from [24]. ..16

Table 2. Logical Channels. Adapted from [18]. ..19

Table 3. Pre-experiment UE Devices ...44

Table 4. SIM Cards Affected Five Rounds ..46

Table 5. Phone Models and Test Numbers for Experiments52

Table 6. Experiment 1 Configurations ...53

Table 7. Experiment 1 Band Occurrences ...57

Table 8. Experiment 2 Configurations ...58

Table 9. Experiment 2 Channel Assignments ..59

Table 10. Experiment 2 Channel Selection Occurrences ...63

Table 11. Experiment 2 Workstation Selection Occurrences63

Table 12. Experiment 2.1 Configurations ..64

Table 13. Experiment 2.1 Channel Assignments ...64

Table 14. Experiment 2.1 Number of Workstation Occurrences65

Table 15. Experiment 2.2 Configurations ..66

Table 16. Experiment 2.2 Channel Assignments and Occurrences67

Table 17. Experiment 2.2 Number of Workstation Occurrences68

Table 18. Experiment 2.2 Channel Range Occurrences by Round68

Table 19. Experiment 2.2 Channel Range Occurrences by Round Modified70

Table 20. Summary of Selections ..70

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF ACRONYMS AND ABBREVIATIONS

3GPP 3rd Generation Partnership Project
AGCH Access Grant Channel
ARFCN Absolute Radio-Frequency Channel Number
AuC Authentication Center
BCCH Broadcast Control Channel
BSS Base Station Subsystem
CCCH Common Control Channel
CGI Cell Global Identification
DF Dedicated File
EF Elementary File
EIR Equipment Identity Register
FACCH Fast Associated Control Channel
FCCH Frequency Control Channel
GSM Global System for Mobile Communications
HLR Home Location Register
LA Location Area
LAI Location Area Identity
LAC Location Area Code
ICCID Integrated Circuit Card Identifier
IMEI International Mobile Equipment Identity
IMSI International Mobile Subscriber Identity
MCC Mobile Country Code
MF Master File
MM Mobility Management
MNC Mobile Network Code
MS Mobile Station
MSIN Mobile Subscriber Identification Number
NSS Network and Switching Subsystem
PCH Paging Channel
PLMN Public Land Mobile Network

xiv

RF Radio Frequency
SACCH Slow-Associated Control Channel
SCH Synchronization Channel
SDCCH Stand-alone Dedicated Control Channel
SDR Software-Defined Radio
SIM Subscriber Identification Module
TCH Traffic Channel
UE User Equipment
VLR Visitor Location Register

xv

ACKNOWLEDGMENTS

I would first like to thank my advisors, CDR Chad Bollmann and Carson McAbee,

for their time, guidance, and patience during this process. Their immense knowledge

and dedication have made this work possible, and I am truly thankful to have worked

with them.

I would also like to thank Bob Broadston for all of his assistance and the resources

spent in troubleshooting test equipment.

Finally, I would like to sincerely thank my parents for their continuous

encouragement and support throughout my life.

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

The Global System for Mobile Communications (GSM) Association (GSMA)

estimated that in 2019, approximately 3.8 billion people relied on their mobile device to

connect to the internet. By 2025, this figure is expected to increase to 5 billion [1]. The

number of internet of things (IoT) devices, including cellular-based IoT, is growing even

faster and has already reached 12 billion. This figure is expected to grow to 24.6 billion by

2025 [1]. IoT devices typically connect devices such as cars, smart grid components, and

appliances to the internet. Some IoT devices use a cellular network for this connection [2].

The latest smartphones and IoT devices using cellular networks inherit vulnerabilities

when maintaining backward compatibility with older cellular network standards [3]. One

of these vulnerabilities includes a susceptibility to privacy attacks using international

mobile subscriber identity (IMSI) catching.

IMSI catching is a man-in-the-middle attack that uses rogue base stations, or IMSI

catchers, to capture subscriber information in order to track or to further other malicious

motivations [3]. The IMSI catching attack was first developed to exploit the fact that cell

phones do not authenticate GSM networks, allowing rogue base stations to replicate actual

GSM base stations [3].

As of 2019, GSM networks are not as widely used as 4G, with 4G making up

approximately 52% of connections globally, not including the cellular based IoT devices

[1]. Research has identified methods to perform attacks similar to IMSI catching even on

newer networks [2]. Additionally, attackers are able to downgrade even newer devices to

GSM for ease of capture [4].

From a cyber security point of view, IMSI catching poses a threat to consumers

worldwide using either old or new technologies. This threat becomes especially worrisome

in environments with low cell coverage as there is a higher likelihood of success for rogue

base stations to provide the best signal service in the area. However, attackers are not just

limited to low signal areas to provide the best cell signal. Attackers can also actively jam

2

the surrounding legitimate options or leverage environmental factors to passively jam any

authentic options [3].

A. THESIS OBJECTIVE

The main goal of this thesis is to explore a possible method of targeting IMSI

catching by determining if cell phones and IoT devices can be profiled by attackers. In

order to examine this possibility, the objectives of this thesis are to:

1. Investigate the components within a GSM network to determine the

factors that contribute to a device’s decision-making process for selecting

a cell tower

2. Build a closed test environment that mimics a GSM network

3. Build a set of IMSI catchers that are reconfigurable and are able to collect

and record cellular device connection preferences for statistical analysis

4. Implement a set of experiments examining the individual factors that

contribute to cell selection

The goal of the analysis work is to determine the potential for profiling mobile

devices based on their base station selections during experimentation. If profiling can be

accomplished, then this indicates that attackers have the ability to capture IMSIs quicker

when knowing the model of the target device. The work in this thesis provides the design

of a testing environment along with the programs used to catch IMSIs and measure

selection characteristics for analysis.

B. RELATED WORK

The work in this thesis aims to implement the characteristics of an IMSI catcher

using OpenBTS [5] and software-defined radios (SDR) in a manner similar to the prior

work discussed in this section. The 3rd Generation Partnership Project (3GPP)

specifications [6]–[12] are the technical standards that provide the information necessary

to set up a GSM test network and implement a set of IMSI catchers.

3

Several research works have examined the topic of IMSI catching. Many of the

GSM attacks and all of the open source software available that makes IMSI catching both

affordable and easily implemented on the GSM network are discussed in [13]. The work

in [14] presented an analysis of the GSM traffic produced through OpenBTS and an SDR

operating as an IMSI catcher. Strobel [15] discussed the different approaches to IMSI

catching attacks on a GSM network and an approach for doing so on a Universal Mobile

Telecommunications System (UMTS) network.

The works of Retterstol [4], Mruz [16], and Debrowski et. al. [17] all used a similar

OpenBTS and SDR test platform to confirm that IMSI catching could be performed on

devices using newer cellular standards. The works confirm the interoperability of networks

between phone models. Retterstol [4] presents an implementation of an IMSI catcher that

improves on the work of IMSI catching research predecessors. Retterstol [4] and

Weinmann [3] also confirm more advanced malicious attacks that could be further

implemented after or while catching an IMSI. Debrowski et. al. [17] and Mruz [16] broaden

the scope of previous work to present an analysis of IMSI catching and methods to detect

IMSI catchers.

C. ORGANIZATION

This thesis is split into five chapters along with seven appendix sections. A

moderate review of the GSM architecture is performed in Chapter II, covering the

functionality of everything from a subscriber identification module (SIM) card to the

external networks of a local GSM network. Chapter III discusses the structure of the test

environment as well as the investigative efforts that helped form the experiments. Chapter

IV presents the results of the experiments. The conclusions made from the experiments and

any future work that can stem from this thesis are discussed in Chapter V. Finally, the code

used for the test environment and experimentations is revealed in the appendixes.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. BACKGROUND

The latest generations of smart phones and devices continue to possess the GSM-

era vulnerabilities due to their backward compatibility with the GSM technology. This

chapter explores the fundamentals of GSM, its components, and the interactions that take

place between those components. Within the discussion of the GSM components are the

inner workings of a cell phone and a review of the architecture from the cell tower to the

switching stations within a mobile network. The radio frequency (RF) resources and

communication procedures required for the cell phone and cell tower to successfully

communicate are also discussed. The chapter then concludes with an introduction to rogue

base stations.

A. MOBILE STATION

The cell phone, referred to as a mobile station (MS), is composed of two parts. The

first portion is called the user equipment (UE) in the 3GPP standards but is also commonly

referred to as mobile equipment (ME). The UE works to meet the demands of the user

through both the application and radio frequency (RF) interfaces. The second portion is the

SIM card, housing important subscriber data and information that assists in initializing and

maintaining communications [18]. The aforementioned sections work together to enable

users to communicate within a mobile network.

1. User Equipment

The UE is identified by a globally-unique International Mobile Equipment

Identifier (IMEI) and contains two major processors, an application processor and a modem

[19]. The modem is frequently referred to as the baseband processor and the IMEI is more

accurately the identifier for the modem within the UE [10]. However, it is quite commonly

stated that the IMEI identifies the UE. The decision-making processes for MSs rely on

these processors for maintaining connectivity and communications to a mobile network.

6

a. Application Processor and Modem

Most modern smart phones contain two major processors mentioned previously as

the application processor and the modem. The application processor handles the processes

that have really given smart phones their “smart” label, such as the Android or iOS

operating systems, the underlying Linux kernel, and all the applications downloaded from

app stores [3]. However, once the user requires a cellular action, such as sending a text

message or making a phone call, the responsibility for that action falls on the modem [19].

The modem has the major responsibility of acquiring and maintaining a connection

to a mobile network in order to perform cellular actions at a moment’s notice. It does this

through three major sections of the modem: 1) the RF frontend, 2) the analog baseband

section, and 3) the digital baseband section [19]. The RF frontend is shown in the blue

section of Figure 1 and interconnects the MS with the air interface, which is a medium

discussed in Section C. The analog baseband section is the orange section consisting of the

integrated chip combinations necessary to perform two major functions. The first is to

demodulate signals from the cell tower and send them to the digital baseband section. The

second function is to convert the digital signals from the digital baseband section into an

analog signal ready for the RF frontend to emit via the air interface [19]. The digital

baseband system, highlighted in green in Figure 1, facilitates the communication between

the application processor and the cellular network.

7

Figure 1. Inner Workings of a Quectel UC20 Modem

b. Communication between Processors

Smart phones with both application and baseband processors require a method for

communication to flow between the two processors. For example, when a user uses the

phone application on a smart phone to make a phone call, the application processor must

somehow inform the baseband processor that a phone call needs to occur. This

communicative process occurs by one of two layouts: either by having memory space

shared between the two processors, or through using a serial link between processors, as

shown in Figure 2 and described in [3], [19]. Much of the information about the architecture

and specific communication protocols between the two processors is proprietary

knowledge of the processor manufacturers. Most information that has been found is from

thorough analysis work by security professionals and not provided by the manufacturers

themselves [20].

8

Figure 2. Processor Communication Architectures. Adapted from [3].

While the procedures for the processors are proprietary knowledge, there are

standardized communication commands, known as attention (AT) commands, that are well

known. The application processor uses AT commands as a way to request a cellular action.

AT commands can also be used to request specific subscriber information from the SIM

card. A considerably large number of AT commands have been approved under 3GPP TS

27.007 [10], but it is worth noting that each modem may differ in its ability to carry out a

specific AT command. Cellular modem manufacturers may have released manuals

describing what specific AT commands are permitted and their usage for a particular

modem model. This is the case for the UC20 modem displayed in Figure 1 [21].

The core processor within the modem processes and handles the functional AT

commands [19]. Using Figure 1 as an example, the core processor is identifiable as the

larger chip within the green section, the Qualcomm MDM6200. More recent modems, such

as the Quectel EC20, have cores that run a Linux distribution from the OpenEmbedded

[22] framework shown in [20]. This Linux distribution is designed specifically to run on

an embedded device and is used to process the AT commands given to the modem, or more

specifically the digital baseband processor within the modem, as described in [19].

9

While most modems have a fairly standard layout, the ways in which all of these

processors communicate with one another on a deeper level is not as well known. To further

understand how the MS works together to perform basic cellular activities, it is important

to also analyze the second component to the MS. Several situations exist where the modem

may require information that is no longer stored on the UE, but instead stored on the SIM

card.

2. SIM Card

Aside from the UE within the MS there is the SIM card, uniquely identified by an

integrated circuit card identifier (ICCID) defined by ITU E.118 [23]. The SIM card itself

may vary in size; however, it holds all of the subscriber’s information that is necessary for

authentication and communication on a cellular network. Such information includes an

IMSI, a temporary mobile subscriber identifier (TMSI), broadcast control channel (BCCH)

information, a location area identity (LAI), forbidden public land mobile networks

(FPLMN), preferred public land mobile networks (PLMN), an authentication key (Ki), etc.

[24]. The vast information within the SIM card has a layered structure to support the

necessary functions carried out by the modem.

a. Important Elements Stored on a SIM Card

One of the most important elements in the SIM card is the IMSI, which is used to

identify a subscriber on a network. Within the GSM network the MS uses the IMSI to

initiate a desire for connection to a network [24]. The IMSI is a 15-digit identifier that is

composed of a three-digit mobile country code (MCC), two-digit mobile network code

(MNC), and a ten-digit mobile subscriber identification number (MSIN) [25]. As the names

suggest, the MCC identifies the country and the MNC identifies the network within that

country. The MSIN indicates the subscriber under their home network defined by the MCC

and MNC. Similarly, the network can temporarily assign a TMSI to be used in place of the

IMSI. This was implemented as a way to provide some form of anonymity, in hopes that

eavesdroppers cannot map the TMSI to the IMSI of the subscriber [25]. The Ki is a unique

private key used to authenticate the subscriber on a network, a process that takes place after

the IMSI has already been used to identify the user to a network [24]. Much of the work in

10

later chapters deals strictly with the processes that take place leading up to the IMSI being

sent to the network for access to communications; therefore, authentication will not be

discussed further here. However, the information regarding the BCCH information, LAI,

and PLMN’s is explained in more detail in sections C.3, B.1, and B.3, respectively, of this

chapter.

b. Organizational Structure of the SIM Card

The SIM card houses a file system, defined by GSM 51.011 [12], that is organized

in a hierarchical structure with four main levels, shown in Figure 3. Each level can be

identified by a two-byte file identifier. The master file (MF) on the top level holds the file

identifier 3FXX and is essentially the root directory of all the files in the SIM card. The

first level under the MF are dedicated files (DF) with the file identifier 7FXX, or 2FXX for

elementary files (EF) on this level. The DFs are considered to be directories rather than

files themselves as they are essentially the folders for the EFs or other DFs. The second

level under the MF can also contain DFs and EFs, with file identifiers 5FXX and 6FXX,

respectively. The third level will only contain EFs that are under their corresponding

second level DF as 4FXX. The individual locations for information stored under an EF are

known as binaries, or transparent files, and are displayed as an arrangement of bytes [12].

When the modem is attempting to acquire information from a SIM card, it will be reading

the binary of an EF for that information. Likewise, if the modem needs to update

information to the SIM card it will update the bytes of the EF binary.

11

Figure 3. SIM Card Filesystem. Adapted from [12].

The amount of information stored, along with their respective locations, is

overwhelmingly large. Much of the information extends past the requirements for

understanding the work of this thesis. However, the DFGSM–7F2X is the container for most

of the important location and subscriber information for communicating on a GSM network

[12]. The EFs that are of focus within DFGSM are: 6F07–EFIMSI, 6F74–EFBCCH, 6F7E–

EFLOCI, 6F7B–EFFPLMN, and 6F30–EFPLMNsel.

The address space for EFIMSI simply stores the IMSI for the subscriber to use on a

network, as defined by [12]. The 6F74 file identifier for EFBCCH, stores the neighbor cell

information from system information two messages for both cell selection and reselection

procedures [12]. Cell selection and reselection are discussed in more detail within Section

C of this chapter.

The location information EF, as defined in [12], stores four main elements of

information within its address space: 1) TMSI, 2) LAI, 3) TMSI time, and 4) location

update status. The TMSI had been briefly mentioned in Section A.2.a of this chapter and

the LAI will be discussed in more detail in Section C. The TMSI time is a timer value

12

that is determined by the currently connected network. The time value counts down for

the periodicity a MS should provide a location update to the network, specified in [9].

The location update status indicates whether or not the last location update attempt was

updated successfully or attempted to provide a location update to a forbidden network

[9].

The service provider determines the addresses in the space dedicated for storing a

list of FPLMNs and each FPLMN are three bytes in length [12], [26]. The provided space

for FPLMNs are defined to be 12 bytes long, which means only four FPLMNs can be

stored on the SIM card. Lastly, the 6F30 file identifier for EFPLMNsel allows for storing a

list of preferred PLMNs in order of priority which a MS should use to search for [12].

The details of PLMNs are discussed in more detail in Section B.

The UE and SIM card together form the MS that communicates on a

cellular network and the UE uses a modem as the primary processer for doing so. The

SIM card contains information stored in a hierarchical structure for the

modems use in communicating with a GSM network.

B. NETWORK ARCHITECTURE

The physical network beyond the MS itself consists of many components and

systems that can fundamentally be divided into three main subsystems, as shown in Figure

4. The base station subsystem (BSS) manages the radio interface infrastructure, providing

the resources for communication flow to and from the MS. The network and switching

subsystem (NSS) connects the BSS to the external network and handles the user data traffic

flow [24]. The final subsystem is the Operation and Maintenance Center (OMC), which

will not be discussed at length since it is outside the scope of this thesis. The OMC

interfaces with the subsystems of the GSM architecture for network maintenance and

subscription management. Together, the subsystems work to enable communication flow

between users [18].

13

Figure 4. GSM Architecture. Adapted from [18].

1. Base Station Subsystem

As briefly mentioned earlier, the BSS provides the necessary radio infrastructure

for a location area (LA) and is broken down into two main stations. The first element is the

base transceiver station (BTS) and the second element is the base station controller (BSC)

overseeing the BTSs within a LA [25].

The BTS is commonly recognized from their antennae as the cell tower and is the

first communication element for the MS on the GSM network. Geographic locations of a

network are divided into cells, each containing a BTS [24]. The BTS is in charge of the

signal processing that is required for relaying uplink and downlink communication to the

MS’s within its cell. The size of each cell is not standardized, since things like population

density and geographic features of the location are some of the many factors in determining

cell tower locations and their individual breadth of responsibility [24].

The BSC controls and manages a group of BTSs for a LA and is identified by a

LAI. The LAI itself is comprised of the MCC, MNC, and location area code (LAC), defined

in [8]. The BSC primarily relays communications and to carry out that main objective, the

BSC must manage and maintain connectivity to MSs [24]. For example, the BSC handles

14

the connectivity transition, or handoff, between cells when a MS is moving from cell to

cell within a LA. The BTSs directly interface with the MSs on the air interface via physical

channels and logical channels. The BSC is overall in charge of the management and

allocation of those physical and logical channels as well as the traffic sent to and received

from the next subsystem [24].

2. Network and Switching Subsystem

The NSS handles the switching of the user data traffic flow throughout its territory

by using many important elements. The first element is the mobile switching center (MSC)

controlling the traffic flow to the appropriate LAs. The other four elements are one

authentication center (AuC) and three registers. Those three registers are known as the

equipment identity register (EIR), home location register (HLR), and visitor location

register (VLR). The AuC and registers store information or perform a specific function for

the MSC on the GSM network [18].

a. Mobile Switching Center

The MSC handles the large amount of user data traffic, but additionally has to work

together with the BSS to handle radio resource allocation to the MSs [24]. There is a

difference between maintaining radio resource allocation at the BSC level versus the MSC

level. Recall the scenario described for the BSC maintaining communication for an MS as

it moves from cell to cell in a LA. The radio resource allocation and management at the

MSC level occurs when a MS is moving from a cell that is in one LA to an adjoining cell

that is in a different LA. The MSC oversees a group of BSCs, each in charge of their

respective LAs. Frequently, a Gateway MSC (GMSC) is used to group MSCs and provide

the bridge to the external networks. The GMSC and MSC level also maintain specific

databases used to perform the other necessities for a cellular network [24].

b. Databases

As mentioned earlier, aside from the MSC there are four other elements within the

NSS: AuC, EIR, HLR, and VLR [24]. The AuC has the sole purpose of authenticating

subscribers to a network. The UE itself does not technically go through an authentication

15

procedure like the SIM card does with the AuC. However, the EIR contains lists of IMEIs

to determine authorization of UEs on a network [24]. This is helpful in situations such as

the case of a stolen phone. The HLR and VLRs have a similar relationship with each other

since subscriber information such as the IMSI, locational data, and phone number are

stored in both the HLRs and the VLRs. The major difference between the two registers is

that there is one HLR for a network while there is typically a VLR for every MSC in the

GSM network. The VLR dynamically changes as MSs move throughout its purview. For

instance, when a MS attaches to a network in a new LA, the VLR servicing the MSC in

that LA will add the subscriber and its location to its records. The VLR as well can assign

a TMSI, for the MS to use instead of using an IMSI as a form of identification while it is

in the VLR’s LA [24].

3. Public Land Mobile Network

A PLMN encapsulates a GMSC and all of its attached subsystems, also shown in

Figure 4. The PLMN is identified by two elements mentioned before as the MCC and

MNC, or the country and region that defines the borders of that PLMN [25]. A single

PLMN is essentially a container for a group of MSCs belonging to a network provider

within a defined geographic region. The PLMN technically is not a physical component on

a network, but rather a collection of components that organizes and sets boundaries for

users to access cellular services under a telecommunication provider [24].

C. UM INTERFACE

The first sections discussed most of the physical elements of a GSM network

without clarifying how the network itself is connected to the MS. The Um interface links

the MS and the BTS, with more common references as the air, radio, or RF interfaces. This

section first provides an introduction to the physical and logical layers of the air interface,

and then discusses the elements that allow the physical and logical layers to work. The

layers of the air interface allow for the transmission of data, which includes the data for

cell selection and reselection. Additionally, the layers of this air interface work together to

create a functional link between the MS and BTS in order to enable and maintain

communications, tying the MS to the GSM network [24].

16

1. Physical and Logical Channels

As previously mentioned, geographic regions of a network are further divided into

cells that ensure communication coverage to the bounds of each cell. Furthermore, those

cells enable communication to take place using portions of the RF spectrum. For GSM, the

cells are limited to operating within four main bands and their dedicated absolute radio

frequency channel number (ARFCN) ranges, as shown in Table 1. ARFCNs will be

discussed further in Section b, however, there are other outdated bands or extensions that

are not shown. For relevancy to later chapters of this thesis and simplicity, the discussion

will focus on the bands within Table 1. The air interface for those bands takes advantage

of both frequency division multiple access (FDMA) and time division multiple access

(TDMA) [24]. Combining these access methods enables multiple users to communicate at

the same time, and to efficiently use a limited range of bandwidth.

Table 1. GSM Bands and Channels. Adapted from [24].

Band Uplink Range (MHz) Downlink Range (MHz) ARFCNs

850 824–849 869–894 128–251

900 890–915 935–960 1–124

1800 1710–1785 1805–1880 512–885

1900 1850–1910 1930–1990 512–810

a. Physical Layer

The physical layer is formed by first dividing the available air interface into the uplink

and downlink ranges, provided in Table 1. Uplink refers to the communications that are

going from the MS to the BTS. The downlink is for communications from the BTS to the

MS [24]. For the case of the 900 band, shown in Figure 5, there is a 45 MHz offset between

the two ranges. The offset is used to avoid any interference of communications between

the two physical ranges. The physical channels, also referred to as carrier frequencies, are

17

created by using FDMA to further divide the downlink and uplink ranges into channels of

200 kHz bandwidth each [24].

Figure 5. Uplink and Downlink Spectrums for Band 900

b. Logical Layer

Sitting on top of a physical channel is a TDMA frame containing eight timeslots

(0–7) that are each allotted 576.9 µs of transmission time, shown in Figure 6. The TDMA

frame must go through a constant rotation of its eight time slots within its physical channel,

since time slots will only be able to transmit data on each of their individual turns [24]. The

eight time slots together have an overall period of approximately 4.62 ms and each time

slot will have to wait 4.038 ms before its next turn. The logical layer then operates on top

of the physical layer through the use of logical channels and bursts [18].

18

Figure 6. Physical and Logical Channels. Adapted from [18].

(1) Logical Channels

A type of logical channel will be used during a timeslot to send information to a

specific target. As made apparent from Table 2, a variety of logical channels are organized

into main two groups [18]. One group consists of traffic channels (TCH) which are used

for transmitting data and speech at half or full rates. While a full-rate TCH supports only

one user at a time, a half-rate TCH may be shared by two users. The other group contains

control channels (CCH), which are also referred to as signaling channels. The CCHs are

used to transmit the signaling and synchronization data necessary for establishing and

maintaining communications with local MSs. The CCHs are further subdivided into three

types: broadcast channels (BCH), common control channels (CCCH), and dedicated

control channels (DCCH) [18].

The BCH channel type is broadcast by the BTS on the downlink in order to provide

the network information MSs need to make decisions for cell selection/reselection. The

BCH channels consist of broadcast control channels (BCCH), frequency correction

channels (FCCH), and synchronization channels (SCH) [18]. The CCCHs are used to

provide an avenue of communication between the BTSs and the MSs that are not assigned

19

a dedicated channel through the use of random-access channels (RACH), access grant

channels (AGCH), paging channels (PCH), and notification channels (NCH). Finally, there

are three various types of DCCHs, known as stand-alone dedicated control channels

(SDCCH), slow associated control channels (SACCH), and fast associated control

channels (FACCH) [18].

Table 2. Logical Channels. Adapted from [18].

Logical Channels

Traffic
Channels (TCH) Signaling/Control Channels (CCH)

Fu
ll

R
at

e
Tr

af
fic

 C
ha

nn
el

(T

C
H

/F
)

H
al

f R
at

e
Tr

af
fic

 C
ha

nn
el

(T

C
H

/H
)

Broadcast
Channels

(BCH)

Common Control
Channels (CCCH)

Dedicated Control
Channels (DCCH)

B
ro

ad
ca

st
 C

on
tro

l
C

ha
nn

el
 (B

C
C

H
)

Fr
eq

ue
nc

y
C

or
re

ct
io

n
C

ha
nn

el
 (F

C
C

H
)

Sy
nc

hr
on

iz
at

io
n

Ch
an

ne
l

(S
C

H
)

R
an

do
m

 A
cc

es
s C

ha
nn

el

(R
A

C
H

)

A
cc

es
s G

ra
nt

 C
ha

nn
el

(A

G
C

H
)

Pa
gi

ng
 C

ha
nn

el
 (P

C
H

)

N
ot

ifi
ca

tio
n

C
ha

nn
el

(N

C
H

)

St
an

d-
al

on
e

D
ed

ic
at

ed

C
on

tro
l C

ha
nn

el

(S
D

C
C

H
)

Sl
ow

 A
ss

oc
ia

te
d

C
on

tro
l

C
ha

nn
el

 (S
A

C
C

H
)

Fa
st

 A
ss

oc
ia

te
d

C
on

tro
l

C
ha

nn
el

 (F
A

C
C

H
)

DL/UL DL/UL DL DL DL UL DL DL DL DL/UL DL/UL DL/UL

DL: Downlink Only
UL: Uplink Only
DL/UL: Both Uplink and Downlink

Many of the time slots of the physical channels are assigned to dedicated traffic

channels in order to provide and maintain lines of communications to authorized MSs in a

BTS cell. Accordingly, in the case of dedicated channels for a given user, there is a

downlink timeslot on a downlink physical channel and an associated uplink timeslot on an

uplink physical channel [24]. For the uplink and downlink pair, the uplink timeslot is

delayed from the associated downlink time slot by a span of three timeslots. The delay is

required in order to avoid having the MS transmit and receive at the same. The physical

channel pairing available for use as dedicated user channels are known as ARFCNs. If the

20

ARFCN is known, the carrier frequency for the physical channel on the uplink and

downlink can both be calculated using

,

with the 900 band again as the example, given in [24]. Likewise, for the 900 band the

ARFCN can be calculated using

,

when the frequencies of either the uplink or downlink are known.

(2) Bursts

When data is being sent during a time slot by a logical channel, the data is sent in the

form of bursts [18]. A burst has a length of 156.25 bits, including the duration of bits

dedicated for the guard period. The bursts can take the form of one of five standard formats

shown in Figure 7. The normal burst is used to transmit speech data or signaling

information depending on the channel type that uses it. Before a MS can transmit

information with a BTS, it must first be able to find the BTS. The frequency correction

burst works to accomplish this by using 142 of the 156.25 bits to broadcast a specific

waveform. The MS uses the broadcasted waveform to tune its oscillator to the correct

frequency of the BTS. As well, an MS is required to align with the time of the BTS, which

is accomplished through the use of the synchronization burst. The synchronization burst

provides the MS the 64-bit synchronization sequence necessary for BTS time alignment.

The next burst option is the dummy burst and is only used when no data needs to be sent

to fill the timeslot on the downlink. The access burst is the final burst type and is

exclusively used for the RACH by the MS [18].

21

Figure 7. Burst Type Standards. Adapted from [18].

c. Channel 0 Timeslot 0

Physical and logical channel combinations existing on specific time slots generally

serve a specific purpose. Physical channel 0 and timeslot 0 (C0T0) is an essential downlink

channel and timeslot combination for the cell selection and reselection process which will

be discussed in Section 2 of this chapter. This combination, also known as combination V,

blends specific logical channel types for the purpose of enabling MSs to find and initiate a

line of communication with the BTS, a vital requirement for rogue base stations.

Combination V commonly takes the form, defined by GSM 5.02 [6], as: FCCH + SCH +

BCCH + CCCH + 4 SDCCH + 4 SACCH. An example of the channel combination order

is provided in Figure 8.

Figure 8. Combination V Example for C0T0 Downlink. Adapted from [18].

22

As seen in the implementation of combination V in Figure 8, the FCCH is the first

channel type to broadcast data on C0T0. The FCCH uses the frequency correction burst to

allow the MS to tune to the correct frequency [18]. The SCH is then used to send a

synchronization burst on the next go around of C0T0s turn, to align the MS with the time

of the BTS. The BCCH is next and emits four normal bursts worth of data during C0T0s

next four turns. The four BCCH bursts are used to send one system information (SI)

message and is done so to prevent burst errors through an interleaving process that spreads

the data across the four bursts [18].

The standard provides six main SI types; however, SIs one through four are the

ones broadcast regularly. The four main SIs contain important information about the

network with a great deal of overlap between them [11]. For the sake of continuing the

discussion on channels, more details of the SI messages will be provided as they become

relevant. For now, the important detail provided within the SI messages concerns the

RACH. The RACH is under the CCCH type and is also the only uplink CCCH type. The

details of the RACH for communicating with a BTS are provided within one SI transmitted

from the four BCCH bursts. The purpose of the RACH is to provide an avenue for the MS

to request a SDCCH from the BTS [18].

Moving back to the downlink timeline, the next four bursts after the four-burst

BCCH are for the CCCH. The RACH is an uplink CCCH, therefore the channels meant for

the CCCH type on the downlink can only be a AGCH, PCH, or NCH [18]. AGCHs are

used to assign a SDCCH to the MS. Just like the BCCH, the AGCH requires four bursts to

transmit a channel assignment message to the MS containing the SDCCH details for a

temporary line of communication. The PCH and NCH are only used as ways to find or

notify a MS within the cell.

The next two bursts are another FCCH and SCH, followed by eight CCCH bursts

before another two FCCH and SCH pair. These are extra opportunities provided to MSs to

correct, synchronize, and/or get access to a dedicated channel since the next eight bursts

are for two SDCCHs, four bursts for each SDCCH. These SDCCHs are again followed by

another pairing of the FCCH and SCH with one more set of two SDCCHs (eight bursts).

One last FCCH and SCH are followed by two SACCHs, at four bursts each, and one idle

23

burst to finish a 51-burst cycle. Since a time slot is required to emit a burst even if there is

no data to send, the idle burst is one example that uses the dummy burst. Combination V

requires support for four SACCHs; therefore, the entire 51-burst frame from Figure 8 is

repeated [18]. The SACCH (0) and SACCH (1) will then be SACCH (2) and SACCH (3),

respectively. The SACCHs are used to provide the MSs within the cell, signaling and

channel measurements and are continuously doing so on the SACCH turns. To send one

full 51-burst frame of combination V should take around .231 seconds, with 50 bursts *

(576.9 𝜇𝜇s burst period * 8 time slots) + 576.9 𝜇𝜇s for burst 51 of C0T0. Therefore, two

cycles of combination V to include the transmission of all four SACCHs, takes

approximately .467 seconds.

If the BTS uses this configuration for C0T0, the MS has one opportunity to gather

the four BCCH bursts with the necessary information. Otherwise, the MS will have to wait

through what is remaining of the 51-burst cycle before repeating to get the next round of

BCCHs. This requirement is due to the necessity of getting the RACH information, so the

MS knows the avenue to request for a dedicated channel. Once the channel is given to the

MS from the AGCH, the MS can then go through a location update procedure with the

BTS if it selects that cell for services [24]. The location update is initialized by sending the

IMSI to identify the subscriber to the servicing network, as shown in Figure 9. A discussion

of procedures such as a location update and cell selection/reselection is found in Section

C.2.

24

Figure 9. Simplified Process for Initializing Location Update

In summary, the physical and logical layers provide the medium and the resources

necessary to communicate over the air interface. In GSM, the air interface is a layering of

TDMA on top of FDMA to send bursts of data through a channel during a turn on a time

slot. The bursts and channels vary in purpose to achieve the overall goal of being able to

establish a line of communication and then provide communication services to valid MSs

anywhere GSM infrastructure exists. Attackers must also provide the radio resources

discussed here for MSs to find and connect to rogue base stations, using the process

described in the next section.

25

2. Cell Selection and Reselection

The previous sections helped provide the insight into how MSs find and

communicate with a network using the air interface to the BTS. However, the MS is always

required to ensure it is connected to the best cell for services. This requirement is due to

the likelihood that MSs will be moving at any point in time and may need resources for

communication during this period of mobility. The MS periodically goes through the

searching process, discussed in the Section C.1.c, and then makes a decision regarding the

best cell found [18]. The searching process is also referred to as the cell selection/

reselection process. The decision-making process for cell selection and reselection first

requires a collection of SIs from all the nearby cells. If the MS is already connected to a

network, the current cell information is also required. The information within the SIs are

then used for measurements in selecting the best cell for services [18].

MSs begin by scanning for the frequency correction bursts of known bands for

service. The modem will check the SIM card for information on the last network it was

connected to in order to scan for those options first. If there is no information about the

network stored, then the modem will have to scan the entirety of serviceable ranges for

options. Once a beacon is found, the MS will go through the normal frequency and timing

alignment process to wait for the SI message from the BCCH that contains the RACH

information. This process recurs for the six strongest beacons found and the MS will then

sort the options based on PLMN validity and the main criterion of transmission quality.

The MS will check the PLMN received from the SI against the list of FPLMNs and

preferred PLMNs stored, if any, in the SIM card. The signal quality is a measurement of

power of the received information signals to calculate the path loss criteria (C1) using

C1 = [A – Max(B, 0)],

where A = RLA_C – RXLEV_ACCESS_MIN

and B = MX_TXPWR_MAX_CCH – MS Max Transmitter Power.

The option with the highest C1 will likely be selected [7].

26

The RLA_C is a running average of at least five received signal levels at the MS.

The RXLEV_ACCESS_MIN is the minimum received power threshold required for

network access, sent by the BTS [18]. The MX_TXPWR_MAX_CCH is the maximum

transmission power that the MS is permitted by the network to use to send information on

the RACH [18]. All of these values are in decibels (dB) and the signal with the highest

positive C1 will be the selected cell. The C1 criteria is primarily used for cell selection,

such as when a MS is powered on or is no longer in airplane mode. However, when a MS

is already connected to a cell, the C2 criteria calculated from

C2 = C1 + CELL_RESELECT_OFFSET – (TEMPORARY_OFFSET * H(x)),

where x = PENALTY_TIME – T.

is instead used [18]. Notice that the C2 criteria take the C1 criteria into consideration;

therefore, both must be measured at regular intervals for cell reselection. The new values

introduced in C2 (CELL_RESELECT_OFFSET, TEMPORARY_OFFSET, and

PENALTY_TIME) are provided in the SI messages broadcasted on the BCCH [7]. Once a

cell is deemed to be a strong candidate, the value T is the timer value that indicates the

amount of time that has passed since it was determined as such. Just as with C1, the cell

with the highest positive C2 value will likely be selected [7].

All of the physical components of the GSM network have been introduced from the

MS through the subsystems. The air interface that directly links the MS to the network

provides the frequencies and channels for communication. However, it is up to the MS to

maintain its own connection to the network as it moves from cell to cell. The specifications

have primarily defined cell selection and reselection decisions to be made based off of the

power levels of received BTS signals. From the literature, it remains unclear what a UE

does when it cannot use power levels as a judge for cell selection and reselection

procedures. The focus of our work is to examine the MSs BTS selections when the MSs

receive equivalent power in order to determine if MSs have designed preferences.

27

D. ROGUE BASE STATIONS

A review of the GSM architecture reveals that the MS does not interface directly

with any components of the GSM network beyond the BTS since all communications

traverse through BTSs. This review also reveals that the MS does not authenticate a GSM

network nor its components. An attacker can leverage this lack of authentication by using

a rogue base station to capture IMSIs, which can then be used to track targeted devices or

further malicious intentions [4]. Rogue base stations replicate authentic BTSs primarily

through SDRs and open source software that mimics legitimate air traffic.

1. Software-defined radios

The creation of SDRs has turned IMSI catching from what used to be an expensive

attack into a relatively cheap and easy one. SDRs are radio devices that can be configured

and controlled by computer software [4]. One common SDR is the Universal Software

Radio Peripheral (USRP) designed by Ettus Research [27], which can cost around $1500

[4].

The daughterboards of SDRs allow the SDRs to operate within a frequency range

dictated by the daughterboard, with an example shown in Figure 10. The daughterboards

can be designed to operate in one band or several of the available frequency bands. The

SDRs are then configured for operation as a base station through the use of OpenBTS.

28

Figure 10. SDR daughterboard Outlined in White

2. OpenBTS

OpenBTS is open source software developed by Range Networks to provide a

network for testing. The software was also designed to provide future opportunities for low

cost cellular service options [28]. OpenBTS uses SDRs to emit all of the standard 3GPP

traffic over the air interface [5]. The standard traffic includes providing combination V on

C0T0 and maintaining the SI messages sending network information necessary for RACH,

C1, and C2 calculations [29]. Pairing the open source software with inexpensive SDRs

enables IMSI catching attacks to be carried out with cheap implementations.

3. Past Implementations

Several works have successfully created and implemented rogue base stations that

illustrate many important conclusions, however, only a few will be discussed here. The

similarity of the prior work proves IMSI catchers can be built using relatively inexpensive

SDRs and open source software such as OpenBTS. Mruz [16] and Debrowski et. al. [17]

show that devices designed for newer standards are backwards compatible to older mobile

29

networks. The work presented by Retterstol [4] demonstrated the ability to selectively jam

a subscriber while catching an IMSI. As well, Retterstol was able to perform denial of

service attacks on subscribers of a specific network while catching the IMSIs. The work

provided by Weinmann [3] analyzes the ability to remotely corrupt the memory of mobile

devices using rogue base stations. The authors of [2] use a similar rogue base station

approach to perform attacks on mobile devices in 4G and 5G networks.

Overall, the growth of technology has both decreased the cost to implement rogue

base stations and enabled more advanced threats using rogue base stations. The work in

this thesis aims to leverage the inexpensive hardware implementations and uncertainty in

GSM standards to determine if mobile devices have air interface preferences, enabling

attackers to profile their targeted device for faster capture.

30

THIS PAGE INTENTIONALLY LEFT BLANK

31

III. EXPERIMENT SETUP

Chapter I provides the motivation for this thesis with a brief introduction to IMSI

catchers, rogue base stations, and their threat to mobile subscribers. Chapter II provides the

background information necessary for understanding how GSM operates through a review

of each of its components and subsystems. The information in Chapter II also highlights

the components of a MS used for decision making as well as the frequency and channels

required for communication. This chapter presents the experiments designed to determine

if the modem of a MS has frequency and channel preferences that could be used to profile

a targeted device. This chapter also describes the test questions and the setup of a controlled

testing environment.

A. TEST QUESTIONS

This thesis uses OpenBTS and SDRs to create IMSI catchers in a similar manner

to previous work. However, we extend prior work to present a program that can configure

and implement IMSI catchers on multiple base stations for specific analysis goals. The

created test environment encapsulates the base stations, eliminates standard decision-

making factors, and provides multiple frequency and channel configuration options using

the base stations. The IMSI catching program developed for this thesis also records the

configuration information of the base stations chosen by the modems to permit analysis of

the decision-making patterns. If the modems have preferences, we will then work to

determine whether attackers can create profiles for phone models based on three main

questions:

1. Do modems have a frequency band preference?

2. Within a preferred frequency band, do modems have a channel preference?

3. Using the preferences of one and two, what are the effects on IMSI capture

speeds?

32

The first experiment is used to determine if the MSs have frequency preferences

when the available cell options are at the same power level and have no other information

to help make a decision. The next experiment requires the frequency band preference

revealed during the first experiment. The second experiment is designed to determine if the

MSs prefer a physical channel within a frequency band.

The final experiment requires the preferences from the first two experiments to

establish if the channel and frequency preferences decrease the amount of time it takes to

capture an IMSI. In order for us to accomplish this, two approaches are required. The first

approach uses the preferred frequency from the frequency test and the preferred channel

from the channel test as the configurations, then we examine the IMSI capture speeds. The

second approach randomizes channels with the four GSM bands and is again focused on

examining the speeds of the IMSI catches. We will compare the speeds of the two

approaches to determine if preferences make a difference in terms of speed of IMSI

capturing.

B. TEST ENVIRONMENT

The testing environment is designed in a way that does not risk the privacy of

legitimate users. Instead, we replicate a GSM environment within a controlled

environment. The testing environment, as shown in Figure 11, is made up of two core

networks to accomplish that requirement. The test network works to mimic an actual GSM

network from the MSs to the BTSs. The control network provides the ability to configure

portions of the network and capture the information necessary for analysis. Encapsulating

both networks in a Faraday cage limits extraneous interference on the two core networks

and prevents the core networks from interfering with legitimate mobile networks.

33

Figure 11. Experiment Environment

34

1. Test Network

Since the MS does not interface directly with any components of the GSM network

beyond the BTS, a GSM network can be replicated by using SDRs and OpenBTS for the

components shown in Section A of Figure 11. For this, we use a set of IPLinkME [30]

SDRs, similar to the USRPs by Ettus Research. The daughterboards within the SDR are

only able to cover the 850 MHz and 900 MHz or the 1800 MHz and 1900 MHz ranges at

any given time. To reconfigure frequency band during experiments, several daughterboards

of both ranges are interchanged as required. Having the multiple daughterboards of both

ranges also provides coverage of all four GSM bands.

Using OpenBTS, the SDRs provide the necessary GSM network resources for MSs

to connect to a network on the air interface, labeled Section B in Figure 11. The initial

configuration for OpenBTS is provided in Appendix E. Some minor interfacing in Sections

C and D of Figure 11 provides control for eliminating stored information that is used to

make cell selection decision-making easier for the modem. Since we cannot access that

information directly through the MS, a Quectel UC20 modem [31], displayed in Figure 12,

is used to eliminate information in the EFs of the SIM card.

Figure 12. UC20 for SIM Configuration

35

For our setup the application processor is emulated using minicom 2.7 [32] on a

Linux workstation to send the AT commands that modify the necessary EFs of the SIM

cards. Together, minicom and the Quectel UC20 modem represent Section C of Figure 11.

The SIM cards for Section D of Figure 11 are an assortment of Range Network blank SIM

cards [33]. These SIM cards are reprogrammable testing SIM cards and are configured

using a combination of pySim [34] and minicom 2.7. The configurations for pySim and

minicom are shown in Appendix A and Appendix B, respectively.

2. Control Network

The control network within the test environment has three main responsibilities: 1)

configure, 2) capture, and 3) analyze. The three responsibilities are split amongst a primary

workstation and the set of four secondary workstations that each interface with an SDR.

The workstations are connected via a local area network (LAN) and their time is configured

for synchronization using the Network Time Protocol (NTP) [35], provided in Appendix

C. Using NTP ensured the workstations had as close to the same time as possible, without

worrying about having the most accurate current time.

We created a set of C and python programs that configures the test network,

captures the IMSI, and logs the information for analysis. The set of programs accomplish

all three responsibilities for the control network. The C and Python code are provided in

Appendix F for the primary workstation and Appendix G for the secondary workstations.

The programs work together to supply a configuration mode and capture mode, providing

the necessary data for analysis.

a. Configure

 The main purpose of this mode is to configure the SDRs according to what the

experiment requires. An operational flow chart for the configuration process is shown in

Figure 13. Configuration mode first requires that the secondary workstations are running

the script since the primary will check the status of those workstations through a health

check. If the health check fails, the program will wait to provide time for troubleshooting

connections. Once the health check is complete, the program, will ask if the ARFCN

assignments will be randomized during configuration. Randomization for ARFCN

36

assignment allows for flexibility of various experimentation methods. If selected, the

program only requires the user input of a valid GSM frequency band from the 850 MHz,

900 MHz, 1800 MHz, and 1900 MHz options. Each host then receives their assigned band

and the randomly selected ARFCN for that band to configure the associated SDR.

The secondary workstations each display the results of configuration in case the

configuration failed. The secondary workstations then exit configuration mode and

continue immediately into capture mode. However, if the ARFCN randomization option is

not selected, user input for both a valid band and channel are required for each workstation

to configure their SDR. The secondary workstation then goes through the same procedure

of exiting and continues to capture mode.

37

Figure 13. Configuration Mode Flow Chart

b. Capture

The primary goals of capture mode are to capture an IMSI and relay the significant

data back to the primary workstation for analysis, following the operational flow chart

shown in Figure 14. The program provides the ability to either directly enter capture mode

without first using configuration mode or transition into capture mode from configuration

mode. Having the option to go directly into capture mode is faster to use for the

experiments that do not require configuration between every phone or round. Every phone

will be tested individually, and a round is completed once all phones have been tested

individually one time through.

38

Figure 14. Capture Mode Flow Chart

Once the secondary workstations and primary workstation are in capture mode, the

secondary will immediately set up the packet sniffer to sniff the air interface for the first

instance of a location updating request message. The packet sniffer looks for the specific

bytes to identify the correct packet on the network.

After many trials using Wireshark [36], we determined that bytes 01 3f 49 05

08 are the fingerprint for the desirable packet, with 01 3f 49 highlighted in Figure 15

and 05 08 highlighted within the same packet in Figure 16. These bytes are the minimum

bytes required for ensuring the packet captured is a location updating request message of

the link access procedure (LAPDm). This message contains the first instance of an MS

IMSI being sent on a network. Using the minimum number of bytes also ensures that the

bytes chosen will not differ by later headers in the message.

39

Figure 15. Wireshark Packet Capture Location Update Part I

Figure 16. Wireshark Packet Capture Location Update Part II

It is important to note that while the packet sniffer is immediately set up once the

secondary workstations are in capture mode, this does not mean the experimental round

has begun. Prior to the experiment, the MSs for testing are placed into airplane mode to

prevent any network transmissions. The devices are then labeled with a test number to

40

identify them in the data later on during the analysis stage. For each MS round, its

associated test number is entered on the primary workstation program.

In order to initiate the round, the primary station takes in the return key input from

the user while the user simultaneously toggles the MS off of airplane mode. These two

actions start the round and allow a MS to interact with normal network transmission

procedures. The program timestamps immediately when initiated to indicate the start of the

round for future measurements. The primary workstation then waits for the IMSI catch data

from a secondary workstation. Once one of the base stations finds the bytes indicating an

IMSI has been caught, it will timestamp the capture and relay the information to the

primary. This process is discussed further in Section c.

After receiving the relayed information, the primary will measure the delta time

between the start time and the time stamp of the IMSI catch provided by the secondary

workstation. The primary logs both the delta time and other relayed information from the

secondary. For the final step, the primary will then send a “STOP” message to all of the

secondary workstations to force exit their program, completing capture mode.

c. Analyze

The final requirement of the control network concerns the analysis of the

information, as shown in Figure 11. The purpose of this thesis is to determine how a modem

selects a specific BTS when it does not have power differences and SIM card information

to help decide. A spectrum analyzer, shown in Figure 17, is used to ensure the MS sees

equivalent power from the provided base station options. The spectrum analyzer is placed

at the location where all base station power levels are equivalent.

41

Figure 17. Spectrum Analyzer

The final subset of the control network analysis section is the information that is

relayed to the primary when an IMSI is caught. The secondary relays the time of the IMSI

catch along with the band, channel, and IP address of the base station that captured the

IMSI. The information that is relayed to the primary is then formatted and stored as a .csv

file for later analysis.

To review, the test environment is contained within a Faraday cage to prohibit test

network interfere with legitimate networks and prevent legitimate networks from

interfering with the test environment. The test environment was further divided into the

test network and the control network. The test network recreates a GSM network while the

control network accesses portions of the test network for experimentation and analysis.

C. EQUIPMENT

This final section of Chapter III provides a listing of the equipment used throughout

the experiments. In summary, the test environment equipment used against the test phones

within the Faraday cage included:

• 1 Primary Workstation: HP ProBook PC, Linux Ubuntu 16.04 LTS

• 4 Secondary Workstations: Asus Notebook PC, Linux Ubuntu 12.4 LTS

• 4 IPLinkMe SDRs

42

• 1 Switch and 5 Ethernet Cables for the LAN

• 1 Spectrum Analyzer: Agilent Technologies MXA Signal Analyzer, N0902A

• 1 Quectel UC20 Dedicated to Template SIMs

with various phone models discussed in Chapter IV. Figure 18 displays the equipment used

in a workspace diagram.

Figure 18. Workspace Diagram

43

IV. RESULTS

Chapters I and II provide the purpose and background for this thesis. Chapter III

explains the questions that influenced the design of the test environment and details the

programs and equipment used by the test environment. This chapter explains the pre-

experiment dry runs used to solidify the test environment in addition to the experiments

designed in Chapter III. For the first experiment, we cover the objective, process, and

results of the frequency band test. Next, we detail the objective, process, and results of

experiment two, the channel test. Finally, we use the frequency test and channel test

preferences from experiments one and two to configure and execute our third experiment.

In experiment three, we attempt to compare the speed of IMSI catching using the

preferences against the speed of IMSI catching using random valid assignments.

A. PRE-EXPERIMENT TESTING

The purpose of the experiments is to determine if MSs have a frequency and

channel preference for cell selection. To accomplish our experiments, we first have to

establish a range of phone manufacturers for testing. Then we must work to eliminate and

control the EF binaries that affect cell selection decision-making throughout the

experiments. Additionally, the MSs must sense equivalent power from all base stations to

minimize decision-making based on receiver power and reveal any frequency preferences.

Finally, we work to minimize the time per round for each experiment so we can maximize

the number of rounds that can be performed as well as the number of test devices that will

be used for experimentation.

1. UE

The experiments in this thesis first require procuring a set of devices that represent

a range of manufacturers as well as different options within the same manufacturer family.

The list of devices acquired for our experiments is shown in Table 3. This table includes

devices of different manufacturers as well as devices that are from the same manufacturer

but different models. Additionally, we include devices that are from the same manufacturer

and model family to see if manufacturers may change their modem design based on the

44

region of service. Region-based modem differences may also include hardware or software

upgrades.

Table 3. Pre-experiment UE Devices

Phone Manufacturer Model

Samsung Galaxy SII—English

Samsung Galaxy SII—Spanish

Huawei Honor

Apple iPhone 3

Apple iPhone 6

Quectel UC20

The Samsung Galaxy SII phone is an example of a manufacturer that created

different options within the same model family. Samsung appears to have made at least

two different options within the Galaxy SII model, according to the labels displayed in

Figure 19. We discovered the labels behind the batteries inside of the phones were printed

in two different languages, Spanish and English. Use of the phones reveals no obvious

differences and the manufacturing labels indicate they are the same GT-I9100 model. We

chose this Samsung Galaxy SII (SGSII) model with the English and Spanish labels to see

if either manufacturing location or intended use location cause differences in cell selection.

45

Figure 19. Samsung Galaxy SII: Spanish vs. English

The Apple iPhone 3 and iPhone 6 model types allow us to test if band and/or

channel preferences can change when a manufacturer upgrades the hardware and software

of their devices. The Huawei Honors extend our range of cellphone manufacturers tested

while the Quectel UC20s expand the scope of this research to include testing a cellular IoT

device.

2. SIM Card Binaries

Several trial rounds revealed that the EF binaries changed after cell selection. An

example shown in Figure 20 displays many of the EFs discussed in Chapter II. The

examples shown are produced using minicom and seeSIM.txt from Appendix B.B.

46

Figure 20. seeSIM.txt EFs

Five test rounds using three of each of the devices in Table 3 were used to determine

the EFs that are updated after cell selection, with the results in Table 4 and an example of

EF changes in Figure 21. The results from the five test rounds show that all three Huawei

Honors were affected every round. Two out of three Quectel UC20 devices were updated

every round while one SGSII Spanish device was affected by only one round. The Apple

and SGSII English devices were not affected by any of the five test rounds.

Table 4. SIM Cards Affected Five Rounds

Number of Models
Affected Model Affected Number of Rounds

Affected Areas Modified

1 of 3 Samsung Galaxy
SII—Spanish 1 of 5 LOCI

3 of 3 Huawei Honor 5 of 5 BCCH and LOCI

2 of 3 Quectel UC20 5 of 5 LOCI

47

Figure 21. Two Examples of EFBCCH and EFLOCI Post Cell Selection

The results of Table 4 confirm that the information within the SIM card is affected

by cell selection. To ensure consistency, we chose to refresh the SIM cards after every

round even though every device did not appear to update every round nor was every EF

updated during cell selection each time. The tempSIM.txt script to template (i.e., reformat)

each SIM every round is provided in Appendix B.A, with an example of the template

shown in Figure 22.

48

Figure 22. Template for SIM Cards

The binary for EFFPLMN had been found on one SIM card and since the FPLMN

information listed is not equivalent to the test PLMN in this experiment, this binary was

used for all the SIM cards in the template. The bytes of EFLOCI and EFBCCH were nulled to

ensure the locations could not assist in cell selection decision-making processes. Lastly,

the EFPLMNsel only contained the PLMN of the test network, to ensure the test network

would not be blocked during experimentation.

3. Power Measurement, Harmonic Suppression, and Attenuation

Since power is a factor considered for cell selection, equivalent power must be

shown at the spectrum analyzer where the MS remains throughout each round. Upon

inspection of the spectrum analyzer with the Faraday cage door shut, it was apparent that

the power levels required an adjustment at the SDRs. The SDR frequency assignments

resulting in Figure 23 are 850 MHz, 900 MHz, 1800 MHz, and 1900 MHz, one for each

SDR. With only four SDRs in use, only four peaks are expected instead of the six shown

in Figure 23.

49

Figure 23. Unfiltered and Unattenuated Downlink Spectrum

The 850 MHz and 900 MHz SDRs produced harmonics causing the extraneous

peaks seen in Figure 23. Using a low-pass filter (LPF) on both the 850 MHz and 900 MHz

SDRs eliminated the harmonics and results in the spectrum shown in Figure 24.

Figure 24. Filtered, Unattenuated Downlink Spectrum

The resulting power peaks in Figure 24 show the 850 MHz and 900 MHz SDRs are

approximately 20 dB higher than the 1800 MHz and 1900 MHz SDR peaks. A set of 6 dB

50

and 10 dB attenuators reduced 850 MHz and 900 MHz peaks to approximately the same

height of the 1800 MHz and 1900 MHz peaks. The resulting spectrum is shown in Figure

25 while the application of the LPF and attenuators on the receiving antenna of an SDR is

shown in Figure 26.

Figure 25. Filtered and Attenuated Spectrum

Figure 26. LPF (Green) and Attenuators

51

While Figure 25 depicts closely matched peaks, the power peaks continued to

fluctuate throughout the experiments, resulting in peaks that differed by as much as 10 dB,

as shown in Figure 27.

Figure 27. Matched vs. Unmatched Downlink Power Peaks

Observed During Experiments

This result fell slightly short of our objective to get the power levels matched for

the MS. However, due to COVID restrictions and equipment purchase timelines, we were

unable to further level the power at the SDRs.

4. Time Constraints

The final requirement before experimentation was to determine the number of

devices that can be used for testing and the number of rounds that can be achieved per

experiment. We chose to limit our examination to three devices of each model due to

limited test equipment of certain models. Each device was assigned a test number, provided

in Table 5.

52

Table 5. Phone Models and Test Numbers for Experiments

Phone
Manufacturer Model Test Numbers

Samsung Galaxy SII—English 1–3

Samsung Galaxy SII—Spanish 4–6

Huawei Honor 7–9

Apple iPhone 3 10–12

Apple iPhone 6 13–15

Quectel UC20 16–18

We then tested each phone to ensure that every device could connect to each of the

four bands. Every round with the 18 MSs would take approximately 45 minutes of constant

hands-on time to accomplish. We were required to spend approximately 15 of the 45

minutes to refresh all of the SIM cards after every round using the procedure detailed in

Figure 28. Therefore, we were limited to ten rounds per experiment in order to accomplish

an experiment over the course of a day. Before beginning each experiment, we also allotted

for an additional ten minutes to ensure the clocks of the workstations properly synchronized

via NTP.

53

Figure 28. SIM Card Template Procedure

B. EXPERIMENT 1: FREQUENCY BAND TEST

The objective of the frequency band test was to determine if a cellular device has a

frequency band preference when all of the valid GSM frequency band options are available.

The frequency band test provides the spectrum of GSM frequency bands as base station

options for the MSs with the experiment configurations displayed in Table 6.

Table 6. Experiment 1 Configurations

Experiment 1: Frequency Band Test

Band
Configuration 850 MHz, 900 MHz, 1800 MHz, 1900 MHz

Channel
Configuration Randomize Channel Assignment, Beginning

Round 1 Configuration Mode (Band, Channel), Capture Mode, Template SIM

Rounds 2–10 Capture Mode, Template SIM

54

The selection preferences during the frequency band test, provided in Figure 29,

are clear for only certain test devices. The bar graph results indicate the SGSII English

devices selected 1800 MHz at least 90% of the time in comparison to the SGSII Spanish

devices where only one third of the devices chose the 1800 MHz band. Two thirds of the

SGSII Spanish devices instead favored the 900 MHz band.

The iPhone 3 devices did not appear to favor a certain band. The iPhone 6 device,

phone 14, chose the 900 MHz band all ten rounds of the frequency band test. Using [37]

and device serial numbers, we discovered phone 14 was manufactured at a different factory

in China than the other two iPhone 6s. We cannot definitively conclude the selections by

phone 14 are a direct result of being manufactured in a different factory than phone 13 and

15. However, the results suggest that manufacturing location could be a contributing factor

for cell selection decision-making. It is important to note that phone 15 for the iPhone 6

only has nine data points instead of ten. Phone 15 had been mistakenly used in only nine

rounds and the mistake was not noticed until post-experiment analysis.

The Huawei Honor devices favored the 850 MHz band approximately 60% of the

time for two out of the three devices while the third device only selected the 900 MHz

band. The UC20 devices have the clearest selections since two out of the three only chose

the 1900 MHz band while the third device only chose the 1800 MHz band.

55

Figure 29. Experiment 1 Selection Results

The capture times for Experiment 1, shown in Figure 30, suggest possible

relationships to the band selections. The SGSII English and iPhone 6 devices all show a

large capture time during the first round of the frequency band test. Phone 14 is again

inconsistent in that its capture time for round one is lower than the other two iPhone 6s

capture times for round one. However, the capture times for the SGSII English and iPhone

6 devices significantly decrease by the second round and plateau for the remaining rounds.

Only phone six of the SGSII Spanish devices followed that pattern, additionally it

is the only SGSII Spanish device that selected the 1800 MHz band. The SGSII English also

favored the 1800 MHz band which suggests that the band selection may be related to

capture times. However, every device that also selected the 1800 MHz band did not always

experience the high first round time which could imply this relationship differs between

56

manufacturers. Phone ten is the only iPhone 3 device that experienced high capture times

for seven of the ten rounds. Similarly, phone nine is the only Huawei Honor device that

contributed to high capture times for all ten rounds.

It’s important to clarify the higher average times observed for the UC20s in Figure

30 are likely due to the power-on time for the devices. The UC20 modems do not have an

airplane mode that can be used to prevent cellular network transmissions while keeping the

device powered on. For the UC20 modems, the start time for a round would begin when

the device was powered and was the only device to differ in the round procedure.

Figure 30. Experiment 1 Capture Time Results

The information in Table 7 summarizes the total number of selections for each band

during Experiment 1. The data does not clearly reveal whether the phones prefer the 1800

MHz band or workstation two. The lack of differentiation suggests a mistake in the

57

experiment design that could reveal clearer conclusions if the four base stations would have

been randomly assigned to a frequency band.

Table 7. Experiment 1 Band Occurrences

Workstation Band Number of
Occurrences

4 850 MHz 19

3 900 MHz 51

2 1800 MHz 76

1 1900 MHz 33

Some devices during the frequency band test showed signs of having a frequency

preference when presented with the GSM frequency options. Performing more rounds and

a new setup that randomizes which base station gets assigned a band could help to clarify

whether the modems of cellular devices have a frequency preference. Due to time

constraints we were unable to perform more rounds or revise the experiment design.

Instead, we chose to randomize base station configurations for the subsequent experiments.

C. EXPERIMENT 2: CHANNEL TEST

Based on the specifications, it is not clear how a MS chooses a channel when a base

station presents the MSs with a set of channel options. Some possibilities on how a MS

chooses a channel include: selecting channels from low-to-high (or high-to-low) within the

ARFCN range or randomly or pseudo-randomly selecting a channel from the options

presented.

The primary objective of the channel test was to reveal if a cellular device has a

channel preference within a frequency band. Since the frequency band test did not reveal

conclusive preferences, we chose the 900 MHz band as the frequency for the channel test.

The power spectrum for the remaining experiments using the 900 MHz band shown in

Figure 31 also identified power fluctuations of approximately 10 dB between the smallest

and largest SDR peaks.

58

Figure 31. Matched vs. Unmatched Downlink Power Peaks, 900 MHz Band

The channel test divides the available 900 MHz channels into four evenly spread

channel assignments, with the configurations displayed in Table 8. The purpose of evenly

spreading the channel assignments is to test if modems favor a certain portion of the

frequency band when provided a range of options within a specific band. For example, if a

device favors the higher end of an ARFCN range, this may suggest the modem selects

channels from the highest to lowest ARFCN.

Using randChannel.py in Appendix F.C produced the base station channel

assignments in Table 9. During post experiment analysis we determined the channel

assignment distribution, shown in Table 9.

Table 8. Experiment 2 Configurations

Experiment 2: Channel Test

Band
Configuration 900 MHz

Channel
Configuration 1, 42, 83, 124

Round 1 Configuration Mode (Band, Channel), Capture Mode, Template SIM

Rounds 2–10 Configuration Mode (Channel), Capture Mode, Template SIM

59

Table 9. Experiment 2 Channel Assignments

Round Workstation 1 Workstation 2 Workstation 3 Workstation 4

1 42 124 1 83

2 83 1 42 124

3 83 124 1 42

4 124 83 42 1

5 1 124 83 42

6 42 83 1 124

7 124 1 42 83

8 124 42 83 1

9 1 42 124 83

10 42 124 83 1

Channel Number of Occurrences per Workstation

1 2 2 3 3

42 3 2 3 2

83 2 2 3 3

124 3 4 1 2

The results of the channel test are clearer for certain devices as shown in Figure 32.

Two out of the three SGSII English devices chose ARFCN 124 approximately 80% of the

time while only one third of the SGSII Spanish devices selected ARFCN 124. The SGSII

English devices favored the 900 MHz band in Experiment 1 which suggests that devices

may have channel preferences across the frequency bands. The remaining two SGSII

Spanish devices were inconsistent with one favoring ARFCN 83 and the final device only

selecting ARFCN 42.

60

The iPhone 3 devices selected the ARFCN 124 approximately 60% of the time and

ARFCN 83 the rest of the time. The results for the iPhone 6 show that two of the three

devices selected ARFCN 124 100% of the time; this differs from the iPhone 3 results.

Phone nine for the Huawei Honor is the only device that showed a preference,

selecting ARFCN 1 every round. Furthermore, phone nine is the only Huawei Honor device

that favored a band and chose the 900 MHz band all ten rounds. The UC20 modems are

the devices with most distinct selections for Experiment 2. For all ten rounds, two of the

three UC20 modems only selected ARFCN 124 and the remaining device only selected

ARFCN 42.

Figure 32. Experiment 2 Selection Results

61

The capture times displayed in Figure 33 show that the devices in Experiment 1

with high capture times during the first round did not have high capture times for the first

round of Experiment 2. The devices that had high capture times during various rounds of

Experiment 1 also did not have high capture times during those rounds in Experiment 2.

The round times could be related to the frequency bands chosen for certain

manufacturers. The SGSII English and phone six for SGSII Spanish primarily selected the

1800 MHz band. Those devices had higher first round times than the SGSII Spanish phones

four and five which selected the 900 MHz band and did not have higher first round times.

Figure 33 shows that all of the SGSII Spanish and English devices have similarly low

capture times for all ten rounds using the 900 MHz band.

Many of the Apple devices that chose 900 MHz their first rounds had higher capture

times but did not show the same results in Experiment 2. The two devices for the iPhone 3

that did choose the 1800 MHz band their first round, did not have higher capture times for

any of the ten rounds during Experiments 1 and 2. This suggests there is a relationship

between the bands chosen and the capture times between models of the same manufacturer.

Furthermore, the results also suggest that the manufacturer for the phones can make a

difference in band selection. The higher capture times the first round but not subsequent

rounds may indicate cell information is additionally stored elsewhere on the MS. This

could mean the information is stored in EFs that we did not account for or that the

information is stored on the UE in non-temporary storage, since the devices were powered

down after every round.

62

Figure 33. Experiment 2 Capture Time Results

The results from Experiment 2 are similar to Experiment 1 in that some devices

show signs that suggest they have preferences. For this experiment, we randomly assigned

the four channel options to the base stations to ensure the MSs do not make selections

favoring a base station. The channel selection occurrences provided in Table 10 show

ARFCN 124 was favored over the other channel options. According to the workstation

selection occurrences in Table 11, workstation two was selected the most. When we

consider the channel assignments of Table 9, workstation two was assigned ARFCN 124

four times for the experiment. This result suggests that ARFCN 124 could have been

favored since workstation two was assigned ARFCN 124 more than the other workstations.

63

Table 10. Experiment 2 Channel Selection Occurrences

Channel Number of Occurrences

1 25

42 28

83 32

124 95

Table 11. Experiment 2 Workstation Selection Occurrences

Workstation Number of Occurrences

1 42

2 55

3 44

4 39

Due to the lack of clear results, we decided to explore the channel test further via

Experiment 2.1 to determine if MSs have a preferred channel or a high-to-low/low-to-high

range preference in the remaining experiments.

D. EXPERIMENT 2.1: CHANNEL TEST

The intention of this experiment was to test the channel randomization method to

establish if a MS will select the highest channel that is offered by a base station. We

simplified the configuration setup by focusing on one device in an attempt to maximize the

ten rounds during the experimentation time available due to COVID restrictions.

Due to their relative ease of configuration, for the remaining experiments we used

ten Quectel UC20 modems in place of the other devices used in the prior experiments. The

base stations were then configured according to Table 12 with the channel assignments per

Table 13. The channel assignments in Table 13 were randomly assigned during the

64

configuration process using the randomization component contained in primary.c in

Appendix F.A.

Table 12. Experiment 2.1 Configurations

Experiment 2.1: Channel Test

Band
Configuration 900 MHz

Channel
Configuration Randomize Channel Assignment, Every Round

Round 1 Configuration Mode (Band, Channel), Capture Mode, Template SIM

Rounds 2–10 Configuration Mode (Channel), Capture Mode, Template SIM

Table 13. Experiment 2.1 Channel Assignments

Round Workstation 1 Workstation 2 Workstation 3 Workstation 4

1 2 45 73 97

2 86 4 56 111

3 27 44 65 96

4 19 49 65 98

5 66 21 39 123

6 24 37 90 103

7 71 33 17 109

8 55 30 77 109

9 25 46 85 115

10 45 16 68 102

The results for Experiment 2.1 suggest that the devices favored the workstation

three base station. The breakdown of workstation selections is shown in Table 14. The

65

results show that the modems did not favor the highest or lowest channel of the options

provided. The modems instead selected workstation three 76% of the time. We did not

identify other preferences during Experiment 2.1.

Table 14. Experiment 2.1 Number of Workstation Occurrences

Workstation
Number of Occurrences

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 TOTAL

1 0 1 0 1 1 0 0 0 1 1 5

2 4 0 0 2 1 2 3 3 3 0 18

3 6 9 9 7 8 8 7 7 6 9 76

4 0 0 1 0 0 0 0 0 0 0 1

The results from this experiment did not reveal how MSs select channels during

cell selection, due to non-uniformly distributed channel assignments. The randomization

component of primary.c did not have uniform configuration assignments and this

component does not check for uniform distribution. The randomization option for

configuration mode provides the configurations before the start of every round and not

prior to beginning the experiment. The primary workstation coincidentally did not assign

a lower number for workstation four, as shown in the assignments within Table 13. As

well, the primary workstation assigned workstation three the mid-high number almost

every round. For the final experiment, we redesigned the setup to ensure the channel

assignments were uniformly distributed.

E. EXPERIMENT 2.2: CHANNEL TEST

Experiment 2.2 was designed to expand the configuration options from Experiment

2, using some of the lessons learned during Experiment 2.1. The purpose of this experiment

was to explore the channel test further using the same equipment in order to clarify how

modems select channels. One question we were seeking to answer was whether devices

had a preference for a specific channel vice a channel range.

66

In this experiment, the base stations were assigned channel values within low, mid-

low, mid-high, and high ranges corresponding to the Experiment 2 channels of 1, 42, 83,

and 124. There was some concern that channel selections of 1 and 124, in particular, would

be influenced by these channels being on the edge of the frequency band. Some other

wireless protocols, for instance, assign edge channels to control functions instead of

communications.

We modified the randChannel.py program in Appendix F.C to randomly select a

value from the channel configuration ranges shown in Table 15 and then randomly assign

which base station gets each value. The channel assignments and the uniform distribution

check for this experiment are displayed in Table 16.

Table 15. Experiment 2.2 Configurations

Experiment 2.2: Channel Test Configurations

Band

Configuration
900 MHz

Channel

Configuration

Randomize Channel Assignment, Every Round from:

Low (L): [5-15]
Med-Low (ML): [40-50]
Med-High (MH): [75-85]

High (H): [110-120]

Round 1 Configuration Mode (Band, Channel), Capture Mode, Template SIM

Rounds 2–10 Configuration Mode (Channel), Capture Mode, Template SIM

67

Table 16. Experiment 2.2 Channel Assignments and Occurrences

Round Workstation 1 Workstation 2 Workstation 3 Workstation 4

1 48 118 81 8

2 110 83 12 40

3 75 7 112 41

4 6 117 46 82

5 49 119 13 75

6 10 80 113 43

7 120 15 50 78

8 111 42 75 13

9 78 43 9 116

10 11 79 47 120

Range Number of Occurrences per Workstation

L 3 2 3 2

ML 2 2 3 3

MH 2 3 2 3

H 3 3 2 2

The results in Table 17 show that the modems again selected workstation three 76%

of the time during the first five rounds. Since we noticed this before running the next five

rounds, we relocated the SDRs to establish if the modems would still favor one

workstation. Moving the SDRs did not appear to have any effect at the spectrum analyzer.

During the last five rounds, the modems selected workstation four 46% of the time

for the remaining rounds. This result could suggest that our spectrum analyzer lacks the

granularity to display any minor power differences that still encourage cell selection. Over

all ten rounds, the UC20 modems selected workstation three 48% of the time.

68

Table 17. Experiment 2.2 Number of Workstation Occurrences

Workstation First 5 Rounds Last 5 Rounds Total

 1 2 9 11

2 8 8 16

3 38 10 48

4 2 23 25

The channel range occurrences provided in Table 18 show that the low range value

was selected the most, 37% of the time. The ML selections were the second most selected

value, followed behind by the H value and finally the MH value.

Table 18. Experiment 2.2 Channel Range Occurrences by Round

Range
Number of Occurrences

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 TOTAL

L 1 8 4 0 10 0 2 6 1 5 37

ML 1 0 0 9 0 6 3 3 2 2 26

MH 5 1 0 1 0 1 3 1 2 0 14

H 3 1 6 0 0 3 2 0 5 3 23

The results in Figure 34 provide more clarity for round selections. For the first five

rounds, the L or ML values were assigned to workstation three for three of the five rounds.

Even though workstation three was selected the most for the first five rounds, more devices

selected workstation three when it was assigned a L or ML value for those five rounds.

Similarly, this is also the case for workstation four for the final five rounds.

69

Figure 34. Experiment 2.2 Capture Results

Table 19 is a modification of Table 18 with the workstation three selections removed

from the first five rounds, and the workstation four selections removed from the last five

rounds. When selections are removed for workstation three and four, the selections only

slightly favor the L and ML values. The total occurrences are close enough that the results

could also suggest that the workstation three SDR power was greater during the first five

rounds where it was assigned a L or ML value. Likewise, the power for workstation four

SDR could have been greater during the rounds it was assigned a L or ML value.

The total selection values have the same order shown in Table 18 even when the

favored workstations are removed. The L value was selected most with the ML value as

the second most selected. The number of H selections were third and the number of MH

selections were last. These results differ from the expectations we had after Experiment 2.

For Experiment 2, the UC20 modems selected the higher channels offered. During this

experiment, the UC20 modems selected the lower channels. Based on these results, we

cannot establish if UC20 modems perform their channel search from low-to-high or high-

to-low.

70

Table 19. Experiment 2.2 Channel Range Occurrences by Round Modified

Range Number of Occurrences
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 TOTAL

L 1 X3 4 0 X3 0 2 X4 1 5 37 13

ML 1 0 0 X3 0 X4 3 3 2 2 26 11

MH X3 1 0 1 0 1 X4 1 2 0 14 6

H 3 1 X3 0 0 3 2 0 X4 X4 23 9
X3: Workstation 3, removed
X4: Workstation 4, removed

F. SUMMARY OF RESULTS

In this chapter we presented four experiments that examined frequency and channel

selections across a range of devices. Since we were not able to clearly identify the

frequency and channel preferences, we were unable to perform an experiment that

examines the IMSI catching speed using those preferences. A list of the selections is

provided in Table 20.

Table 20. Summary of Selections

Experiment Devices (Band/
Channel Chosen)a

Workstation with
Most

Occurrences

Band/Channel
with Most

Occurrences

1
SGSII English (1800),
SGSII Spanish (900,1800),
UC20 Modem (1800,1900)

2 1800 MHz

2

SGSII English (83,124),
SGSII Spanish (42 and 124),
iPhone 6 (124)
UC20 Modem (124,83)

2 124

2.1 None Observed 3 None Observed
2.2 UC20 Modem (L, ML) 3 L

aBand/Channel lists the most chosen values in order with most occurrences first. If listed
occurrences are equivalent, ‘and’ will be used in place of ‘,’.

71

For Experiment 1, workstation two was only assigned the 1800 MHz band so the

devices listed with possible preferences could favor 1800 MHz or workstation two. Due to

this design issue, it is likely that preferences seen here are not definitive. The Apple devices

did not show clear preferences. However, they also chose differently from each other,

which could still suggest that models between manufacturers differ in decision-making.

The SGSII English predominantly selected the 1800 MHz band compared to the SGSII

Spanish devices that primarily selected the 1900 MHz band. Since their results slightly

contrast each other, the results could suggest that device preferences of the same model

and manufacturer also vary depending on intended use location.

In the remaining experiments we examined the channel preferences within the 900

MHz band. The results of Experiment 2 showed that ARFCN 124 was selected the most

and that certain devices chose ARFCN 124 as their first or second choice. However, Table

20 shows workstation two was also selected more than the other workstations. Workstation

two was assigned ARFCN 124 for four of the ten rounds which is likely the reason for it

being selected the most. The SGSII English and Spanish devices as well as the Apple

devices again varied their selections which supports the idea that model and manufacturing

location could affect decision-making. The UC20 modems had clearer selections than any

of the devices during both experiments and one device always differed from the other two.

We used the UC20 modems for the remainder of the experiments to focus on one device

that displayed clearer selections during Experiments 1 and 2.

We designed Experiment 2.1 to see if the modems would choose the highest

randomized value the base stations provided. The UC20 modems selected the highest

channel, ARFCN 124, during Experiment 2. The only clear selection we noticed was that

the modems favored workstation three instead of workstation two, as in Experiment 2. This

result suggests that workstation three was likely the most powerful base station for most of

the rounds during the experiment. However, this result also could mean that the UC20s

could prefer ARFCN 124 or near ARFCN 124 instead of the highest channel offered.

72

Experiment 2.2 was designed to examine the range of channels which were

categorized into L, ML, MH, and H. This experiment resulted in two possible preferences

much like in Experiment 1, even though we randomized the base station assignments. The

UC20 modems selected the L and ML values more over the MH and H values. However,

the L values were selected more than the ML values. Additionally, workstation three was

also selected more than the other workstations. Workstation three was also assigned the L

value and ML value three times each during the ten rounds which could explain why it had

been selected the most. The final two channel tests contradicted the ARFCN 124 selection

from Experiment 2. Therefore, we cannot definitely determine if devices select channels

from high-to-low or low-to-high. Furthermore, since the results of Experiment 2.1 showed

favoritism for a workstation we cannot determine if devices randomly or pseudo-randomly

make channel selections.

Unfortunately, due to delays and restraints resulting from the COVID-19 pandemic,

we were unable to refine experiment design quickly enough to adapt to the observed power

sensitivities and experiment design flaws. Under other circumstances we would have

treated these experiments as “learning experiences” and quickly iterated improvements. As

a result, we were unable to conclusively determine if devices consistently favored

workstations or a specific frequency band and channel. Even for devices that had clear

selections throughout the experiments, we lacked the equipment and time to determine the

extent to which power imbalances affected device decision making.

73

V. CONCLUSIONS

In this thesis, we examined the possibility that IMSI catching attackers can create

profiles based on their targeted devices. If target profiles can be created based on the

manufacturer or model of a cellular device, attackers could gain an advantage over the

legitimate base stations of a commercial network in order to trap a target.

We examined this possibility by first determining the radio resources required for

connecting to a GSM network. We also identified the decision-making factors cellular

devices use to select cells on a GSM network. We then created an IMSI catcher and

designed a testing environment for experimentation. Using our IMSI catchers and testing

environment, we performed a set of experiments to examine frequency and channel

preferences for a range of cellular devices.

The frequency and channel tests show distinct selections for some devices. The

UC20 modems displayed more obvious selections during the frequency and initial channel

test, selecting the upper GSM bands and higher channels. However, the UC20 modems did

not provide clear selections for a channel during the final two channel tests. The SGSII

English and SGSII Spanish devices rarely had similar results for both the frequency and

channel tests. This result suggests that the location the phones are manufactured for may

have different preferences even though both devices are the same model and manufacturer.

Additionally, the iPhone 3 and iPhone 6 devices had different selection results which

indicates decision-making could also differ between models even if they are from the same

manufacturer.

Based on the experimental data, we could not conclusively differentiate if the

cellular devices favored certain selections or the base station that provided those selections.

This result implies that the power fluctuations emitted from the SDRs may have influenced

device selections. We assess this due to the favored workstations in addition to frequency

and channel selections seen in all four experiments. After we noticed this result in

Experiment 1, we made changes to the setups for the remaining experiments. Even with

the modifications, we still observed favoritism towards workstations in addition to certain

74

frequencies and channels. During the frequency and channel tests, some devices remained

inconsistent with both the frequency/channel selections and workstation occurrences. This

result could suggest that the power for the favored workstation fluctuated when the devices

chose inconsistently. The results could also imply certain devices or manufacturers are

differently sensitized for the received power, causing them to sort their power options

differently. As well, the manufacturers could prioritize certain frequency bands over power

levels when selecting cells. In other words, if priority bands are within an acceptable power

level, then a priority band will be selected, even if a cell with better power is available. We

were unable to perform more rounds to determine conclusions that could perhaps clarify

the results and issues we experienced.

Due to time constraints and lengthy experimental rounds we were limited in the

number of rounds that could be performed for each experiment as well as the number of

experiments that could be executed. Therefore, we were also unable to conclusively

determine the resource preferences that are necessary to examine the speed of IMSI

catching, which was our final goal to test for.

A. SIGNIFICANT CONTRIBUTIONS

The preliminary work described in this thesis documents the steps taken to create

and setup an enclosed IMSI catcher testing environment. The significant contribution of

this thesis work includes a collection of programs performing three major functions in the

testing environment. First, the programs are designed to configure multiple base stations,

providing a large testing platform to examine IMSI catching. The second function of the

programs uses the configured base stations to capture an IMSI and then perform the final

function to log the essential base station selection information.

The development and testing stages of the software tools required approximately a

year and a half of preparatory work. Most of this time was dedicated to learning the C

programming language and implementing the necessary libraries, described in Appendices

F and G. With the created programs, we were able to complete one frequency band test and

three channel tests. The results from testing are not conclusive but provide a firm

foundation for conducting future experimentation. The analysis of the resulting data

75

suggests a possibility that devices have radio resource preferences. Furthermore, the data

confirms the operability of the programs created and testing environment that can be used

for future work.

B. FUTURE WORK

Based on the results from the experiments in Chapter IV, there are several avenues

for future work using the test environment provided in this thesis. Since power is one of

two contributing factors to the cell selection and reselection processes, any future work

will first require a way to eliminate the power fluctuations observed during

experimentation. We were able to closely equalize the power peaks of the SDRs through

the use of LPFs, a Faraday cage, and attenuators. Even so, the power fluctuations were

observed to be as large as 10 dB between the lowest and highest peak at times within the

test environment. The Faraday cage we used was not lined with material that would absorb

electromagnetic radiation. The absorbent material may be helpful if the signals from the

SDRs were reflecting within the Faraday cage and causing the fluctuations.

Based on the results from all four experiments, more rounds for the frequency band

test and channel band tests are required. The round time is costly, averaging approximately

45 minutes with 15 of those minutes dedicated to the SIM card template procedure.

However, more rounds could conclusively determine if the selections exhibited during

experimentation are legitimate preferences. Additionally, more rounds could establish if

all devices or only a subset of devices have radio resource preferences. Determining

frequency band preferences and channel preferences is essential for future testing

possibilities.

Since we could not conclusively determine the frequency band and channel

preferences, we were unable to attempt to answer our final question. The third test requires

the band and channel preferences in order to ascertain if frequency and channel preferences

decrease the IMSI capture speed. A decrease in IMSI capture speed when using the

preferences in comparison to randomized valid configurations could imply that devices can

be profiled for targeting by IMSI catchers.

76

The experiment setup presented in this thesis is designed for testing the cell

selection process for a cellular device. However, an attacker is more likely to target

devices that are already connected to a cell tower and would have to go through a cell

reselection process to connect to a rogue base station. We propose a new experiment that

would center testing on the cell reselection process using frequency and channel

preferences. This method requires measuring the time it takes for a cellular device to go

from a fully connected state, down to zero service, and then finally reselect a base station.

The setup provided in this thesis work would require only slight modifications to include

a base station outside the Faraday cage acting as the cell tower a test phone is already

connected to. The test phone would then be walked over the Faraday cage threshold to start

the round time.

77

APPENDIX A. SIM CARD PYSIM CONFIGURATION

The information in this appendix contains the pySim [34] configuration for the SIM

cards. For simplicity, all of the SIM cards used during experimentation were configured

before the experiments according to Figure A.1.

Figure A.1 SIM Card Configurations via pySim.

The options --name=Range is for Range Network sim cards and the --mcc=418 and

--mnc=10 set the MCC and MNC to the same Iraq test network that the rogue base

stations are configured to. All of the SIM cards were configured to the same IMSI with the

418 10 PLMN (MCC + MNC) and ICCID identifier. Since each phone would be tested one

at a time, there was no need for uniqueness on the network during experimentation.

78

THIS PAGE INTENTIONALLY LEFT BLANK

79

APPENDIX B. SIM CARD MINICOM CONFIGURATION

This appendix contains the configuration scripts that were run between every round

on every SIM card. Also included are instructions for installing and configuring minicom

2.7. Minicom must be used on a Linux OS installed with the command:

sudo apt-get install minicom

and must first be configured to the modem connected. In this thesis, a Quectel UC20

modem separate from the testing models is used. Configuring the modem is accomplished

using the command:
sudo minicom -s

where -s enters minicom in settings mode. The device port that is connected to the modem

is required for entry in the serial port setup. The final step requires saving the configuration

as dfl before exiting the settings mode.

The script tempSIM.txt is used to template the SIM for experimentation using the

command:

sudo minicom -S tempSIM.txt

while the seeSIM.txt allows for quickly seeing the template locations with the command:

sudo minicom -S seeSIM.txt

where the -S flag indicates to run a script upon bootup of minicom. Both commands must

be run in the same directory the scripts are stored.

A. TEMPSIM.TXT

sleep 5
send AT+CRSM=214,28539,0,0,12,\”64F01064F040130062FFFFFF\”
expect “OK”
send AT+CRSM=214,28542,0,0,11,\”FFFFFFFFFFFFFFFFFE0001\”
expect “OK”
send
AT+CRSM=214,28464,0,0,24,\”14F801FF\”
expect “OK”
send AT+CRSM=214,28532,0,0,16,\”FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF\”
expect “OK”
send AT+QPOWD
exit

80

B. SEESIM.TXT

sleep 5
send AT+CRSM=176,28539,0,0,12
expect “OK”
send AT+CRSM=176,28542,0,0,11
expect “OK”
send AT+CRSM=176,28464,0,0,24
expect “OK”
send AT+CRSM=176,28532,0,0,16
expect “OK”
exit

C. COMMANDS

The majority of the commands used in this thesis are AT+CRSM commands, which

are AT commands for restricted SIM access [10]. As a guideline, the AT+CRSM

commands listed generally take following format to write to a EF:

AT+CRSM=<Binary Command>,<EF Address in Base10>,0,0,<Byte Length of Location>,

<Hex Information to be Stored at Location>

where the first parameter tells the AT command the action that will take place on the EF.

The specifications [10] define the options to be READ BINARY (176), READ RECORD

(178), GET RESPONSE (192), UPDATE BINARY (214), UPDATE RECORD (220),

STATUS (242), RETRIEVE DATA (203), and SET DATA (219).

 The next parameter is the address space of the EF in base 10, or decimal. For

example, the file identifier for EFBCCH is 6F74 and is equivalent to 28532 in decimal. The

decimal value 28532 would be used in the address space instead of 6F74. The two zeros

following the address space value are required by the standard [10]. The byte length

indicates the length of space allocated to the information of the address. The final parameter

is used when updating a binary and contains the information in hexadecimal format for

storage [10]. The final parameter must follow the standards for proper formatting as some

locations require nibble (half byte) swaps for each byte [12]. For example, formatting the

PLMN 418 10 for EFPLMNsel will translate to 14F801 as the first three bytes for the

binary.

81

APPENDIX C. NTP CONFIGURATION

This appendix contains the ntp.conf files used for the NTP configuration, found at

/etc/ntp.conf. The ntp.conf files presented are formatted for use on a Linux OS computer,

with A designed for the primary computer acting as the NTP server and B designed for the

secondary workstations as the client. Having the correct time isn’t necessarily of concern,

but instead ensuring that all of the workstations had the same time is the problem to resolve.

This is required because we want the IMSI capture time which is calculated by subtracting

the capture time stamp from the start time stamp. The most accurate clock time does not

matter for the delta time calculation as long as the workstation clocks are the same.

A. NTP.CONF—PRIMARY

/etc/ntp.conf, configuration for ntpd; see ntp.conf(5) for help

driftfile /var/lib/ntp/ntp.drift

Enable this if you want statistics to be logged.
#statsdir /var/log/ntpstats/

statistics loopstats peerstats clockstats
filegen loopstats file loopstats type day enable
filegen peerstats file peerstats type day enable
filegen clockstats file clockstats type day enable

Specify one or more NTP servers.
#server time.nps.edu
server 127.127.1.0 minpoll 4 maxpoll 4
fudge 127.127.1.0

Use servers from the NTP Pool Project. Approved by Ubuntu Technical Board
on 2011–02-08 (LP: #104525). See http://www.pool.ntp.org/join.html for
more information.
pool 0.us.pool.ntp.org iburst
pool 1.us.pool.ntp.org iburst
pool 2.us.pool.ntp.org iburst

Use Ubuntu’s ntp server as a fallback.
#pool ntp.ubuntu.com

Access control configuration; see /usr/share/doc/ntp-doc/html/accopt.html for
details. The web page #<http://support.ntp.org/bin/view/Support/
AccessRestrictions>
might also be helpful.

Note that “restrict” applies to both servers and clients, so a configuration
that might be intended to block requests from certain clients could also end
up blocking replies from your own upstream servers.

By default, exchange time with everybody, but don’t allow configuration.

82

restrict -4 default kod notrap nomodify nopeer
restrict -6 default kod notrap nomodify nopeer

Local users may interrogate the ntp server more closely.
restrict 127.0.0.1
restrict ::1

restrict 192.168.4.0 mask 255.255.255.0
Use the subnet address for the LAN

Needed for adding pool entries
restrict source notrap nomodify noquery

Clients from this (example!) subnet have unlimited access, but only if
cryptographically authenticated.
#restrict 192.168.123.0 mask 255.255.255.0 notrust

If you want to provide time to your local subnet, change the next line.
(Again, the address is an example only.)
broadcast 192.168.4.255
Use the subnet address for the LAN

If you want to listen to time broadcasts on your local subnet, de-comment the
next lines. Please do this only if you trust everybody on the network!
#disable auth
#broadcastclient

B. NTP.CONF—SECONDARY

/etc/ntp.conf, configuration for ntpd; see ntp.conf(5) for help

driftfile /var/lib/ntp/ntp.drift

Enable this if you want statistics to be logged.
#statsdir /var/log/ntpstats/

statistics loopstats peerstats clockstats
filegen loopstats file loopstats type day enable
filegen peerstats file peerstats type day enable
filegen clockstats file clockstats type day enable

Specify one or more NTP servers.

Use servers from the NTP Pool Project. Approved by Ubuntu Technical Board
on 2011–02-08 (LP: #104525). See http://www.pool.ntp.org/join.html for
more information.
#server 0.ubuntu.pool.ntp.org
#server 1.ubuntu.pool.ntp.org
#server 2.ubuntu.pool.ntp.org
#server 3.ubuntu.pool.ntp.org
server 192.168.4.255 prefer iburst

Use Ubuntu’s ntp server as a fallback.
#server ntp.ubuntu.com

Access control configuration; see /usr/share/doc/ntp-doc/html/accopt.html for
#details. The web page #<http://support.ntp.org/bin/view/Support/
AccessRestrictions>

83

might also be helpful.

Note that “restrict” applies to both servers and clients, so a configuration
that might be intended to block requests from certain clients could also end
up blocking replies from your own upstream servers.

By default, exchange time with everybody, but don’t allow configuration.
#IPv4
restrict -4 default kod notrap nopeer
#IPv6
restrict -6 default kod notrap nomodify nopeer noquery

Local users may interrogate the ntp server more closely.
restrict 127.0.0.1
restrict ::1

Clients from this (example!) subnet have unlimited access, but only if
cryptographically authenticated.
restrict 192.168.4.0 mask 255.255.255.0 nomodify notrap
Use the subnet address for the LAN

If you want to provide time to your local subnet, change the next line.
(Again, the address is an example only.)
#broadcast 192.168.123.255

If you want to listen to time broadcasts on your local subnet, de-comment the
next lines. Please do this only if you trust everybody on the network!
disable auth
broadcastclient

84

THIS PAGE INTENTIONALLY LEFT BLANK

85

APPENDIX D. NTP TROUBLESHOOTING

The information in this appendix provides efforts in troubleshooting NTP. We

experienced many issues when first attempting to synchronize workstations that do not

touch the Internet due to large gaps in time between the different system clocks. The correct

configuration file in Appendix C in combination with this guide should help troubleshoot

some issues we experienced. The primary.c and secondary.c programs as well offer a third

mode to assist known as NTP mode. NTP mode can be run on the primary acting as the

NTP server to reboot the NTP service. As well, NTP mode can be run on the secondary

workstations to query the server, revealing Figure B.1.

Figure B.1 Picture of ntpq Output on Secondary Workstation.

Alternatively, the same output will be shown using the command

ntpq -p

where -p is used to list the peers taking on the NTP server role on the network [38]. The

same output will be shown since NTP mode uses ntpq to query the server. The values listed

in the output allow for performance monitoring of the NTP servers on the network.

Generally, the host name of the server will be found under the remote column but will

sometimes list the IP address of the server instead. The refid column provides the IP

address, with LOCAL indicating the local host address [38]. The st column indicates the

stratum levels 0–16. The 0 represents unspecified sources, 1 is a reference clock which are

nationally standardized clock sources, and 2–15 indicate how close the connected server,

otherwise known as secondary server, is to the clock source. The 16th stratum is indicative

of being unsynchronized to that source [39]. The t column determines the type of the

server, such as unicast (u), local (l), broadcast (b), etc. The column for when displays the

86

number of seconds that have passed since the host was polled, or essentially the last time a

packet was received from the server [38]. The value in the poll column is the interval of

time, in seconds, the client is set to poll the server [39]. The reach column is actually an

eight-bit rotating register that displays the octal value of the register at the time of query

[39].

Every time a client polls the server, the register shifts to the left, replacing with a zero.

When a valid message is received from the server the register shifts with a one filling the

slot. Once the server is queried, the register binary values are converted to octal for

displaying [38], [39]. The final three columns are all times displayed in milliseconds [40].

The delay column is the roundtrip time while offset indicates the time offset of the server

in relation to the host. The final column is the jitter indicating the root mean square offset

differences [38].

The delay, offset, and jitters are generally much larger in time upon startup of a

new server and new clients. However, we determined that manually setting all workstations

dates and times as close together as can be managed before implementing the proper

ntp.conf configurations helps cut the delay times down to much lower values in minutes

instead of hours. The stratum indicates an issue when the stratum is 16. Stratum 16 can

signify the NTP server is not functioning properly or the network may not be properly

connected. This mode does not require operating on the primary and secondaries at the

same time and can be implemented individually. As a precaution, during the experiments

the times were frequently observed for any apparent offsets in time.

87

APPENDIX E. OPENBTS BOX CONFIGURATION

The code contained in this appendix provides the OpenBTS configuration.

Configuring the properties of the individual SDRs occurs through the use of the OpenBTS

Command Line Interface (CLI). For our purposes, the SDRs are configured to have the 418

MCC and 10 MNC indicative of a testing network using an Iraq MCC [41]. This is

accomplished through the command line with the commands:
 $./CLI config GSM.Identity.MCC 418

 $./CLI config GSM.Identity.MNC 10

The rest of the OpenBTS configurations for the USRPs remained at their default value,

unless changed by secondary.c. Alternatively, using
$./CLI config

will reveal the list of available configurations.

88

THIS PAGE INTENTIONALLY LEFT BLANK

89

APPENDIX F. PRIMARY CODE

The code contained in this appendix is for the secondary workstation and are used

for experimentation. This code is primarily the author’s own work. The primary.c code

requires the installation of several packages before attempting to run, which includes:

libpcap [42], tcpdump [42], nmap [43], fping [44], and netcat [45]. The nmap suite should

also include the use of nping which is also required for operating primary.c. This primary

program makes use of a packet sniffer adapted from [46]. The learning modules in

Tutorialspoint [47],[48] also assisted in the production of this code. To correctly compile

primary.c use the command:

gcc primary.c -lpcap

within the same directory as all of the files in this appendix. Then to run the primary.c file

is accomplished using the command:

sudo ./a.out

again, in the same directory as the files of this appendix. The csvLog.py program only

requires Python [49] and is run from within primary.c.

 The randchannel.py file provides better control over ensuring uniform distribution

of the randomization of ARFCNs during experimentation. The code itself does not

randomly assign the values nor does it ensure uniform distribution but is a script that can

be run separately to provide a set of output to check for uniform distribution before

assigning the values during experimentation.

A. PRIMARY.C

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <time.h>
#include <pcap.h>
#include <ctype.h>
#include <unistd.h>

#define MAX 2048

//---
// primary.c
// This program walks a user through configuring the secondarys and logging
// the useful information for analysis from the secondary workstations.

90

// Workstation 1: 192.168.4.22
// Workstation 2: 192.168.4.23
// Workstation 3: 192.168.4.24
// Workstation 4: 192.168.4.25
//---

char* freq [] = {“850”,”900”,”1800”,”1900”};
char* hosts [] = {“192.168.4.22”,”192.168.4.23”,”192.168.4.24”,”192.168.4.25”};
int randChannel,trigger;
int trigger;
pcap_t *handle = NULL;
int index850[3],index900[3],index1800[3],index1900[3];
int hostCheck850,hostCheck900,hostCheck1800,hostCheck1900;
int testNum;

//---
// Configuration Section
//---

//---|
// Randomly generates ARFCNs according to Band
//---|
int randAssign(int min, int max, char band []){
 int randValue = (max-min)/4;
 int channel [130];
 int index [3];
 srand(time(0));
 int random,value;
 int n = 4;
 for (int z = 0; z < 4; z++){
 int same = 1;
 while (same == 1){
 channel [z] = rand()%randValue+(min+(randValue*z+1));
 if (strcmp(band,”1900”) == 0){
 if (((z > 0) && ((channel [z]-channel [z-1]) < 10))){
 same = 1;
 }
 else if (index1800[z] != 0){
 for (int x = 0;x<4;x++){
 if ((channel [z] == index1800[x]) || (abs(channel [z]-index1800[x]))
< 10){
 same = 1;
 break;
 }
 else{
 same = 0;
 }
 }
 }
 else{
 same = 0;
 }
 }
 else if(strcmp(band,”1800”) == 0){
 if (((z > 0) && ((channel [z]-channel [z-1]) < 10))){
 same = 1;
 }
 else if (index1900[z] != 0){
 for (int x = 0;x<4;x++){
 if ((channel [z] == index1900[x]) || (abs(channel [z]-index1900[x]))
< 10){
 same = 1;
 break;
 }
 else{
 same = 0;
 }
 }
 }

91

 else{
 same = 0;
 }
 }
 else{
 if ((z > 0) && ((channel [z]-channel [z-1]) < 10)){
 same = 1;
 }
 else{
 same = 0;
 }
 }
 }
 }
 for (int i = 0;i<4;i++){
 n--;
 if (n == 0){
 random = 0;
 }
 else{
 random = rand()%(n);
 }
 index [i] = channel [random];
 for (int j = random;j<n;j++){
 channel [j] = channel [j+1];
 }
 }
 if (strcmp(band,”1900”) == 0){
 for (int i = 0;i<4;i++){
 index1900[i] = index [i];
 }
 }
 else if (strcmp(band,”1800”) == 0){
 for (int i = 0;i<4;i++){
 index1800[i] = index [i];
 }
 }
 else if (strcmp(band,”850”) == 0){
 for (int i = 0;i<4;i++){
 index850[i] = index [i];
 }
 }
 else if (strcmp(band,”900”) == 0){
 for (int i = 0;i<4;i++){
 if (index [i] == 0){
 index900[i] = 1;
 }
 else{
 index900[i] = index [i];
 }
 }
 }
 return 0;
}
//---|
// Assigns ARFCNs according to user input for band
//---|
int assignARFCN(char band [], char ipAddress []){
 int rchannel;
 if (atoi(band) == 1900){
 // Valid channels for 1900: 512 - 810
 if (randChannel == 0){
 printf(“Please enter a valid channel between 512 - 810 for the 1900 band:\n”);
 scanf(“ %d,” &rchannel);
 }
 else if (randChannel != 0){
 if (hostCheck1900 == 0 && randAssign(512,808,”1900”) == 0){ // Modified end for
whole number assignment
 rchannel = index1900[0];

92

 }
 else{
 rchannel = index1900[hostCheck1900];
 }
 printf(“Channel for 1900 [Host: %s] is: %d\n,” ipAddress, rchannel);
 hostCheck1900++;
 }
 }
 else if (atoi(band) == 1800){
 // Valid channels for 1800: 512 - 885
 if (randChannel == 0){
 printf(“Please enter a valid channel between 512 - 885 for the 1800 band:\n”);
 scanf(“ %d,” &rchannel);
 }
 else if (randChannel != 0){
 if (hostCheck1800 == 0 && randAssign(512,884,”1800”) == 0){ // Modified end for
whole number assignment
 rchannel = index1800[0];
 }
 else{
 rchannel = index1800[hostCheck1800];
 }
 printf(“Channel for 1800 [Host: %s] is: %d\n,” ipAddress, rchannel);
 hostCheck1800++;
 }
 }
 else if (atoi(band) == 900){
 // Valid channels for 900: 1 - 124
 if (randChannel == 0){
 printf(“Please enter a valid channel between 1 - 124 for the 900 band:\n”);
 scanf(“ %d,” &rchannel);
 }
 else if (randChannel != 0){
 if (hostCheck900 == 0 && randAssign(0,124,”900”) == 0){ // Modified end for whole
number assignment
 rchannel = index900[0];
 }
 else{
 rchannel = index900[hostCheck900];
 }
 if (rchannel == 0){
 rchannel = 1;
 }
 printf(“Channel for 900 [Host: %s] is: %d\n,” ipAddress, rchannel);
 hostCheck900++;
 }
 }
 else if (atoi(band) == 850){
 // Valid channels for 850: 128 - 251
 if (randChannel == 0){
 printf(“Please enter a valid channel between 128 - 251 for the 850 band:\n”);
 scanf(“ %d,” &rchannel);
 }
 else if (randChannel != 0){
 if (hostCheck850 == 0 && randAssign(128,248,”850”) == 0){ // Modified end for whole
number assignment
 rchannel = index850[0];
 }
 else{
 rchannel = index850[hostCheck850];
 }
 printf(“Channel for 850 [Host: %s] is: %d\n,” ipAddress, rchannel);
 hostCheck850++;
 }
 }
 else{
 printf(“Invalid Band Received...\nExiting...\n”);
 exit(1);
 }

93

 return rchannel;
}

//---|
// Determines if all hosts are connected
//---|
int healthCheck(int check){
 FILE *output;
 int size;
 char fping [MAX];
 sprintf(fping,”fping -u %s %s %s %s > output.txt”,hosts [0],hosts [1],hosts [2],hosts [3]);
 system(fping);
 output = fopen(“./output.txt”,”r”);
 if (output == NULL){
 printf(“Error Opening File!\n”);
 check = 0;
 }
 else{
 fseek(output,0,SEEK_END);
 size = ftell(output);
 if (size == 0){
 check = 1;
 }
 else{
 check = 0;
 }
 }
 fclose(output);
 return check;
}

//---|
// Sends configurations to hosts
//---|
int antennaAssignment(char band [], char ipAddress [], int count){
 char npingPass [MAX];
 char npingFail [MAX];
 char channelMess [MAX];
 int val;
 int channel;
 if ((strstr(band,freq [0]) != NULL) || strstr(band,freq [1]) != NULL || strstr(band,freq
[2]) != NULL || strstr(band,freq [3]) != NULL){
 channel = assignARFCN(band, ipAddress);
 printf(“Sending channel to host..\n”);
 sprintf(channelMess,”echo %i | nc %s 444%i”,channel,ipAddress,count);
 system(channelMess);
 printf(“\nEnsure host received channel, continue? [y = 1/n = 0]: “);
 if (scanf(“ %i,” &val) != 1){
 printf(“Exiting...\n\n”);
 exit(1);
 }
 if (count < 4){
 printf(“Sending Message to host...\n\n”);
 sprintf(npingPass,”nping --udp -p 3333 -g 3333 %s -c 1 -H -N --quiet --data-string
‘%s’”,ipAddress,band);
 system(npingPass);

 }
 else{
 printf(“Sending Message to host...\n\n”);
 sprintf(npingFail,”nping --udp -p 3333 -g 3333 %s -c 1 -H -N --quiet --data-string
‘%s’”,ipAddress,band);
 system(npingFail);
 printf(“---\n”);
 printf(“Ensure hosts are setup correctly on Secondary’s\n”);

 }
 }
 else{

94

 printf(“Attempted to assign invalid band...exiting...\n”);
 exit(1);
 }
 return 0;
}
int ntpSetup(){
 printf(“--\n”);
 printf(“\nForcing restart of NTP Server...\n”);
 system(“service ntpd restart”);
 system(“ntpq -p”);
 return 0;
}

//---|
// Time stamps data
//---|
int timeStamp(int tf,int testNum){
 char csvStamp [MAX];
 sprintf(csvStamp,”python ./csvLog.py %i %i,” tf, testNum);
 system(csvStamp);
 return 0;
}

//---
// Base Sniffer Section
//---
void packet(u_char *arg, const struct pcap_pkthdr* hdr, const u_char * packet){
 int i=0;
 char payload [MAX];
 if (trigger != 1){
 if (hdr->len < 135){
 for (i=0; i<hdr->len; i++){
 if (i > 41 && i < 43){
 strcat(payload, (char *)&packet [i]);
 }
 }
 }
 if ((strstr(payload, hosts [0]) != NULL) || (strstr(payload, hosts [1]) != NULL) ||
(strstr(payload, hosts [2]) != NULL) || (strstr(payload, hosts [3]) != NULL)) {
 printf(“\nPayload Received: %s\n\n,” payload);
 pcap_breakloop(handle);
 }
 strcpy(payload, ““);

 }
}

int packetSniffer(){
 char errorBuff [PCAP_ERRBUF_SIZE], *device;
 device = “enp0s25”; // ----->If necessary, change to whats needed here (device to sniff)

 printf(“--\n”);
 printf(“Setting up packet sniffer...\n”);
 handle = pcap_open_live(device, MAX, 1, 512, errorBuff);
 pcap_loop(handle, -1, packet, NULL);

 return 0;

}
//---
// Main: Checks for mode to begin
//---
int main(int argc, char *argv []){
 if (getuid()){
 printf(“WARNING: You are not in root. Please rerun this script in root”);
 exit(1);
 }
 int check = 0;
 int mode = 0;

95

 char hBandSTR[3];
 while (mode == 0){
 if (!(argc>1)){
 printf(“Please enter: ‘0’ for Configuration Mode, ‘1’ for Capture Mode, or ‘+’ to
setup NTP.\n”);
 char input = getchar();
 if (strcmp(&input,”0”) == 0){
 mode = 2;
 }
 else if(strcmp(&input,”1”) == 0){
 mode = 3;
 }
 else if(strcmp(&input,”+”) == 0){
 mode = 1;
 }
 else{
 printf(“Invalid mode...Try Again\n”);
 }
 }
 else if(strcmp(argv [1],”+”) == 0){
 mode = 1;
 }
 else if(strcmp(argv [1],”0”) == 0){
 mode = 2;
 }
 else if(strcmp(argv [1], “1”) == 0){
 mode = 3;
 }
 else{
 break;
 }
 }

 switch(mode){
 case 1:{
 if (ntpSetup() == 0){
 printf(“\nNTP Commands ran successfully...check to ensure correct
setup...\n”);
 timeStamp(0,00000);
 }
 break;
 }
 case 2:{
 trigger = 0;
 printf(“--\n”);
 printf(“ENSURE SECONDARY’S ARE RUNNING FIRST! \nIf not, quit and start the
secondarys’ scripts in Configuration Mode.\n\n”);

 while (healthCheck(check) != 1){
 printf(“Recheck Computers\n\n”);
 printf(“Delete output.txt file then press Enter if you would like to retry
health check...\n”);
 getchar();
 }
 printf(“\nHealth Check Successful!\n”);
 printf(“\nWould you like to randomize ARFCN Channel assignment? [y = 1/n = 0]: “);
 if ((scanf(“ %i”,&randChannel) == 1) && (randChannel == 1 || randChannel == 0)){
 printf(“randChannel = %i\n”,randChannel);
 for (int i = 0; i < 4; i++){
 printf(“Please Enter Host %i’s Band: \n”,i+1);
 scanf(“%s”,hBandSTR);
 antennaAssignment(hBandSTR,hosts [i],i+1);
 strcpy(hBandSTR,”“);
 packetSniffer();
 }
 printf(“\nConfiguration of hosts complete!\n”);
 }
 }
 case 3:{

96

 char c;
 trigger = 1;
 printf(“--\n”);
 printf(“Enter the test number of the phone here,\n”);
 scanf(“%i”,&testNum);
 printf(“Test Phone Number %i\n\n”,testNum);

 printf(“\nCheck each antenna is configured correctly, if not press q.\n”);
 printf(“\n1. Run seconday’s scripts in Capture Mode. \n”);
 printf(“2. Check secondary’s NTP status’, if st==16 press q to quit and try
again.\n”);
 printf(“3. If all are setup correctly, PRESS ENTER ON SECONDARY’S! \n4. Press Enter
here to begin experiment.\n”);
 getchar();
 c = getchar();
 if (strstr(&c,”q”)){
 printf(“\nExited IMSI experiment.\n”);
 exit(1);
 }
 else{
 timeStamp(1,00000);
 printf(“\nBeginning Experiment...\n”);
 if (system(“nc -l 4488 > IMSI.txt”) != -1){
 timeStamp(2,testNum);
 char nping [MAX];
 sprintf(nping,”nping --udp -p 3333 -g 3333 %s %s %s %s -c 1 -H -N --quiet
--data-string ‘STOP’”,hosts [0],hosts [1],hosts [2],hosts [3]);
 system(nping);
 printf(“\nSuccessful IMSI experiment!\a\n”);
 printf(“--\n”);
 }
 else{
 printf(“\nIMSI Experiment Failed\n”);
 printf(“--\n”);
 exit(1);
 }
 }
 }

 pcap_close(handle);
 return 0;

}
}

B. CSVLOG.PY

import csv
import sys
from datetime import datetime
For Primary

#--
csvLog.py
This program takes in the necessary data and
formats it into a .csv file.
#--
def main():
 csv = open(‘imsiLog.csv’,’a’)
 fmt = “%H:%M:%S.%f”
 #---
 # Creates the start template for logging
 if (sys.argv [1] == ‘1’):
 ctime = datetime.now()
 ftime = ctime.strftime(fmt)
 row1 = “START,---,---,---,---,”+ftime+”\n”
 csv.write(row1)

97

 time = open(‘primeTime.txt’,’w’)
 time.write(ftime)
 time.close()
 #---
 # Creates the header names for the log
 elif (sys.argv [1] == ‘0’):
 row0 = “Time,ipAddress,Band,TestNumber,Channel,DeltaTime\n”
 csv.write(row0)
 #---
 # Stamps to the logging and file for matlab
 elif (sys.argv [1] == ‘2’):
 fileIMSI = open(“IMSI.txt”,”r”)
 fileTIME = open(“primeTime.txt”,”r”)
 fileMATLAB = open(‘imsiMATLAB.csv’,’a’)
 readIMSI = fileIMSI.readline()
 readTIME = fileTIME.readline()
 delta = datetime.strptime(str(readIMSI)[:14],fmt) -
datetime.strptime(readTIME,fmt)
 deltaT = str(delta)
 print(“\n\nDelta Time: “+deltaT)
 testNum = str(sys.argv [2])
 row = readIMSI.rstrip(‘\n’)+testNum+’,’+deltaT+”\n”
 rowMATLAB = readIMSI[29:].rstrip(‘\n’)+testNum+’,’+deltaT+”\n”
 print(“Capture Information:\n”+row)
 csv.write(row)
 fileMATLAB.write(rowMATLAB)
 fileMATLAB.close()
 fileIMSI.close()
 fileTIME.close()
 csv.close()
main()

C. RANDCHANNEL.PY

import random

#--
randChannel.py
This program was designed to provide
more control for creating random ARFCNs.
Check for uniform distribution.
#--

#-----------------------------
Randomziation for EP2
#-----------------------------

channels = [1,42,83,124]
for i in range(10):

sampled = random.sample(channels,4)
print(sampled)

#-----------------------------
Randomziation for EP2.2
#-----------------------------
chan1 = [5,6,7,8,9,10,11,12,13,14,15]
chan42 = [40,41,42,43,44,45,46,47,48,49,50]
chan83 = [75,76,77,78,79,80,81,82,83,84,85]
chan124 = [110,111,112,113,114,115,116,117,118,119,120]
print(‘\n’)
for j in range(10):
 sampled1 = random.sample(chan1,1)
 sampled42 = random.sample(chan42,1)
 sampled83 = random.sample(chan83,1)
 sampled124 = random.sample(chan124,1)
 chanT = sampled1 + sampled42 + sampled83 + sampled124
 sampleT = random.sample(chanT,4)
 print(sampleT)

98

THIS PAGE INTENTIONALLY LEFT BLANK

99

APPENDIX G. SECONDARY CODE

The code within this appendix is for the secondary workstations and used for

experimentation. The experiments performed in this thesis use four secondary workstations

labeled as secondary<#>.c. The <#> is replaced with the numbered value for the

workstation it is on. For example, this code on workstation one would bear the name

secondary1.c. Implementing the secondary<#>.c code also requires installation of several

of the packages mentioned in Appendix F. This includes: libpcap [42], tcpdump [42] and

netcat [45]. This secondary program also relies on a packet sniffer adapted from [46] but

is primarily the author’s own work and was also produced with the assistance of the many

learning modules in Tutorialspoint [47],[48]. Successfully compiling secondary.c requires

the command:

gcc secondary<#>.c -lpcap

and is run within the same directory as all of the files in this appendix. Then to run the

secondary.c file, the command:

sudo ./a.out

is used, again, within the same directory as the files of this appendix. The testTime.py

program only requires python [49] and will only be called to run from within

secondary<#>.c.

A. SECONDARY<#>.C

#include <pcap.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <stdio.h>
#include <unistd.h>

#define MAX 1000

const char* ipAddr [] = {“192.168.4.22”}; // Workstation 1 ------- Change Here for other
IPaddresses
// Workstation 2: “192.168.4.23”
// Workstation 3: “192.168.4.24”
// Workstation 4: “192.168.4.25”
pcap_t *handle = NULL;
int trigger = 0;
int ARFCN = 0;
int band = 0;

100

//---
// secondary#.c
// This program is walked through by the primary. Only starting this script is necessary.
// In capture mode it will listen for STOP or IMSIs and relay data back to primary
//---

//---
// Configuration Section
//---
//---|
// Assigns ARFCN based on requirements from Primary
//---|
int assignARFCN(){
 FILE *fp;
 char str [5];
 int channel;
 fp = fopen(“channel.txt,” “r”);
 if(fp == NULL) {
 perror(“Error opening file\nExiting...\n”);
 exit(-1);
 }
 if(fgets (str, 60, fp) != NULL) {
 if (atoi(str) == 0){
 printf(“\nChannel Given: %i\n,” 1);
 channel = 1;
 }
 else{
 printf(“\nChannel Given: %s\n,” str);
 channel = atoi(str);
 }
 }
 fclose(fp);
 return channel;

}
//---|
// Configures openBTS
//---|
int configWindow(){
 char mainBand [MAX]; // Changes band in main configuration file
 char pyBand [MAX]; // Ensures antenna band is configured correctly via CLI
 char mainChannel [MAX]; // Changes channel in main configuration file
 char pyChannel [MAX]; // Ensures antenna channel is configured correctly via CLI

 sprintf(mainBand, “sqlite3 ../../../etc/OpenBTS/OpenBTS.db ‘UPDATE CONFIG SET
VALUESTRING=\”%i\” WHERE KEYSTRING=\”GSM.Radio.Band\”‘“,band);
 sprintf(mainChannel, “sqlite3 ../../../etc/OpenBTS/OpenBTS.db ‘UPDATE CONFIG SET
VALUESTRING=\”%i\” WHERE KEYSTRING=\”GSM.Radio.C0\”‘“,ARFCN);
 system(mainBand);
 system(mainChannel);

 // Ensures, files are configured
 sprintf(pyBand, “../../../OpenBTS/OpenBTSCLI -c config GSM.Radio.Band %i,” band);
 sprintf(pyChannel,”../../../OpenBTS/OpenBTSCLI -c config GSM.Radio.C0 %i”,ARFCN);
 system(pyBand);
 system(pyChannel);

 printf(“\nConfiguration complete, restarting OpenBTS...\n”);
 system(“../../../OpenBTS/OpenBTSCLI -c restart”);

 return 0;
}
//---|
// Displays configuration messages for confirmation
//---|
int configurationMessages(int bandMain){
 pcap_breakloop(handle);
 FILE *bandText;
 band = bandMain;

101

 bandText = fopen(“band.txt”,”w”);
 char bandString [6];
 sprintf(bandString,”%i”,band);
 fputs(bandString,bandText);
 fclose(bandText);
 char reply [MAX];
 printf(“\nMessage Received Matches: %i\n,” band);
 printf(“\nConfiguring Antenna For %i Band and Channel %i\n...\n,” band, ARFCN);
 configWindow();
 return 0;
}

//---
// Base Sniffer Section
//---
void packetAnalysis(u_char *arg, const struct pcap_pkthdr* header, const u_char * packet){
 int i=0;
 char payload [129];
 switch(trigger){
 // Checks if there are any configuration intructions from the Primary
 case 1: {
 if (header->len < 135){
 for (i=0; i<header->len; i++){
 if (i > 41){
 if (isprint(packet [i])){
 strcat(payload, (char *)&packet [i]);
 }
 }
 else{
 strcat(payload, ““);
 }
 }
 }
 if (strstr(payload, “850”) != NULL) {
 configurationMessages(850);
 }
 else if (strstr(payload, “900”) != NULL && strstr(payload, “1900”) == NULL) {
 configurationMessages(900);
 }
 else if (strstr(payload, “1800”) != NULL) {
 configurationMessages(1800);
 }
 else if (strstr(payload, “1900”) != NULL) {
 configurationMessages(1900);
 }
 strcpy(payload, ““);
 break;
 }
 //---
 // Capture IMSI Section
 //---
 case 2: {
 char str [100];
 const char check [] = “01 3f 49 05 08”;
 char stopCheck [2048];
 if (header->len < 90){
 for (i=0; i<header->len; i++){
 if (i > 40){
 sprintf(str,”%02x ,” (unsigned char) packet [i]);
 strcat(payload,str);
 strcpy(str,”“);
 if (isprint(packet [i])){
 strcat(stopCheck, (char *)&packet [i]);
 }
 }
 }
 }
 if (strstr(stopCheck,”STOP”)!=NULL){
 printf(“Received STOP, experiment ending. Exiting....\n\n”);

102

 pcap_breakloop(handle);
 exit(1);
 }
 else if (strstr(payload,check)!=NULL){
 printf(“\nIMSI FOUND!\nProcessing...\n”);
 pcap_breakloop(handle);
 // Need this section only if requirement to see IMSI------------
 int count = 1;
 char IMSItemp [24],IMSI[15],message [200];
 int size = strlen(payload);
 int x,z;
 for (x=0;x<24;x++){
 IMSItemp [23-x] = payload [size-7-x];
 }
 for (z = 0; count < 15;z+=3){
 if (z == 0){
 IMSI[0] = IMSItemp [0];
 }
 else{
 IMSI[count] = IMSItemp [z+1];
 IMSI[count+1] = IMSItemp [z];
 count+=2;
 }
 }
 printf(“ IMSI is: %s.\nTime stamping and sending to primary...\n”,IMSI);
 //--

 // Sends configuration to time stamper
 sprintf(message,”python ./testTime.py %i %i %s”,band,ARFCN,ipAddr [0]);
 system(message);

 }
 else{
 strcpy(payload,”“);
 strcpy(stopCheck,”“);
 }
 }
 }
}

int packetSniffer(){
 char errorBuff [PCAP_ERRBUF_SIZE], *interface;
 printf(“---\n”);
 if (trigger == 1){
 interface = “eth0”; //----If necessary, change to whats needed here (device to sniff)
 }
 else if (trigger == 2){
 interface = “any”;
 }
 printf(“Setting up packet sniffer...\n”);
 handle = pcap_open_live(interface, 2048, 1, 512, errorBuff);
 pcap_loop(handle, -1, packetAnalysis, NULL);
 return 0;

}

//---
// Main: Checks for mode to begin
//---
int main(int argc, char *argv []){
 if (getuid()){
 printf(“WARNING: You are not in root. Please rerun this script in root”);
 exit(1);
 }
 int mode = 0;
 printf(“---\n”);
 printf(“Your address is set to: %s\n”,ipAddr [0]);

103

 while (mode == 0){
 // Checks if an argument was entered. If not, it will ask which mode to select
 if (!(argc>1)){
 char input;
 printf(“Please enter a ‘0’ for Configuration Mode, ‘1’ for Capture Mode, or ‘+’ to
check NTP\n”);
 input = getchar();
 if (strcmp(&input,”0”) == 0){
 mode = 1;
 system(“nc -l 4442 > channel.txt”); //-------------------------------------
Change Here (nc port) for other IP Address
 ARFCN = assignARFCN();
 }
 else if(strcmp(&input,”1”) == 0){
 mode = 2;
 ARFCN = assignARFCN();
 }
 else if(strcmp(&input,”+”) == 0){
 mode = 3;
 printf(“Checking NTP...\n”);
 }
 else{
 printf(“\nInvalid Entry, please try again...\n”);
 }
 }
 // If argument was given, compares and sets it to correct mode
 else if(strcmp(argv [1],”0”) == 0){
 mode = 1;
 system(“nc -l 4442 > channel.txt”); //- Change nc port for other IP Address
 // 4443, 4444, 4445
 ARFCN = assignARFCN();
 }
 else if(strcmp(argv [1], “1”) == 0){
 mode = 2;
 ARFCN = assignARFCN();
 }
 else if(strcmp(argv [1], “+”) == 0){
 mode = 3;
 printf(“Checking NTP...\n”);
 }
 else{
 break;
 }
 }
 switch(mode){
 // Configuration Mode
 case 1:{
 trigger = 1;
 if (packetSniffer() != 0){
 printf(“\nUnsuccessful Configuration”);
 printf(“---\n”);
 }
 else{
 printf(“\nConfiguration complete!\n”);
 printf(“---\n”);
 }
 }
 // Capture Mode
 case 2:{
 trigger = 2;
 if (packetSniffer() != 0){
 printf(“\nUnsuccessful IMSI experiment\n”);
 printf(“---\n”);
 }
 else{
 printf(“\nIMSI Experiment Complete!\n”);
 printf(“---\n”);
 }
 break;

104

 }
 // NTP Mode
 case 3: {
 system(“ntpq -p”);
 printf(“\nEnsure ntp server is up and st is low\n”);
 break;
 }

 }
 pcap_close(handle);
 return 0;

}

B. TESTTIME.PY

import sys
import os
from datetime import datetime
For Secondary

#--
testTime.py
This program takes in the necessary data and
formats it to send to primary
#--
def main():
 # Formats data and sends to Primary
 ctime = datetime.now()
 ftime = ctime.strftime(‘%H:%M:%S.%f’)
 band = sys.argv [1]
 ipAddr = sys.argv [3]
 if band == ‘0’:
 fileBand = open(“band.txt”,”r”)
 band = fileBand.readline()
 if len(sys.argv [2]) < 2:
 channel = “00” + sys.argv [2]
 elif len(sys.argv [2]) < 3:
 channel = “0” + sys.argv [2]
 else:
 channel = sys.argv [2]
 cmd = ‘printf “%s\n” ‘ + ‘“‘ + ftime +”,”+ ipAddr + “,”+ band +”,”+ channel
+”,”+ ‘“ ‘ + “|” + “ nc 192.168.4.28 4488”
 print(cmd)
 os.system(cmd)
main()

105

LIST OF REFERENCES

[1] GSMA, “The mobile economy 2020.” Accessed March 3, 2020. [Online].
Available: https://www.gsma.com/mobileeconomy/

[2] A. Shaik, R. Borgaonkar, S. Park, and J.-P. Seifert, “New vulnerabilities in 4G
and 5G cellular access network protocols: exposing device capabilities,” in
Proceedings of the 12th Conference on Security and Privacy in Wireless and
Mobile Networks—WiSec ‘19, Miami, Florida, 2019, pp. 221–231, [Online]. doi:
10.1145/3317549.3319728.

[3] R.-P. Weinmann, “Baseband attacks: Remote exploitation of memory corruptions
in cellular protocol stacks,” presented at the WOOT, 2012, p. 10, [Online].
Available: https://www.usenix.org/system/files/conference/woot12/woot12-
final24.pdf

[4] T. B. Retterstøl, “Base station security experiments using USRP,” Norwegian
University of Science and Technology, 2015. [Online]. Available:
http://hdl.handle.net/11250/2359801

[5] Range Networks. OpenBTS. Accessed April 30, 2020. [Online]. Available:
http://openbts.org/get-the-code/

[6] 3rd Generation Partnership Project Multiplexing and Multiple Access on the
Radio Path Technical Specification, 3GPP TS 5.02 (Release 4) 2005. [Online].
Available: https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=255

[7] 3rd Generation Partnership Project Radio Subsystem Link Control Technical
Specification, 3GPP TS 5.08 (Release 1999) 2005. [Online]. Available:
https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=262

[8] 3rd Generation Partnership Project Numbering, Addressing, and Identification
Technical Specification, 3GPP TS 23.003 (Release 16) 2019. [Online]. Available:
https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=729

[9] 3rd Generation Partnership Project Mobile Radio Interface Layer 3 Technical
Specification, 3GPP TS 24.008 (Release 16) 2019. [Online]. Available:
https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=1015

106

[10] 3rd Generation Partnership Project AT Command Set for User Equipment (UE)
Technical Specification, 3GPP TS 27.007 (Release 16) 2019. [Online]. Available:
https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=1515

[11] 3rd Generation Partnership Project GSM/EDGE Radio Resource Control
Protocol Technical Specification, 3GPP TS 44.018 (Release 15) 2018. [Online].
Available: https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=2686

[12] 3rd Generation Partnership Project Subscriber Identity Module—Mobile
Equipment (SIM-ME) Interface Technical Specification, 3GPP TS 51.011
(Release 4) 2005. [Online]. Available: https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=2793

[13] L. Perkov, A. Klisura, and N. Pavkovic, “Recent advances in GSM insecurities,”
in 2011 Proceedings of the 34th International Convention MIPRO, Opatija,
Croatia, May 2011, pp. 1502–1506, [Online]. Available:
https://ieeexplore.ieee.org/document/5967298

[14] B. Harmat et al., “The Security implications of IMSI catchers,” in Proceedings of
the 2015 World Congress in Computer Science, Computer Engineering, and
Applied Computing., Las Vegas, NV, Jul. 2015, p. 6, [Online]. Available:
http://worldcomp-proceedings.com/proc/p2015/SAM7035.pdf

[15] D. Strobel, “IMSI catcher,” Seminararbeit Ruhr-Universitat Bochum, 2007.
[Online]. Available: https://www.emsec.ruhr-uni-bochum.de/media/crypto/
attachments/files/2011/04/imsi_catcher.pdf

[16] A. Mruz, “Mobile network security experiments with USRP,” Norwegian
University of Science and Technology, 2016. [Online]. Available:
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2410685

[17] A. Dabrowski, N. Pianta, T. Klepp, M. Mulazzani, and E. Weippl, “IMSI-catch
me if you can: IMSI-catcher-catchers,” in Proceedings of the 30th Annual
Computer Security Applications Conference on—ACSAC ‘14, New Orleans,
Louisiana, 2014, pp. 246–255, doi: 10.1145/2664243.2664272.

[18] J. Eberspächer, H.-J. Vögel, C. Bettstetter, and C. Hartmann, GSM—Architecture,
Protocols and Services, Third Edition. Chichester, U.K.: John Wiley & Sons Ltd
g, 2009.

[19] H. Welte, “Anatomy of contemporary GSM cellphone hardware,” 2010. [Online].
Available: ftp://ftp.freecalypso.org/pub/GSM/gsm_phone_anatomy.pdf

107

[20] Osmocom, “Wiki—Qualcomm Linux modems by Quectel & Co—Open source
mobile communications.” accessed March 30, 2020. [Online]. Available:
https://osmocom.org/projects/quectel-modems/wiki

[21] UC20 AT Commands Manual, V1.0. Quectel, Shanghi, China, May 28, 2013.
[Online]. Available: https://www.quectel.com/UploadImage/Downlad/
UC20_AT_Commands_Manual_V1.0.pdf

[22] OpenEmbedded, “Openembedded.org.” Accessed April 21, 2020. [Online].
Available: http://www.openembedded.org/wiki/Main_Page

[23] Series E: Overall Network Operation, Telephone Service, Service Operation and
Human Factors. International Telecommunication Union, 2006, [Online].
Available: https://www.itu.int/rec/T-REC-E.118-200605-I

[24] F. van den Broek, “Catching and understanding GSM-signal,” Radbound
University Nijmegen, 2010. [Online]. Available:
http://www.cs.ru.nl/~F.vandenBroek/pub/scriptie.pdf

[25] M. Mouly and M.-B. Pautet, The GSM System for Mobile Communications.
Palaiseau, France: Cell & Sys. Correspondence, 1992.

[26] N. Ibrahim, N. A. Naqbi, F. Iqbal, and O. AlFandi, “SIM card forensics: Digital
evidence,” in Annual ADFSL Conf. on Digital Forensics, 2016. [Online].
Available: https://commons.erau.edu/adfsl/2016/thursday/3

[27] Ettus Research, “Ettus research—The leader in software defined radio (SDR),”
accessed April 07, 2020. [Online]. Available: https://www.ettus.com/

[28] OpenBTS, “About | OpenBTS.” Accessed April 07, 2020. [Online]. Available:
http://openbts.org/about/

[29] OpenBTS Application Suite User Manual. Range Networks, Apr. 15, 2014,
[Online]. Available: http://openbts.org/site/wp-content/uploads/2014/07/
OpenBTS-4.0-Manual.pdf

[30] IplinkME, “IplinkME-Knowledge.” Accessed March 30, 2020. [Online].
Available: http://kb.iplinkme.com/

[31] Quectel_UC20_UMTS HSPA_Specification, V1.7 Quectel, accessed April 30,
2020. [Online]. Available: https://www.quectel.com/UploadFile/Product/
Quectel_UC20_UMTS%20HSPA_Specification_V1.7.pdf

[32] Minicom Manual Pages, Accessed March 30, 2020. [Online]. Available:
https://linux.die.net/man/1/minicom

108

[33] Range Networks, “20 blank SIMs,” Accessed April 30, 2020. [Online]. Available:
https://rangenetworks.com/store/20-blank-sims

[34] Osmocom, pySim. Accessed April 30, 2020. [Online]. Available:
https://github.com/osmocom/pysim

[35] Network Time Protocol Project, “ntp.org: Home of the Network Time Protocol.”
Accessed April 30, 2020. [Online]. Available: http://www.ntp.org/

[36] Wireshark, Wireshark. [Online]. Available:
https://www.wireshark.org/#download

[37] IMEI.info, “IMEI CHECK—Free online IMEI number checker | IMEI.info.,”
Accessed May 05, 2020. [Online]. Available: https://www.imei.info/apple-sn-
check/

[38] ntpq Manual Pages, Accessed April 29, 2020. [Online]. Available:
https://www.freebsd.org/cgi/
man.cgi?query=ntpq&sektion=8&apropos=0&manpath=FreeBSD+12.1-
RELEASE+and+Ports

[39] D. L. Mills, Computer Network Time Synchronization: The Network Time
Protocol on Earth and in Space, 2nd ed. CRC Press, 2017. [Online].
https://doi.org/10.1201/b10282

[40] NTP Project Documentation, “NTP debugging techniques.” Accessed May 02,
2020. [Online]. Available: http://doc.ntp.org/4.2.0/debug.html

[41] Mobile Country Codes (MCC) and Mobile Network Codes (MNC), “Most up to
date list of MCC and MNC codes: mobile country codes—mobile network
codes,” Accessed March 02, 2020. [Online]. Available: https://www.mcc-
mnc.com/

[42] T. T. Group, Tcpdump/Libpcap public repository. Accessed April 30, 2018.
[Online]. Available: https://www.tcpdump.org

[43] Nmap, Accessed April 28, 2020. [Online]. Available: https://nmap.org/
download.html

[44] D. Schweikert, “fping Homepage,” V.4.2. [Online]. Available: https://fping.org/

[45] The GNU Netcat Project, 2004, Netcat. Accessed April 30, 2018. [Online].
Available: http://netcat.sourceforge.net/download.php

109

[46] L.M Garcia “Programming with Libpcap—Sniffing the network from our own
application,” Hakin9 IT Security Magazine, vol. 3, no. 2, pp. 38–46, Feb. 2008,
Accessed on April 30, 2020. [Online]. Available: https://web.archive.org/web/
20191223043917/http://recursos.aldabaknocking.com/
libpcapHakin9LuisMartinGarcia.pdf

[47] Tutorialspoint, “Learn C programming.” [Online]. Available:
https://www.tutorialspoint.com/cprogramming/index.htm

[48] Tutorialspoint, “C standard library reference tutorial.” [Online]. Available:
https://www.tutorialspoint.com/c_standard_library/index.htm

[49] Python, “Python V2.7.” [Online]. Available: https://www.python.org/downloads/

110

THIS PAGE INTENTIONALLY LEFT BLANK

111

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	20Jun_Johnson_Carmen_First8
	20Jun_Johnson_Carmen
	I. Introduction
	A. Thesis Objective
	B. Related Work
	C. Organization

	II. BackgRound
	A. Mobile Station
	1. User Equipment
	a. Application Processor and Modem
	b. Communication between Processors

	2. SIM Card
	a. Important Elements Stored on a SIM Card
	b. Organizational Structure of the SIM Card
	The address space for EFIMSI simply stores the IMSI for the subscriber to use on a network, as defined by [12]. The 6F74 file identifier for EFBCCH, stores the neighbor cell information from system information two messages for both cell selection and ...
	The location information EF, as defined in [12], stores four main elements of information within its address space: 1) TMSI, 2) LAI, 3) TMSI time, and 4) location update status. The TMSI had been briefly mentioned in Section A.2.a of this chapter and ...
	The service provider determines the address space dedicated for storing a list of FPLMNs and each FPLMN are three bytes in length [12], [26]. The provided space for FPLMNs are defined to be 12 bytes long, which means only four FPLMNs can be stored on ...

	B. Network Architecture
	1. Base Station Subsystem
	2. Network and Switching Subsystem
	a. Mobile Switching Center
	b. Databases

	3. Public Land Mobile Network

	C. Um Interface
	1. Physical and Logical Channels
	a. Physical Layer
	b. Logical Layer
	(1) Logical Channels
	(2) Bursts

	c. Channel 0 Timeslot 0

	2. Cell Selection and Reselection

	D. Rogue Base stations
	1. Software-defined radios
	2. OpenBTS
	3. Past Implementations

	III. Experiment Setup
	A. Test questions
	B. Test Environment
	1. Test Network
	2. Control Network
	a. Configure
	b. Capture
	c. Analyze

	C. Equipment

	IV. Results
	A. Pre-ExperimenT TESTING
	1. UE
	2. SIM Card Binaries
	3. Power Measurement, Harmonic Suppression, and Attenuation
	4. Time Constraints

	B. Experiment 1: Frequency Band Test
	C. Experiment 2: Channel Test
	D. Experiment 2.1: Channel Test
	E. Experiment 2.2: Channel Test
	F. Summary of Results

	V. Conclusions
	A. Significant Contributions
	B. Future Work

	APPENDIx A. SIM CArd PYSIM configuration
	APPENDIX B. SIM CArd MINICOM configuration
	A. tempsim.txt
	B. seeSIM.txt
	C. Commands

	APPENDIX C. NTP Configuration
	A. ntp.conf—PrIMARY
	B. NTP.CONF—Secondary

	APPENDIX D. NTP Troubleshooting
	appendix E. OpenBTS Box Configuration
	appendix F. Primary Code
	A. primary.c
	B. csvLog.py
	C. randchannel.py

	appendix G. SECONDARY Code
	A. secondary<#>.c
	B. testTime.py

	List of References
	initial distribution list

