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ABSTRACT 

 International mobile subscriber identity (IMSI) catching is a man-in-the-middle 

attack that utilizes rogue base stations to intercept the IMSIs of mobile users. Attackers 

can use software-defined radios (SDR) and open source software to create rogue base 

stations that geolocate or execute other malicious attacks against their targets. Prior work 

proves that attackers are not limited to targeting either old or new cellular devices since 

current devices are interoperable with older mobile networks, including GSM. The goal 

of this thesis is to determine if cellular devices are susceptible to target profiling based on 

the model or manufacturer of the device. If devices can be profiled, then can attackers 

improve rogue base stations to capture devices faster? To answer this, we created an 

enclosed test network using SDRs and OpenBTS to mimic GSM base stations. We 

strived to eliminate the factors that devices use to select base stations. We then presented 

an IMSI-catching program that can configure base stations, capture IMSIs, and log base 

station selection data for analysis. Finally, we conducted a set of experiments to assess if 

cellular devices have connection preferences that can be profiled. The results of the 

experiments suggest that we were not able to successfully eliminate some 

decision-making factors. However, more rounds and an examination of the factors that 

could have affected the outcome are required to make any conclusions on the selections 

that were exhibited. 
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I. INTRODUCTION 

The Global System for Mobile Communications (GSM) Association (GSMA) 

estimated that in 2019, approximately 3.8 billion people relied on their mobile device to 

connect to the internet. By 2025, this figure is expected to increase to 5 billion [1]. The 

number of internet of things (IoT) devices, including cellular-based IoT, is growing even 

faster and has already reached 12 billion. This figure is expected to grow to 24.6 billion by 

2025 [1]. IoT devices typically connect devices such as cars, smart grid components, and 

appliances to the internet. Some IoT devices use a cellular network for this connection [2]. 

The latest smartphones and IoT devices using cellular networks inherit vulnerabilities 

when maintaining backward compatibility with older cellular network standards [3]. One 

of these vulnerabilities includes a susceptibility to privacy attacks using international 

mobile subscriber identity (IMSI) catching.  

IMSI catching is a man-in-the-middle attack that uses rogue base stations, or IMSI 

catchers, to capture subscriber information in order to track or to further other malicious 

motivations [3]. The IMSI catching attack was first developed to exploit the fact that cell 

phones do not authenticate GSM networks, allowing rogue base stations to replicate actual 

GSM base stations [3]. 

As of 2019, GSM networks are not as widely used as 4G, with 4G making up 

approximately 52% of connections globally, not including the cellular based IoT devices 

[1]. Research has identified methods to perform attacks similar to IMSI catching even on 

newer networks [2]. Additionally, attackers are able to downgrade even newer devices to 

GSM for ease of capture [4]. 

From a cyber security point of view, IMSI catching poses a threat to consumers 

worldwide using either old or new technologies. This threat becomes especially worrisome 

in environments with low cell coverage as there is a higher likelihood of success for rogue 

base stations to provide the best signal service in the area. However, attackers are not just 

limited to low signal areas to provide the best cell signal. Attackers can also actively jam 



2 

the surrounding legitimate options or leverage environmental factors to passively jam any 

authentic options [3].  

A. THESIS OBJECTIVE 

The main goal of this thesis is to explore a possible method of targeting IMSI 

catching by determining if cell phones and IoT devices can be profiled by attackers. In 

order to examine this possibility, the objectives of this thesis are to: 

1. Investigate the components within a GSM network to determine the 

factors that contribute to a device’s decision-making process for selecting 

a cell tower 

2. Build a closed test environment that mimics a GSM network 

3. Build a set of IMSI catchers that are reconfigurable and are able to collect 

and record cellular device connection preferences for statistical analysis 

4. Implement a set of experiments examining the individual factors that 

contribute to cell selection 

The goal of the analysis work is to determine the potential for profiling mobile 

devices based on their base station selections during experimentation. If profiling can be 

accomplished, then this indicates that attackers have the ability to capture IMSIs quicker 

when knowing the model of the target device. The work in this thesis provides the design 

of a testing environment along with the programs used to catch IMSIs and measure 

selection characteristics for analysis.  

B. RELATED WORK 

The work in this thesis aims to implement the characteristics of an IMSI catcher 

using OpenBTS [5] and software-defined radios (SDR) in a manner similar to the prior 

work discussed in this section. The 3rd Generation Partnership Project (3GPP) 

specifications [6]–[12] are the technical standards that provide the information necessary 

to set up a GSM test network and implement a set of IMSI catchers.  
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Several research works have examined the topic of IMSI catching. Many of the 

GSM attacks and all of the open source software available that makes IMSI catching both 

affordable and easily implemented on the GSM network are discussed in [13]. The work 

in [14] presented an analysis of the GSM traffic produced through OpenBTS and an SDR 

operating as an IMSI catcher. Strobel [15] discussed the different approaches to IMSI 

catching attacks on a GSM network and an approach for doing so on a Universal Mobile 

Telecommunications System (UMTS) network. 

The works of  Retterstol [4], Mruz [16], and Debrowski et. al. [17] all used a similar 

OpenBTS and SDR test platform to confirm that IMSI catching could be performed on 

devices using newer cellular standards. The works confirm the interoperability of networks 

between phone models. Retterstol [4] presents an implementation of an IMSI catcher that 

improves on the work of IMSI catching research predecessors. Retterstol [4] and 

Weinmann [3] also confirm more advanced malicious attacks that could be further 

implemented after or while catching an IMSI. Debrowski et. al. [17] and Mruz [16] broaden 

the scope of previous work to present an analysis of IMSI catching and methods to detect 

IMSI catchers. 

C. ORGANIZATION 

This thesis is split into five chapters along with seven appendix sections. A 

moderate review of the GSM architecture is performed in Chapter II, covering the 

functionality of everything from a subscriber identification module (SIM) card to the 

external networks of a local GSM network. Chapter III discusses the structure of the test 

environment as well as the investigative efforts that helped form the experiments. Chapter 

IV presents the results of the experiments. The conclusions made from the experiments and 

any future work that can stem from this thesis are discussed in Chapter V. Finally, the code 

used for the test environment and experimentations is revealed in the appendixes.  
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II. BACKGROUND 

The latest generations of smart phones and devices continue to possess the GSM-

era vulnerabilities due to their backward compatibility with the GSM technology. This 

chapter explores the fundamentals of GSM, its components, and the interactions that take 

place between those components. Within the discussion of the GSM components are the 

inner workings of a cell phone and a review of the architecture from the cell tower to the 

switching stations within a mobile network. The radio frequency (RF) resources and 

communication procedures required for the cell phone and cell tower to successfully 

communicate are also discussed. The chapter then concludes with an introduction to rogue 

base stations.  

A. MOBILE STATION  

The cell phone, referred to as a mobile station (MS), is composed of two parts. The 

first portion is called the user equipment (UE) in the 3GPP standards but is also commonly 

referred to as mobile equipment (ME). The UE works to meet the demands of the user 

through both the application and radio frequency (RF) interfaces. The second portion is the 

SIM card, housing important subscriber data and information that assists in initializing and 

maintaining communications [18]. The aforementioned sections work together to enable 

users to communicate within a mobile network. 

1. User Equipment 

The UE is identified by a globally-unique International Mobile Equipment 

Identifier (IMEI) and contains two major processors, an application processor and a modem 

[19]. The modem is frequently referred to as the baseband processor and the IMEI is more 

accurately the identifier for the modem within the UE [10]. However, it is quite commonly 

stated that the IMEI identifies the UE. The decision-making processes for MSs rely on 

these processors for maintaining connectivity and communications to a mobile network. 
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a. Application Processor and Modem 

Most modern smart phones contain two major processors mentioned previously as 

the application processor and the modem. The application processor handles the processes 

that have really given smart phones their “smart” label, such as the Android or iOS 

operating systems, the underlying Linux kernel, and all the applications downloaded from 

app stores [3]. However, once the user requires a cellular action, such as sending a text 

message or making a phone call, the responsibility for that action falls on the modem [19].  

The modem has the major responsibility of acquiring and maintaining a connection 

to a mobile network in order to perform cellular actions at a moment’s notice. It does this 

through three major sections of the modem: 1) the RF frontend, 2) the analog baseband 

section, and 3) the digital baseband section [19]. The RF frontend is shown in the blue 

section of Figure 1 and interconnects the MS with the air interface, which is a medium 

discussed in Section C. The analog baseband section is the orange section consisting of the 

integrated chip combinations necessary to perform two major functions. The first is to 

demodulate signals from the cell tower and send them to the digital baseband section. The 

second function is to convert the digital signals from the digital baseband section into an 

analog signal ready for the RF frontend to emit via the air interface [19]. The digital 

baseband system, highlighted in green in Figure 1, facilitates the communication between 

the application processor and the cellular network.  
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Figure 1. Inner Workings of a Quectel UC20 Modem 

b. Communication between Processors 

Smart phones with both application and baseband processors require a method for 

communication to flow between the two processors. For example, when a user uses the 

phone application on a smart phone to make a phone call, the application processor must 

somehow inform the baseband processor that a phone call needs to occur. This 

communicative process occurs by one of two layouts: either by having memory space 

shared between the two processors, or through using a serial link between processors, as 

shown in Figure 2 and described in [3], [19]. Much of the information about the architecture 

and specific communication protocols between the two processors is proprietary 

knowledge of the processor manufacturers. Most information that has been found is from 

thorough analysis work by security professionals and not provided by the manufacturers 

themselves [20]. 
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Figure 2. Processor Communication Architectures. Adapted from [3]. 

While the procedures for the processors are proprietary knowledge, there are 

standardized communication commands, known as attention (AT) commands, that are well 

known. The application processor uses AT commands as a way to request a cellular action. 

AT commands can also be used to request specific subscriber information from the SIM 

card. A considerably large number of AT commands have been approved under 3GPP TS 

27.007 [10], but it is worth noting that each modem may differ in its ability to carry out a 

specific AT command. Cellular modem manufacturers may have released manuals 

describing what specific AT commands are permitted and their usage for a particular 

modem model. This is the case for the UC20 modem displayed in Figure 1 [21]. 

The core processor within the modem processes and handles the functional AT 

commands [19]. Using Figure 1 as an example, the core processor is identifiable as the 

larger chip within the green section, the Qualcomm MDM6200. More recent modems, such 

as the Quectel EC20, have cores that run a Linux distribution from the OpenEmbedded 

[22] framework shown in [20]. This Linux distribution is designed specifically to run on 

an embedded device and is used to process the AT commands given to the modem, or more 

specifically the digital baseband processor within the modem, as described in [19]. 
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While most modems have a fairly standard layout, the ways in which all of these 

processors communicate with one another on a deeper level is not as well known. To further 

understand how the MS works together to perform basic cellular activities, it is important 

to also analyze the second component to the MS. Several situations exist where the modem 

may require information that is no longer stored on the UE, but instead stored on the SIM 

card. 

2. SIM Card 

Aside from the UE within the MS there is the SIM card, uniquely identified by an 

integrated circuit card identifier (ICCID) defined by ITU E.118 [23]. The SIM card itself 

may vary in size; however, it holds all of the subscriber’s information that is necessary for 

authentication and communication on a cellular network. Such information includes an 

IMSI, a temporary mobile subscriber identifier (TMSI), broadcast control channel (BCCH) 

information, a location area identity (LAI), forbidden public land mobile networks 

(FPLMN), preferred public land mobile networks (PLMN), an authentication key (Ki), etc. 

[24]. The vast information within the SIM card has a layered structure to support the 

necessary functions carried out by the modem. 

a. Important Elements Stored on a SIM Card 

One of the most important elements in the SIM card is the IMSI, which is used to 

identify a subscriber on a network. Within the GSM network the MS uses the IMSI to 

initiate a desire for connection to a network [24]. The IMSI is a 15-digit identifier that is 

composed of a three-digit mobile country code (MCC), two-digit mobile network code 

(MNC), and a ten-digit mobile subscriber identification number (MSIN) [25]. As the names 

suggest, the MCC identifies the country and the MNC identifies the network within that 

country. The MSIN indicates the subscriber under their home network defined by the MCC 

and MNC. Similarly, the network can temporarily assign a TMSI to be used in place of the 

IMSI. This was implemented as a way to provide some form of anonymity, in hopes that 

eavesdroppers cannot map the TMSI to the IMSI of the subscriber [25]. The Ki is a unique 

private key used to authenticate the subscriber on a network, a process that takes place after 

the IMSI has already been used to identify the user to a network [24]. Much of the work in 
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later chapters deals strictly with the processes that take place leading up to the IMSI being 

sent to the network for access to communications; therefore, authentication will not be 

discussed further here. However, the information regarding the BCCH information, LAI, 

and PLMN’s is explained in more detail in sections C.3, B.1, and B.3, respectively, of this 

chapter.  

b. Organizational Structure of the SIM Card 

The SIM card houses a file system, defined by GSM 51.011 [12], that is organized 

in a hierarchical structure with four main levels, shown in Figure 3. Each level can be 

identified by a two-byte file identifier. The master file (MF) on the top level holds the file 

identifier 3FXX and is essentially the root directory of all the files in the SIM card. The 

first level under the MF are dedicated files (DF) with the file identifier 7FXX, or 2FXX for 

elementary files (EF) on this level. The DFs are considered to be directories rather than 

files themselves as they are essentially the folders for the EFs or other DFs. The second 

level under the MF can also contain DFs and EFs, with file identifiers 5FXX and 6FXX, 

respectively. The third level will only contain EFs that are under their corresponding 

second level DF as 4FXX. The individual locations for information stored under an EF are 

known as binaries, or transparent files, and are displayed as an arrangement of bytes [12]. 

When the modem is attempting to acquire information from a SIM card, it will be reading 

the binary of an EF for that information. Likewise, if the modem needs to update 

information to the SIM card it will update the bytes of the EF binary.  
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Figure 3. SIM Card Filesystem. Adapted from [12]. 

The amount of information stored, along with their respective locations, is 

overwhelmingly large. Much of the information extends past the requirements for 

understanding the work of this thesis. However, the DFGSM–7F2X is the container for most 

of the important location and subscriber information for communicating on a GSM network 

[12]. The EFs that are of focus within DFGSM are: 6F07–EFIMSI, 6F74–EFBCCH, 6F7E–

EFLOCI, 6F7B–EFFPLMN, and 6F30–EFPLMNsel.  

The address space for EFIMSI simply stores the IMSI for the subscriber to use on a 

network, as defined by [12]. The 6F74 file identifier for EFBCCH, stores the neighbor cell 

information from system information two messages for both cell selection and reselection 

procedures [12]. Cell selection and reselection are discussed in more detail within Section 

C of this chapter.  

The location information EF, as defined in [12], stores four main elements of 

information within its address space: 1) TMSI, 2) LAI, 3) TMSI time, and 4) location 

update status. The TMSI had been briefly mentioned in Section A.2.a of this chapter and 

the LAI will be discussed in more detail in Section C. The TMSI time is a timer value 
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that is determined by the currently connected network. The time value counts down for 

the periodicity a MS should provide a location update to the network, specified in [9]. 

The location update status indicates whether or not the last location update attempt was 

updated successfully or attempted to provide a location update to a forbidden network 

[9].  

The service provider determines the addresses in the space dedicated for storing a 

list of FPLMNs and each FPLMN are three bytes in length [12], [26]. The provided space 

for FPLMNs are defined to be 12 bytes long, which means only four FPLMNs can be 

stored on the SIM card. Lastly, the 6F30 file identifier for EFPLMNsel allows for storing a 

list of preferred PLMNs in order of priority which a MS should use to search for [12]. 

The details of PLMNs are discussed in more detail in Section B. 

The UE and SIM card together form the MS that communicates on a 

cellular network and the UE uses a modem as the primary processer for doing so. The 

SIM card contains information stored in a hierarchical structure for the 

modems use in communicating with a GSM network.  

B. NETWORK ARCHITECTURE

The physical network beyond the MS itself consists of many components and

systems that can fundamentally be divided into three main subsystems, as shown in Figure 

4. The base station subsystem (BSS) manages the radio interface infrastructure, providing

the resources for communication flow to and from the MS. The network and switching

subsystem (NSS) connects the BSS to the external network and handles the user data traffic

flow [24]. The final subsystem is the Operation and Maintenance Center (OMC), which

will not be discussed at length since it is outside the scope of this thesis. The OMC

interfaces with the subsystems of the GSM architecture for network maintenance and

subscription management. Together, the subsystems work to enable communication flow

between users [18].
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Figure 4. GSM Architecture. Adapted from [18]. 

1. Base Station Subsystem 

As briefly mentioned earlier, the BSS provides the necessary radio infrastructure 

for a location area (LA) and is broken down into two main stations. The first element is the 

base transceiver station (BTS) and the second element is the base station controller (BSC) 

overseeing the BTSs within a LA [25].  

The BTS is commonly recognized from their antennae as the cell tower and is the 

first communication element for the MS on the GSM network. Geographic locations of a 

network are divided into cells, each containing a BTS [24]. The BTS is in charge of the 

signal processing that is required for relaying uplink and downlink communication to the 

MS’s within its cell. The size of each cell is not standardized, since things like population 

density and geographic features of the location are some of the many factors in determining 

cell tower locations and their individual breadth of responsibility [24]. 

The BSC controls and manages a group of BTSs for a LA and is identified by a 

LAI. The LAI itself is comprised of the MCC, MNC, and location area code (LAC), defined 

in [8]. The BSC primarily relays communications and to carry out that main objective, the 

BSC must manage and maintain connectivity to MSs [24]. For example, the BSC handles 
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the connectivity transition, or handoff, between cells when a MS is moving from cell to 

cell within a LA. The BTSs directly interface with the MSs on the air interface via physical 

channels and logical channels. The BSC is overall in charge of the management and 

allocation of those physical and logical channels as well as the traffic sent to and received 

from the next subsystem [24]. 

2. Network and Switching Subsystem 

The NSS handles the switching of the user data traffic flow throughout its territory 

by using many important elements. The first element is the mobile switching center (MSC) 

controlling the traffic flow to the appropriate LAs. The other four elements are one 

authentication center (AuC) and three registers. Those three registers are known as the 

equipment identity register (EIR), home location register (HLR), and visitor location 

register (VLR). The AuC and registers store information or perform a specific function for 

the MSC on the GSM network [18]. 

a. Mobile Switching Center 

The MSC handles the large amount of user data traffic, but additionally has to work 

together with the BSS to handle radio resource allocation to the MSs [24]. There is a 

difference between maintaining radio resource allocation at the BSC level versus the MSC 

level. Recall the scenario described for the BSC maintaining communication for an MS as 

it moves from cell to cell in a LA. The radio resource allocation and management at the 

MSC level occurs when a MS is moving from a cell that is in one LA to an adjoining cell 

that is in a different LA. The MSC oversees a group of BSCs, each in charge of their 

respective LAs. Frequently, a Gateway MSC (GMSC) is used to group MSCs and provide 

the bridge to the external networks. The GMSC and MSC level also maintain specific 

databases used to perform the other necessities for a cellular network [24]. 

b. Databases 

As mentioned earlier, aside from the MSC there are four other elements within the 

NSS: AuC, EIR, HLR, and VLR [24]. The AuC has the sole purpose of authenticating 

subscribers to a network. The UE itself does not technically go through an authentication 
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procedure like the SIM card does with the AuC. However, the EIR contains lists of IMEIs 

to determine authorization of UEs on a network [24]. This is helpful in situations such as 

the case of a stolen phone. The HLR and VLRs have a similar relationship with each other 

since subscriber information such as the IMSI, locational data, and phone number are 

stored in both the HLRs and the VLRs. The major difference between the two registers is 

that there is one HLR for a network while there is typically a VLR for every MSC in the 

GSM network. The VLR dynamically changes as MSs move throughout its purview. For 

instance, when a MS attaches to a network in a new LA, the VLR servicing the MSC in 

that LA will add the subscriber and its location to its records. The VLR as well can assign 

a TMSI, for the MS to use instead of using an IMSI as a form of identification while it is 

in the VLR’s LA [24].  

3. Public Land Mobile Network 

A PLMN encapsulates a GMSC and all of its attached subsystems, also shown in 

Figure 4. The PLMN is identified by two elements mentioned before as the MCC and 

MNC, or the country and region that defines the borders of that PLMN [25]. A single 

PLMN is essentially a container for a group of MSCs belonging to a network provider 

within a defined geographic region. The PLMN technically is not a physical component on 

a network, but rather a collection of components that organizes and sets boundaries for 

users to access cellular services under a telecommunication provider [24]. 

C. UM INTERFACE 

The first sections discussed most of the physical elements of a GSM network 

without clarifying how the network itself is connected to the MS. The Um interface links 

the MS and the BTS, with more common references as the air, radio, or RF interfaces. This 

section first provides an introduction to the physical and logical layers of the air interface, 

and then discusses the elements that allow the physical and logical layers to work. The 

layers of the air interface allow for the transmission of data, which includes the data for 

cell selection and reselection. Additionally, the layers of this air interface work together to 

create a functional link between the MS and BTS in order to enable and maintain 

communications, tying the MS to the GSM network [24]. 
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1. Physical and Logical Channels 

As previously mentioned, geographic regions of a network are further divided into 

cells that ensure communication coverage to the bounds of each cell. Furthermore, those 

cells enable communication to take place using portions of the RF spectrum. For GSM, the 

cells are limited to operating within four main bands and their dedicated absolute radio 

frequency channel number (ARFCN) ranges, as shown in Table 1. ARFCNs will be 

discussed further in Section b, however, there are other outdated bands or extensions that 

are not shown. For relevancy to later chapters of this thesis and simplicity, the discussion 

will focus on the bands within Table 1. The air interface for those bands takes advantage 

of both frequency division multiple access (FDMA) and time division multiple access 

(TDMA) [24]. Combining these access methods enables multiple users to communicate at 

the same time, and to efficiently use a limited range of bandwidth. 

Table 1. GSM Bands and Channels. Adapted from [24]. 

Band Uplink Range (MHz) Downlink Range (MHz) ARFCNs 

850 824–849 869–894 128–251 

900 890–915 935–960 1–124 

1800 1710–1785 1805–1880 512–885 

1900 1850–1910 1930–1990 512–810 

 

a. Physical Layer 

The physical layer is formed by first dividing the available air interface into the uplink 

and downlink ranges, provided in Table 1. Uplink refers to the communications that are 

going from the MS to the BTS. The downlink is for communications from the BTS to the 

MS [24]. For the case of the 900 band, shown in Figure 5, there is a 45 MHz offset between 

the two ranges. The offset is used to avoid any interference of communications between 

the two physical ranges. The physical channels, also referred to as carrier frequencies, are 
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created by using FDMA to further divide the downlink and uplink ranges into channels of 

200 kHz bandwidth each [24]. 

 
Figure 5. Uplink and Downlink Spectrums for Band 900 

b. Logical Layer 

Sitting on top of a physical channel is a TDMA frame containing eight timeslots 

(0–7) that are each allotted 576.9 µs of transmission time, shown in Figure 6. The TDMA 

frame must go through a constant rotation of its eight time slots within its physical channel, 

since time slots will only be able to transmit data on each of their individual turns [24]. The 

eight time slots together have an overall period of approximately 4.62 ms and each time 

slot will have to wait 4.038 ms before its next turn. The logical layer then operates on top 

of the physical layer through the use of logical channels and bursts [18].  
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Figure 6. Physical and Logical Channels. Adapted from [18]. 

(1) Logical Channels 

A type of logical channel will be used during a timeslot to send information to a 

specific target. As made apparent from Table 2, a variety of logical channels are organized 

into main two groups [18]. One group consists of traffic channels (TCH) which are used 

for transmitting data and speech at half or full rates. While a full-rate TCH supports only 

one user at a time, a half-rate TCH may be shared by two users. The other group contains 

control channels (CCH), which are also referred to as signaling channels. The CCHs are 

used to transmit the signaling and synchronization data necessary for establishing and 

maintaining communications with local MSs. The CCHs are further subdivided into three 

types: broadcast channels (BCH), common control channels (CCCH), and dedicated 

control channels (DCCH) [18].  

The BCH channel type is broadcast by the BTS on the downlink in order to provide 

the network information MSs need to make decisions for cell selection/reselection. The 

BCH channels consist of broadcast control channels (BCCH), frequency correction 

channels (FCCH), and synchronization channels (SCH) [18]. The CCCHs are used to 

provide an avenue of communication between the BTSs and the MSs that are not assigned 
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a dedicated channel through the use of random-access channels (RACH), access grant 

channels (AGCH), paging channels (PCH), and notification channels (NCH). Finally, there 

are three various types of DCCHs, known as stand-alone dedicated control channels 

(SDCCH), slow associated control channels (SACCH), and fast associated control 

channels (FACCH) [18]. 

Table 2. Logical Channels. Adapted from [18]. 
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Many of the time slots of the physical channels are assigned to dedicated traffic 

channels in order to provide and maintain lines of communications to authorized MSs in a 

BTS cell. Accordingly, in the case of dedicated channels for a given user, there is a 

downlink timeslot on a downlink physical channel and an associated uplink timeslot on an 

uplink physical channel [24]. For the uplink and downlink pair, the uplink timeslot is 

delayed from the associated downlink time slot by a span of three timeslots. The delay is 

required in order to avoid having the MS transmit and receive at the same. The physical 

channel pairing available for use as dedicated user channels are known as ARFCNs. If the 
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ARFCN is known, the carrier frequency for the physical channel on the uplink and 

downlink can both be calculated using 

 

, 

with the 900 band again as the example, given in [24]. Likewise, for the 900 band the 

ARFCN can be calculated using 

, 

when the frequencies of either the uplink or downlink are known. 

(2) Bursts 

When data is being sent during a time slot by a logical channel, the data is sent in the 

form of bursts [18]. A burst has a length of 156.25 bits, including the duration of bits 

dedicated for the guard period. The bursts can take the form of one of five standard formats 

shown in Figure 7. The normal burst is used to transmit speech data or signaling 

information depending on the channel type that uses it. Before a MS can transmit 

information with a BTS, it must first be able to find the BTS. The frequency correction 

burst works to accomplish this by using 142 of the 156.25 bits to broadcast a specific 

waveform. The MS uses the broadcasted waveform to tune its oscillator to the correct 

frequency of the BTS. As well, an MS is required to align with the time of the BTS, which 

is accomplished through the use of the synchronization burst. The synchronization burst 

provides the MS the 64-bit synchronization sequence necessary for BTS time alignment. 

The next burst option is the dummy burst and is only used when no data needs to be sent 

to fill the timeslot on the downlink. The access burst is the final burst type and is 

exclusively used for the RACH by the MS [18]. 
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Figure 7. Burst Type Standards. Adapted from [18]. 

c. Channel 0 Timeslot 0 

Physical and logical channel combinations existing on specific time slots generally 

serve a specific purpose. Physical channel 0 and timeslot 0 (C0T0) is an essential downlink 

channel and timeslot combination for the cell selection and reselection process which will 

be discussed in Section 2 of this chapter. This combination, also known as combination V, 

blends specific logical channel types for the purpose of enabling MSs to find and initiate a 

line of communication with the BTS, a vital requirement for rogue base stations. 

Combination V commonly takes the form, defined by GSM 5.02 [6], as: FCCH + SCH + 

BCCH + CCCH + 4 SDCCH + 4 SACCH. An example of the channel combination order 

is provided in Figure 8. 

 
Figure 8. Combination V Example for C0T0 Downlink. Adapted from [18]. 
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As seen in the implementation of combination V in Figure 8, the FCCH is the first 

channel type to broadcast data on C0T0. The FCCH uses the frequency correction burst to 

allow the MS to tune to the correct frequency [18]. The SCH is then used to send a 

synchronization burst on the next go around of C0T0s turn, to align the MS with the time 

of the BTS. The BCCH is next and emits four normal bursts worth of data during C0T0s 

next four turns. The four BCCH bursts are used to send one system information (SI) 

message and is done so to prevent burst errors through an interleaving process that spreads 

the data across the four bursts [18].  

The standard provides six main SI types; however, SIs one through four are the 

ones broadcast regularly. The four main SIs contain important information about the 

network with a great deal of overlap between them [11]. For the sake of continuing the 

discussion on channels, more details of the SI messages will be provided as they become 

relevant. For now, the important detail provided within the SI messages concerns the 

RACH. The RACH is under the CCCH type and is also the only uplink CCCH type. The 

details of the RACH for communicating with a BTS are provided within one SI transmitted 

from the four BCCH bursts. The purpose of the RACH is to provide an avenue for the MS 

to request a SDCCH from the BTS [18]. 

Moving back to the downlink timeline, the next four bursts after the four-burst 

BCCH are for the CCCH. The RACH is an uplink CCCH, therefore the channels meant for 

the CCCH type on the downlink can only be a AGCH, PCH, or NCH [18]. AGCHs are 

used to assign a SDCCH to the MS. Just like the BCCH, the AGCH requires four bursts to 

transmit a channel assignment message to the MS containing the SDCCH details for a 

temporary line of communication. The PCH and NCH are only used as ways to find or 

notify a MS within the cell.  

The next two bursts are another FCCH and SCH, followed by eight CCCH bursts 

before another two FCCH and SCH pair. These are extra opportunities provided to MSs to 

correct, synchronize, and/or get access to a dedicated channel since the next eight bursts 

are for two SDCCHs, four bursts for each SDCCH. These SDCCHs are again followed by 

another pairing of the FCCH and SCH with one more set of two SDCCHs (eight bursts). 

One last FCCH and SCH are followed by two SACCHs, at four bursts each, and one idle 
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burst to finish a 51-burst cycle. Since a time slot is required to emit a burst even if there is 

no data to send, the idle burst is one example that uses the dummy burst. Combination V 

requires support for four SACCHs; therefore, the entire 51-burst frame from Figure 8 is 

repeated [18]. The SACCH (0) and SACCH (1) will then be SACCH (2) and SACCH (3), 

respectively. The SACCHs are used to provide the MSs within the cell, signaling and 

channel measurements and are continuously doing so on the SACCH turns. To send one 

full 51-burst frame of combination V should take around .231 seconds, with 50 bursts * 

(576.9 𝜇𝜇s burst period * 8 time slots) + 576.9 𝜇𝜇s for burst 51 of C0T0. Therefore, two 

cycles of combination V to include the transmission of all four SACCHs, takes 

approximately .467 seconds. 

If the BTS uses this configuration for C0T0, the MS has one opportunity to gather 

the four BCCH bursts with the necessary information. Otherwise, the MS will have to wait 

through what is remaining of the 51-burst cycle before repeating to get the next round of 

BCCHs. This requirement is due to the necessity of getting the RACH information, so the 

MS knows the avenue to request for a dedicated channel. Once the channel is given to the 

MS from the AGCH, the MS can then go through a location update procedure with the 

BTS if it selects that cell for services [24]. The location update is initialized by sending the 

IMSI to identify the subscriber to the servicing network, as shown in Figure 9. A discussion 

of procedures such as a location update and cell selection/reselection is found in Section 

C.2. 
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Figure 9. Simplified Process for Initializing Location Update 

In summary, the physical and logical layers provide the medium and the resources 

necessary to communicate over the air interface. In GSM, the air interface is a layering of 

TDMA on top of FDMA to send bursts of data through a channel during a turn on a time 

slot. The bursts and channels vary in purpose to achieve the overall goal of being able to 

establish a line of communication and then provide communication services to valid MSs 

anywhere GSM infrastructure exists. Attackers must also provide the radio resources 

discussed here for MSs to find and connect to rogue base stations, using the process 

described in the next section. 
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2. Cell Selection and Reselection 

The previous sections helped provide the insight into how MSs find and 

communicate with a network using the air interface to the BTS. However, the MS is always 

required to ensure it is connected to the best cell for services. This requirement is due to 

the likelihood that MSs will be moving at any point in time and may need resources for 

communication during this period of mobility. The MS periodically goes through the 

searching process, discussed in the Section C.1.c, and then makes a decision regarding the 

best cell found [18]. The searching process is also referred to as the cell selection/

reselection process. The decision-making process for cell selection and reselection first 

requires a collection of SIs from all the nearby cells. If the MS is already connected to a 

network, the current cell information is also required. The information within the SIs are 

then used for measurements in selecting the best cell for services [18]. 

MSs begin by scanning for the frequency correction bursts of known bands for 

service. The modem will check the SIM card for information on the last network it was 

connected to in order to scan for those options first. If there is no information about the 

network stored, then the modem will have to scan the entirety of serviceable ranges for 

options. Once a beacon is found, the MS will go through the normal frequency and timing 

alignment process to wait for the SI message from the BCCH that contains the RACH 

information. This process recurs for the six strongest beacons found and the MS will then 

sort the options based on PLMN validity and the main criterion of transmission quality. 

The MS will check the PLMN received from the SI against the list of FPLMNs and 

preferred PLMNs stored, if any, in the SIM card. The signal quality is a measurement of 

power of the received information signals to calculate the path loss criteria (C1) using 

C1 = [A – Max(B, 0)], 

where A = RLA_C – RXLEV_ACCESS_MIN 

and B = MX_TXPWR_MAX_CCH – MS Max Transmitter Power. 

The option with the highest C1 will likely be selected [7]. 
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The RLA_C is a running average of at least five received signal levels at the MS. 

The RXLEV_ACCESS_MIN is the minimum received power threshold required for 

network access, sent by the BTS [18]. The MX_TXPWR_MAX_CCH is the maximum 

transmission power that the MS is permitted by the network to use to send information on 

the RACH [18]. All of these values are in decibels (dB) and the signal with the highest 

positive C1 will be the selected cell. The C1 criteria is primarily used for cell selection, 

such as when a MS is powered on or is no longer in airplane mode. However, when a MS 

is already connected to a cell, the C2 criteria calculated from 

C2 = C1 + CELL_RESELECT_OFFSET – (TEMPORARY_OFFSET * H(x)), 

where x = PENALTY_TIME – T.  

 

is instead used [18]. Notice that the C2 criteria take the C1 criteria into consideration; 

therefore, both must be measured at regular intervals for cell reselection. The new values 

introduced in C2 (CELL_RESELECT_OFFSET, TEMPORARY_OFFSET, and 

PENALTY_TIME) are provided in the SI messages broadcasted on the BCCH [7]. Once a 

cell is deemed to be a strong candidate, the value T is the timer value that indicates the 

amount of time that has passed since it was determined as such. Just as with C1, the cell 

with the highest positive C2 value will likely be selected [7].  

All of the physical components of the GSM network have been introduced from the 

MS through the subsystems. The air interface that directly links the MS to the network 

provides the frequencies and channels for communication. However, it is up to the MS to 

maintain its own connection to the network as it moves from cell to cell. The specifications 

have primarily defined cell selection and reselection decisions to be made based off of the 

power levels of received BTS signals. From the literature, it remains unclear what a UE 

does when it cannot use power levels as a judge for cell selection and reselection 

procedures. The focus of our work is to examine the MSs BTS selections when the MSs 

receive equivalent power in order to determine if MSs have designed preferences. 
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D. ROGUE BASE STATIONS 

A review of the GSM architecture reveals that the MS does not interface directly 

with any components of the GSM network beyond the BTS since all communications 

traverse through BTSs. This review also reveals that the MS does not authenticate a GSM 

network nor its components. An attacker can leverage this lack of authentication by using 

a rogue base station to capture IMSIs, which can then be used to track targeted devices or 

further malicious intentions [4]. Rogue base stations replicate authentic BTSs primarily 

through SDRs and open source software that mimics legitimate air traffic.  

1. Software-defined radios 

The creation of SDRs has turned IMSI catching from what used to be an expensive 

attack into a relatively cheap and easy one. SDRs are radio devices that can be configured 

and controlled by computer software [4]. One common SDR is the Universal Software 

Radio Peripheral (USRP) designed by Ettus Research [27], which can cost around $1500 

[4].  

The daughterboards of SDRs allow the SDRs to operate within a frequency range 

dictated by the daughterboard, with an example shown in Figure 10. The daughterboards 

can be designed to operate in one band or several of the available frequency bands. The 

SDRs are then configured for operation as a base station through the use of OpenBTS. 
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Figure 10. SDR daughterboard Outlined in White 

2. OpenBTS 

OpenBTS is open source software developed by Range Networks to provide a 

network for testing. The software was also designed to provide future opportunities for low 

cost cellular service options [28]. OpenBTS uses SDRs to emit all of the standard 3GPP 

traffic over the air interface [5]. The standard traffic includes providing combination V on 

C0T0 and maintaining the SI messages sending network information necessary for RACH, 

C1, and C2 calculations [29]. Pairing the open source software with inexpensive SDRs 

enables IMSI catching attacks to be carried out with cheap implementations. 

3. Past Implementations 

Several works have successfully created and implemented rogue base stations that 

illustrate many important conclusions, however, only a few will be discussed here. The 

similarity of the prior work proves IMSI catchers can be built using relatively inexpensive 

SDRs and open source software such as OpenBTS. Mruz [16] and Debrowski et. al. [17] 

show that devices designed for newer standards are backwards compatible to older mobile 
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networks. The work presented by Retterstol [4] demonstrated the ability to selectively jam 

a subscriber while catching an IMSI. As well, Retterstol was able to perform denial of 

service attacks on subscribers of a specific network while catching the IMSIs. The work 

provided by Weinmann [3] analyzes the ability to remotely corrupt the memory of mobile 

devices using rogue base stations. The authors of [2] use a similar rogue base station 

approach to perform attacks on mobile devices in 4G and 5G networks. 

Overall, the growth of technology has both decreased the cost to implement rogue 

base stations and enabled more advanced threats using rogue base stations. The work in 

this thesis aims to leverage the inexpensive hardware implementations and uncertainty in 

GSM standards to determine if mobile devices have air interface preferences, enabling 

attackers to profile their targeted device for faster capture.  

 
 
 



30 

THIS PAGE INTENTIONALLY LEFT BLANK 



31 

III. EXPERIMENT SETUP 

Chapter I provides the motivation for this thesis with a brief introduction to IMSI 

catchers, rogue base stations, and their threat to mobile subscribers. Chapter II provides the 

background information necessary for understanding how GSM operates through a review 

of each of its components and subsystems. The information in Chapter II also highlights 

the components of a MS used for decision making as well as the frequency and channels 

required for communication. This chapter presents the experiments designed to determine 

if the modem of a MS has frequency and channel preferences that could be used to profile 

a targeted device. This chapter also describes the test questions and the setup of a controlled 

testing environment.  

A. TEST QUESTIONS 

This thesis uses OpenBTS and SDRs to create IMSI catchers in a similar manner 

to previous work. However, we extend prior work to present a program that can configure 

and implement IMSI catchers on multiple base stations for specific analysis goals. The 

created test environment encapsulates the base stations, eliminates standard decision-

making factors, and provides multiple frequency and channel configuration options using 

the base stations. The IMSI catching program developed for this thesis also records the 

configuration information of the base stations chosen by the modems to permit analysis of 

the decision-making patterns. If the modems have preferences, we will then work to 

determine whether attackers can create profiles for phone models based on three main 

questions: 

1. Do modems have a frequency band preference? 

2. Within a preferred frequency band, do modems have a channel preference? 

3. Using the preferences of one and two, what are the effects on IMSI capture 

speeds?  



32 

The first experiment is used to determine if the MSs have frequency preferences 

when the available cell options are at the same power level and have no other information 

to help make a decision. The next experiment requires the frequency band preference 

revealed during the first experiment. The second experiment is designed to determine if the 

MSs prefer a physical channel within a frequency band.  

The final experiment requires the preferences from the first two experiments to 

establish if the channel and frequency preferences decrease the amount of time it takes to 

capture an IMSI. In order for us to accomplish this, two approaches are required. The first 

approach uses the preferred frequency from the frequency test and the preferred channel 

from the channel test as the configurations, then we examine the IMSI capture speeds. The 

second approach randomizes channels with the four GSM bands and is again focused on 

examining the speeds of the IMSI catches. We will compare the speeds of the two 

approaches to determine if preferences make a difference in terms of speed of IMSI 

capturing.  

B. TEST ENVIRONMENT 

The testing environment is designed in a way that does not risk the privacy of 

legitimate users. Instead, we replicate a GSM environment within a controlled 

environment. The testing environment, as shown in Figure 11, is made up of two core 

networks to accomplish that requirement. The test network works to mimic an actual GSM 

network from the MSs to the BTSs. The control network provides the ability to configure 

portions of the network and capture the information necessary for analysis. Encapsulating 

both networks in a Faraday cage limits extraneous interference on the two core networks 

and prevents the core networks from interfering with legitimate mobile networks. 
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Figure 11. Experiment Environment
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1. Test Network 

Since the MS does not interface directly with any components of the GSM network 

beyond the BTS, a GSM network can be replicated by using SDRs and OpenBTS for the 

components shown in Section A of Figure 11. For this, we use a set of IPLinkME [30] 

SDRs, similar to the USRPs by Ettus Research. The daughterboards within the SDR are 

only able to cover the 850 MHz and 900 MHz or the 1800 MHz and 1900 MHz ranges at 

any given time. To reconfigure frequency band during experiments, several daughterboards 

of both ranges are interchanged as required. Having the multiple daughterboards of both 

ranges also provides coverage of all four GSM bands.  

Using OpenBTS, the SDRs provide the necessary GSM network resources for MSs 

to connect to a network on the air interface, labeled Section B in Figure 11. The initial 

configuration for OpenBTS is provided in Appendix E. Some minor interfacing in Sections 

C and D of Figure 11 provides control for eliminating stored information that is used to 

make cell selection decision-making easier for the modem. Since we cannot access that 

information directly through the MS, a Quectel UC20 modem [31], displayed in Figure 12, 

is used to eliminate information in the EFs of the SIM card. 

 
Figure 12. UC20 for SIM Configuration 
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For our setup the application processor is emulated using minicom 2.7 [32] on a 

Linux workstation to send the AT commands that modify the necessary EFs of the SIM 

cards. Together, minicom and the Quectel UC20 modem represent Section C of Figure 11. 

The SIM cards for Section D of Figure 11 are an assortment of Range Network blank SIM 

cards [33]. These SIM cards are reprogrammable testing SIM cards and are configured 

using a combination of pySim [34] and minicom 2.7. The configurations for pySim and 

minicom are shown in Appendix A and Appendix B, respectively.  

2. Control Network 

The control network within the test environment has three main responsibilities: 1) 

configure, 2) capture, and 3) analyze. The three responsibilities are split amongst a primary 

workstation and the set of four secondary workstations that each interface with an SDR. 

The workstations are connected via a local area network (LAN) and their time is configured 

for synchronization using the Network Time Protocol (NTP) [35], provided in Appendix 

C. Using NTP ensured the workstations had as close to the same time as possible, without 

worrying about having the most accurate current time.  

We created a set of C and python programs that configures the test network, 

captures the IMSI, and logs the information for analysis. The set of programs accomplish 

all three responsibilities for the control network. The C and Python code are provided in 

Appendix F for the primary workstation and Appendix G for the secondary workstations. 

The programs work together to supply a configuration mode and capture mode, providing 

the necessary data for analysis. 

a. Configure 

 The main purpose of this mode is to configure the SDRs according to what the 

experiment requires. An operational flow chart for the configuration process is shown in 

Figure 13. Configuration mode first requires that the secondary workstations are running 

the script since the primary will check the status of those workstations through a health 

check. If the health check fails, the program will wait to provide time for troubleshooting 

connections. Once the health check is complete, the program, will ask if the ARFCN 

assignments will be randomized during configuration. Randomization for ARFCN 
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assignment allows for flexibility of various experimentation methods. If selected, the 

program only requires the user input of a valid GSM frequency band from the 850 MHz, 

900 MHz, 1800 MHz, and 1900 MHz options. Each host then receives their assigned band 

and the randomly selected ARFCN for that band to configure the associated SDR. 

The secondary workstations each display the results of configuration in case the 

configuration failed. The secondary workstations then exit configuration mode and 

continue immediately into capture mode. However, if the ARFCN randomization option is 

not selected, user input for both a valid band and channel are required for each workstation 

to configure their SDR. The secondary workstation then goes through the same procedure 

of exiting and continues to capture mode.   
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Figure 13. Configuration Mode Flow Chart 

b. Capture 

The primary goals of capture mode are to capture an IMSI and relay the significant 

data back to the primary workstation for analysis, following the operational flow chart 

shown in Figure 14. The program provides the ability to either directly enter capture mode 

without first using configuration mode or transition into capture mode from configuration 

mode. Having the option to go directly into capture mode is faster to use for the 

experiments that do not require configuration between every phone or round. Every phone 

will be tested individually, and a round is completed once all phones have been tested 

individually one time through. 
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Figure 14. Capture Mode Flow Chart 

Once the secondary workstations and primary workstation are in capture mode, the 

secondary will immediately set up the packet sniffer to sniff the air interface for the first 

instance of a location updating request message. The packet sniffer looks for the specific 

bytes to identify the correct packet on the network. 

After many trials using Wireshark [36], we determined that bytes 01 3f 49 05 

08 are the fingerprint for the desirable packet, with 01 3f 49 highlighted in Figure 15 

and 05 08 highlighted within the same packet in Figure 16. These bytes are the minimum 

bytes required for ensuring the packet captured is a location updating request message of 

the link access procedure (LAPDm). This message contains the first instance of an MS 

IMSI being sent on a network. Using the minimum number of bytes also ensures that the 

bytes chosen will not differ by later headers in the message. 



39 

 
Figure 15. Wireshark Packet Capture Location Update Part I 

 
Figure 16. Wireshark Packet Capture Location Update Part II 

It is important to note that while the packet sniffer is immediately set up once the 

secondary workstations are in capture mode, this does not mean the experimental round 

has begun. Prior to the experiment, the MSs for testing are placed into airplane mode to 

prevent any network transmissions. The devices are then labeled with a test number to 
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identify them in the data later on during the analysis stage. For each MS round, its 

associated test number is entered on the primary workstation program. 

In order to initiate the round, the primary station takes in the return key input from 

the user while the user simultaneously toggles the MS off of airplane mode. These two 

actions start the round and allow a MS to interact with normal network transmission 

procedures. The program timestamps immediately when initiated to indicate the start of the 

round for future measurements. The primary workstation then waits for the IMSI catch data 

from a secondary workstation. Once one of the base stations finds the bytes indicating an 

IMSI has been caught, it will timestamp the capture and relay the information to the 

primary. This process is discussed further in Section c. 

After receiving the relayed information, the primary will measure the delta time 

between the start time and the time stamp of the IMSI catch provided by the secondary 

workstation. The primary logs both the delta time and other relayed information from the 

secondary. For the final step, the primary will then send a “STOP” message to all of the 

secondary workstations to force exit their program, completing capture mode. 

c. Analyze 

The final requirement of the control network concerns the analysis of the 

information, as shown in Figure 11. The purpose of this thesis is to determine how a modem 

selects a specific BTS when it does not have power differences and SIM card information 

to help decide. A spectrum analyzer, shown in Figure 17, is used to ensure the MS sees 

equivalent power from the provided base station options. The spectrum analyzer is placed 

at the location where all base station power levels are equivalent.  
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Figure 17. Spectrum Analyzer 

The final subset of the control network analysis section is the information that is 

relayed to the primary when an IMSI is caught. The secondary relays the time of the IMSI 

catch along with the band, channel, and IP address of the base station that captured the 

IMSI. The information that is relayed to the primary is then formatted and stored as a .csv 

file for later analysis.  

To review, the test environment is contained within a Faraday cage to prohibit test 

network interfere with legitimate networks and prevent legitimate networks from 

interfering with the test environment. The test environment was further divided into the 

test network and the control network. The test network recreates a GSM network while the 

control network accesses portions of the test network for experimentation and analysis.  

C. EQUIPMENT 

This final section of Chapter III provides a listing of the equipment used throughout 

the experiments. In summary, the test environment equipment used against the test phones 

within the Faraday cage included: 

• 1 Primary Workstation: HP ProBook PC, Linux Ubuntu 16.04 LTS 

• 4 Secondary Workstations: Asus Notebook PC, Linux Ubuntu 12.4 LTS 

• 4 IPLinkMe SDRs 
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• 1 Switch and 5 Ethernet Cables for the LAN 

• 1 Spectrum Analyzer: Agilent Technologies MXA Signal Analyzer, N0902A 

• 1 Quectel UC20 Dedicated to Template SIMs 

with various phone models discussed in Chapter IV. Figure 18 displays the equipment used 

in a workspace diagram. 

 
Figure 18. Workspace Diagram 
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IV. RESULTS 

Chapters I and II provide the purpose and background for this thesis. Chapter III 

explains the questions that influenced the design of the test environment and details the 

programs and equipment used by the test environment. This chapter explains the pre-

experiment dry runs used to solidify the test environment in addition to the experiments 

designed in Chapter III. For the first experiment, we cover the objective, process, and 

results of the frequency band test. Next, we detail the objective, process, and results of 

experiment two, the channel test. Finally, we use the frequency test and channel test 

preferences from experiments one and two to configure and execute our third experiment. 

In experiment three, we attempt to compare the speed of IMSI catching using the 

preferences against the speed of IMSI catching using random valid assignments. 

A. PRE-EXPERIMENT TESTING 

The purpose of the experiments is to determine if MSs have a frequency and 

channel preference for cell selection. To accomplish our experiments, we first have to 

establish a range of phone manufacturers for testing. Then we must work to eliminate and 

control the EF binaries that affect cell selection decision-making throughout the 

experiments. Additionally, the MSs must sense equivalent power from all base stations to 

minimize decision-making based on receiver power and reveal any frequency preferences. 

Finally, we work to minimize the time per round for each experiment so we can maximize 

the number of rounds that can be performed as well as the number of test devices that will 

be used for experimentation. 

1. UE 

The experiments in this thesis first require procuring a set of devices that represent 

a range of manufacturers as well as different options within the same manufacturer family. 

The list of devices acquired for our experiments is shown in Table 3. This table includes 

devices of different manufacturers as well as devices that are from the same manufacturer 

but different models. Additionally, we include devices that are from the same manufacturer 

and model family to see if manufacturers may change their modem design based on the 
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region of service. Region-based modem differences may also include hardware or software 

upgrades. 

Table 3. Pre-experiment UE Devices 

Phone Manufacturer Model 

Samsung Galaxy SII—English 

Samsung Galaxy SII—Spanish 

Huawei Honor 

Apple iPhone 3 

Apple iPhone 6 

Quectel UC20 

 

The Samsung Galaxy SII phone is an example of a manufacturer that created 

different options within the same model family. Samsung appears to have made at least 

two different options within the Galaxy SII model, according to the labels displayed in 

Figure 19. We discovered the labels behind the batteries inside of the phones were printed 

in two different languages, Spanish and English. Use of the phones reveals no obvious 

differences and the manufacturing labels indicate they are the same GT-I9100 model. We 

chose this Samsung Galaxy SII (SGSII) model with the English and Spanish labels to see 

if either manufacturing location or intended use location cause differences in cell selection.  
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Figure 19. Samsung Galaxy SII: Spanish vs. English 

The Apple iPhone 3 and iPhone 6 model types allow us to test if band and/or 

channel preferences can change when a manufacturer upgrades the hardware and software 

of their devices. The Huawei Honors extend our range of cellphone manufacturers tested 

while the Quectel UC20s expand the scope of this research to include testing a cellular IoT 

device. 

2. SIM Card Binaries 

Several trial rounds revealed that the EF binaries changed after cell selection. An 

example shown in Figure 20 displays many of the EFs discussed in Chapter II. The 

examples shown are produced using minicom and seeSIM.txt from Appendix B.B. 
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Figure 20. seeSIM.txt EFs 

Five test rounds using three of each of the devices in Table 3 were used to determine 

the EFs that are updated after cell selection, with the results in Table 4 and an example of 

EF changes in Figure 21. The results from the five test rounds show that all three Huawei 

Honors were affected every round. Two out of three Quectel UC20 devices were updated 

every round while one SGSII Spanish device was affected by only one round. The Apple 

and SGSII English devices were not affected by any of the five test rounds. 

Table 4. SIM Cards Affected Five Rounds 

Number of Models 
Affected Model Affected Number of Rounds 

Affected Areas Modified 

1 of 3 Samsung Galaxy 
SII—Spanish 1 of 5 LOCI 

3 of 3 Huawei Honor 5 of 5 BCCH and LOCI 

2 of 3 Quectel UC20 5 of 5 LOCI 
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Figure 21. Two Examples of EFBCCH and EFLOCI Post Cell Selection 

The results of Table 4 confirm that the information within the SIM card is affected 

by cell selection. To ensure consistency, we chose to refresh the SIM cards after every 

round even though every device did not appear to update every round nor was every EF 

updated during cell selection each time. The tempSIM.txt script to template (i.e., reformat) 

each SIM every round is provided in Appendix B.A, with an example of the template 

shown in Figure 22.  



48 

 
Figure 22. Template for SIM Cards 

The binary for EFFPLMN had been found on one SIM card and since the FPLMN 

information listed is not equivalent to the test PLMN in this experiment, this binary was 

used for all the SIM cards in the template. The bytes of EFLOCI and EFBCCH were nulled to 

ensure the locations could not assist in cell selection decision-making processes. Lastly, 

the EFPLMNsel only contained the PLMN of the test network, to ensure the test network 

would not be blocked during experimentation. 

3. Power Measurement, Harmonic Suppression, and Attenuation 

Since power is a factor considered for cell selection, equivalent power must be 

shown at the spectrum analyzer where the MS remains throughout each round. Upon 

inspection of the spectrum analyzer with the Faraday cage door shut, it was apparent that 

the power levels required an adjustment at the SDRs. The SDR frequency assignments 

resulting in Figure 23 are 850 MHz, 900 MHz, 1800 MHz, and 1900 MHz, one for each 

SDR. With only four SDRs in use, only four peaks are expected instead of the six shown 

in Figure 23.  
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Figure 23. Unfiltered and Unattenuated Downlink Spectrum 

The 850 MHz and 900 MHz SDRs produced harmonics causing the extraneous 

peaks seen in Figure 23. Using a low-pass filter (LPF) on both the 850 MHz and 900 MHz 

SDRs eliminated the harmonics and results in the spectrum shown in Figure 24. 

 
Figure 24. Filtered, Unattenuated Downlink Spectrum 

The resulting power peaks in Figure 24 show the 850 MHz and 900 MHz SDRs are 

approximately 20 dB higher than the 1800 MHz and 1900 MHz SDR peaks. A set of 6 dB 
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and 10 dB attenuators reduced 850 MHz and 900 MHz peaks to approximately the same 

height of the 1800 MHz and 1900 MHz peaks. The resulting spectrum is shown in Figure 

25 while the application of the LPF and attenuators on the receiving antenna of an SDR is 

shown in Figure 26. 

 
Figure 25. Filtered and Attenuated Spectrum 

 
Figure 26. LPF (Green) and Attenuators 
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While Figure 25 depicts closely matched peaks, the power peaks continued to 

fluctuate throughout the experiments, resulting in peaks that differed by as much as 10 dB, 

as shown in Figure 27.  

 
Figure 27. Matched vs. Unmatched Downlink Power Peaks 

Observed During Experiments 

This result fell slightly short of our objective to get the power levels matched for 

the MS. However, due to COVID restrictions and equipment purchase timelines, we were 

unable to further level the power at the SDRs. 

4. Time Constraints 

The final requirement before experimentation was to determine the number of 

devices that can be used for testing and the number of rounds that can be achieved per 

experiment. We chose to limit our examination to three devices of each model due to 

limited test equipment of certain models. Each device was assigned a test number, provided 

in Table 5.  
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Table 5. Phone Models and Test Numbers for Experiments 

Phone 
Manufacturer Model Test Numbers 

Samsung Galaxy SII—English 1–3 

Samsung Galaxy SII—Spanish 4–6 

Huawei Honor 7–9 

Apple iPhone 3 10–12 

Apple iPhone 6 13–15 

Quectel UC20 16–18 

 

We then tested each phone to ensure that every device could connect to each of the 

four bands. Every round with the 18 MSs would take approximately 45 minutes of constant 

hands-on time to accomplish. We were required to spend approximately 15 of the 45 

minutes to refresh all of the SIM cards after every round using the procedure detailed in 

Figure 28. Therefore, we were limited to ten rounds per experiment in order to accomplish 

an experiment over the course of a day. Before beginning each experiment, we also allotted 

for an additional ten minutes to ensure the clocks of the workstations properly synchronized 

via NTP. 
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Figure 28. SIM Card Template Procedure 

B. EXPERIMENT 1: FREQUENCY BAND TEST 

The objective of the frequency band test was to determine if a cellular device has a 

frequency band preference when all of the valid GSM frequency band options are available. 

The frequency band test provides the spectrum of GSM frequency bands as base station 

options for the MSs with the experiment configurations displayed in Table 6.  

Table 6. Experiment 1 Configurations 

Experiment 1: Frequency Band Test 

Band 
Configuration 850 MHz, 900 MHz, 1800 MHz, 1900 MHz 

Channel 
Configuration Randomize Channel Assignment, Beginning 

Round 1 Configuration Mode (Band, Channel), Capture Mode, Template SIM 

Rounds 2–10 Capture Mode, Template SIM 
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The selection preferences during the frequency band test, provided in Figure 29, 

are clear for only certain test devices. The bar graph results indicate the SGSII English 

devices selected 1800 MHz at least 90% of the time in comparison to the SGSII Spanish 

devices where only one third of the devices chose the 1800 MHz band. Two thirds of the 

SGSII Spanish devices instead favored the 900 MHz band. 

The iPhone 3 devices did not appear to favor a certain band. The iPhone 6 device, 

phone 14, chose the 900 MHz band all ten rounds of the frequency band test. Using [37] 

and device serial numbers, we discovered phone 14 was manufactured at a different factory 

in China than the other two iPhone 6s. We cannot definitively conclude the selections by 

phone 14 are a direct result of being manufactured in a different factory than phone 13 and 

15. However, the results suggest that manufacturing location could be a contributing factor 

for cell selection decision-making. It is important to note that phone 15 for the iPhone 6 

only has nine data points instead of ten. Phone 15 had been mistakenly used in only nine 

rounds and the mistake was not noticed until post-experiment analysis. 

The Huawei Honor devices favored the 850 MHz band approximately 60% of the 

time for two out of the three devices while the third device only selected the 900 MHz 

band. The UC20 devices have the clearest selections since two out of the three only chose 

the 1900 MHz band while the third device only chose the 1800 MHz band. 
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Figure 29. Experiment 1 Selection Results 

The capture times for Experiment 1, shown in Figure 30, suggest possible 

relationships to the band selections. The SGSII English and iPhone 6 devices all show a 

large capture time during the first round of the frequency band test. Phone 14 is again 

inconsistent in that its capture time for round one is lower than the other two iPhone 6s 

capture times for round one. However, the capture times for the SGSII English and iPhone 

6 devices significantly decrease by the second round and plateau for the remaining rounds.  

Only phone six of the SGSII Spanish devices followed that pattern, additionally it 

is the only SGSII Spanish device that selected the 1800 MHz band. The SGSII English also 

favored the 1800 MHz band which suggests that the band selection may be related to 

capture times. However, every device that also selected the 1800 MHz band did not always 

experience the high first round time which could imply this relationship differs between 
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manufacturers. Phone ten is the only iPhone 3 device that experienced high capture times 

for seven of the ten rounds. Similarly, phone nine is the only Huawei Honor device that 

contributed to high capture times for all ten rounds.  

It’s important to clarify the higher average times observed for the UC20s in Figure 

30 are likely due to the power-on time for the devices. The UC20 modems do not have an 

airplane mode that can be used to prevent cellular network transmissions while keeping the 

device powered on. For the UC20 modems, the start time for a round would begin when 

the device was powered and was the only device to differ in the round procedure.  

 
Figure 30. Experiment 1 Capture Time Results 

The information in Table 7 summarizes the total number of selections for each band 

during Experiment 1. The data does not clearly reveal whether the phones prefer the 1800 

MHz band or workstation two. The lack of differentiation suggests a mistake in the 
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experiment design that could reveal clearer conclusions if the four base stations would have 

been randomly assigned to a frequency band. 

Table 7. Experiment 1 Band Occurrences 

Workstation Band Number of 
Occurrences 

4 850 MHz 19 

3 900 MHz 51 

2 1800 MHz 76 

1 1900 MHz 33 

 

Some devices during the frequency band test showed signs of having a frequency 

preference when presented with the GSM frequency options. Performing more rounds and 

a new setup that randomizes which base station gets assigned a band could help to clarify 

whether the modems of cellular devices have a frequency preference. Due to time 

constraints we were unable to perform more rounds or revise the experiment design. 

Instead, we chose to randomize base station configurations for the subsequent experiments. 

C. EXPERIMENT 2: CHANNEL TEST 

Based on the specifications, it is not clear how a MS chooses a channel when a base 

station presents the MSs with a set of channel options. Some possibilities on how a MS 

chooses a channel include: selecting channels from low-to-high (or high-to-low) within the 

ARFCN range or randomly or pseudo-randomly selecting a channel from the options 

presented. 

The primary objective of the channel test was to reveal if a cellular device has a 

channel preference within a frequency band. Since the frequency band test did not reveal 

conclusive preferences, we chose the 900 MHz band as the frequency for the channel test. 

The power spectrum for the remaining experiments using the 900 MHz band shown in 

Figure 31 also identified power fluctuations of approximately 10 dB between the smallest 

and largest SDR peaks.  
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Figure 31. Matched vs. Unmatched Downlink Power Peaks, 900 MHz Band 

The channel test divides the available 900 MHz channels into four evenly spread 

channel assignments, with the configurations displayed in Table 8. The purpose of evenly 

spreading the channel assignments is to test if modems favor a certain portion of the 

frequency band when provided a range of options within a specific band. For example, if a 

device favors the higher end of an ARFCN range, this may suggest the modem selects 

channels from the highest to lowest ARFCN. 

Using randChannel.py in Appendix F.C produced the base station channel 

assignments in Table 9. During post experiment analysis we determined the channel 

assignment distribution, shown in Table 9.  

Table 8. Experiment 2 Configurations 

Experiment 2: Channel Test 

Band 
Configuration 900 MHz 

Channel 
Configuration 1, 42, 83, 124 

Round 1 Configuration Mode (Band, Channel), Capture Mode, Template SIM 

Rounds 2–10 Configuration Mode (Channel), Capture Mode, Template SIM 
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Table 9. Experiment 2 Channel Assignments 

Round Workstation 1 Workstation 2 Workstation 3 Workstation 4 

1 42 124 1 83 

2 83 1 42 124 

3 83 124 1 42 

4 124 83 42 1 

5 1 124 83 42 

6 42 83 1 124 

7 124 1 42 83 

8 124 42 83 1 

9 1 42 124 83 

10 42 124 83 1 
 

Channel Number of Occurrences per Workstation 

1 2 2 3 3 

42 3 2 3 2 

83 2 2 3 3 

124 3 4 1 2 

 

The results of the channel test are clearer for certain devices as shown in Figure 32. 

Two out of the three SGSII English devices chose ARFCN 124 approximately 80% of the 

time while only one third of the SGSII Spanish devices selected ARFCN 124. The SGSII 

English devices favored the 900 MHz band in Experiment 1 which suggests that devices 

may have channel preferences across the frequency bands. The remaining two SGSII 

Spanish devices were inconsistent with one favoring ARFCN 83 and the final device only 

selecting ARFCN 42.  
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The iPhone 3 devices selected the ARFCN 124 approximately 60% of the time and 

ARFCN 83 the rest of the time. The results for the iPhone 6 show that two of the three 

devices selected ARFCN 124 100% of the time; this differs from the iPhone 3 results.  

Phone nine for the Huawei Honor is the only device that showed a preference, 

selecting ARFCN 1 every round. Furthermore, phone nine is the only Huawei Honor device 

that favored a band and chose the 900 MHz band all ten rounds. The UC20 modems are 

the devices with most distinct selections for Experiment 2. For all ten rounds, two of the 

three UC20 modems only selected ARFCN 124 and the remaining device only selected 

ARFCN 42.  

 
Figure 32. Experiment 2 Selection Results 
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The capture times displayed in Figure 33 show that the devices in Experiment 1 

with high capture times during the first round did not have high capture times for the first 

round of Experiment 2. The devices that had high capture times during various rounds of 

Experiment 1 also did not have high capture times during those rounds in Experiment 2.  

The round times could be related to the frequency bands chosen for certain 

manufacturers. The SGSII English and phone six for SGSII Spanish primarily selected the 

1800 MHz band. Those devices had higher first round times than the SGSII Spanish phones 

four and five which selected the 900 MHz band and did not have higher first round times. 

Figure 33 shows that all of the SGSII Spanish and English devices have similarly low 

capture times for all ten rounds using the 900 MHz band.  

Many of the Apple devices that chose 900 MHz their first rounds had higher capture 

times but did not show the same results in Experiment 2. The two devices for the iPhone 3 

that did choose the 1800 MHz band their first round, did not have higher capture times for 

any of the ten rounds during Experiments 1 and 2. This suggests there is a relationship 

between the bands chosen and the capture times between models of the same manufacturer. 

Furthermore, the results also suggest that the manufacturer for the phones can make a 

difference in band selection. The higher capture times the first round but not subsequent 

rounds may indicate cell information is additionally stored elsewhere on the MS. This 

could mean the information is stored in EFs that we did not account for or that the 

information is stored on the UE in non-temporary storage, since the devices were powered 

down after every round. 
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Figure 33. Experiment 2 Capture Time Results 

The results from Experiment 2 are similar to Experiment 1 in that some devices 

show signs that suggest they have preferences. For this experiment, we randomly assigned 

the four channel options to the base stations to ensure the MSs do not make selections 

favoring a base station. The channel selection occurrences provided in Table 10 show 

ARFCN 124 was favored over the other channel options. According to the workstation 

selection occurrences in Table 11, workstation two was selected the most. When we 

consider the channel assignments of Table 9, workstation two was assigned ARFCN 124 

four times for the experiment. This result suggests that ARFCN 124 could have been 

favored since workstation two was assigned ARFCN 124 more than the other workstations.  
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Table 10. Experiment 2 Channel Selection Occurrences 

Channel Number of Occurrences 

1 25 

42 28 

83 32 

124 95 

 

Table 11. Experiment 2 Workstation Selection Occurrences 

Workstation Number of Occurrences 

1 42 

2 55 

3 44 

4 39 

 

Due to the lack of clear results, we decided to explore the channel test further via 

Experiment 2.1 to determine if MSs have a preferred channel or a high-to-low/low-to-high 

range preference in the remaining experiments.  

D. EXPERIMENT 2.1: CHANNEL TEST 

The intention of this experiment was to test the channel randomization method to 

establish if a MS will select the highest channel that is offered by a base station. We 

simplified the configuration setup by focusing on one device in an attempt to maximize the 

ten rounds during the experimentation time available due to COVID restrictions. 

Due to their relative ease of configuration, for the remaining experiments we used 

ten Quectel UC20 modems in place of the other devices used in the prior experiments. The 

base stations were then configured according to Table 12 with the channel assignments per 

Table 13. The channel assignments in Table 13 were randomly assigned during the 
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configuration process using the randomization component contained in primary.c in 

Appendix F.A. 

Table 12. Experiment 2.1 Configurations 

Experiment 2.1: Channel Test 

Band 
Configuration 900 MHz 

Channel 
Configuration Randomize Channel Assignment, Every Round 

Round 1 Configuration Mode (Band, Channel), Capture Mode, Template SIM 

Rounds 2–10 Configuration Mode (Channel), Capture Mode, Template SIM 

 

Table 13. Experiment 2.1 Channel Assignments 

Round Workstation 1 Workstation 2 Workstation 3 Workstation 4 

1 2 45 73 97 
 

2 86 4 56 111 

3 27 44 65 96 

4 19 49 65 98 
 

5 66 21 39 123 

6 24 37 90 103 

7 71 33 17 109 

8 55 30 77 109 

9 25 46 85 115 

10 45 16 68 102 

 

The results for Experiment 2.1 suggest that the devices favored the workstation 

three base station. The breakdown of workstation selections is shown in Table 14. The 
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results show that the modems did not favor the highest or lowest channel of the options 

provided. The modems instead selected workstation three 76% of the time. We did not 

identify other preferences during Experiment 2.1. 

Table 14. Experiment 2.1 Number of Workstation Occurrences 

Workstation 
Number of Occurrences 

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 TOTAL 

1 0 1 0 1 1 0 0 0 1 1 5 

2 4 0 0 2 1 2 3 3 3 0 18 

3 6 9 9 7 8 8 7 7 6 9 76 

4 0 0 1 0 0 0 0 0 0 0 1 

 

The results from this experiment did not reveal how MSs select channels during 

cell selection, due to non-uniformly distributed channel assignments. The randomization 

component of primary.c did not have uniform configuration assignments and this 

component does not check for uniform distribution. The randomization option for 

configuration mode provides the configurations before the start of every round and not 

prior to beginning the experiment. The primary workstation coincidentally did not assign 

a lower number for workstation four, as shown in the assignments within Table 13. As 

well, the primary workstation assigned workstation three the mid-high number almost 

every round. For the final experiment, we redesigned the setup to ensure the channel 

assignments were uniformly distributed. 

E. EXPERIMENT 2.2: CHANNEL TEST 

Experiment 2.2 was designed to expand the configuration options from Experiment 

2, using some of the lessons learned during Experiment 2.1. The purpose of this experiment 

was to explore the channel test further using the same equipment in order to clarify how 

modems select channels. One question we were seeking to answer was whether devices 

had a preference for a specific channel vice a channel range. 
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In this experiment, the base stations were assigned channel values within low, mid-

low, mid-high, and high ranges corresponding to the Experiment 2 channels of 1, 42, 83, 

and 124. There was some concern that channel selections of 1 and 124, in particular, would 

be influenced by these channels being on the edge of the frequency band. Some other 

wireless protocols, for instance, assign edge channels to control functions instead of 

communications. 

We modified the randChannel.py program in Appendix F.C to randomly select a 

value from the channel configuration ranges shown in Table 15 and then randomly assign 

which base station gets each value. The channel assignments and the uniform distribution 

check for this experiment are displayed in Table 16. 

Table 15. Experiment 2.2 Configurations 

Experiment 2.2: Channel Test Configurations 

Band 

Configuration 
900 MHz 

Channel 

Configuration 

 

Randomize Channel Assignment, Every Round from: 

Low (L): [5-15] 
Med-Low (ML): [40-50] 
Med-High (MH): [75-85] 

High (H): [110-120] 
 

Round 1 Configuration Mode (Band, Channel), Capture Mode, Template SIM 

Rounds 2–10 Configuration Mode (Channel), Capture Mode, Template SIM 
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Table 16. Experiment 2.2 Channel Assignments and Occurrences 

Round Workstation 1 Workstation 2 Workstation 3 Workstation 4 

1 48 118 81 8 

2 110 83 12 40 

3 75 7 112 41 

4 6 117 46 82 
 

5 49 119 13 75 

6 10 80 113 43 

7 120 15 50 78 

8 111 42 75 13 

9 78 43 9 116 

10 11 79 47 120 

Range Number of Occurrences per Workstation 

L 3 2 3 2 

ML 2 2 3 3 

MH 2 3 2 3 

H 3 3 2 2 

 

The results in Table 17 show that the modems again selected workstation three 76% 

of the time during the first five rounds. Since we noticed this before running the next five 

rounds, we relocated the SDRs to establish if the modems would still favor one 

workstation. Moving the SDRs did not appear to have any effect at the spectrum analyzer. 

During the last five rounds, the modems selected workstation four 46% of the time 

for the remaining rounds. This result could suggest that our spectrum analyzer lacks the 

granularity to display any minor power differences that still encourage cell selection. Over 

all ten rounds, the UC20 modems selected workstation three 48% of the time.  
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Table 17. Experiment 2.2 Number of Workstation Occurrences 

Workstation First 5 Rounds Last 5 Rounds Total 

 1 2 9 11 

2 8 8 16 

3 38 10 48 

4 2 23 25 

 

The channel range occurrences provided in Table 18 show that the low range value 

was selected the most, 37% of the time. The ML selections were the second most selected 

value, followed behind by the H value and finally the MH value. 

Table 18. Experiment 2.2 Channel Range Occurrences by Round 

Range 
Number of Occurrences 

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 TOTAL 

L 1 8 4 0 10 0 2 6 1 5 37 

ML 1 0 0 9 0 6 3 3 2 2 26 

MH 5 1 0 1 0 1 3 1 2 0 14 

H 3 1 6 0 0 3 2 0 5 3 23 

 

The results in Figure 34 provide more clarity for round selections. For the first five 

rounds, the L or ML values were assigned to workstation three for three of the five rounds. 

Even though workstation three was selected the most for the first five rounds, more devices 

selected workstation three when it was assigned a L or ML value for those five rounds. 

Similarly, this is also the case for workstation four for the final five rounds. 
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Figure 34. Experiment 2.2 Capture Results 

Table 19 is a modification of Table 18 with the workstation three selections removed 

from the first five rounds, and the workstation four selections removed from the last five 

rounds. When selections are removed for workstation three and four, the selections only 

slightly favor the L and ML values. The total occurrences are close enough that the results 

could also suggest that the workstation three SDR power was greater during the first five 

rounds where it was assigned a L or ML value. Likewise, the power for workstation four 

SDR could have been greater during the rounds it was assigned a L or ML value. 

The total selection values have the same order shown in Table 18 even when the 

favored workstations are removed. The L value was selected most with the ML value as 

the second most selected. The number of H selections were third and the number of MH 

selections were last. These results differ from the expectations we had after Experiment 2. 

For Experiment 2, the UC20 modems selected the higher channels offered. During this 

experiment, the UC20 modems selected the lower channels. Based on these results, we 

cannot establish if UC20 modems perform their channel search from low-to-high or high-

to-low.  
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Table 19. Experiment 2.2 Channel Range Occurrences by Round Modified 

Range Number of Occurrences 
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 TOTAL 

L 1 X3 4 0 X3 0 2 X4 1 5 37 13 

ML 1 0 0 X3 0 X4 3 3 2 2 26 11 

MH X3 1 0 1 0 1 X4 1 2 0 14 6 

H 3 1 X3 0 0 3 2 0 X4 X4 23 9 
X3: Workstation 3, removed 
X4: Workstation 4, removed 
 

F. SUMMARY OF RESULTS 

In this chapter we presented four experiments that examined frequency and channel 

selections across a range of devices. Since we were not able to clearly identify the 

frequency and channel preferences, we were unable to perform an experiment that 

examines the IMSI catching speed using those preferences. A list of the selections is 

provided in Table 20.  

Table 20. Summary of Selections 

Experiment Devices (Band/ 
Channel Chosen)a 

Workstation with 
Most 

Occurrences  

Band/Channel 
with Most 

Occurrences 

1 
SGSII English (1800),  
SGSII Spanish (900,1800),  
UC20 Modem (1800,1900) 

2  1800 MHz 

2 

SGSII English (83,124),  
SGSII Spanish (42 and 124),  
iPhone 6 (124) 
UC20 Modem (124,83) 

2 124 

2.1 None Observed 3 None Observed 
2.2 UC20 Modem (L, ML) 3 L 

aBand/Channel lists the most chosen values in order with most occurrences first. If listed 
occurrences are equivalent, ‘and’ will be used in place of ‘,’. 



71 

 

For Experiment 1, workstation two was only assigned the 1800 MHz band so the 

devices listed with possible preferences could favor 1800 MHz or workstation two. Due to 

this design issue, it is likely that preferences seen here are not definitive. The Apple devices 

did not show clear preferences. However, they also chose differently from each other, 

which could still suggest that models between manufacturers differ in decision-making. 

The SGSII English predominantly selected the 1800 MHz band compared to the SGSII 

Spanish devices that primarily selected the 1900 MHz band. Since their results slightly 

contrast each other, the results could suggest that device preferences of the same model 

and manufacturer also vary depending on intended use location.  

In the remaining experiments we examined the channel preferences within the 900 

MHz band. The results of Experiment 2 showed that ARFCN 124 was selected the most 

and that certain devices chose ARFCN 124 as their first or second choice. However, Table 

20 shows workstation two was also selected more than the other workstations. Workstation 

two was assigned ARFCN 124 for four of the ten rounds which is likely the reason for it 

being selected the most. The SGSII English and Spanish devices as well as the Apple 

devices again varied their selections which supports the idea that model and manufacturing 

location could affect decision-making. The UC20 modems had clearer selections than any 

of the devices during both experiments and one device always differed from the other two. 

We used the UC20 modems for the remainder of the experiments to focus on one device 

that displayed clearer selections during Experiments 1 and 2.  

We designed Experiment 2.1 to see if the modems would choose the highest 

randomized value the base stations provided. The UC20 modems selected the highest 

channel, ARFCN 124, during Experiment 2. The only clear selection we noticed was that 

the modems favored workstation three instead of workstation two, as in Experiment 2. This 

result suggests that workstation three was likely the most powerful base station for most of 

the rounds during the experiment. However, this result also could mean that the UC20s 

could prefer ARFCN 124 or near ARFCN 124 instead of the highest channel offered.  
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Experiment 2.2 was designed to examine the range of channels which were 

categorized into L, ML, MH, and H. This experiment resulted in two possible preferences 

much like in Experiment 1, even though we randomized the base station assignments. The 

UC20 modems selected the L and ML values more over the MH and H values. However, 

the L values were selected more than the ML values. Additionally, workstation three was 

also selected more than the other workstations. Workstation three was also assigned the L 

value and ML value three times each during the ten rounds which could explain why it had 

been selected the most. The final two channel tests contradicted the ARFCN 124 selection 

from Experiment 2. Therefore, we cannot definitely determine if devices select channels 

from high-to-low or low-to-high. Furthermore, since the results of Experiment 2.1 showed 

favoritism for a workstation we cannot determine if devices randomly or pseudo-randomly 

make channel selections.  

Unfortunately, due to delays and restraints resulting from the COVID-19 pandemic, 

we were unable to refine experiment design quickly enough to adapt to the observed power 

sensitivities and experiment design flaws. Under other circumstances we would have 

treated these experiments as “learning experiences” and quickly iterated improvements. As 

a result, we were unable to conclusively determine if devices consistently favored 

workstations or a specific frequency band and channel. Even for devices that had clear 

selections throughout the experiments, we lacked the equipment and time to determine the 

extent to which power imbalances affected device decision making. 

 



73 

V. CONCLUSIONS 

In this thesis, we examined the possibility that IMSI catching attackers can create 

profiles based on their targeted devices. If target profiles can be created based on the 

manufacturer or model of a cellular device, attackers could gain an advantage over the 

legitimate base stations of a commercial network in order to trap a target. 

We examined this possibility by first determining the radio resources required for 

connecting to a GSM network. We also identified the decision-making factors cellular 

devices use to select cells on a GSM network. We then created an IMSI catcher and 

designed a testing environment for experimentation. Using our IMSI catchers and testing 

environment, we performed a set of experiments to examine frequency and channel 

preferences for a range of cellular devices.  

The frequency and channel tests show distinct selections for some devices. The 

UC20 modems displayed more obvious selections during the frequency and initial channel 

test, selecting the upper GSM bands and higher channels. However, the UC20 modems did 

not provide clear selections for a channel during the final two channel tests. The SGSII 

English and SGSII Spanish devices rarely had similar results for both the frequency and 

channel tests. This result suggests that the location the phones are manufactured for may 

have different preferences even though both devices are the same model and manufacturer. 

Additionally, the iPhone 3 and iPhone 6 devices had different selection results which 

indicates decision-making could also differ between models even if they are from the same 

manufacturer. 

Based on the experimental data, we could not conclusively differentiate if the 

cellular devices favored certain selections or the base station that provided those selections. 

This result implies that the power fluctuations emitted from the SDRs may have influenced 

device selections. We assess this due to the favored workstations in addition to frequency 

and channel selections seen in all four experiments. After we noticed this result in 

Experiment 1, we made changes to the setups for the remaining experiments. Even with 

the modifications, we still observed favoritism towards workstations in addition to certain 
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frequencies and channels. During the frequency and channel tests, some devices remained 

inconsistent with both the frequency/channel selections and workstation occurrences. This 

result could suggest that the power for the favored workstation fluctuated when the devices 

chose inconsistently. The results could also imply certain devices or manufacturers are 

differently sensitized for the received power, causing them to sort their power options 

differently. As well, the manufacturers could prioritize certain frequency bands over power 

levels when selecting cells. In other words, if priority bands are within an acceptable power 

level, then a priority band will be selected, even if a cell with better power is available. We 

were unable to perform more rounds to determine conclusions that could perhaps clarify 

the results and issues we experienced.  

Due to time constraints and lengthy experimental rounds we were limited in the 

number of rounds that could be performed for each experiment as well as the number of 

experiments that could be executed. Therefore, we were also unable to conclusively 

determine the resource preferences that are necessary to examine the speed of IMSI 

catching, which was our final goal to test for.  

A. SIGNIFICANT CONTRIBUTIONS 

The preliminary work described in this thesis documents the steps taken to create 

and setup an enclosed IMSI catcher testing environment. The significant contribution of 

this thesis work includes a collection of programs performing three major functions in the 

testing environment. First, the programs are designed to configure multiple base stations, 

providing a large testing platform to examine IMSI catching. The second function of the 

programs uses the configured base stations to capture an IMSI and then perform the final 

function to log the essential base station selection information.  

The development and testing stages of the software tools required approximately a 

year and a half of preparatory work. Most of this time was dedicated to learning the C 

programming language and implementing the necessary libraries, described in Appendices 

F and G. With the created programs, we were able to complete one frequency band test and 

three channel tests. The results from testing are not conclusive but provide a firm 

foundation for conducting future experimentation. The analysis of the resulting data 
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suggests a possibility that devices have radio resource preferences. Furthermore, the data 

confirms the operability of the programs created and testing environment that can be used 

for future work. 

B. FUTURE WORK 

Based on the results from the experiments in Chapter IV, there are several avenues 

for future work using the test environment provided in this thesis. Since power is one of 

two contributing factors to the cell selection and reselection processes, any future work 

will first require a way to eliminate the power fluctuations observed during 

experimentation. We were able to closely equalize the power peaks of the SDRs through 

the use of LPFs, a Faraday cage, and attenuators. Even so, the power fluctuations were 

observed to be as large as 10 dB between the lowest and highest peak at times within the 

test environment. The Faraday cage we used was not lined with material that would absorb 

electromagnetic radiation. The absorbent material may be helpful if the signals from the 

SDRs were reflecting within the Faraday cage and causing the fluctuations. 

Based on the results from all four experiments, more rounds for the frequency band 

test and channel band tests are required. The round time is costly, averaging approximately 

45 minutes with 15 of those minutes dedicated to the SIM card template procedure. 

However, more rounds could conclusively determine if the selections exhibited during 

experimentation are legitimate preferences. Additionally, more rounds could establish if 

all devices or only a subset of devices have radio resource preferences. Determining 

frequency band preferences and channel preferences is essential for future testing 

possibilities.  

Since we could not conclusively determine the frequency band and channel 

preferences, we were unable to attempt to answer our final question. The third test requires 

the band and channel preferences in order to ascertain if frequency and channel preferences 

decrease the IMSI capture speed. A decrease in IMSI capture speed when using the 

preferences in comparison to randomized valid configurations could imply that devices can 

be profiled for targeting by IMSI catchers.  



76 

The experiment setup presented in this thesis is designed for testing the cell 

selection process for a cellular device. However, an attacker is more likely to target 

devices that are already connected to a cell tower and would have to go through a cell 

reselection process to connect to a rogue base station. We propose a new experiment that 

would center testing on the cell reselection process using frequency and channel 

preferences. This method requires measuring the time it takes for a cellular device to go 

from a fully connected state, down to zero service, and then finally reselect a base station. 

The setup provided in this thesis work would require only slight modifications to include 

a base station outside the Faraday cage acting as the cell tower a test phone is already 

connected to. The test phone would then be walked over the Faraday cage threshold to start 

the round time.  
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APPENDIX A.  SIM CARD PYSIM CONFIGURATION 

The information in this appendix contains the pySim [34] configuration for the SIM 

cards. For simplicity, all of the SIM cards used during experimentation were configured 

before the experiments according to Figure A.1.  

 
Figure A.1  SIM Card Configurations via pySim. 

The options --name=Range is for Range Network sim cards and the --mcc=418 and 

--mnc=10 set the MCC and MNC to the same Iraq test network that the rogue base 

stations are configured to. All of the SIM cards were configured to the same IMSI with the 

418 10 PLMN (MCC + MNC) and ICCID identifier. Since each phone would be tested one 

at a time, there was no need for uniqueness on the network during experimentation.  
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APPENDIX B.  SIM CARD MINICOM CONFIGURATION 

This appendix contains the configuration scripts that were run between every round 

on every SIM card. Also included are instructions for installing and configuring minicom 

2.7. Minicom must be used on a Linux OS installed with the command: 

sudo apt-get install minicom 

and must first be configured to the modem connected. In this thesis, a Quectel UC20 

modem separate from the testing models is used. Configuring the modem is accomplished 

using the command: 
sudo minicom -s 

where -s enters minicom in settings mode. The device port that is connected to the modem 

is required for entry in the serial port setup. The final step requires saving the configuration 

as dfl before exiting the settings mode. 

The script tempSIM.txt is used to template the SIM for experimentation using the 

command: 

sudo minicom -S tempSIM.txt 

while the seeSIM.txt allows for quickly seeing the template locations with the command: 

sudo minicom -S seeSIM.txt 

where the -S flag indicates to run a script upon bootup of minicom. Both commands must 

be run in the same directory the scripts are stored.  

A. TEMPSIM.TXT 

sleep 5 
send AT+CRSM=214,28539,0,0,12,\”64F01064F040130062FFFFFF\” 
expect “OK” 
send AT+CRSM=214,28542,0,0,11,\”FFFFFFFFFFFFFFFFFE0001\” 
expect “OK” 
send 
AT+CRSM=214,28464,0,0,24,\”14F801FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF\” 
expect “OK” 
send AT+CRSM=214,28532,0,0,16,\”FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF\” 
expect “OK” 
send AT+QPOWD 
exit 
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B. SEESIM.TXT 

sleep 5 
send AT+CRSM=176,28539,0,0,12 
expect “OK” 
send AT+CRSM=176,28542,0,0,11 
expect “OK” 
send AT+CRSM=176,28464,0,0,24 
expect “OK” 
send AT+CRSM=176,28532,0,0,16 
expect “OK” 
exit 

C. COMMANDS 

The majority of the commands used in this thesis are AT+CRSM commands, which 

are AT commands for restricted SIM access [10]. As a guideline, the AT+CRSM 

commands listed generally take following format to write to a EF: 

AT+CRSM=<Binary Command>,<EF Address in Base10>,0,0,<Byte Length of Location>, 

<Hex Information to be Stored at Location> 

where the first parameter tells the AT command the action that will take place on the EF. 

The specifications [10] define the options to be READ BINARY (176), READ RECORD 

(178), GET RESPONSE (192), UPDATE BINARY (214), UPDATE RECORD (220), 

STATUS (242), RETRIEVE DATA (203), and SET DATA (219).  

 The next parameter is the address space of the EF in base 10, or decimal. For 

example, the file identifier for EFBCCH is 6F74 and is equivalent to 28532 in decimal. The 

decimal value 28532 would be used in the address space instead of 6F74. The two zeros 

following the address space value are required by the standard [10]. The byte length 

indicates the length of space allocated to the information of the address. The final parameter 

is used when updating a binary and contains the information in hexadecimal format for 

storage [10]. The final parameter must follow the standards for proper formatting as some 

locations require nibble (half byte) swaps for each byte [12]. For example, formatting the 

PLMN 418 10 for EFPLMNsel will translate to 14F801 as the first three bytes for the 

binary. 
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APPENDIX C.  NTP CONFIGURATION 

This appendix contains the ntp.conf files used for the NTP configuration, found at 

/etc/ntp.conf. The ntp.conf files presented are formatted for use on a Linux OS computer, 

with A designed for the primary computer acting as the NTP server and B designed for the 

secondary workstations as the client. Having the correct time isn’t necessarily of concern, 

but instead ensuring that all of the workstations had the same time is the problem to resolve. 

This is required because we want the IMSI capture time which is calculated by subtracting 

the capture time stamp from the start time stamp. The most accurate clock time does not 

matter for the delta time calculation as long as the workstation clocks are the same. 

A. NTP.CONF—PRIMARY 

# /etc/ntp.conf, configuration for ntpd; see ntp.conf(5) for help 
 
driftfile /var/lib/ntp/ntp.drift 
 
# Enable this if you want statistics to be logged. 
#statsdir /var/log/ntpstats/ 
 
statistics loopstats peerstats clockstats 
filegen loopstats file loopstats type day enable 
filegen peerstats file peerstats type day enable 
filegen clockstats file clockstats type day enable 
 
# Specify one or more NTP servers. 
#server time.nps.edu 
server 127.127.1.0 minpoll 4 maxpoll 4 
fudge 127.127.1.0 
 
# Use servers from the NTP Pool Project. Approved by Ubuntu Technical Board 
# on 2011–02-08 (LP: #104525). See http://www.pool.ntp.org/join.html for 
# more information. 
pool 0.us.pool.ntp.org iburst 
pool 1.us.pool.ntp.org iburst 
pool 2.us.pool.ntp.org iburst 
 
# Use Ubuntu’s ntp server as a fallback. 
#pool ntp.ubuntu.com 
 
# Access control configuration; see /usr/share/doc/ntp-doc/html/accopt.html for 
# details. The web page #<http://support.ntp.org/bin/view/Support/
AccessRestrictions> 
# might also be helpful. 
# 
# Note that “restrict” applies to both servers and clients, so a configuration 
# that might be intended to block requests from certain clients could also end 
# up blocking replies from your own upstream servers. 
 
# By default, exchange time with everybody, but don’t allow configuration. 
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restrict -4 default kod notrap nomodify nopeer 
restrict -6 default kod notrap nomodify nopeer 
 
# Local users may interrogate the ntp server more closely. 
restrict 127.0.0.1 
restrict ::1 
 
restrict 192.168.4.0 mask 255.255.255.0 
### Use the subnet address for the LAN 
 
# Needed for adding pool entries 
restrict source notrap nomodify noquery 
 
# Clients from this (example!) subnet have unlimited access, but only if 
# cryptographically authenticated. 
#restrict 192.168.123.0 mask 255.255.255.0 notrust 
 
# If you want to provide time to your local subnet, change the next line. 
# (Again, the address is an example only.) 
broadcast 192.168.4.255 
### Use the subnet address for the LAN 
 
# If you want to listen to time broadcasts on your local subnet, de-comment the 
# next lines. Please do this only if you trust everybody on the network! 
#disable auth 
#broadcastclient 
 
 

B. NTP.CONF—SECONDARY 

# /etc/ntp.conf, configuration for ntpd; see ntp.conf(5) for help 
 
driftfile /var/lib/ntp/ntp.drift 
 
# Enable this if you want statistics to be logged. 
#statsdir /var/log/ntpstats/ 
 
statistics loopstats peerstats clockstats 
filegen loopstats file loopstats type day enable 
filegen peerstats file peerstats type day enable 
filegen clockstats file clockstats type day enable 
 
# Specify one or more NTP servers. 
 
# Use servers from the NTP Pool Project. Approved by Ubuntu Technical Board 
# on 2011–02-08 (LP: #104525). See http://www.pool.ntp.org/join.html for 
# more information. 
#server 0.ubuntu.pool.ntp.org 
#server 1.ubuntu.pool.ntp.org 
#server 2.ubuntu.pool.ntp.org 
#server 3.ubuntu.pool.ntp.org 
server 192.168.4.255 prefer iburst 
 
# Use Ubuntu’s ntp server as a fallback. 
#server ntp.ubuntu.com 
 
# Access control configuration; see /usr/share/doc/ntp-doc/html/accopt.html for 
#details. The web page #<http://support.ntp.org/bin/view/Support/
AccessRestrictions> 
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# might also be helpful. 
# 
# Note that “restrict” applies to both servers and clients, so a configuration 
# that might be intended to block requests from certain clients could also end 
# up blocking replies from your own upstream servers. 
 
# By default, exchange time with everybody, but don’t allow configuration. 
#IPv4 
restrict -4 default kod notrap nopeer 
#IPv6 
restrict -6 default kod notrap nomodify nopeer noquery 
 
 
# Local users may interrogate the ntp server more closely. 
restrict 127.0.0.1 
restrict ::1 
 
# Clients from this (example!) subnet have unlimited access, but only if 
# cryptographically authenticated. 
restrict 192.168.4.0 mask 255.255.255.0 nomodify notrap 
### Use the subnet address for the LAN 
 
# If you want to provide time to your local subnet, change the next line. 
# (Again, the address is an example only.) 
#broadcast 192.168.123.255 
 
# If you want to listen to time broadcasts on your local subnet, de-comment the 
# next lines. Please do this only if you trust everybody on the network! 
disable auth 
broadcastclient  
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APPENDIX D.  NTP TROUBLESHOOTING 

The information in this appendix provides efforts in troubleshooting NTP. We 

experienced many issues when first attempting to synchronize workstations that do not 

touch the Internet due to large gaps in time between the different system clocks. The correct 

configuration file in Appendix C in combination with this guide should help troubleshoot 

some issues we experienced. The primary.c and secondary.c programs as well offer a third 

mode to assist known as NTP mode. NTP mode can be run on the primary acting as the 

NTP server to reboot the NTP service. As well, NTP mode can be run on the secondary 

workstations to query the server, revealing Figure B.1.  

 
Figure B.1 Picture of ntpq Output on Secondary Workstation. 

Alternatively, the same output will be shown using the command 

ntpq -p 

where -p is used to list the peers taking on the NTP server role on the network [38]. The 

same output will be shown since NTP mode uses ntpq to query the server. The values listed 

in the output allow for performance monitoring of the NTP servers on the network. 

Generally, the host name of the server will be found under the remote column but will 

sometimes list the IP address of the server instead. The refid column provides the IP 

address, with LOCAL indicating the local host address [38]. The st column indicates the 

stratum levels 0–16. The 0 represents unspecified sources, 1 is a reference clock which are 

nationally standardized clock sources, and 2–15 indicate how close the connected server, 

otherwise known as secondary server, is to the clock source. The 16th stratum is indicative 

of being unsynchronized to that source [39]. The t column determines the type of the 

server, such as unicast (u), local (l), broadcast (b), etc. The column for when displays the 
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number of seconds that have passed since the host was polled, or essentially the last time a 

packet was received from the server [38]. The value in the poll column is the interval of 

time, in seconds, the client is set to poll the server [39]. The reach column is actually an 

eight-bit rotating register that displays the octal value of the register at the time of query 

[39]. 

Every time a client polls the server, the register shifts to the left, replacing with a zero. 

When a valid message is received from the server the register shifts with a one filling the 

slot. Once the server is queried, the register binary values are converted to octal for 

displaying [38], [39]. The final three columns are all times displayed in milliseconds [40]. 

The delay column is the roundtrip time while offset indicates the time offset of the server 

in relation to the host. The final column is the jitter indicating the root mean square offset 

differences [38].  

The delay, offset, and jitters are generally much larger in time upon startup of a 

new server and new clients. However, we determined that manually setting all workstations 

dates and times as close together as can be managed before implementing the proper 

ntp.conf configurations helps cut the delay times down to much lower values in minutes 

instead of hours. The stratum indicates an issue when the stratum is 16. Stratum 16 can 

signify the NTP server is not functioning properly or the network may not be properly 

connected. This mode does not require operating on the primary and secondaries at the 

same time and can be implemented individually. As a precaution, during the experiments 

the times were frequently observed for any apparent offsets in time. 
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APPENDIX E.  OPENBTS BOX CONFIGURATION 

The code contained in this appendix provides the OpenBTS configuration. 

Configuring the properties of the individual SDRs occurs through the use of the OpenBTS 

Command Line Interface (CLI). For our purposes, the SDRs are configured to have the 418 

MCC and 10 MNC indicative of a testing network using an Iraq MCC [41]. This is 

accomplished through the command line with the commands: 
 $./CLI config GSM.Identity.MCC 418 

 $./CLI config GSM.Identity.MNC 10 

The rest of the OpenBTS configurations for the USRPs remained at their default value, 

unless changed by secondary.c. Alternatively, using 
$./CLI config 

will reveal the list of available configurations. 
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APPENDIX F.  PRIMARY CODE 

The code contained in this appendix is for the secondary workstation and are used 

for experimentation. This code is primarily the author’s own work. The primary.c code 

requires the installation of several packages before attempting to run, which includes: 

libpcap [42], tcpdump [42], nmap [43], fping [44], and netcat [45]. The nmap suite should 

also include the use of nping which is also required for operating primary.c. This primary 

program makes use of a packet sniffer adapted from [46]. The learning modules in 

Tutorialspoint [47],[48] also assisted in the production of this code. To correctly compile 

primary.c use the command: 

gcc primary.c -lpcap 

within the same directory as all of the files in this appendix. Then to run the primary.c file 

is accomplished using the command: 

sudo ./a.out 

again, in the same directory as the files of this appendix. The csvLog.py program only 

requires Python [49] and is run from within primary.c.  

 The randchannel.py file provides better control over ensuring uniform distribution 

of the randomization of ARFCNs during experimentation. The code itself does not 

randomly assign the values nor does it ensure uniform distribution but is a script that can 

be run separately to provide a set of output to check for uniform distribution before 

assigning the values during experimentation. 

A. PRIMARY.C 

 
#include <stdlib.h> 
#include <string.h> 
#include <stdio.h> 
#include <time.h> 
#include <pcap.h> 
#include <ctype.h> 
#include <unistd.h> 
 
#define MAX 2048 
 
//--------------------------------------------------------------------------------------- 
//      primary.c 
// This program walks a user through configuring the secondarys and logging 
// the useful information for analysis from the secondary workstations. 
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// Workstation 1: 192.168.4.22 
// Workstation 2: 192.168.4.23 
// Workstation 3: 192.168.4.24 
// Workstation 4: 192.168.4.25 
//--------------------------------------------------------------------------------------- 
 
char* freq [] = {“850”,”900”,”1800”,”1900”}; 
char* hosts [] = {“192.168.4.22”,”192.168.4.23”,”192.168.4.24”,”192.168.4.25”}; 
int randChannel,trigger; 
int trigger; 
pcap_t *handle = NULL; 
int index850[3],index900[3],index1800[3],index1900[3]; 
int hostCheck850,hostCheck900,hostCheck1800,hostCheck1900; 
int testNum; 
 
//--------------------------------------------------------------------------------------- 
// Configuration Section 
//--------------------------------------------------------------------------------------- 
 
//---------------------------------------------------------------------| 
// Randomly generates ARFCNs according to Band 
//---------------------------------------------------------------------| 
int randAssign(int min, int max, char band []){ 
 int randValue = (max-min)/4; 
 int channel [130]; 
 int index [3]; 
 srand(time(0)); 
 int random,value; 
 int n = 4; 
 for (int z = 0; z < 4; z++){ 
     int same = 1; 
     while (same == 1){ 
         channel [z] = rand()%randValue+(min+(randValue*z+1)); 
         if (strcmp(band,”1900”) == 0){ 
             if ((( z > 0 ) && ((channel [z]-channel [z-1]) < 10))){ 
                 same = 1; 
             } 
             else if (index1800[z] != 0){ 
                 for (int x = 0;x<4;x++){ 
                     if ((channel [z] == index1800[x]) || (abs(channel [z]-index1800[x])) 
< 10){ 
                         same = 1; 
                         break; 
                     } 
                     else{ 
                         same = 0; 
                     } 
                 } 
             } 
             else{ 
                 same = 0; 
             } 
         } 
         else if(strcmp(band,”1800”) == 0){ 
             if ((( z > 0 ) && ((channel [z]-channel [z-1]) < 10))){ 
                 same = 1; 
             } 
             else if (index1900[z] != 0){ 
                 for (int x = 0;x<4;x++){ 
                     if ((channel [z] == index1900[x]) || (abs(channel [z]-index1900[x])) 
< 10){ 
                         same = 1; 
                         break; 
                     } 
                     else{ 
                         same = 0; 
                     } 
                 } 
             } 
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             else{ 
                 same = 0; 
             } 
         } 
         else{ 
             if (( z > 0 ) && ((channel [z]-channel [z-1]) < 10)){ 
                 same = 1; 
             } 
             else{ 
                 same = 0; 
             } 
         } 
     } 
 } 
 for (int i = 0;i<4;i++){ 
     n--; 
     if (n == 0){ 
         random  = 0; 
     } 
     else{ 
         random = rand()%(n); 
     } 
     index [i] = channel [random]; 
     for (int j = random;j<n;j++){ 
         channel [j] = channel [j+1]; 
     } 
 } 
 if (strcmp(band,”1900”) == 0){ 
     for (int i = 0;i<4;i++){ 
         index1900[i] = index [i]; 
     } 
 } 
 else if (strcmp(band,”1800”) == 0){ 
     for (int i = 0;i<4;i++){ 
         index1800[i] = index [i]; 
     } 
 } 
 else if (strcmp(band,”850”) == 0){ 
     for (int i = 0;i<4;i++){ 
         index850[i] = index [i]; 
     } 
 } 
 else if (strcmp(band,”900”) == 0){ 
     for (int i = 0;i<4;i++){ 
      if (index [i] == 0){ 
       index900[i] = 1; 
      } 
      else{ 
       index900[i] = index [i]; 
      } 
     } 
 } 
 return 0; 
} 
//---------------------------------------------------------------------| 
// Assigns ARFCNs according to user input for band 
//---------------------------------------------------------------------| 
int assignARFCN(char band [], char ipAddress []){ 
 int rchannel; 
 if (atoi(band) == 1900){ 
     // Valid channels for 1900: 512 - 810 
     if (randChannel == 0){ 
         printf(“Please enter a valid channel between 512 - 810 for the 1900 band:\n”); 
         scanf(“ %d,” &rchannel); 
     } 
     else if (randChannel != 0){ 
         if (hostCheck1900 == 0 && randAssign(512,808,”1900”) == 0){ // Modified end for 
whole number assignment 
             rchannel = index1900[0]; 
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         } 
         else{ 
             rchannel = index1900[hostCheck1900]; 
         } 
         printf(“Channel for 1900 [Host: %s] is: %d\n,” ipAddress, rchannel); 
         hostCheck1900++; 
     } 
 } 
 else if (atoi(band) == 1800){ 
     // Valid channels for 1800: 512 - 885 
     if (randChannel == 0){ 
         printf(“Please enter a valid channel between 512 - 885 for the 1800 band:\n”); 
         scanf(“ %d,” &rchannel); 
     } 
     else if (randChannel != 0){ 
         if (hostCheck1800 == 0 && randAssign(512,884,”1800”) == 0){ // Modified end for 
whole number assignment 
             rchannel = index1800[0]; 
         } 
         else{ 
             rchannel = index1800[hostCheck1800]; 
         } 
         printf(“Channel for 1800 [Host: %s] is: %d\n,” ipAddress, rchannel); 
         hostCheck1800++; 
     } 
 } 
 else if (atoi(band) == 900){ 
     // Valid channels for 900: 1 - 124 
     if (randChannel == 0){ 
         printf(“Please enter a valid channel between 1 - 124 for the 900 band:\n”); 
         scanf(“ %d,” &rchannel); 
     } 
     else if (randChannel != 0){ 
         if (hostCheck900 == 0 && randAssign(0,124,”900”) == 0){ // Modified end for whole 
number assignment 
             rchannel = index900[0]; 
         } 
         else{ 
          rchannel = index900[hostCheck900]; 
         } 
         if (rchannel == 0){ 
          rchannel = 1; 
         } 
         printf(“Channel for 900 [Host: %s] is: %d\n,” ipAddress, rchannel); 
         hostCheck900++; 
     } 
 } 
 else if (atoi(band) == 850){ 
     // Valid channels for 850: 128 - 251 
     if (randChannel == 0){ 
         printf(“Please enter a valid channel between 128 - 251 for the 850 band:\n”); 
         scanf(“ %d,” &rchannel); 
     } 
     else if (randChannel != 0){ 
         if (hostCheck850 == 0 && randAssign(128,248,”850”) == 0){ // Modified end for whole 
number assignment 
             rchannel = index850[0]; 
         } 
         else{ 
             rchannel = index850[hostCheck850]; 
         } 
         printf(“Channel for 850 [Host: %s] is: %d\n,” ipAddress, rchannel); 
         hostCheck850++; 
     } 
 } 
 else{ 
     printf(“Invalid Band Received...\nExiting...\n”); 
     exit(1); 
 } 
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 return rchannel; 
} 
 
//---------------------------------------------------------------------| 
// Determines if all hosts are connected 
//---------------------------------------------------------------------| 
int healthCheck(int check){ 
 FILE *output; 
 int size; 
 char fping [MAX]; 
 sprintf(fping,”fping -u %s %s %s %s > output.txt”,hosts [0],hosts [1],hosts [2],hosts [3]); 
 system(fping); 
 output = fopen(“./output.txt”,”r”); 
 if (output == NULL){ 
     printf(“Error Opening File!\n”); 
     check = 0; 
 } 
 else{ 
     fseek(output,0,SEEK_END); 
     size = ftell(output); 
     if (size == 0){ 
         check = 1; 
     } 
     else{ 
         check = 0; 
     } 
 } 
 fclose(output); 
 return check; 
} 
 
//---------------------------------------------------------------------| 
// Sends configurations to hosts 
//---------------------------------------------------------------------| 
int antennaAssignment(char band [], char ipAddress [], int count){ 
 char npingPass [MAX]; 
 char npingFail [MAX]; 
 char channelMess [MAX]; 
 int val; 
 int channel; 
 if ((strstr(band,freq [0]) != NULL) || strstr(band,freq [1]) != NULL || strstr(band,freq 
[2]) != NULL || strstr(band,freq [3]) != NULL){ 
     channel = assignARFCN(band, ipAddress); 
     printf(“Sending channel to host..\n”); 
     sprintf(channelMess,”echo %i | nc %s 444%i”,channel,ipAddress,count); 
     system(channelMess); 
     printf(“\nEnsure host received channel, continue? [y = 1/n = 0]: “); 
     if (scanf(“ %i,” &val) != 1){ 
         printf(“Exiting...\n\n”); 
         exit(1); 
     } 
     if (count < 4){ 
         printf(“Sending Message to host...\n\n”); 
         sprintf(npingPass,”nping --udp -p 3333 -g 3333 %s -c 1 -H -N --quiet --data-string 
‘%s’”,ipAddress,band); 
         system(npingPass); 
 
     } 
     else{ 
         printf(“Sending Message to host...\n\n”); 
         sprintf(npingFail,”nping --udp -p 3333 -g 3333 %s -c 1 -H -N --quiet --data-string 
‘%s’”,ipAddress,band); 
         system(npingFail); 
         printf(“-------------------------------------------------------\n”); 
         printf(“Ensure hosts are setup correctly on Secondary’s\n”); 
 
     } 
 } 
 else{ 
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     printf(“Attempted to assign invalid band...exiting...\n”); 
     exit(1); 
 } 
 return 0; 
} 
int ntpSetup(){ 
 printf(“------------------------------------------------------\n”); 
 printf(“\nForcing restart of NTP Server...\n”); 
 system(“service ntpd restart”); 
 system(“ntpq -p”); 
 return 0; 
} 
 
//---------------------------------------------------------------------| 
// Time stamps data 
//---------------------------------------------------------------------| 
int timeStamp(int tf,int testNum){ 
 char csvStamp [MAX]; 
 sprintf(csvStamp,”python ./csvLog.py %i %i,” tf, testNum); 
 system(csvStamp); 
 return 0; 
} 
 
//--------------------------------------------------------------------------------------- 
// Base Sniffer Section 
//--------------------------------------------------------------------------------------- 
void packet(u_char *arg, const struct pcap_pkthdr* hdr, const u_char * packet){ 
 int i=0; 
 char payload [MAX]; 
 if (trigger != 1){ 
     if (hdr->len < 135){ 
         for (i=0; i<hdr->len; i++){ 
             if (i > 41 && i < 43){ 
                 strcat(payload, (char *)&packet [i]); 
             } 
         } 
     } 
     if ((strstr(payload, hosts [0]) != NULL) || (strstr(payload, hosts [1]) != NULL) || 
(strstr(payload, hosts [2]) != NULL) || (strstr(payload, hosts [3]) != NULL)) { 
         printf(“\nPayload Received: %s\n\n,” payload); 
         pcap_breakloop(handle); 
     } 
     strcpy(payload, ““); 
      
 } 
} 
 
int packetSniffer(){ 
 char errorBuff [PCAP_ERRBUF_SIZE], *device; 
 device = “enp0s25”; // ----->If necessary, change to whats needed here (device to sniff) 
  
 printf(“------------------------------------------------------\n”); 
 printf(“Setting up packet sniffer...\n”); 
 handle = pcap_open_live(device, MAX, 1,  512, errorBuff); 
 pcap_loop(handle, -1, packet, NULL); 
 
 return 0; 
 
} 
//--------------------------------------------------------------------------------------- 
// Main: Checks for mode to begin 
//--------------------------------------------------------------------------------------- 
int main(int argc, char *argv []){ 
 if (getuid()){ 
 printf(“WARNING: You are not in root. Please rerun this script in root”); 
 exit(1); 
 } 
 int check = 0; 
 int mode = 0; 
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 char hBandSTR[3]; 
 while (mode == 0){ 
     if (!(argc>1)){ 
         printf(“Please enter: ‘0’ for Configuration Mode, ‘1’ for Capture Mode, or ‘+’ to 
setup NTP.\n”); 
         char input = getchar(); 
         if (strcmp(&input,”0”) == 0){ 
             mode = 2; 
         } 
         else if(strcmp(&input,”1”) == 0){ 
             mode = 3; 
         } 
         else if(strcmp(&input,”+”) == 0){ 
             mode = 1; 
         } 
         else{ 
             printf(“Invalid mode...Try Again\n”); 
         } 
     } 
     else if(strcmp(argv [1],”+”) == 0){ 
         mode = 1; 
     } 
     else if(strcmp(argv [1],”0”) == 0){ 
         mode = 2; 
     } 
     else if(strcmp(argv [1], “1”) == 0){ 
         mode = 3; 
     } 
     else{ 
         break; 
     } 
 } 
 
 switch(mode){ 
     case 1:{ 
         if (ntpSetup() == 0){ 
             printf(“\nNTP Commands ran successfully...check to ensure correct 
setup...\n”); 
             timeStamp(0,00000); 
         } 
         break; 
     } 
     case 2:{ 
         trigger = 0; 
         printf(“------------------------------------------------------\n”); 
         printf(“ENSURE SECONDARY’S ARE RUNNING FIRST! \nIf not, quit and start the 
secondarys’ scripts in Configuration Mode.\n\n”); 
 
         while (healthCheck(check) != 1){ 
             printf(“Recheck Computers\n\n”); 
             printf(“Delete output.txt file then press Enter if you would like to retry 
health check...\n”); 
             getchar(); 
         } 
         printf(“\nHealth Check Successful!\n”); 
         printf(“\nWould you like to randomize ARFCN Channel assignment? [y = 1/n = 0]: “); 
     if ((scanf(“ %i”,&randChannel) == 1) && (randChannel == 1 || randChannel == 0)){ 
      printf(“randChannel = %i\n”,randChannel); 
      for (int i = 0; i < 4; i++){ 
       printf(“Please Enter Host %i’s Band: \n”,i+1); 
       scanf(“%s”,hBandSTR); 
       antennaAssignment(hBandSTR,hosts [i],i+1); 
       strcpy(hBandSTR,”“); 
       packetSniffer(); 
   } 
      printf(“\nConfiguration of hosts complete!\n”); 
      } 
     } 
     case 3:{ 
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         char c; 
         trigger = 1; 
         printf(“------------------------------------------------------\n”); 
         printf(“Enter the test number of the phone here,\n”); 
         scanf(“%i”,&testNum); 
         printf(“Test Phone Number %i\n\n”,testNum); 
 
 
         printf(“\nCheck each antenna is configured correctly, if not press q.\n”); 
         printf(“\n1. Run seconday’s scripts in Capture Mode. \n”); 
         printf(“2. Check secondary’s NTP status’, if st==16 press q to quit and try 
again.\n”); 
         printf(“3. If all are setup correctly, PRESS ENTER ON SECONDARY’S! \n4. Press Enter 
here to begin experiment.\n”); 
         getchar(); 
         c = getchar(); 
         if (strstr(&c,”q”)){ 
             printf(“\nExited IMSI experiment.\n”); 
             exit(1); 
         } 
         else{ 
             timeStamp(1,00000); 
             printf(“\nBeginning Experiment...\n”); 
             if (system(“nc -l 4488 > IMSI.txt”) != -1){ 
                 timeStamp(2,testNum); 
                 char nping [MAX]; 
                 sprintf(nping,”nping --udp -p 3333 -g 3333 %s %s %s %s -c 1 -H -N --quiet 
--data-string ‘STOP’”,hosts [0],hosts [1],hosts [2],hosts [3]); 
                 system(nping); 
                 printf(“\nSuccessful IMSI experiment!\a\n”); 
                 printf(“------------------------------------------------------\n”); 
             } 
             else{ 
                 printf(“\nIMSI Experiment Failed\n”); 
                 printf(“------------------------------------------------------\n”); 
                 exit(1); 
             } 
         } 
     } 
 
 pcap_close(handle); 
 return 0; 
 
} 
} 

B. CSVLOG.PY 

import csv 
import sys 
from datetime import datetime 
# For Primary 
 
#-------------------------------------------------- 
#  csvLog.py 
# This program takes in the necessary data and 
# formats it into a .csv file. 
#-------------------------------------------------- 
def main(): 
 csv = open(‘imsiLog.csv’,’a’) 
 fmt = “%H:%M:%S.%f” 
 #----------------------------------------------- 
 # Creates the start template for logging 
 if (sys.argv [1] == ‘1’): 
  ctime = datetime.now() 
  ftime = ctime.strftime(fmt) 
  row1 = “START,---,---,---,---,”+ftime+”\n” 
  csv.write(row1) 
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  time = open(‘primeTime.txt’,’w’) 
  time.write(ftime) 
  time.close() 
 #----------------------------------------------- 
 # Creates the header names for the log 
 elif (sys.argv [1] == ‘0’): 
  row0 = “Time,ipAddress,Band,TestNumber,Channel,DeltaTime\n” 
  csv.write(row0) 
 #----------------------------------------------- 
 # Stamps to the logging and file for matlab 
 elif (sys.argv [1] == ‘2’): 
  fileIMSI = open(“IMSI.txt”,”r”) 
  fileTIME = open(“primeTime.txt”,”r”) 
  fileMATLAB = open(‘imsiMATLAB.csv’,’a’) 
  readIMSI = fileIMSI.readline() 
  readTIME = fileTIME.readline() 
  delta = datetime.strptime(str(readIMSI)[:14],fmt) - 
datetime.strptime(readTIME,fmt) 
  deltaT = str(delta) 
  print(“\n\nDelta Time: “+deltaT) 
  testNum = str(sys.argv [2]) 
  row = readIMSI.rstrip(‘\n’)+testNum+’,’+deltaT+”\n” 
  rowMATLAB = readIMSI[29:].rstrip(‘\n’)+testNum+’,’+deltaT+”\n” 
  print(“Capture Information:\n”+row) 
  csv.write(row) 
  fileMATLAB.write(rowMATLAB) 
  fileMATLAB.close() 
  fileIMSI.close() 
  fileTIME.close() 
 csv.close() 
main() 

C. RANDCHANNEL.PY 

import random 
 
#-------------------------------------------- 
#   randChannel.py 
# This program was designed to provide 
# more control for creating random ARFCNs. 
# Check for uniform distribution. 
#-------------------------------------------- 
 
#----------------------------- 
# Randomziation for EP2 
#----------------------------- 
 
channels = [1,42,83,124] 
for i in range(10): 

sampled = random.sample(channels,4) 
print(sampled) 

 
#----------------------------- 
# Randomziation for EP2.2 
#----------------------------- 
chan1 = [5,6,7,8,9,10,11,12,13,14,15] 
chan42 = [40,41,42,43,44,45,46,47,48,49,50] 
chan83 = [75,76,77,78,79,80,81,82,83,84,85] 
chan124 = [110,111,112,113,114,115,116,117,118,119,120] 
print(‘\n’) 
for j in range(10): 
 sampled1 = random.sample(chan1,1) 
 sampled42 = random.sample(chan42,1) 
 sampled83 = random.sample(chan83,1) 
 sampled124 = random.sample(chan124,1) 
 chanT = sampled1 + sampled42 + sampled83 + sampled124 
 sampleT = random.sample(chanT,4) 
 print(sampleT)  
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APPENDIX G.  SECONDARY CODE 

The code within this appendix is for the secondary workstations and used for 

experimentation. The experiments performed in this thesis use four secondary workstations 

labeled as secondary<#>.c. The <#> is replaced with the numbered value for the 

workstation it is on. For example, this code on workstation one would bear the name 

secondary1.c. Implementing the secondary<#>.c code also requires installation of several 

of the packages mentioned in Appendix F. This includes: libpcap [42], tcpdump [42] and 

netcat [45]. This secondary program also relies on a packet sniffer adapted from [46] but 

is primarily the author’s own work and was also produced with the assistance of the many 

learning modules in Tutorialspoint [47],[48]. Successfully compiling secondary.c requires 

the command: 

gcc secondary<#>.c -lpcap 

and is run within the same directory as all of the files in this appendix. Then to run the 

secondary.c file, the command: 

sudo ./a.out 

is used, again, within the same directory as the files of this appendix. The testTime.py 

program only requires python [49] and will only be called to run from within 

secondary<#>.c.  

A. SECONDARY<#>.C 

 
#include <pcap.h> 
#include <string.h> 
#include <stdlib.h> 
#include <ctype.h> 
#include <stdio.h> 
#include <unistd.h> 
 
#define MAX 1000 
 
const char* ipAddr [] = {“192.168.4.22”}; // Workstation 1 ------- Change Here for other 
IPaddresses 
// Workstation 2: “192.168.4.23” 
// Workstation 3: “192.168.4.24” 
// Workstation 4: “192.168.4.25” 
pcap_t *handle = NULL; 
int trigger = 0; 
int ARFCN = 0; 
int band = 0; 
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//--------------------------------------------------------------------------------------- 
//                                  secondary#.c 
// This program is walked through by the primary. Only starting this script is necessary. 
// In capture mode it will listen for STOP or IMSIs and relay data back to primary 
//--------------------------------------------------------------------------------------- 
 
//--------------------------------------------------------------------------------------- 
// Configuration Section 
//--------------------------------------------------------------------------------------- 
//---------------------------------------------------| 
// Assigns ARFCN based on requirements from Primary 
//---------------------------------------------------| 
int assignARFCN(){ 
 FILE *fp; 
 char str [5]; 
 int channel; 
 fp = fopen(“channel.txt,” “r”); 
 if(fp == NULL) { 
   perror(“Error opening file\nExiting...\n”); 
   exit(-1); 
 } 
 if( fgets (str, 60, fp) != NULL ) { 
 if (atoi(str) == 0){ 
     printf(“\nChannel Given: %i\n,” 1); 
         channel = 1; 
 } 
 else{ 
         printf(“\nChannel Given: %s\n,” str); 
         channel = atoi(str); 
 } 
 } 
 fclose(fp); 
 return channel; 
 
} 
//---------------------------------------------------| 
// Configures openBTS 
//---------------------------------------------------| 
int configWindow(){ 
 char mainBand [MAX]; // Changes band in main configuration file 
 char pyBand [MAX]; // Ensures antenna band is configured correctly via CLI 
 char mainChannel [MAX]; // Changes channel in main configuration file 
 char pyChannel [MAX]; // Ensures antenna channel is configured correctly via CLI 
 
 sprintf(mainBand, “sqlite3 ../../../etc/OpenBTS/OpenBTS.db ‘UPDATE CONFIG SET 
VALUESTRING=\”%i\” WHERE KEYSTRING=\”GSM.Radio.Band\”‘“,band); 
 sprintf(mainChannel, “sqlite3 ../../../etc/OpenBTS/OpenBTS.db ‘UPDATE CONFIG SET 
VALUESTRING=\”%i\” WHERE KEYSTRING=\”GSM.Radio.C0\”‘“,ARFCN); 
 system(mainBand); 
 system(mainChannel); 
 
 // Ensures, files are configured 
 sprintf(pyBand, “../../../OpenBTS/OpenBTSCLI -c config GSM.Radio.Band %i,” band); 
 sprintf(pyChannel,”../../../OpenBTS/OpenBTSCLI -c config GSM.Radio.C0 %i”,ARFCN); 
 system(pyBand); 
 system(pyChannel); 
 
 printf(“\nConfiguration complete, restarting OpenBTS...\n”); 
 system(“../../../OpenBTS/OpenBTSCLI -c restart”); 
 
 return 0; 
} 
//---------------------------------------------------| 
// Displays configuration messages for confirmation 
//---------------------------------------------------| 
int configurationMessages(int bandMain){ 
 pcap_breakloop(handle); 
 FILE *bandText; 
 band = bandMain; 
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 bandText = fopen(“band.txt”,”w”); 
 char bandString [6]; 
 sprintf(bandString,”%i”,band); 
 fputs(bandString,bandText); 
 fclose(bandText);  
 char reply [MAX]; 
 printf(“\nMessage Received Matches: %i\n,” band); 
 printf(“\nConfiguring Antenna For %i Band and Channel %i\n...\n,” band, ARFCN); 
 configWindow(); 
 return 0; 
} 
 
//--------------------------------------------------------------------------------------- 
// Base Sniffer Section 
//--------------------------------------------------------------------------------------- 
void packetAnalysis(u_char *arg, const struct pcap_pkthdr* header, const u_char * packet){ 
 int i=0;  
 char payload [129]; 
 switch(trigger){ 
     // Checks if there are any configuration intructions from the Primary 
     case 1: { 
         if (header->len < 135){ 
             for (i=0; i<header->len; i++){ 
                 if (i > 41){ 
                     if ( isprint(packet [i]) ){ 
                         strcat(payload, (char *)&packet [i]); 
                     } 
                 } 
                 else{ 
                     strcat(payload, ““);     
                 } 
             } 
         } 
         if (strstr(payload, “850”) != NULL) { 
             configurationMessages(850);  
         } 
         else if (strstr(payload, “900”) != NULL && strstr(payload, “1900”) == NULL) { 
             configurationMessages(900); 
         } 
         else if (strstr(payload, “1800”) != NULL) { 
             configurationMessages(1800); 
         } 
         else if (strstr(payload, “1900”) != NULL) { 
             configurationMessages(1900); 
         } 
         strcpy(payload, ““); 
         break; 
         } 
 //----------------------------------------------------------------------------------- 
 // Capture IMSI Section 
 //----------------------------------------------------------------------------------- 
     case 2: { 
         char str [100]; 
         const char check [] = “01 3f 49 05 08”; 
         char stopCheck [2048]; 
         if (header->len < 90){  
             for (i=0; i<header->len; i++){ 
                 if (i > 40){ 
                     sprintf(str,”%02x ,” (unsigned char) packet [i]); 
                     strcat(payload,str); 
                     strcpy(str,”“); 
                     if ( isprint(packet [i]) ){ 
                     strcat(stopCheck, (char *)&packet [i]); 
                     } 
                 } 
             } 
         } 
         if (strstr(stopCheck,”STOP”)!=NULL){ 
             printf(“Received STOP, experiment ending. Exiting....\n\n”); 
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             pcap_breakloop(handle); 
             exit(1); 
         } 
         else if (strstr(payload,check)!=NULL){ 
             printf(“\nIMSI FOUND!\nProcessing...\n”); 
             pcap_breakloop(handle); 
             // Need this section only if requirement to see IMSI------------ 
             int count = 1; 
             char IMSItemp [24],IMSI[15],message [200]; 
             int size = strlen(payload); 
             int x,z; 
             for (x=0;x<24;x++){ 
             IMSItemp [23-x] = payload [size-7-x]; 
             } 
             for (z = 0; count < 15;z+=3){ 
             if (z == 0){ 
                 IMSI[0] = IMSItemp [0]; 
             } 
             else{ 
                 IMSI[count] = IMSItemp [z+1]; 
                 IMSI[count+1] = IMSItemp [z]; 
                 count+=2; 
             } 
             } 
             printf(“ IMSI is: %s.\nTime stamping and sending to primary...\n”,IMSI); 
             //---------------------------------------------------------- 
 
             // Sends configuration to time stamper 
             sprintf(message,”python ./testTime.py %i %i %s”,band,ARFCN,ipAddr [0]); 
             system(message); 
 
         } 
         else{ 
                 strcpy(payload,”“); 
                 strcpy(stopCheck,”“); 
         } 
     } 
 } 
} 
 
int packetSniffer(){ 
 char errorBuff [PCAP_ERRBUF_SIZE], *interface; 
 printf(“-------------------------------------------------\n”); 
 if (trigger == 1){ 
     interface = “eth0”; //----If necessary, change to whats needed here (device to sniff) 
 } 
 else if (trigger == 2){ 
     interface  = “any”; 
 } 
 printf(“Setting up packet sniffer...\n”); 
 handle = pcap_open_live(interface, 2048, 1,  512, errorBuff); 
 pcap_loop(handle, -1, packetAnalysis, NULL); 
 return 0; 
 
  
} 
 
 
//--------------------------------------------------------------------------------------- 
// Main: Checks for mode to begin 
//--------------------------------------------------------------------------------------- 
int main(int argc, char *argv [] ){ 
 if (getuid()){ 
 printf(“WARNING: You are not in root. Please rerun this script in root”); 
 exit(1); 
 } 
 int mode = 0; 
 printf(“-------------------------------------------------\n”); 
 printf(“Your address is set to: %s\n”,ipAddr [0]); 
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 while (mode == 0){ 
     // Checks if an argument was entered. If not, it will ask which mode to select 
     if (!(argc>1)){ 
         char input; 
         printf(“Please enter a ‘0’ for Configuration Mode, ‘1’ for Capture Mode, or ‘+’ to 
check NTP\n”); 
         input = getchar(); 
         if (strcmp(&input,”0”) == 0){ 
             mode = 1; 
             system(“nc -l 4442 > channel.txt”); //------------------------------------- 
Change Here (nc port) for other IP Address 
             ARFCN = assignARFCN(); 
         } 
         else if(strcmp(&input,”1”) == 0){ 
             mode = 2; 
             ARFCN = assignARFCN(); 
         } 
     else if(strcmp(&input,”+”) == 0){ 
             mode = 3; 
             printf(“Checking NTP...\n”); 
         } 
         else{ 
             printf(“\nInvalid Entry, please try again...\n”); 
         } 
     } 
     // If argument was given, compares and sets it to correct mode 
     else if(strcmp(argv [1],”0”) == 0){ 
         mode = 1; 
         system(“nc -l 4442 > channel.txt”); //- Change nc port for other IP Address 
  // 4443, 4444, 4445 
         ARFCN = assignARFCN(); 
     } 
     else if(strcmp(argv [1], “1”) == 0){ 
         mode = 2; 
         ARFCN = assignARFCN(); 
     } 
     else if(strcmp(argv [1], “+”) == 0){ 
         mode = 3; 
         printf(“Checking NTP...\n”); 
     } 
     else{ 
         break; 
     } 
 } 
 switch(mode){ 
     // Configuration Mode 
     case 1:{ 
         trigger = 1; 
         if (packetSniffer() != 0){ 
             printf(“\nUnsuccessful Configuration”); 
         printf(“-------------------------------------------------\n”); 
         } 
         else{ 
             printf(“\nConfiguration complete!\n”); 
         printf(“-------------------------------------------------\n”); 
         } 
     } 
     // Capture Mode 
     case 2:{ 
         trigger = 2; 
         if (packetSniffer() != 0){ 
             printf(“\nUnsuccessful IMSI experiment\n”); 
             printf(“-------------------------------------------------\n”); 
         } 
         else{ 
             printf(“\nIMSI Experiment Complete!\n”); 
             printf(“-------------------------------------------------\n”); 
         } 
         break; 
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     } 
     // NTP Mode 
     case 3: { 
         system(“ntpq -p”); 
         printf(“\nEnsure ntp server is up and st is low\n”); 
     break; 
     } 
 
 } 
 pcap_close(handle); 
 return 0; 
  
} 
 

 

B. TESTTIME.PY 

import sys 
import os 
from datetime import datetime 
# For Secondary 
 
#-------------------------------------------------- 
#    testTime.py 
# This program takes in the necessary data and 
# formats it to send to primary 
#-------------------------------------------------- 
def main(): 
 # Formats data and sends to Primary 
 ctime = datetime.now() 
 ftime = ctime.strftime(‘%H:%M:%S.%f’) 
 band = sys.argv [1] 
 ipAddr = sys.argv [3] 
 if band == ‘0’: 
  fileBand = open(“band.txt”,”r”) 
  band = fileBand.readline() 
 if len(sys.argv [2]) < 2: 
  channel = “00” + sys.argv [2] 
 elif len(sys.argv [2]) < 3: 
  channel = “0” + sys.argv [2] 
 else: 
  channel = sys.argv [2] 
 cmd = ‘printf “%s\n” ‘ + ‘“‘ + ftime +”,”+ ipAddr + “,”+ band +”,”+ channel 
+”,”+ ‘“ ‘ + “|” + “ nc 192.168.4.28 4488” 
 print(cmd) 
 os.system(cmd) 
main() 
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