

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

ROBOTIC NAVIGATION IN GPS-DENIED ENVIRONMENTS
USING THE STRAPDOWN NAVIGATION ALGORITHM

WITH ZERO-VELOCITY UPDATES

by

Samuel S. Druen

June 2020

Thesis Advisor: Xiaoping Yun
Second Reader: James Calusdian

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 June 2020 3. REPORT TYPE AND DATES COVERED
 Master's thesis

 4. TITLE AND SUBTITLE
ROBOTIC NAVIGATION IN GPS-DENIED ENVIRONMENTS USING THE
STRAPDOWN NAVIGATION ALGORITHM WITH ZERO-VELOCITY
UPDATES

 5. FUNDING NUMBERS

 6. AUTHOR(S) Samuel S. Druen

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 GPS-denied environments, including indoor, urban canyon, and shipboard settings, present difficulties
for autonomous robot navigation. One navigation solution in GPS-denied environments is to incorporate
inertial sensors; however, due to sensor noise and calibration error, the accumulation of position error, or
drift, causes the position estimate from inertial sensors to fail after a period of time. This thesis aimed to
determine the viability of a pedestrian algorithm, which incorporates the zero-velocity update, to address the
error and calculate distance traveled by a mobile robot in a GPS-denied environment. This work focused on
indoor navigation using various sensors to provide data to the algorithm to calculate estimated distance
traveled. Experiments were constructed and performed using a cart, robot, and mounted sensors in three
laboratory settings: across the ground with preset distances, on an instrument rail track, and in an optical
tracking environment. Tests conducted with the sensors determined that a system traveling above a
minimum velocity threshold up to three meters can effectively implement a pedestrian tracking algorithm
given known quaternion values. Adding a native means of determining system angles will allow this
solution to be applied in more environments.

 14. SUBJECT TERMS
GPS-denied, indoor navigation, autonomous ground-based robot navigation,
pedestrian-based navigation algorithms, zero-velocity update

 15. NUMBER OF
PAGES
 101
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

ROBOTIC NAVIGATION IN GPS-DENIED ENVIRONMENTS USING THE
STRAPDOWN NAVIGATION ALGORITHM WITH ZERO-VELOCITY

UPDATES

Samuel S. Druen
Lieutenant, United States Navy

BS, Virginia Military Institute, 2015

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2020

Approved by: Xiaoping Yun
 Advisor

 James Calusdian
 Second Reader

 Douglas J. Fouts
 Chair, Department of Electrical and Computer Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 GPS-denied environments, including indoor, urban canyon, and shipboard

settings, present difficulties for autonomous robot navigation. One navigation solution in

GPS-denied environments is to incorporate inertial sensors; however, due to sensor noise

and calibration error, the accumulation of position error, or drift, causes the position

estimate from inertial sensors to fail after a period of time. This thesis aimed to determine

the viability of a pedestrian algorithm, which incorporates the zero-velocity update, to

address the error and calculate distance traveled by a mobile robot in a GPS-denied

environment. This work focused on indoor navigation using various sensors to provide

data to the algorithm to calculate estimated distance traveled. Experiments were

constructed and performed using a cart, robot, and mounted sensors in three laboratory

settings: across the ground with preset distances, on an instrument rail track, and in an

optical tracking environment. Tests conducted with the sensors determined that a system

traveling above a minimum velocity threshold up to three meters can effectively

implement a pedestrian tracking algorithm given known quaternion values. Adding a

native means of determining system angles will allow this solution to be applied in more

environments.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1

A. MOTIVATION ..1

B. RELATED SOLUTIONS ..2

1. Vision Solution ...2

2. Magnetic Field ..2

3. Inertial Navigation ...3

C. PURPOSE AND GOAL ..3

II. BACKGROUND ..5

A. REFERENCE FRAME ...5

1. Sensor Reference Frame ..5

2. Navigational Reference Frame ...6

B. QUATERNIONS ..6

C. ZERO VELOCITY UPDATE ..9

D. INTERPOLATION..12

III. PROCEDURES ..15

A. SENSORS ...15

1. Lord Microstrain 3DM-GX3-25 and 3DM-GX4-2515

2. Yost 3-Space TSS-DL v 2.0 ...17

B. SOFTWARE ...18

1. MATLAB ..18

2. 3DM Monitor ..18

3. MIP Monitor...18

4. Motive Tracker...19

C. CART ..19

D. PIONEER P3-DX ROBOT ...20

E. DATA OPTICS, INC. OPTICS RAIL ...22

F. OPTITRACK PRIME OPTICAL TRACKING SUITE25

IV. RESULTS ...29

A. CART EXPERIMENT ..29

B. ROBOT EXPERIMENT ...32

1. Effect of Distance ...32

2. Effect of Velocity ..34

3. Viability of Pedestrian Algorithm ..36

viii

C. RAIL EXPERIMENT ...37

1. Flat Linear Motion ...37

2. Linear Motion with a Set Angle ..38

3. Linear Motion with a Variable Angle ..40

D. OPTITRACK EXPERIMENT ...42

1. Linear Motion with a Set Angle ..43

2. Linear Motion with a Variable Angle ..43

3. Arbitrary Motion ...45

V. CONCLUSION ..47

A. ASSESSMENT OF GOALS..47

B. LIMITATIONS ..48

C. RECOMMENDATIONS FOR FUTURE WORK49

APPENDIX A. DATA PROCESSING SCRIPT ..51

APPENDIX B. FQA PROCESSING SCRIPT ...53

APPENDIX C. FQA PROCESSING WITH MOTION SCRIPT57

APPENDIX D. HARDCODED FQA SCRIPT ...61

APPENDIX E. EULER ANGLE FUNCTION ...65

APPENDIX F. ROTATION FUNCTION ..67

APPENDIX G. QUATERNION MULTIPLICATION FUNCTION69

APPENDIX H. OPTITRACK PROCESSING SCRIPT ...71

APPENDIX I. EULER ANGLE TO QUATERNION FUNCTION77

APPENDIX J. FILTER REPEAT DATA FUNCTION ..79

LIST OF REFERENCES ..81

INITIAL DISTRIBUTION LIST ...83

ix

LIST OF FIGURES

Figure 1. Sensor axis orientation ...5

Figure 2. Acceleration data with uncorrected velocity and position10

Figure 3. Uncorrected velocity with corrected velocity ..12

Figure 4. Microstrain 3DM-GX3-25 ...16

Figure 5. Microstrain 3DM-GX4-25 ...16

Figure 6. Yost TSS-DL v2.0 ...17

Figure 7. Five-meter track for experiments ...19

Figure 8. Motion start and stop ...20

Figure 9. Pioneer P3-DX ...21

Figure 10. Tethered controller ...21

Figure 11. Optical rail ...22

Figure 12. Optical tool sled ...23

Figure 13. Shelf attached to angle indicator ..24

Figure 14. Angular reference face ...24

Figure 15. OptiTrack optical sensors ..26

Figure 16. OptiTrack sled ..26

Figure 17. Plots of arbitrary motion ..28

Figure 18. Step motion versus cart motion..29

Figure 19. Acceleration plot of low and high-velocity trials31

Figure 20. Calculated distances traveled ...33

Figure 21. Speed settings and corresponding distance ..35

Figure 22. Low-velocity and high-velocity trials ..36

x

Figure 23. Acceleration data and corresponding quaternion41

Figure 24. Effects of computer on magnetometer ...42

Figure 25. OptiTrack quaternion versus FQA quaternion ...44

Figure 26. Raw and transformed acceleration ...45

xi

LIST OF TABLES

Table 1. Calculated versus traveled distance ...30

Table 2. Standard deviations versus distance traveled ...32

Table 3. Distance and calculated distance with standard deviation34

Table 4. Calculated distances versus various sensors ..37

Table 5. Reference angle and calculated angle ..39

Table 6. Reference angle with calculated distance and standard deviation39

Table 7. Reference angles and calculated distance and standard deviation40

Table 8. Calculated distances with standard deviation. ...43

Table 9. Calculated distances and standard deviation. ...43

Table 10. Sensor motion with calculated distance and standard deviation.46

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF ACRONYMS AND ABBREVIATIONS

AI Artificial Intelligence

DoD Department of Defense

FQA Factored Quaternion Algorithm

GUI Graphical User Interface

IMU Inertial Measurement Unit

INS Inertial Navigation System

GPS Global Positioning System

NED North-East-Down

ZUPT Zero Velocity Update

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

ACKNOWLEDGMENTS

I wish to thank my Lord and savior for providing me with the chance to fulfill a

dream and the support to get me through this journey.

I want to thank my wife, Kristin, for being by my side, supporting me through this

entire process and the classes. You inspired me to pursue this journey and have helped me

to remain steadfast through it all.

I want to thank my thesis advisors, Dr. Xiaoping Yun and Dr. James Calusdian.

Dr. Yun, thank you for your invaluable advice and patience with me throughout this

entire thesis writing process. Dr. Calusdian, thank you for your guidance in framing my

focus and helping me through with discussions when I lost that focus.

To my church family and friends, thank you for giving me that extra level of support

and an outlet when I needed it the most.

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Current autonomous systems rely heavily on input from the Global Positioning

System (GPS) to build their navigation control law due to its ease of use and relative

accuracy when compared to other navigational systems. GPS provides an accurate means

of fixing the position of an object within an accepted range of uncertainty. However, an

overreliance on GPS can be exploited as a significant weakness during times of conflict

when the system is operating in an environment where GPS signals are denied. GPS also

has inherent limitations inside of buildings and within urban canyons. Inertial navigation

systems (INS) are a current emphasis in autonomous navigation studies in conjunction with

integrating accelerometer outputs to dead-reckon the system position. In [1], Yun et al.

discuss various commercial solutions available on the market and issues that arise due to

sensor errors within onboard systems. In this chapter, the motivation for this thesis,

examples of similar solutions currently being studied, and the overall purpose and goal of

this research are presented.

A. MOTIVATION

Autonomous systems are beneficial in military applications where risk to personnel

is great. The use of an autonomous system relieves the demands on personnel by

performing tasks normally done by humans. As the demand from the Department of

Defense (DoD) for unmanned and autonomous systems increases, the environments in

which these systems operate also broaden. These systems are increasingly required to

operate in environments that are not conducive to the use of conventional GPS solutions.

When operating in indoor environments, autonomous systems are unable to attain a reliable

positional fix because the signal from GPS satellites is not strong enough [2]. Similarly, if

an autonomous system is surrounded by metal surfaces in shipboard environment, GPS

signals are useless. Some of the related solutions discussed in the next section are limited

in these environments due to the presence of smoke, visible obstructions, or the amount of

ferrous material surrounding the system. Therefore, a means of calculating position within

2

these environments must be addressed in order to expand the utility of autonomous systems

within environments where GPS is denied or no longer a feasible solution.

B. RELATED SOLUTIONS

Some of the related solutions for this research are navigation algorithms utilizing

vision, magnetic field, and inertial data to build a navigation solution. Each example will

be discussed in this section.

1. Vision Solution

A solution for autonomous navigation utilizes cameras and visual image processing

to create a visual navigation solution. Common implementations use optical sensors

attached to the autonomous system and local positioning visual systems. In [3], Sazdivski

et al. mount cameras on an autonomous system and utilize artificial intelligence (AI) to

augment inertial navigation systems. AI was needed to provide a localization solution

without a priori data [3]. In [4], Lategahn et al. utilize a camera mounted to a chassis and

present a navigational solution with only one optical sensor. In [5], Zhou et al. present the

idea of utilizing optical sensors as navigational anchors to create a local positioning system.

Optical or visual, systems are limited if the environment denies the utilization of

optical sensors. If employing a local positioning system like in [5], the location must have

sensors installed prior to the robot entering the location. Unless the system is being

augmented with AI, systems with onboard optical systems need a means of localizing

within their local environment, such as landmarks [4].

2. Magnetic Field

Another option is the use of magnetometer data and the local magnetic fields in

order to calculate an angle of the system and thus be able to calculate the associated

quaternion [1], [2], [6], and [7]. When navigating with a magnetometer, readings of the

surrounding magnetic fields are used to calculate a heading or determine where the sensor

is facing [7]. In [1] and [7], Yun et al. utilize the magnetic field reading to augment inertial

navigation while a sensor is in angular motion. In [6], Calusdian et al. built upon the

3

research in [1] and [7] to better create an algorithm to handle the transfer from stationary

to angular motion. In [6], the magnetometer readings utilize local declination to calculate

angular motion. In [2], Storms et al. utilize the ambient magnetometer readings of a room

in order to localize a robotic system. In order to achieve this, Storms et al. measured the

magnetic field in a room and, based on the readings, the system matched its location to a

magnetic field reading [2].

From [1], [2], [6], and [7], magnetic field navigation serves as a good alternative in

conjunction with INS when GPS signals are not available. However, in a shipboard

environment or when in close proximity to changing electronic systems, such as electric

motors and generators, magnetic reference signals are significantly skewed.

3. Inertial Navigation

Inertial navigation utilizes acceleration measurements in order to calculate the

distance traveled by integration. In the absence of GPS, this solution is the predominant

method for navigation or is augmented by other sensors like in [1], [2], and [6]–[8]. Much

of the focus in this field has been to utilize INS to aid in the tracking of pedestrian

movements, as done in [1], [6], [7], and [8], in environments or situations where GPS no

longer provides the needed fidelity to accurately track individuals. INS solutions can also

be applied to robotic systems operating in GPS-denied environments. INS solutions

provide acceleration data which can be integrated to provide positional data of the system.

A major complication of inertial navigation, however, is sensor drift [6]. In [6], sensor drift

and solutions to update the velocity in order to compensate for such drift are discussed.

C. PURPOSE AND GOAL

The purpose of this thesis is to confirm if a pedestrian tracking algorithm can be

implemented on a wheeled robot chassis. The pedestrian tracking algorithm is built on

research done in [6] by Calusdian et al. In [6], Calusdian et al. were able to design a control

algorithm that was capable of accurately calculating the distance traveled by a pedestrian.

To scope this study three goals were set: first, determine the distance a robot can travel

before the data must be updated; second, determine the effects of velocity on the ability of

4

the algorithm to calculate distance; finally, determine if the algorithm can be implemented

to an arbitrarily moving body. This study applies concepts discussed in [1] and [7] by Yun

et al. and [6] by Calusdian, et al., which look into correcting the induced error in velocity

by correcting the velocity to known values. The results are a simplified means for an

autonomous system to navigate within the environment.

Chapter II presents the concepts that were utilized to govern this research. Chapter

III addresses the hardware, software, and experiment procedures utilized to conduct this

research. Chapter IV explores the results of the experiments. Finally, recommendations for

future work and conclusions from this research are discussed in Chapter V.

5

II. BACKGROUND

In this chapter, a basic framework of the guiding concepts behind the thesis will be

provided. More specifically, reference frames, quaternions, the Zero Velocity Update

(ZUPT) algorithm, and the concept of interpolation encountered in this thesis will be

discussed. In each section below, the concepts will be explained as each concept applies to

this thesis.

A. REFERENCE FRAME

The reference frame is a coordinate system in which sensor measurements are

represented. For this thesis, there are two reference frames, which are called the sensor, or

body, reference frame and the navigational frame.

1. Sensor Reference Frame

The data collected from the sensors are represented in the sensor frame, which is a

coordinate system attached to the sensor body. Therefore, the sensor collects all data with

the sensor body as the center of motion. This also means that data collected is not associated

with, and has no connection with, the surrounding environment. The sensor orientates itself

with a conventional x, y, and z-axis, as seen in Figure 1.

Figure 1. Sensor axis orientation

6

As presented in Figure 1, the axes are centered on the sensor body and are not

referenced with any other point in space. In order to align the coordinate system of a body

with the coordinate system associated with the sensor, the sensor must be rigidly attached

to the body. This arrangement aligns the sensor body frame with the chassis body frame to

allow both frames to be treated as the same. When the data from the sensor is transformed

into the navigational frame, the transformation also applies to the chassis.

2. Navigational Reference Frame

For the navigational frame, the North-East-Down (NED) reference frame was

selected. This gives an external reference point in order to orient the sensor reference body

frame to the Earth. For NED, the x-axis is aligned to magnetic north, the y-axis is aligned

with magnetic east, and the z-axis is aligned facing down toward the surface of the Earth.

NED is commonly used in aeronautical applications, and it can also provide a common

reference frame for several other applications. Using the magnetic poles of the Earth as

known reference values, points can be utilized to transform the data from the arbitrary

sensor frame to a reference frame that provides a context for navigation.

Since this experiment was limited to a small locality, no more than 10 meters at one

time in any direction, the Earth can be assumed flat and conversions for an ellipsoidal or

circular Earth are not needed.

B. QUATERNIONS

The method chosen to transform the data was to use quaternions. Similar to the

work done by Calusdian et al. in [6], quaternions were utilized in order to lighten the

computational load and avoid the use of matrices consisting of sinusoidal functions [6].

In order to calculate the transformation quaternion, the Factored Quaternion

Algorithm (FQA) was employed as presented in [7] by Yun, et al. The algorithm takes the

acceleration in the body frame, as well as data from the onboard magnetometer, and

calculates the associated elevation, roll, and azimuth quaternions [6]. However, since the

magnetometer would be utilized in conjunction with a robot chassis, the magnetic field

calculations were omitted because of interference that would result from the presence of

7

the robot computer and the electric motors of the chassis. Therefore, in this particular

utilization of the algorithm from [6], a vector of the form

 [, ,]b b b

x y za a a a= (1)

was input into the function. The superscripts in (1) annotate that the accelerations are in

the body frame prior to transformation into the navigation frame. From the input

accelerations, the needed terms for the quaternion can be calculated. From [4], the elevation

angle θ is related to the acceleration measurement as follows:

2

sin

cos 1 sin .

xa

=

= − (2)

It is important to note that though the terms are notated as sinusoidal functions, all

calculations are done via algebraic means, which does speed up the rate that the

calculations are done. With the terms in (2) available, the half-angle representations are

derived from [6] and calculated as follows:

sin (sin) (1 cos) / 2
2

cos (1 cos) / 2.
2

sign

= −

= +
 (3)

With the half angles calculated, the elevation quaternion rotation operator qe can be

calculated as follows [6]:

cos (1,0,0,0) sin (0,0,1,0).

2 2
eq

= +

 (4)

With the elevation operator calculated, the focus can be turned to the roll quaternion.

Similar to [6] and utilizing the terms from (2), the first terms for the roll quaternion can be

calculated as follows:

8

sin
cos

cos .
cos

y

z

a

a

−
=

−
=

 (5)

With these terms, a similar calculation as (3) can be done in order to get the half-angle

terms of φ. With the half-angle terms available from (5), the roll quaternion can be

calculated, like in [6], as such:

cos (1,0,0,0) sin (0,1,0,0).

2 2
rq

= +

 (6)

For the azimuth quaternion, since magnetometer readings were not utilized, the azimuth

quaternion was hardcoded to [1, 0, 0, 0]. Even with the magnetometer data removed, the

algorithm was able to estimate the quaternion based on the acceleration data in the sensor

frame. Adapted from [6], the resulting calculated quaternion has the form

* .e rq q q=

 (7)

Given the transformation quaternion, we can transform the acceleration from the

body frame to the navigational frame through quaternion multiplication. To rotate the

acceleration vector into the navigational frame, as done in [6], the vector is transformed

using

*.n ba q a q=

 (8)

For the conjugate of the quaternion notated as q* and presented in [6], it is calculated as

such:

*

0 1 2 3[, , ,].q q q q q= − − −
 (9)

9

As stated above, the transformation is achieved by quaternion multiplication which is

performed differently from typical multiplication [6]. If given two quaternions

 0 , ,p p p = 0 , ,q q q = (10)

the quaternion multiplication is performed, presented in [6], as such:

 0 0 0 0 .p q p q pq p q q p p q = − + + + (11)

The resulting quaternion is of the same form as the original vectors [6].

C. ZERO VELOCITY UPDATE

Similar to the method utilized in [6], the ZUPT algorithm was employed in this

research. The ZUPT is used to update and correct for error within the measured acceleration

data. From preliminary work, it was observed that the acceleration of the sensor will be

zero both at the beginning, just prior to the onset of sensor motion, and immediately after

the end of the motion when the sensor comes to rest. At both times, the velocity of the

sensor will effectively be zero and the ZUPT algorithm can be employed as a means to

correct for the error in the velocity calculations knowing that at both points the velocity

should be zero.

As illustrated by Figure 2, there is a constant acceleration prior to the motion of the

sensor. The constant acceleration was due to gravitational acceleration acting upon the

sensor along the particular axis.

10

Figure 2. Acceleration data with uncorrected velocity and position

However, when utilizing direct integration of the data we can see in the second plot that

the velocity goes on to infinity, bounded only by the fact that the data was integrated over

the time of motion. This is further illustrated in the third plot where the calculated position

is over 3000 meters for a motion that traveled only one meter.

In order to address this, we take our measured acceleration, which contains both the

data αa and an error term ε [6], and express it as follows:

()

0 : .

a t

t T

 = +

=
 (12)

The error term is what is compounded and propagated through the subsequent calculations.

To alleviate the effects of the error, the ZUPT algorithm is used to correct the velocity in

order to have a better position calculation.

To correct the propagated error from the acceleration, there must be known values

in velocity in order to measure the effects of the error. For the ZUPT, the known values are

11

the starting and stopping points of motion, which have zero velocity. To correct propagated

errors in the velocity, as presented in [6], the following is applied:

()

() () ,c

v T
v t v t t

T
= − [0,].t T= (13)

In the application, vc is the corrected velocity, which is calculated by subtracting

the error term over the entirety of the motion. For the application, the error term is the final

velocity divided by the final time of motion. Correcting the error from the acceleration,

from [6], gives us the following representation of velocity:

() () (),a cv t v t t= +

 [0,].t T= (14)

Since we are still dealing with imperfect sensor data, there is an underlying error

within the measurements that cannot be addressed that will still be made evident in the

integration for the position. The result of the ZUPT can be seen in Figure 3.

12

Figure 3. Uncorrected velocity with corrected velocity

From Figure 3, the original velocity increases linearly for a motion that starts and

stops. In the second plot of Figure 3, the corrected velocity can be observed; we see that

the start and stopping point are zero, and the increase in velocity and subsequent decrease

can clearly be seen, as expected.

D. INTERPOLATION

During the course of the investigation, the use of multiple data collection platforms

was needed. This creates the issue of a disconnect between the time steps. The disconnect

in time steps cause data to no longer correlate directly to one another. In order to re-

correlate the data sets, interpolation is necessitated. Interpolation is the calculation of data

points between time steps that do not exist from the original set.

There are multiple means for data interpolation. The typical means of interpolation

is linear interpolation. Linear interpolation assumes there is a linear relationship between

two points, and all possible points exist along a line between those points.

13

In this chapter, the concepts that provide the framework upon which the procedures

of this thesis were built were discussed. The concept of reference frames was described for

both the sensor reference frame and the navigational reference frame. The transformation

quaternion, FQA, and ZUPT in reference to their implementation within this thesis were

discussed. Finally, data interpolation, which will be needed in the software implementation

of the algorithm, was also discussed. In the next chapter, the procedures used in order to

perform the experiments necessary to understand the effects of motion on a sensor will be

discussed.

14

THIS PAGE INTENTIONALLY LEFT BLANK

15

III. PROCEDURES

The various hardware and software components used in the conduct of this research

will be presented in this chapter. More specifically, the sensors that were utilized to collect

the acceleration data in this thesis, the software that each sensor utilized to collect the data,

and the different platforms used to perform the trials will be described.

A. SENSORS

In this study, three sensors were used: the Lord Microstrain 3DM-GX3-25, Lord

Microstrain 3DM-GX4-25, and the Yost 3-space TSS-DL v 2.0. The two Lord Microstrain

sensors represented high fidelity, specialized market options, and the Yost 3-space

represented a more economical market option with lower sensor fidelity. These two

categories of sensors were chosen in order to observe if sensor quality should be taken into

account for a general navigational solution.

1. Lord Microstrain 3DM-GX3-25 and 3DM-GX4-25

The Lord Microstrain family of sensors is a set of industrial-grade sensors designed

to provide a user with a range of sensor measurements along three axes of measurement

and differing navigational solutions [9]. The “25” designation of the sensors among the

other Lord Microstrain sensors delineate them as part of the Attitude Heading Reference

System, or AHRS, product line [11]. For this study, the Lord Microstrain products that had

GPS capabilities were not utilized in order to best simulate a GPS-denied environment.

16

 Note: Dimensions used in the image are from [9].

Figure 4. Microstrain 3DM-GX3-25

Figure 4 is an example of the Microstrain 3DM-GX3-25 sensor utilized for

experiments on the various platforms throughout the experiment.

 Note: Dimensions used in the image are from [10].

Figure 5. Microstrain 3DM-GX4-25

17

Figure 5 is an example of the Microstrain 3DM-GX4-25 utilized for experiments.

The Microstrain sensors, presented in Figures 4 and 5, contain nine sensors internally. In

each device, there are three accelerometers, three magnetometers, and three angular rate

sensors.

2. Yost 3-Space TSS-DL v 2.0

For comparison purposes, the Yost TSS-DL v2.0 3-space inertial measurement unit

(IMU) sensor was also utilized because it is an economical sensor type. It was significant

to verify that any data collected utilizing the Microstrain sensors could be replicated on a

platform that was more readily available. For the data collection, the 3-Space software suite

was utilized to collect the data, which provides a graphical user interface (GUI) that can be

configured to collect four varying types of data required by the user. An example of the

particular sensors used in this research is seen in Figure 6.

 Note: Dimensions used in image are from [12].

Figure 6. Yost TSS-DL v2.0

18

B. SOFTWARE

In this study four software suites were utilized: MATLAB, 3DM Monitor, MIP

Monitor, and Motive. Each will be covered in detail in this section.

1. MATLAB

For all of the experiments, the main computing environment used was MATLAB

2019b. MATLAB is a computing environment designed for engineering and scientific

academic data processing [13]. MATLAB was employed in order to process the data

collected during the trials above and manipulate and display the data in a way that was

beneficial and could easily be visualized. The Mathematics and Graphics functionalities

were the primary function utilized to process and visualize the data, both of which were

built into MATLAB. All of the data collected via the varying collection software listed

below was then imported into MATLAB for additional processing and analysis.

2. 3DM Monitor

For the Microstrain sensors, data collection software was provided by Microstrain

in the included CD for the sensor. For the 3DM-3GX family of sensors, the corresponding

data collection software is known as MIP 3DM Monitor. The monitor program has a GUI

that the user can set in order to collect data via the preset data collection settings in the

program, and outputs an Excel data file that can be read into MATLAB. For this research,

acceleration and angular acceleration were collected. This was a pre-programed feature of

the GUI, and therefore accelerometer data could not be exclusively collected.

3. MIP Monitor

Similar to the above section, the 3DM-GX4-25 sensor also came with a data

collection software, the MIP Monitor. Again, MIP Monitor is a GUI that the user can set

to collect specific data points based on preset data collection software built into the GUI.

As before, the software outputs an Excel file that can be read into MATLAB.

19

4. Motive Tracker

The software suite utilized by Optitrack was Motive tacker, which is a six-degrees-

of-freedom tracking software [14]. The system can be utilized to provide data streaming

and integration with processing software such as MATLAB [14]. For the experiments, data

was streamed into MATLAB where the associated x, y, and z-axis positions and Euler

angles were tracked for the sensor during motion.

C. CART

In order to analyze general motion with the sensors, the behavior of the sensor was

observed on a wheeled platform and eventually applying the principles to a wheeled ground-

based robot. For the first rounds of experiments, a laboratory cart with attached sensors was

utilized as the initial platform. The sensor was affixed to the leading edge of the cart in order

to better model the true distance traveled by the sensor. With the sensor attached to the cart,

the acceleration was measured on a five-meter course, shown in Figure 7.

Figure 7. Five-meter track for experiments

Each piece of masking tape was placed at a one-meter interval from zero to five

meters. In order to ensure the accuracy of the experiments, the leading edge of the cart was

aligned with the front edge of the masking tape at the beginning of each trial. At the end of

20

each trial after the desired distance had been traversed, a stopping device was placed to

ensure that the cart stopped consistently at the appropriate location. With the sensor

monitoring systems running, the velocities were varied to observe if the sensor performed

better at a particular velocity range. The sensor was also tested on a 10-meter track with

distances of one, two, three, five and 10 meters to verify that the values measured on the

five-meter track matched the data measured on the 10-meter track. The distances were

selected in order to observe at what point the IMU with the ZUPT algorithm could

accurately estimate the distance traveled.

 To process the data collected, the data was imported into MATLAB. With the data

plotted in MATLAB, the start and stop points of the data were selected.

Figure 8. Motion start and stop

An example of acceleration data is shown in Figure 8. The black vertical marker

lines show an example of where the start and stop points of the motion were manually

selected. After selecting the start and stop points in the data, the trapezoidal integration

function cumtrapz in MATLAB [15] and the ZUPT were utilized.

D. PIONEER P3-DX ROBOT

The next component of the test was to observe the sensor behavior with a robotic

platform. The platform utilized was the Pioneer P3-DX indoor robot chassis. This platform

was utilized within the lab for previous work and was selected to maintain commonality

with potential future works.

21

Figure 9. Pioneer P3-DX

The robot in Figure 9 was tested on the original five-meter track, as seen in

Figure 7, and the 10-meter track similar to experiments done with the cart. As the robotic

platform did not have a control algorithm yet created for these experiments, a tethered

controller was utilized to control the robot based on six speed settings seen in Figure 10.

Figure 10. Tethered controller

22

Six-speed settings were selected that represented speeds that a robot operating

autonomously will be able to achieve. This experiment also served to observe the

differences between motion of a lab cart and that of the wheeled robot platform. If the

motion was similar enough, then further testing could be achieved without the use of a

robot platform. The same sensor utilized on the cart was mounted on the robot chassis and

performed a similar battery of tests as the cart. The same sensor was used to further

compare the performance between the cart and the robot. The same process was used to

process the data from the robot tests as was used to process the data from the cart

experiment.

E. DATA OPTICS, INC. OPTICS RAIL

In order to do an in-depth study of the sensor to verify if a pedestrian position

estimation algorithm can accurately estimate position in a robotic realm, the sensor was

attached to a stationary platform. To remove as much noise as possible from the motion, a

Data Optics, Inc. optical rail was used. The specific rail is shown in Figure 11.

Figure 11. Optical rail

The blue stripping is a one-meter measurement. The leading edge of one strip and

the tailing edge of the second strip correspond to the start and stop position. The sensor

was affixed to a shelf that was inserted into an optical tool sled seen in Figure 12.

23

Figure 12. Optical tool sled

The rail was lubricated in order to smooth out and remove any noise from the

motion of the sled. The optical rail was confirmed to be horizontal using a carpenter level

available in the laboratory. The motion was measured at five approximate velocities in

order to observe the effect of velocity in a controlled testing environment. The first rounds

of testing were conducted with the sensor on the shelf shown, in Figure 12, with the y-axis

corresponding to the axis of motion. The sensor was to remain flat and the only variable to

be measured was the forward acceleration in the axis of motion.

 Following the single axis of motion, testing began with the sensor attached to a

shelf that had an angle indication in order to excite an additional factor in the motion. The

sensor was tested inclined at a fixed angle starting from plus and minus four degrees to

plus and minus 90 degrees in order to observe if the FQA could accurately calculate the

fixed angle prior to the beginning of motion; the angle was not changed during motion for

this battery of experiments. The sensor was mounted with either the x or y-axis as the axis

of motion, and the motion was varied between three approximate velocities. The variable

angle sled is shown in Figure 13.

24

Figure 13. Shelf attached to angle indicator

In order to gauge at what angle the sensor was being placed, the sled also had an

angular reference face seen in Figure 14.

Figure 14. Angular reference face

25

The mounting plate was not centered with the zero point of the angular face because

the shelf does not rest at zero; instead, it rests at ten degrees. Also, since the shelf is off-

centered, there was a slight angle added in different axes.

 Before testing was moved into an optical tracking environment, the sensor was

placed at a measured angle of approximately 40 degrees and varied the angle through the

sensor motion on the rail. As before, the velocity was varied during the motion between

three approximate velocities; the angular position was also changed.

 For processing the optical rail data, the FQA was implemented in MATLAB in

order to address the addition of an arbitrary angle to the sensor. A point was selected in the

data prior to the start of motion in order for the FQA to calculate a steady-state set of

quaternions to transform the data from the sensor frame to the navigational frame. For the

variable angle tests, the FQA was utilized on every data point along the motion of the

sensor. Similar to the experiments before, the start and stop points of the motion were

selected once the data had been transformed and again trapezoidal integration was utilized

within MATLAB.

F. OPTITRACK PRIME OPTICAL TRACKING SUITE

In order to handle arbitrary motion within a space, the OptiTrack system was

utilized in order to calculate true quaternions in space. The optical sensors provide an

optical solution to calculate the sensor angle, as shown in Figure 15.

26

Figure 15. OptiTrack optical sensors

The sensor was affixed to a wooden block with reflective orbs that the system

utilized to calculate the sensor position in space via optical cameras. An example of this

sled can be seen in Figure 16.

Figure 16. OptiTrack sled

Initially, the sensor remained on the Optical rail to verify that the system performed

as expected. Adding in an additional data collection method also meant integrating two sets

of data collected on two different machines. For the OptiTrack data, the system ran through

a desktop computer, and the IMU data was collected via a laptop computer. The time stamp

27

for the IMU could be zeroed and started at true zero via the Microstrain data collecting

software. The OptiTrack data, however, clocked off of the desktop computer, and due to

system sampling rates, could sometimes create redundant data. In order to address this,

each trial began with a small abrupt motion that placed the sensor at the needed starting

point to impart an impulse in the data. This could easily be seen in both the IMU data and

the OptiTrack data. The point at which the impulse feature was found in both data sets was

made the new zero reference for both data sets. Then the OptiTrack data could be filtered

to remove any redundant data and the IMU data could be fit to match the corresponding

data points. Utilizing the interpolation function interp1 within MATLAB [16], the values

between the data points in the IMU data were interpolated to corresponding values from

the OptiTrack data. Once the data provided by the OptiTrack system was verified and could

be utilized as a known true value, tests with variable angles could be done again on the

sled. Again, the data covered three approximate velocities, varied over multiple runs.

Following the variable angle test, testing moved into estimation of arbitrary motion.

For this test, the sensor was removed from the rail and simply placed on a table. Then the

sensor and wooden platform were picked up and arbitrarily moved through space

approximately one meter. As before, tape was placed on the table at one meter in order to

give a starting and stopping reference point. To examine the effects of arbitrary motion,

three types of motion were used: an arcing motion, a wobbling motion, and a rocking

motion. An example of each motion is presented in Figure 17.

28

Figure 17. Plots of arbitrary motion

For the arcing motion, the sensor was picked up and moved in an arc from the start

to the stop location on the table. For the wobble motion, the sensor was picked up and given

a corkscrew-like arc motion from start to stop. For the rocking motion, the sensor was given

a rocking action around the x-axis as the sensor was moved in an arc from the start to stop

location.

The hardware and software used in this thesis were discussed in this chapter. As

well, the procedures utilized in performing each experiment were outlined in this chapter.

In the next chapter the results of the experiments conducted will be analyzed and discussed.

29

IV. RESULTS

In this chapter, the results from each series of experiments with the cart, robot, rail

system, and OptiTrack system are presented. The procedures that were utilized to perform

each experiment were outlined in Chapter III. All of the results for each experiment are

grouped by the respective experiment.

A. CART EXPERIMENT

Work in [6] by Calusdian et al. and [7] by Yun et al. was done on pedestrian motion,

however, there is a difference in motion between pedestrian and wheeled movement. The

significant difference between a pedestrian step motion and a wheeled chassis motion is

observed in Figure 18.

Figure 18. Step motion versus cart motion

The top plot in Figure 18 is an example of the stepping motion, and the bottom is

an example of the wheeled motion, both of which start and stop at zero. However, the

waveform of the step motion varies significantly than that of the smoother motion of the

30

cart. The experiment was conducted on the five-meter course within the laboratory

environment. The results of the cart experiments are shown in Table 1 with the calculated

distance with and without the ZUPT.

Table 1. Calculated versus traveled distance

Distance traveled Calculated distance with ZUPT Calculated distance without

ZUPT

1 meter 1.0380 meters 1.6222 meters

2 meters 2.0295 meters 3.6027 meters

3 meters 3.0091 meters 7.4483 meters

5 meters 4.9878 meters 16.4793 meters

Columns two and three of Table 1 represent the same data points in order to keep

continuity in the results presented. Table 1 is a summary of the results that were closest to

the distance traveled by the sensor. Of the 85 trails conducted, trials that were performed

at a higher velocity had the lowest error both with and without the ZUPT. In order to

determine if this was a coincidence, the motion was plotted to observe what each waveform

looked like. An example of the acceleration data from a lower velocity trial and that of a

higher velocity trial can be seen in Figure 19.

31

Figure 19. Acceleration plot of low and high-velocity trials

In Figure 19, the data in the lower velocity trial remains close to the point of rest

and requires a more substantial amount of time to travel the same amount of distance. The

lower acceleration of the slower trial allowed for sensor noise to have a greater effect on

the data. For the higher velocity data in Figure 19, the shape of the data is much more

distinct. The distance of the peak of motion from the sensor noise minimized the effects of

noise in the sample. In order to observe the variability of the data overall, the standard

deviation is presented in Table 2.

32

Table 2. Standard deviations versus distance traveled

Distance traveled Standard deviation with ZUPT Standard deviation without

ZUPT

1 meter .1096 meters 9.2912 meters

2 meters .2085 meters 21.2783 meters

3 meters .4196 meters 32.7379 meters

5 meters 1.2294 meters 98.0281 meters

The standard deviation covers the entire dataset and is not grouped by velocities.

This creates a wider deviation size as the distance increases. From the data in Table 1, three

meters was the distance that was calculated by the algorithm accurately. The difference

between the distance traveled and the distance calculated was at most 0.03 meters. In

conjunction with the standard deviation, as the distance increased, so does the variation

between samples. As the distance increased, the varying of the velocity had a greater effect.

This portion of the study helped to analyze and understand the effect the ZUPT had

on data collected by a sensor on a wheeled platform. The tests provided data that was used

to verify that the algorithm was performing as expected for similar platforms. However,

the true analysis began with data collection on a robot chassis.

B. ROBOT EXPERIMENT

For the robot chassis, three major questions needed to be addressed. First, does the

distance traveled before an update is performed affect the ability of the algorithm to

calculate the distance traveled? Second, does the velocity of the robot affect the ability of

the algorithms to calculate the distance travel? And finally, can the pedestrian algorithms

presented in [5], [4] and [7], be utilized with a robotic system?

1. Effect of Distance

To answer the first question, tests similar to those done with the cart for distances

of one, two, three, four, five, and ten meters were performed. From the cart data, a distance

33

of interest was three meters. However, the question of what distance a robotic system

travels before a reference update needs to be done has to be addressed.

The robot was moved from one to five meters to ensure that the effects over the

distance were clearly observed. A trial at 10-meters was also conducted to observe if a

significant jump in distance created any benefit compared to the other distances. Displayed

in Figure 20 is a summary of the results from the different distances.

Figure 20. Calculated distances traveled

Three meters is shown to be the furthest distance traveled that was consistently

calculated with the robot and ZUPT of the data in Figure 20, which corroborates what was

observed in the cart trial. The total data from the distance trials is summarized in Table 3.

34

Table 3. Distance and calculated distance with standard deviation

Distance Traveled Calculated

Distance Without

ZUPT

Calculated

Distance With

ZUPT

Standard

Deviation

1 meter 3.7473 meters 1.1022 meters .8390 meters

2 meters 7.8690 meters 2.4823 meters 2.5034 meters

3 meters 17.3953 meters 2.9476 meters 1.6306 meters

4 meters 16.688 meters 4.6492 meters 2.9063 meters

5 meters 37.5132 meters 5.6655 meters 10.7142 meters

10 meters 91.8326 meters 10.1201 meters 12.8846 meters

Aside from the one-meter trials, the three-meter trials had the lowest deviation

within the total dataset and was the closest overall for all the other distance trials, as shown

in Table 3. Again, similar to the cart data, the standard deviation was over the entire dataset

of at least 19 trials each. Data was not differentiated between the different speed settings

and therefore presented a wider range of results, especially at the farther distances.

2. Effect of Velocity

For the effects of velocity, the system was tested with six varied speed settings for

the robot chassis controlled with a tethered controller. For the purpose of the trials, the

exact speed at each setting was not calculated, but the settings were marked in order to

ensure that the same velocity was achieved for each test. From the cart experiments there

had been indications that at higher speeds the algorithm was able to better calculate the

overall distance traveled.

From the trials it became clear that at lower velocities integration with only the

ZUPT created an issue with calculating the distance traveled, as was similarly observed in

the cart experiments. Therefore, towards the end of the trails with the robot system, the

35

lowest velocity setting was removed as it was not providing any beneficial data towards

the overall experiment. The results from the speed trials are displayed in Figure 21.

Figure 21. Speed settings and corresponding distance

The black horizontal marker line in Figure 21 is the expected distance to be

calculated and summarized with the best datasets from the various runs. From the plot, the

optimal speed settings are settings three and four for the robot chassis.

 From the cart experiment, the optimum velocity needs to be the highest possible

to provide the most accurate distance calculations. However, as presented in Figure 21,

the highest velocity was not the most accurate trial. As the velocity increased, the chassis

had more settling as it slowed. An example of the settling is observed in Figure 22.

36

Figure 22. Low-velocity and high-velocity trials

The boxes in Figure 22 are examples of the settling in the mechanical system as the

robot stopped its motion. This region added further error on top of the already present drift

and sensor noise. The higher in velocity the robot went the larger this region was, causing

a peak in velocity performance.

3. Viability of Pedestrian Algorithm

The trials described above demonstrate that a pedestrian footstep algorithm can be

utilized to track the distance traveled by a robot. From the distance trials, it was observed

that a robot can travel three meters before an update is needed. Three meters presents a

maximum distance that a system can travel without the aid of external data sources. As

shown in the velocity trials, the robot needs to be operating within a velocity range that is

achievable by the robot, and above a minimum speed threshold, but not operate at such a

velocity that it creates an uncontrollable condition. From the experiments above and the

results from [5], [6], and [7], the described algorithms from this and previous works can be

applied to an autonomous robotic system. To investigate this assumption further, a more

37

in-depth study was performed on the sensor ability to calculate the distance traveled on a

controlled rail system as described in Chapter III section E.

C. RAIL EXPERIMENT

For the rail, the ability of the algorithm to calculate the distance traveled with three

types of motion was observed. To address the anticipated motion of a robotic platform, the

sensor was tested with flat linear motion, linear motion at a set angle, and finally linear

motion with a varied angle.

1. Flat Linear Motion

To verify the data presented, the sensor was placed on a flat tool sled. As tested

before, the velocity of the sensor was varied on the sled in order to get a full range of

motion. Other sensors were tested to confirm that results were consistent across multiple

platforms. The results are summarized in Table 4.

Table 4. Calculated distances versus various sensors

Position calculated via double

integration (without ZUPT)

Position calculated via double

integration(with ZUPT)

GX3-25

-1.7469 meters 0.9992 meters

-0.1263 meters 1.0101 meters

0.7983 meters 1.0052 meters

0.944 meters 0.9997 meters

0.9666 meters 1.0075 meters

0.9754 meters 1.0004 meters

0.9889 meters 0.9992 meters

GX4-25

-17.0895 meters 2.9726 meters

-2.4972 meters 1.1265 meters

38

Position calculated via double

integration (without ZUPT)

Position calculated via double

integration(with ZUPT)

-0.0471 meters 1.0614 meters

0.2477 meters 1.082 meters

1.0358 meters 1.0481 meters

Yost 3-Space

9.5459 meters 1.0819 meters

3.4979 meters 1.1248 meters

1.6166 meters 0.9752 meters

1.325 meters 1.0033 meters

1.2119 meters 0.9779 meters

1.1547 meters 1.0048 meters

As presented in Table 4, all three sensors performed within a close range of each

other. Interestingly, both high-end sensors and the commercial sensor all performed with

the same relative results. There was an issue with the data for the Microstrain GX4-25

sensor. There was no timestamp from the data collection software, and an arbitrary time

stamp had to be created based on the sampling rate of the sensor. Because the data had no

time reference, the GX4-25 was not used for follow on trials. As presented in Table 4, all

of the sensors performed adequately during the one-meter trials. The data from the flat

linear motion trial closely matched results from the robot and cart trials. This validated the

optical rail as a testing platform for further experiments. The next phase of testing was the

addition of an angle other than zero, and the addition of the FQA to the algorithm.

2. Linear Motion with a Set Angle

The next step in the analysis was to set a non-zero angle through the full duration

of motion. This also integrated the use of the FQA to calculate the angle at which the sensor

is placed. A summary of the angles tested is shown in Table 5.

39

Table 5. Reference angle and calculated angle

Reference

Angle

Calculated

Angle

±4° -4.686°, 4.383°

±6° -6.932°, 6.71°

±10° -11.193°, 9.163°

±20° -20.754°, 20.494°

±30° -29.57°, 31.064°

±40° -40.015°, 41.226°

±50° -50.975°, 50.679°

±60° -59.461°, 60.705°

±70° -69.687°, 69.537°

±80° -79.605°, 80.749°

±90° -90.743°, 89.391°

The results of the angles calculated by the FQA are presented in Table 5. There was

some variability, however. The angle the sled was set was more of a reference point than

an exact measurement. Even with each of the degree changes, the algorithm was still able

to accurately calculate the distance traveled. The results are summarized in Table 6.

Table 6. Reference angle with calculated distance and standard deviation

Angle Calculated distance Standard deviation

±4° 1.0050 meters .4095 meters

±6° 1.0000 meter .3337 meters

±10° 1.0023 meters .2112 meters

±20° 1.0032 meters .2516 meters

±30° 1.0043 meters .2737 meters

±40° 1.0003 meters .2730 meters

40

Angle Calculated distance Standard deviation

±50° 1.0004 meters .1936 meters

±60° 1.0052 meters .2836 meters

±70° 1.0098 meters 2.5039 meters

±80° 0.9990 meters .1360 meters

±90° 0.9991 meters .3639 meters

From Table 6, the data was all tightly spread and well within expected results. The

only outlier was in the 70-degree trials; one trial resulted in a distance calculation of 16

meters. The data was run multiple times, and the outlier could only be attributed to a false

reading, without the outlier, the standard deviation was 0.2214 meters similar to the other

results. With the data corroborating previously observed results, trials on the effects of

variable angles were conducted.

3. Linear Motion with a Variable Angle

The previous trials verified that with the FQA, a sensor, and ZUPT, a system can

accurately calculate the distance traveled. However, a robotic system is not consistently

moving completely flat or at a fixed angle. The motion of the chassis introduces variation

in the angles read by a sensor. Therefore, a varied angle was introduced during the motion

of the sensor with the FQA calculating the transformation quaternion continuously. The

results are summarized in Table 7.

Table 7. Reference angles and calculated distance and standard deviation

Starting Angle Stop Angle Calculated Distance Standard Deviation

[40°, 0, 0] [30°, 0, 0] 2.8298 meters 55.85521 meters

[0, -40°, 0] [0, -32°, 0] 3.036 meters 30.50226 meters

[30°, 0, 0] [20°, 0, 0] 4.8796 meters 4.8796 meters

41

The calculated distances and the reference distances in Table 7 differed

significantly when compared to previous trials. The results also had a significant deviation

between trials as presented in Table 7. The results in Table 7 were verified by running each

test a second time; all results behaved similarly. Angle variability has a significant effect

on the ability of the algorithm to calculate traveled distance in the absence of an accurate

quaternion.

Figure 23. Acceleration data and corresponding quaternion

An example of the accelerometer data and the corresponding quaternion calculated,

during these runs is shown in Figure 23. The FQA cannot accurately calculate the

quaternion and simply mirrors the motion. The accelerometer data is not properly

transformed when processing due to the inaccuracies in the quaternion. This was a

verification of results observed in [5], [6], and [7], and why implementation of a

complementary filter was utilized in [6] by Calusdian et al. However, the complementary

filter in [6] utilized magnetometer readings from the sensor, which was not being used in

this work. The sensor utilized was on a robot with a computer and electric motors. Data

from this sensor did not provide an accurate enough angular reading as was done in [1],

and [6]. The effect of a computer on a magnetometer is illustrated in Figure 24.

42

Figure 24. Effects of computer on magnetometer

Although the values appear to be minimal, the effects illustrated were when a laptop

computer came within two feet of the sensor. As the computer was brought closer the

effects were amplified.

In order to investigate further, the experiments were moved within an optical

tracking environment to have the quaternions calculated through the tracking software. If

the distance can still be accurately calculated with a known quaternion, then quality

quaternion values are needed, and pedestrian tracking algorithms can be utilized for robotic

systems.

D. OPTITRACK EXPERIMENT

The OptiTrack system, available in the laboratory, provides a way to calculate an

accurate quaternion for any point of motion for the sensor. However, the OptiTrack system

had to be verified to ensure that it produced expected values. As done previously, the

system was tested with set angles, progressing to variable angles, and once satisfied that

the system was performing accurately, to arbitrary motion.

43

1. Linear Motion with a Set Angle

Similar to the set angle trials ran in Section C of this chapter, a sled was set to an

angle and verified that the observed angle from the optical sensor was a reasonable value.

The results of the angles were not collected because they were a reference. The ability of

the algorithm to calculate distance was already verified in the linear motion trials. The

system was able to observe the angle accurately, and the results of the trials are summarized

in Table 8.

Table 8. Calculated distances with standard deviation.

Calculated Distance

With ZUPT

Calculated Distance

Without ZUPT

Standard Deviation

1.1674 meters 79.4381 meters 0.2455 meters

Presented in Table 8, the distance the algorithm was able to accurately calculate

was similar to the results observed in the optical rail experiments. The variation between

the data was acceptable to go forward with the variable angle trials.

2. Linear Motion with a Variable Angle

Similar to the trials done with the set angle, the initial angle that the sensor was set

to was verified. This was compared to what was observed by the optical system. Trials

were completed with the angle varied during the motion. The results are summarized in

Table 9.

Table 9. Calculated distances and standard deviation.

Calculated

Distance With

ZUPT

Calculated

Distance Without

ZUPT

Standard

Deviation

1.0292 meters 28.3039 meters 0.6551 meters

44

The data proved that with an accurate quaternion the algorithm was able to accurately

calculate the distance traveled by the sensor, presented in Table 9. In order to verify that it

was an issue with the quaternion, the two quaternions were plotted.

Figure 25. OptiTrack quaternion versus FQA quaternion

The quaternion calculated from the OptiTrack data and the quaternion calculated

by the FQA function are shown in Figure 25 for comparison. There is a significant

difference between the two quaternions. However, if the quaternion is still incorrect, the

acceleration in the sensor frame will not be properly transformed into the navigational

frame.

45

Figure 26. Raw and transformed acceleration

The top plot in Figure 26 is the raw acceleration data, and the bottom plot in Figure

26 is the acceleration data rotated into the navigational frame. The transformed acceleration

does follow the expected behavior of the system. Since the x-axis was the main axis of the

motion, acceleration along the y-axis was around 0 m/s2 as expected. The z-axis

corresponded to the axis of gravity and therefore was expected to be at approximately -9.8

m/s2. This observation further clarified why the calculated distances in Table 7 varied so

much compared to other results. Once the algorithm was observed to accurately calculate

distance with a variable angle, arbitrary motion was tested.

3. Arbitrary Motion

 For the arbitrary motion, three main types of motion—arc, wobble, and

rocking motion—were tested in order to model some motion that would be expected by a

robotic system. For each motion the results are summarized in Table 10.

46

Table 10. Sensor motion with calculated distance and standard deviation.

Motion Calculated

Distance

Standard

Deviation

Arc 1.0574 m .2841 meters

Wobble 1.0395 m .6009 meters

Rocking .9939 m .1318 meters

The distances calculated with a known quaternion were able to be calculated in all

three types of motion, as presented in Table 10. The standard deviation of the wobbling

motion is higher than the other two motions because the first trials were at a lower velocity.

The lower velocity caused the calculated distances to be higher than the distance traveled.

This was similar to observations from the earlier cart and robot experiments. The algorithm

was not able to accurately calculate the distance traveled when the linear velocity was too

low. This hypothesis was verified by simplifying the motion to an arcing motion but

maintaining a higher speed. In order to add additional variation, a rocking motion was

introduced as an additional motion to the testing. All three motions had no effect on the

ability of the algorithm to calculate the distance traveled as long as the velocity was high

enough. As long as a means to accurately calculate the quaternion is available and the linear

velocity of the system is high enough to overcome sensor noise, a pedestrian algorithm can

be utilized to calculate distance traveled.

47

V. CONCLUSION

As demands from the DoD for unmanned and autonomous systems increase, the

environments in which these systems operate also broaden. Indoor, shipboard, and GPS-

denied environments make navigation for these systems difficult. This thesis investigated

whether pedestrian tracking algorithms presented in [6] could be utilized to calculate the

distance traveled by a robot with an IMU. A common issue with the use of inertial sensors

for navigation has been drift error [6]. To address the drift error, this thesis explored use of

the ZUPT. The ZUPT is utilized when the velocity is known to be zero in order to correct

propagated error from acceleration data. Utilizing the ZUPT, the factored quaternion

algorithm, and the OptiTrack visual tracking system, all sensor motion was observed and

the distance traveled was calculated accurately.

A. ASSESSMENT OF GOALS

The purpose of this thesis was to confirm if a pedestrian tracking algorithm can be

implemented on a wheeled robot chassis. Three goals were achieved by this thesis: first,

the distance a robot can travel before an update needed to be performed was determined;

second, the effect velocity has on the ability to calculate distance traveled was determined;

and finally, the algorithm was proven effective at calculating distance traveled through

arbitrary motion given a known quaternion.

To achieve the maximum distance a robot can travel, this study tested a robot

chassis on a laboratory track with an attached sensor. From the laboratory tests, it was

determined that the maximum distance achieved was three meters. Once the robot began

traveling further than three meters, the accuracy of the distance traveled began to degrade.

To achieve the second goal, determining the effect of velocity, the study included

similar tests with a robot and with an attached IMU sensor. From the robot experiments, a

speed setting of three or four, as presented in Chapter III Section D, was needed to

accurately calculate distance traveled. For individual sensors, testing determined that the

48

sensor needs to travel at as high a velocity as possible to accurately calculate distance

traveled.

Finally, to accurately calculate distance traveled through arbitrary motion, an

accurate transformation quaternion was calculated with data from the OptiTrack system.

With the data transformed into the navigation frame, the acceleration data was used to

calculate the distance traveled by the sensor. In an earlier experiment, the distance was not

calculated due to the inability of the FQA to calculate an accurate quaternion during angular

motion.

B. LIMITATIONS

In the course of this research, there were two major limitations to the

implementation of the pedestrian algorithm. First, the system has to travel at a high enough

velocity to overcome the effects of sensor noise. Second, an accurate transformation

quaternion must be supplied to ensure the algorithm can properly transform the

accelerometer data.

The first limitation hinders the system from being able to accurately calculate

distance. If the system is traveling at a velocity too low to overcome the effects of sensor

noise, the results begin to degrade. In all experiments, if the velocity was too low, the

ability for the algorithm to calculate the distance traveled became inconsistent.

The second limitation again hinders the system from being able to accurately

calculate the distance traveled. Without a correct transformation quaternion, the

acceleration data cannot be transformed into the navigational reference frame. If the data

is not in the navigational frame, the results calculated have no physical reference for

navigational solutions. The FQA was not able to calculate an accurate quaternion during

angular motion, which resulted in the need to include the OptiTrack system in the

experiments.

49

C. RECOMMENDATIONS FOR FUTURE WORK

The following recommendations for future work are based on observations made

during the testing of the sensors in each experiment summarized above. The

recommendations also coincide with aspects of the research that were not a part of the

overall scope of testing for this research.

One opportunity for future work would be to work on alternative means of

calculating angles or quaternions accurately native to the system. The OptiTrack trials

verified that, provided with accurate angular readings, the transformation matrix can be

calculated. With a known transformation matrix, the algorithm can accurately calculate

traveled distance. For future work, different algorithms other than the FQA, could be

utilized to calculate the quaternions of the system. A survey of past algorithms is covered

in [6].

Another avenue of research would be to implement the use of additional sensors to

observe the angles achieved by the system in order to calculate the quaternions. Utilizing

other onboard sensors with similar implementations like the ZUPT to correct errors could

be explored. The onboard gyroscope was not employed because the sensor measures the

angular velocity and would require integration in order to give the angle of the system. The

need for integration creates an opportunity for similar drifts to be introduced to the data

and would likely need additional sensors to correct. Additional market solutions could be

explored to provide additional information in order to calculate the angles or quaternions

associated with the robotic platform.

Another opportunity would be to implement these algorithms completely onto an

autonomous system. Due to the constraints of this study, the algorithms were not

implemented into a control algorithm for an autonomous system. A common chassis was

explored in the robot trials that is easily configurable to accept the algorithm. Control

algorithms were created for the same, or similar, robot system in [17]–[20], and could be

augmented with results from this research, in order to provide the system with a better

navigational picture in which to operate. In this case, the opportunity to also explore a

50

means of localization in conjunction with this work would be beneficial to the designing

of an autonomous system that can operate in both indoor and outdoor environments.

51

APPENDIX A. DATA PROCESSING SCRIPT

clear all, close all
% Code generated by MATLAB for importing data
import_time2
% Code generated by MATLAB for importing data
import_AccY2

%Acceleration and time at the hand selected data range the robot is

moving
A = AccY(622:932)*9.8; %*9.8 to convert from g-force to m/s^2
T = Time(622:932);

%initialize a counter to help do zero velocity update
tick = 0;

%processing via numerical integration
% Raw velocity
V = cumtrapz(T, A);

for i = 1:length(V)

 t(i) = tick;
 tick = tick +1;

 % Corrected Velocity

 % Adapted from Code Written by James Calusdian

 %Va = Vc - ((Vc(final time)/final time)*t), t = [0, finaltime]
 VC(i,1) = V(i) - ((V(length(V))/length(V))*t(i));

end

% Raw position
X = cumtrapz(T,V);

%Corrected Position
XC =cumtrapz(T, VC');

figure(1)
subplot(211)
plot(AccY)
title('Raw acceleration')
% annotation('line',[.5376 .5376], [.919 .5809])
% annotation('line',[0.65 0.7339], [.9262 .5857])

subplot(212)
plot(A)
title('windowed acceleration')

52

figure(2)
subplot(211)
plot(V)
title('Raw Velocity')
subplot(212)
plot(VC)
title('corrected velocity')

figure(3)
subplot(211)
plot(X)
title('Raw position')
display(X(length(X)))

subplot(212)
plot(XC)
title('Corrected Position')
display(XC(length(XC)))
r = snr(AccY)

53

APPENDIX B. FQA PROCESSING SCRIPT

clear all
close all
% Code generated by MATLAB for importing data
import_a_2
import_time3

A_y= AccY*9.8;
A_x= AccX*9.8;
A_z= AccZ*9.8;
T_r = Time;

%Take a sample when the sensor is not moving
a = [AccX(100); AccY(100); AccZ(100)];

%ignore magnetometer data
m = [0; 0; 0];

%steady state Quarternion
q = fqa_hardcode(a, m);
Angles = Euler(q);
Angles = Angles*(180/pi);

%conjugate steady state Quarternion
q_c = q .* [1; -1;-1;-1];

%range of data i.e. range where sensor is moving
r = [855:1280];

%Moment of motion and time stamp
AccX = AccX(r)*9.8;
AccY = AccY(r)*9.8;
AccZ = AccZ(r)*9.8;
T = Time(r);

%Array of Zeros
O = zeros(length(AccX),1);

%Acceleration Quarternion in the sensor body fram
A_b = [O, AccX, AccY, AccZ];
A_b = A_b';

% | 0 |
% |AccX|
%A_b/A_n =|AccY|
% |AccZ|

%transformation from sensor body to navigational frame
for n = 1:length(O)

54

 %A_n = q * A_b * q_c
 % |____________|
 % |
 % Quarternion multiplication

 %Acceleration Quarternion in navigational frame
 % q * A_b
% a_n_tmp(:,n) = q_mult2(q, A_b(:,n));
 % A_b * q_c
 %A_n(:,n) = q_mult2(q_c, a_n_tmp(:,n));
 A_n(:,n) = rotate_v_by_q(A_b(:,n), q);
end

A_n = A_n';

%initialize a counter to do zero velocity update
tick = 0;

%processing via numerical integration
% Raw velocity
V_x = cumtrapz(T, A_n(:,2));
V_y = cumtrapz(T, A_n(:,3));
V_z = cumtrapz(T, A_n(:,4));

for i = 1:length(O)

 t(i) = tick;

 %Corrected Velocity

 %Adapted from Code Written by James Calusdian

 %Va = Vc - ((Vc(final time)/final time)*t), t = [0, finaltime]
 VC_x(i,1) = V_x(i) - ((V_x(length(V_x))/length(V_x))*t(i));
 VC_y(i,1) = V_y(i) - ((V_y(length(V_y))/length(V_y))*t(i));
 VC_z(i,1) = V_z(i) - ((V_z(length(V_z))/length(V_z))*t(i));

 tick = tick +1;
end
%Raw Position
X_x =cumtrapz(T, V_x);
X_y =cumtrapz(T, V_y);
X_z =cumtrapz(T, V_z);

%Corrected Position
XC_x =cumtrapz(T, VC_x);
XC_y =cumtrapz(T, VC_y);
XC_z =cumtrapz(T, VC_z);

for m = 1:length(O)
 VC(m) = sqrt((VC_x(m)^2)+(VC_y(m)^2)+(VC_z(m)^2));
 V(m) = sqrt((V_x(m)^2)+(V_y(m)^2)+(V_z(m)^2));

55

 XC(m) = sqrt((XC_x(m)^2)+(XC_y(m)^2)+(XC_z(m)^2));
 X(m) = sqrt((X_x(m)^2)+(X_y(m)^2)+(X_z(m)^2));
end

%Plot of accelerations
figure(1)
subplot(211)
plot(T_r, A_y, T_r, A_x, T_r, A_z)
title('Raw acceleration')
legend('Y-axis', 'X-axis', 'Z-axis', 'Location', 'best');
% annotation('line',[.5376 .5376], [.919 .5809])
% annotation('line',[0.65 0.7339], [.9262 .5857])

subplot(212)
plot(T, AccY, T, AccX, T, AccZ)
title('Windowed acceleration')
legend('Y-axis', 'X-axis', 'Z-axis', 'Location', 'best');

%Plot of velocities
figure(2)
subplot(211)
plot(T, V_y, T, V_x, T, V_z, T, V);
title('Raw Velocity')
legend('Y-axis', 'X-axis', 'Z-axis', 'Combined', 'Location', 'best');
subplot(212)
plot(T, VC_y, T, VC_x, T, VC_z, T, VC);
title('Corrected Velocity')
legend('Y-axis', 'X-axis', 'Z-axis', 'Combined', 'Location', 'best');

%Plot of positions
figure(3)
subplot(211)
plot(X)
title('Raw Position')
subplot(212)
plot(XC)
title('Corrected Position')
display(XC(length(XC)))
display(X(length(X)))

56

THIS PAGE INTENTIONALLY LEFT BLANK

57

APPENDIX C. FQA PROCESSING WITH MOTION SCRIPT

clear all
close all
% Code generated by MATLAB for importing data
import_a_2
import_time3

A_y= AccY*9.8;
A_x= AccX*9.8;
A_z= AccZ*9.8;
T_r = Time;

%ignore magnetometer data
m = [0; 0; 0];

%full calculated quarternion
for k = 1:length(A_x)

 %sample accelerometer
 am =[A_x(k); A_y(k); A_z(k)];

 qm(:, k) = fqa_hardcode(am, m);

 Angle = Euler(qm(:,k));
 AngleM(:,k) = Angle.*(180/pi);

end

%range of data i.e. range where sensor is moving
r = [509:712];

%Moment of motion and time stamp
AccX = AccX(r)*9.8;
AccY = AccY(r)*9.8;
AccZ = AccZ(r)*9.8;
T = Time(r);
q = qm(:, r);

%Array of Zeros
O = zeros(length(AccX),1);

%Acceleration Quarternion in the sensor body fram
A_b = [O'; AccX'; AccY'; AccZ'];

% | 0 |
% |AccX|
%A_b/A_n =|AccY|
% |AccZ|

%transformation from sensor body to navigational frame

58

for n = 1:length(r)

 %A_n = q * A_b * q_c
 % |____________|
 % |
 % Quarternion multiplication

 %Acceleration Quarternion in navigational frame
 %conjugate Quarternion
% q_c = q(:,n) .* [1; -1;-1;-1];
%
% % q * A_b
% a_n_tmp(:,n) = q_mult2(q(:,n), A_b(:,n));
%
% % A_b * q_c
% A_n(:,n) = q_mult2(q_c, a_n_tmp(:,n));

 A_n(:,n) = rotate_v_by_q(A_b(:,n), q(:,n));

end

%initialize a counter to do zero velocity update
tick = 0;

%processing via numerical integration
% Raw velocity
V_x = cumtrapz(T, A_n(2,:));
V_y = cumtrapz(T, A_n(3,:));
V_z = cumtrapz(T, A_n(4,:));

for i = 1:length(r)

 t(i) = tick;

 %Corrected Velocity

 % Adapted from Code Written by James Calusdian

 %Va = Vc - ((Vc(final time)/final time)*t), t = [0, finaltime]
 VC_x(i,1) = V_x(i) - ((V_x(length(V_x))/length(V_x))*t(i));
 VC_y(i,1) = V_y(i) - ((V_y(length(V_y))/length(V_y))*t(i));
 VC_z(i,1) = V_z(i) - ((V_z(length(V_z))/length(V_z))*t(i));

 tick = tick +1;

end

%Raw Position
X_x =cumtrapz(T, V_x);
X_y =cumtrapz(T, V_y);
X_z =cumtrapz(T, V_z);

59

%Corrected Position
XC_x =cumtrapz(T, VC_x);
XC_y =cumtrapz(T, VC_y);
XC_z =cumtrapz(T, VC_z);

for m = 1:length(r)

 VC(m) = sqrt((VC_x(m)^2)+(VC_y(m)^2)+(VC_z(m)^2));

 V(m) = sqrt((V_x(m)^2)+(V_y(m)^2)+(V_z(m)^2));

 XC(m) = sqrt((XC_x(m)^2)+(XC_y(m)^2)+(XC_z(m)^2));

 X(m) = sqrt((X_x(m)^2)+(X_y(m)^2)+(X_z(m)^2));

end

%Plot of accelerations
figure(1)
subplot(211)
plot(T_r, A_y, T_r, A_x, T_r, A_z)
title('Raw acceleration')
legend('Y-axis', 'X-axis', 'Z-axis', 'Location', 'BEST');
% annotation('line',[.5376 .5376], [.919 .5809])
% annotation('line',[0.65 0.7339], [.9262 .5857])

subplot(212)
plot(T, A_n(3, :), T, A_n(2,:), T, A_n(4,:))
title('Rotated acceleration')
legend('Y-axis', 'X-axis', 'Z-axis', 'Location', 'BEST');

%Plot of velocities
figure(2)
subplot(211)
plot(T, V_y, T, V_x, T, V_z, T, V);
title('Raw Velocity')
legend('Y-axis', 'X-axis', 'Z-axis', 'Combined', 'Location', 'best');
subplot(212)
plot(T, VC_y, T, VC_x, T, VC_z, T, VC);
title('Corrected Velocity')
legend('Y-axis', 'X-axis', 'Z-axis', 'Combined', 'Location', 'best');

%Plot of positions
figure(3)
subplot(211)
plot(T, XC_x, T, XC_y, T, XC_z)
legend('X-axis', 'Y-axis', 'Z-axis','Location', 'best');
title('position w/respect to time')
subplot(212)
plot(XC_x, XC_y)
title('Position via x-y vector')

60

%Plot of angles through motion
figure(4)
subplot(311)
plot(T_r, AngleM(1,:));
title('Roll through motion')
xlabel('time')
ylabel('degrees')
subplot(312)
plot(T_r, AngleM(2,:));
title('Pitch through motion')
xlabel('time')
ylabel('degrees')
subplot(313)
plot(T_r, AngleM(3,:));
title('Yaw through motion')
xlabel('time')
ylabel('degrees')

display(X(length(X)))
display(XC(length(XC)))

61

APPENDIX D. HARDCODED FQA SCRIPT

function [q, error, flag] = fqa(a, m);
% a is 3x1, m is 3x1

% Code provided by James Calusdian from [6], and adapted from
% code written by Xiaoping Yun, May 7, 2008

% input a = 3-dim acceleration, m=3-dim local magnetic measurement

%Mref = [0.4943 0.0 0.8693];

epsilon = 0.10; % accuracy control constant
singular_flag = 0;
alpha = 30*pi/180; % offset angle

% x is 3x2, first col = magnetometer, second col = accelerometer.

a_bar = a/norm(a); % make sure that it is normalized
m_b = m/norm(m);

sin_th = a_bar(1);
cos_th = sqrt(1-sin_th^2);

% singularity avoidance algorithm
if (cos_th <= epsilon)
 singular_flag = 1;
 q_offset =cos(alpha/2)*[1 0 0 0]' + sin(alpha/2)*[0 0 1 0]';

 a_bar_q = [0; a_bar];
 m_b_q = [0; m_b];
 a_q_offset = rotate_v_by_q(a_bar_q,q_offset);
 m_q_offset = rotate_v_by_q(m_b_q,q_offset);

 a_bar = a_q_offset(2:4);
 m_b = m_q_offset(2:4);

else
 % do not do anything other than setting the flag.
 singular_flag = 0;
end

% elevation quaternion-y
sin_th = a_bar(1);%h(1);
%cos_th = sqrt(1-sin_th^2);
cos_th = sqrt(a_bar(2)^2 + a_bar(3)^2); %J.C. 1/30/2009

% computing half-angle values
cos_half_th=sqrt((1+cos_th)/2);
if (cos_th<=-1) % this "if" is needed since sign(0) = 0.

62

 sin_half_th = 1;
else
 sin_half_th=sign(sin_th)*sqrt((1-cos_th)/2);
end

qe = cos_half_th*[1;0;0;0] + sin_half_th*[0;0;1;0];

%%%% Roll Quaternion-x
b = [a_bar(2) a_bar(3)];
c = b/norm(b);
sin_phi = -c(1);
cos_phi = -c(2);

cos_half_phi=sqrt((1+cos_phi)/2);
if (cos_phi<=-1)
 sin_half_phi = 1;
else
 sin_half_phi=sign(sin_phi)*sqrt((1-cos_phi)/2);
end

qr = cos_half_phi*[1;0;0;0] + sin_half_phi*[0;1;0;0];

%%%% Azimuth Quaternion-z
% Commented out due to magnetometer unable to be read and quaternion
% hardcoded

% qe_inv = [qe(1);-qe(2);-qe(3);-qe(4)];
% qr_inv = [qr(1);-qr(2);-qr(3);-qr(4)];
% m_b_q = [0; m_b];
%
% q_er = q_mult2(qe,qr);
% q_er_inv =[q_er(1); -q_er(2); -q_er(3); -q_er(4)];
% m_e = q_mult2(q_er,q_mult2(m_b_q, q_er_inv));
%
% M = [m_e(2),m_e(3)];
% M = M/norm(M);
% N = [1; 0];
% tmp = [M(1) M(2);
% -M(2) M(1)]*N;
% cos_psi = tmp(1);
% sin_psi = tmp(2);
%
% cos_half_psi=sqrt((1+cos_psi)/2);
% if (cos_psi<=-1) %%%% IMPORTANT %%% if it is

written as cos_psi==-1, it does not work.
% %%%% cos_psi is potentially less

than -1.
% sin_half_psi = 1;
% else
% sin_half_psi=sign(sin_psi)*sqrt((1-cos_psi)/2);
% end

63

%
% qa = cos_half_psi*[1;0;0;0]+ sin_half_psi*[0;0;0;1];

%assume no yaw
qa = [1;0;0;1];

q_tmp1 = q_mult2(qe,qr);
q_tmp = q_mult2(qa,q_tmp1);

if (singular_flag == 1)
 q = q_mult2(q_tmp, q_offset);
else
 q = q_tmp;
end

error = cos_th;
flag = singular_flag;

64

THIS PAGE INTENTIONALLY LEFT BLANK

65

APPENDIX E. EULER ANGLE FUNCTION

function EulerAngles=Euler(u)
%Code provided by James Calusdian from [6]

q0=u(1);
q1=u(2);
q2=u(3);
q3=u(4);

B=[q0^2+q1^2-q2^2-q3^2 2*(q1*q2+q3*q0) 2*(q1*q3-q0*q2);
 2*(q1*q2-q0*q3) q0^2-q1^2+q2^2-q3^2 2*(q2*q3+q0*q1);
 2*(q1*q3+q0*q2) 2*(q2*q3-q0*q1) q0^2-q1^2-q2^2+q3^2];

% if (B(1,3) >=1)
% B(1,3) =1;
% elseif (B(1,3) <=-1)
% B(1,3) =-1;
% end

phi=atan2(B(2,3),B(3,3));

theta=-asin(B(1,3));
psi=atan2(B(1,2),B(1,1));

EulerAngles=[phi;
 theta;
 psi];

66

THIS PAGE INTENTIONALLY LEFT BLANK

67

APPENDIX F. ROTATION FUNCTION

function u=rotate_v_by_q(v,q)
%Code provided by James Calusdian from [6]

q_inv= [q(1) -q(2) -q(3) -q(4)]';

u = q_mult2(q,q_mult2(v,q_inv));

68

THIS PAGE INTENTIONALLY LEFT BLANK

69

APPENDIX G. QUATERNION MULTIPLICATION FUNCTION

function qout=q_mult2(p,q)
%Code provided by James Calusdian from [6]

P_mat = [p(1) -p(2) -p(3) -p(4);
 p(2) p(1) -p(4) p(3);
 p(3) p(4) p(1) -p(2);
 p(4) -p(3) p(2) p(1)];
qout = P_mat*q;

70

THIS PAGE INTENTIONALLY LEFT BLANK

71

APPENDIX H. OPTITRACK PROCESSING SCRIPT

%%Import data
close all
clear all
% Code generated by MATLAB for importing data
%import all the data
import_a_microstrain
import_time_microstrain
% Code generated by MATLAB for importing data
import_angles
roll = VarName4;
pitch = VarName5;
yaw = VarName6;

% Code generated by MATLAB for importing data
import_time_optitrack
Time_O = VarName7;

%clear out read in variable names to clean up workspace.
vars= {'VarName4', 'VarName5', 'VarName6', 'VarName7'};
clear(vars{:})
clear vars

%Starting point for IMU data
I_s = 181;

%Starting point for OptiTrack data
O_s = 509;

%start IMU data at verified point
AccX_v = AccX(I_s:end);
AccY_v = AccY(I_s:end);
AccZ_v = AccZ(I_s:end);
Time_v = Time(I_s:end);
Time_v = Time_v - Time_v(1);

%start OptiTrack data at verified point
[Time_O_n, roll_n, pitch_n, yaw_n] = filter_repeat(Time_O, roll, pitch,

yaw);

roll_v = roll_n(O_s:end);
pitch_v = pitch_n(O_s:end);
yaw_v = yaw_n(O_s:end);
Time_O_v = Time_O_n(O_s:end);
Time_O_v = Time_O_v-Time_O_v(1);

%% Run simulation
%inperpolate values to get data to match up
Ax = interp1(Time_v, AccX_v, Time_O_v);
Ay = interp1(Time_v, AccY_v, Time_O_v);
Az = interp1(Time_v, AccZ_v, Time_O_v);

72

Angles = [roll_v, pitch_v, yaw_v];

%convert Euler angles to Quaternions from optitrack
for i = 1:length(Angles)

% Q_mat(:,i) = eul2quat(Angles(i,:), 'XYZ');

 q = myEuler2quaternion(yaw_v(i), pitch_v(i), roll_v(i));
 Q_opt(:,i) = q;

end

%calculate the quaternion with FQA from acceleration to compare
for k = 1:length(Ax)

 %sample accelerometer
 am =[Ax(k); Ay(k); Az(k)];
 m = [0; 0; 0];

 qm(:, k) = fqa_hardcode(am, m);

end

%range of the data
range_OPT = [273:469];
t = Time_O_v(range_OPT);
t_0 = t - t(1);
A_x = Ax(range_OPT)*9.8;
A_y = Ay(range_OPT)*9.8;
A_z = Az(range_OPT)*9.8;
Q = Q_opt(:,range_OPT);

for n = 1:length(range_OPT)

 %Rotate from the body frame into the navigation frame
 A_b = [0; A_x(n); A_y(n); A_z(n)];
 A_n(:,n) = rotate_v_by_q(A_b, Q(:,n));

end

%processing via numerical integration
% Raw velocity
V_x = cumtrapz(t_0, A_n(2,:));
V_y = cumtrapz(t_0, A_n(3,:));
V_z = cumtrapz(t_0, A_n(4,:));

% for i = 1:length(range_OPT)
%
% %Corrected Velocity
% %Va = Vc - ((Vc(final time)/final time)*t), t = [0, finaltime]
% VC_x(i) = V_x(i) - ((V_x(end)/t_0(end))*t_0(i));

73

% VC_y(i) = V_y(i) - ((V_y(end)/t_0(end))*t_0(i));
% VC_z(i) = V_z(i) - ((V_z(end)/t_0(end))*t_0(i));
%
% end

t_int = t_0';

%Velocity correction X

% Adapted from Code Written by James Calusdian

%correct velocity at starting point of motion
Vx_c = V_x - V_x(1);

%calculate error through motion
error_x = Vx_c(end)/t_int(end)*t_int;

%Correct velocity through motion
VC_x = Vx_c - error_x;

%Velocity correction Y
Vy_c = V_y - V_y(1);

error_y = Vy_c(end)/t_int(end)*t_int;

VC_y = Vy_c - error_y;

%velocity correction Z
Vz_c = V_z - V_z(1);

error_z = Vz_c(end)/t_int(end)*t_int;

VC_z = Vz_c - error_z;

tock = 0;

%Raw Position
X_x =cumtrapz(t_0, V_x);
X_y =cumtrapz(t_0, V_y);
X_z =cumtrapz(t_0, V_z);

%Corrected Position
XC_x =cumtrapz(t_0, VC_x);
XC_y =cumtrapz(t_0, VC_y);
XC_z =cumtrapz(t_0, VC_z);

for m = 1:length(range_OPT)

 VC(m) = sqrt((VC_x(m)^2)+(VC_y(m)^2)+(VC_z(m)^2));

 V(m) = sqrt((V_x(m)^2)+(V_y(m)^2)+(V_z(m)^2));

 XC(m) = sqrt((XC_x(m)^2)+(XC_y(m)^2)+(XC_z(m)^2));

74

 X(m) = sqrt((X_x(m)^2)+(X_y(m)^2)+(X_z(m)^2));

end

%Plot of accelerations
figure(1)
subplot(211)
plot(Time, AccX, Time, AccY, Time, AccZ)
title('Raw acceleration')
legend('X-axis', 'Y-axis', 'Z-axis', 'Location', 'BEST');
xlabel('Time (Seconds)')
ylabel('Meters/Second^2')

subplot(212)
plot(t_0, A_n(2,:), t_0, A_n(3,:), t_0, A_n(4,:))
title('Rotated acceleration')
legend('X-axis', 'Y-axis', 'Z-axis', 'Location', 'BEST');
xlabel('Time (Seconds)')
ylabel('Meters/Second^2')

%Plot of velocities
figure(2)
subplot(211)
plot(t_0, V_y, t_0, V_x, t_0, V_z, t_0, V);
title('Raw Velocity')
legend('Y-axis', 'X-axis', 'Z-axis', 'Combined', 'Location', 'best');

subplot(212)
plot(t_0, VC_y, t_0, VC_x, t_0, VC_z, t_0, VC);
title('Corrected Velocity')
legend('Y-axis', 'X-axis', 'Z-axis', 'Combined', 'Location', 'best');

%Plot of positions
figure(3)
subplot(211)
plot(t_0, XC_x, t_0, XC_y, t_0, XC_z)
legend('X-axis', 'Y-axis', 'Z-axis','Location', 'best');
title('position w/respect to time')

subplot(212)
plot(XC_x, XC_y)
axis([0 length(XC_x) 0 length(XC_x)])
title('Position via x-y vector')

%Plot of positions
figure(4)
subplot(211)
plot(X)
title('Raw Position')
subplot(212)
plot(XC)
title('Corrected Position')

75

figure(5)
subplot(211)
plot(Time_O_v, Q_opt(2,:), Time_O_v, Q_opt(3,:), Time_O_v, Q_opt(4,:))
title('OptiTrack Quaternion');
xlabel('Time (Seconds)')

subplot(212)
plot(Time_O_v, qm(2,:), Time_O_v, qm(3,:), Time_O_v, qm(4,:))
title('FQA Quaternion');
xlabel('Time (Seconds)')

display(X(end))
display(XC(end))

figure(6)
subplot(211)
plot(Time, AccX, Time, AccY, Time, AccZ)
title('Raw acceleration')
legend('X-axis', 'Y-axis', 'Z-axis', 'Location', 'BEST');
xlabel('Time (Seconds)')
ylabel('Meters/Second^2')

subplot(212)
plot(Time_O_v, qm(2,:), Time_O_v, qm(3,:), Time_O_v, qm(4,:))
title('FQA Quaternion');
xlabel('Time (Seconds)')

76

THIS PAGE INTENTIONALLY LEFT BLANK

77

APPENDIX I. EULER ANGLE TO QUATERNION FUNCTION

function [q] = myEuler2quaternion(yaw, pitch, roll)
% myEuler2quaternion converts the Euler angles (radians) to the

%quaternion
% with the form [q0 q1 q2 q3 q4] where q0 is the scalar.
% from lecture notes [21]
cPsi2 = cos(yaw/2);
sPsi2 = sin(yaw/2);
cTheta2 = cos(pitch/2);
sTheta2 = sin(pitch/2);
cPhi2 = cos(roll/2);
sPhi2 = sin(roll/2);

q0 = cPsi2*cTheta2*cPhi2 + sPsi2*sTheta2*sPhi2;
q1 = cPsi2*cTheta2*sPhi2 - sPsi2*sTheta2*cPhi2;
q2 = cPsi2*sTheta2*cPhi2 + sPsi2*cTheta2*sPhi2;
q3 = sPsi2*cTheta2*cPhi2 - cPsi2*sTheta2*sPhi2;

q = [q0;q1;q2;q3];

78

THIS PAGE INTENTIONALLY LEFT BLANK

79

APPENDIX J. FILTER REPEAT DATA FUNCTION

function [Time_O, Roll, Pitch, Yaw] = filter_repeat(time, roll, pitch,

yaw)

%Code adapted from code provided by James Calusdian.

%Original code written by James Calusdian,

%%%remove_bad_data

%time_opt = test10.time_opt;
%N = length(time_opt);
%array_of_indices = [];

%pitch_opt = test10.pitch_opt;
%yaw_opt = test10.yaw_opt;
%roll_opt = test10.roll_opt;

%for ix = 2:N
% if time_opt(ix) == time_opt(ix-1)
% array_of_indices = [array_of_indices , ix];
% end
%end

%%% fix the time vector
%time_fixed = time_opt;
%time_fixed(array_of_indices) = [];
%time_optitrack_zero = time_fixed - time_fixed(1);

%%% fix the angle data, too
%pitch_opt(array_of_indices) = [];
%yaw_opt(array_of_indices) = [];
%roll_opt(array_of_indices) = [];

%Function to filter out repeat stagnant data from Optitrack data

so%that it
%can be interpolated by processing function
array = [];

%for loop to check for repeated data points
for i = 2:length(time)
 %if data is repeated save the location in array
 if time(i) == time(i-1)
 array = [array, i];
 end

end

 time(array) = [];
 roll(array) = [];
 pitch(array) = [];
 yaw(array) = [];

80

 Time_O = time;
 Roll = roll;
 Pitch = pitch;
 Yaw = yaw;

end

81

LIST OF REFERENCES

[1] X. Yun, J. Calusdian, E. R. Bachmann, and R. B. McGhee, “Estimation of human

foot motion during normal walking using inertial and magnetic sensor

measurements,” IEEE Trans. Instrum. Meas., vol. 61, no. 7, pp. 2059–2072, 2012.

[2] W. Storms, J. Shockley, and J. Raquet, “Magnetic field navigation in an indoor

environment,” 2010 Ubiquitous Position. Indoor Navig. Locat. Based Serv.

UPINLBS 2010, pp. 1–10, 2010.

[3] V. Sazdovski and P. M. G. Silson, “Inertial navigation aided by vision-based

simultaneous localization and mapping,” IEEE Sens. J., vol. 11, no. 8, pp. 1646–

1656, 2011.

[4] H. Lategahn and C. Stiller, “Vision-Only Localization,” IEEE Trans. ON Intel.

Transp. Sys., vol. 15, no. 3, pp. 1246–1257, 2014.

[5] Y. Zhou, C. L. Law, and F. Chin, “Construction of local anchor map for indoor

position measurement system,” IEEE Trans. Instrum. Meas., vol. 59, no. 7,

pp. 1986–1988, 2010.

 [6] J. Calusdian, “A personal navigation system based on inertial and magnetic field

measurements,” Ph. D. dissertation, Dept. of Electrical Engineering, NPS,

Monterey, CA, USA, 2010. [Online]. Available:

http://hdl.handle.net/10945/10557.

[7] X. Yun, E. R. Bachmann, and R. B. Mcghee, “A Simplified Quaternion-Based

Algorithm for Orientation Estimation From Earth Gravity and Magnetic Field

Measurements,” IEEE Trans. Instrum. Meas., vol. 57, no. 3, pp. 638–650, 2008.

[8] J. O. Nilsson, J. Rantakokko, P. Händel, I. Skog, M. Ohlsson, and K. V. S. Hari,

“Accurate indoor positioning of firefighters using dual foot-mounted inertial

sensors and inter-agent ranging,” IEEE PLANS, Position Locat. Navig. Symp., pp.

631–636, 2014.

 [9] 3DM-GX3R-25-Miniature Attitude Heading Reference System (AHRS),

Document 8400-0033 Revision 003, LORD Corporation MicroStrain Sensing

Systems, Williston, VT, 2014. [Online]. Available:

http://files.microstrain.com/3DM-GX3-25-Attitude-Heading-Reference-System-

Data-Sheet.pdf

[10] 3DM-GX4-25TM-Attitude Heading Reference System (AHRS), Document 8400-

0060 Revision A, LORD Corporation MicroStrain Sensing Systems, Williston,

VT, 2014. [Online]. Available: http://files.microstrain.com/3DM-GX4-

25_Datasheet_(8400-0060).pdf

http://hdl.handle.net/10945/10557
http://files.microstrain.com/3DM-GX3-25-Attitude-Heading-Reference-System-Data-Sheet.pdf
http://files.microstrain.com/3DM-GX3-25-Attitude-Heading-Reference-System-Data-Sheet.pdf
http://files.microstrain.com/3DM-GX4-25_Datasheet_(8400-0060).pdf
http://files.microstrain.com/3DM-GX4-25_Datasheet_(8400-0060).pdf

82

[11] 3DM-GX5-25-OEM™ OEM Attitude Heading Reference System (AHRS),

Document 8400-0093 Revision N, LORD Corporation MicroStrain Sensing

Systems,Williston,VT,2019. [Online]. Available:

https://www.microstrain.com/site/default/files/applications/files/3dm-gx5-

25_datasheet_8400-0093_rev_n.pdf

[12] 3-Space Sensor Miniature Attitude & Heading Reference System User’s Manual,

Yost Labs, Portsmouth, OH, USA, 2007. [Online]. Available:

https://yostlabs.com/wp/wp-content/uploads/pdf/3-Space-Sensor-Users-Manual-

1.pdf

[13] MathWorks, Inc., “What is MATLAB?” 2020. [Online]. Available:

https://www.mathworks.com/discovery/what-is-matlab.html

[14] OptiTrack, “Motive: Tracker Motion capture & 6 DOF object tracking.” 2020.

[Online]. Available: https://www.optitrack.com/products/motive/tracker.html

[15] MathWorks, Inc., “cumtrapz” 2020. [Online]. Available:

https://www.mathworks.com/help/matlab/ref/cumtrapz.html?s_tid=srchtitle

[16] MathWorks, Inc., “interp1” 2020. [Online]. Available:

https://www.mathworks.com/help/matlab/ref/interp1.html

[17] C. S. Hargadine, “Mobile robot navigation and obstacle avoidance in unstructured

outdoor environments,” M.S. thesis, Dept. of Electrical Engineering, NPS,

Monterey, CA, 2017. [Online]. Available: https://hdl.handle.net/10945/56937

[18] M. R. Audette, “Interactive Map Making for Route Planning and Obstacle

Avoidance in an Unstructured Outdoor Environment,” M.S. thesis, Dept. of

Electrical Engineering, NPS, Monterey, CA, 2018. [Online]. Available:

https://hdl.handle.net/10945/60406

[19] C. Lebrun, “Vision-based Terrain Classification and Learning to Improve

Autonomous Ground Vehicle Navigation in Outdoor Environments,” M.S. thesis,

Dept. of Electrical Engineering, NPS, Monterey, CA, 2019. [Online]. Available:

https://hdl.handle.net/10945/63474

[20] A. Magee, “Place-Based Navigation for Autonomous Vehicles with Deep Learning

Neural Networks,” M.S. thesis, Dept. of Electrical Engineering, NPS, Monterey,

CA, 2019. [Online]. Available: https://hdl.handle.net/10945/64012

[21] “Equations of Motion for Three Dimensional Rigid Bodies,” class notes EC4330:

Navigation, Missile, and Avionics Systems, Dept. of Electrical and Computer

Engineering, Naval Postgraduate School, Monterey, CA, USA, spring 2019.

https://www.microstrain.com/site/default/files/applications/files/3dm-gx5-25_datasheet_8400-0093_rev_n.pdf
https://www.microstrain.com/site/default/files/applications/files/3dm-gx5-25_datasheet_8400-0093_rev_n.pdf
https://yostlabs.com/wp/wp-content/uploads/pdf/3-Space-Sensor-Users-Manual-1.pdf
https://yostlabs.com/wp/wp-content/uploads/pdf/3-Space-Sensor-Users-Manual-1.pdf
https://www.mathworks.com/discovery/what-is-matlab.html
https://www.optitrack.com/products/motive/tracker.html
https://www.mathworks.com/help/matlab/ref/cumtrapz.html?s_tid=srchtitle
https://www.mathworks.com/help/matlab/ref/interp1.html

83

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

 Ft. Belvoir, Virginia

2. Dudley Knox Library

 Naval Postgraduate School

 Monterey, California

	20Jun_Druen_Samuel_First8
	20Jun_Druen_Samuel_PDF

