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ABSTRACT 

 GPS-denied environments, including indoor, urban canyon, and shipboard 

settings, present difficulties for autonomous robot navigation. One navigation solution in 

GPS-denied environments is to incorporate inertial sensors; however, due to sensor noise 

and calibration error, the accumulation of position error, or drift, causes the position 

estimate from inertial sensors to fail after a period of time. This thesis aimed to determine 

the viability of a pedestrian algorithm, which incorporates the zero-velocity update, to 

address the error and calculate distance traveled by a mobile robot in a GPS-denied 

environment. This work focused on indoor navigation using various sensors to provide 

data to the algorithm to calculate estimated distance traveled. Experiments were 

constructed and performed using a cart, robot, and mounted sensors in three laboratory 

settings: across the ground with preset distances, on an instrument rail track, and in an 

optical tracking environment. Tests conducted with the sensors determined that a system 

traveling above a minimum velocity threshold up to three meters can effectively 

implement a pedestrian tracking algorithm given known quaternion values. Adding a 

native means of determining system angles will allow this solution to be applied in more 

environments. 

v 



THIS PAGE INTENTIONALLY LEFT BLANK 

vi 



vii 

TABLE OF CONTENTS 

I. INTRODUCTION..................................................................................................1 

A. MOTIVATION ..........................................................................................1 

B. RELATED SOLUTIONS ..........................................................................2 

1. Vision Solution ...............................................................................2 

2. Magnetic Field ................................................................................2 

3. Inertial Navigation .........................................................................3 

C. PURPOSE AND GOAL ............................................................................3 

II. BACKGROUND ....................................................................................................5 

A. REFERENCE FRAME .............................................................................5 

1. Sensor Reference Frame ................................................................5 

2. Navigational Reference Frame .....................................................6 

B. QUATERNIONS ........................................................................................6 

C. ZERO VELOCITY UPDATE ..................................................................9 

D. INTERPOLATION..................................................................................12 

III. PROCEDURES ....................................................................................................15 

A. SENSORS .................................................................................................15 

1. Lord Microstrain 3DM-GX3-25 and 3DM-GX4-25 .................15 

2. Yost 3-Space TSS-DL v 2.0 .........................................................17 

B. SOFTWARE .............................................................................................18 

1. MATLAB ......................................................................................18 

2. 3DM Monitor ................................................................................18 

3. MIP Monitor.................................................................................18 

4. Motive Tracker.............................................................................19 

C. CART ........................................................................................................19 

D. PIONEER P3-DX ROBOT .....................................................................20 

E. DATA OPTICS, INC. OPTICS RAIL ...................................................22 

F. OPTITRACK PRIME OPTICAL TRACKING SUITE ......................25 

IV. RESULTS .............................................................................................................29 

A. CART EXPERIMENT ............................................................................29 

B. ROBOT EXPERIMENT .........................................................................32 

1. Effect of Distance .........................................................................32 

2. Effect of Velocity ..........................................................................34 

3. Viability of Pedestrian Algorithm ..............................................36 



viii 

C. RAIL EXPERIMENT .............................................................................37 

1. Flat Linear Motion .......................................................................37 

2. Linear Motion with a Set Angle ..................................................38 

3. Linear Motion with a Variable Angle ........................................40 

D. OPTITRACK EXPERIMENT ...............................................................42 

1. Linear Motion with a Set Angle ..................................................43 

2. Linear Motion with a Variable Angle ........................................43 

3. Arbitrary Motion .........................................................................45 

V. CONCLUSION ....................................................................................................47 

A. ASSESSMENT OF GOALS....................................................................47 

B. LIMITATIONS ........................................................................................48 

C. RECOMMENDATIONS FOR FUTURE WORK ................................49 

APPENDIX  A. DATA PROCESSING SCRIPT ..........................................................51 

APPENDIX  B. FQA PROCESSING SCRIPT .............................................................53 

APPENDIX  C. FQA PROCESSING WITH MOTION SCRIPT ..............................57 

APPENDIX  D. HARDCODED FQA SCRIPT .............................................................61 

APPENDIX  E. EULER ANGLE FUNCTION .............................................................65 

APPENDIX  F. ROTATION FUNCTION ....................................................................67 

APPENDIX  G. QUATERNION MULTIPLICATION FUNCTION .........................69 

APPENDIX  H. OPTITRACK PROCESSING SCRIPT .............................................71 

APPENDIX  I. EULER ANGLE TO QUATERNION FUNCTION ...........................77 

APPENDIX  J. FILTER REPEAT DATA FUNCTION ..............................................79 

LIST OF REFERENCES ................................................................................................81 

INITIAL DISTRIBUTION LIST ...................................................................................83 

 

  



ix 

LIST OF FIGURES 

Figure 1. Sensor axis orientation .................................................................................5 

Figure 2. Acceleration data with uncorrected velocity and position .........................10 

Figure 3. Uncorrected velocity with corrected velocity ............................................12 

Figure 4. Microstrain 3DM-GX3-25 .........................................................................16 

Figure 5. Microstrain 3DM-GX4-25 .........................................................................16 

Figure 6. Yost TSS-DL v2.0 .....................................................................................17 

Figure 7. Five-meter track for experiments ...............................................................19 

Figure 8. Motion start and stop .................................................................................20 

Figure 9. Pioneer P3-DX ...........................................................................................21 

Figure 10. Tethered controller .....................................................................................21 

Figure 11. Optical rail .................................................................................................22 

Figure 12. Optical tool sled .........................................................................................23 

Figure 13. Shelf attached to angle indicator ................................................................24 

Figure 14. Angular reference face ...............................................................................24 

Figure 15. OptiTrack optical sensors ..........................................................................26 

Figure 16. OptiTrack sled ............................................................................................26 

Figure 17. Plots of arbitrary motion ............................................................................28 

Figure 18. Step motion versus cart motion..................................................................29 

Figure 19. Acceleration plot of low and high-velocity trials ......................................31 

Figure 20. Calculated distances traveled .....................................................................33 

Figure 21. Speed settings and corresponding distance ................................................35 

Figure 22. Low-velocity and high-velocity trials ........................................................36 



x 

Figure 23. Acceleration data and corresponding quaternion .......................................41 

Figure 24. Effects of computer on magnetometer .......................................................42 

Figure 25. OptiTrack quaternion versus FQA quaternion ...........................................44 

Figure 26. Raw and transformed acceleration .............................................................45 

  



xi 

LIST OF TABLES 

Table 1. Calculated versus traveled distance ...........................................................30 

Table 2. Standard deviations versus distance traveled .............................................32 

Table 3. Distance and calculated distance with standard deviation .........................34 

Table 4. Calculated distances versus various sensors ..............................................37 

Table 5. Reference angle and calculated angle ........................................................39 

Table 6. Reference angle with calculated distance and standard deviation .............39 

Table 7. Reference angles and calculated distance and standard deviation .............40 

Table 8. Calculated distances with standard deviation. ...........................................43 

Table 9. Calculated distances and standard deviation. .............................................43 

Table 10. Sensor motion with calculated distance and standard deviation. ...............46 

 

  



xii 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

  



xiii 

LIST OF ACRONYMS AND ABBREVIATIONS 

AI Artificial Intelligence 

DoD Department of Defense 

FQA Factored Quaternion Algorithm 

GUI Graphical User Interface 

IMU Inertial Measurement Unit 

INS Inertial Navigation System 

GPS Global Positioning System 

NED North-East-Down 

ZUPT Zero Velocity Update 

  



xiv 

THIS PAGE INTENTIONALLY LEFT BLANK 



xv 

ACKNOWLEDGMENTS 

I wish to thank my Lord and savior for providing me with the chance to fulfill a 

dream and the support to get me through this journey. 

I want to thank my wife, Kristin, for being by my side, supporting me through this 

entire process and the classes. You inspired me to pursue this journey and have helped me 

to remain steadfast through it all. 

I want to thank my thesis advisors, Dr. Xiaoping Yun and Dr. James Calusdian. 

Dr. Yun, thank you for your invaluable advice and patience with me throughout this 

entire thesis writing process. Dr. Calusdian, thank you for your guidance in framing my 

focus and helping me through with discussions when I lost that focus.  

To my church family and friends, thank you for giving me that extra level of support 

and an outlet when I needed it the most. 



xvi 

THIS PAGE INTENTIONALLY LEFT BLANK 



1 

I. INTRODUCTION 

Current autonomous systems rely heavily on input from the Global Positioning 

System (GPS) to build their navigation control law due to its ease of use and relative 

accuracy when compared to other navigational systems. GPS provides an accurate means 

of fixing the position of an object within an accepted range of uncertainty. However, an 

overreliance on GPS can be exploited as a significant weakness during times of conflict 

when the system is operating in an environment where GPS signals are denied. GPS also 

has inherent limitations inside of buildings and within urban canyons. Inertial navigation 

systems (INS) are a current emphasis in autonomous navigation studies in conjunction with 

integrating accelerometer outputs to dead-reckon the system position. In [1], Yun et al. 

discuss various commercial solutions available on the market and issues that arise due to 

sensor errors within onboard systems. In this chapter, the motivation for this thesis, 

examples of similar solutions currently being studied, and the overall purpose and goal of 

this research are presented. 

A. MOTIVATION 

Autonomous systems are beneficial in military applications where risk to personnel 

is great. The use of an autonomous system relieves the demands on personnel by 

performing tasks normally done by humans. As the demand from the Department of 

Defense (DoD) for unmanned and autonomous systems increases, the environments in 

which these systems operate also broaden. These systems are increasingly required to 

operate in environments that are not conducive to the use of conventional GPS solutions. 

When operating in indoor environments, autonomous systems are unable to attain a reliable 

positional fix because the signal from GPS satellites is not strong enough [2]. Similarly, if 

an autonomous system is surrounded by metal surfaces in shipboard environment, GPS 

signals are useless. Some of the related solutions discussed in the next section are limited 

in these environments due to the presence of smoke, visible obstructions, or the amount of 

ferrous material surrounding the system. Therefore, a means of calculating position within 
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these environments must be addressed in order to expand the utility of autonomous systems 

within environments where GPS is denied or no longer a feasible solution.  

B. RELATED SOLUTIONS 

Some of the related solutions for this research are navigation algorithms utilizing 

vision, magnetic field, and inertial data to build a navigation solution. Each example will 

be discussed in this section. 

1. Vision Solution 

A solution for autonomous navigation utilizes cameras and visual image processing 

to create a visual navigation solution. Common implementations use optical sensors 

attached to the autonomous system and local positioning visual systems. In [3], Sazdivski 

et al. mount cameras on an autonomous system and utilize artificial intelligence (AI) to 

augment inertial navigation systems. AI was needed to provide a localization solution 

without a priori data [3]. In [4], Lategahn et al. utilize a camera mounted to a chassis and 

present a navigational solution with only one optical sensor. In [5], Zhou et al. present the 

idea of utilizing optical sensors as navigational anchors to create a local positioning system.  

Optical or visual, systems are limited if the environment denies the utilization of 

optical sensors. If employing a local positioning system like in [5], the location must have 

sensors installed prior to the robot entering the location. Unless the system is being 

augmented with AI, systems with onboard optical systems need a means of localizing 

within their local environment, such as landmarks [4].  

2. Magnetic Field 

Another option is the use of magnetometer data and the local magnetic fields in 

order to calculate an angle of the system and thus be able to calculate the associated 

quaternion [1], [2], [6], and [7]. When navigating with a magnetometer, readings of the 

surrounding magnetic fields are used to calculate a heading or determine where the sensor 

is facing [7]. In [1] and [7], Yun et al. utilize the magnetic field reading to augment inertial 

navigation while a sensor is in angular motion. In [6], Calusdian et al. built upon the 
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research in [1] and [7] to better create an algorithm to handle the transfer from stationary 

to angular motion. In [6], the magnetometer readings utilize local declination to calculate 

angular motion. In [2], Storms et al. utilize the ambient magnetometer readings of a room 

in order to localize a robotic system. In order to achieve this, Storms et al. measured the 

magnetic field in a room and, based on the readings, the system matched its location to a 

magnetic field reading [2]. 

From [1], [2], [6], and [7], magnetic field navigation serves as a good alternative in 

conjunction with INS when GPS signals are not available. However, in a shipboard 

environment or when in close proximity to changing electronic systems, such as electric 

motors and generators, magnetic reference signals are significantly skewed. 

3. Inertial Navigation 

Inertial navigation utilizes acceleration measurements in order to calculate the 

distance traveled by integration. In the absence of GPS, this solution is the predominant 

method for navigation or is augmented by other sensors like in [1], [2], and [6]–[8]. Much 

of the focus in this field has been to utilize INS to aid in the tracking of pedestrian 

movements, as done in [1], [6], [7], and [8], in environments or situations where GPS no 

longer provides the needed fidelity to accurately track individuals. INS solutions can also 

be applied to robotic systems operating in GPS-denied environments. INS solutions 

provide acceleration data which can be integrated to provide positional data of the system. 

A major complication of inertial navigation, however, is sensor drift [6]. In [6], sensor drift 

and solutions to update the velocity in order to compensate for such drift are discussed.  

C. PURPOSE AND GOAL 

The purpose of this thesis is to confirm if a pedestrian tracking algorithm can be 

implemented on a wheeled robot chassis. The pedestrian tracking algorithm is built on 

research done in [6] by Calusdian et al. In [6], Calusdian et al. were able to design a control 

algorithm that was capable of accurately calculating the distance traveled by a pedestrian. 

To scope this study three goals were set: first, determine the distance a robot can travel 

before the data must be updated; second, determine the effects of velocity on the ability of 
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the algorithm to calculate distance; finally, determine if the algorithm can be implemented 

to an arbitrarily moving body. This study applies concepts discussed in [1] and [7] by Yun 

et al. and [6] by Calusdian, et al., which look into correcting the induced error in velocity 

by correcting the velocity to known values. The results are a simplified means for an 

autonomous system to navigate within the environment.  

Chapter II presents the concepts that were utilized to govern this research. Chapter 

III addresses the hardware, software, and experiment procedures utilized to conduct this 

research. Chapter IV explores the results of the experiments. Finally, recommendations for 

future work and conclusions from this research are discussed in Chapter V. 
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II. BACKGROUND 

In this chapter, a basic framework of the guiding concepts behind the thesis will be 

provided. More specifically, reference frames, quaternions, the Zero Velocity Update 

(ZUPT) algorithm, and the concept of interpolation encountered in this thesis will be 

discussed. In each section below, the concepts will be explained as each concept applies to 

this thesis.  

A. REFERENCE FRAME 

The reference frame is a coordinate system in which sensor measurements are 

represented. For this thesis, there are two reference frames, which are called the sensor, or 

body, reference frame and the navigational frame. 

1. Sensor Reference Frame 

The data collected from the sensors are represented in the sensor frame, which is a 

coordinate system attached to the sensor body. Therefore, the sensor collects all data with 

the sensor body as the center of motion. This also means that data collected is not associated 

with, and has no connection with, the surrounding environment. The sensor orientates itself 

with a conventional x, y, and z-axis, as seen in Figure 1. 

 

Figure 1. Sensor axis orientation 
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As presented in Figure 1, the axes are centered on the sensor body and are not 

referenced with any other point in space. In order to align the coordinate system of a body 

with the coordinate system associated with the sensor, the sensor must be rigidly attached 

to the body. This arrangement aligns the sensor body frame with the chassis body frame to 

allow both frames to be treated as the same. When the data from the sensor is transformed 

into the navigational frame, the transformation also applies to the chassis. 

2. Navigational Reference Frame  

For the navigational frame, the North-East-Down (NED) reference frame was 

selected. This gives an external reference point in order to orient the sensor reference body 

frame to the Earth. For NED, the x-axis is aligned to magnetic north, the y-axis is aligned 

with magnetic east, and the z-axis is aligned facing down toward the surface of the Earth. 

NED is commonly used in aeronautical applications, and it can also provide a common 

reference frame for several other applications. Using the magnetic poles of the Earth as 

known reference values, points can be utilized to transform the data from the arbitrary 

sensor frame to a reference frame that provides a context for navigation. 

Since this experiment was limited to a small locality, no more than 10 meters at one 

time in any direction, the Earth can be assumed flat and conversions for an ellipsoidal or 

circular Earth are not needed.   

B. QUATERNIONS 

The method chosen to transform the data was to use quaternions. Similar to the 

work done by Calusdian et al. in [6], quaternions were utilized in order to lighten the 

computational load and avoid the use of matrices consisting of sinusoidal functions [6].  

In order to calculate the transformation quaternion, the Factored Quaternion 

Algorithm (FQA) was employed as presented in [7] by Yun, et al. The algorithm takes the 

acceleration in the body frame, as well as data from the onboard magnetometer, and 

calculates the associated elevation, roll, and azimuth quaternions [6]. However, since the 

magnetometer would be utilized in conjunction with a robot chassis, the magnetic field 

calculations were omitted because of interference that would result from the presence of 
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the robot computer and the electric motors of the chassis. Therefore, in this particular 

utilization of the algorithm from [6], a vector of the form 

 [ , , ]b b b

x y za a a a=  (1) 

was input into the function. The superscripts in (1) annotate that the accelerations are in 

the body frame prior to transformation into the navigation frame.  From the input 

accelerations, the needed terms for the quaternion can be calculated. From [4], the elevation 

angle θ is related to the acceleration measurement as follows: 

 
2

sin

cos 1 sin .

xa

 

=

= −   (2) 

It is important to note that though the terms are notated as sinusoidal functions, all 

calculations are done via algebraic means, which does speed up the rate that the 

calculations are done. With the terms in (2) available, the half-angle representations are 

derived from [6] and calculated as follows: 

 

sin (sin ) (1 cos ) / 2
2

cos (1 cos ) / 2.
2

sign


 




= −

= +
  (3) 

With the half angles calculated, the elevation quaternion rotation operator qe can be 

calculated as follows [6]: 

 
cos (1,0,0,0) sin (0,0,1,0).

2 2
eq

 
= +

 (4) 

With the elevation operator calculated, the focus can be turned to the roll quaternion. 

Similar to [6] and utilizing the terms from (2), the first terms for the roll quaternion can be 

calculated as follows: 
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sin
cos

cos .
cos

y

z

a

a







−
=

−
=

 (5) 

With these terms, a similar calculation as (3) can be done in order to get the half-angle 

terms of φ. With the half-angle terms available from (5), the roll quaternion can be 

calculated, like in [6], as such: 

 
cos (1,0,0,0) sin (0,1,0,0).

2 2
rq

 
= +

 (6) 

For the azimuth quaternion, since magnetometer readings were not utilized, the azimuth 

quaternion was hardcoded to [1, 0, 0, 0]. Even with the magnetometer data removed, the 

algorithm was able to estimate the quaternion based on the acceleration data in the sensor 

frame. Adapted from [6], the resulting calculated quaternion has the form 

 
* .e rq q q=

  (7) 

Given the transformation quaternion, we can transform the acceleration from the 

body frame to the navigational frame through quaternion multiplication. To rotate the 

acceleration vector into the navigational frame, as done in [6], the vector is transformed 

using 

 
*.n ba q a q=  

 (8) 

For the conjugate of the quaternion notated as q* and presented in [6], it is calculated as 

such: 

 
*

0 1 2 3[ , , , ].q q q q q= − − −
 (9) 
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As stated above, the transformation is achieved by quaternion multiplication which is 

performed differently from typical multiplication [6]. If given two quaternions 

 0 , ,p p p =    0 , ,q q q =     (10) 

the quaternion multiplication is performed, presented in [6], as such: 

 0 0 0 0 .p q p q pq p q q p p q = − + + +    (11) 

The resulting quaternion is of the same form as the original vectors [6].  

C. ZERO VELOCITY UPDATE 

Similar to the method utilized in [6], the ZUPT algorithm was employed in this 

research. The ZUPT is used to update and correct for error within the measured acceleration 

data. From preliminary work, it was observed that the acceleration of the sensor will be 

zero both at the beginning, just prior to the onset of sensor motion, and immediately after 

the end of the motion when the sensor comes to rest. At both times, the velocity of the 

sensor will effectively be zero and the ZUPT algorithm can be employed as a means to 

correct for the error in the velocity calculations knowing that at both points the velocity 

should be zero.  

As illustrated by Figure 2, there is a constant acceleration prior to the motion of the 

sensor. The constant acceleration was due to gravitational acceleration acting upon the 

sensor along the particular axis. 
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Figure 2. Acceleration data with uncorrected velocity and position 

However, when utilizing direct integration of the data we can see in the second plot that 

the velocity goes on to infinity, bounded only by the fact that the data was integrated over 

the time of motion. This is further illustrated in the third plot where the calculated position 

is over 3000 meters for a motion that traveled only one meter.  

In order to address this, we take our measured acceleration, which contains both the 

data αa and an error term ε [6], and express it as follows: 

  

( )

0 : .

a t

t T

  = +

=
  (12)

The error term is what is compounded and propagated through the subsequent calculations. 

To alleviate the effects of the error, the ZUPT algorithm is used to correct the velocity in 

order to have a better position calculation.  

To correct the propagated error from the acceleration, there must be known values 

in velocity in order to measure the effects of the error. For the ZUPT, the known values are 
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the starting and stopping points of motion, which have zero velocity. To correct propagated 

errors in the velocity, as presented in [6], the following is applied: 

 
( )

( ) ( ) ,c

v T
v t v t t

T
= −   [0, ].t T=   (13) 

In the application, vc is the corrected velocity, which is calculated by subtracting 

the error term over the entirety of the motion. For the application, the error term is the final 

velocity divided by the final time of motion. Correcting the error from the acceleration, 

from [6], gives us the following representation of velocity:  

 
( ) ( ) ( ),a cv t v t t= +

    [0, ].t T=   (14) 

Since we are still dealing with imperfect sensor data, there is an underlying error 

within the measurements that cannot be addressed that will still be made evident in the 

integration for the position. The result of the ZUPT can be seen in Figure 3. 
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Figure 3. Uncorrected velocity with corrected velocity 

From Figure 3, the original velocity increases linearly for a motion that starts and 

stops. In the second plot of Figure 3, the corrected velocity can be observed; we see that 

the start and stopping point are zero, and the increase in velocity and subsequent decrease 

can clearly be seen, as expected.   

D. INTERPOLATION 

During the course of the investigation, the use of multiple data collection platforms 

was needed. This creates the issue of a disconnect between the time steps. The disconnect 

in time steps cause data to no longer correlate directly to one another. In order to re-

correlate the data sets, interpolation is necessitated. Interpolation is the calculation of data 

points between time steps that do not exist from the original set.  

There are multiple means for data interpolation. The typical means of interpolation 

is linear interpolation. Linear interpolation assumes there is a linear relationship between 

two points, and all possible points exist along a line between those points.  
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In this chapter, the concepts that provide the framework upon which the procedures 

of this thesis were built were discussed. The concept of reference frames was described for 

both the sensor reference frame and the navigational reference frame. The transformation 

quaternion, FQA, and ZUPT in reference to their implementation within this thesis were 

discussed. Finally, data interpolation, which will be needed in the software implementation 

of the algorithm, was also discussed. In the next chapter, the procedures used in order to 

perform the experiments necessary to understand the effects of motion on a sensor will be 

discussed. 
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III. PROCEDURES 

The various hardware and software components used in the conduct of this research 

will be presented in this chapter. More specifically, the sensors that were utilized to collect 

the acceleration data in this thesis, the software that each sensor utilized to collect the data, 

and the different platforms used to perform the trials will be described. 

A. SENSORS 

In this study, three sensors were used: the Lord Microstrain 3DM-GX3-25, Lord 

Microstrain 3DM-GX4-25, and the Yost 3-space TSS-DL v 2.0. The two Lord Microstrain 

sensors represented high fidelity, specialized market options, and the Yost 3-space 

represented a more economical market option with lower sensor fidelity. These two 

categories of sensors were chosen in order to observe if sensor quality should be taken into 

account for a general navigational solution. 

1. Lord Microstrain 3DM-GX3-25 and 3DM-GX4-25 

The Lord Microstrain family of sensors is a set of industrial-grade sensors designed 

to provide a user with a range of sensor measurements along three axes of measurement 

and differing navigational solutions [9]. The “25” designation of the sensors among the 

other Lord Microstrain sensors delineate them as part of the Attitude Heading Reference 

System, or AHRS, product line [11]. For this study, the Lord Microstrain products that had 

GPS capabilities were not utilized in order to best simulate a GPS-denied environment.  
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         Note: Dimensions used in the image are from [9]. 

Figure 4. Microstrain 3DM-GX3-25  

Figure 4 is an example of the Microstrain 3DM-GX3-25 sensor utilized for 

experiments on the various platforms throughout the experiment.  

 

                                          Note: Dimensions used in the image are from [10]. 

Figure 5. Microstrain 3DM-GX4-25 
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Figure 5 is an example of the Microstrain 3DM-GX4-25 utilized for experiments. 

The Microstrain sensors, presented in Figures 4 and 5, contain nine sensors internally. In 

each device, there are three accelerometers, three magnetometers, and three angular rate 

sensors. 

2. Yost 3-Space TSS-DL v 2.0 

For comparison purposes, the Yost TSS-DL v2.0 3-space inertial measurement unit 

(IMU) sensor was also utilized because it is an economical sensor type. It was significant 

to verify that any data collected utilizing the Microstrain sensors could be replicated on a 

platform that was more readily available. For the data collection, the 3-Space software suite 

was utilized to collect the data, which provides a graphical user interface (GUI) that can be 

configured to collect four varying types of data required by the user. An example of the 

particular sensors used in this research is seen in Figure 6. 

 

                                   Note: Dimensions used in image are from [12]. 

Figure 6. Yost TSS-DL v2.0 
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B. SOFTWARE 

In this study four software suites were utilized: MATLAB, 3DM Monitor, MIP 

Monitor, and Motive. Each will be covered in detail in this section. 

1. MATLAB 

For all of the experiments, the main computing environment used was MATLAB 

2019b. MATLAB is a computing environment designed for engineering and scientific 

academic data processing [13]. MATLAB was employed in order to process the data 

collected during the trials above and manipulate and display the data in a way that was 

beneficial and could easily be visualized. The Mathematics and Graphics functionalities 

were the primary function utilized to process and visualize the data, both of which were 

built into MATLAB. All of the data collected via the varying collection software listed 

below was then imported into MATLAB for additional processing and analysis.  

2. 3DM Monitor 

For the Microstrain sensors, data collection software was provided by Microstrain 

in the included CD for the sensor. For the 3DM-3GX family of sensors, the corresponding 

data collection software is known as MIP 3DM Monitor. The monitor program has a GUI 

that the user can set in order to collect data via the preset data collection settings in the 

program, and outputs an Excel data file that can be read into MATLAB. For this research, 

acceleration and angular acceleration were collected. This was a pre-programed feature of 

the GUI, and therefore accelerometer data could not be exclusively collected. 

3. MIP Monitor 

Similar to the above section, the 3DM-GX4-25 sensor also came with a data 

collection software, the MIP Monitor. Again, MIP Monitor is a GUI that the user can set 

to collect specific data points based on preset data collection software built into the GUI. 

As before, the software outputs an Excel file that can be read into MATLAB.  



19 

4. Motive Tracker 

The software suite utilized by Optitrack was Motive tacker, which is a six-degrees-

of-freedom tracking software [14]. The system can be utilized to provide data streaming 

and integration with processing software such as MATLAB [14]. For the experiments, data 

was streamed into MATLAB where the associated x, y, and z-axis positions and Euler 

angles were tracked for the sensor during motion.  

C. CART 

In order to analyze general motion with the sensors, the behavior of the sensor was 

observed on a wheeled platform and eventually applying the principles to a wheeled ground-

based robot. For the first rounds of experiments, a laboratory cart with attached sensors was 

utilized as the initial platform. The sensor was affixed to the leading edge of the cart in order 

to better model the true distance traveled by the sensor. With the sensor attached to the cart, 

the acceleration was measured on a five-meter course, shown in Figure 7. 

 

Figure 7. Five-meter track for experiments 

Each piece of masking tape was placed at a one-meter interval from zero to five 

meters. In order to ensure the accuracy of the experiments, the leading edge of the cart was 

aligned with the front edge of the masking tape at the beginning of each trial. At the end of 
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each trial after the desired distance had been traversed, a stopping device was placed to 

ensure that the cart stopped consistently at the appropriate location. With the sensor 

monitoring systems running, the velocities were varied to observe if the sensor performed 

better at a particular velocity range. The sensor was also tested on a 10-meter track with 

distances of one, two, three, five and 10 meters to verify that the values measured on the 

five-meter track matched the data measured on the 10-meter track. The distances were 

selected in order to observe at what point the IMU with the ZUPT algorithm could 

accurately estimate the distance traveled. 

 To process the data collected, the data was imported into MATLAB. With the data 

plotted in MATLAB, the start and stop points of the data were selected.  

 

Figure 8. Motion start and stop 

An example of acceleration data is shown in Figure 8. The black vertical marker 

lines show an example of where the start and stop points of the motion were manually 

selected. After selecting the start and stop points in the data, the trapezoidal integration 

function cumtrapz in MATLAB [15] and the ZUPT were utilized.  

D. PIONEER P3-DX ROBOT 

The next component of the test was to observe the sensor behavior with a robotic 

platform. The platform utilized was the Pioneer P3-DX indoor robot chassis. This platform 

was utilized within the lab for previous work and was selected to maintain commonality 

with potential future works. 
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Figure 9. Pioneer P3-DX 

The robot in Figure 9 was tested on the original five-meter track, as seen in 

Figure 7, and the 10-meter track similar to experiments done with the cart. As the robotic 

platform did not have a control algorithm yet created for these experiments, a tethered 

controller was utilized to control the robot based on six speed settings seen in Figure 10. 

 

Figure 10. Tethered controller 
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Six-speed settings were selected that represented speeds that a robot operating 

autonomously will be able to achieve. This experiment also served to observe the 

differences between motion of a lab cart and that of the wheeled robot platform. If the 

motion was similar enough, then further testing could be achieved without the use of a 

robot platform. The same sensor utilized on the cart was mounted on the robot chassis and 

performed a similar battery of tests as the cart. The same sensor was used to further 

compare the performance between the cart and the robot. The same process was used to 

process the data from the robot tests as was used to process the data from the cart 

experiment.  

E. DATA OPTICS, INC. OPTICS RAIL 

In order to do an in-depth study of the sensor to verify if a pedestrian position 

estimation algorithm can accurately estimate position in a robotic realm, the sensor was 

attached to a stationary platform. To remove as much noise as possible from the motion, a 

Data Optics, Inc. optical rail was used. The specific rail is shown in Figure 11. 

 

Figure 11. Optical rail 

The blue stripping is a one-meter measurement. The leading edge of one strip and 

the tailing edge of the second strip correspond to the start and stop position. The sensor 

was affixed to a shelf that was inserted into an optical tool sled seen in Figure 12. 
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Figure 12. Optical tool sled 

The rail was lubricated in order to smooth out and remove any noise from the 

motion of the sled. The optical rail was confirmed to be horizontal using a carpenter level 

available in the laboratory. The motion was measured at five approximate velocities in 

order to observe the effect of velocity in a controlled testing environment. The first rounds 

of testing were conducted with the sensor on the shelf shown, in Figure 12, with the y-axis 

corresponding to the axis of motion. The sensor was to remain flat and the only variable to 

be measured was the forward acceleration in the axis of motion. 

 Following the single axis of motion, testing began with the sensor attached to a 

shelf that had an angle indication in order to excite an additional factor in the motion. The 

sensor was tested inclined at a fixed angle starting from plus and minus four degrees to 

plus and minus 90 degrees in order to observe if the FQA could accurately calculate the 

fixed angle prior to the beginning of motion; the angle was not changed during motion for 

this battery of experiments. The sensor was mounted with either the x or y-axis as the axis 

of motion, and the motion was varied between three approximate velocities. The variable 

angle sled is shown in Figure 13. 
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Figure 13. Shelf attached to angle indicator 

In order to gauge at what angle the sensor was being placed, the sled also had an 

angular reference face seen in Figure 14. 

 

Figure 14. Angular reference face 
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The mounting plate was not centered with the zero point of the angular face because 

the shelf does not rest at zero; instead, it rests at ten degrees. Also, since the shelf is off-

centered, there was a slight angle added in different axes. 

 Before testing was moved into an optical tracking environment, the sensor was 

placed at a measured angle of approximately 40 degrees and varied the angle through the 

sensor motion on the rail. As before, the velocity was varied during the motion between 

three approximate velocities; the angular position was also changed.  

 For processing the optical rail data, the FQA was implemented in MATLAB in 

order to address the addition of an arbitrary angle to the sensor. A point was selected in the 

data prior to the start of motion in order for the FQA to calculate a steady-state set of 

quaternions to transform the data from the sensor frame to the navigational frame. For the 

variable angle tests, the FQA was utilized on every data point along the motion of the 

sensor. Similar to the experiments before, the start and stop points of the motion were 

selected once the data had been transformed and again trapezoidal integration was utilized 

within MATLAB. 

F. OPTITRACK PRIME OPTICAL TRACKING SUITE 

In order to handle arbitrary motion within a space, the OptiTrack system was 

utilized in order to calculate true quaternions in space. The optical sensors provide an 

optical solution to calculate the sensor angle, as shown in Figure 15. 
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Figure 15. OptiTrack optical sensors 

The sensor was affixed to a wooden block with reflective orbs that the system 

utilized to calculate the sensor position in space via optical cameras. An example of this 

sled can be seen in Figure 16. 

 

Figure 16. OptiTrack sled 

Initially, the sensor remained on the Optical rail to verify that the system performed 

as expected. Adding in an additional data collection method also meant integrating two sets 

of data collected on two different machines. For the OptiTrack data, the system ran through 

a desktop computer, and the IMU data was collected via a laptop computer. The time stamp 
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for the IMU could be zeroed and started at true zero via the Microstrain data collecting 

software. The OptiTrack data, however, clocked off of the desktop computer, and due to 

system sampling rates, could sometimes create redundant data. In order to address this, 

each trial began with a small abrupt motion that placed the sensor at the needed starting 

point to impart an impulse in the data. This could easily be seen in both the IMU data and 

the OptiTrack data. The point at which the impulse feature was found in both data sets was 

made the new zero reference for both data sets. Then the OptiTrack data could be filtered 

to remove any redundant data and the IMU data could be fit to match the corresponding 

data points. Utilizing the interpolation function interp1 within MATLAB [16], the values 

between the data points in the IMU data were interpolated to corresponding values from 

the OptiTrack data. Once the data provided by the OptiTrack system was verified and could 

be utilized as a known true value, tests with variable angles could be done again on the 

sled. Again, the data covered three approximate velocities, varied over multiple runs. 

Following the variable angle test, testing moved into estimation of arbitrary motion. 

For this test, the sensor was removed from the rail and simply placed on a table. Then the 

sensor and wooden platform were picked up and arbitrarily moved through space 

approximately one meter. As before, tape was placed on the table at one meter in order to 

give a starting and stopping reference point. To examine the effects of arbitrary motion, 

three types of motion were used: an arcing motion, a wobbling motion, and a rocking 

motion. An example of each motion is presented in Figure 17. 
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Figure 17. Plots of arbitrary motion 

For the arcing motion, the sensor was picked up and moved in an arc from the start 

to the stop location on the table. For the wobble motion, the sensor was picked up and given 

a corkscrew-like arc motion from start to stop. For the rocking motion, the sensor was given 

a rocking action around the x-axis as the sensor was moved in an arc from the start to stop 

location.  

The hardware and software used in this thesis were discussed in this chapter. As 

well, the procedures utilized in performing each experiment were outlined in this chapter. 

In the next chapter the results of the experiments conducted will be analyzed and discussed. 
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IV. RESULTS 

In this chapter, the results from each series of experiments with the cart, robot, rail 

system, and OptiTrack system are presented. The procedures that were utilized to perform 

each experiment were outlined in Chapter III. All of the results for each experiment are 

grouped by the respective experiment. 

A. CART EXPERIMENT 

Work in [6] by Calusdian et al. and [7] by Yun et al. was done on pedestrian motion, 

however, there is a difference in motion between pedestrian and wheeled movement. The 

significant difference between a pedestrian step motion and a wheeled chassis motion is 

observed in Figure 18.  

 

Figure 18. Step motion versus cart motion 

The top plot in Figure 18 is an example of the stepping motion, and the bottom is 

an example of the wheeled motion, both of which start and stop at zero. However, the 

waveform of the step motion varies significantly than that of the smoother motion of the 
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cart. The experiment was conducted on the five-meter course within the laboratory 

environment.  The results of the cart experiments are shown in Table 1 with the calculated 

distance with and without the ZUPT. 

Table 1. Calculated versus traveled distance 

Distance traveled Calculated distance with ZUPT Calculated distance without 

ZUPT 

1 meter 1.0380 meters 1.6222 meters 

2 meters 2.0295 meters 3.6027 meters 

3 meters 3.0091 meters 7.4483 meters 

5 meters 4.9878 meters 16.4793 meters 

 

Columns two and three of Table 1 represent the same data points in order to keep 

continuity in the results presented. Table 1 is a summary of the results that were closest to 

the distance traveled by the sensor. Of the 85 trails conducted, trials that were performed 

at a higher velocity had the lowest error both with and without the ZUPT. In order to 

determine if this was a coincidence, the motion was plotted to observe what each waveform 

looked like. An example of the acceleration data from a lower velocity trial and that of a 

higher velocity trial can be seen in Figure 19. 
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Figure 19. Acceleration plot of low and high-velocity trials 

In Figure 19, the data in the lower velocity trial remains close to the point of rest 

and requires a more substantial amount of time to travel the same amount of distance. The 

lower acceleration of the slower trial allowed for sensor noise to have a greater effect on 

the data. For the higher velocity data in Figure 19, the shape of the data is much more 

distinct. The distance of the peak of motion from the sensor noise minimized the effects of 

noise in the sample. In order to observe the variability of the data overall, the standard 

deviation is presented in Table 2. 
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Table 2. Standard deviations versus distance traveled 

Distance traveled Standard deviation with ZUPT Standard deviation without 

ZUPT 

1 meter .1096 meters 9.2912 meters 

2 meters .2085 meters 21.2783 meters 

3 meters .4196 meters 32.7379 meters 

5 meters 1.2294 meters 98.0281 meters 

 

The standard deviation covers the entire dataset and is not grouped by velocities. 

This creates a wider deviation size as the distance increases. From the data in Table 1, three 

meters was the distance that was calculated by the algorithm accurately. The difference 

between the distance traveled and the distance calculated was at most 0.03 meters. In 

conjunction with the standard deviation, as the distance increased, so does the variation 

between samples. As the distance increased, the varying of the velocity had a greater effect.  

This portion of the study helped to analyze and understand the effect the ZUPT had 

on data collected by a sensor on a wheeled platform. The tests provided data that was used 

to verify that the algorithm was performing as expected for similar platforms. However, 

the true analysis began with data collection on a robot chassis. 

B. ROBOT EXPERIMENT 

For the robot chassis, three major questions needed to be addressed. First, does the 

distance traveled before an update is performed affect the ability of the algorithm to 

calculate the distance traveled? Second, does the velocity of the robot affect the ability of 

the algorithms to calculate the distance travel? And finally, can the pedestrian algorithms 

presented in [5], [4] and [7], be utilized with a robotic system?   

1. Effect of Distance 

To answer the first question, tests similar to those done with the cart for distances 

of one, two, three, four, five, and ten meters were performed. From the cart data, a distance 
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of interest was three meters. However, the question of what distance a robotic system 

travels before a reference update needs to be done has to be addressed.  

The robot was moved from one to five meters to ensure that the effects over the 

distance were clearly observed. A trial at 10-meters was also conducted to observe if a 

significant jump in distance created any benefit compared to the other distances. Displayed 

in Figure 20 is a summary of the results from the different distances. 

 

Figure 20. Calculated distances traveled 

Three meters is shown to be the furthest distance traveled that was consistently 

calculated with the robot and ZUPT of the data in Figure 20, which corroborates what was 

observed in the cart trial. The total data from the distance trials is summarized in Table 3. 
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Table 3. Distance and calculated distance with standard deviation 

Distance Traveled Calculated 

Distance  Without 

ZUPT 

Calculated 

Distance With 

ZUPT 

Standard 

Deviation 

1 meter 3.7473 meters 1.1022 meters .8390 meters 

2 meters 7.8690 meters 2.4823 meters 2.5034 meters 

3 meters 17.3953 meters 2.9476 meters 1.6306 meters 

4 meters 16.688 meters 4.6492 meters 2.9063 meters 

5 meters 37.5132 meters 5.6655 meters 10.7142 meters 

10 meters 91.8326 meters 10.1201 meters 12.8846 meters 

 

Aside from the one-meter trials, the three-meter trials had the lowest deviation 

within the total dataset and was the closest overall for all the other distance trials, as shown 

in Table 3. Again, similar to the cart data, the standard deviation was over the entire dataset 

of at least 19 trials each. Data was not differentiated between the different speed settings 

and therefore presented a wider range of results, especially at the farther distances. 

2. Effect of Velocity 

For the effects of velocity, the system was tested with six varied speed settings for 

the robot chassis controlled with a tethered controller. For the purpose of the trials, the 

exact speed at each setting was not calculated, but the settings were marked in order to 

ensure that the same velocity was achieved for each test. From the cart experiments there 

had been indications that at higher speeds the algorithm was able to better calculate the 

overall distance traveled.  

From the trials it became clear that at lower velocities integration with only the 

ZUPT created an issue with calculating the distance traveled, as was similarly observed in 

the cart experiments. Therefore, towards the end of the trails with the robot system, the 
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lowest velocity setting was removed as it was not providing any beneficial data towards 

the overall experiment. The results from the speed trials are displayed in Figure 21. 

 

Figure 21. Speed settings and corresponding distance 

The black horizontal marker line in Figure 21 is the expected distance to be 

calculated and summarized with the best datasets from the various runs. From the plot, the 

optimal speed settings are settings three and four for the robot chassis.  

 From the cart experiment, the optimum velocity needs to be the highest possible 

to provide the most accurate distance calculations. However, as presented in Figure 21, 

the highest velocity was not the most accurate trial. As the velocity increased, the chassis 

had more settling as it slowed. An example of the settling is observed in Figure 22. 
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Figure 22. Low-velocity and high-velocity trials 

The boxes in Figure 22 are examples of the settling in the mechanical system as the 

robot stopped its motion. This region added further error on top of the already present drift 

and sensor noise. The higher in velocity the robot went the larger this region was, causing 

a peak in velocity performance. 

3. Viability of Pedestrian Algorithm  

The trials described above demonstrate that a pedestrian footstep algorithm can be 

utilized to track the distance traveled by a robot. From the distance trials, it was observed 

that a robot can travel three meters before an update is needed. Three meters presents a 

maximum distance that a system can travel without the aid of external data sources. As 

shown in the velocity trials, the robot needs to be operating within a velocity range that is 

achievable by the robot, and above a minimum speed threshold, but not operate at such a 

velocity that it creates an uncontrollable condition. From the experiments above and the 

results from [5], [6], and [7], the described algorithms from this and previous works can be 

applied to an autonomous robotic system. To investigate this assumption further, a more 
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in-depth study was performed on the sensor ability to calculate the  distance traveled on a 

controlled rail system as described in Chapter III section E. 

C. RAIL EXPERIMENT 

For the rail, the ability of the algorithm to calculate the distance traveled with three 

types of motion was observed. To address the anticipated motion of a robotic platform, the 

sensor was tested with flat linear motion, linear motion at a set angle, and finally linear 

motion with a varied angle. 

1. Flat Linear Motion  

To verify the data presented, the sensor was placed on a flat tool sled. As tested 

before, the velocity of the sensor was varied on the sled in order to get a full range of 

motion. Other sensors were tested to confirm that results were consistent across multiple 

platforms. The results are summarized in Table 4. 

Table 4. Calculated distances versus various sensors 

Position calculated via double 

integration (without ZUPT) 

Position calculated via double 

integration(with ZUPT) 

GX3-25 

-1.7469 meters 0.9992 meters 

-0.1263 meters 1.0101 meters 

0.7983 meters 1.0052 meters 

0.944 meters 0.9997 meters 

0.9666 meters 1.0075 meters 

0.9754 meters 1.0004 meters 

0.9889 meters 0.9992 meters 

GX4-25 

-17.0895 meters 2.9726 meters 

-2.4972 meters 1.1265 meters 
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Position calculated via double 

integration (without ZUPT) 

Position calculated via double 

integration(with ZUPT) 

-0.0471 meters 1.0614 meters 

0.2477 meters 1.082 meters 

1.0358 meters 1.0481 meters 

Yost 3-Space 

9.5459 meters 1.0819 meters 

3.4979 meters 1.1248 meters 

1.6166 meters 0.9752 meters 

1.325 meters 1.0033 meters 

1.2119 meters 0.9779 meters 

1.1547 meters 1.0048 meters 

 

As presented in Table 4, all three sensors performed within a close range of each 

other. Interestingly, both high-end sensors and the commercial sensor all performed with 

the same relative results. There was an issue with the data for the Microstrain GX4-25 

sensor. There was no timestamp from the data collection software, and an arbitrary time 

stamp had to be created based on the sampling rate of the sensor. Because the data had no 

time reference, the GX4-25 was not used for follow on trials. As presented in Table 4, all 

of the sensors performed adequately during the one-meter trials. The data from the flat 

linear motion trial closely matched results from the robot and cart trials. This validated the 

optical rail as a testing platform for further experiments. The next phase of testing was the 

addition of an angle other than zero, and the addition of the FQA to the algorithm.  

2. Linear Motion with a Set Angle 

The next step in the analysis was to set a non-zero angle through the full duration 

of motion. This also integrated the use of the FQA to calculate the angle at which the sensor 

is placed. A summary of the angles tested is shown in Table 5.  
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Table 5. Reference angle and calculated angle 

Reference 

Angle 

Calculated 

Angle 

±4° -4.686°, 4.383° 

±6° -6.932°, 6.71° 

±10° -11.193°, 9.163° 

±20° -20.754°, 20.494° 

±30° -29.57°, 31.064° 

±40° -40.015°, 41.226° 

±50° -50.975°, 50.679° 

±60° -59.461°, 60.705° 

±70° -69.687°, 69.537° 

±80° -79.605°, 80.749° 

±90° -90.743°, 89.391° 

 

The results of the angles calculated by the FQA are presented in Table 5. There was 

some variability, however. The angle the sled was set was more of a reference point than 

an exact measurement. Even with each of the degree changes, the algorithm was still able 

to accurately calculate the distance traveled. The results are summarized in Table 6. 

Table 6. Reference angle with calculated distance and standard deviation 

Angle Calculated distance Standard deviation 

±4° 1.0050 meters .4095 meters 

±6° 1.0000 meter .3337 meters 

±10° 1.0023 meters .2112 meters 

±20° 1.0032 meters .2516 meters 

±30° 1.0043 meters .2737 meters 

±40° 1.0003 meters .2730 meters  
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Angle Calculated distance Standard deviation 

±50° 1.0004 meters .1936 meters 

±60° 1.0052 meters .2836 meters 

±70° 1.0098 meters 2.5039 meters 

±80° 0.9990 meters .1360 meters 

±90° 0.9991 meters .3639 meters 

 

From Table 6, the data was all tightly spread and well within expected results. The 

only outlier was in the 70-degree trials; one trial resulted in a distance calculation of 16 

meters. The data was run multiple times, and the outlier could only be attributed to a false 

reading, without the outlier, the standard deviation was 0.2214 meters similar to the other 

results. With the data corroborating previously observed results, trials on the effects of 

variable angles were conducted. 

3. Linear Motion with a Variable Angle 

The previous trials verified that with the FQA, a sensor, and ZUPT, a system can 

accurately calculate the distance traveled. However, a robotic system is not consistently 

moving completely flat or at a fixed angle. The motion of the chassis introduces variation 

in the angles read by a sensor. Therefore, a varied angle was introduced during the motion 

of the sensor with the FQA calculating the transformation quaternion continuously. The 

results are summarized in Table 7. 

Table 7. Reference angles and calculated distance and standard deviation 

Starting Angle Stop Angle Calculated Distance Standard Deviation 

[40°, 0, 0] [30°, 0, 0] 2.8298 meters 55.85521 meters 

[0, -40°, 0] [0, -32°, 0] 3.036 meters 30.50226 meters 

[30°, 0, 0] [20°, 0, 0] 4.8796 meters 4.8796 meters 
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The calculated distances and the reference distances in Table 7 differed 

significantly when compared to previous trials. The results also had a significant deviation 

between trials as presented in Table 7. The results in Table 7 were verified by running each 

test a second time; all results behaved similarly. Angle variability has a significant effect 

on the ability of the algorithm to calculate traveled distance in the absence of an accurate 

quaternion. 

 

Figure 23. Acceleration data and corresponding quaternion 

An example of the accelerometer data and the corresponding quaternion calculated, 

during these runs is shown in Figure 23. The FQA cannot accurately calculate the 

quaternion and simply mirrors the motion. The accelerometer data is not properly 

transformed when processing due to the inaccuracies in the quaternion. This was a 

verification of results observed in [5], [6], and [7], and why implementation of a 

complementary filter was utilized in [6] by Calusdian et al. However, the complementary 

filter in [6] utilized magnetometer readings from the sensor, which was not being used in 

this work. The sensor utilized was on a robot with a computer and electric motors. Data 

from this sensor did not provide an accurate enough angular reading as was done in [1], 

and [6]. The effect of a computer on a magnetometer is illustrated in Figure 24.  
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Figure 24. Effects of computer on magnetometer 

Although the values appear to be minimal, the effects illustrated were when a laptop 

computer came within two feet of the sensor. As the computer was brought closer the 

effects were amplified.  

In order to investigate further, the experiments were moved within an optical 

tracking environment to have the quaternions calculated through the tracking software. If 

the distance can still be accurately calculated with a known quaternion, then quality 

quaternion values are needed, and pedestrian tracking algorithms can be utilized for robotic 

systems. 

D. OPTITRACK EXPERIMENT 

The OptiTrack system, available in the laboratory, provides a way to calculate an 

accurate quaternion for any point of motion for the sensor. However, the OptiTrack system 

had to be verified to ensure that it produced expected values. As done previously, the 

system was tested with set angles, progressing to variable angles, and once satisfied that 

the system was performing accurately, to arbitrary motion.   
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1. Linear Motion with a Set Angle 

Similar to the set angle trials ran in Section C of this chapter, a sled was set to an 

angle and verified that the observed angle from the optical sensor was a reasonable value. 

The results of the angles were not collected because they were a reference. The ability of 

the algorithm to calculate distance was already verified in the linear motion trials. The 

system was able to observe the angle accurately, and the results of the trials are summarized 

in Table 8. 

Table 8. Calculated distances with standard deviation. 

Calculated Distance 

With ZUPT 

Calculated Distance 

Without ZUPT 

Standard Deviation 

1.1674 meters 79.4381 meters 0.2455 meters 

 

Presented in Table 8, the distance the algorithm was able to accurately calculate 

was similar to the results observed in the optical rail experiments. The variation between 

the data was acceptable to go forward with the variable angle trials. 

2. Linear Motion with a Variable Angle 

Similar to the trials done with the set angle, the initial angle that the sensor was set 

to was verified. This was compared to what was observed by the optical system. Trials 

were completed with the angle varied during the motion. The results are summarized in 

Table 9. 

Table 9. Calculated distances and standard deviation. 

Calculated 

Distance With 

ZUPT 

Calculated 

Distance Without 

ZUPT 

Standard 

Deviation 

1.0292 meters 28.3039 meters 0.6551 meters 
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The data proved that with an accurate quaternion the algorithm was able to accurately 

calculate the distance traveled by the sensor, presented in Table 9. In order to verify that it 

was an issue with the quaternion, the two quaternions were plotted.  

 

Figure 25. OptiTrack quaternion versus FQA quaternion 

The quaternion calculated from the OptiTrack data and the quaternion calculated 

by the FQA function are shown in Figure 25 for comparison. There is a significant 

difference between the two quaternions. However, if the quaternion is still incorrect, the 

acceleration in the sensor frame will not be properly transformed into the navigational 

frame. 
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Figure 26. Raw and transformed acceleration 

The top plot in Figure 26 is the raw acceleration data, and the bottom plot in Figure 

26 is the acceleration data rotated into the navigational frame. The transformed acceleration 

does follow the expected behavior of the system. Since the x-axis was the main axis of the 

motion, acceleration along the y-axis was around 0 m/s2 as expected. The z-axis 

corresponded to the axis of gravity and therefore was expected to be at approximately -9.8 

m/s2. This observation further clarified why the calculated distances in Table 7 varied so 

much compared to other results. Once the algorithm was observed to accurately calculate 

distance with a variable angle, arbitrary motion was tested. 

3. Arbitrary Motion 

 For the arbitrary motion, three main types of motion—arc, wobble, and 

rocking motion—were tested in order to model some motion that would be expected by a 

robotic system. For each motion the results are summarized in Table 10. 
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Table 10. Sensor motion with calculated distance and standard deviation. 

Motion Calculated 

Distance 

Standard 

Deviation 

Arc 1.0574 m .2841 meters 

Wobble 1.0395 m .6009 meters 

Rocking .9939 m .1318 meters 

 

The distances calculated with a known quaternion were able to be calculated in all 

three types of motion, as presented in Table 10. The standard deviation of the wobbling 

motion is higher than the other two motions because the first trials were at a lower velocity. 

The lower velocity caused the calculated distances to be higher than the distance traveled. 

This was similar to observations from the earlier cart and robot experiments. The algorithm 

was not able to accurately calculate the distance traveled when the linear velocity was too 

low. This hypothesis was verified by simplifying the motion to an arcing motion but 

maintaining a higher speed. In order to add additional variation, a rocking motion was 

introduced as an additional motion to the testing. All three motions had no effect on the 

ability of the algorithm to calculate the distance traveled as long as the velocity was high 

enough. As long as a means to accurately calculate the quaternion is available and the linear 

velocity of the system is high enough to overcome sensor noise, a pedestrian algorithm can 

be utilized to calculate distance traveled. 
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V. CONCLUSION 

As demands from the DoD for unmanned and autonomous systems increase, the 

environments in which these systems operate also broaden. Indoor, shipboard, and GPS-

denied environments make navigation for these systems difficult. This thesis investigated 

whether pedestrian tracking algorithms presented in [6] could be utilized to calculate the 

distance traveled by a robot with an IMU. A common issue with the use of inertial sensors 

for navigation has been drift error [6]. To address the drift error, this thesis explored use of 

the ZUPT. The ZUPT is utilized when the velocity is known to be zero in order to correct 

propagated error from acceleration data. Utilizing the ZUPT, the factored quaternion 

algorithm, and the OptiTrack visual tracking system, all sensor motion was observed and 

the distance traveled was calculated accurately.  

A. ASSESSMENT OF GOALS  

The purpose of this thesis was to confirm if a pedestrian tracking algorithm can be 

implemented on a wheeled robot chassis. Three goals were achieved by this thesis: first, 

the distance a robot can travel before an update needed to be performed was determined; 

second, the effect velocity has on the ability to calculate distance traveled was determined; 

and finally, the algorithm was proven effective at calculating distance traveled through 

arbitrary motion given a known quaternion. 

To achieve the maximum distance a robot can travel, this study tested a robot 

chassis on a laboratory track with an attached sensor. From the laboratory tests, it was 

determined that the maximum distance achieved was three meters. Once the robot began 

traveling further than three meters, the accuracy of the distance traveled began to degrade.  

To achieve the second goal, determining the effect of velocity, the study included 

similar tests with a robot and with an attached IMU sensor. From the robot experiments, a 

speed setting of three or four, as presented in Chapter III Section  D, was needed to 

accurately calculate distance traveled. For individual sensors, testing determined that the 
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sensor needs to travel at as high a velocity as possible to accurately calculate distance 

traveled. 

Finally, to accurately calculate distance traveled through arbitrary motion, an 

accurate transformation quaternion was calculated with data from the OptiTrack system. 

With the data transformed into the navigation frame, the acceleration data was used to 

calculate the distance traveled by the sensor. In an earlier experiment, the distance was not 

calculated due to the inability of the FQA to calculate an accurate quaternion during angular 

motion. 

B. LIMITATIONS 

In the course of this research, there were two major limitations to the 

implementation of the pedestrian algorithm. First, the system has to travel at a high enough 

velocity to overcome the effects of sensor noise. Second, an accurate transformation 

quaternion must be supplied to ensure the algorithm can properly transform the 

accelerometer data. 

The first limitation hinders the system from being able to accurately calculate 

distance. If the system is traveling at a velocity too low to overcome the effects of sensor 

noise, the results begin to degrade. In all experiments, if the velocity was too low, the 

ability for the algorithm to calculate the distance traveled became inconsistent. 

The second limitation again hinders the system from being able to accurately 

calculate the distance traveled. Without a correct transformation quaternion, the 

acceleration data cannot be transformed into the navigational reference frame. If the data 

is not in the navigational frame, the results calculated have no physical reference for 

navigational solutions. The FQA was not able to calculate an accurate quaternion during 

angular motion, which resulted in the need to include the OptiTrack system in the 

experiments.  
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C. RECOMMENDATIONS FOR FUTURE WORK 

The following recommendations for future work are based on observations made 

during the testing of the sensors in each experiment summarized above. The 

recommendations also coincide with aspects of the research that were not a part of the 

overall scope of testing for this research.  

One opportunity for future work would be to work on alternative means of 

calculating angles or quaternions accurately native to the system. The OptiTrack trials 

verified that, provided with accurate angular readings, the transformation matrix can be 

calculated. With a known transformation matrix, the algorithm can accurately calculate 

traveled distance. For future work, different algorithms other than the FQA, could be 

utilized to calculate the quaternions of the system. A survey of past algorithms is covered 

in [6]. 

Another avenue of research would be to implement the use of additional sensors to 

observe the angles achieved by the system in order to calculate the quaternions. Utilizing 

other onboard sensors with similar implementations like the ZUPT to correct errors could 

be explored. The onboard gyroscope was not employed because the sensor measures the 

angular velocity and would require integration in order to give the angle of the system. The 

need for integration creates an opportunity for similar drifts to be introduced to the data 

and would likely need additional sensors to correct. Additional market solutions could be 

explored to provide additional information in order to calculate the angles or quaternions 

associated with the robotic platform. 

Another opportunity would be to implement these algorithms completely onto an 

autonomous system. Due to the constraints of this study, the algorithms were not 

implemented into a control algorithm for an autonomous system. A common chassis was 

explored in the robot trials that is easily configurable to accept the algorithm.  Control 

algorithms were created for the same, or similar, robot system in [17]–[20], and could be 

augmented with results from this research, in order to provide the system with a better 

navigational picture in which to operate. In this case, the opportunity to also explore a 
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means of localization in conjunction with this work would be beneficial to the designing 

of an autonomous system that can operate in both indoor and outdoor environments.  
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APPENDIX  A. DATA PROCESSING SCRIPT 

clear all, close all 
% Code generated by MATLAB for importing data  
import_time2 
% Code generated by MATLAB for importing data  
import_AccY2 

  
%Acceleration and time at the hand selected data range the robot is 

moving 
A = AccY(622:932)*9.8;  %*9.8 to convert from g-force to m/s^2 
T = Time(622:932); 

  
%initialize a counter to help do zero velocity update 
tick = 0; 

  
%processing via numerical integration 
% Raw velocity 
V = cumtrapz(T, A); 

  
for i = 1:length(V) 

     
    t(i) = tick; 
    tick = tick +1; 
     

  
    % Corrected Velocity 

    % Adapted from Code Written by James Calusdian 

 
    %Va = Vc - ((Vc(final time)/final time)*t), t = [0, finaltime] 
    VC(i,1) = V(i) - ((V(length(V))/length(V))*t(i)); 

     
end 

  
% Raw position 
X = cumtrapz(T,V); 

  
%Corrected Position 
XC =cumtrapz(T, VC'); 

  
figure(1) 
subplot(211) 
plot(AccY) 
title('Raw acceleration') 
% annotation('line',[.5376 .5376], [.919 .5809]) 
% annotation('line',[0.65 0.7339], [.9262 .5857]) 

  
subplot(212) 
plot(A) 
title('windowed acceleration') 
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figure(2) 
subplot(211) 
plot(V) 
title('Raw Velocity') 
subplot(212) 
plot(VC) 
title('corrected velocity') 

  
figure(3) 
subplot(211) 
plot(X) 
title('Raw position') 
display(X(length(X))) 

  
subplot(212) 
plot(XC) 
title('Corrected Position') 
display(XC(length(XC))) 
r = snr(AccY) 
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APPENDIX  B. FQA PROCESSING SCRIPT 

clear all 
close all 
% Code generated by MATLAB for importing data   
import_a_2 
import_time3 

  
A_y= AccY*9.8; 
A_x= AccX*9.8; 
A_z= AccZ*9.8; 
T_r = Time; 

  
%Take a sample when the sensor is not moving 
a = [AccX(100); AccY(100); AccZ(100)]; 

  
%ignore magnetometer data  
m = [0; 0; 0]; 

  
%steady state Quarternion  
q = fqa_hardcode(a, m); 
Angles = Euler(q); 
Angles = Angles*(180/pi); 

  

  
%conjugate steady state Quarternion  
q_c = q .* [1; -1;-1;-1]; 

  
%range of data i.e. range where sensor is moving 
r = [855:1280]; 

  
%Moment of motion and time stamp  
AccX = AccX(r)*9.8; 
AccY = AccY(r)*9.8; 
AccZ = AccZ(r)*9.8; 
T = Time(r); 

  
%Array of Zeros  
O = zeros(length(AccX),1); 

  
%Acceleration Quarternion in the sensor body fram 
A_b = [O, AccX, AccY, AccZ]; 
A_b = A_b'; 

  
%         | 0  | 
%         |AccX| 
%A_b/A_n =|AccY| 
%         |AccZ| 

  
%transformation from sensor body to navigational frame 
for n = 1:length(O) 
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    %A_n = q * A_b * q_c 
    %      |____________| 
    %             | 
    % Quarternion multiplication 

     
    %Acceleration Quarternion in navigational frame 
    %         q * A_b 
%     a_n_tmp(:,n) = q_mult2(q, A_b(:,n)); 
    %         A_b * q_c 
    %A_n(:,n) = q_mult2(q_c, a_n_tmp(:,n)); 
    A_n(:,n) = rotate_v_by_q(A_b(:,n), q); 
end 

  
A_n = A_n'; 

  
%initialize a counter to do zero velocity update 
tick = 0; 

  
%processing via numerical integration 
% Raw velocity 
V_x = cumtrapz(T, A_n(:,2)); 
V_y = cumtrapz(T, A_n(:,3)); 
V_z = cumtrapz(T, A_n(:,4)); 

  

  
for i = 1:length(O) 

     
    t(i) = tick; 

        
    %Corrected Velocity 

    %Adapted from Code Written by James Calusdian 

 
    %Va = Vc - ((Vc(final time)/final time)*t), t = [0, finaltime] 
    VC_x(i,1) = V_x(i) - ((V_x(length(V_x))/length(V_x))*t(i)); 
    VC_y(i,1) = V_y(i) - ((V_y(length(V_y))/length(V_y))*t(i)); 
    VC_z(i,1) = V_z(i) - ((V_z(length(V_z))/length(V_z))*t(i)); 

     
    tick = tick +1; 
end 
%Raw Position 
X_x =cumtrapz(T, V_x); 
X_y =cumtrapz(T, V_y); 
X_z =cumtrapz(T, V_z); 

  
%Corrected Position 
XC_x =cumtrapz(T, VC_x); 
XC_y =cumtrapz(T, VC_y); 
XC_z =cumtrapz(T, VC_z); 

  
for m = 1:length(O) 
    VC(m) = sqrt((VC_x(m)^2)+(VC_y(m)^2)+(VC_z(m)^2)); 
    V(m) = sqrt((V_x(m)^2)+(V_y(m)^2)+(V_z(m)^2));  
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    XC(m) = sqrt((XC_x(m)^2)+(XC_y(m)^2)+(XC_z(m)^2)); 
    X(m) = sqrt((X_x(m)^2)+(X_y(m)^2)+(X_z(m)^2)); 
end 

  
%Plot of accelerations 
figure(1) 
subplot(211) 
plot(T_r, A_y, T_r, A_x, T_r, A_z) 
title('Raw acceleration') 
legend('Y-axis', 'X-axis', 'Z-axis', 'Location', 'best'); 
% annotation('line',[.5376 .5376], [.919 .5809]) 
% annotation('line',[0.65 0.7339], [.9262 .5857]) 

  
subplot(212) 
plot(T, AccY, T, AccX, T, AccZ) 
title('Windowed acceleration') 
legend('Y-axis', 'X-axis', 'Z-axis', 'Location', 'best'); 

  
%Plot of velocities  
figure(2) 
subplot(211) 
plot(T, V_y, T, V_x, T, V_z, T, V); 
title('Raw Velocity') 
legend('Y-axis', 'X-axis', 'Z-axis', 'Combined', 'Location', 'best'); 
subplot(212) 
plot(T, VC_y, T, VC_x, T, VC_z, T, VC); 
title('Corrected Velocity') 
legend('Y-axis', 'X-axis', 'Z-axis', 'Combined', 'Location', 'best'); 

  
%Plot of positions 
figure(3) 
subplot(211) 
plot(X) 
title('Raw Position') 
subplot(212) 
plot(XC) 
title('Corrected Position') 
display(XC(length(XC))) 
display(X(length(X))) 
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APPENDIX  C. FQA PROCESSING WITH MOTION SCRIPT 

clear all 
close all 
% Code generated by MATLAB for importing data   
import_a_2 
import_time3 

  
A_y= AccY*9.8; 
A_x= AccX*9.8; 
A_z= AccZ*9.8; 
T_r = Time; 

  
%ignore magnetometer data  
m = [0; 0; 0]; 

  
%full calculated quarternion 
for k = 1:length(A_x) 

     
    %sample accelerometer  
    am =[A_x(k); A_y(k); A_z(k)]; 

     
    qm(:, k) = fqa_hardcode(am, m); 

     
    Angle = Euler(qm(:,k)); 
    AngleM(:,k) = Angle.*(180/pi); 

     
end 

  
%range of data i.e. range where sensor is moving 
r = [509:712]; 

  
%Moment of motion and time stamp  
AccX = AccX(r)*9.8; 
AccY = AccY(r)*9.8; 
AccZ = AccZ(r)*9.8; 
T = Time(r); 
q = qm(:, r); 

  
%Array of Zeros  
O = zeros(length(AccX),1); 

  
%Acceleration Quarternion in the sensor body fram 
A_b = [O'; AccX'; AccY'; AccZ']; 

  
%         | 0  | 
%         |AccX| 
%A_b/A_n =|AccY| 
%         |AccZ| 

  
%transformation from sensor body to navigational frame 
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for n = 1:length(r) 

     
    %A_n = q * A_b * q_c 
    %      |____________| 
    %             | 
    % Quarternion multiplication 

     
    %Acceleration Quarternion in navigational frame 
    %conjugate Quarternion  
%     q_c = q(:,n) .* [1; -1;-1;-1]; 
%      
%     %         q * A_b 
%     a_n_tmp(:,n) = q_mult2(q(:,n), A_b(:,n)); 
%      
%     %         A_b * q_c 
%     A_n(:,n) = q_mult2(q_c, a_n_tmp(:,n)); 

  
      A_n(:,n) = rotate_v_by_q(A_b(:,n), q(:,n)); 

     
end 

  
%initialize a counter to do zero velocity update 
tick = 0; 

  
%processing via numerical integration 
% Raw velocity 
V_x = cumtrapz(T, A_n(2,:)); 
V_y = cumtrapz(T, A_n(3,:)); 
V_z = cumtrapz(T, A_n(4,:)); 

  

  
for i = 1:length(r) 

     
    t(i) = tick; 

        
    %Corrected Velocity 

    % Adapted from Code Written by James Calusdian 

 
    %Va = Vc - ((Vc(final time)/final time)*t), t = [0, finaltime] 
    VC_x(i,1) = V_x(i) - ((V_x(length(V_x))/length(V_x))*t(i)); 
    VC_y(i,1) = V_y(i) - ((V_y(length(V_y))/length(V_y))*t(i)); 
    VC_z(i,1) = V_z(i) - ((V_z(length(V_z))/length(V_z))*t(i)); 

     
    tick = tick +1; 

     
end 

  
%Raw Position 
X_x =cumtrapz(T, V_x); 
X_y =cumtrapz(T, V_y); 
X_z =cumtrapz(T, V_z); 
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%Corrected Position 
XC_x =cumtrapz(T, VC_x); 
XC_y =cumtrapz(T, VC_y); 
XC_z =cumtrapz(T, VC_z); 

  
for m = 1:length(r) 

     
    VC(m) = sqrt((VC_x(m)^2)+(VC_y(m)^2)+(VC_z(m)^2)); 

     
    V(m) = sqrt((V_x(m)^2)+(V_y(m)^2)+(V_z(m)^2));  

     
    XC(m) = sqrt((XC_x(m)^2)+(XC_y(m)^2)+(XC_z(m)^2)); 

     
    X(m) = sqrt((X_x(m)^2)+(X_y(m)^2)+(X_z(m)^2)); 

     
end 

  
%Plot of accelerations 
figure(1) 
subplot(211) 
plot(T_r, A_y, T_r, A_x, T_r, A_z) 
title('Raw acceleration') 
legend('Y-axis', 'X-axis', 'Z-axis', 'Location', 'BEST'); 
% annotation('line',[.5376 .5376], [.919 .5809]) 
% annotation('line',[0.65 0.7339], [.9262 .5857]) 

  
subplot(212) 
plot(T, A_n(3, :), T, A_n(2,:), T, A_n(4,:)) 
title('Rotated acceleration') 
legend('Y-axis', 'X-axis', 'Z-axis', 'Location', 'BEST'); 

  
%Plot of velocities  
figure(2) 
subplot(211) 
plot(T, V_y, T, V_x, T, V_z, T, V); 
title('Raw Velocity') 
legend('Y-axis', 'X-axis', 'Z-axis', 'Combined', 'Location', 'best'); 
subplot(212) 
plot(T, VC_y, T, VC_x, T, VC_z, T, VC); 
title('Corrected Velocity') 
legend('Y-axis', 'X-axis', 'Z-axis', 'Combined', 'Location', 'best'); 

  
%Plot of positions 
figure(3) 
subplot(211) 
plot(T, XC_x, T, XC_y, T, XC_z) 
legend('X-axis', 'Y-axis', 'Z-axis','Location', 'best'); 
title('position w/respect to time') 
subplot(212) 
plot(XC_x, XC_y) 
title('Position via x-y vector') 
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%Plot of angles through motion 
figure(4) 
subplot(311) 
plot(T_r, AngleM(1,:)); 
title('Roll through motion') 
xlabel('time') 
ylabel('degrees') 
subplot(312) 
plot(T_r, AngleM(2,:)); 
title('Pitch through motion') 
xlabel('time') 
ylabel('degrees') 
subplot(313) 
plot(T_r, AngleM(3,:)); 
title('Yaw through motion') 
xlabel('time') 
ylabel('degrees') 

  
display(X(length(X))) 
display(XC(length(XC))) 

  



61 

APPENDIX  D. HARDCODED FQA SCRIPT 

function [q, error, flag] = fqa(a, m); 
% a is 3x1, m is 3x1 

 
% Code provided by James Calusdian from [6], and adapted from 
% code written by Xiaoping Yun,  May 7, 2008 

 
% input a = 3-dim acceleration, m=3-dim local magnetic measurement 

  
%Mref = [0.4943  0.0  0.8693]; 

  
epsilon = 0.10;   % accuracy control constant 
singular_flag = 0; 
alpha = 30*pi/180;   % offset angle 

  
% x is 3x2, first col = magnetometer, second col = accelerometer. 

  
a_bar = a/norm(a);            % make sure that it is normalized 
m_b = m/norm(m); 

  
sin_th = a_bar(1); 
cos_th = sqrt(1-sin_th^2); 

  
% singularity avoidance algorithm 
if (cos_th <= epsilon) 
    singular_flag = 1; 
    q_offset =cos(alpha/2)*[1 0 0 0]' + sin(alpha/2)*[0 0 1 0]'; 

     
    a_bar_q = [0; a_bar]; 
    m_b_q = [0; m_b]; 
    a_q_offset    = rotate_v_by_q(a_bar_q,q_offset); 
    m_q_offset = rotate_v_by_q(m_b_q,q_offset); 

     
    a_bar = a_q_offset(2:4); 
    m_b = m_q_offset(2:4); 

  
else 
   % do not do anything other than setting the flag.  
   singular_flag = 0; 
end  

  

  
% elevation quaternion-y 
sin_th = a_bar(1);%h(1); 
%cos_th = sqrt(1-sin_th^2); 
cos_th = sqrt(a_bar(2)^2 + a_bar(3)^2);  %J.C. 1/30/2009 

  
% computing half-angle values 
cos_half_th=sqrt((1+cos_th)/2);              
if (cos_th<=-1)      % this "if" is needed since sign(0) = 0. 
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    sin_half_th = 1; 
else 
    sin_half_th=sign(sin_th)*sqrt((1-cos_th)/2); 
end 

  

  
qe = cos_half_th*[1;0;0;0] + sin_half_th*[0;0;1;0]; 

  
%%%% Roll Quaternion-x 
b = [a_bar(2) a_bar(3)]; 
c = b/norm(b); 
sin_phi = -c(1); 
cos_phi = -c(2); 

  

  
cos_half_phi=sqrt((1+cos_phi)/2); 
if (cos_phi<=-1) 
    sin_half_phi = 1; 
else 
    sin_half_phi=sign(sin_phi)*sqrt((1-cos_phi)/2); 
end 

  

  
qr = cos_half_phi*[1;0;0;0] + sin_half_phi*[0;1;0;0]; 

  
%%%% Azimuth Quaternion-z 
% Commented out due to magnetometer unable to be read and quaternion 
% hardcoded 

  
% qe_inv = [qe(1);-qe(2);-qe(3);-qe(4)]; 
% qr_inv = [qr(1);-qr(2);-qr(3);-qr(4)]; 
% m_b_q = [0; m_b]; 
%   
% q_er = q_mult2(qe,qr); 
% q_er_inv =[q_er(1); -q_er(2); -q_er(3); -q_er(4)]; 
% m_e = q_mult2(q_er,q_mult2(m_b_q, q_er_inv)); 
%  
% M = [m_e(2),m_e(3)]; 
% M = M/norm(M); 
% N = [1; 0]; 
% tmp =  [ M(1) M(2); 
%         -M(2) M(1)]*N; 
% cos_psi = tmp(1); 
% sin_psi = tmp(2); 
%  
% cos_half_psi=sqrt((1+cos_psi)/2); 
% if (cos_psi<=-1)                    %%%% IMPORTANT %%%  if it is 

written as cos_psi==-1, it does not work. 
%                                     %%%% cos_psi is potentially less 

than -1.    
%     sin_half_psi = 1; 
% else 
%      sin_half_psi=sign(sin_psi)*sqrt((1-cos_psi)/2); 
% end 
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%  
% qa = cos_half_psi*[1;0;0;0]+ sin_half_psi*[0;0;0;1]; 

  
%assume no yaw 
qa = [1;0;0;1]; 

  
q_tmp1 = q_mult2(qe,qr); 
q_tmp = q_mult2(qa,q_tmp1);   

  
if (singular_flag == 1) 
    q = q_mult2(q_tmp, q_offset); 
else 
    q = q_tmp; 
end 

  
error = cos_th; 
flag = singular_flag; 
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APPENDIX  E. EULER ANGLE FUNCTION 

function EulerAngles=Euler(u) 
%Code provided by James Calusdian from [6] 

 

q0=u(1); 
q1=u(2); 
q2=u(3); 
q3=u(4); 

  
B=[q0^2+q1^2-q2^2-q3^2 2*(q1*q2+q3*q0) 2*(q1*q3-q0*q2); 
   2*(q1*q2-q0*q3) q0^2-q1^2+q2^2-q3^2 2*(q2*q3+q0*q1); 
   2*(q1*q3+q0*q2) 2*(q2*q3-q0*q1) q0^2-q1^2-q2^2+q3^2]; 

  
% if (B(1,3) >=1) 
%     B(1,3) =1; 
% elseif (B(1,3) <=-1) 
%     B(1,3) =-1; 
% end 

  
phi=atan2(B(2,3),B(3,3)); 

  
theta=-asin(B(1,3)); 
psi=atan2(B(1,2),B(1,1)); 

  
EulerAngles=[phi; 
             theta; 
             psi]; 
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APPENDIX  F. ROTATION FUNCTION 

function u=rotate_v_by_q(v,q) 
%Code provided by James Calusdian from [6] 

 
q_inv= [q(1) -q(2) -q(3) -q(4)]'; 

  
u = q_mult2(q,q_mult2(v,q_inv)); 

 

  



68 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

  



69 

APPENDIX  G. QUATERNION MULTIPLICATION FUNCTION 

function qout=q_mult2(p,q) 
%Code provided by James Calusdian from [6] 

 
P_mat = [p(1) -p(2) -p(3) -p(4); 
         p(2)  p(1) -p(4)  p(3); 
         p(3)  p(4)  p(1) -p(2); 
         p(4) -p(3)  p(2)  p(1)]; 
qout = P_mat*q; 
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APPENDIX  H. OPTITRACK PROCESSING SCRIPT 

%%Import data 
close all 
clear all 
% Code generated by MATLAB for importing data   
%import all the data  
import_a_microstrain 
import_time_microstrain 
% Code generated by MATLAB for importing data   
import_angles 
roll = VarName4; 
pitch = VarName5; 
yaw = VarName6; 

  
% Code generated by MATLAB for importing data   
import_time_optitrack 
Time_O = VarName7; 

  
%clear out read in variable names to clean up workspace. 
vars= {'VarName4', 'VarName5', 'VarName6', 'VarName7'};  
clear(vars{:}) 
clear vars 

  
%Starting point for IMU data 
I_s = 181; 

  
%Starting point for OptiTrack data 
O_s = 509; 

  
%start IMU data at verified point 
AccX_v = AccX(I_s:end); 
AccY_v = AccY(I_s:end); 
AccZ_v = AccZ(I_s:end); 
Time_v = Time(I_s:end); 
Time_v = Time_v - Time_v(1); 

  
%start OptiTrack data at verified point 
[Time_O_n, roll_n, pitch_n, yaw_n] = filter_repeat(Time_O, roll, pitch, 

yaw); 

  
roll_v = roll_n(O_s:end); 
pitch_v = pitch_n(O_s:end); 
yaw_v = yaw_n(O_s:end); 
Time_O_v = Time_O_n(O_s:end); 
Time_O_v = Time_O_v-Time_O_v(1); 

  
%% Run simulation 
%inperpolate values to get data to match up 
Ax = interp1(Time_v, AccX_v, Time_O_v);  
Ay = interp1(Time_v, AccY_v, Time_O_v); 
Az = interp1(Time_v, AccZ_v, Time_O_v); 
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Angles = [roll_v, pitch_v, yaw_v]; 

  
%convert Euler angles to Quaternions from optitrack 
for i = 1:length(Angles) 

     
%     Q_mat(:,i) = eul2quat(Angles(i,:), 'XYZ'); 

     
    q = myEuler2quaternion(yaw_v(i), pitch_v(i), roll_v(i)); 
    Q_opt(:,i) = q; 

     
end 

  
%calculate the quaternion with FQA from acceleration to compare 
for k = 1:length(Ax) 

     
    %sample accelerometer  
    am =[Ax(k); Ay(k); Az(k)]; 
    m = [0; 0; 0]; 

     
    qm(:, k) = fqa_hardcode(am, m); 

  
end 

  
%range of the data  
range_OPT = [273:469]; 
t = Time_O_v(range_OPT); 
t_0 = t - t(1); 
A_x = Ax(range_OPT)*9.8; 
A_y = Ay(range_OPT)*9.8; 
A_z = Az(range_OPT)*9.8; 
Q = Q_opt(:,range_OPT); 

  
for n = 1:length(range_OPT) 

     
       %Rotate from the body frame into the navigation frame 
       A_b = [0; A_x(n); A_y(n); A_z(n)]; 
       A_n(:,n) = rotate_v_by_q(A_b, Q(:,n)); 

        
end 

  
%processing via numerical integration 
% Raw velocity 
V_x = cumtrapz(t_0, A_n(2,:)); 
V_y = cumtrapz(t_0, A_n(3,:)); 
V_z = cumtrapz(t_0, A_n(4,:)); 

  
% for i = 1:length(range_OPT) 
%          
%     %Corrected Velocity 
%     %Va = Vc - ((Vc(final time)/final time)*t), t = [0, finaltime] 
%     VC_x(i) = V_x(i) - ((V_x(end)/t_0(end))*t_0(i)); 
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%     VC_y(i) = V_y(i) - ((V_y(end)/t_0(end))*t_0(i)); 
%     VC_z(i) = V_z(i) - ((V_z(end)/t_0(end))*t_0(i)); 
%         
% end 

  
t_int = t_0'; 

  
%Velocity correction X 

% Adapted from Code Written by James Calusdian 

 
%correct velocity at starting point of motion 
Vx_c = V_x - V_x(1); 

  
%calculate error through motion 
error_x = Vx_c(end)/t_int(end)*t_int; 

  
%Correct velocity through motion 
VC_x = Vx_c - error_x; 

  
%Velocity correction Y 
Vy_c = V_y - V_y(1); 

  
error_y = Vy_c(end)/t_int(end)*t_int; 

  
VC_y = Vy_c - error_y; 

  
%velocity correction Z 
Vz_c = V_z - V_z(1); 

  
error_z = Vz_c(end)/t_int(end)*t_int; 

  
VC_z = Vz_c - error_z; 

  
tock = 0;  

  
%Raw Position 
X_x =cumtrapz(t_0, V_x); 
X_y =cumtrapz(t_0, V_y); 
X_z =cumtrapz(t_0, V_z); 

  
%Corrected Position 
XC_x =cumtrapz(t_0, VC_x); 
XC_y =cumtrapz(t_0, VC_y); 
XC_z =cumtrapz(t_0, VC_z); 

  
for m = 1:length(range_OPT) 

     
    VC(m) = sqrt((VC_x(m)^2)+(VC_y(m)^2)+(VC_z(m)^2)); 

     
    V(m) = sqrt((V_x(m)^2)+(V_y(m)^2)+(V_z(m)^2));  

     
    XC(m) = sqrt((XC_x(m)^2)+(XC_y(m)^2)+(XC_z(m)^2)); 



74 

     
    X(m) = sqrt((X_x(m)^2)+(X_y(m)^2)+(X_z(m)^2)); 

     
end 

  
%Plot of accelerations 
figure(1) 
subplot(211) 
plot(Time, AccX, Time, AccY, Time, AccZ) 
title('Raw acceleration') 
legend('X-axis', 'Y-axis', 'Z-axis', 'Location', 'BEST'); 
xlabel('Time (Seconds)') 
ylabel('Meters/Second^2') 

  
subplot(212) 
plot(t_0, A_n(2,:), t_0, A_n(3,:), t_0, A_n(4,:)) 
title('Rotated acceleration') 
legend('X-axis', 'Y-axis', 'Z-axis', 'Location', 'BEST'); 
xlabel('Time (Seconds)') 
ylabel('Meters/Second^2') 

  
%Plot of velocities  
figure(2) 
subplot(211) 
plot(t_0, V_y, t_0, V_x, t_0, V_z, t_0, V); 
title('Raw Velocity') 
legend('Y-axis', 'X-axis', 'Z-axis', 'Combined', 'Location', 'best'); 

  
subplot(212) 
plot(t_0, VC_y, t_0, VC_x, t_0, VC_z, t_0, VC); 
title('Corrected Velocity') 
legend('Y-axis', 'X-axis', 'Z-axis', 'Combined', 'Location', 'best'); 

  
%Plot of positions 
figure(3) 
subplot(211) 
plot(t_0, XC_x, t_0, XC_y, t_0, XC_z) 
legend('X-axis', 'Y-axis', 'Z-axis','Location', 'best'); 
title('position w/respect to time') 

  
subplot(212) 
plot(XC_x, XC_y) 
axis([0 length(XC_x) 0 length(XC_x)]) 
title('Position via x-y vector') 

  
%Plot of positions 
figure(4) 
subplot(211) 
plot(X) 
title('Raw Position') 
subplot(212) 
plot(XC) 
title('Corrected Position') 
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figure(5) 
subplot(211) 
plot(Time_O_v, Q_opt(2,:), Time_O_v, Q_opt(3,:), Time_O_v, Q_opt(4,:)) 
title('OptiTrack Quaternion'); 
xlabel('Time (Seconds)') 

  

  
subplot(212) 
plot(Time_O_v, qm(2,:), Time_O_v, qm(3,:), Time_O_v, qm(4,:)) 
title('FQA Quaternion'); 
xlabel('Time (Seconds)') 

  
display(X(end)) 
display(XC(end)) 

  
figure(6) 
subplot(211) 
plot(Time, AccX, Time, AccY, Time, AccZ) 
title('Raw acceleration') 
legend('X-axis', 'Y-axis', 'Z-axis', 'Location', 'BEST'); 
xlabel('Time (Seconds)') 
ylabel('Meters/Second^2') 

  
subplot(212) 
plot(Time_O_v, qm(2,:), Time_O_v, qm(3,:), Time_O_v, qm(4,:)) 
title('FQA Quaternion'); 
xlabel('Time (Seconds)') 
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APPENDIX  I. EULER ANGLE TO QUATERNION FUNCTION 

function [q] = myEuler2quaternion(yaw, pitch, roll) 
% myEuler2quaternion converts the Euler angles (radians) to the 

%quaternion 
% with the form [q0 q1 q2 q3 q4] where q0 is the scalar. 
% from lecture notes [21] 
cPsi2 = cos(yaw/2); 
sPsi2 = sin(yaw/2); 
cTheta2 = cos(pitch/2); 
sTheta2 = sin(pitch/2); 
cPhi2 = cos(roll/2); 
sPhi2 = sin(roll/2); 

  
q0 = cPsi2*cTheta2*cPhi2 + sPsi2*sTheta2*sPhi2; 
q1 = cPsi2*cTheta2*sPhi2 - sPsi2*sTheta2*cPhi2; 
q2 = cPsi2*sTheta2*cPhi2 + sPsi2*cTheta2*sPhi2; 
q3 = sPsi2*cTheta2*cPhi2 - cPsi2*sTheta2*sPhi2; 

  
q = [q0;q1;q2;q3]; 
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APPENDIX  J. FILTER REPEAT DATA FUNCTION 

function [Time_O, Roll, Pitch, Yaw] = filter_repeat(time, roll, pitch, 

yaw) 

%Code adapted from code provided by James Calusdian. 

%Original code written by James Calusdian, 

%%%remove_bad_data 

  
%time_opt = test10.time_opt; 
%N = length(time_opt); 
%array_of_indices = []; 

  
%pitch_opt = test10.pitch_opt; 
%yaw_opt = test10.yaw_opt; 
%roll_opt = test10.roll_opt; 

  
%for ix = 2:N 
%    if time_opt(ix) == time_opt(ix-1) 
%        array_of_indices = [array_of_indices , ix]; 
%    end 
%end 

  
%%% fix the time vector 
%time_fixed = time_opt; 
%time_fixed(array_of_indices) = []; 
%time_optitrack_zero = time_fixed - time_fixed(1); 

  
%%% fix the angle data, too 
%pitch_opt(array_of_indices) = []; 
%yaw_opt(array_of_indices) = []; 
%roll_opt(array_of_indices) = []; 

 
%Function to filter out repeat stagnant data from Optitrack data 

so%that it 
%can be interpolated by processing function 
array = []; 

  
%for loop to check for repeated data points 
for i = 2:length(time) 
    %if data is repeated save the location in array 
    if time(i) == time(i-1) 
       array = [array, i]; 
    end 

     
end 

  

     
    time(array) = []; 
    roll(array) = []; 
    pitch(array) = []; 
    yaw(array) = []; 
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    Time_O = time; 
    Roll = roll; 
    Pitch = pitch; 
    Yaw = yaw; 

  
end 
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