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1. Introduction 

In our recent work,1 we transmitted one photon of an entangled pair through a fiber 
channel that included decoherence and partial filtering elements. We then 
demonstrated that a local filter could be applied to the other photon of the entangled 
pair in order to maximize the mutual quantum information between the photons. 
We showed that the relative orientation of the decoherence and filtering elements 
can be altered to emulate two types of noise, bit-flip noise and phase-flip noise, 
which are common to quantum channels. Although only a small amount of mutual 
information can be recovered in the presence of bit-flip noise, all mutual 
information can be recovered in the presence of phase-flip noise. 

To implement the decoherence and local filter elements, we used polarization mode 
dispersion (PMD) and polarization-dependent loss (PDL) emulators. PMD2–9 and 
PDL10–19 are thoroughly researched properties of optical fibers. Randomly varying 
birefringence accumulates along the length of optical fibers and results in PMD, the 
phenomenon in which an input pulse separates into two orthogonally polarized 
components with a relative delay.2,3 PDL is a common effect in fiber-optic 
components in which one polarization mode experiences more loss compared to the 
other. PMD and PDL are the primary polarization decoherence and filtering 
mechanisms in optical fibers.1,18–22 Thus, applying PMD and PDL emulators to the 
fiber channels traversed by the entangled photons offers a practical implementation 
of the decoherence and filtering that occurs when distributing entangled photons 
over the existing telecom infrastructure. This note describes the exact experimental 
procedure that was followed to apply decoherence and filtering via PMD and PDL, 
respectively, to demonstrate the results shown in Jones et al.1 

2. Experimental Setup 

We used the setup shown in Fig. 1 to physically realize the experiment depicted in 
Fig. 1a of Jones et al.1 The decoherence/birefringence 𝛽𝛽𝐴𝐴 is applied via the unit 
designated PMDA, which consists of a polarization controller (PCA1) and a 
PDL/PMD emulator, which applies variable PDL and a fixed differential group 
delay (DGD) of τ = 6.6 ps. The mode filter inherent to channel A (𝛾⃗𝛾𝐴𝐴) and the 
network operator’s filter (𝛾⃗𝛾𝐵𝐵) are each realized with the combination of a 
polarization controller and a variable PDL emulator, denoted PDLA and PDLB in 
Fig. 1. The PDL of all emulators is fully tunable in magnitude and direction. 
Furthermore, our setup is based on an entanglement distribution system comprising 
an entangled photon-pair source (EPS), which distributes entangled photons to two 
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detector stations (DSs), each consisting of a polarization analyzer (PA) and an 
indium gallium arsenide single-photon detector (SPD).23 

 

Fig. 1 Experiment schematics: (left to right) DS (SPD with a PA consisting of a polarizer 
[blue] and several waveplates [red]), PDL emulator (with polarization controller PCA2), PDL 
with PMD (PDL/PMD emulator that applies a DGD of τ = 6.6 ps, with polarization controller 
PCA1), EPS (pump with a dispersion-shifted fiber [DSF]), PDL emulator (polarization 
controller PCB), and DS (a PA consisting of several waveplates [red] and a polarizer [blue] 
and an SPD) 

Signal and idler photons are generated by the EPS via four-wave mixing24 using a 
50-MHz pulsed fiber laser with a center wavelength of 1552.52 nm to pump a DSF. 
The signal and idler are entangled in polarization by arranging the DSF in a Sagnac 
loop with a polarization beam splitter. Photons with a temporal duration of about 
15 ps are output by the EPS, after a WDM demultiplexer separates the photons 
spectrally into 100-GHz-spaced International Telecommunication Union (ITU) 
outputs after the Sagnac loop.25 Photons in ITU channel 28 (1554.94 nm) are sent 
to channel A, and those in ITU channel 34 (1550.12 nm) are sent to channel B. The 
average number of pairs per pump pulse output by the EPS is approximately  
µ = 0.001 − 0.1.26,27 The detectors are gated and have a detection efficiency of  
η ∼ 20% and a dark count probability of approximately 4 × 10−5 per gate. 
Automated software controls the PAs and SPDs to perform full polarization state 
tomography to determine the density matrix at the two DSs. 

3. Mitigating Source Misalignment 

Our EPS typically outputs a slightly misaligned entangled state that is equivalent 
to a |𝜑𝜑+⟩ Bell state, which experiences approximately 1.4 dB of PDL in one 
channel.18 To compensate for the effect of this “source PDL”, the magnitude of the 
PDL applied by the first emulator PMDA was set to 1.4 dB. The orientation of 
PCA1 was then adjusted until the optimum orientation of PCA1 was found by 
performing quantum state tomography and monitoring the measured density matrix. 
The orientation of PCA1 was then fixed, that is, it always remained opposite of the 
direction of the “source PDL”. Using this method, we were able to reduce the 
aggregate “source PDL” from 1.4 dB to 0.1 dB (as seen in Fig. 1 and the left-most 
plot of Fig. 2d in Jones et al.).1 
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4. Applying PDL in Channel A 

The PDL and PMD in channel A are further controlled by PMDA and PDLA. 
PMDA applies PMD and PDL in a collinear fashion. Using PMDA, we applied a 
DGD of τ = 6.6 ps. Then, we applied variable PDL to channel A using PDLA. Our 
experiment investigated the relative alignment of the PMD and PDL vectors of 
channel A. Next, we describe the alignment procedure. 

To align the total PDL of the entire channel A (𝑃𝑃�⃗𝐴𝐴) relative to the PMD applied via 
PMDA, the PDL applied by PMDA was temporarily increased to approximately  
5 dB to set a reference signal in the same direction as the PMD applied by PMDA. 
This allowed us to align the PDL applied by PDLA relative to the reference signal. 
To set up the bit-flip case, we aligned PDLA such that the PMD and PDL of channel 
A were orthogonal. For this, PCA2 was continuously adjusted until the total PDL 
measured from the continuously monitored density matrix was equal to the 
aggregate PDL of the reference signal and an orthogonal PDLA vector. On the other 
hand, to set up the phase-flip case, PCA2 was rotated such that the total PDL of the 
density matrix was minimized, resulting in collinear PDL and PMD in channel A. 
After aligning PDLA (in both cases), the magnitude of the PDL applied by PMDA 
was set back to 1.4 dB, thus canceling the “source PDL”. 

Finally, state tomography was performed and the mutual information was 
calculated from the measured density matrices using the expression  
S(A : B) = S(A) + S(B) − S(AB), where S(AB) is the von Neumann entropy of the 
entire two-qubit state (ρ) measured by tomography, S(ρ) = −Tr{ρ ln[ρ]}, and  
S(A), S(B) are the marginal entropies. 

5. Applying PDL in Channel B 

The emulator included in PDLB controls the magnitude of PDLB (𝑃𝑃�⃗𝐵𝐵). We first set 
the magnitude (𝑃𝑃𝐵𝐵) of PDLB as explained here and then set its orientation by 
adjusting the polarization controller PCB until the entanglement was maximized. 
The feedback parameter was the concurrence that was calculated from the measured 
density matrices. 

For the bit-flip experimental scenario, 𝑃𝑃𝐵𝐵 was set to two different values for each 
value of 𝑃𝑃𝐴𝐴. It was first set equal to 𝑃𝑃𝐴𝐴. Next, it was decreased to the optimum value 
given by 𝑃𝑃𝐵𝐵

opt = tanh−1(𝐶𝐶 tanh(𝛾𝛾𝐴𝐴)) × (20 log10 𝑒𝑒).1 For the phase-flip scenario, 
𝑃𝑃𝐵𝐵 was only set equal to the magnitude of the PDL in channel A (𝑃𝑃𝐵𝐵 = 𝑃𝑃𝐴𝐴). This 
procedure was repeated for all values of PDL in channel A (𝑃𝑃𝐴𝐴). We chose the range 
of PDLA magnitudes to be 𝑃𝑃𝐴𝐴 =  5.70 –  7.65 dB (𝛾𝛾𝐴𝐴 =  0.656 –  0.880) for the 
bit-flip data. For the phase-flip data, the range was 𝑃𝑃𝐴𝐴 =  3.42 –  7.97 dB 
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(𝛾𝛾𝐴𝐴 =  0.394 −  0.918). For the PDLA magnitudes 𝑃𝑃𝐴𝐴 = 7.12, 7.44,
and 7.55 dB (𝛾𝛾𝐴𝐴 =  0.820, 0.857, 0.869), an additional measurement was 
performed with 𝑃𝑃𝐵𝐵 set to a value of 𝑃𝑃𝐵𝐵 ≈ 𝑃𝑃𝐵𝐵

opt/2 to better characterize the amount 
of mutual information recovered as a function of 𝑃𝑃𝐵𝐵. 

Every data point in Fig. 2 of Jones et al.1 is the average mutual information over 
several consecutive tomography measurements. The error bars represent the 
standard deviation of these consecutive measurements. Each quantum state 
tomography was performed over 100 million detector gates per measurement. 
Given the 50-MHz pump laser repetition rate (20-ns period), 36 measurement 
settings per tomography, and approximately 5 s required to calculate the density 
matrix via maximum-likelihood estimation, each tomography took approximately 
80 s. 

6. Conclusion 

This note describes the exact experimental procedure to apply PMD and PDL to 
polarization entangled photons in order to emulate two types of noise common to 
quantum channels and recover the mutual information lost due to these types of 
noise. By following these procedures, one can demonstrate the recovery of all 
mutual information lost due to phase-flip noise via local filtering (i.e., application 
of PDL in channel B). However, only a small amount of the mutual information 
can be recovered for the case of bit-flip noise. 
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PA polarization analyzer  

PDL polarization-dependent loss 

PMD polarization mode dispersion 

SPD  single-photon detector  
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