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1. INTRODUCTION 

Cellular inspection using microscopy and histology remains integral for diagnosis, prognosis, and treatment 

decisions. The principal technique, conventional microscopy, has low throughput, requires manual inspection 

by trained microscopists, and often yields variable, operator-dependent results. Such drawbacks are 

exacerbated in resource-limited settings where pathology bottlenecks delay cancer diagnoses and potentially 

lead to over/under-treatment. The problem is relevant not only across low or middle-income countries, but also 

in the US; nearly a quarter of the US population live in rural areas, but only 10% of physicians practice in those 

areas8. Developing cost-effective, scalable technologies to feasibly detect (especially at early stages) and 

classify cancers is thus a key mandate to better manage cancer and improve survivorship. Unfortunately, no 

such platforms are currently available for translational testing. The goal of this proposal is to advance a new 

diagnostic imaging platform for on-site, high-throughput breast cancer cell screening. Termed AIDA (Artificial 

Intelligence Diffraction Analysis), this platform integrates cutting-edge developments in computational optics 

and deep learning to facilitate accurate, fast, and automated molecular analyses of breast cancer down to the 

single cell. 

 
2. KEYWORDS 

Breast cancer, Holography, Deep learning, Point-of-care 

 
3. ACCOMPLISHMENTS 

What were the major goals of the project? 

The major goals of the first-year funding period (2019/07 - 2020/07) were two-fold. 

Goal 1: Implement an AIDA platform for large-scale single cell imaging (90% completion, Massachusetts 

General Hospital). 

Goal 2: Develop AIDA deep-learning framework for single cell detection and classification (90% completion, 

Worcester Polytechnic Institute). 

 
What was accomplished under these goals? 

We have made significant progresses in developing both the imaging system and deep learning algorithm. 

  Massachusetts General Hospital (PI, Hakho Lee)  

New AIDA system. We have recently implemented a 

new whole-slide imaging system for real-time breast 
biopsy validation (Fig. 1a). The system incorporates an 

on-board embedded GPU (NVIDIA Jetson Nano) for on- 

site holographic reconstruction without the need to 

communicate with a cloud-based GPU server (Fig. 1b). 

The GPU’s128 cores deliver 450 GFLOPS of computing 

power which compute holographic reconstruction on 

images acquired by a 10MP CMOS sensor (Imaging 

Source) with less than 100 ms of processing latency per 

acquisition. To complement these enhanced optical and 

computing modules, we designed a high-precision 

scanning optical assembly that maintains a constant 

distance to the sample within 25 µm, and has fine- 

adjustment mechanisms for tilt, angle, and spatial 

correction to ensure the highest quality data. Further, the 

Fig. 1. 2nd generation AIDA system. (a) Updated patient 
workflow illustrating real-time biopsy validation at the point-of- 
care (b) Precision optical scanning mechanism with 10MP 
CMOS image sensor (c) Photograph of constructed system 

system facilitates automated data acquisition and processing of an entire breast pathology sample (~107 cells) 

using a custom motorized stage. Samples are processed in 7 min; an order of magnitude faster than our 

previously reported system. 
 

Real-time hologram reconstruction. Individual breast cells are holographically reconstructed using a novel 

deep learning system that is fast and reliable. The system implements fast Fourier transform (FFT)-based two- 

dimensional image convolutions using the C++ based NVIDIA “CUDA" interface to perform holographic 

magnitude reconstruction. This pipeline is paired with a custom 5-layer convolutional deep learning 
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architecture, named HoloNet, in order to 

accomplish fast and accurate phase recovery. 

The integrated system can reconstruct 

holographic image data at a maximum 

throughput of 15 frames per second on high 

resolution (2048 × 2048) tiles which are 

stitched together to yield a field-of-view (FOV) 

as large as 75 mm × 50 mm: large enough for 

any pathology application. We are currently 

implementing graphical, user-friendly software 

Fig. 2. HoloNet deep learning 
system. (a) Deep learning pipeline 
with a sample 192 × 192 input 
hologram tile. Tile is processed in 
realtime by five magnitude and phase 
recovery filters to output a three- 
channel reconstruction. (b) 
Visualization of the learned filters, 
demonstrating the machine’s ability to 
learn complex optical transformations. 

to streamline the system operation using a high definition capacitive touchscreen. 
 

  Worcester Polytechnic Institute (PI, Kwonmoo Lee)  

Development of a deep neural network (HoloNet) 

for the hologram analysis. Using the AIDA system, 
we obtained high-resolution, large FOV diffraction 

images that lens-based microscopes cannot achieve. 

The diffraction images, however, are complicated to 

discern. There is a computational algorithm that 

converts the diffraction patterns to cell images, but it 

is inefficient and prone to errors. To resolve this issue, 

we developed a deep neural network, called HoloNet, 

which directly analyzes diffraction patterns (Fig. 3a). 

In addition to the standard CNN (Convolutional Neural 

Network), the HoloNet includes a holo-branch that 

extracts large features from holograms and integrate 

them with the small features from the standard CNN. 

Since low-level cell features can diffract more than 

high-level features, the large filters in the holo-branch 

can effectively capture this information. Using 

Fig. 3. HoloNet analyzes the holograms of breast cancer cells. 
(a) Structure of HoloNet. (b) The performances of the regression 
from ER/PR and HER2 intensities. (c) The performances of the 
classification of breast cancer cell types. 

HoloNet, we built a regression model to predict the intensity values of ER/PR and HER2 in breast cancer cell 
lines. The R2 values of ER/PR and HER2 regression was 0.9382 and 0.9675, respectively (Fig. 3b). We also 

trained the classifier based on the Holo-Net. The accuracy of the classification for four subtypes of breast 
cancer was 0.949 (Fig. 3c). 

 

Identification of sub-clusters of breast cancer 

cells using hologram features. After we trained 

the classifier, we used the trained HoloNet as a 

feature extractor from breast cancer cell 

holograms. We visualized the feature vectors of 

individual holograms on the three-dimensional 

space using UMAP (Fig. 4a). This revealed that 

there exist more detailed subtypes within the 

previously known four breast cancer cell types 
(Figs. 4b-e). To identify the clinical relevance of 

these sub-clusters, we confirmed that some of 

these sub-clusters existed in breast cancer 

patient samples (from the previous study). We 

used the trained Holo-Net to extract the features 

from the holograms of two breast cancer patients. 

In both patients, we found that a substantial 

amount of the breast cancer cells of Cluster 1, 3, 
8, and 9 existed (Fig. 4f), suggesting that new 

clusters may have clinical importance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Sub-clusters of breast cancer cells. (a) Holo-Net-embedded 
feature distribution of the holograms of breast cancer cells. (b-e) Sub- 
clusters in each breast cancer cell type. (f) Distribution of the original 
molecular phenotypes and new hologram phenotypes from breast 
cancer patients. 
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Hologram resolution enhancement. The resolution of the hologram 

is limited by the pixel size of the image sensor. We tested the 

feasibility of enhancing hologram resolution using deep learning. We 

made the original hologram low resolution by 8 pixel averaging (Fig. 

5a). Then, we trained EDSR to recover the hologram resolution, 

resulting in increased pixel signal-to-noise ratio (pSNR) and the 
structural similarity index (SSIM; Fig. 5b). The recovered resolution 

was shown to increase the performance (R2) of the intensity 

prediction in each channel in comparison to low resolution hologram 

(Fig. 5c). 

 
What opportunities for training and professional development 

has the project provided? 

Training activities. 

Practical skill sets for optics and computation. [MGH] With the 

guidance of the PI (H. Lee) and other research fellows, the graduate 

student (Mr. Ismail Degani, MIT) involved in this project has 

 

 

Fig. 5. Resolution enhancement of hologram. 
(a) Examples of holograms. (b) Increased pSNR 
and SSIM by deep learning-based resolution 
enhancement. (c) R2 for the intensity prediction 
using the original, low resolution, recovered 
resolution holograms 

advanced his skills in low-level GPU programming, optical systems assembly, and data acquisition. Mr. Degani 

is now conducting this project independently. [WPI] With the guidance of the PI (Dr. Kwonmoo Lee), the 

graduate students (Mengzhi Cao and Pengyi Ye, Master Students at WPI) involved in this project have 

advanced their skills on deep learning application to image datasets. 

Undergraduate senior design project. [WPI] PI (Dr. Kwonmoo Lee) 

provided a weekly mentorship to senior undergraduate students (Finn 

Casey, Robert Farrell, Adam Kaminski, Joseph LeBlanc) for the 

design project of an AI imaging system for holographic live cell 

imaging. The students continued to work on the project during 

Covid-19 pandemic and successfully presented their project on a 
virtual platform (Fig. 6). 

Professional development. 

Course work. The concepts developed in this project (e.g., hologram, 

deep learning) has been incorporated into the intramural coursework 

of CSB10 – Engineering Biosensors taught by the PI (H. Lee), that 

explores key topics in biosensing. 

Conference. Mr. Degani was encouraged to present at extramural 

meetings and conferences (see Section 6). 

Seminar. The PI (Dr. Kwonmoo Lee) presented the progress of the 

project at Samsung Genome Institute, University at Buffalo, and 

Boston Children’s Hospital. 

 
How were the results disseminated to communities of interest? 

Nothing to Report 

Fig. 6. Virtual presentation of the senior 
design project during Covid-19 pandemic 

 

What do you plan to do during the next reporting period to accomplish the goals? 

[MGH site] As planned in our original Aim 2, we will apply the developed AIDA system to molecularly profile 

breast cancer cells. We will optimize our staining protocol for ER/PR and HER2. The planned activities will 

involve a set of controlled titration experiments. Obtained images will be sent to Partnering PI’s lab to develop 

neural networks for image analyses. To ascertain the AIDA’s accuracy, the profiling results will be compared 

with those by gold standard methods (e.g., flow cytometry). In anticipation of the pilot clinical test, we will 

secure IRB approval at MGH (pending now) and apply for HRPO approval. 
 

[WPI site] Pixel super-resolution. To restore subpixel spatial information, we will apply an EDSR deep neural 

network for super-resolution restoration. We will acquire the training set 1× and 4× magnified diffraction 
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patterns from the same cells. The network will use these matching image pairs to learn spatial details. The 

trained network will improve the pixel density of the original diffraction patterns by 16-fold without reducing the 

field of view. Generative modeling of cellular details for the fine-grained deconvolution. To learn the fine- 

grained features from holograms, we will apply Generative Adversarial Networks (GANs), whose strength is its 

capacity to learn the cost function, recapitulating fine details in imaging data. The generator of GANs will 

synthesize reconstructed images of stained cells for given input of diffraction images. The embedded feature 

vectors of the generator will be used to identify fine-grained clusters, and the molecular markers will be 

quantified. AI porting to a microcomputer. Once algorithm development is complete on a workstation, we will 

transfer deep neural networks to a local controller for the POC (Point-Of-Care) operation by pruning deep 

neural network to reduce the model complexity and size for efficient execution. We will use an NVIDIA Jetson 

TX2 module, which provides deep learning computation in a small form-factor device and offers low power 

consumption. 

 
4. IMPACT 

What was the impact on the development of the principal discipline(s) of the project? 

The developed system introduces a new concept in biosensor design by combining the advantages of GPU 

computing advances and lensless holographic imaging. In this improved system, internet connectivity speed 

and reliability is no longer a limiting factor in the throughput of the system. Rather, the system’s self-contained 

design allows for exceedingly fast and reliable biopsy validation. Real-time biopsy validation: Our real-time 

strategy significantly improves the patient workflow by assessing the viability of a biopsy at the point-of-care. 

This eliminates the possibility of a non-diagnostic sample (having insufficient cell counts) forcing a patient to 

return for a second biopsy, which in many low-resource settings can be a significant burden. This innovation 

therefore offers not only higher efficiency but also significantly reduces patient harm. Increased spatial and 

temporal resolution. Utilizing the latest semiconductor technology, the imaging sensors can acquire 

theoretical spatial pixel resolution of 1.1um. This allows the system to resolve very fine details of each cell in 

the sample biopsy, greatly increasing the accuracy of cell segmentation and classification tasks. Novel whole- 

slide scanning architecture. In previous iterations, the system could only image a field-of-view (FOV) of 

24mm2, corresponding to the area of the image sensor. Our new scanning system has increased this by a 

factor of 150 to 3750mm2. This FOV allows imaging of much larger samples which improves the overall 

versatility of the system. Guided optical Calibration. Motorized optical systems often need to be extensively 

calibrated by trained professionals in order to function optimally. Our system by contrast interprets the 

information-rich holographic image data to readily calculate the system’s tilt/axial misalignment. An operator 

can then easily be guided by the system through the calibration sequences, minimizing the need for labor- 

intensive, potentially error-prone manual procedures. Robustness and user-friendly interface. One of the 

significant merits of the hybrid system is its durability and reproducibility. The system presents simple 

interfaces for accomplishing all aspects of biopsy validation; users can enjoy the same level of intuitive 

interfaces which are now standard in consumer electronics. 
 

What was the impact on other disciplines? 

Nothing to report. 
 
 
What was the impact on technology transfer? 

Nothing to report. 
 

What was the impact on society beyond science and technology? 

Nothing to report. 

 
5. CHANGES/PROBLEMS 

Dr. Kwonmoo Lee (PI at WPI) title was changed to Affiliate Assistant Professor on 07/01/2020. 

 
6. PRODUCTS 

Publications, conference papers, and presentations 

Journal publications. 
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1. Weissleder, R., and Lee, H. (2020) Automated molecular-image cytometry and analysis in modern 

oncology. Nature Reviews Materials, 5, 409–422. Acknowledgement of federal support (yes). 

 
Presentations 
(All of the following presentations acknowledged the federal support.) 

High-throughput protein profiling for cancer diagnostics & prognostic 

ISEV-MRS Joint Meeting on EVs in Cancer 
Hakho Lee, 

Nashville, TN; 02-Aug-2019 
 

Liquid biopsies - overview 

SWOG Fall 2019 Group meeting 

Hakho Lee 
Chicago, IL, 01-Oct-2019 

 

Sample preparation for clinical diagnostics/ Seminar 

Korean Institute of Machinery and Materials (KIMM) 

Hakho Lee 
Seoul, Korea; 10-Oct-2019 

 

Promise of liquid biopsy for cancer management 

Applied Pharmaceutical Nanotechnology 
Hakho Lee 

Cambridge, MA; 25-Oct-2019 
 

Unravelling Cellular and Subcellular Heterogeneity Using Deep Learning 

Samsung Genome Institute 
Kwomoo Lee 

Seoul, Korea; 10-Jan-2020 

 
Unravelling Cellular and Subcellular Heterogeneity Using Deep Learning 

University at Buffalo 

Kwomoo Lee 

Buffalo, NY; 12-Mar-2020 

 
Unravelling Cellular and Subcellular Heterogeneity Using Deep Learning 

Boston Children’s Hospital 

Kwomoo Lee 

Boston,MA; 12-Mar-2020 

 
Technologies or techniques. 

The research has produced a library of procedures to make optical systems, fluidic devices, and 

bioconjugtation (antibodies). We also advanced new neural network algorithms to rapidly analyze holograms. 

All data will be electronically stored and archived, and will be made available through publications in peer 

reviewed journals. As in the past, all of these resources will be shared freely with scientific community upon 

execution of a proper MTA through the Office of Corporate Licensing (MGH or WPI). 
 

Other products 

Nothing to report. 
 
 
 
 
 
 
 
 
 

8 
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Name: Hakho Lee (MGH) 

Project Role: Principal Investigator 
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Nearest person month worked: 2 
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Funding Support:  

 
Name: Cesar M. Castro (MGH) 

Project Role: Co-Investigator 

Researcher Identifier N/A 

Nearest person month worked: 1 

Contribution to Project: Dr. Castro guided the biological research, identifying biomarkers for breast cancer 
detection, and validating the selection through in-vitro assays. 

Funding Support:  

 
Name: Michelle Specht (MGH) 

Project Role: Ci-Investigator 

Researcher Identifier N/A 

Nearest person month worked: 1 

Contribution to Project: Dr. Specht provided translational guidance for the development of proposed imaging 
technology. She will help procure breast cancer specimens for diagnostic testing. 

Funding Support:  

 
Name: Ismail Degani (MGH) 

Project Role: Graduate student 

Researcher Identifier N/A 

Nearest person month worked: 6 

Contribution to Project: Mr. Degani designed the holographic imaging system, constructed the deep learning 
framework for cell classification/segmentation, and validated the entire system. 

Funding Support:  

 
Name: Kwonmoo Lee (WPI) 

Project Role: Principal Investigator 

Researcher Identifier orcid.org/0000-0001-6838-7094 

Nearest person month worked: 1 

Contribution to Project: Dr. Lee supervised the overall research, interacting with investigators and research 
fellows, and discussing all computational analysis results. 

Funding Support:  

 
Name: Tzu-Hsi Song (WPI) 

Project Role: Postdoctoral fellow 

Researcher Identifier N/A 

Nearest person month worked: 4 

Contribution to Project: Dr.Song designed the holographic deep learning structure (Holo-Net), and perform the 
unsupervised learning using holograms. 

Funding Support:  

 
Name: Pengyi Ye (WPI) 

Project Role: Graduate student 

Researcher Identifier N/A 
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Nearest person month worked: 4 

Contribution to Project: Mr. Ye performed deep learning-based super-resolution restoration of holograms 

Funding Support:  

 

Name: Mengzhi Cao (WPI) 

Project Role: Graduate student 

Researcher Identifier N/A 

Nearest person month worked: 4 

Contribution to Project: Mr. Cao performed deep learning-based regression analysis to predict the molecular 
marker intensities 

Funding Support:  

 
 

Has there been a change in the active other support of the PD/PI(s) or senior/key personnel since the 

last reporting period? 

 
New support (Kwonmoo Lee) 

Title: Unraveling subcellular heterogeneity of molecular coordination by machine learning 

Goals: The major goal of this project is to develop a novel machine learning framework for 

large-scale analyses of subcellular heterogeneity of cell protrusion. 

Specific Aims: 1) Deconvolution of subcellular heterogeneity of protrusion and molecular coordination 

in live cells 
2) Deep learning based high-throughput fluorescence live cell imaging 
3) Mechanosensitivity of subcellular bioenergetic status in cell protrusion 

Start Date: 15-Sep-2019 

End Date: 31-Aug-2024 

Level of Effort: 2 Summer Months, 13.334% 

Level of Funding: $1,738,826.00 

Funding Agency: National Institutes of Health/NIGMS 

Contracting/Grants 

Officer: 

Dr. Paul Sammak, sammakpj@nigms.nih.gov, 301-594-8494 

Role on Project: Principal Investigator 

Overlap: None. This project is focused on developing a machine learning method applied to 

fluorescence live cell images to characterize actin regulator dynamics in cell migration. 

The machine learning method proposed here is focused on noisy fluorescence movies 

and time series data, which are substantially different from those in the DoD project. 

The application area is basic cell biology which is also different from breast cancer 

diagnosis in the DoD project. This project overlaps with the above pending NIH R01 
project, but not with the DoD project. 

 
Expired support (Kwonmoo Lee) 

Title: Wearable Devices for In-Home Monitoring of Patients at Risk for Heart Failure 

Goals: The major goal of this project is to develop a novel device for in-home monitoring of 

heart failure patients who are at risk of developing acute decompensated heart failure. 

Specific Aims: 1) Develop reuseable carbon-black and polydimethylsiloxane (CB/PDMS) electrodes 

that capture bioimpedance and electrocardiogram data 

2) Develop hardware and algorithms for acute decompensated heart failure detection, 

resulting in a wearable monitor with embedded CB/PDMS electrodes 
3) Develop hardware and algorithms for atrial fibrillation detection using a smart watch 

4) evaluate the performance and usability of both detection systems in a prospectively 

recruited cohort study. 

Start Date: 01-Oct-2015 
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End Date: 30-Sep-2019 
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Level of Funding: $32,593.00 
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Officer: 
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Overlap: None 

 
 

What other organizations were involved as partners? 

Nothing to report. 

 
8. SPECIAL REPORTING REQUIREMENTS 

Not applicable. 

 
9. APPENDICES 

The following papers are attached. 
 

Weissleder, R., and Lee, H. (2020) Automated molecular-image cytometry and analysis in modern oncology. 

Nature Reviews Materials, 5, 409–422. Acknowledgement of federal support (yes). 
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Cell-based cancer diagnostics are essential for clini- 
cal decision-making, particularly for establishing the 
correct diagnosis, choosing the appropriate treatment, 
enrolling patients in clinical trials, assessing therapeu- 
tic efficacy and/or restaging disease1. In current clini- 
cal practice, cancer specimens are commonly obtained 
by image-guided biopsy, fine-needle aspiration (FNA), 
surgical-tissue harvesting, punch biopsies, brushings, 
swabs, biopsy touch preparations (‘touch preps’), fluid 
aspiration or blood analyses. Some of these methods 
(for example, core biopsies and open surgical biopsies for 
histopathology) yield abundant tissue for sectioning 
and staining, whereas other approaches (for example, 
brushings and touch preps for cytopathology) yield 
scant amounts of cellular materials. FNA can often be 
obtained with minimal intervention using small-gauge 
needles (20–25G), have very low complication rates and 
are generally well tolerated2. 

Rapid on-site assessment of cellular specimens has 
become increasingly important to narrowing the time 
between intervention and initiation of therapy, assuring 
specimen quality for subsequent diagnoses and mini- 
mizing sample degradation and loss during transport. 
The current workflows are still labour-intensive and are 
often centralized, requiring extensive sample processing 
and expert cytopathology review. Digital cytopathol- 
ogy and whole-slide imaging3 have been implemented, 

but they also require substantial time, labour and finan- 
cial investment. Taken together, these factors limit the 
throughput, financial affordability and global reach of 
cell-based cancer diagnostics. 

A particular challenge to the implementation of 
cell-based cancer diagnostics is the reliable analysis 
of scant cellular specimens, either through manual imag- 
ing (which requires a trained cytopathologist to review 
an entire slide) or automated analysis (which incorpo- 
rates machine-learning routines for automated analysis). 
Driven by advances in materials science, chemistry, 
engineering and artificial intelligence (AI), a new class 
of cell-based cancer diagnostics is emerging to address 
this challenge. In this Review, we discuss this new gen- 
eration of automated molecular-image cytometers that 
uses advanced materials, engineering and AI approaches 
for digital cell phenotyping. These new ‘all-in-one’ sys- 
tems address a potentially large unmet clinical need 
by enabling advanced cellular diagnostics and are well 
suited to: meeting the demands of an underserved global 
healthcare market; repeat sampling at ultra-low invasive- 
ness through the use of small-gauge needles (which can 
reduce morbidity and is important in clinical trials where 
frequent sampling is desirable); improving turnaround 
times through point-of-care analysis and by avoiding 
biopsy core processing; improving and automating 
quality control; and reducing both time-to-diagnosis 
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Automated molecular-image cytometry 
and analysis in modern oncology 
Ralph Weissleder 1,2,3 ✉ and Hakho Lee 1,2 

Abstract | Diagnostic methods for initial diagnosis and patient stratification for treatment are 

key to modern oncology, but many challenges remain. In developed countries, advances in early 

diagnosis and therapeutics have led to challenges in the sampling of sub-centimetre lesions, with 

repeat biopsies straining accuracy and throughput of pathological assessment. Conversely, low- 

income and middle-income countries face extremely limited pathology and imaging resources, 

large caseloads, convoluted and inefficient workflows, and a lack of specialists. Advances in 

material sciences, chemistry, engineering and artificial intelligence have led to the introduction 

of a new class of affordable image cytometers that enable automated cell phenotyping, with 

ongoing clinical testing indicating that these systems can alleviate existing bottlenecks and 

improve diagnostic efficiency. Ultimately, these diagnostic methods are likely to surpass current 

pathology approaches on the basis of the richness of molecular measurements and the fact that 

they require only scant cellular material, rather than tissue sections. As these methods can be 

miniaturized and are low-power, they can also be used in point-of-care settings. In this Review, 

we focus on new devices and approaches for the integrated analysis of scant cancer samples, 

particularly those obtained by fine-needle aspiration. 
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and the variability of interpretation through automa- 
tion. These emerging technologies complement others 
that are not covered in this Review, namely, low-cost 
flow cytometers4,5, liquid biopsies focusing on cell-free 
DNA (cfDNA)6, exosomes7 and circulating tumour cells 
(CTCs)8–10, and genomic screening tools (such as the 
FoundationOne companion diagnostic (F1CDx) and 
the next-generation-sequencing-based MSK-IMPACT 
diagnostic assay)11–13. Herein, we focus on the automated 
analysis of cellular specimens obtained by FNA (FIG. 1) 

and highlight the stains, affinity ligands and biomarkers 
required for molecular diagnosis, optical technologies 
used for image cytometry and machine-learning algo- 
rithms for automated image analyses, providing rele- 
vant examples of clinical applicability. Finally, we offer 
our perspectives on the current state of the field and on 
future developments. 

 
Stains and biomarkers 

Important considerations for the automated analysis of 
cellular specimens include chromogenic cellular stains, 
labelled antibodies for immunostaining and cycling 
technologies. Each of these staining approaches has to 
be optimized and the choice of biomarkers validated. 

 
Generic cellular stains. Conventional cytopathology 
largely relies on chromogenic stains such as haematox- 
ylin and eosin (H&E), Papanicolaou (Pap) and Giemsa. 
Stained specimens are reviewed by cytopathologists, 
who evaluate cells for a number of parameters, such as 
the nuclear:cytoplasmic ratio, nuclear features, mitoses, 
cell clusters, cell uniformity and cell cohesiveness14–16. 
Such analyses can be automated but are inherently 
limited by the lack of molecular information, resulting 
in variable diagnostic accuracies17. Most commercial 
cell analysers (TABLE 1) use this chromogenic staining 
approach for the automated analysis of white blood cells, 
whose morphometric features are much more homo- 
genous than those of highly variable cancer cells18,19. 

 
Time and cost constraints; integration 
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Fig. 1 | Overview of automated molecular-image cytometry. Small numbers of 

cancer cells obtained by fine-needle aspiration, brush biopsies (brushings), biopsy touch 
preparations (touch preps) or sampling of blood and/or bodily fluids can be subsequently 
analysed using automated molecular-image cytometry. Cycling methods, instrumentation 
and computational approaches are essential to the integrated and automated processing 
of such cells. Indeed, the analysis relies heavily on deep-learning and artificial intelligence 
(AI) approaches to extract information from dozens of channels and convert them into 
information that can inform patient management, including diagnosis and treatment 
decisions. For point-of-care settings, all of the above must occur within reasonable time 
frames and at a low cost. 

 
Alternative dyes for the investigation of nuclear morpho- 
logical features (such as aneuploidy and segmentation) 

include 4′,6-diamidino-2-phenylindole (DAPI), acridine 
orange, ethidium iodide, propidium iodide or flavins20. 
However, given the limitations of generic chromogenic 
staining, immunostaining for cancer-associated and 
host-cell markers has emerged as an alternative and is 
widely used for CTC analysis. 

 
Immunostaining. Antibodies are increasingly being 
used in cytopathology, with the standard method 
being to perform one stain at a time, primarily using 
immunocytology (which involves absorption meas- 
urements of chemical reactions catalysed by antibody- 
conjugated enzymes) rather than immunofluorescence 
(which involves emission measurements of fluorescently 
labelled antibodies). This approach is a practical choice 
for the detection of key molecular cancer biomarkers 
while also enabling morphological assessment of can- 
cer cells; for example, human epidermal growth fac- 
tor receptor 2 (HER2) immunostaining in H&E slides 
enables simultaneous molecular and morphological 
assessment. 

Multichannel fluorescence imaging allows the inter- 
rogation of molecular markers in cells via fluorescently 
labelled antibodies, typically in 4–8 channels. To fur- 
ther increase the number of biomarkers that can be 
analysed per cell (>20 channels), cycling technologies 
have been developed. These methods allow repeat- 
edly staining, destaining (quenching) and restaining 
of cancer tissues. This, in turn, improves the depth of 
cell-by-cell profiling, pathway analysis and immuno- 
profiling in scant FNA samples. To compare different 
cycling methods21–24, it is useful to consider how much 
of the sample is destroyed and/or lost during repeated 
washing and often harsh quenching conditions, how 
fast the quenching step is (which often ranges from tens 
of minutes to hours) and how fast each staining step 
is. Most cycling methods were originally developed for 
paraffin-embedded tissue sections that can withstand 
harsh destaining conditions. Unfortunately, however, 
these harsh conditions, which require the use of oxi- 
dants for bleaching, are often incompatible with FNA 
samples because the already scant cells are destroyed or 
lost during washes. Furthermore, it was not uncommon 
for early cycling technologies to require days to process 
samples. 

Several cell-compatible cycling technologies have 
been developed over the past 5 years (FIG. 2; TABLE 2). We 
initially devised and validated multiple DNA-barcoded 
antibody technologies, including antibody barcoding 
with photocleavable DNA (ABCD)25,26 and single-cell 
analysis for tumour phenotyping (SCANT)24, while 
other groups have experimented with amplification 
strategies27. Although the SCANT method was shown 
to be robust and useful for pathway analysis in a clini- 
cal setting24, one of the obstacles with this method was 
its comparatively modest signal-to-noise ratio and the 
long destaining times (0.5–1 h). The fast analytical 
screening technique (FAST), the latest method, bypasses 
these shortcomings and enables extremely fast cycling 
(>95% quenching in <10 s) (FIG. 2). 
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Table 1 | Overview of experimental and commercial cell analysers 

Name Imaging modality Multiplexa
 Costb

 Application Ref. or company 

Experimental prototypes 

D3 Holography 1 $ FNA samples 45 

CEM Holography <3 $ Cancer FNA samples 32 

AIDA Holography <3 $ Cancer FNA samples 31 

CytoPAN Fluorescence 4–6 (up to 20–40 
with cycling) 

$$ Cancer FNA samples Under development 

FPM RGB <3 $$ Tissue section 59 

Commercial systems 

ThinPrep RGB <3 $$$$ Cervical (Pap) smear Hologic 

FocalPoint GS RGB <3 $$$$ Cervical (Pap) smear Becton Dickinson 

BestCyte RGB <3 $$$$ Cervical (Pap) smear CellSolutions 

CellaVision RGB <3 $$$$ WBC analysis CellaVision 

miLab RGB, fluorescence <3 $$$ WBC analysis Noul 

Iris RGB <3 $$$$ Urine analysis Beckman Coulter 

FNA, fine-needle aspiration; Pap, Papanicolaou; RGB, red, green and blue light; WBC, white blood cell. aRefers to the number 
of stains and not extractable image features. bEstimated cost of an instrument: $, <US$1,000; $$, US$1,000–US$4,999; $$$, 
US$5,000–US$9,999; $$$$ ≥US$10,000. 

Choice of biomarkers. Selecting appropriate molecular 
markers is essential for identifying cancer cells, differ- 
entiating them from non-transformed host cells and 
profiling a growing number of treatment-relevant 
immune cells. Although host-cell markers have been 
thoroughly characterized by extensive flow-cytometry 
studies, epithelial cancer markers are more diverse and, 
therefore, require more immunostains for reliable detec- 
tion. Furthermore, cancer markers are typically only 
expressed in a fraction of cells and patients. Although 
much more work needs to be done in this field to refine 
the choice of biomarker, a number of marker combina- 
tions have had some success in identifying cancer cells 
and differentiating them from host cells. Prominent 
examples include: epithelial cell adhesion molecule 
(EpCAM), cytokeratins, CD45 and CD16 for the iden- 
tification of CTCs28; four-marker combination (the 
‘quad’ marker set) comprising epidermal growth factor 
receptor (EGFR)+ EpCAM + mucin 1 (MUC1)+ WNT2 
or EGFR, EpCAM, HER2 and MUC129,30; HER2, oes- 

trogen receptor (ER)/progesterone receptor (PR) for 
breast cancer31; CD19, CD20, immunoglobulin-κ and 
immunoglobulin-λ light chains and the proliferation 
marker Ki67 for lymphoma32; EGFR, thyroid transcrip- 
tion factor 1 (TTF1; also known as NKX2-1), chromo- 
granin and synaptophysin for lung cancer33; EpCAM, 
calretinin, CD45 and vimentin (the ‘ATCdx’ marker set) 
for ovarian cancer34; and markers for mutated proteins, 
such as KRAS-G12D, EGFRv3, IDH1-R132G and BRAF- 
V600E, among others. This list is clearly not exhaustive 
but rather represents what has, to date, been used in auto- 
mated cell analysers. We expect that the number of spe- 
cific biomarker combinations and better immunostains 
(antibodies) and will grow in the future. 

 
Optimizing materials for cellular analysis. Freshly 
obtained clinical samples need to be fixed, stained 
and captured on glass before they can be analysed. All 
of these steps require careful optimization and, often, 

modified materials. Fixation can usually be done in 
paraformaldehyde, methanol, propanol or other com- 
mercially available mixes, such as CytoRich Red (CRR). 
We have found empirically that some FNA samples of 
solid neoplasm are preserved better in 50%-diluted 
CRR, whereas fixation duration (ideally 15–30 min) is 
less critical. 

Immunostaining is best performed in small plastic 
vials by adding antibody reagents to cells in a staining 
buffer. Antibody–fluorochrome stability, quality-control 
issues and limited access to basic tools (for example, cen- 
trifuge filters) are notable hurdles when using immuno- 
stains in remote areas and in point-of-care devices. The 
use of lyophilized antibodies and ‘cocktails’ that contain 
all of the necessary reagents can reduce variability35. 

An alternative immunostaining approach is to stain 
cells directly on glass slides after capture. Capturing cells 
on a glass slide is also critical to ensure that cells can be 
brought to the focal plane. Capture can be done using 
biological ‘glues’ (such as dopamine, biotin and neutravi- 
din or polylysines) as slide coatings or, alternatively, glass 
slides can be coated with capture antibodies. Irrespective 
of the method used, careful validation is required for dif- 
ferent applications. Non-specific antibody binding can 
often be reduced by coating slides with blocking materi- 
als such as bovine serum albumin (BSA) or polyethylene 
glycol (PEG) polymers. 

To simplify sample handling and processing, com- 
mercial systems will likely adapt cartridges to perform all 
of the above steps in a single platform. One such exam- 
ple is in the miLab system (Noul), which incorporates 
cellular processing and staining in a single cartridge. 

Image-cytometry systems 

To inspect heterogeneous cell populations with statistical 
confidence, image cytometers must visualize large num- 
bers of individual cells. Conventional geometric optics, 
however, are inherently constrained by the so-called 
space–bandwidth product (SBP)36 and, therefore, 
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produce megapixel information. This translates to a 
familiar experience — common microscopes have 
either a wide field of view (FOV) at low resolution or a 
small FOV at high spatial resolution, but not both at the 
same time. 

Most laboratory imaging systems overcome this 
limit by combining high-magnification optics with 
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mechanical stages to automatically scan slides and then 
transmit the information. Whole-slide imaging and 
digital-cytopathology technologies have progressed 
over the years37  but challenges remain. Two key issues 
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in digital cytopathology are focusing and the need for 
expert review. The focusing issue has largely been solved 
via either autofocusing algorithms or 3D imaging of 

thick z-stacks. Autofocusing software often uses either 

a least-squared or a mean-value method to locate the 
ideal focus plane3, whereas 3D imaging, such as micro- 
scopy with optical sectioning, requires confocal laser 
scanning microscopy (CLSM), two-photon microscopy, 
structured illumination microscopy (SIM), light-sheet 
fluorescence microscopy (LSFM) or inverted selec- 
tive plane illumination microscopy (iSPIM)38. All of 
these methods require expensive instrumentation and 
expert users, and often generate very large data sets3,38,39. 
As such, this particular approach limits deployment in 
resource-constrained remote locations. 

New technological advances are increasingly ena- 
bling automated molecular-image cytometry, which is 
particularly helpful for point-of-care use. Computational 
optics, wherein optically encoded images are digitally 
interpreted, can expand the SBP beyond the physi- 
cal limit of the optics. Advances in optoelectronics 
and micro-optics further enable the construction of 
compact, easy-to-control, high-performance systems. 
Using these approaches can also decrease the overall 
system cost, as optoelectronic parts and computation 
have become inexpensive. Three emerging modali- 
ties embody these new concepts — digital-holography 
cytometry, Fourier- ptychography cytometry and 
miniaturized-fluorescence cytometry. 

 
Digital-holographic cytometry. Holographic imaging is 
coherent bright-field imaging that records an interfer- 
ence pattern or a hologram between a reference beam 

Fig. 2 | Cyclic labelling technologies for multiplexed cancer-marker and 

host-cell-marker assessment. a | An overview of the different cycling techniques, 

including antibody barcoding with photocleavable DNA (ABCD), single-cell analysis 
for tumour phenotyping (SCANT)24 and fast analytical screening technique (FAST), is 
shown. In ABCD, DNA-barcoded antibodies bound to tissue of interest are photocleaved 
and then digitally detected by fluorescent barcodes or sequencing25. In SCANT, the primary 
barcoding stand on an antibody of interest contains a complementary imaging strand 
consisting of 13 bp and two fluorochromes. After imaging, the fluorescent strands are 
simply washed off with melting buffer and the primary strands are capped to reduce 
additional cycle-to-cycle background. Both ABCD and SCANT require several hours 
for processing. In FAST, fluorescently labelled antibodies are quenched with custom- 
designed clickable quenchers (<10 s), allowing multichannel imaging of 20–30 markers 
within an hour. b | Example of multiplexed single-cell profiling using the SCANT 

technique. Here, SCANT was applied to profile phosphoproteins in human A431 
epidermoid carcinoma cells. Representative examples of phosphoprotein ratio imaging 

for ribosomal protein S6 (S6)/pS6RP, RACα serine/threonine-protein kinase (AKT)/pAKT 
and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1)/p4EBP1 are 
shown. Panel b is adapted from REF.24, CC-BY-4.0 (https://creativecommons.org/ 

licenses/by/4.0/). 

and an object. Digital holography acquires such holo- 
grams in a digital format and computationally converts 
them into object images. This approach can greatly sim- 
plify optics, as a light source, usually a light-emitting 
diode (LED), imaging objects and a digital imager can be 
aligned along the same optical axis31,32,40–45 (FIG. 3a). This 
configuration, called lens-free digital in-line holography 
(LDIH), renders the system compact and cost-effective, 
requiring no intermediate optical components such as 
lenses and filter sets. By placing the samples directly on 
top of an imager, LDIH achieves a large FOV, equiv- 
alent to the entire sensing area of the imager (FIG. 3b). 
High spatial resolution is obtained through numerical 
image reconstruction (FIG. 3c), particularly using iterative 
phase-retrieval processes32. Reconstructed holograms, 
therefore, contain a greater amount of information 
(~108 pixels) than a conventional microscope of similar 
spatial resolution (~106 pixels). Furthermore, as LDIH 
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Table 2 | Comparison of cellular cycling techniques 
 

Techniquea
 Targets Channels Cycles Time Costb Refs 

ABCD; bead-based, 
fluorescent barcodes 

<100 NA NA >1 day $$$ 25,26 

SCANT; DNA– 
fluorochrome 
hybridization 

~20–30 4–6 4–5 1 day $$ 24 

FAST; site-specific, 
instant quenching 

~20–40 4–6 6–8 <1 hour (for 
20 markers) 

$ NA 

ABCD, antibody barcoding with photocleavable DNA; FAST, fast analytical screening 
technique; NA, not applicable; SCANT, single-cell analysis for tumour phenotyping. 
aCollectively, these cycling technologies enable the imaging of 20–40 targets in individual 
cells and can be used for cellular mapping, cellular pathway analysis or heterogeneity 
studies. bEstimated reagent cost for a single sample imaged at 20–100 channels: $, <US$50; 
$$, US$50–US$499; $$$, <US$500–US$4,999. 

 

is a quantitative phase-imaging technique46, phase 
information can be used to infer cell morphology and 
intracellular content related to the refractive index47. 

Various LDIH systems have been developed. Highly 
portable systems were initially designed based on smart- 
phones45, using phone-embedded cameras as detectors. 
Stand-alone devices were subsequently developed for 
global health applications, incorporating additional 
user-friendly features (including touchscreens and 
sample cartridges) that are difficult to integrate into 
smartphones32 (FIG. 3d). Initial LDIH applications typ- 
ically identified biological targets (such as blood cells, 

bacteria and Caenorhabditis elegans) on the basis of their 

unique morphology40,48–50. Over the past 5 years, new 
labelling strategies have been explored to impart molec- 
ular specificity, thereby improving diagnostic accuracy. 
In one example involving the labelling of cells with 
molecularly specific microbeads to alter holographic 
patterns (FIG. 3c), counting the number of cell-bound 
beads enabled quantitative molecular profiling of cancer 
cells45. Immunocolour staining is another approach to 
molecular profiling (FIG. 3e), as hologram intensities 
(light absorbance) can vary according to staining levels. 
This approach has been exploited for breast-cancer 
phenotyping in point-of-care settings31. Measurements 
of molecular biomarker expression using these meth- 
ods are generally concordant with flow-cytometry-based 
measurements (FIG. 3f). 

However, despite its promise, technical challenges 
remain for on-site LDIH applications. Hologram 
reconstruction is a computationally intensive pro- 
cess that requires a powerful computer, preferably one 
equipped with graphical processing units (GPUs), or 
cloud computing with a reliable network connection. 
Deep-learning-based machine vision might mitigate 
some of these requirements32,51,52 (FIG. 3g), but its robust 
performance across a broad range of samples has yet to 
be demonstrated. Furthermore, spatially connected or 
dense biological objects can be difficult to image using 
LDIH, as the numerical phase retrieval becomes unstable. 
In such samples, multiple measurements with different 
physical parameters — such as sample-to-sensor dis- 
tances53, illumination angles54 and wavelengths31,55 — are 
necessary. LDIH also has limited multiplexing capacity; 
immunobead labelling is best suited to single-marker or 
dual-marker detection per sample and colour  staining 

 
for ≤3 markers in the same sample. Thus, diagnostics 
based on cellular morphology and a few molecular 
markers would be a niche application for LDIH. 

 
Fourier-ptychography cytometry. In Fourier ptychog- 
raphy, a set of overlapping, spatially shifted diffraction 
patterns are acquired and then numerically stitched 
(or ‘folded’, hence, the Greek prefix ptychí) to gener- 
ate a larger diffraction pattern. The strategy effectively 
increases the numerical aperture (NA) of an optical sys- 
tem, improving spatial resolution without compromis- 
ing the FOV31,55. Most Fourier ptychography microscopy 
(FPM) systems use programmable LED arrays as an illu- 
mination source, and data acquisition starts with taking 
a sequence of wide-FOV images at low magnification 
by changing the illumination pattern of the LED array 
(FIG. 4a). Individual images have low resolution and con- 
tain a spatially shifted spectrum of an imaged sample in 
the Fourier domain (FIG. 4b). Numerical post-processing 
coherently combines these intensity-only images in the 
Fourier space to recover high-frequency information. 

Through this process, the numerical aperture (NAFPM) 

of the system becomes the sum of NA values of an objec- 
tive lens (NAobj) and an illumination source (NAlight)

56. 

Thus, for a given incident light (wavelength λ), FPM can 
achieve a higher resolving power (~λ/(NAobj + NAlight)) 

than a regular microscope (~λ/NAobj). FPM yields 

gigapixel-level information, enabling high-resolution 
imaging of numerous cells, and can even reveal subcel- 
lular detail57 (FIG. 4c). Furthermore, using low magnifica- 
tion objectives, FPM also supports a large focal depth, 
robust to variations in sample thickness. 

Technical developments over the past 5 years have 
advanced FPM systems closer to point-of-care use. 
The original FPM method was time-consuming and 
resource-intensive, as large numbers (>200) of raw 
images were acquired by sequentially turning on a sin- 
gle LED. A new illumination scheme has increased the 
speed of this process through the use of a pseudoran- 
dom illumination pattern designed to minimize data 
redundancy in the Fourier space57, acquiring fewer 
images (~40). Furthermore, a deep-learning approach to 
Fourier-spectrum recovery can ease the computational 
load of image processing58. Fundamental drawbacks, 
however, remain. For example, the aforementioned multi- 
plexing challenges that limit LDIH still apply because 
FPM is a form of coherent-light microscopy. FPM also 
requires thin samples with a smoothly varying phase; 
this is necessary to map the low-resolution images, 
obtained at different incident angles, to different pass- 
bands of the Fourier spectrum and to, thereby, recover a 
high-resolution sample image59–61. 

 
Miniaturized-fluorescence cytometry. As the list of 
known cancer biomarkers grows, the need for multi- 
plexed cellular profiling also increases, largely driven 
by interest in improving diagnostic accuracy and 
facilitating molecularly based treatment decisions. 
Conventional immunocytology, which is based on 
chromogenic staining and bright-field microscopy, 
typically probes only for a few biomarkers simultane- 
ously. Fluorescent imaging, particularly in combination 
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with cycling technologies, is a potent approach for 
in-depth multiplexing; a major technical challenge is 
to transform bulky, expensive microscopes into com- 
pact, affordable equivalents for point-of-care use. 
Fortunately, advances in optoelectronics have made 
high-quality miniaturized optical parts available, 
prompting new systems engineering. For example, small 
LEDs can deliver sufficient power to replace conven- 
tional lamps or lasers as an excitation light source, and 

 
the photosensitivity of semiconductor imagers has 
improved substantially for reliable low-light detection62. 
Another opportunity is to augment manual image cura- 
tion with automated analyses using machine-learning 
approaches. 

Thumb-sized fluorescent microscopes (miniscopes) 
integrate optical components into a single device62 

(FIG. 5a). Using a gradient-refractive-index objective lens 
enables shortening of the optical path and can drastically 
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Fig. 3 | LDIH. a | Imaging configuration in lens-free digital in-line holography 

(LDIH). The system consists of a light-emitting diode (LED), an aperture and 

an imager, with a sample placed directly above the imager. b | Wide-field- 

of-view hologram captured by the LDIH imaging system. The individual 

block dots are cells, and the black box indicates the field of view of a ×20 
bright-field microscope (BFM). c | Raw holograms show undecipherable 
patterns but the numerical image reconstruction recovers object images. 
The reference BFM images were taken at ×20 magnification. d | A portable, 
stand-alone LDIH device built and used for point-of-care cancerdiagnostics. 
Recorded holograms are transferred to a remote server for image 
reconstruction. e | Human T47D and SkBr3 breast cancer cells were stained 

for the oestrogen receptor/progesterone receptor (red) and human 
epidermal growth factor receptor 2 (HER2; blue) and imaged via LDIH and 
BFM. Note that the hologram contrast changed according to the staining 
level. f | Cells were labelled for different biomarkers and analysed by LDIH 

 

and flow cytometry. Note that hologram-based and flow-cytometry-based 

analysis of biomarker expression is generally concordant. g | Deep-learning 

algorithms forhologram analyses. A convolutionalneuralnetwork identifies 
labelled cells directly from holograms. Images classified as cells enter the 
next module for colour classification. The final information is used for 
lymphoma diagnostics. DLBCL, diffuse large B cell lymphoma; EGFR, 
epidermal growth factor receptor; EpCAM, epithelial cell adhesion 
molecule; FL, follicular lymphoma; MCL, mantle-cell lymphoma; MFI, mean 
fluorescence intensity; SBCL, spindle B cell lymphoma. Panels a and b are 

adapted with permission from REF.31, American Chemical Society. Panel c 

is adapted with permission from REF.45, Proceedingsofthe National Academy 
of Sciences. Panel d is adapted from REF.32, Springer Nature Limited. Panel e 

is adapted with permission from REF.31, American Chemical Society. Panel f is 

adapted with permission from REF.45, Proceedings of the National Academy 
of Sciences. 
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reduce system size (2.4 cm3, 1.9 g)62. Such a small form 
factor allows the scope to be mounted on an animal’s 
head with minimal interruption to its natural behav- 
iour63,64 for imaging of live fluorescently tagged cells. 
As potential point-of-care applications, miniscopes have 
been used for cell profiling and bacterial detection62 

(FIG. 5b). In addition, a miniscope array can perform 
large-area imaging without scanning, taking advantage 
of the scope’s small lateral size (~5 mm). The miniscope 
design is now in the public domain as an open-source 
microscope65, promoting new ideas and functional 
extension. System modification and computational pro- 
cessing have enabled two-photon excitation66, volumetric 
rendering67 and lensless imaging68. 

For simultaneous multicolour (≥4) cellular analy- 
ses, we recently developed the Cytometry Portable 
Analyser (CytoPAN) system, which was originally built 
for operation in remote locations (FIG. 5c) but has since 
been applied in point-of-care settings (for example, in 
the operating room, interventional suites and doctors’ 
offices). In this system, the excitation light sources are 
positioned for side illumination through a glass slide, 
and a single emission filter with four passbands is used; 
no dichroic mirrors or mechanical filter changes are 
necessary. Furthermore, intelligent software can be used 

 
to streamline the entire assay, including light-source cali- 
bration, sample-slide detection, data acquisition and cel- 
lular analyses. CytoPAN has four different fluorescent 
channels (FIG. 5d) and a bright-field imaging capacity. 
As proof-of-concept of its utility, automated CytoPAN 
software algorithms were shown to be capable of analy- 
sing individual cells and producing summary reports to 
inform cancer diagnosis (FIG. 5e). This affordable system 
(<$3,500), which is operable by non-skilled workers, is 
currently undergoing field testing in low-income and 
middle-income countries. 

As these fluorescent systems are still bound by the 
physical SBP limit, a trade-off between FOV and spa- 
tial resolution remains. Computational methods used 
in coherent imaging cannot be applied because fluores- 
cent emission does not carry phase information. New 
approaches for wide-FOV fluorescent imaging still need 
further improvement in image quality68,69. For now, a 
straightforward workaround is to combine sample scan- 
ning with miniaturized optics; a key technical require- 
ment is to automate such operations, including stage 
movement and imaging stitching. Equally important 
is the development of tools for reliable sample prepara- 
tion, for example, by connecting fluidic cartridges with 
cost-effective pumping systems70. This approach would 
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Fig. 4 | FPM. a | In a Fourier ptychography microscopy (FPM) system, an array of light-emitting diodes (LEDs) is used 
for angled illumination and low-magnification-objective lenses capture large-field-of-view (FOV) images. b | Sequential 
images atdifferent illumination patterns are acquired. Each image, bounded by the numerical aperture (NA) of an objective 
lens (NAobj), contains a patch of frequency information from different regions of the sample’s Fourier space. Numerical 

reconstruction stitches these patches together to cover a larger frequency domain. The effective numerical aperture of 

the system (NAFPM) is NAobj + NAlight, where NAlight is the numerical aperture of the illumination source. c | A full-FOV FPM 
image reconstruction of human HeLa cells. The image, taken with a ×4 objective lens, achieved a ×0.8 NA resolution and 
has a FOV of 2.1 × 1.8 mm2. The time-lapse images (reconstructed from a zoom-in of the original image; white box) reveal 
a cell undergoing mitosis (that is, dividing into multiple daughter cells), highlighting the ability of FPM to show subcellular 
detail. Indeed, globular daughter cells, which would have been blurred in conventional high-magnification microscopy, 
remain in focus with FPM. Panel c is adapted with permission from REF.57, The Optical Society. 
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Fig. 5 | Miniaturized fluorescent cytometers. a | In thumb-sized fluorescent microscopes (‘miniscopes’), a finger-sized, 

single-channel fluorescent microscope is structured like a conventional fluorescent microscope but uses a light-emitting 
diode (LED) as an excitation source and a gradient refractive index (GRIN) lens as an objective lens. b | The miniscope was 

used to image Mycobacterium tuberculosis stained with the fluorescentdye auramine O. The image shows a 300× 300-pixel 
region of the complementary metal–oxide–semiconductor (CMOS) camera. c | The Cytometry Portable Analyser (CytoPAN) 
system is currently under development and integrates five light sources and a quad-band filter. No mechanical parts are 

necessary for multiple-channel imaging. d | Upon CytoPAN-based analysis of a fine-needle aspiration specimen from a 

patientwith breastcancer, cancer cells are identified through the staining of ‘quad markers’ (QUAD) — epidermal growth 
factor receptor, epithelial cell adhesion molecule, human epidermal growth factor receptor 2 (HER2) and mucin 1, or 
epidermal growth factor receptor, epithelial cell adhesion molecule, cytokeratins and mucin 1 — and immune cells are 

identified through CD45 staining. Images are taken at ×5 magnification. e | CytoPAN software automatically profiles 
individual cells in multicolour channels and generates a summary report to guide cancer diagnosis. From the total 
cell counts, the proportion of cancer cells (QUAD positive) is obtained (left) and further stratified according to the 
expression levels of oestrogen receptor (ER)/progesterone receptor (PR) and HER2. Panels a and b are adapted from REF.62, 

Springer Nature Limited. Panels c, d and e courtesy of J. Min and L. K. Chin. 
 

increase the speed of assays and minimize procedural 
errors, particularly in cyclic imaging, which requires 
repeated fluidic handling (quenching, washing and 
labelling). 

Machine learning for imaging analyses 

Manually inspecting and analysing images produced by 
the aforementioned systems is time-consuming, imprac- 
tical, subject to the bias of the operators and requires 
trained specialists who are often scarce in low-income 
and middle-income countries. Machine learning has 
emerged as an indispensable tool to effectively address 
these challenges. Classic machine-learning tools, such 
as logistic regression, learn to make inferred decisions 
based on an input of preselected data features71. Such 
features are typically manually selected and serve to 
condense complex information (for example, a whole- 
cell image) into a smaller set of numeric variables 

(such as size and shape). By contrast, deep-learning tools 
simultaneously learn to extract relevant features from 
complex input data and to manipulate those features 
to perform specified tasks71. With exposure to train- 
ing examples, deep-learning algorithms incrementally 
update data-transformation parameters to improve task 
performance. Once fully trained, models can be further 
improved through continuous exposure to new data sets. 

 
Computational platforms for machine learning and 
dedicated imaging software. In deep learning, convo- 
lutional neural networks (CNNs) are the most widely 
used architectures for cellular-imaging analyses, due 
to their strong performance in the analysis of spatial 
information72,73 (BOX 1; FIG. 6a). CNNs are designed to 
process data with array-like structures, such as images, 
which are 2D arrays of pixels. Machine-learning models 
can be built with most existing programming languages 
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Box 1 | Key concepts in CNNs 

In deep learning, convolutional neural networks (CNNs) are the most 

widely used architectures for cellular-imaging analyses. The principal 

concepts employed in CNN development are outlined here. 

Convolution 
This operation takes an input, multiplies it with aweight matrix (also termed 

a kernel or filter) and produces summed output layers121. The weight matrix 

is much smaller than the input, and the output layer, or feature map, 

displays an input’s response to aparticular filter. Each element ofthe feature 

map is based on a small number of neighbouring input elements (sparse 

interactions), and different regions of the feature map are produced by 

the same filter parameters (parameter sharing). These two properties 

dramatically minimize the number of parameters when evaluating the 

whole input. Convolution effectively finds localized but generalizable 

structures. Global interaction is still preserved through successive 

convolution operations; output elements in adeeper convolution layer 

are indirectly connected to larger numbers of input elements. 

Activation functions 
In CNNs, information flows unidirectionally through network layers. 

Activation functions bridge two adjacent networks, transforming the 

output of a preceding network and feeding it to the following one. 

Activations are necessary to make the entire network non-linear and to, 

therefore, increase its capacity for problem-solving. The most common 

function is a rectified linear unit (ReLU)122,123 with the form a(x)= max(0, x). 

Another popular function is softmax, which takes number outputs from a 

convolution layer and converts them into the probability distributions for 

potential outcomes124. 

Pooling 
The output from an activation function can go through a pooling 

operation, which replaces each output element with a summary statistic 

of its neighbourhood. CNNs often use the max pooling, which reports 

the maximum value within a rectangular neighbourhood125. Pooling 

downsamples the output by the neighbourhood size, and also makes the 

network invariant to minute changes in inputs. For example, the pooled 

output can be the same even if certain features are translated by a few 

pixels in images. 

Training and testing 
Building a CNN for a given task usually involves two steps — a new model 

learns to optimize its parameters using a training data set and the trained 

 

 
model is applied to previously unseen inputs (a test data set) to assess 

generalization. Underfitting occurs when the training error is above a 

preset threshold. Overfitting occurs when the training error is much less 

than the generalization error. 

Regularization 
Underfitting can be resolved by expanding the model’s learning capacity, 

typically by increasing the number of network parameters. Reducing 

overfitting, however, requires more systematic strategies that are 

collectively called regularization. One such technique, dropout, stands 

out as computationally efficient and broadly applicable126. At a predefined 

probability (dropout rate), dropout intentionally removes the output 

elements from intermediate networks. This stochastically mimics 

evaluating an ensemble of models with different subnetwork structures. 

The final model can, therefore, be more generalizable to a given task. 

Data augmentation 
The accuracy of a neural network improves as more data are used for 

training. Data augmentation expands training data sets by creating 

artificial data77. The method has been particularly effective for 

image-classification problems. Cell images, for example, can be 

pixel-shifted, rotated or mirrored without losing a real-world context. 

Hyperparameters 
As settings that define a model architecture and control learning 

processes, hyperparameters exist outside of the model’s domain and 

must be set externally. Search algorithms such as grid search and 

Bayesian optimization can be used to automate hyperparameter 

optimization by forming a wrapper around a learning model. This 

approach, however, is computationally expensive. In most cases, 

tuning hyperparameters is a heuristic process, largely relying on 

programmers’ experience. 

Transfer learning 
A model trained for one task can be reused to solve a second related task 

if the tasks share common features127. For example, a CNN optimized for 

cancer-cell detection can be retrained to identify other cell types. In this 

case, the transferred network serves as an initial instance to be fine-tuned 

for a new task. In another form, an unaltered, pretrained network is 

concatenated with additional networks, wherein the pretrained network 

is used to capture general features. Transfer learning can narrow the 

scope of possible models to be searched51. 

 

(C, C++, Java, MATLAB, Python or R), and new lan- 
guages, such as Julia, have been developed for faster 
computation. The de facto language for machine learn- 
ing, however, is Python, the popularity of which has been 
boosted among data scientists by the release of Tensor- 
Flow, a computational framework for machine learn- 
ing, in the Python application programming interface74. 
Various machine-learning frameworks are also available 
(for examples, see Supplementary Table 1), providing 
convenient building blocks as well as GPU-compatible 
libraries for accelerated computation. 

The organization of computational layers, referred to 
as the model architecture, depends on the analysis task. 
Although frameworks exist for designing novel architec- 
tures, researchers might opt for predefined models with 
established success. For image-to-image transforma- 
tions, such as single-cell segmentation, the U-Net75 and 
DeepLab76 architectures are two popular choices. These 
models encode images into information-rich features 
by convolution and then deconvolve them to produce 
segmentation images at input resolution. By contrast, 
classification tasks use feature encodings to produce 

a probability distribution among classes. These CNN 
architectures typically differ in the building blocks that 
make up the encoding process. Popular architectures 
include AlexNet77, ResNet78, VGG79 and Inception80. 

Stand-alone imaging software now tends to integrate 
learning capacities in its design81–86 (Supplementary 
Table 2). These tools make it possible to build machine- 
learning models in a coding-free, user-friendly environ- 
ment, but analysis might be limited to predefined tasks. 
Some software expands its flexibility by incorporating 
support for script interpretation or communication with 
external programs. 

 
Machine learning in conventional cytopathology. 
Conventional cytopathology incorporates computa- 
tional approaches in the form of automated slide analy- 
sis and whole-slide imaging. These approaches still rely 
on expert and optimized slide preparation, state-of-the 
art microscopes and slide scanners (which often cost 
more than $100,000) and specialists to analyse flagged 
abnormalities. Nevertheless, these approaches and their 
clinical use provide important lessons from which the 
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next generation of automated image-cytometry systems 
can benefit14. 

There are currently three commercial systems that use 
proprietary algorithms to analyse Pap-stained cervical- 
cytology slides — the ThinPrep Imaging System (Hologic, 
Marlborough, MA), the FocalPoint GS Imaging System 
(Becton Dickinson, Franklin Lakes, NJ) and BestCyte 
(CellSolutions, Greensboro, NC)17,87. Beyond these sys- 
tems, experimental studies have used machine learning 
to automate nuclear morphometry for the analysis of 
breast-cancer15,16,88,89 cells and other malignancies17. 

 
Cellular analyses based on machine learning. In addition 
to facilitating conventional tasks in image analyses75,90–95, 
the power of machine learning to discover and gener- 
alize hidden patterns could advance new paradigms in 
cytometry. 

For example, in the case of in silico labelling, a deep 
neural network learned to predict fluorescent labels 
from unstained bright-field micrographs96 (FIG. 6b). The 
network was trained on paired images of unlabelled 

and fluorescently labelled cells. The use of z-stacks of 
bright-field images improved prediction accuracy, 
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presumably by increasing the morphological informa- 
tion available for feature extraction. Indeed, the network 

reported smaller errors as more distinct z-stack images 

were used. By predicting cellular labelling, the trained 
model could identify cell types and cell state (FIG. 6c). 
Furthermore, the knowledge was transferrable; once 
trained to predict a set of labels, the network could learn 
new labels from a small number of additional data sets, 
effectively demonstrating transfer learning (BOX 1). 

Machine learning has also effectively determined 
heterogeneous cellular phenotypes that otherwise 
would be obscured in complexity. For example, a com- 
putational approach was developed to analyse subcel- 
lular protrusion activities in time-lapse micrographs97 

(FIG. 6d). Without supervision, the framework resolved 
different protrusion velocities and mapped them into 
three distinct clusters, revealing a previously unknown 
‘accelerating protrusion’. Interestingly, the protrusion 
phenotypes could be associated with actin regulator 
dynamics, highlighting how machine learning might 
help to discover unknown molecular mechanisms. 

 
Clinical cytometry applications 

The technical requirements for diagnosis vary among 
different cancer types. Below are some practical examples 
highlighting the use of new cytometry methods. 

 
Lymphoma. One of the major health challenges in 
sub-Saharan Africa is the high prevalence of AIDS- 
related cancers (sometimes termed the ‘second wave 
of AIDS’)98–100. Some such cancers, for example, diffuse 
large B cell lymphoma (DLBCL) and Burkitt lymphoma, 
are very aggressive. However, owing to limited resources, 
many patients with these malignancies evade compre- 
hensive evaluation or are not appropriately classified. 
Diagnosis and care are often hampered by an inability 
to acquire proper tissue specimen, lack of diagnostic 

 
reagents, limited availability of specialists and low access 
to care in rural settings. Although a major portion of 
these cases are curable (even in low-income and middle- 
income countries), therapeutic opportunities are often 
missed101,102. 

In 2018, a prospective clinical trial used the contrast- 
enhanced LDIH system and the aforementioned 
deep-learning algorithm on percutaneously obtained 
FNA samples from 40 patients who were clinically 
referred for aspiration and biopsy of enlarged lymph 
nodes (lymphadenopathy) detected by whole-body 
imaging that were suspicious of lymphoma32. Freshly 
harvested FNA samples were captured on glass slides 
via  CD19/CD20 antibodies and  incubated with 
antibody-coated beads (targeting immunoglobulin κ 

or λ light chains or Ki67) of unique sizes, absorban- 
cies and holographic signatures. Bead binding to cells 
was holographically measured and the end result was 
a quantitative read-out of malignant cell numbers and 
differentiation between high-grade and low-grade 
lymphoma subtypes. The automated method was sur- 
prisingly accurate and fast, with 91% sensitivity, 100% 
specificity and 95% accuracy for diagnosing lymphoma 
and 86% accuracy in triaging lymphomas into aggres- 
sive and indolent types. No false positives were found for 
benign or disease-free samples, and only one sample was 
non-diagnostic due to low B cell counts. By comparison, 
clinical flow cytometry showed 10 non-diagnostic cases 
with 87% accuracy for diagnosing lymphoma. More 
importantly, flow cytometry either could not or failed to 
distinguish aggressive from indolent types. Larger-scale 
trials are currently underway in HIV-endemic regions 
of Africa. 

 
Breast cancer. Breast-cancer diagnosis and the differ- 
entiation between palpable mass lesions and benign 
lesions is another considerable problem in low-income 

   and middle-income countries with severe diagnostic 

◀ Fig. 6 | Machine learning in imaging analyses. a | Key concepts in convolutional neural 
networks are shown. Convolution followed by activation extracts features, and the pooling 

operation downsamples intermediate layers while keeping salient features. 2D feature 
maps are then reshaped into a vector (flattening) and, following traditional neural network 
layers, a softmax activation produces a final probability distribution for classification. 

b | In the case of in silico labelling, machine learning has been used to predictfluorescent 

labelling from unlabelled images and to infer cell type. By using z-stacks of transmitted 
and fluorescentmicrographs as training sets, a convolution neural network learned to 

predict fluorescent labelling from unlabelled images. c | The in silico labelling approach 

was applied to predict cell type. The input image (bright field) contains various cell types 
differentiated from pluripotent stem cells. In the ground-truth image, cells were stained 

for neuron-specific class III β-tubulin (TuJ1; green) and nucleus (Hoechst; blue). The 
network was trained to predictthe intensity of these labels ateach pixel. In the error map, 
predicted pixels thatare too bright(false positives) are displayed in magenta and those 
that are too dim (false negatives) are displayed in teal. Outsets 1, 2 and 4 show correct 
predictions but note that outset 3 shows a false positive — a cell that has neuronal 

morphology but is not TuJ1 positive. d | Machine learning has also shown promise for 

subcellular-feature analysis. A leading edge of a migrating cell was imaged over time. 
The cellboundary was segmented into smallprobing windows and the protrusion velocity 
in each window was tracked. Unsupervised machine learning grouped protrusion activities 
into three clusters. Cluster III is a previously unknown phenotype, ‘accelerating protrusion’, 
whereas clusters I and II showed a high correlation between protrusion velocities and actin 
activities. The results imply that actin nucleation might mediate subcellular protrusion. 
Cluster III had no distinctpattern, suggesting differentactin molecular dynamics. ReLU, 
rectified linear unit. Panels b and c are adapted with permission from REF.96, Elsevier. 

Panel d is adapted from REF.97, CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/). 

bottlenecks. Artificial Intelligence Diffraction Analysis 
(AIDA), a low-cost digital system based on computa- 
tional optics and deep learning, was designed to diag- 
nose breast cancer from FNA samples31. Unlike the 
bead-based microholography in lymphoma32, AIDA 
uses chromogenic stains with enzyme-mediated ampli- 
fication to resolve receptor status in harvested cells. 
A promising early study showed high accuracy (>90%) in 
recognizing cells directly from diffraction patterns and 
in classifying breast-cancer types using deep-learning- 
based analysis of sample aspirates. The image algorithm 
was fast, enabling cellular analyses at high throughput 
(~3 s per 1,000 cells), and the automated workflow ena- 
bles use by less skilled healthcare workers. For global 
healthcare applications, the system is currently being 
adapted for even simpler operation31. Additionally, large- 
scale trials of the fluorescence multiplexing technology 
(CytoPAN) are underway. 

 
Oral cancer. Over 90% of oral cancers are squamous-cell 
carcinomas. These head and neck squamous-cell carci- 
nomas are the sixth leading cancer by incidence world- 
wide, with more than 550,000 cases and ~300,000 deaths 
per year, and are very common in parts of the world that 
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have high rates of tobacco use, betel use and/or human 
papillomavirus infection103,104. As not all oral lesions 
are malignant, biopsy-based histopathological diag- 
nosis is essential. In prior research, a fluorescently 
labelled poly(ADP-ribose) polymerase (PARP) inhibi- 
tor (PARPi-FL) was developed as an intravital fluor- 
escent dye to be used in point-of-care settings105–108. 
Studies from the past 5 years have shown the feasibility 
of using PARPi-FL as a quantitative biomarker for oral 
cancer106. Preliminary results from a first-in-human trial 
(NCT03085147)108 devised a PARPi-FL topical-staining 
protocol for human biospecimens. Using fresh oral- 
cancer tissues within 25 min of biopsy, the protocol cor- 
rectly identified cancer and margin samples with >95% 
sensitivity and specificity. The study also showed that 
PARPi-FL imaging can be integrated into clinical work- 
flows to instantaneously assess the presence or absence 
of microscopic disease at the surgical margin. 

 
Diagnosing cancer in fluid samples. Numerous bodily 
fluids can be readily sampled with small needles and 
subsequently analysed for cancer cells. Such proce- 
dures include paracentesis, thoracentesis and cyst-fluid 
aspiration, all of which are often performed either 
therapeutically to relieve symptoms or for diagnosis. 
Conventionally processing such samples still requires 
labour-intensive concentration, embedding, staining and 
review. In 2013, a microfluidic-chip platform was devel- 
oped to enrich cancer cells from highly heterogeneous 
peritoneal fluid and then perform molecular analyses. 
Using four of the most promising biomarkers (EpCAM, 
calretinin, CD45 and vimentin) and 47 patients, the 
results showed that the marker set can sensitively and 
specifically map cancer cell numbers and, through its 
reliable enrichment, facilitate additional treatment- 
response measurements related to proliferation, protein 
translation or pathway inhibition34. 

 
Future perspective 

We have reviewed the technical features of new imaging 
cytometers and their potential for integrated analysis of 
scant cancer samples. Below, we discuss key milestones 
to advance the clinical translation and adoption of these 
new technologies. 

 
Implementation and dissemination. In contemporary 
laboratory medicine, virtually all blood and urine tests 
have been automated to reduce cost, improve test qual- 
ity and accommodate the increasing volume of clinical 
samples18,19 (TABLE 1). We argue that this automation 
should also be possible for FNA-based analysis of cancer 
samples, particularly in resource-limited environments. 
Furthermore, an expected rise in minimally invasive 
procedures combined with a shortage of trained cyto- 
pathologists will likely exacerbate the need for auto- 
mated hardware and software solutions in such settings. 
Moving forward, a key consideration is what will be 
required to make the development of new technology 
a clinical reality. 

We are still in the research phase of developing and 
testing integrated solutions. Once accomplished, the 
merging of technologies and approaches will need to be 

 
rigorously tested in prospective clinical trials and dif- 
ferent settings. Preferably, these efforts must continue 
at a large scale and in varied environments. The latter 
is particularly important, as AI approaches have been 
shown to be location dependent109. In the end, adopt- 
ing any new technology will require concerted efforts 
and investment from all parties involved. We direct 
interested readers to other reviews that have extensively 
covered the road map towards the ultimate clinical 
translation of diagnostic platforms110,111. 

 
New materials and integrated optics. Paradigms in opti- 
cal system design are changing — conventional discrete 
free-space optics, the mainstay since the invention of 
microscopes, is moving towards integrated precision 
optoelectronics. Novel material engineering and fab- 
rication technologies drive such transitions. Planar 
optical waveguides112, adaptive microlenses113 and meta 
materials114,115 have demonstrated potential for effec- 
tive beam steering and shaping, and tiny semiconduc- 
tor chips are readily available for light generation and 
detection. Multi-material manufacturing can assemble 
these parts into hybrid devices. For instance, optical 
components (lenses, filters and waveguides) can be 
defined in transparent polymer layers116 and be coupled 
to semiconductor modules. Hybrid optical sensors are 
already in production for oximetry and heart-rate mon- 
itoring (MAX30102, Maxim). The next step is to expand 
into optical imaging to create on-chip microscopy 
technologies. 

 
Future capabilities. One of the most exciting opportu- 
nities in this field is new technological capabilities that 
could be implemented for automated point-of-care 
cytometry, including the rigorous evaluation of cellular 
markers and staining techniques and kits. As optoelec- 
tronics become even more affordable and integrated, they 
might incorporate charge-coupled devices with larger 
FOVs and similar or smaller pixel sizes. Together with 
larger FOV lenses, this will improve the spatial resolu- 
tion of images and, ultimately, enable subcellular-image 
analysis. Computational power and advanced machine- 
learning algorithms should accelerate reconstructions 
and improve automated analysis. 

Automated, AI-based diagnostic DNA karyometry is 
another application of interest. A number of studies have 
tested this method117–120, but mostly in flow cytometers 
or manually, rather than by automated image cytometry. 
An additional unexplored frontier is the molecular test- 
ing of cytology samples. Fluorescence in situ hybridiza- 
tion (FISH) using probes with specificity for mutations 

in the EGFR, KRAS and BRAF genes and other cytoge- 

netic abnormalities should be feasible with appropriate 
amplification strategies117. Finally, the techniques for 
analysing FNA specimens for cancer diagnosis and 
monitoring will likely apply almost equally well to other 
specimen types and diagnostic applications. Inexpensive 
automated cellular analyses and molecular testing could 
be contemplated for organ FNA obtained from liver, 
kidney or blood and/or bone marrow. 
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