
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data

sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other

aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information

Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other

provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

10/01/2019

2. REPORT TYPE

Technical Report

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Enterprise Mission Tailored OpenID Connect (OIDC) Profile and Enterprise

Mission Tailored OAuth 2.0 Profile

5a. CONTRACT NUMBER

W56KGU-18-D-0004/001

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Abramowitz, Beth S; Burgin, Kelley W.; Farinelli, Tommy C.; McNab, Neil

C.; Peck, Michael A.; Russell, Mark L.; Westman, Roger J.

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

The MITRE Corporation

7515 Colshire Drive

McLean, VA 22102

8. PERFORMING ORGANIZATION

REPORT NUMBER

PRS-19-3213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of the Secretary of Defense

10. SPONSOR/MONITOR'S ACRONYM(S)

OSD

11. SPONSOR/MONITOR'S REPORT

NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

13. SUPPLEMENTARY NOTES

OpenID Connect, standardized by the OpenID Foundation [OIDC-Core].

14. ABSTRACT

(1) This document profiles the OAuth 2.0 web authorization framework [RFC6749] for use in the context of securing web-

facing application programming interfaces (APIs), particularly Representational State Transfer (RESTful) APIs.

(2) This document profiles OpenID Connect for use in enterprise environments. This profile is derived from the International

Government Assurance Profile (iGov) for OpenID Connect 1.0 [iGov-OIDC] produced by the OpenID Foundation.

15. SUBJECT TERMS

Network Security; RESTful APIs, OpenID Connect, authorization, trust, ID tokens; OAuth 2.0 specifications

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

18. NUMBER

OF

PAGES

56

19a. NAME OF RESPONSIBLE PERSON

Susan Carpenito a. REPORT b. ABSTRACT c. THIS PAGE

19b. TELEPHONE NUMBER (Include area code)

781-271-7646

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Enterprise Mission Tailored
OAuth 2.0 Profile

Beth Abramowitz
Kelley Burgin
Tommy Farinelli
Neil McNab
Michael Peck
Mark Russell
Roger Westman

October 2019

The views, opinions and/or findings
contained in this report are those of The
MITRE Corporation and should not be
construed as an official government position,
policy, or decision, unless designated by
other documentation.

Approved for Public Release; Distribution
Unlimited. Public Release Case Number 19-
3213

©2019 The MITRE Corporation.
All rights reserved.

Bedford, MA

ii

This page intentionally left blank.

iii

Table of Contents
1 Introduction ... 1

1.1 Requirements Notation and Convention ... 1

1.2 Terminology .. 1

1.3 Conformance ... 2

1.4 Environment Overview ... 2

1.5 Use Cases .. 3

1.5.1 User Authorization Delegation to a Web Application .. 3

1.5.2 User Authorization Delegation to a Native Application ... 5

1.5.3 User Authorization Delegation to a Browser-Embedded Client 7

1.5.4 Token Exchange by Protected Resources ... 7

1.6 Global Requirements .. 8

2 Client Profiles ... 9

2.1 Client Types .. 9

2.1.1 Confidential Client .. 9

2.1.2 Public Client.. 9

2.2 Connection to the Authorization Server ... 9

2.2.1 Discovery .. 10

2.2.2. Requests to the Authorization Endpoint ... 10

2.2.3. Requests to the Token Endpoint ... 11

2.2.4 Client Registration ... 12

2.2.4.1 Redirect URI ... 12

2.2.4.2 Client Keys .. 12

2.3 Connection to the Protected Resource .. 13

2.3.1 Requests to the Protected Resource ... 13

3 Authorization Server Profile ... 13

3.1 Connections with Clients .. 13

3.1.1 Grant Types ... 14

3.1.2 Client Authentication .. 14

3.1.3 User Approval of the Client's Authorization .. 14

3.1.4 Discovery .. 16

3.1.5 PKCE .. 17

3.1.6 Redirect URIs .. 18

3.2 JWT Access Tokens .. 19

iv

3.3 Refresh Tokens ... 20

3.4 Connections with Protected Resources ... 21

3.4.1 Introspection ... 21

3.5 Response to Authorization Requests .. 21

3.6 Token Lifetimes .. 22

3.7 Scopes ... 22

3.8 Protecting Resources ... 22

3.9 Viewing and Revoking Client Accesses and Tokens ... 22

3.10 Audit ... 23

4 Protected Resource Profile .. 23

4.1 Connections from Clients ... 23

4.2 Connections to Authorization Servers .. 24

5 Security Rationale for Profile Requirements .. 24

6 Security Considerations .. 27

7 Normative Reference .. 28

8 Informative Reference .. 29

Acronyms .. 31

List of Figures
Figure 1 Example Web Application OAuth Protocol Flow .. 4
Figure 2 Example Web Application OAuth Protocol Flow using Profile Requirements (Not
Exhaustive) ... 5
Figure 3 Example Native Application OAuth Protocol Flow ... 7

1

1 Introduction
This document profiles the OAuth 2.0 web authorization framework [RFC6749] for use in the
context of securing web-facing application programming interfaces (APIs), particularly
Representational State Transfer (RESTful) APIs. The OAuth 2.0 specifications accommodate a
wide range of implementations with varying security and usability considerations, across
different types of software clients. The OAuth 2.0 client, authorization server, and protected
resource profiles defined in this document serve two purposes:

1. Define a mandatory baseline set of security controls, while maintaining reasonable ease
of implementation and functionality.

2. Define objective requirements for use of features that provide stronger security properties
but are not yet widely available in OAuth implementations.

This OAuth profile is derived from the International Government Assurance Profile (iGov) for
OAuth 2.0 [OpenID-iGov] produced by the OpenID Foundation and has been tailored for use in
enterprise environments, as further described in section 1.4. This profile incorporates many
recommendations found in the IETF Internet-Draft “OAuth 2.0 Security Best Current Practice”
[Lodderstedt].

Readers are expected to be familiar with [RFC6749]. All requirements in that specification
apply; this profile document levies additional requirements for the enterprise environment.

Section 5 of this document provides detailed security rationale for the profiling decisions made.

1.1 Requirements Notation and Convention
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in RFC 2119.

All uses of JSON Web Signature (JWS) and JSON Web Encryption (JWE) data structures in this
specification utilize the JWS Compact Serialization or the JWE Compact Serialization; the JWS
JSON Serialization and the JWE JSON Serialization are not used.

1.2 Terminology
This specification uses the terms "Access Token", "Authorization Code", "Authorization
Endpoint", "Authorization Grant", "Authorization Server", "Client", "Client Authentication",
"Client Identifier", "Client Secret", "Grant Type", "Protected Resource", "Redirection URI",
"Refresh Token", "Resource Owner", "Resource Server", "Response Type", and "Token
Endpoint" defined by OAuth 2.0 , the terms "Claim Name", "Claim Value", and "JSON Web
Token (JWT)" defined by JSON Web Token (JWT) [RFC7519], and the terms defined by
OpenID Connect Core 1.0 [OIDC-Core].

2

1.3 Conformance
This specification defines requirements for the following components:

• OAuth 2.0 clients.
• OAuth 2.0 authorization servers.
• OAuth 2.0 protected resources.

The requirements include details of interaction between these components:

• Client to authorization server.
• Client to protected resource.
• Protected resource to authorization server.

When a profile-compliant component is interacting with other profile-compliant components, in
any valid combination, all components MUST implement the requirements as stated in this
specification. All interaction with non-profile components is outside the scope of this
specification.

A profile-compliant OAuth 2.0 client MUST support and utilize certain features as described in
section 2 of this specification.

A profile-compliant OAuth 2.0 authorization server MUST support and utilize certain features as
described in section 3 of this specification.

A profile-compliant OAuth 2.0 protected resource MUST support and utilize certain features as
described in section 4 of this specification.

1.4 Environment Overview
This profile is intended for use in enterprise environments, not consumer-facing environments. In
enterprise environments, users do not "own" their data, the enterprise does. However, the user
may have some level of responsibility for ensuring that unauthorized entities do not access data
that the user has permission to access. In general, users need to be strongly identified in
enterprise environments and not be able to act anonymously when accessing data.

The enterprise is assumed to have a deployed Public Key Infrastructure (PKI). The PKI issues
each end user a certificate attesting to the user's identity. The PKI also issues non-person entity
(NPE) certificates to clients, protected resources, and authorization servers. As discussed later,
the PKI can be leveraged to provide greater assurance than is present in current typical non-
enterprise OAuth deployments.

Users typically have authorization attributes associated with them by the enterprise representing
what types of data the user is permitted to access or what operations the user is allowed to
perform. Clients similarly may have authorization attributes associated with them. However, the
specific details of these attributes are out of scope for this profile. Future profiles may attempt to

3

standardize common attributes seen in enterprise environments. In some cases, it may make
sense to include these attributes (or the intersection of the user’s attributes and client’s attributes
when applicable) in OAuth access tokens issued by the authorization server. In other cases, it
may make sense to omit these attributes from access tokens, in which case protected resources
could present the user’s identity and client’s identity (as asserted in the access token) to a
separate enterprise authorization server to obtain attributes or access control decisions.

1.5 Use Cases
This profile is oriented around two primary use cases: user authorization delegation to a web
application, and user authorization delegation to a native application.

This profile is not intended to describe user authentication to a web application / server. OpenID
Connect, which builds upon OAuth, is intended for that use case. OpenID Connect is profiled in
a separate document.

This use case section is non-normative and is intended to provide examples to set the stage for
the rest of the profile document.

1.5.1 User Authorization Delegation to a Web Application
In this use case, a web application requires the ability to access a protected resource on behalf of
a user, making use of some subset of the user's privileges. A web application is a capability
provided by a web server running on a separate endpoint system than the user.

In a naïve approach, the web application could simply be given the ability to impersonate any
user to the protected resource solely by authenticating itself and providing the user's identity.
However, this approach does not prove to the protected resource that the user was actually
involved in the transaction. Another naïve approach would be for the user to provide
authentication credentials (e.g. username/password or PKI private key) to the web application.
However, this approach provides the web application with full, unfettered ability to act as if it is
the user with any resource.

OAuth enables a safer, limited approach for delegating user authorization to a web application to
act on behalf of the user. With OAuth (when used in compliance with this profile), the web
application constructs an authorization request and redirects the user's web browser to an
authorization server. The user authenticates to the authorization server (or the user's web browser
makes use of an existing, authenticated session), and the authorization server redirects the user
back to the web application with a one-time-use authorization code. The web application
provides the one-time-use authorization code to the authorization server and receives an access
token that it then uses to access the protected resource on the user's behalf. The access token is
issued based on authentication to the authorization server of both the web application and the
user. The access token can be limited to only allow a subset of the user's privileges, although the
details of how to represent authorization attributes within access tokens are out of scope of this
profile. The access token can be limited to only be valid at a particular protected resource.

4

In OAuth terminology, the user is known as a “resource owner,” and the web application is
known as a “client.” Since web applications have the ability to securely store credentials with
which to authenticate themselves to the authorization server, they are known in the OAuth
specification as “confidential clients.”

Figure 1 illustrates this use case:

Figure 1 Example Web Application OAuth Protocol Flow

Figure 2 provides a high-level view of this use case including a non-exhaustive overview of this
profile’s requirements and recommendations:

5

Figure 2 Example Web Application OAuth Protocol Flow using Profile Requirements (Not

Exhaustive)

1.5.2 User Authorization Delegation to a Native Application
In this use case, a native application running on the user's endpoint system requires the ability to
access a protected resource on behalf of a user, making use of some subset of the user's
privileges. For example, an email client may need the ability to access a user's mailbox on an
email server.

In a naïve approach, the native application could simply be given the user's authentication
credentials (e.g. username/password or private key). However, this approach requires the native
application to store those credentials, and if stolen, provides an attacker with full, unfettered
ability to act as if he or she is the user with any resource. In the case of a username/password, it
also unnecessarily exposes the protected resource to the user's credentials. In addition, this
approach limits the flexibility to introduce new authentication methods or perform adaptive
authentication (e.g. based on dynamic risk decisions), as those methods would need to be
supported by all native applications and all protected resources. For example, TLS client
certificate authentication is widely used in some enterprise environments but requiring every app
developer to implement client certificate authentication within each app is not feasible.

OAuth enables a safer, limited approach for delegating user authorization to a native application
to act on behalf of the user. With OAuth, using the protocol options described in this profile, the
native application constructs an authorization request and redirects the user's web browser to an
authorization server. The user authenticates to the authorization server through the web browser
(or the user's web browser makes use of an existing, authenticated session). Any authentication

6

method supported by both the web browser and the authorization server can be used, without
specific support needed in the application. The authorization server redirects the user back to the
native application with a one-time-use authorization code. The native application provides the
one-time-use authorization code to the authorization server and receives an access token that it
then uses to access the protected resource on the user's behalf. The access token can be limited to
only allow a subset of the user's access, and the access token can be limited to only be valid at a
particular protected resource. For example, an access token issued to an email client could be
valid only for accessing the email server, not other enterprise servers.

In OAuth terminology, the user is known as a “resource owner,” and the native application is
known as a “client.” Unlike web applications, native applications typically do not have the
ability to securely store credentials with which to authenticate the application itself to the
authorization server. The access token is generally issued by the authorization server based on
just the user's authentication, not the native application's authentication (the native application
provides a client ID, but it typically can be easily captured and spoofed). Applications that do not
possess secure credentials with which to authenticate themselves to the authorization server are
known in the OAuth specification as “public clients.”

In some cases, rather than use a separate web browser, the native application embeds its own
web browser. This approach eliminates the complexity of redirecting the authorization response
(containing the one-time-use authorization code) from the web browser back to the native
application. However, this approach is generally not appropriate, as it directly exposes the native
application to the user's credentials. It may also limit the types of authentication methods that can
be used, as the native application may not have functionality for as wide a range of
authentication methods as a dedicated web browser.

7

Figure 3 Example Native Application OAuth Protocol Flow

1.5.3 User Authorization Delegation to a Browser-Embedded Client

In this use case, a client application running entirely within the user's web browser requires the
ability to access a protected resource on behalf of a user. These applications are typically written
in JavaScript and are often referred to as "Single-Page Applications" (SPAs).

At this time, this use case is out of scope for this profile. The IETF Internet-Draft OAuth 2.0 for
Browser-Based Apps [Parecki] provides potentially useful details and guidance for this use case,
but an examination of its feasibility and security properties would first be necessary.

1.5.4 Token Exchange by Protected Resources
Token exchange is currently out of scope for this profile but will likely be addressed in a future
version or additional document. This section provides an initial description of the token
exchange use case.

A protected resource (PR1) may need to call a second protected resource (PR2) on behalf of the
user in order to satisfy a query received from a client. In some deployments, PR1 could simply
use the access token that it received from the client to access PR2. However, this profile requires
the access token be sender-constrained and/or audience-constrained, so that would not work.
Instead, PR1 must request a new access token from the authorization server that is valid for PR1

8

to use at PR2 to act on behalf of the user. If PR2 needs to access third resource, PR3, then PR2
must request a new access token, and so on. The IETF Internet-Draft “OAuth 2.0 Token
Exchange” [Jones] describes a potential approach for satisfying this need that may be addressed
in a future document.

If the protected resources are operated by different organizations, each of which relies on
different authorization servers, then the situation is more complex, but can likely still be
addressed.

1.6 Global Requirements
This section contains requirements that apply to all of the components described in this profile.

All network connections must use TLS 1.2 or above. Each originator of a TLS connection (the
entity acting as a TLS client) must verify the destination's (the entity acting as a TLS server)
certificate in accordance with [RFC6125]. Each originator MUST have a capability to limit the
certification authorities (CAs) trusted for verifying the destination's PKI certificate. The
capability may be provided by the originator itself or by the originator’s underlying platform
(e.g. operating system on which it is running).

9

2 Client Profiles
This section profiles the expected OAuth behavior of clients.

2.1 Client Types
This section, and overall profile, distinguishes between two types of clients: confidential clients
and public clients.

2.1.1 Confidential Client

The term “confidential client” applies to clients that act on behalf of a particular user and require
delegation of that user’s authority to access protected resources. Furthermore, these clients are
capable of interacting with a web browser application to facilitate the user's interaction with the
authorization server. Confidential clients use their own credentials to authenticate themselves to
the authorization server, so both the client and the user are authenticated by the authorization
server as part of an authorization request.

Typically, confidential clients are front-end web server applications, running on a separate
endpoint than the user, as described in Section 1.5.1.

Confidential clients MUST possess their own asymmetric key pair used for authentication to the
authorization server. Confidential clients MUST support mutually authenticated TLS (as
described in draft-ietf-oauth-mtls) [Campbell] using an X.509v3 certificate [RFC5280] for the
client's public key.

2.1.2 Public Client

The term “public client” applies to clients that act on behalf of a particular user and require
delegation of that user's authority to access the protected resource. Furthermore, these clients are
capable of interacting with a web browser application to facilitate the user's interaction with the
authorization endpoint of the authorization server.

Unlike confidential clients, public clients do not use their own credentials to authenticate
themselves to the authorization server. Instead, only a client ID (which often can be easily
captured) is used. Public clients are typically native applications running on the user's endpoint
device, often leading to many identical instances of a piece of software operating in different
environments and running simultaneously for different end users. With public clients, generally
only the user, not the client, is authenticated by the authorization server as part of an
authorization request.

2.2 Connection to the Authorization Server
Confidential and public clients MUST support the OAuth authorization code grant. Confidential
clients MAY support the OAuth client credentials grant. Other grant types MUST NOT be used.
OAuth authorization servers provide both an authorization endpoint and a token endpoint. This
section profiles connections to these two endpoints from clients. Both the authorization endpoint

10

and token endpoint are used with the authorization code grant. Only the token endpoint is used
with the client credentials grant.

OAuth confidential and public clients do not connect directly to the authorization endpoint.
Rather, as described by the OAuth authorization code flow in [RFC6749], the client performs its
request by redirecting the user's web browser to the authorization endpoint with appropriate
parameters. The user authenticates to the authorization endpoint, and the user's web browser is
redirected back to a URI hosted by the client, from which the client obtains an authorization
code. The client then presents the authorization code to the authorization server's token endpoint
to obtain an access token.

2.2.1 Discovery
Confidential and public clients MAY use the OAuth 2.0 Authorization Server Metadata standard
[RFC8414] to retrieve configuration information from the authorization server, including
supported options, endpoint URIs, and public keys.

Alternatively, confidential and public clients MAY configure some or all of this information in
an out-of-band manner.

2.2.2 Requests to the Authorization Endpoint

Confidential and public clients making a request to the authorization endpoint MUST use an
unpredictable value for the state parameter with at least 128 bits of entropy. Confidential and
public clients MUST validate the value of the state parameter upon return to the redirect URI and
MUST ensure that the state value is securely tied to the user’s current session (e.g. by relating
the state value to a session identifier issued by the client to the browser).

Confidential and public clients MUST include their full redirect URI in the authorization request.
If a confidential or public client provides more than one redirect URI, then it MUST securely tie
the authorization request's redirect URI value to the user's current session and ensure that the
authorization response is received at the same redirect URI. The client MUST reject the
authorization response if it is received at a different URI.

Public clients MUST, and confidential clients SHOULD, in compliance with [RFC7636] using
the S256 code challenge method, include the code_challenge parameter and
code_challenge_method (set to "S256") in the authorization request. The PKCE code_verifier
value MUST contain at least 128 bits of entropy, and it MUST be securely tied to the user's
current session (e.g., by relating the code_verifier value to a session identifier issued by the client
software to the browser), such that in the client's follow-up request to the token endpoint, the
client only presents the code_verifier to the token endpoint that is associated with the same user
session.

Confidential and public clients may need to interact with more than one protected resource. If
those protected resources are operated by different entities, this may introduce the need for
confidential and public clients to interact with more than one authorization server (authorization
servers operated by different entities, not a multi-homed approach where a logical authorization

11

server may have multiple physical instantiations for failover purposes). However, confidential
and public clients MUST associate only one logical authorization server with each protected
resource. Confidential and public clients MUST use a unique redirect URI for each logical
authorization server.

The following is a sample, non-normative response from a client to the end user’s browser for
the purpose of redirecting the end user to the authorization server's authorization endpoint to
perform an authorization request:

HTTP/1.2 302 Found
Cache-Control: no-cache
Connection: close
Content-Type: text/plain; charset=UTF-8
Date: Wed, 07 Jan 2015 20:24:15 GMT
Location: https://as.example.com/authorize?client_id=55f9f559-
2496-49d4-b6c3-351a58
6b7484&state=cd567ed4d958042f721a7cdca557c30d&response_type=code
&scope=example_resource&redirect_uri=https%3A%2F%2Fclient%2Eexam
ple%2Ecom%2Fcb
Status: 302 Found

This causes the browser to send the following (non-normative) request to the authorization
endpoint:

GET /authorize?client_id=55f9f559-2496-49d4-b6c3-
351a586b7484&state=cd567ed4d958042f721a7cdca557c30d&response_typ
e=code&scope=example_resource&redirect_uri=
https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1
Host: as.example.com
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:31.0)
Gecko/20100101 Firefox/31.0 Iceweasel/31.2.0
Accept:text/html,application/xhtml+xml,application/xml;q=0.9,*/*
;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: https://ehr-va.example.com/portal/signin
Cookie: JSESSIONID=706D5B3A7B3AB3FCE8C6AA7201B8B9CF
Connection: keep-alive

2.2.3 Requests to the Token Endpoint

Confidential and public clients connect directly to the token endpoint to retrieve access tokens
(and optionally refresh tokens). When the authorization code grant is used, confidential and
public clients provide the authorization code they receive as described in the previous section.
When the client credentials grant is used, confidential clients do not provide an authorization
code (as stated in [RFC6749], public clients cannot use the client credentials grant).

12

Confidential clients MUST support authentication to the authorization server's token endpoint
using mutually authenticated TLS. Public clients MAY support use of mutually authenticated
TLS to the authorization server’s token endpoint. In the case of public clients, mutually
authenticated TLS is not used to authenticate the client to the authorization server, it is used to
enable cryptographically binding the access token issued by the authorization server to a private
key held by the public client.

Mutually authenticated TLS connections by confidential clients MUST comply with IETF
Internet-Draft draft-ietf-oauth-mtls-12 or newer ("OAuth 2.0 Mutual TLS Client Authentication
and Certificate Bound Access Tokens") [Campbell]. The self-signed certificate option described
in Section 2.2 "Self-Signed Certificate Mutual TLS OAuth Client Authentication Method"
MUST NOT be used. Rather, the Section 2.1 "PKI Mutual TLS OAuth Client Authentication
Method" MUST be used, where the subject distinguished name (DN) of the client's certificate is
registered with the authorization server.

Mutually authenticated TLS connections by public clients, if used, MUST comply with Section 4
of draft-ietf-oauth-mtls-12 or newer.

2.2.4 Client Registration

All clients MUST register with the authorization server.

Client registration MUST be completed by out-of-band configuration; dynamic registration is not
supported by this profile.

2.2.4.1 Redirect URI

Clients using the authorization code grant type MUST register their full redirect URIs.

Clients MUST NOT forward values passed back to their redirect URIs to other arbitrary or user-
provided URIs (a practice known as an "open redirector”).

Android provides a feature called Android App Links [AppLinks], and Apple iOS provides a
similar feature called Universal Links [UniversalLinks]. These features provide the ability to
enforce a strong binding between a HTTPS URI and a specific mobile app installed on the
Android or Apple device. Clients running on the user’s endpoint device SHOULD use
[AppLinks], [UniversalLinks], or a similar capability enforced by the endpoint device platform
to protect their redirect URIs.

2.2.4.2 Client Keys

Confidential clients using mutually authenticated TLS MUST register their certificate's subject
DN with the authorization server.

13

2.3 Connection to the Protected Resource
2.3.1 Requests to the Protected Resource

Clients SHOULD send access tokens to the protected resource in the Authorization header as
defined by [RFC6750]. Clients MAY send access tokens using the form-parameter method
[RFC6750]. Clients MUST NOT send access tokens using the query-parameter method
[RFC6750]. A future version of this profile may remove the form-parameter method option.

Clients SHOULD support mutually authenticated TLS to the protected resource as specified in
section 3 "Mutual TLS Client Certificate Bound Access Tokens" of draft-ietf-oauth-mtls-12
[Campbell] or newer. Mutually authenticated TLS will be mandated in a future profile, as it
provides strongly desired security properties (further security rationale is provided in section 5)
but is not yet widely implemented.

A non-normative example of an OAuth-protected call to a protected resource endpoint, sending
the token in the Authorization header, follows:

GET /example_resource HTTP/1.1
Authorization: Bearer
eyJhbGciOiJSUzI1NiJ9.eyJleHAiOjE0MTg3MDI0MTIsImF1ZCI6WyJjMWJjOD
RlNC00N2VlLTRiNjQtYmI1Mi01Y2RhNmM4MWY3ODgiXSwiaXNzIjoiaHR0cHM6XC
9cL2lkcC1wLmV4YW1wbGU
uY29tXC8iLCJqdGkiOiJkM2Y3YjQ4Zi1iYzgxLTQwZWMtYTE0MC05NzRhZjc0YzR
kZTMiLCJpYXQiOjE0MTg2
OTg4MTJ9.iHMz_tzZ90_b0QZS-
AXtQtvclZ7M4uDAs1WxCFxpgBfBanolW37X8h1ECrUJexbXMD6rrj_uuWEq
PD738oWRo0rOnoKJAgbF1GhXPAYnN5pZRygWSD1a6RcmN85SxUig0H0e7drmdmRk
PQgbl2wMhu-6h2Oqw-ize
4dKmykN9UX_2drXrooSxpRZqFVYX8PkCvCCBuFy2O-
HPRov_SwtJMk5qjUWMyn2I4Nu2s-R20aCA-7T5dunr0
iWCkLQnVnaXMfA22RlRiU87nl21zappYb1_EHF9ePyq3Q353cDUY7vje8m2kKXYT
gc_bUAYuW-W3SMSw5UlKa
HtSZ6PQICoA
Accept: text/plain, application/json, application/*+json, */*
Host: resourceserver.example.com
Connection: Keep-Alive
User-Agent: Apache-HttpClient/4.2.3 (java 1.5)

3 Authorization Server Profile
This section details the expected behavior of OAuth Authorization Servers.

3.1 Connections with Clients

14

3.1.1 Grant Types

The authorization server MUST support the authorization code grant type as described in Section
2 and MAY support the client credentials grant type. The implicit grant type and resource owner
password credentials grant types MUST NOT be allowed, and requests attempting to use those
grant types MUST be rejected. The authorization server MUST limit each registered client
(identified by a client ID) to a single grant type only, since at runtime, a single piece of software
will be functioning in only one of the modes described in Section 2. Clients that have multiple
modes of operation MUST have a separate client ID for each mode.

Authorization codes issued by the authorization server MUST contain a minimum of 128 bits of
entropy and MUST NOT be accepted by the authorization server more than 60 seconds after
issuance. The authorization server MUST tie each issued authorization code to a specific client
(identified by client ID) and not accept an authorization code if redeemed by a different client.
The authorization server MUST NOT accept an authorization code again after it has been
redeemed. In a multihomed environment where one logical authorization server is represented by
multiple physical instantiations, situations may occur where an authorization code is
inadvertently accepted more than once. If this occurs, it MUST be noted in an audit log, any
refresh token issued based on the authorization code MUST be revoked, and any access token
issued based on the authorization code SHOULD be revoked.

3.1.2 Client Authentication

The authorization server MUST enforce client authentication for confidential clients.

The authorization server MUST support TLS client certificate authentication of confidential
clients as specified in draft-ietf-oauth-mtls-12 [Campbell] or newer. The self-signed certificate
option described in section 2.2 "Self-Signed Certificate Mutual TLS OAuth Client
Authentication Method" MUST NOT be used. Rather, the section 2.1 "PKI Mutual TLS OAuth
Client Authentication Method" MUST be used, where the subject distinguished name (DN) of
the client's certificate is registered with the authorization server.

The authorization server MAY support mutually authenticated TLS connections from public
clients as specified in draft-ietf-oauth-mtls-12 [Campbell] or newer. In the case of public clients,
mutually authenticated TLS is not used to authenticate the client to the authorization server, it is
used to enable cryptographically binding the access token issued by the authorization server to a
private key held by the public client. This requirement is only a MAY because it complicates the
TLS configuration of the authorization server, as it would need to be able to validate certificates
presented by confidential clients while ignoring validation of certificates presented by public
clients. This requirement may be changed to a SHOULD or MUST in a future release of this
profile after further lab investigation.

3.1.3 User Approval of the Client's Authorization
The authorization server MUST support the following mechanism for users to authenticate
themselves to the authorization server:

• TLS client certificate authentication

15

The authorization server SHOULD support the following mechanisms for users to authenticate
themselves to the authorization server:

• RSA SecurID
• FIDO 2.0 / W3C Web Authentication
• Username and password
• Federated authentication to a user’s home organization using OpenID Connect (described

below as identity brokering)

The authorization server MAY support other user authentication mechanisms. The authorization
server MAY also support the ability to authenticate (and assess security properties of) the user’s
endpoint device in addition to the user. Such support may be detailed further in a future profile.

The authorization server MUST provide the ability for an administrator to configure which user
authentication mechanisms are acceptable.

This profile limits each protected resource to only trusting one authorization server. Since users
from multiple organizations may need to access a protected resource, authorization servers
typically need to be prepared to authenticate users from those multiple organizations. Several
options exist for performing this authentication. If TLS client certificate authentication is used,
the authorization server could be configured to trust those organizations’ certification authorities
(CAs). However, this approach is less practical for authentication methods such as RSA SecurID
and username/password. It may also be impractical for FIDO, as it would require the user’s
FIDO authenticator to be registered with each individual authorization server.

Another approach to authenticate users from other organizations is to perform identity brokering.
With identity brokering, the authorization server associated with the protected resource acts as an
OpenID Connect Relying Party (RP), delegating authentication to an OpenID Connect Identity
Provider (IdP) operated by the user’s home organization. The user authenticates to their home
Identity Provider, and that IdP asserts to the authorization server that the authentication
successfully occurred. If needed, the protected resource’s authorization server can obtain
attributes about the user from the user’s IdP or through some other mechanism. If implemented,
identity brokering MUST be performed in accordance with the Enterprise OpenID Connect
Profile.

In non-enterprise environments, it is typically desired that the authorization server present the
user with the client's authorization request and require the user to explicitly approve the request.
However, in this profile, the authorization server MUST provide the ability to disable such
functionality. This profile is intended for enterprise environments where individual users do not
"own" data. Additionally, this profile requires clients to be approved by the enterprise as part of
the client registration process, which provides protection from malicious clients.

If the end user is prompted with an interactive approval page, the authorization server MUST
indicate to the user:

• A human readable name of the client
• What kind of access the client is requesting (including scope, target resource, etc.)

16

3.1.4 Discovery

The authorization server MUST provide an OAuth authorization server metadata endpoint as
specified by [RFC8414]. The endpoint MAY be shared with an OpenID Connect discovery
endpoint. The endpoint’s response MUST contain at least the following fields and MAY contain
additional fields:

issuer The fully qualified issuer URL of the server
authorization_endpoint The fully qualified URL of the server's authorization endpoint

defined by OAuth 2.0
token_endpoint The fully qualified URL of the server's token endpoint defined by

OAuth 2.0
jwks_uri The fully qualified URI of the server's public key in JWK Set format
introspection_endpoint The fully qualified URL of the server's introspection endpoint

defined by OAuth Token Introspection
revocation_endpoint

(only included if a revocation endpoint exists) The fully qualified
URL of the server's revocation endpoint defined by OAuth 2.0 Token
Revocation

Note that if the authorization server is also an OpenID Connect Provider, its discovery endpoint
must additionally meet the requirements listed in the Enterprise OpenID Connect Profile.

The following non-normative example shows the JSON document found at an authorization
server metadata endpoint for an authorization server:

{
 "token_endpoint": "https://as.example.com/token",
 "token_endpoint_auth_methods_supported": [
 "tls_client_auth"1
],
 "jwks_uri": "https://as.example.com/jwk",
 "authorization_endpoint": "https://as.example.com/authorize",
 "introspection_endpoint": "https://as.example.com/introspect",
 "service_documentation": "https://as.example.com/about",
 "response_types_supported": [
 "code"
],
 "revocation_endpoint": "https://as.example.com/revoke",
 "grant_types_supported": [
 "authorization_code",
 "client_credentials",
],
 "scopes_supported": [
 "profile", "openid", "email", "address", "phone",
"offline_access"

1 Note: The “tls_client_auth” authentication method name has not yet been finalized by the IETF.

17

],
 "op_tos_uri": "https://as.example.com/about",
 "issuer": "https://as.example.com/",
 "op_policy_uri": "https://as.example.com/about"
}

It is RECOMMENDED that authorization servers provide cache information through HTTP
headers and make the cache valid for at least one week.

The authorization server MUST provide its public key (used by the authorization server to sign
tokens) in JWK Set format. The key MUST contain the following fields:

kid The key ID of the key pair used to sign this token
kty The key type
alg The default algorithm used for this key

The authorization server MUST provide an RS256 key with a modulus of at least 2048 bits. The
authorization server MAY provide additional keys using the following algorithms: RS384,
RS512, ES256, ES384, ES512, PS256, PS384, PS512.

The following is a non-normative example of a 2048-bit RSA public key:

{
"keys": [

 {
 "alg": "RS256",
 "e": "AQAB",
 "n": "o80vbR0ZfMhjZWfqwPUGNkcIeUcweFyzB2S2T-
hje83IOVct8gVg9FxvHPK1R
eEW3-p7-A8GNcLAuFP_8jPhiL6LyJC3F10aV9KPQFF-
w6Eq6VtpEgYSfzvFegNiPtpMWd7C43
EDwjQ-GrXMVCLrBYxZC-
P1ShyxVBOzeR_5MTC0JGiDTecr_2YT6o_3aE2SIJu4iNPgGh9Mnyx
dBo0Uf0TmrqEIabquXA1-
V8iUihwfI8qjf3EujkYi7gXXelIo4_gipQYNjr4DBNlE0__RI0kD
U-27mb6esswnP2WgHZQPsk779fTcNDBIcYgyLujlcUATEqfCaPDNp00J6AbY6w",
 "kty": "RSA",
 "kid": "rsa1"
 }

] }

3.1.5 PKCE

An authorization server MUST support the Proof Key for Code Exchange (PKCE) extension
[RFC7636] to the authorization code flow, including support for the S256 code challenge

18

method. The authorization server MUST NOT allow clients to use the plain code challenge
method.

The authorization server MUST require use of PKCE by public clients, rejecting requests to the
authorization endpoint from public clients that do not contain a code_challenge. The
authorization server MUST be capable of allowing PKCE to be used by confidential clients, and
MUST be configurable to require PKCE to be used by either all or specifically designated
confidential clients.

The authorization server MUST ensure that if the request to the authorization endpoint contained
a code_challenge, then the corresponding request to the token endpoint MUST contain the
appropriate code_verifier.

3.1.6 Redirect URIs

The authorization server MUST compare the client's registered redirect URIs with the redirect
URI presented during an authorization request using an exact string match and MUST reject
requests with invalid or missing redirect URIs.

The authorization server MUST ensure that each redirect URI is one of the following:

• An HTTPS URI referring to a website with Transport Layer Security (TLS) protection or
an app installed on the user’s endpoint using [AppLinks], [UniversalLinks], or similar
capability

• Hosted on the user's endpoint without involving remote network connectivity (e.g.,
http://localhost/), however an HTTPS URI protected using [AppLinks], [UniversalLinks],
or similar capability is preferred when possible

• Hosted on a client-specific non-remote-protocol URI scheme (e.g., myapp://), however an
HTTPS URI protected using [AppLinks], [UniversalLinks], or similar capability is
preferred when possible

19

3.2 Token Issuance Policy
The authorization server MUST be capable of enforcing an authorization policy that must be met
in order for tokens to be issued. This policy MUST be customizable by the administrator. This
profile does not enforce specific requirements upon capabilities of the authorization policy, but
we recommend at least the following attributes be considered:

• Attributes associated with the user’s account, such as:
o Personnel type (e.g. employee vs. contractor)
o Citizenship

• The user’s method(s) of authenticating to the authorization server
• The protected resource being accessed
• Security posture and other properties of the user’s endpoint device
• IP address from which the user’s endpoint device is connecting

3.3 JWT Access Tokens
The base OAuth specification does not dictate a specific format for access tokens. To facilitate
interoperability with protected resources, this profile requires that authorization servers issue
cryptographically signed access tokens in the JSON Web Token (JWT) format. The information
carried in the JWT is intended to allow a protected resource to verify the authenticity and parse
the contents of the token without additional network calls. If the protected resource is not capable
of performing these operations, it can make use of token introspection [RFC7662] to request
information about the token's authenticity and contents.

An IETF Internet-Draft “OAuth Access Token JWT Profile” [Bertocci], first published after we
began work on our profile, proposes a standard access token format. We may revisit this section
as the IETF Internet-Draft matures.

The authorization server MUST be capable of including the following claims in issued tokens:

iss The issuer URL of the server that issued the token.
client_id The client id of the client to whom this token was issued.
exp The expiration time (integer number of seconds since from 1970-01-01T00:00:00Z

UTC), after which the token MUST be considered invalid.
jti A unique JWT Token ID value with at least 128 bits of entropy. This value MUST

NOT be re-used in another token.
sub The identifier of the end-user that authorized this client, or in the case of the client

credentials grant, the client id of a client acting on its own behalf.
aud The audience of the token, an array containing the identifier(s) of protected

resource(s) for which the token is valid, if this information is known. The aud claim
may contain multiple values if the token is valid for multiple protected resources.

cnf Capability required for requests from confidential clients, optional for requests
from public clients. Specified by section 3 of draft-ietf-oauth-mtls (and by section 4
for public clients). Hash of the client’s PKI certificate that was presented using TLS
mutual authentication between the client and authorization server. This field binds

20

the access token to the client's certificate, enabling the protected resource to ensure
that only the authorized client can present the access token (over a mutually
authenticated TLS connection).

The following claims MUST be included in issued tokens: iss, client_id, exp, sub. One or both of
aud and cnf MUST be included.

The authorization server SHOULD be capable of including additional fields in issued tokens,
including the following:

nbf Not before timestamp
iat Issue timestamp
amr The user’s authentication method to the AS when the user authorized issuance of

this access token.
auth_time Timestamp of when the user authenticated to the AS in order to authorize issuance

of this access token.

The access tokens MUST be signed with JWS. The authorization server MUST support the
RS256 signature method for tokens. It MAY support the following additional asymmetric
signing methods defined in the IANA JSON Web Signatures and Encryption Algorithms
registry: RS384, RS512, ES256, ES384, ES512, PS256, PS384, PS512. The JWS header MUST
contain the following field:

kid The key ID of the key pair used to sign this token

The authorization server MAY encrypt access tokens using JWE. Encrypted access tokens
MUST be encrypted using the public key of the protected resource.

3.4 Refresh Tokens
The authorization server MUST require confidential clients to authenticate in order to redeem a
refresh token and MUST ensure that the refresh token was issued to the authenticated client.

The authorization server SHOULD provide the capability to bind refresh tokens issued to public
clients to a certificate belonging to the client as described in draft-ietf-oauth-mtls Section 4
[Campbell].

The authorization server SHOULD provide the capability to invalidate a refresh token after it is
redeemed with the authorization server, preventing the refresh token from being redeemed again.

Mandates on the specific format of the refresh token are out of scope of this profile, as the
refresh token is for the internal use of the authorization server, which both generates and
consumes the token.

The authorization server MAY sign refresh tokens using JWS and MAY encrypt refresh tokens
using JWE. Encrypted refresh tokens MUST be encrypted either using the authorization server's
public key or symmetrically encrypted using a secret key held by the authorization server.

21

3.5 Connections with Protected Resources
3.4.1 Introspection

The authorization server MUST provide a token introspection endpoint. Token introspection
[RFC7662] allows a protected resource to query the authorization server for metadata about a
token.

The server responds to an introspection request with a JSON object representing the token
containing the following fields as defined in the token introspection specification:

active Boolean value indicating whether or not this token is currently active at this
authorization server. Tokens that have been revoked, have expired, or were
not issued by this authorization server are considered non-active.

scope Space-separated list of OAuth 2.0 scope values represented as a single string.
exp Timestamp of when this token expires (integer number of seconds since from

1970-01- 01T00:00:00Z UTC)
sub An opaque string that uniquely identifies the user who authorized this token at

this authorization server (if applicable).
client_id An opaque string that uniquely identifies the OAuth 2.0 client that requested

this token

The server MAY include additional fields in its token introspection response.

The authorization server MUST require mutual TLS authentication for the introspection
endpoint.

A protected resource MAY cache the response from the introspection endpoint for a period of
time no greater than half the lifetime of the token. A protected resource MUST NOT accept a
token that is not active according to the response from the introspection endpoint.

3.6 Response to Authorization Requests
The following data will be sent as an Authorization Response to the Authorization Code Flow as
described above. The authorization response is sent via HTTP redirect to the redirect URI
specified in the request.

The following fields MUST be included in the response:

state The value of the state parameter passed in the authorization request. This value
MUST match exactly.

code The authorization code, a random string issued by the AS to be used in the request
to the token endpoint.

22

3.7 Token Lifetimes
This profile provides RECOMMENDED lifetimes for different types of tokens issued to
different types of clients. Specific applications MAY issue tokens with different lifetimes. Any
active token MAY be revoked at any time.

For clients using the authorization code grant type, access tokens MUST have a valid lifetime no
greater than one hour, and refresh tokens (if issued) SHOULD have a valid lifetime no greater
than twenty-four hours.

3.8 Scopes
Scopes define individual pieces of authority that can be requested by clients, granted by users,
and enforced by protected resources. Specific scope values will be highly dependent on the
specific types of resources being protected in a given interface. OpenID Connect, for example,
defines scope values to enable access to different attributes of user profiles.

Authorization servers SHOULD define and document default scope values that will be used if an
authorization request does not specify a requested set of scopes.

To facilitate general use across a wide variety of protected resources, authorization servers
SHOULD allow for the use of arbitrary scope values at runtime, such as allowing clients or
protected resources to use arbitrary scope strings upon registration.

3.9 Protected Resources
Protected resources grant access to clients if they present a valid access token with appropriate
authorization claims (e.g. the token's scope claim and potentially other claims conveying detailed
authorization information). Access tokens are not required to contain scopes or other claims
conveying detailed authorization information. If they do not, the access token asserts the identity
of the user (the token's sub claim) and the client (the token's client_id claim), and the protected
resource can make use of applicable enterprise authorization services to determine the allowed
access.

Protected resources trust the authorization server to authenticate the end user appropriately for
the importance, risk, and value level of the protected resource and requested scopes. The
authorization server MAY assert different scopes and authorization claims in the access token
depending on the method used to authenticate the user.

Authorization servers MAY allow a refresh token issued for multiple scopes to be used to obtain
an access token for just a subset of those scopes.

3.10 Viewing and Revoking Client Accesses and Tokens

The authorization server MUST provide an interface for end users to view a list of clients that
have been granted access to resources on the user's behalf, and for end users to revoke this
access. Revocation MUST revoke any currently valid refresh tokens issued to the client to access

23

resources on the user's behalf, SHOULD revoke applicable currently valid access tokens, and
MUST prevent the client from obtaining new tokens without the authorization server receiving a
new authorization request via the user.

Note that revocation of access tokens may not have an immediate impact, as protected resources
may not always check the revocation status of access tokens. However, this profile limits access
tokens to a lifetime of 60 minutes, and revocation of the corresponding refresh token will prevent
the client from obtaining a new access token upon the access token's expiration.

The authorization server SHOULD provide an [RFC7009]-compliant interface for clients to
request token revocation.

The authorization server MUST automatically revoke refresh tokens and SHOULD revoke
access tokens under the following conditions:

1. User's account has been locked or deleted.
2. User's account credentials under which the tokens were issued have been reported lost or

compromised (e.g. password, private key, hardware token, etc.).

3.11 Audit
The authorization server MUST record at least the following activities in an audit log:

1. Issuance of refresh tokens and access tokens to clients.
2. Attempted or successful use of an authorization code more than once.

4 Protected Resource Profile
This section describes the expected behavior of OAuth protected resources (also known as
resource servers). The connections with both clients and authorization servers are detailed below.

4.1 Connections from Clients
A protected resource MUST be capable of receiving access tokens passed in the authorization
header as described in [RFC6750]. A protected resource MAY also be capable of receiving
access tokens passed in the form parameter. A protected resource MUST NOT accept access
tokens passed using the query parameter method. A future version of this profile may prohibit
using the form parameter.

Protected resources MUST define and document which scopes are required for access to the
resource.

Protected resources MUST verify and interpret access tokens using either JWT, token
introspection [RFC7662], or a combination of the two.

The protected resource MUST check the aud (audience) claim, if it exists in the token, to ensure
that it includes the protected resource's identifier. The protected resource's identifier is the full
subject distinguished name (DN) in the protected resource's certificate. The protected resource

24

MUST ensure that the rights associated with the token are sufficient to grant access to the
resource. The protected resource should enforce whatever authorization policy is appropriate for
the resource and not depend solely on OAuth.

Each protected resource MUST be limited to only trust tokens from one logical authorization
server. A logical authorization server may include multiple physical instantiations of an
authorization server for failover purposes operated by a single organization.

Protected resources SHOULD support mutual TLS client certificate bound access tokens as
specified in draft-ietf-oauth-mtls (revision 12 or newer) section 3. This support may be mandated
in a future version of this profile.

4.2 Connections to Authorization Servers
Protected resources MAY use the OAuth 2.0 Authorization Server Metadata standard [RFC8414]
to retrieve configuration information from the authorization server, including supported options,
endpoint URIs, and public keys.

Alternatively, protected resources MAY configure some or all of this information in an out-of-
band manner.

Protected resources MAY use the OAuth 2.0 Token Introspection protocol [RFC7662] to
connect to the authorization server to retrieve information about an access token presented by a
client.

5 Security Rationale for Profile Requirements
This section is intended to provide rationale behind this profile's requirements to help the reader
understand why certain decisions were made.

This profile requires that clients be registered with authorization servers in an out-of-band
manner, rather than allowing dynamic registration of clients. Clients must have some level of
trust placed in them, as they are given the capability to access resources on behalf of the user.
Phishing attacks have been demonstrated in environments that allow open registration of OAuth
clients. For example, in a past incident, an attacker registered a fake "Google Docs" application
with Google, and tricked users into granting the application access to their Google-hosted
resources [Reddit]. Additionally, unlike in typical consumer-facing environments, this profile
(since it is for enterprise use) does not require users to explicitly consent to granting clients
access to their resources, making it even more critical that clients be trusted.

This profile requires use of TLS 1.2 or above for all OAuth interactions, as [RFC6749] does not
explicitly require that all interactions be protected with TLS. For example, the initial interaction
between the user's web browser and an OAuth client could occur over plaintext HTTP, and Fett
et al. (section 3.2 of [Fett]) describe how this property could be leveraged to carry out an
authorization server mix-up attack.

25

This profile requires that all TLS connections validate the TLS server's certificate in accordance
with [RFC6125] to prevent successful man-in-the-middle attacks. OAuth has many security
dependencies on proper authentication of the TLS server, including:

• Retrieval of discovery information, including authorization server endpoint URIs, and the
public keys used to verify the signature on tokens issued by authorization servers

• Authenticating the user to the authorization server, particularly if replayable methods
such as username/password are used

• Communicating the one-time-use authorization code from the authorization server to the
user's web browser, and again from the user's web browser to the client

• Authenticating the client to the authorization server, if the client_secret method is used
• Communicating the access token (and refresh token if applicable) from the authorization

server to client
• Communicating the access token from the client to protected resources
• Communicating the refresh token (if applicable) from the client to the authorization

server

This profile provides some degree of resilience in case server certificate validation is not
sufficient. For example, an attacker may thwart server certificate validation by illegitimately
obtaining a valid certificate from a trusted Certification Authority (CA) [Birge-Lee], somehow
injecting new trusted Certificate Authority (CA) certificates into endpoints [Goodin], or
exploiting unforeseen vulnerabilities in certificate validation routines. Resilience is provided by
requiring that clients and protected resources have the capability of limiting the trusted CAs for
connections to the authorization server. Additionally, mutually authenticated TLS connections
are required by this profile for many network connections. In a mutually authenticated TLS
connection, an attacker could potentially still impersonate the TLS server to the TLS client as
described above, but would likely be unable to impersonate the TLS client to the TLS server.

This profile requires use of OAuth's authorization code grant, prohibiting use of the implicit
grant and resource owner password credentials grant. The client credentials grant may be used as
needed for the client's internal operations; it does not provide delegated authorization of a user's
access.

The implicit grant is prohibited because it directly exposes the user's web browser to the access
token, which may not be ideal, rather than communicating the access token directly from the
authorization server to the client. The implicit grant also may provide more opportunity for an
attacker to inject unexpected access tokens into the client (e.g. as stated in draft-parecki-oauth-
browser-based-apps section 7.8).

The resource owner password credentials grant is prohibited because it directly and
unnecessarily exposes the client to the user's password, and because it is not compatible with
other authentication methods or with multi-factor authentication (e.g. as stated in draft-parecki-
oauth-browser-based-apps section 5).

This profile requires use of the state parameter by clients and authorization servers. The state
parameter provides protection from cross-site request forgery (CSRF) attacks. For example, an
attacker may perform a request with an authorization endpoint using the attacker's own
credentials, obtain a one-time use authorization code, and then perform a CSRF attack to trick a

26

victim user into injecting the attacker's authorization code into the victim's session with the
client, improperly associating the victim's session with the attacker's resources. Proper use of the
state parameter prevents this attack.

This profile describes use of Mutual TLS Client Certificate Bound Access Tokens as specified
by section 3 of draft-ietf-oauth-mtls-12 [Campbell], mandating its support on authorization
servers, and recommending support by confidential clients and protected resources. This
approach cryptographically binds the access token to the client that obtained it, requiring the
client to authenticate to protected resources using mutually authenticated TLS in order for the
protected resource to accept the access token. This approach prevents stolen access tokens (e.g.
from the client's storage or from an insufficiently protected network connection) from being used
without access to the client's private key. This approach (along with the token's "aud" field) also
prevents a protected resource from replaying an access token that a client presented to it into
another protected resource.

This profile requires that exact string comparisons be used for redirect URIs. Wildcards are not
permitted. Wildcards have led to security issues in the past, for example by allowing attackers to
modify redirect_uri values to point to open redirector web pages running on the same domain as
the intended redirect_uri. Open redirectors could be abused to redirect the authorization code to
an attacker.

This profile requires clients to include their full redirect URI in the authorization request and to
check that the redirect URI matches in the authorization response. This profile also requires a
unique redirect URI for each authorization server with which the client interacts. Additionally,
this profile requires that clients associate each resource server with only one authorization server,
and that each resource server only trusts one authorization server. These requirements provide
protection from authorization server mix-up attacks. For example, section 3.2 of [Fett] describes
an attack where the attacker interferes with the protocol flow to cause confusion about which
authorization server the client is interacting with, tricking the client into sending its one-time-use
authorization code to the wrong authorization server. Section IV-A of [Fett-2019] describes an
attack dependent on a client trusting multiple authorization servers for a particular resource. In
this attack, an attacker-controlled authorization server responds to a client’s access token request
with an access token from a different authorization server, potentially allowing the attacker to
bypass the protections of certificate bound access tokens by tricking the legitimate client into
performing operations on the attacker’s behalf.

This profile requires use of PKCE by public clients and strongly recommends its use by
confidential clients. PKCE protects the one-time-use authorization code from use in certain cases
if it is intercepted by an attacker. PKCE was originally intended just for public clients, since
public clients have no ability to authenticate themselves to the authorization server, and
depending on implementation details it may be possible to intercept the one-time-use
authorization code on some client platforms (e.g. while being passed from the platform's web
browser to the client). PKCE, however, provides security benefits to confidential clients as well.
PKCE provides additional resilience from CSRF attacks if the client fails to properly check the
state value. It also protects from the attack described by [Sakimura] in which an attacker injects a
stolen authorization code into its own session with an OAuth client, attempting to associate the
attacker's session with a victim's resources.

27

This profile prefers confidential clients authenticate themselves to authorization servers using
TLS mutual authentication with a client certificate as described in IETF Internet-Draft draft-ietf-
oauth-mtls. Traditionally, a shared secret (called a "client_secret" in RFC6749) is used.
However, the shared secret approach is not ideal. If an attacker captures the shared secret (e.g.
from the client's storage or by intercepting network communication between the client and
authorization server), an attacker could impersonate the client in future sessions simply by using
the shared secret. The shared secret is likely to be irregularly or never changed. In enterprise
environments envisioned by this profile, confidential clients (typically front-end web servers)
already possess and use non-person-entity (NPE) PKI certificates. These NPE PKI certificates
and the associated private keys are ideal to use to authenticate clients to the authorization server
rather than using a shared secret. TLS mutual authentication also provides resilience against
man-in-the-middle attacks, as even if an attacker can impersonate the server to the client, an
attacker would additionally have to impersonate the client to the server (rather than just pass
through an intercepted client_secret value).

Another asymmetric authentication method called "private_key_jwt" is defined by the OpenID
Connect Core specification for authentication of the OAuth client to the authorization server.
This profile does not allow its use. private_key_jwt has the advantage over client_secret that the
private key is not exposed over the network to an attacker. However, it is not as secure as TLS
mutual authentication. With private_key_jwt, the client signs an assertion using its private key
and attaches the assertion to its request. The assertion is not tied to the content of the client's
request, so the client's request is not resilient against man-in-the-middle attacks if the attacker is
able to impersonate the server to the client. The assertion could potentially be replayed if the
authorization server does not store previously seen "jti" values until the assertion's expiration (a
nonce placed in the assertion to prevent replay). Additionally, private_key_jwt uses JSON Web
Keys (JWKs) rather than X.509 certificates, so this may require the client to generate and
manage another key pair, including ensuring that the authorization server has the client's public
key.

Access token injection, described in section 3.6 of [Lodderstedt], is a potential open issue if
adversaries can thwart server certificate validation and perform a man-in-the-middle attack on
the connection between the client and authorization server. OAuth does not provide a mechanism
for clients to determine that the access token received from an authorization server is the
expected token, rather it depends on the security of the HTTPS connection between the two
entities. A man-in-the-middle could potentially replace an access token sent between
authorization server and client with a different access token. The OpenID Foundation’s
Financial-grade API Part 2 [OpenID-FAPI2] provides a mechanism to use an OpenID Connect
ID token to bind each received access token to a client authorization request. A future version of
this profile may adopt that mechanism. If this threat is a concern, it can be addressed by having
the client request and verify an ID token in accordance with the Enterprise OpenID Connect
Profile.

6 Security Considerations
All transactions MUST be protected in transit by TLS as described in BCP195.

28

All clients MUST conform to applicable recommendations found in the Security Considerations
sections of [RFC6749] and those found in the OAuth 2.0 Threat Model and Security
Considerations document.

7 Normative Reference
[AppLinks] Google. “Handling Android App Links”,

<https://developer.android.com/training/app-links>.

[OIDC-Core] OpenID Foundation. "OpenID Connect Core 1.0 incorporating errata set 1”,
November 2014, <https://openid.net/specs/openid-connect-core-1_0.html>

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14,

RFC 2119, DOI 10.17487/RFC2119, March 1997, <http://www.rfc-
editor.org/info/rfc2119>.

[RFC5280] Cooper, D., et al. “Internet X.509 Public Key Infrastructure Certificate and

Certificate Revocation List (CRL) Profile”, RFC 5280, DOI 10.17487/RFC5280,
May 2008, <http://www.rfc-editor.org/info/rfc5280>.

[RFC6125] Saint-Andre, P. and J. Hodges, "Representation and Verification of Domain-Based

Application Service Identity within Internet Public Key Infrastructure Using
X.509(PKIX) Certificates in the Context of Transport Layer Security (TLS)", RFC
6125, DOI 10.17487/RFC6125, March 2011, <http://www.rfc-
editor.org/info/rfc6125>.

[RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", RFC 6749, DOI

10.17487/RFC6749, October 2012, <http://www.rfc-editor.org/info/rfc6749>.

[RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization Framework: Bearer Token

Usage", RFC 6750,DOI 10.17487/RFC6750, October 2012,
<http://www.rfc-editor.org/info/rfc6750>.

[RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, “OAuth 2.0 Threat Model and

Security Considerations”, RFC 6819, DOI 10.17487/RFC6819, January 2013,
<http://www.rfc-editor.org/info/rfc6819>.

[RFC7009] Lodderstedt, T., Ed., Dronia, S., and M. Scurtescu, "Oauth 2.0 Token Revocation",

RFC 7009, DOI 10.17487/RFC7009, August 2013, <http://www.rfc-
editor.org/info/rfc7009>.

[RFC7519] Jones, M., Bradley, J., and N. Sakimura, “JSON Web Token (JWT)”, RFC 7519,

DOI 10.17487/RFC7519, May 2015, http://www.rfc-editor.org/info/rfc7519.

29

[RFC7523] Jones, M., Campbell, B., and C. Mortimore, “JSON Web Token (JWT) Profile for
OAuth 2.0 Client Authentication and Authorization Grants”, RFC7523, DOI
10.17487/RFC7523, May 2015, <http://www.rfc-editor.org/info/rfc7523>.

[RFC7636] Sakimura, N., Ed., “Proof Key for Code Exchange by OAuth Public Clients”, RFC

7636, DOI 10.17487/RFC7636, September 2015, <http://www.rfc-
editor.org/info/rfc7636>.

[RFC7662] Richer, J., Ed., “OAuth 2.0 Token Introspection”, RFC 7662, DOI

10.17487/RFC7662, October 2015, <http://www.rfc-editor.org/info/rfc7662>.

[RFC8414] Jones, M., Sakimura, N., and J. Bradley, “OAuth 2.0 Authorization Server

Metadata”, RFC 8414, DOI 10.17487/RFC8414, June 2018, <http://www.rfc-
editor.org/info/rfc8414>.

[Campbell] Campbell, B., Bradley,J., Sakimura, N., and T. Lodderstedt, “OAuth 2.0 Mutual

TLS Client Authentication and Certificate Bound Access Tokens”, August 2019
(Work in Progress), <https://tools.ietf.org/html/draft-ietf-oauth-mtls>.

[Lodderstedt] Lodderstedt, T., Bradley, J., Labunets, A., and D. Frett, “OAuth 2.0 Security Best

Current Practice”, July 2019, <https://tools.ietf.org/html/draft-ietf-oauth-security-
topicss>.

[Parecki] Parecki, A., and D. Waite, “OAuth 2.0 for Browser-Based Apps”, December 2018,

<https://tools.ietf.org/html/draft-parecki-oauth-browser-based-apps-02>.
[UniversalLinks] Apple, “Universal Links for Developers”,

<https://developer.apple.com/ios/universal-links/>.

8 Informative Reference

[Bertocci] V. Bertocci, “JSON Web Token (JWT) Profile for OAuth 2.0 Access Tokens.”,
April 2019 (Work in Progress), < https://tools.ietf.org/html/draft-ietf-oauth-access-token-jwt-00
>

[Birge-Lee] H. Birge-Lee, et al. "Bamboozling Certificate Authorities with BGP." USENIX

Security Symposium 2018.
https://www.usenix.org/conference/usenixsecurity18/presentation/birge-lee

[Fett] D. Fett, et al. "A Comprehensive Formal Security Analysis of OAuth 2.0." ACM

CCS 2016. https://arxiv.org/pdf/1601.01229.pdf

[Fett-2019] D. Fett, et al. “An Extensive Formal Security Analysis of the OpenID Financial-

grade API.” 40th IEEE Symposium on Security and Privacy (2019).
https://arxiv.org/pdf/1901.11520.pdf

30

[Goodin] D. Goodin, ArsTechnica. "Sennheiser discloses monumental blunder that cripples
 HTTPS on PCs and Macs." https://arstechnica.com/information-
 technology/2018/11/sennheiser-discloses-monumental-blunder-that-cripples-
 https-on-pcs-and-macs/
[OpenID-iGov] J. Richer, et al. "International Government Assurance Profile (iGov) for OAuth
2.0 – draft 01.” https://openid.bitbucket.io/iGov/openid-igov-oauth2-id1.html

[Jones] M. Jones, et al. “OAuth 2.0 Token Exchange.” October 2018 (Work in Progress),

<https://tools.ietf.org/html/draft-ietf-oauth-token-exchange>
[OpenID-FAPI2] N. Sakimura, et al. “Financial-grade API – Part 2: Read and Write API

Security Profile”, October 2018, <https://openid.net/specs/openid-financial-api-part-
2.html>

[Reddit] Reddit. "New Google Docs phishing scam, almost undetectable."
https://www.reddit.com/r/google/comments/692cr4/new_google_docs_phishing_scam_almost_u
ndetectable/
[RFC8471] A. Popov, et al. ”The Token Binding Protocol Version 1.0”, RFC8471, October
2018, <https://tools.ietf.org/html/rfc8471>
[Sakimura] N. Sakimura. "OAuth Profile should mandate RFC7636 (PKCE) for code flow."
https://bitbucket.org/openid/fapi/issues/11/oauth-profile-should-mandate-rfc7636-pkce

31

Acronyms

acr authentication context class reference
amr authentication methods reference
API Application programming interface
CA Certificate authority
CSRF cross-site request forgery
DN Distinguished Name
HTTPS Hypertext Transfer Protocol - Secure
iGov International Government Assurance Profile
JSON JavaScript Object Notation
JWA JSON Web Algorithms
JWE JSON Web Encryption
JWK JSON Web Keys
JWS JSON Web Signature
JWT JSON Web Token
NPE Non-person entity
NSA National Security Agency
OIDC OpenID Connect
PKCE Proof Key for Code Exchange
PoP Proof-of-Possession
SAML Security Assertion Markup Language
URL Uniform Resource Locator
vot Vector of Trust
vtr Vectors of Trust Request

Enterprise Mission Tailored OpenID
Connect (OIDC) Profile

Beth Abramowitz
Kelley Burgin
Tommy Farinelli
Neil McNab
Michael Peck
Mark Russell
Roger Westman

October 2019

The views, opinions and/or findings
contained in this report are those of The
MITRE Corporation and should not be
construed as an official government position,
policy, or decision, unless designated by
other documentation.

Approved for Public Release; Distribution
Unlimited. Public Release Case Number 19-
3213

©2019 The MITRE Corporation.
All rights reserved.

Bedford, MA

This page intentionally left blank.

Table of Contents
1 Introduction ... 1

1.1 Requirements Notation and Convention ... 1

1.2 Conformance ... 1
1.3 Environment Overview ... 2
1.4 Use Cases .. 2

1.4.1 User Authentication to a Web Application ... 3
2 Relying Party Profile ... 5

2.1 Requests to the Authorization Endpoint (Authentication Request) 5

2.2 Requests to the Token Endpoint ... 7
2.3 ID Tokens .. 7
2.4 Request Objects .. 7
2.5 Discovery .. 7

3 Identity Provider Profile ... 8
3.1 ID Tokens .. 8
3.2 UserInfo Endpoint ... 9
3.3 Request Objects .. 11
3.4 Vectors of Trust .. 11

3.5 Authentication Context ... 11
3.6 Discovery .. 12

4 User Info ... 15

4.1 Claims Supported .. 15
4.2 Scope Profiles ... 15
4.3 Claims Request ... 16

4.4 Claims Response ... 16
4.5 Claims Metadata ... 16

5 Privacy Considerations ... 16
6 Security Considerations .. 17
7 Normative References ... 17
8 Informative References ... 18
Appendix A Acronyms .. 18

1 Introduction
OpenID Connect, standardized by the OpenID Foundation [OIDC-Core], provides relying parties
(RP) with the ability to delegate user authentication to an identity provider (IdP). Users
authenticate to an IdP, and the IdP provides the RP with an assertion of the successful
authentication.

This document profiles OpenID Connect for use in enterprise environments. This profile is
derived from the International Government Assurance Profile (iGov) for OpenID Connect 1.0
[iGov-OIDC] produced by the OpenID Foundation.

OpenID Connect itself is a profile of the OAuth 2.0 web authorization framework [RFC6749].
This profile builds upon requirements found in the Enterprise OAuth 2.0 Profile. In OpenID
Connect, the OAuth client is known as a Relying Party (RP), and the OAuth authorization server
is known as an Identity Provider (IdP).

1.1 Requirements Notation and Convention
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in RFC 2119.

All uses of JSON Web Signature (JWS) and JSON Web Encryption (JWE) data structures in this
specification utilize the JWS Compact Serialization or the JWE Compact Serialization; the JWS
JSON Serialization and the JWE JSON Serialization are not used.

1.2 Conformance
This specification defines requirements for the following components:

• OpenID Connect 1.0 relying parties (also known as OpenID Clients)
• OpenID Connect 1.0 identity providers (also known as OpenID Providers)

The requirements include details of interactions between these components:

• Relying party to identity provider

When a profile-compliant component is interacting with other profile-compliant components, in
any valid combination, all components MUST fully conform to the features and requirements of
this specification. All interaction with non-profile-compliant components is outside the scope of
this specification.

A profile-compliant OpenID Connect IdP MUST support and utilize certain features as described
in section 3 of this profile.

Since OpenID Connect builds upon the OAuth 2.0 specification, a profile-compliant OpenID
Connect IdP MUST comply with all authorization server requirements in the Enterprise OAuth
2.0 Profile, with the exception that if it does not provide general OAuth 2.0 authorization server
services, then functionality related to interaction between the authorization server and protected
resources is OPTIONAL.

A profile-compliant OpenID Connect relying party MUST support and utilize certain features as
described in section 2 of this profile.

Since OpenID Connect builds upon the OAuth 2.0 specification, a profile-compliant OpenID
Connect relying party MUST comply with all client requirements in the Enterprise OAuth 2.0
Profile.

1.3 Environment Overview
This profile is intended for use in enterprise environments, not consumer-facing environments.
Enterprise environments have different privacy and security considerations. For example, the
base OpenID Connect specification includes optional privacy considerations to prevent relying
parties from correlating user identities, while in enterprise environments relying parties generally
need the ability to strongly identify users.

The enterprise is assumed to have a deployed public key infrastructure (PKI). The PKI issues
each end user a certificate attesting to the user's identity. The PKI also issues non-person entity
(NPE) certificates to relying parties and identity providers.

Users have attributes associated with them representing what types of data the user is permitted
to access. Relying parties similarly have attributes associated with them. In environments where
attributes are highly sensitive, relying parties can be restricted to obtain only attributes about the
user that are shared with the relying party, i.e. the intersection of both entities' attributes.

1.4 Use Cases
This profile is oriented around one primary use case: user authentication to a web application /
server.
This use case section is non-normative, and is intended to provide examples to set the stage for
the rest of the profile document.
Authentication to native applications is another potential use case, but is not addressed at this
time. Typically, users are not actually authenticating to a native application, but rather are
authorizing the native application to access resources on behalf of the user. This use case is
already addressed by the Enterprise OAuth Profile.
OAuth and OpenID Connect may be combined in different ways as part of an overall
authentication and authorization workflow. A single authorization server may perform both
OAuth and OpenID Connect functions. In that case, the requirements of the Enterprise OAuth
2.0 and OpenID Connect 1.0 profiles would apply to the interactions between the client and
authorization server (known as relying party and identity provider respectively in OpenID
Connect terminology).

In other cases, an OAuth authorization server might act as an OpenID Connect relying party for
the purpose of authenticating users, relying upon a separate OpenID Connect identity provider
for authentication. In the context of this profile, this use case is functionally identical to the User
Authentication to a Web Application use case described below, with the OAuth authorization
server acting in the role of the relying party web application.

1.4.1 User Authentication to a Web Application
In this use case, a web application (relying party) needs to authenticate a user. In many current
enterprise environments, relying parties authenticate users through Transport Layer Security
(TLS) client certificate authentication between the user's web browser and the relying party web
server. As part of the TLS handshake, users prove possession of a private key associated with a
public key infrastructure (PKI) certificate that uniquely identifies and authenticates the user.
Although this method provides strong authentication, allowing OpenID Connect-based
authentication to web servers brings potential advantages by offloading authentication
complexities to an identity provider.

Using OpenID Connect can simplify the configuration of relying party web servers. Currently,
each relying party web server must be configured with trusted certificates from the certification
authorities (CA) that it trusts certificates from. These often include not only the relying party
organization's CA but also other CAs belonging to partners, such as other agencies, foreign
governments, and industry. With so many partners, these CA certificates may need to be
frequently updated, placing a burden on the web server administrators. If OpenID Connect were
instead used, the web server would be configured to trust assertions from its home organization's
identity provider. The identity provider would handle the complexities of enabling authentication
from multiple partners, rather than requiring it to be handled at each individual relying party.

Using OpenID Connect enables authentication method flexibility. There may be cases where
TLS client certificate authentication is not appropriate or is not sufficient, making use of other
authentication methods desired. TLS client certificate authentication of the user to the identity
provider can of course still be used. It would be impractical for every relying party web server to
be configured to handle alternative authentication methods, but it would become practical if that
configuration only needed to occur at the identity provider.

For example, the "zero trust" security model advocates strongly authenticating both the user's
identity and the identity and security properties of the user's endpoint computing system, in order
to decrease reliance on enterprise network boundaries for security. The logic for analyzing
endpoint system security properties as part of an authentication decision could be placed at the
identity provider, but would be impractical to place at every relying party.

It may be necessary to authenticate users who do not possess a PKI certificate or have
temporarily lost access to their private key. It may be desirable to require additional
authentication methods in conjunction with TLS client certificate authentication, for example
during an elevated threat condition, or to perform particularly sensitive operations. Examples of
other potential authenticators include the Fast Identity Online (FIDO) standards (either using an
external token such as a YubiKey or using a cryptographic store built into the endpoint
computing device) and RSA SecurID.

Additionally, web browser-based TLS client certificate authentication is not widely used outside
government environments. Some commercial-off-the-shelf (COTS) products acting in the relying
party role may not directly support user authentication using TLS client certificates but may
support OpenID Connect.

Figure 1 provides a high-level protocol overview of this use case.

Figure 1. Figure 2 - Overview of OpenID Connect authentication

Figure 2 provides a high-level protocol overview of this use case including a non-exhaustive
overview of this profile’s requirements and recommendations.

 Figure 3: Overview of OpenID Connect authentication using profile requirements (non-exhaustive)

2 Relying Party Profile
This section profiles the expected OpenID Connect behavior of relying parties. Relying parties
act in the role of OAuth client and are expected to conform with the Client Profiles section of the
Enterprise OAuth Profile.

This profile assumes that OpenID Connect relying parties are OAuth confidential clients.
Requirements for relying parties acting as OAuth public clients are out-of-scope and would need
to be specified separately.

Each relying party MUST trust a single IdP. If interactions with multiple identity providers is
required, the relying party’s local identity provider can act as a broker to other identity providers.

2.1 Requests to the Authorization Endpoint (Authentication Request)
The Enterprise OAuth Profile specifies requirements for requests to Authorization Endpoints –
for example, when to use the PKCE parameters to secure token exchange.

In addition to the requirements specified in Section 2.2.2 of the Enterprise OAuth Profile, the
following describes the supported OpenID Connect Authorization Code Flow parameters for use
with profile-compatible IdPs. See Section 3.1.2.1 of [OIDC-Core].

Request Parameters:

client_id REQUIRED The RP's OAuth 2.0 Client Identifier valid at the
Identity Provider/Authorization Server

response_type REQUIRED MUST be set to code; the hybrid flows are not
permitted under this profile

scope REQUIRED Indicates the attributes being requested. (See Section
4.2)

redirect_uri REQUIRED Indicates a valid endpoint where the client will
receive the authentication response.

state REQUIRED Unguessable random string generated by the RP,
used to protect against CSRF attacks. Must contain a
sufficient amount of entropy to avoid guessing.
Returned to the RP in the authentication response.

nonce REQUIRED Unguessable random string generated by the RP,
used to protect against CSRF attacks. Must contain a
sufficient amount of entropy to avoid guessing.
Returned to the RP in the ID Token.

vtr OPTIONAL MUST be set to a value as described in Section 6.1
of Vectors of Trust [RFC8485]. vtr takes precedence
over acr_values.

acr_values OPTIONAL Lists the acceptable LoAs for this authentication. See
Section 3.1. MUST not be set if vtr is specified.

code_challenge and
code_challenge_method

REQUIRED If the PKCE protocol is being used by the RP. See
Enterprise OAuth Profile.

A sample request may look like:

https://idp.government.gov/oidc/authorization?
 response_type=code
 &client_id=827937609728-m2mvqffo9bsefh4di90saus4n0diar2h
 &scope=openid
 &redirect_uri=https%3A%2F%2Frp.fed1.gov%2Foidc%2Flogin
Response
 &state=2ca3359dfbfd0
 &nonce=71d7b7e582067
 &code_challenge=2mjy65K8_lh9XlDiOQItYyYhArgzebK-Xx6K8lltE6A
 &code_challenge_method=S256
 &acr_values=http%3A%2F%2Fidmanagement.gov%2Fns%2F
assurance%2Floa%2F1
 +http%3A%2F%2Fidmanagement.gov%2Fns%2Fassurance%2Floa%2F2
 +http%3A%2F%2Fidmanagement.gov%2Fns%2Fassurance%2Floa%2F3
 +http%3A%2F%2Fidmanagement.gov%2Fns%2Fa

2.2 Requests to the Token Endpoint
Requirements for the request to the Token Endpoint are identical to the requirements specified in
Section 2.2.3 of the Enterprise OAuth Profile.

2.3 ID Tokens
All relying parties MUST validate the signature of an ID Token before accepting it using the
public key of the issuing server. The IdP’s public signing keys MUST be made available in the
jwks_uri claim in the IdP’s discovery document, and MAY be made available in the form of
NPE certificates issued to the IdP. The jwks_uri endpoint MUST be served over HTTPS. ID
Tokens MAY be encrypted using the appropriate key of the requesting relying party.

Relying parties MUST verify the following in received ID tokens:

iss The "issuer" field is the Uniform Resource Locater (URL) of
the expected issuer

aud The "audience" field contains the client ID of the RP
nonce Must match the nonce value submitted in the authentication

request
exp Expiration timestamp for the token is a date (integer number

of seconds since from 19700101T00:00:00Z UTC)
iat Issued at timestamp for the token is a date (integer number of

seconds since from 19700101T00:00:00Z UTC)

2.4 Request Objects
RPs MAY optionally send requests to the authorization endpoint using the request parameter as
defined by OpenID Connect. RPs MAY send requests to the authorization endpoint by reference
using the request_uri parameter.

Request objects MUST either be signed by a key corresponding to an X.509 certificate issued to
the RP or by a key corresponding to a public key registered with the IdP. Request objects MAY
be encrypted to the IdP's public key.

2.5 Discovery
RPs SHOULD cache OpenID Provider metadata once an IdP has been discovered and used by
the RP. If HTTP cache headers are supplied by the IdP, metadata MUST NOT be re-requested
before indicated by the headers. Metadata SHOULD NOT be re-requested from the IdP sooner
than 24 hours after the most recent successful request. In the case of an unsuccessful request and
cached metadata, re-request SHOULD NOT be made for at least 60 minutes.
Cached metadata MUST expire and after that time MUST be discarded. Cached metadata
SHOULD be discarded when 30 days have passed since the most recent successful request, but
MAY be discarded sooner.

8

3 Identity Provider Profile
This section profiles the expected OpenID Connect behavior of identity providers. Identity
providers act in the role of OAuth authorization server and are expected to conform with the
Authorization Server Profile section of the Enterprise OAuth Profile, with the exception that the
Enterprise OAuth Profile's protected resource requirements are only required if the identity
provider / authorization server provides general OAuth authorization server functionality.

As stated in section 2, each relying party MUST trust a single IdP. In the common enterprise use
case with PKI authentication, a local IdP can directly authenticate users from partner
organizations and obtain their attributes from an attribute service. In some cases, interactions
with other IdPs may be necessary (for example, for interacting with a partner organization that
does not use PKI or whose user attributes are not available through an attribute service). In these
cases, the IdP may act as a broker by redirecting the user to another IdP. In these cases, the IdP
acting as a broker may be considered both an IdP in relation to the application being accessed
and a relying party in relation to the other IdP.

3.1 ID Tokens
All ID Tokens MUST be signed by the IdP’s private signature key. ID Tokens MAY be
encrypted using the appropriate key of the requesting RP. IdPs MUST support the RS256
signature method (the Rivest, Shamir, and Adleman (RSA) signature algorithm with at least a
256 bit hash) and MAY also use the following signature algorithms: RS384, RS512, ES256,
ES384, ES512, PS256, PS384, PS512.

The ID Token MUST expire and SHOULD have an active lifetime no longer than five minutes.
Since the ID token is consumed by the RP and not presented to remote systems, much shorter
expiration times are RECOMMENDED where possible.

The token response includes an access token (which can be used to make a UserInfo request) and
ID token (a signed and optionally encrypted JSON Web Token). ID Token values have the
following meanings:

iss REQUIRED The "issuer" field is the Uniform Resource Locater (URL) of the
expected issuer.

aud REQUIRED The "audience" field contains the client ID of the RP.
sub REQUIRED A value that uniquely identifies the user. For example, the full

Distinguished Name (DN) from the user’s client certificate (if
available).

vot OPTIONAL The vector value as specified in Vectors of Trust [RFC8485]. See
Section 3.4 for more details. vot takes precedence over acr.

vtm REQUIRED
if vot is
provided.

The trustmark URI as specified in Vectors of Trust. See Section
3.4 for more details.

acr REQUIRED The authentication class with which the user authenticated.
MUST be a member of the acr_values list from the authentication

9

request. Values for this field may correspond to NIST
Authenticator Assurance Levels (AALs); other values may be
defined for use in a specific community. The IdP MAY include
this claim in addition to “vot” for clients that do not support vot.
See Authentication Context for more details. .

amr REQUIRED The user’s authentication method to the IdP. See below for
sample values for this field.

nonce REQUIRED MUST match the nonce value that was provided in the
authentication request.

jti REQUIRED A unique identifier for the token, which can be used to prevent
reuse of the token.

auth_time REQUIRED This MUST be included if the provider can assert an end user's
authentication intent was demonstrated. For example, a login
event where the user took some action to authenticate.

exp REQUIRED The expiration time (integer number of seconds since from 1970-
01-01T00:00:00Z UTC), after which the token MUST be
considered invalid

iat REQUIRED Issued at timestamp
at_hash REQUIRED Access token hash value (see section 3.1.3.6 of OpenID Connect

Core for details on generating this field)

Authentication Context Class Reference (acr): A string specifying a defined Authentication
Context Class Reference. The following URLs defined in the Federal Identity, Credential, and
Access Management (FICAM) MAY be used to convey assurance levels defined in NIST SP
800-63-2:

• http://idmanagement.gov/ns/assurance/loa/1
• http://idmanagement.gov/ns/assurance/loa/2
• http://idmanagement.gov/ns/assurance/loa/3
• http://idmanagement.gov/ns/assurance/loa/4

These values may be superseded by a future specification of standard values to convey AAL,
IAL, and FAL. IdPs and RPs MAY define additional acr values that have agreed-upon
definitions for a given user community or mission area.

Authentication Methods Reference (amr): a JSON array of strings indicating authentication
methods used to authenticate the user to the IdP. May have multiple values when mutli-factor
authentication is used. [RFC 8176] provides a set of standard amr values. However, community
discussion and agreement is needed to determine the applicability of a given authentication
mechanism and the specific definitions of amr values. The definition and adoption of specific
amr values is out of scope for this profile.

3.2 UserInfo Endpoint
IdPs MUST support the UserInfo Endpoint and, at a minimum, the sub (subject) claim.

10

Support for a UserInfo Endpoint is important for maximum relying party implementation
interoperability even if no additional user information is returned. Relying parties are not
required to call the UserInfo Endpoint, but should not receive an error if they do.

In an example transaction, the relying party sends a request to the UserInfo Endpoint like the
following:

GET /userinfo HTTP/1.1
Authorization: Bearer
eyJhbGciOiJSUzI1NiJ9.eyJleHAiOjE0MTg3MDI0MTIsImF1ZCI6WyJjMWJjODR
lNC00N2VlLTRiNjQtYmI1Mi01Y2RhNmM4MWY3ODgiXSwiaXNzIjoiaHR0cHM6XC9
cL2lkcC1wLmV4YW1wbGUuY29tXC8iLCJqdGkiOiJkM2Y3YjQ4Zi1iYzgxLTQwZWM
tYTE0MC05NzRhZjc0YzRkZTMiLCJpYXQiOjE0MTg2OTg4MTJ9i.HMz_tzZ90_b0Q
ZS-AXtQtvclZ7M4uDAs1WxCFxpgBfBanolW37X8h1ECrUJexbXMD6rrj_uuWEqPD
738oWRo0rOnoKJAgbF1GhXPAYnN5pZRygWSD1a6RcmN85SxUig0H0e7drmdmRkPQ
gbl2wMhu-6h2Oqw-ize4dKmykN9UX_2drXrooSxpRZqFVYX8PkCvCCBuFy2O-
HPRov_SwtJMk5qjUWMyn2I4Nu2s-R20aCA-7T5dunr0iWCkLQnVnaXMfA22RlRiU
87nl21zappYb1_EHF9ePyq3Q353cDUY7vje8m2kKXYTgc_bUAYuW-W3SMSw5UlKa
HtSZ6PQICoA
Accept: text/plain, application/json, application/*+json, */*
Host: idp-p.example.com
Connection: Keep-Alive
User-Agent: Apache-HttpClient/4.2.3 (java 1.5)

And receives a document in response like the following:

HTTP/1.1 200 OK
Date: Tue, 16 Dec 2014 03:00:12 GMT
Access-Control-Allow-Origin: *
Content-Type: application/json;charset=ISO-8859-1
Content-Language: en-US
Content-Length: 333
Connection: close
{
 "sub": "6WZQPpnQxV",
 "iss": "https://idp-p.example.com"
 "given_name": "Stephen",
 "family_name": "Emeritus",
}

IdPs MUST support the generation of JWT encoded responses from the UserInfo Endpoint in
addition to unsigned JSON objects. Signed responses MUST be signed by the IdP's key, and
encrypted responses MUST be encrypted with the authorized RP's public key. Hashing and
signature algorithm requirements for UserInfo responses are the same as those described in
Section 3.1 regarding ID Tokens.

11

IdPs MAY provide different sets of user claims in the ID Token and UserInfo endpoint. For
example, an IdP that provides a large number of user claims could provide a baseline set of
claims in the ID Token and enable RPs to request additional claims as needed from the UserInfo
endpoint.

3.3 Request Objects
IdPs MUST accept requests containing a request object signed by the RP’s private key. IdPs
MUST validate the signature on such requests against either an X.509 certificate belonging to the
RP (whose Distinguished Name is associated with the RP’s registration on the IdP) or a public
key registered to the RP by the IdP. IdPs SHOULD accept request objects encrypted with the
IdP's public key (this would require the IdP to publish a public key suitable for key agreement or
key establishment).

IdPs MAY accept request objects by reference using the request_uri parameter. If request_uri is
used, its value MUST be an HTTPS URL.

Both of these methods allow for RPs to create a request that is protected from tampering through
the browser, allowing for a higher security mode of operation for RPs that require it. RPs are not
required to use request objects, but IdPs are required to support requests using them.

3.4 Vectors of Trust
As vectors of trust is an emerging concept, use of the vtr value and vot field is OPTIONAL. If
the vtr (Vectors of Trust Request) value is present in the authorization request as defined in the
Vectors of Trust standard, the IdP SHOULD respond with a valid vot value as defined in Section
3.1. Both the vtr and vot MUST contain values in accordance with the Vectors of Trust standard.
These values MAY be those defined in the Vectors of Trust standard directly or MAY be from a
compatible standard. The IdP MAY require the user to reauthenticate, provide a second factor, or
perform another action in order to fulfill the state requested in the vtr.

For backwards compatibility RPs MAY send an acr_values parameter. If both the vtr and
acr_values are in the request, the vtr MUST take precedence and the acr_values MUST be
ignored.

It is out of the scope of this document to determine how an organization maps their digital
identity practices to valid VOT component values.

3.5 Authentication Context
IdPs MUST provide acr (authentication context class reference, equivalent to the Security
Assertion Markup Language (SAML) element of the same name) and MUST provide amr
(authentication methods reference) values in ID tokens.

The acr and amr are defined in Section 3.1.

12

3.6 Discovery
OpenID Connect Discovery provides a standard, programmatic way for RPs to obtain
configuration details for communicating with IdPs. Exposing a Discovery endpoint does NOT
inherently put the IdP at risk to attack. Endpoints and parameters specified in the Discovery
document should be considered public information regardless of the existence of the Discovery
document. IdPs MUST provide a Discovery endpoint at the standard well-known URL specified
in [OIDC-Discovery].

Access to the Discovery document MAY be protected by requiring client TLS authentication.
Endpoints described in the Discovery document MUST use HTTPS and MAY have additional
controls the IdP wishes to support.

All IdPs are uniquely identified by a URL known as the issuer. This URL serves as the prefix of
a service discovery endpoint as specified in the OpenID Connect Discovery standard. The
discovery document MUST contain at minimum the following fields:

issuer REQUIRED The fully qualified issuer URL of the OpenID
Provider.

authorization_endpoint REQUIRED The fully qualified URL of the IdP's authorization
endpoint defined by [RFC6749].

token_endpoint REQUIRED The fully qualified URL of the server's token
endpoint defined by [RFC6749].

introspection_endpoint OPTIONAL The fully qualified URL of the server's
introspection endpoint defined by OAuth Token
Introspection.

revocation_endpoint OPTIONAL The fully qualified URL of the server's revocation
endpoint defined by OAuth Token Revocation.

jwks_uri REQUIRED The fully qualified URI of the IdP’s public key in
JWK Set format. For verifying the signatures on
the id_token.

scopes_supported REQUIRED The list of scopes the server supports.
claims_supported REQUIRED The list of claims available in the supported scopes.

See below.
vot OPTIONAL The vectors supported.
acr_values OPTIONAL The acrs supported.

The following example shows the JSON document found at a discovery endpoint for an identity
provider:

{
 "request_parameter_supported": true,
 "id_token_encryption_alg_values_supported": [
 "RSA-OAEP", "RSA1_5", "RSA-OAEP-256"
],

13

 "registration_endpoint": "https://idp-
p.example.com/register",
 "userinfo_signing_alg_values_supported": [
 "RS256", "RS384", "RS512"
],
 "token_endpoint": "https://idp-p.example.com/token",
 "request_uri_parameter_supported": false,
 "request_object_encryption_enc_values_supported": [
 "A192CBC-HS384", "A192GCM", "A256CBC+HS512",
 "A128CBC+HS256", "A256CBC-HS512",
 "A128CBC-HS256", "A128GCM", "A256GCM"
],
 "token_endpoint_auth_methods_supported": [
 "tls_client_auth"
],
 "userinfo_encryption_alg_values_supported": [
 "RSA-OAEP", "RSA1_5",
 "RSA-OAEP-256"
],
 "subject_types_supported": [
 "public"
],
 "id_token_encryption_enc_values_supported": [
 "A192CBC-HS384", "A192GCM", "A256CBC+HS512",
 "A128CBC+HS256", "A256CBC-HS512", "A128CBC-HS256",
 "A128GCM", "A256GCM"
],
 "claims_parameter_supported": false,
 "jwks_uri": "https://idp-p.example.com/jwk",
 "id_token_signing_alg_values_supported": [
 "RS256", "RS384", "RS512", "none"
],
 "authorization_endpoint": "https://idp-
p.example.com/authorize",
 "require_request_uri_registration": false,
 "introspection_endpoint": "https://idp-
p.example.com/introspect",
 "request_object_encryption_alg_values_supported": [
 "RSA-OAEP", RSA1_5", "RSA-OAEP-256"
],
 "service_documentation": "https://idp-p.example.com/about",
 "response_types_supported": [
 "code", "token"
],
 "token_endpoint_auth_signing_alg_values_supported": [
 "RS256", "RS384", "RS512"
],
 "revocation_endpoint": "https://idp-p.example.com/revoke",

14

 "request_object_signing_alg_values_supported": [
 "RS256", "RS384", "RS512"
],
 "claim_types_supported": [
 "normal"
],
 "grant_types_supported": [
 "authorization_code",
],
 "scopes_supported": [
 "profile", "openid", "doc"
],
 "userinfo_endpoint": "https://idp-p.example.com/userinfo",
 "userinfo_encryption_enc_values_supported": [
 "A192CBC-HS384", "A192GCM",
"A256CBC+HS512","A128CBC+HS256",
 "A256CBC-HS512", "A128CBC-HS256", "A128GCM", "A256GCM"
],
 "op_tos_uri": "https://idp-p.example.com/about",
 "issuer": "https://idp-p.example.com/",
 "op_policy_uri": "https://idp-p.example.com/about",
 "claims_supported": [
 "sub", "name", "vot", "acr"
],
 "vot": "???"
 "acr_values": [
 "http://idmanagement.gov/ns/assurance/loa/2",
 "http://idmanagement.gov/ns/assurance/loa/3",
 "http://idmanagement.gov/ns/assurance/loa/4",
]
}

It is RECOMMENDED that IdPs provide cache information through standard HTTP caching
headers such as Cache-Control with max-age or Expires. HTTP caching headers SHOULD be
set to a minimum of 24 hours.

The IdP MAY provide its public key in JWK Set format, such as the following 2048-bit RSA
key:

{
"keys": [
 {
 "alg": "RS256",
 "e": "AQAB",
 "n":
"o80vbR0ZfMhjZWfqwPUGNkcIeUcweFyzB2S2T-hje83IOVct8gVg9FxvHPK1ReE
W3-p7-A8GNcLAuFP_8jPhiL6LyJC3F10aV9KPQFF-w6Eq6VtpEgYSfzvFegNiPtp

15

MWd7C43EDwjQ-GrXMVCLrBYxZC-P1ShyxVBOzeR_5MTC0JGiDTecr_2YT6o_3aE2
SIJu4iNPgGh9MnyxdBo0Uf0TmrqEIabquXA1-V8iUihwfI8qjf3EujkYi7gXXelI
o4_gipQYNjr4DBNlE0__RI0kDU-27mb6esswnP2WgHZQPsk779fTcNDBIcYgyLuj
lcUATEqfCaPDNp00J6AbY6w",
 "kty": "RSA",
 "kid": "rsa1"
 }
] }

4 User Info
The availability, quality, and reliability of an individual's identity attributes will vary greatly
across jurisdictions and IdP systems. The following recommendations ensure maximum cross
jurisdictional interoperability, while setting RP expectations on the type of data they may
acquire.

4.1 Claims Supported
Discovery mandates the inclusion of the claims_supported field that defines the claims an RP
MAY expect to receive for the supported scope values. IdPs MUST return claims on a best effort
basis. However, an IdP asserting it can provide a user claim does not imply that this data is
available for all its users: RPs MUST be prepared to receive partial data. Providers MAY return
claims outside of the claims_supported list, but they MUST still ensure that the extra claims do
not violate the policies set out by the federation, which may include filtering the returned
attributes based on the relying party’s attributes.

This profile does not specify claim names or values. The specific claims to be used in a given
environment will be addressed in that environment’s claims management specification or
dictionary. It is hoped that claim names and values will be harmonized as much as practical
across different mission enterprises.

4.2 Scope Profiles
In OpenID Connect, scopes are generally used by relying parties to request that specific sets of
claims about the user be returned in the ID Token and/or from the UserInfo endpoint. The
OpenID Connect Core specification defines the following standard scopes. IdPs MUST
recognize these standard scopes, though they are not required to return all corresponding claims
to all relying parties.

profile OPTIONAL This scope value requests access to the End-User's default
profile Claims, which are: name, family_name,
given_name, middle_name, nickname,
preferred_username, profile, picture, website, gender,
birthdate, zoneinfo, locale, and updated_at.

email OPTIONAL This scope value requests access to the email and
email_verified Claims.

16

address OPTIONAL This scope value requests access to the address Claim.
phone OPTIONAL This scope value requests access to the phone_number and

phone_number_verified Claims

IdPs MAY support additional scope values and corresponding claim sets as needed to support
mission needs.

4.3 Claims Request
OpenID.Core section 5.5 defines a method for a RP to request specific claims in the UserInfo
object. IdPs SHOULD support this claims parameter in the interest of data minimization; that is,
the IdP only returns information on the subject the RP specifically asks for, and does not
volunteer additional information about the subject.

RPs requesting the profile scope MAY provide a claims request parameter. If the claims request
is omitted, the IdP SHOULD provide a default claims set that it has available for the subject, in
accordance with any policies set out by the trust framework the IdP supports.

4.4 Claims Response
Response to a UserInfo request MUST match the scope and claims requested to avoid having an
IdP overexpose a user's identity information.

Claims response MAY also make use of the aggregated and/or distributed claims structure to
refer to the original source of the subject's claims.

4.5 Claims Metadata
Claims Metadata (such as locale or the confidence level the IdP has in the claim for the user) can
be expressed as attributes within the UserInfo object, but are outside the scope of this document.
These types of claims are best described by the trust framework the RPs and IdPs operate within.

5 Privacy Considerations
Data minimization is an essential concept in trust frameworks and federations exchanging user
identity information for government applications. The design of this specification takes into
consideration mechanisms to protect the user's government identity information and activity
from unintentional exposure. Values for sensitive user attributes need to be limited to only those
applications and services with a verified need to know.

Request claims SHOULD be supported by IdPs to ensure that only the data the RP explicitly
requests is provided in the UserInfo response. This prevents situations where an RP may only
require a partial set of claims, but receives (and is therefore exposed to) a full set of claims.

17

For example, System A is accredited to operate up to the SECRET level. User B has a TOP
SECRET clearance the IdP knows of. System A registers with the OpenID Provider that it needs
to know the clearance level of the users connecting to the system.

Using a traditional attribute sharing scheme, when User B logs into System A with OpenID
Connect, the UserInfo response indicates User B is cleared up to the TOP SECRET level. This
is not desired as it unnecessarily discloses to System A the fact that User B has a TOP SECRET
clearance.

The desired approach is that the IdP also knows the accreditation level of System A (or can
query a data source for this information) and filters the information provided to System A
accordingly. When User B logs into System A with OpenID Connect, the UserInfo response
indicates User B is cleared up to the SECRET level. Even though User B is cleared to TOP
SECRET, this is not disclosed to System A because it has no need to know, it does not process
information at the TOP SECRET level. User B is still able to access all information he is
entitled to in System A as the initial scenario.

6 Security Considerations
All transactions MUST be protected in transit by TLS as described in BCP195.

All implementations MUST conform to applicable recommendations found in the Security
Considerations sections of [RFC6749] and those found in the OAuth 2.0 Threat Model and
Security Considerations document.

7 Normative References
[OIDC-Core] OpenID Foundation. "OpenID Connect Core 1.0 incorporating errata set 1”,
November 2014, <https://openid.net/specs/openid-connect-core-1_0.html>.

[iGov-OIDC] M. Varley and P. Grassi. "International Government Assurance Profile (iGov) for
OpenID Connect 1.0 - Draft 03," October 2018, <https://openid.net/specs/openid-igov-openid-
connect-1_0-03.html>.

[RFC6749] Hardt, D., Ed. "The OAuth 2.0 Authorization Framework", RFC 6749, DOI
10.17487/RFC6749, October 2012, <http://www.rfc-editor.org/info/rfc6749>.

[RFC8485] Richer, J. and Johansson, L. "Vectors of Trust," October 2018,
<https://tools.ietf.org/html/rfc8485>.

[OIDC-Discovery] OpenID Foundation. “OpenID Connect Discovery 1.0 incorporating errata
set 1”, November 2014, <https://openid.net/specs/openid-connect-discovery-1_0.html>.

18

8 Informative References
[RFC4211] Schaad, J. “Internet X.509 Public Key Infrastructure Certificate Request Message
Format (CRMF)”, September 2005, <https://tools.ietf.org/html/rfc4211>.
[NIST.800-63-2] National Institute of Standards and Technology (NIST), "Electronic
Authentication Guideline", NIST Special Publication 800-63-2, August 2013,
<http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf >.
[RFC4226] M'Raihi, D., Bellare, M., Hoornaert, F., Naccache, D., and O. Ranen, "HOTP: An
HMAC-Based One-Time Password Algorithm", RFC 4226, December 2005.
<http://www.ietf.org/rfc/rfc4226.txt>.
[RFC6238] M'Raihi, D., Machani, S., Pei, M., and J. Rydell, "TOTP: Time-Based One-Time
Password Algorithm", RFC 6238, May 2011. <http://www.ietf.org/rfc/rfc6238.txt>.
[MSDN Microsoft, "Integrated Windows Authentication with Negotiate", September 2011,
<https://blogs.msdn.com/b/benjaminperkins/archive/2011/09/14/iis-integrated-windows-
authentication-with-negotiate.aspx>.

Appendix A Acronyms

acr authentication context class reference
amr authentication methods reference
iGov International Government Assurance Profile
JSON JavaScript Object Notation
JWA JSON Web Algorithms
JWT JSON Web Token
NSA National Security Agency
OIDC OpenID Connect
SAML Security Assertion Markup Language
URL Uniform Resource Locator
vot Vector of Trust
vtr Vectors of Trust Request

	Enterprise Mission Tailored OpenID Connect (OIDC) Profile and Enterprise Mission Tailored OAuth 2.0 Profile.pdf
	2019-12-26-Enterprise Tailored OAuth Profile
	2019-12-26-Enterprise Tailored OpenID Connect Profile

