
11

SLATE Developers’ Guide

Ali Charara
Mark Gates
Jakub Kurzak
Asim YarKhan
Jack Dongarra

Innovative Computing Laboratory

December 31, 2019

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and hardware
technology, to support the nation’s exascale computing imperative.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

Revision Notes
12-2019 first publication

@techreport{charara2019slate,
author={Charara, Ali and Gates, Mark and Kurzak, Jakub and YarKhan, Asim and Dongarra, Jack},
title={{SLATE} Developers' Guide, {SWAN} No. 11},
institution={Innovative Computing Laboratory, University of Tennessee},
year={2019},
month={December},
number={ICL-UT-XX-XX},
note={revision 12-2019}

}

i

Contents

Contents ii

1 Introduction 1

2 API Layers 2
2.1 Drivers . 3
2.2 Computational routines . 3
2.3 Internal routines for major, parallel tasks . 8
2.4 Tile operations for small, sequential tasks . 14
2.5 BLAS++, Batch BLAS++, and LAPACK++ . 14

3 Matrix Storage 15
3.0.1 Tile management . 17

4 Matrix Hierarchy 19

5 Handling of Side, Uplo, Trans, etc. 21

6 Handling of Precisions 23

7 Parallelism Model 25

8 Message Passing Communication 29

9 MOSI Coherency Protocol 30
9.1 Coherency control . 30

9.1.1 Tile States . 31
9.1.2 MOSI API . 32
9.1.3 Data transfer . 33
9.1.4 State diagrams . 33

9.2 Developer hints . 37

ii

10 Column Major and Row Major Layout 38
10.1 Layout representation and API . 38
10.2 Layout conversion . 39

10.2.1 Layout conversion of extended tiles . 42
10.3 Layout aware MOSI . 42

11 Compatibility APIs 45
11.1 LAPACK Compatibility API . 45
11.2 ScaLAPACK Compatibility API . 46

Bibliography 47

iii

CHAPTER 1

Introduction

SLATE (So�ware for Linear Algebra Targeting Exascale) 1 is being developed as part of the
Exascale Computing Project (ECP) 2, which is a joint project of the U.S. Department of Energy’s
O�ce of Science and National Nuclear Security Administration (NNSA). The objective of SLATE
is to provide fundamental dense linear algebra capabilities to the U.S. Department of Energy
and to the high-performance computing (HPC) community at large.

SLATE provides coverage of existing LAPACK and ScaLAPACK functionality, including parallel
implementations of Basic Linear Algebra Subroutines (BLAS), matrix norms, linear systems
solvers, least squares solvers, and singular value and eigenvalue solvers. In this respect, SLATE
will serve as a replacement for ScaLAPACK, which, a�er two decades of operation, cannot be
adequately retro�tted for modern, GPU-accelerated architectures.

This Developers’ Guide is intended to describe the internal workings of SLATE, to be of use for
SLATE developers and contributors. A companion SLATE Users’ Guide [1] is being developed
for application end users, which will focus on the public SLATE API. These guides will be
periodically revised as SLATE develops, with the revision noted in the front matter notes and
BibTeX.

1http://icl.utk.edu/slate/
2https://www.exascaleproject.org

1

http://icl.utk.edu/slate/
https://www.exascaleproject.org

CHAPTER 2

API Layers

SLATE’s API is composed of several layers, as depicted in Figure 2.1. The drivers and com-
putational routines are the primary public API; the internal task and tile routines implement
major (parallel) and minor (sequential) tasks, respectively. The LAPACK++ and BLAS++ packages,
including Batched BLAS++, are independent packages developed for SLATE that interface to
the vendor-optimized LAPACK and BLAS routines.

Vendor libraries

Driver Routines

BLAS++

BLAS

LAPACK++

Computational Routines

Internal Task Routines

Tile Routines

LAPACK

MPI OpenMP

public
private

SLATE

Figure 2.1: Software layers in SLATE.

2

2.1. DRIVERS CHAPTER 2. API LAYERS

Currently, SLATE’s routine names are derived from traditional BLAS and LAPACK names,
minus the traditional initial letter denoting the precision (s, d, c, z). In the future, we will develop
simpli�ed names using overloaded functions, using the Matrix types to identify the operation to
be performed. For instance, multiply(A, B, C) can map to a general, symmetric, or triangular
matrix-matrix multiply (gemm, symm, or trmm) depending on whether the type of A is a general
Matrix, SymmetricMatrix, or TriangularMatrix, respectively.

2.1 Drivers

As in LAPACK and ScaLAPACK, driver routines solve an entire problem, such as a linear
system Ax = b (routines gesv, posv), a least squares problem Ax ∼= b (gels), or a singular value
decomposition A = UΣV H (gesvd). Drivers in turn call computational routines to solve sub-
problems. Drivers are typically independent of the target (CPU or device), delegating those
details to lower level routines. Algorithm 2.1 gives an example of the Cholesky driver, posv,
which relies on computational routines potrf and potrs to factor the matrix A and solve the
system Ax = b.

Note that since it is independent of the target, we do not need to template it based on the target,
as the computational routines will be. Nor do we need to unpack the opts argument; simply
pass it along to the computational routines.

Algorithm 2.1 Cholesky solve driver, slate::posv

1 // Distributed parallel Cholesky solve , AX = B
2 // A: Matrix to factor; overwritten by L
3 // B: On input , matrix B; overwritten by X
4 // opts: User options such as Target and Lookahead
5 // scalar_t: Datatype: float , double , std::complex , etc.
6 template <typename scalar_t >
7 void posv(HermitianMatrix <scalar_t >& A,
8 Matrix <scalar_t >& B,
9 const std::map <Option , Value >& opts)
10 {
11 potrf(A, opts); // factor A = LLˆH
12 potrs(A, B, opts); // solve AX = B using factorization
13 }

2.2 Computational routines

Again as in LAPACK and ScaLAPACK, computational routines solve a sub-problem, such as
computing an LU factorization (getrf), or solving a linear system given an LU factorization
(getrs). In SLATE, these are templated on target (CPU or device), with the code typically
independent of the device. However, if needed, code can be optimized for a speci�c target
by providing an overloaded version. Communication between processes and dependencies
between tasks are managed at this level. SLATE’s PBLAS exists at this level.

Algorithm 2.2 gives an example of the Cholesky factorization computational routine (potrf),
used by the Cholesky driver. SLATE’s potrf routine is approximately the same length as the

3

2.2. COMPUTATIONAL ROUTINES CHAPTER 2. API LAYERS

LAPACK dpotrf code, and roughly half the length of the ScaLAPACK and MAGMA code (all
excluding comments). Yet SLATE’s code handles all precisions, multiple targets, distributed
memory and shared memory parallelism, a lookahead to overlap communication and com-
putation, and GPU acceleration. Of course, there is signi�cant code in lower levels, but this
demonstrates that writing driver and computational routines can be simpli�ed by delegating
code complexity to lower level abstractions.

Comments on the code

Normally, matrices are passed by reference (Matrix<scalar_t>& A), as this avoids invoking
(shallow) copy constructors. For Cholesky, however, the matrix may get transposed, so it must
be passed by value; see Chapter 5.

Dependencies are tracked via a dummy vector, not based on the actual data, unlike in pure
data�ow implementations like PLASMA. For Cholesky, entries in the dummy vector represent
each column. The dummy vector is allocated using std::vector for exception safety, but
OpenMP needs a raw pointer to its data.

The variable A_nt is de�ned instead of using A.nt() directly because some compilers complain
about using A.nt() in OpenMP pragmas.

Template dispatch

The routine in Algorithm 2.2 is the internal implementation, templated on the target. It takes
a dummy TargetType argument, which is the C++ idiom for specialization of a function. In
this case it is templated on the target, but an overload can be given for a speci�c target type, as
shown in Algorithm 2.4.

The user can specify the target as HostTask, HostNest, HostBatch, or Devices via the opts
parameter. The public routine that the user actually calls unpacks the opts dictionary and
dispatches to the target-speci�c version, as shown in Algorithm 2.5. Note in this routine the
matrix A is passed by reference, unlike the internal implementation where it is passed by
value (Algorithm 2.2). (As of 12/2019, this is split into an additional wrapper, but will likely be
simpli�ed as shown here in the near future.)

4

2.2. COMPUTATIONAL ROUTINES CHAPTER 2. API LAYERS

Algorithm2.2Cholesky factorization computational routine, slate::potrf, with variable looka-
head. Continued in Algorithm 2.3.

1 namespace internal {
2 namespace specialization {
3
4 // Distributed parallel Cholesky factorization , A = L LˆH
5 // target: Computation method: HostTask , Devices , etc.
6 // A: Matrix to factor; overwritten by L
7 // lookahead: Lookahead depth
8 template <Target target , typename scalar_t >
9 void potrf(slate:: internal ::TargetType <target >,
10 HermitianMatrix <scalar_t > A, int64_t lookahead)
11 {
12 using real_t = blas::real_type <scalar_t >;
13 scalar_t one = 1.0;
14 real_t r_one = 1.0;
15 const int64_t A_nt = A.nt();
16 const int priority_one = 1;
17
18 // if upper , change to lower (see Chapter 5)
19 if (A.uplo() == Uplo::Upper)
20 A = conj_transpose(A);
21
22 // dummy vector to track dependencies
23 std::vector <uint8_t > column_vector(A_nt);
24 uint8_t* column = column_vector.data ();
25
26 #pragma omp parallel
27 #pragma omp master
28 {
29 omp_set_nested (1);
30 for (int64_t k = 0; k < A_nt; ++k) {
31 // panel , high priority
32 #pragma omp task depend(inout:column[k]) priority(priority_one)
33 {
34 // factor A(k, k)
35 internal ::potrf <Target ::HostTask >(A.sub(k, k), priority_one);
36
37 // send A(k, k) down col A(k+1:nt -1, k)
38 if (k+1 <= A_nt -1)
39 A.tileBcast(k, k, A.sub(k+1, A_nt -1, k, k));
40
41 // A(k+1:nt -1, k) * A(k, k)ˆ{-H}
42 if (k+1 <= A_nt -1) {
43 auto Akk = A.sub(k, k);
44 auto Tkk = TriangularMatrix <scalar_t >(
45 Diag::NonUnit , Akk);
46 internal ::trsm <Target ::HostTask >(
47 Side::Right ,
48 one , conj_transpose(Tkk),
49 A.sub(k+1, A_nt -1, k, k), priority_one);
50 }
51
52 typename Matrix <scalar_t >:: BcastList bcast_list_A;
53 for (int64_t i = k+1; i < A_nt; ++i) {
54 // send A(i, k) across row A(i, k+1:i)
55 // and down col A(i:nt -1, i)
56 bcast_list_A.push_back(
57 {i, k, {A.sub(i, i, k+1, i),
58 A.sub(i, A_nt -1, i, i)}});
59 }
60 A.template listBcast(bcast_list_A);
61 } // omp task

5

2.2. COMPUTATIONAL ROUTINES CHAPTER 2. API LAYERS

Algorithm 2.3 Cholesky factorization. Continued from Algorithm 2.2.

62 // update lookahead column(s), high priority
63 for (int64_t j = k+1; j < k+1+ lookahead && j < A_nt; ++j) {
64 #pragma omp task depend(in:column[k]) \
65 depend(inout:column[j]) priority(priority_one)
66 {
67 // A(j, j) -= A(j, k) * A(j, k)ˆH
68 internal ::herk <Target ::HostTask >(
69 -r_one , A.sub(j, j, k, k),
70 r_one , A.sub(j, j), priority_one);
71
72 // A(j+1:nt -1, j) -= A(j+1:nt -1, k) * A(j, k)ˆH
73 if (j+1 <= A_nt -1) {
74 auto Ajk = A.sub(j, j, k, k);
75 internal ::gemm <Target ::HostTask >(
76 -one , A.sub(j+1, A_nt -1, k, k),
77 conj_transpose(Ajk),
78 one , A.sub(j+1, A_nt -1, j, j), priority_one);
79 }
80 }
81 }
82
83 // update trailing submatrix , normal priority
84 if (k+1+ lookahead < A_nt) {
85 #pragma omp task depend(in:column[k]) \
86 depend(inout:column[k+1+ lookahead]) \
87 depend(inout:column[A_nt -1])
88 {
89 // A(kl+1:nt -1, kl+1:nt -1) -=
90 // A(kl+1:nt -1, k) * A(kl+1:nt -1, k)ˆH
91 // where kl = k + lookahead
92 internal ::herk <target >(
93 -r_one , A.sub(k+1+ lookahead , A_nt -1, k, k),
94 r_one , A.sub(k+1+ lookahead , A_nt -1));
95 }
96 }
97 } // k loop
98
99 #pragma omp taskwait
100 A.tileUpdateAllOrigin ();
101 } // omp parallel master
102
103 A.releaseWorkspace ();
104 }
105
106 } // namespace specialization
107 } // namespace internal

Algorithm 2.4 Overload specialization for Target::Devices.

1 template <typename scalar_t >
2 void potrf(slate:: internal ::TargetType <Target ::Devices >,
3 HermitianMatrix <scalar_t > A, int64_t lookahead)
4 {
5 // ... code specific to GPU Devices implementation ...
6 }

6

2.2. COMPUTATIONAL ROUTINES CHAPTER 2. API LAYERS

Algorithm 2.5 Dispatch to target implementations.

1 template <typename scalar_t >
2 void potrf(HermitianMatrix <scalar_t >& A,
3 const std::map <Option , Value >& opts)
4 {
5 // todo: replace with opt()
6 Target target;
7 try {
8 target = Target(opts.at(Option :: Target).i_);
9 }
10 catch (std:: out_of_range &) {
11 target = Target :: HostTask;
12 }
13
14 int64_t lookahead;
15 try {
16 lookahead = opts.at(Option :: Lookahead).i_;
17 assert(lookahead >= 0);
18 }
19 catch (std:: out_of_range &) {
20 lookahead = 1;
21 }
22
23 switch (target) {
24 case Target ::Host:
25 case Target :: HostTask:
26 internal :: specialization ::potrf(
27 internal ::TargetType <Target ::HostTask >(),
28 A, lookahead);
29 break;
30
31 case Target :: HostNest:
32 internal :: specialization ::potrf(
33 internal ::TargetType <Target ::HostNest >(),
34 A, lookahead);
35 break;
36
37 case Target :: HostBatch:
38 internal :: specialization ::potrf(
39 internal ::TargetType <Target ::HostBatch >(),
40 A, lookahead);
41 break;
42
43 case Target :: Devices:
44 internal :: specialization ::potrf(
45 internal ::TargetType <Target ::Devices >(),
46 A, lookahead);
47 break;
48 }
49 }

7

2.3. INTERNAL ROUTINES FORMAJOR, PARALLEL TASKS CHAPTER 2. API LAYERS

2.3 Internal routines for major, parallel tasks

SLATE adds a third layer of internal routines that generally perform one step or major task of a
computational routine. These are typically executed in parallel across multiple CPU cores, or as
a batch routine on the GPU. (See Chapter 7 for how algorithms are implemented as tasks.) For
instance, in the outer k loop, slate::gemm calls a sequence of slate::internal::gemm, each of
which performs one block outer product. Most internal routines consist of a set of independent
tile operations that can be issued as a batch gemm or an OpenMP parallel-for loop, with no
task dependencies to track. Internal routines provide device-speci�c implementations such
as OpenMP nested tasks, parallel-for loops, or batch BLAS operations. In many linear algebra
algorithms, these internal routines implement the trailing matrix update.

Algorithm 2.6 gives an example of the internal gemm routine, CPU HostTask implementation,
used in the PBLAS gemm routine and for the update in the Cholesky factorization routine.
This code reveals several features of SLATE. Currently, routines loop over all tiles in the matrix
C, and selects just the local tiles to operate on. By �ltering for local tiles via the tileIsLocal
call, SLATE is agnostic to the actual distribution. To reduce overheads, we are developing 2D
iterators that are aware of the distribution, so can iterate over just the local tiles without needing
to check if tiles are local, while the code can still be agnostic to the distribution.

In the potrf call, the internal::gemm call is an OpenMP task. Within internal::gemm, each
tile gemm call is a nested OpenMP task, with no dependencies. Before each tile gemm,
tileGetForReading and tileGetForWriting ensures that the tiles are in CPU memory, initi-
ating a transfer from accelerator memory if necessary. Remote tiles are given a life counter to
track the number of tiles they update. A�er each tile gemm, the A and B tiles have their lives
decremented by tileTick; once all local tiles in row i of C are updated, the life of tile A(i, 0)
reaches zero and the tile is deleted if it is a workspace tile (i.e., not an origin tile). Similarly,
when all local tiles in column j of C are updated, the life of tile B(0, j) reaches zero and the tile
is deleted, if it is workspace.

Panel operations, such as the LU and QR parallel panels, also exist as internal routines. However,
unlike trailing matrix updates, panels create a set of interdependent tasks.

8

2.3. INTERNAL ROUTINES FORMAJOR, PARALLEL TASKS CHAPTER 2. API LAYERS

Algorithm 2.6 Host task implementation of internal matrix multiply routine,
slate::internal::gemm, corresponding to a single block outer product.

1 // C = alpha AB + beta C; A is one block col , B is one block row
2 template <typename scalar_t >
3 void gemm(internal ::TargetType <Target ::Devices >,
4 scalar_t alpha , Matrix <scalar_t >& A,
5 Matrix <scalar_t >& B,
6 scalar_t beta , Matrix <scalar_t >& C,
7 Layout layout , int priority)
8 {
9 // todo: update to recent code that uses MOSI set interfaces.
10 LayoutConvert convert(layout);
11 for (int64_t i = 0; i < C.mt(); ++i) {
12 for (int64_t j = 0; j < C.nt(); ++j) {
13 if (C.tileIsLocal(i, j)) {
14 #pragma omp task shared(A, B, C, err) \
15 priority(priority)
16 {
17 A.tileGetForReading(i, 0, convert);
18 B.tileGetForReading (0, j, convert);
19 C.tileGetForWriting(i, j, convert);
20
21 gemm(alpha , A(i, 0),
22 B(0, j),
23 beta , C(i, j));
24
25 A.tileTick(i, 0);
26 B.tileTick(0, j);
27 }
28 }
29 }
30 }
31
32 #pragma omp taskwait
33 }

9

2.3. INTERNAL ROUTINES FORMAJOR, PARALLEL TASKS CHAPTER 2. API LAYERS

Batched GPU tasks

Compared to the CPU implementation in Algorithm 2.6, the batched GPU implementation is
signi�cantly more complicated. Each device is handled by a separate task in parallel. First, it
loops over all the relevant tiles to copy them to the GPU device if they aren’t already resident
(Algorithm 2.7). Second, it loops over the tiles again to construct the batch arrays, and copies
the batch arrays to the GPU (Algorithm 2.8). Third, it executes the batch gemm call, and �nally
cleans up any workspace tiles in matrices A and B (Algorithm 2.9).

This uses the newer MOSI set API, which builds a set of tiles to transfer, then transfers them
with a single call. Copying the sets are launched as nested tasks for increased parallelism. See
Chapter 9 for more details.

All the batch arrays for the A, B, and C matrices are stored contiguously, one a�er another, to
make a single cudaMemcpy transfer to the GPU.

There are several limitations with this current approach. It assumes 4 areas of the matrix, with
uniform tile sizes within each area. Batch 00 is the main batch excluding border tiles, batch
01 is for border tiles in the right column, batch 10 is for border tiles in the bottom row, and
batch 11 is for the border tile in the bottom-right corner. Not only the tile size but also the
strides (lda, ldb, ldc) must be uniform within each batch; e�ectively this means all the tiles
must be contiguous, not strided. Supporting sliced matrices with uniform interior tiles would
require 9 areas, to accomodate border tiles along the le� column and top row. To generalize
this code, ideally it would leverage Batched BLAS++ to use a group or variable sized batched
BLAS interface to allow arbitrary tile sizes.

Recent work [2] has investigated splitting this gemm into two pieces: a prep step to copy data to
the GPU and prepare the batch arrays, and an exec step to execute the batch gemm. There is
also recent work [2] to allow multiple simultaneous gemm operations without con�icts on the
batch arrays.

10

2.3. INTERNAL ROUTINES FORMAJOR, PARALLEL TASKS CHAPTER 2. API LAYERS

Algorithm 2.7 Batched GPU device implementation of internal matrix multiply routine,
slate::internal::gemm, corresponding to a single block outer product. Handling transposed C
and row-major support is omitted here; see SLATE code for details. Continued in Algorithm 2.8.

1 // C = alpha AB + beta C; A is one block col , B is one block row
2 template <typename scalar_t >
3 void gemm(internal ::TargetType <Target ::HostTask >,
4 scalar_t alpha , Matrix <scalar_t >& A,
5 Matrix <scalar_t >& B,
6 scalar_t beta , Matrix <scalar_t >& C,
7 Layout layout , int priority)
8 {
9 LayoutConvert convert(layout);
10 int err = 0;
11 for (int device = 0; device < C.num_devices (); ++ device) {
12 #pragma omp task shared(A, B, C, err) priority(priority)
13 {
14 Op opA = A.op();
15 Op opB = B.op();
16
17 // Get tiles involved with updating C's local tiles.
18 std::set <ij_tuple > A_tiles_set , B_tiles_set , C_tiles_set;
19 for (int64_t i = 0; i < C.mt(); ++i) {
20 for (int64_t j = 0; j < C.nt(); ++j) {
21 if (C.tileIsLocal(i, j) && device == C.tileDevice(i, j)) {
22 A_tiles_set.insert ({i, 0});
23 B_tiles_set.insert ({0, j});
24 C_tiles_set.insert ({i, j});
25 }
26 }
27 }
28
29 // Copy tiles to GPU device as needed.
30 #pragma omp task default(shared)
31 {
32 A.tileGetForReading(A_tiles_set , device , convert);
33 }
34 #pragma omp task default(shared)
35 {
36 B.tileGetForReading(B_tiles_set , device , convert);
37 }
38 #pragma omp task default(shared)
39 {
40 C.tileGetForWriting(C_tiles_set , device , convert);
41 }

11

2.3. INTERNAL ROUTINES FORMAJOR, PARALLEL TASKS CHAPTER 2. API LAYERS

Algorithm 2.8 Batched GPU device implementation, continued from Algorithm 2.7, continued
in Algorithm 2.9.

42 // Build batches for 4 regions.
43 // Assumes uniform tile sizes in each region!
44 int64_t batch_size = C_tiles_set.size ();
45 scalar_t ** a_array_host = C.array_host(device);
46 scalar_t ** b_array_host = a_array_host + batch_size;
47 scalar_t ** c_array_host = b_array_host + batch_size;
48
49 scalar_t ** a_array_dev = C.array_device(device);
50 scalar_t ** b_array_dev = a_array_dev + batch_size;
51 scalar_t ** c_array_dev = b_array_dev + batch_size;
52
53 int64_t batch_count = 0;
54 int64_t batch_count_00 = 0;
55 int64_t lda00 = 0;
56 int64_t ldb00 = 0;
57 int64_t ldc00 = 0;
58 int64_t mb00 = C.tileMb (0);
59 int64_t nb00 = C.tileNb (0);
60 int64_t kb = A.tileNb (0); // == A.tileMb (0)
61 for (int64_t i = 0; i < C.mt()-1; ++i) {
62 for (int64_t j = 0; j < C.nt()-1; ++j) {
63 if (C.tileIsLocal(i, j)) {
64 if (device == C.tileDevice(i, j)) {
65 a_array_host[batch_count] = A(i, 0, device).data ();
66 b_array_host[batch_count] = B(0, j, device).data ();
67 c_array_host[batch_count] = C(i, j, device).data ();
68 lda00 = A(i, 0, device). stride ();
69 ldb00 = B(0, j, device). stride ();
70 ldc00 = C(i, j, device). stride ();
71 ++ batch_count_00;
72 ++ batch_count;
73 }
74 }
75 }
76 }
77 // ... build other 3 batches.
78
79 // cublas_handle uses this stream
80 cudaStream_t stream = C.compute_stream(device);
81 cublasHandle_t cublas_handle = C.cublas_handle(device);
82
83 // Copy batch arrays to device ,
84 // which contains batch arrays for A, B, and C.
85 slate_cuda_call(
86 cudaMemcpyAsync(C.array_device(device), C.array_host(device),
87 sizeof(scalar_t *)* batch_count *3,
88 cudaMemcpyHostToDevice ,
89 stream));

12

2.3. INTERNAL ROUTINES FORMAJOR, PARALLEL TASKS CHAPTER 2. API LAYERS

Algorithm 2.9 Batched GPU device implementation, continued from Algorithm 2.8.

90 if (batch_count_00 > 0) {
91 slate_cublas_call(
92 cublasGemmBatched(
93 cublas_handle , // uses stream
94 cublas_op_const(opA), cublas_op_const(opB),
95 mb00 , nb00 , kb,
96 &alpha , (const scalar_t **) a_array_dev , lda00 ,
97 (const scalar_t **) b_array_dev , ldb00 ,
98 &beta , c_array_dev , ldc00 ,
99 batch_count_00));
100
101 a_array_dev += batch_count_00;
102 b_array_dev += batch_count_00;
103 c_array_dev += batch_count_00;
104 }
105 // ... launch other 3 batches.
106
107 slate_cuda_call(
108 cudaStreamSynchronize(stream));
109
110 // Cleanup workspace tiles.
111 for (int64_t i = 0; i < C.mt(); ++i) {
112 for (int64_t j = 0; j < C.nt(); ++j) {
113 if (C.tileIsLocal(i, j) && device == C.tileDevice(i, j)) {
114 // erase tmp local and remote device tiles;
115 A.tileRelease(i, 0, device);
116 B.tileRelease (0, j, device);
117 // decrement life for remote tiles
118 A.tileTick(i, 0);
119 B.tileTick(0, j);
120 }
121 }
122 }
123 }
124 }
125
126 #pragma omp taskwait
127 if (err)
128 throw std:: exception ();
129 }

13

2.4. TILE OPERATIONS FOR SMALL, SEQUENTIAL TASKS CHAPTER 2. API LAYERS

2.4 Tile operations for small, sequential tasks

Tile routines update one or a small number of individual tiles, generally sequentially on a single
CPU core. For instance, a tile gemm takes three tiles, A, B, and C , and updates C . Transposition
of individual tiles is resolved at this level when calling optimized BLAS. This allows higher level
operations to ignore whether a matrix is transposed or not. Currently, all tile operations are
CPU-only, since accelerators use only batch operations. Algorithm 2.10 gives an example of the
tile gemm routine, used in the internal gemm routine (Algorithm 2.6).

Algorithm 2.10 Tile matrix multiply routine, slate::gemm. Cases for transposed C (CT and CH)
are omitted.

1 // C = alpha AB + beta C
2 template <typename scalar_t >
3 void gemm(
4 scalar_t alpha , Tile <scalar_t > const& A,
5 Tile <scalar_t > const& B,
6 scalar_t beta , Tile <scalar_t >& C)
7 {
8 if (C.op() == Op:: NoTrans) {
9 // C = opA(A) opB(B) + C
10 blas::gemm(blas:: Layout ::ColMajor ,
11 A.op(), B.op(), // transpositions
12 C.mb(), C.nb(), A.nb(), // tile dimensions
13 alpha , A.data(), A.stride(),
14 B.data(), B.stride(),
15 beta , C.data(), C.stride ());
16 }
17 else { ... }
18 }

2.5 BLAS++, Batch BLAS++, and LAPACK++

At the lowest level, the BLAS++ and LAPACK++ packages provide thin, precision independent,
overloaded C++ wrappers around tradition BLAS, batch BLAS, and LAPACK routines, as dis-
cussed in Chapter 6. They use C++ calling conventions and enum values instead of character
constants, but otherwise the calling sequence is similar to the standard BLAS and LAPACK
routines. BLAS++ also includes batch BLAS, on both CPUs and GPUs.

A slightly higher level interface taking arrays as mdspan objects may be developed as mdspan
becomes standardized [3] and wide-spread in C++ standard library implementations. That
would eliminate the separate dimension arguments, yielding, for instance,

1 gemm(transA , transB , alpha , A, B, beta , C)

where A, B, and C are mdspan objects encapsulating their dimensions and column or row strides.

14

CHAPTER 3

Matrix Storage

SLATE makes tiles �rst class objects that can be individually allocated and passed to low-level tile
routines. The matrix consists of a collection of individual tiles, with no correlation between their
positions in the matrix and their memory locations. At the same time, SLATE also supports tiles
pointing to data in a traditional ScaLAPACK matrix storage, easing an application’s transition
from ScaLAPACK to SLATE. Compared to other distributed dense linear algebra formats,
SLATE’s matrix structure o�ers numerous advantages:

First, the same structure can be used for holding many di�erent matrix types: general, sym-
metric, triangular, band, symmetric band, etc., as shown in Figure 3.1. Little memory is wasted
for storing parts of the matrix that hold no useful data, e.g., the upper triangle of a lower trian-
gular matrix. Instead of wasting O(n2) memory as ScaLAPACK does, only O(nnb) memory is
wasted in the diagonal tiles for a block size nb; all unused o�-diagonal tiles are simply never
allocated. There is no need for using complex matrix storage schemes such as the Recursive
Packed Format (RPF) [4] or Rectangular Full Packed (RFP) [5] in order to save space.

Second, the matrix can be easily converted, in parallel, from one layout to another with O(P)
memory overhead for P processors (cores/threads). Possible conversions include: changing tile
layout from column-major to row-major, “packing” of tiles for e�cient BLAS execution [6], and
low-rank compression of tiles. Notably, transposition of the matrix can be accomplished by
transposition of each tile and remapping of the indices. There is no need for complex in-place
layout translation and transposition algorithms [7].

Also, tiles can be easily allocated and copied among di�erent memory spaces. Both inter-node
communication and intra-node communication is vastly simpli�ed. Tiles can be easily and
e�ciently transferred between nodes using MPI. Tiles can be easily moved in and out of fast
memory, such as the MCDRAM in Xeon Phi processors. Tiles can also be copied to one or more
device memories in the case of GPU acceleration.

15

CHAPTER 3. MATRIX STORAGE

Figure 3.1: General, symmetric, band, and symmetric band matrices. Only shaded tiles are stored;
blank tiles are implicitly zero or known by symmetry, so are not stored.

Figure 3.2: View of symmetric matrix on process (0, 0) in 2 × 2 process grid. Darker blue tiles are
local to process (0, 0); lighter yellow tiles are temporary workspace tiles copied from remote process
(0, 1).

Figure 3.3: Block sizes can vary. Most algorithms require square diagonal tiles.

16

CHAPTER 3. MATRIX STORAGE

In practical terms, a SLATE matrix is implemented using the std::map container from the C++
standard library as:

1 std::map < std::tuple < int64_t , int64_t >,
2 TileNode <scalar_t >* >

The map’s key is a tuple consisting of the tile’s (i, j) block row and column indices in the matrix.
The TileNode can then be indexed by the host or accelerator device ID to retrieve a TileInstance,
which is a simple structure containing the Tile itself, its MOSI state (see Chapter 9), and a lock.
SLATE relies on global indexing of tiles, meaning that each tile is identi�ed by the same unique
tuple across all processes. The lightweight Tile object stores a tile’s data and properties such as
dimensions, uplo, and transposition operation.

In addition to facilitating the storage of di�erent types of matrices, this structure also readily
accommodates partitioning of the matrix to the nodes of a distributed memory system. Each
node stores only its local subset of tiles, as shown in Figure 3.2. Mapping of tiles to nodes is
de�ned by a C++ lambda function, and set to 2D block cyclic mapping by default, but the user
can supply an arbitrary mapping function. Similarly, distribution to accelerators within each
node is 1D block cyclic by default, but the user can substitute an arbitrary function.

Remote access is realized by replicating remote tiles in the local matrix for the duration of
the operation. This is shown in Figure 3.2 for the trailing matrix update in Cholesky, where
portions of the remote panel (yellow) have been copied locally.

Finally, SLATE can support non-uniform tile sizes (Figure 3.3). Most factorizations require
that the diagonal tiles are square, but the block row heights and block column widths can, in
principle, be arbitrary. This will facilitate applications where the block structure is signi�cant,
for instance in Adaptive Cross Approximation (ACA) linear solvers [8].

3.0.1 Tile management

A Tile can be one of three types, as denoted by the enum TileKind:

enum class TileKind
{

Workspace ,
SlateOwned ,
UserOwned ,

};

de�ned by:

UserOwned: User allocated origin tile. This is the original instance of a tile initialized upon
matrix creation. The tile’s memory is managed by the user, not by SLATE. The tile has
been initialized with a pre-existing data bu�er. The tile’s memory should not be freed by
SLATE.

SlateOwned: SLATE allocated origin tile. This is the original instance of the tile received upon
matrix creation or by tileInsert(). The tile’s memory is managed by SLATE, and is
freed when the matrix is destructed.

17

CHAPTER 3. MATRIX STORAGE

Workspace: SLATE allocated workspace tile. This is an instance of the tile that is used as
temporary workspace in a memory space di�erent from that of the corresponding origin
tile. The tile is created with tileInsertWorkspace() for receiving a remote tile copy or
for computation on a di�erent device (CPU or accelerator) than the origin. It should be
released back to the matrix’s memory pool a�er being used.

It is important to note that at most one instance of a tile per memory space (i.e., per CPU or
accelerator device) is allowed.

An operation computing on a device needs to create copies of the involved tiles on the device
as workspace tiles and purge these tiles a�er usage in order to minimize memory consumption.
On the other hand, certain algorithms may need to hold a set of tiles on the device for the
duration of the algorithm to allow multiple accesses to these tiles and minimize the data tra�c
from/to host memory to/from device memory. These requirements necessitate the adoption
of a coherency protocol that seamlessly manages the tile copies on various memory spaces, as
described in Chapter 9.

18

CHAPTER 4

Matrix Hierarchy

The design of SLATE revolves around the Tile class and the Matrix class hierarchy listed
below. The Tile class is intended as a simple class for maintaining the properties of individual
tiles and implementing core serial tile operations, such as tile BLAS, while the Matrix class
hierarchy maintains the state of distributed matrices throughout the execution of parallel matrix
algorithms in a distributed memory environment.

BaseMatrix Abstract base class for all matrices.

Matrix General, m× n matrix.

BaseTrapezoidMatrix Abstract base class for all upper or lower trapezoid storage, m× n
matrices. For upper, tiles A(i, j) for i ≤ j are stored; for lower, tiles A(i, j) for i ≥ j
are stored.

TrapezoidMatrix Upper or lower trapezoid, m× n matrix; the opposite triangle is
implicitly zero.

TriangularMatrix Upper or lower triangular, n× n matrix.

SymmetricMatrix Symmetric, n× n matrix, stored by its upper or lower triangle;
the opposite triangle is known implicitly by symmetry (aj,i = ai,j).

HermitianMatrix Hermitian, n×n matrix, stored by its upper or lower triangle; the
opposite triangle is known implicitly by symmetry (aj,i = ai,j).

BaseBandMatrix Abstract base class for band matrices, with a lower bandwidth kl (num-
ber of sub-diagonals) and upper bandwidth ku (number of super-diagonals).

BandMatrix General, m× n band matrix. All tiles within the band exist, e.g., A(i, j)
for j = i− kl, . . . , i + ku.

19

CHAPTER 4. MATRIX HIERARCHY

BaseTriangularBandMatrix Abstract base class for all upper or lower triangular
storage, n × n band matrices. For upper, tiles within the band in the upper
triangle exist; for lower, tiles within the band in the lower triangle exist.

TriangularBandMatrix Upper or lower triangular, n× n band matrix; the op-
posite triangle is implicitly zero.

SymmetricBandMatrix Symmetric, n × n band matrix, stored by its upper
or lower triangle; the opposite triangle is known implicitly by symmetry
(aj,i = ai,j).

HermitianBandMatrix Hermitian, n × n band matrix, stored by its upper or
lower triangle; the opposite triangle is known implicitly by symmetry (aj,i =
ai,j).

The BaseMatrix class stores the matrix dimensions; whether the matrix is upper, lower, or
general; whether it is non-transposed, transposed, or conjugate-transposed; how the matrix
is distributed; and the set of tiles – both local tiles and temporary workspace tiles as needed
during the computation. It also stores the distribution parameters and MPI communicators that
would traditionally be stored in a ScaLAPACK context. As such, there is no separate structure to
maintain state, nor any need to initialize or �nalize the SLATE library.

Currently in the band matrix hierarchy there is no TrapezoidBandMatrix. This is simply because
we haven’t found a need for it; if a need arises, it can be added.

SLATE routines require the correct matrix types for their arguments, which helps to ensure
correctness, while inexpensive shallow copy conversions exist between the various matrix types.
For instance, a general Matrix can be converted to a TriangularMatrix for doing a triangular
solve (trsm), without copying. The two matrices have a reference-counted C++ shared pointer
to the same underlying data (std::map of tiles).

Likewise, copying a matrix object is an inexpensive shallow copy, using a C++ shared pointer.
Sub-matrices are also implemented by creating an inexpensive shallow copy, with the matrix
object storing the o�set from the top-le� of the original matrix and the transposition operation
with respect to the original matrix.

Transpose and conjugate-transpose are supported by creating an inexpensive shallow copy and
changing the transposition operation �ag stored in the new matrix object. For a matrix A that is
a possibly transposed copy of an original matrix A0, the function A.op() returns Op::NoTrans,
Op::Trans, or Op::ConjTrans, indicating whether A is non-transposed, transposed, or conjugate-
transposed, respectively. The functions A = transpose(A0) and A = conj_transpose(A0) return
new matrices with the operation �ag set appropriately. Querying properties of a matrix object
takes the transposition and sub-matrix o�sets into account. For instance, A.mt() is the number
of block rows of op(A0), where A = op(A0) = A0, AT

0 , or AH
0 . The function A(i, j) returns the

i, j-th tile of op(A0), with the tile’s operation �ag set to match the A matrix.

SLATE supports upper and lower storage with A.uplo() returning Uplo::Upper or Uplo::Lower.
Tiles likewise have a �ag indicating upper or lower storage, accessed by A(i, j).uplo(). For
tiles on the matrix diagonal, the uplo �ag is set to match the matrix, while for o�-diagonal tiles
it is set to Uplo::General.

20

CHAPTER 5

Handling of Side, Uplo, Trans, etc.

The classical BLAS take parameters such as side, uplo, trans (named “op” in SLATE), and diag to
specify operation variants. Traditionally, this has meant that implementations have numerous
cases. The reference BLAS has nine cases in zgemm and eight cases in ztrmm (times several
sub-cases). ScaLAPACK and the PLASMA [9] likewise have eight cases in ztrmm. In contrast, by
storing both uplo and op within the matrix object itself, and supporting inexpensive shallow
copy transposition, SLATE can implement just one or two cases and map all the other cases to
that implementation by appropriate transpositions.

For instance, at the high level, gemm can ignore the operations on A and B. If transposed, the
matrix object itself handles swapping indices to obtain the correct tiles during the algorithm. At
the low level, the transposition operation is set on the tiles, and is passed on to the underlying
node-level BLAS gemm routine.

Similarly, the Cholesky factorization, shown in Algorithm 2.2, implements only the lower case;
the upper case is handled by a shallow copy transposition to map it to the lower case. The data
is not physically transposed in memory, only the transpose op �ag is set so that the matrix is
logically lower.

Note for the shallow copy to work correctly, matrices must be passed by value, rather than by
reference. For instance, if potrf used pass-by-reference (Algorithm 5.1), when called by a user as
in:

1 A = HermitianMatrix(Uplo::Upper , n, ...);
2 printf("before: op %s, uplo %s\n", op2str(A.op()), uplo2str(A.uplo()));
3 potrf(A);
4 printf("after: op %s, uplo %s\n", op2str(A.op()), uplo2str(A.uplo()));

potrf would have the unintended side e�ect of transposing the matrix A in the user’s code:
1 before: op notrans , uplo upper

21

CHAPTER 5. HANDLING OF SIDE, UPLO, TRANS, ETC.

2 after: op conj , uplo lower

Instead, the matrix A is passed by value into potrf (Algorithm 5.2), so transposition within the
computational routine doesn’t a�ect transposition in the user’s code. (Although, some wrappers
may pass it by reference.) This results in no unintended side e�ects:

1 before: op notrans , uplo upper
2 after: op notrans , uplo upper

Algorithm 5.1 Erroneous code, passing A by reference and transposing it, unintentionally
transposing it in caller’s code.

1 template <Target target , typename scalar_t >
2 void potrf(slate:: internal ::TargetType <target >,
3 HermitianMatrix <scalar_t >& A, int64_t lookahead)
4 {
5 // If upper , change to lower.
6 // Since A is passed by reference (HermitianMatrix <scalar_t >& A),
7 // this inadvertantly transposes the matrix in the user's code -- a bug!
8 if (A.uplo() == Uplo::Upper) {
9 A = conjTranspose(A);
10 }
11
12 // Continue with code that assumes A is logically lower ...
13 }

Algorithm 5.2 Correct code, passing A by value and transposing it, without transposing it in
caller’s code.

1 template <Target target , typename scalar_t >
2 void potrf(slate:: internal ::TargetType <target >,
3 HermitianMatrix <scalar_t > A, int64_t lookahead)
4 {
5 // If upper , change to lower.
6 // Since A is passed by value (HermitianMatrix <scalar_t > A),
7 // with shallow -copy semantics ,
8 // this doesn't transpose the matrix A in the user's code.
9 if (A.uplo() == Uplo::Upper) {
10 A = conjTranspose(A);
11 }
12
13 // Continue with code that assumes A is logically lower ...
14 }

22

CHAPTER 6

Handling of Precisions

SLATE handles multiple precisions by C++ templating, so there is only one precision-
independent version of the code, which is then instantiated for the desired precisions. Opera-
tions are de�ned to apply consistently across all precisions. For instance, blas::conj extends
std::conj to apply to real precisions (�oat, double), where it is a no-op. SLATE’s BLAS++
component [10] provides overloaded, precision-independent wrappers for all the underlying
node-level BLAS, which SLATE’s PBLAS are built on top of. For instance, blas::gemm in BLAS++
maps to the classical sgemm, dgemm, cgemm, or zgemm BLAS, depending on the precision of its
arguments. For real arithmetic, symmetric and Hermitian matrices are considered interchange-
able, so hemm maps to symm, herk to syrk, and her2k to syr2k. This mapping aides in templating
higher-level routines, such as Cholesky, which does a herk (mapped to syrk in real) to update
the trailing matrix.

Currently, the SLATE library has explicit instantiations of the four main data types: float,
double, std::complex<float>, and std::complex<double>. The SLATE code should accommo-
date other data types, such as half, double-double, or quad precision, given appropriate under-
lying node-level BLAS. For instance, Intel MKL and NVIDIA cuBLAS provide half-precision
gemm operations.

SLATE also implements mixed-precision algorithms [11] that factor a matrix in low precision,
then use iterative re�nement to attain a high precision �nal result. These exploit the faster
processing in low precision for the O(n3) factorization work, while re�nement in the slower
high precision is only O(n2) work. In SLATE, the low and high precisions are independently
templated; currently we use the traditional single and double combination. However, recent
interest with half precision has led to algorithms using half precision with either single or
double [12, 13]. One could also go to higher precisions, using double-double [14] or quad for the
high precision. By adding the relevant underlying node-level BLAS operations in the desired

23

CHAPTER 6. HANDLING OF PRECISIONS

precisions to BLAS++, the templated nature of SLATE greatly simpli�es instantiating di�erent
combinations of precisions.

24

CHAPTER 7

Parallelism Model

SLATE utilizes three or four levels of parallelism: distributed parallelism between nodes using
MPI, explicit thread parallelism using OpenMP, implicit thread parallelism within the vendor’s
node-level BLAS, and, at the lowest level, vector parallelism for the processor’s SIMD vector
instructions. For multicore, SLATE typically uses all the threads explicitly, and uses the vendor’s
BLAS in sequential mode. For GPU accelerators, SLATE uses a batch BLAS call, utilizing the
thread-block parallelism built into the accelerator’s BLAS.

The cornerstones of SLATE are 1) the SPMD programming model for productivity and main-
tainability, 2) dynamic task scheduling using OpenMP for maximum node-level parallelism and
portability, 3) the lookahead technique for prioritizing the critical path, 4) primarily reliance on
the 2D block cyclic distribution for scalability, 5) reliance on the gemm operation, speci�cally
its batch rendition, for maximum hardware utilization.

The Cholesky factorization demonstrates the basic framework, with its task graph shown in
Figure 7.1 and code shown in Algorithm 2.2. Data�ow tasking (omp task depend, Algorithm 2.2
lines 32, 64, 85) is used for scheduling operations with dependencies on large blocks of the
matrix. Dependencies are performed on a dummy vector, representing each block column in
the factorization, rather than on the matrix data itself. Within each large block, either nested
tasking (omp task, Algorithm 2.6 line 14) or batch operations of independent tile operations are
used for scheduling individual tile operations to individual cores, without dependencies. For
accelerators, batch BLAS calls are used for fast processing of large blocks of the matrix using
accelerators.

Compared to pure tile-by-tile data�ow scheduling, as used by DPLASMA and Chameleon, this
approach minimizes the size of the task graph and number of dependencies to track. For a
matrix of N ×N tiles, tile-by-tile scheduling creates O(N3) tasks and dependencies, which can
lead to signi�cant scheduling overheads. This is one of the main performance handicaps of

25

CHAPTER 7. PARALLELISM MODEL

Panel

Lookahead
Update

Trailing Matrix
Update

...

Panel

Lookahead
Update

Trailing Matrix
Update

Figure 7.1: Tasks in Cholesky factorization. Arrows depict dependencies.

the OpenMP version of the PLASMA library [9] in the case of manycore processors such as the
Xeon Phi family. In contrast, the SLATE approach creates O(N) dependencies, eliminating the
issue of scheduling overheads. At the same time, this approach is a necessity for scheduling a
large set of independent tasks to accelerators, to fully occupy their massive compute resources.
It also eliminates the need to use a hierarchical task graph to satisfy the vastly di�erent levels of
parallelism on CPUs vs. on accelerators [15].

At each step of Cholesky, one or more columns of the trailing submatrix are prioritized for
processing, using the OpenMP priority clause, to facilitate faster advance along the critical
path, implementing a lookahead. At the same time, the lookahead depth needs to be limited,
as it is proportional to the amount of extra memory required for storing temporary tiles.
Deep lookahead translates to depth-�rst processing of the task graph, synonymous with le�-
looking algorithms, but can also lead to catastrophic memory overheads in distributed memory
environments [16].

Distributed memory computing is implemented by �ltering operations based on the matrix
distribution function (Algorithm 2.6 line 13); in most cases, the owner of the output tile performs
the computation to update the tile. Appropriate communication calls are issued to send tiles
to where the computation will occur. Management of multiple accelerators is handled by a
node-level memory consistency protocol.

The user can choose among various target implementations. In the case of accelerated execution,
the updates are executed as calls to batch gemm (Target::Devices). In the case of multicore
execution, the updates can be executed as:

26

CHAPTER 7. PARALLELISM MODEL

0 1024 2048 3072 4096
SIZE

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 m

ax
 p

er
fo

rm
an

ce

IBM ESSL dgemm
cuBLAS dgemm

Figure 7.2: Performance of square dgemm, as fraction of maximum single-core ESSL performance
(23.6 GFLOP/s) and cuBLAS performance (4560 GFLOP/s), respectively.

• a set of OpenMP tasks (Target::HostTask),

• a nested parallel for loop (Target::HostNest), or

• a call to batch gemm (Target::HostBatch).

To motivate our choices of CPU tasks on individual tiles and GPU tasks using batches of
tiles, we examine the performance of dgemm. Libraries such as DPLASMA and Chameleon
have demonstrated that doing operations on a tile-by-tile basis can achieve excellent CPU
performance. For instance, as shown in Figure 7.2, for tile sizes ≥ 160, IBM ESSL dgemm
achieves over 90% of its maximum performance. In contrast, accelerators would take much
larger tiles to reach their maximum performance. On an NVIDIA P100, cuBLAS dgemm would
require an unreasonably large tile size ≥ 3136 to achieve 90% of its maximum performance.
DPLASMA dealt with this disparity in tile sizes between the CPU and GPU by using a hierarchical
DAG, whereby the CPU has small tiles and the GPU has large tiles [15].

Instead, in SLATE we observe that most gemm operations are block outer-products, where
A is a block column and B is a block row (e.g., the Schur complement in LU factorization),
and that these can be implemented using a batch gemm. In Figure 7.3, the regular cuBLAS
dgemm uses standard LAPACK column-major layout, while the tiled / batch dgemm uses a tiled
layout with k × k tiles and multiplies all tiles simultaneously using cuBLAS batch dgemm. This
demonstrates that at speci�c sizes (192, 256, . . .), the batch dgemm matches the performance of
a regular dgemm. Thus with an appropriately chosen, modest block size, SLATE can achieve
the maximum performance from accelerators.

SLATE intentionally relies on standards in MPI, OpenMP, and BLAS to maintain easy portability.
Any CPU platform with good implementations of these standards should work well for SLATE.
For accelerators, SLATE’s reliance on batch gemm means any platform that implements batch
gemm is a good target. Di�erences between vendors’ BLAS implementations will be abstracted
at a low level in the BLAS++ library to ease porting. There are very few accelerator (e.g., CUDA)
kernels in SLATE – currently just matrix norms and transposition – so porting should be a
lightweight task.

27

CHAPTER 7. PARALLELISM MODEL

Block outer-product on NVIDIA Pascal P100

T
F

L
O

P
/s

0

1

2

3

4

5

k dimension

64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

regular dgemm

tiled / batched dgemm

Figure 7.3: Block outer-product dgemm, C = C −AB, where C is 40,000× 40,000, A is 40,000× k,
B is k × 40,000.

28

CHAPTER 8

Message Passing Communication

Communication in SLATE relies on explicit data�ow information. When a tile will be needed
for computation, it is broadcast to all the processes where it is required, as shown in Figure 8.1
for broadcasting a single tile from the Cholesky panel to its trailing matrix update. Rather
than explicitly listing MPI ranks, the broadcast is expressed in terms of the destination tiles
to be updated. tileBcast takes a tile’s (i, j) indices and a sub-matrix that the tile will update;
the tile is sent to all processes owning that sub-matrix (Algorithm 2.2 lines 39 and 60). To
optimize communication, listBcast aggregates a list of these tile broadcasts and pipelines the
MPI and CPU-to-accelerator communication. As the set of processes involved is dynamically
determined from the sub-matrix, using an MPI broadcast would require setting up a new
MPI communicator, which is an expensive global blocking operation. Instead, SLATE uses
point-to-point MPI communication in a hypercube tree fashion to broadcast the data.

Figure 8.1: Broadcast of tile and its symmetric image to nodes owning a block row and block column
in a symmetric matrix.

29

CHAPTER 9

MOSI Coherency Protocol

9.1 Coherency control

We describe here the protocol used in SLATE to maintain coherency of tile’s instances among
memory spaces (host memory, device memories). The protocol described here is inspired
by known cache coherency protocols, but adapted to serve the needs of SLATE algorithms;
speci�cally, no other memory exists as a backing store (as is the main memory in relation to a
cache), nor auto eviction.

Concretely, this “coherency protocol” is used to maintain coherency between multiple copies
of a tile in di�erent memory spaces within one node (CPU memory, multiple GPU memories).
Further in this document, will will refer to this coherency protocol by the name MOSI (an
acronym of the states we assign to the tiles: Modi�ed, OnHold, Shared, Invalid).

The governing principles and requirements in MOSI protocol are, besides maintaining tiles
coherency:

• Tile’s data can be originated in either CPU or GPU memory.

• Minimal memory occupation: workspace data to be purged when not in use.

• Data can be held in a memory space for multiple accesses.

• Minimal data transfers should be incurred across memory spaces.

• Coherent states are to be maintained at any time, i.e. any function would assume a
coherent state upon entry, and will maintain that coherency upon exit. Consequently,

30

9.1. COHERENCY CONTROL CHAPTER 9. MOSI COHERENCY PROTOCOL

M S I
M X X X
S X X X
I X X X

Table 9.1: Valid state combinations of two instances of same tile

routines need not �x an incoherent state due to previous calls, but will make necessary
and minimal validation to insure it is being called without violating coherency.

• The user/programmer shall be relieved, as mush as possible, from thinking about tile
state management, i.e., tile state management should be implicit.

9.1.1 Tile States

<slate_Storage.h>:
enum MOSI
{

Modified = 0x0100 ,
OnHold = 0x1000 ,
Shared = 0x0010 ,
Invalid = 0x0001 ,

};

(Note this is not enum class because we do bitwise OR of states.)

A tile’s instance can be in one of three states: Modi�ed, Shared, or Invalid. An additional OnHold
�ag can be set with any state. The states have the following meanings:

Modi�ed (M): tile’s data is modi�ed, other instances should be I; instance cannot be purged.

Shared (S): tile’s data is up-to-date, other instances may be in S or I; instance may be purged
unless on hold.

Invalid (I): tile’s data is obsolete, other instances may be M, S, or I; instance may be purged
unless on hold.

OnHold (O): a �ag orthogonal to the three states above, indicating that a hold is set on this tile
instance, thus cannot be purged until the hold is unset.

The state of a tile instance is associated to its pointer in the TilesMap of the MatrixStorage class.
Recall that a map entry holds a key being a tuple of the tile’s (row, col) position in the matrix
and the device number, and a value being a struct of tile’s instance pointer and its MOSI state.

Two instances of same tile can be in any of (I,S), (I,M), (I,I), or (S,S) as illustrated in Table 9.1.
Coherence is maintained by enforcing these restrictions.

Getting and setting this state as well as copying tiles across memory spaces is facilitated in the
MOSI API as explained next.

31

9.1. COHERENCY CONTROL CHAPTER 9. MOSI COHERENCY PROTOCOL

9.1.2 MOSI API

The routines that control the tile state are the following member functions of the BaseMatrix
class:

• tileState(. . .)

• tileGetForReading(. . .)

• tileGetForWriting(. . .)

• tileModi�ed(. . .)

• tileGetAndHold(. . .)

• tileUnsetHold(. . .)

• tileOnHold(. . .)

• tileRelease(. . .)

Here are the signatures of these routines and an explanation of their behavior:

1 class BaseMatrix {
2 ...
3
4 // Returns tile(i, j)'s state on device (defaults to host).
5 MOSI tileState(int64_t i, int64_t j, int device=host_num_);
6
7 // Returns whether tile(i, j) is on hold on device (defaults to host).
8 bool tileOnHold(int64_t i, int64_t j, int device=host_num_);
9
10 // Sets tile(i, j)'s state on device.
11 void tileState(int64_t i, int64_t j, int device , MOSI mosi);
12
13 // Sets tile(i, j)'s state on host.
14 void tileState(int64_t i, int64_t j, MOSI mosi);
15
16 // Gets tile(i, j) for reading on device.
17 // Will copy -in the tile if it does not exist or its state is Invalid.
18 // Sets tile state to Shared if copied -in.
19 // Updates source tile's state to shared if copied -in.
20 void tileGetForReading(int64_t i, int64_t j, int device=host_num_);
21
22 // Gets all local tiles for reading on device.
23 void tileGetAllForReading(int device=host_num_);
24
25 // Gets all local tiles for reading on corresponding devices.
26 void tileGetAllForReadingOnDevices ();
27
28 // Gets tile(i, j) for writing on device.
29 // Sets state to Modified.
30 // Will copy tile in if not exists or state is Invalid.
31 // Other instances will be invalidated.
32 void tileGetForWriting(int64_t i, int64_t j, int device=host_num_);
33
34 // Gets all local tiles for writing on device.
35 void tileGetAllForWriting(int device=host_num_);
36
37 // Gets all local tiles for writing on corresponding devices.

32

9.1. COHERENCY CONTROL CHAPTER 9. MOSI COHERENCY PROTOCOL

38 void tileGetAllForWritingOnDevices ();
39
40 // Marks tile(i, j) as Modified on device.
41 // Other instances will be invalidated.
42 // Unless permissive , asserts if other instances are in Modified state.
43 void tileModified(int64_t i, int64_t j, int device=host_num_ , bool permissive=false);
44
45 // Gets tile(i, j) on device and marks it as OnHold.
46 // Will copy tile in if it does not exist or its state is Invalid.
47 // Updates the source tile's state to Shared if copied -in.
48 void tileGetAndHold(int64_t i, int64_t j, int device=host_num_);
49
50 // Gets all local tiles on device and marks them as OnHold.
51 void tileGetAndHoldAll(int device=host_num_);
52
53 // Gets all local tiles on corresponding devices and marks them as OnHold.
54 void tileGetAndHoldAllOnDevices ();
55
56 // Unsets tile(i, j)'s hold on device
57 void tileUnsetHold(int64_t i, int64_t j, int device=host_num_);
58
59 // Deletes the tile(i, j)'s instance on device if it is a workspace tile
60 // that is not modified and no hold is set on it.
61 void tileRelease(int64_t i, int64_t j, int device=host_num_);
62
63 /// Updates the origin instance of tile(i, j) if not MOSI:: Shared
64 void tileUpdateOrigin(int64_t i, int64_t j);
65
66 /// Updates all origin instances of tiles if not MOSI:: Shared
67 void tileUpdateAllOrigin ();
68
69 // Debugging routine:
70 // Check state is coherent for all matrix tile instances
71 void checkTileStates ();
72
73 ...
74 }

9.1.3 Data transfer

tileGetForReading(), tileGetForWriting(), and tileGetAndHold() may initiate a data copy
from a source memory space to the destination memory space. While the destination memory
space is identi�ed by the device id passed in as a parameter (could be host or GPU device),
the source is automatically detected from existing instances of the same tile. In the process of
�nding the source, if anM instance is found it will be used, otherwise, the closest valid S instance
is used (not implemented yet; currently, any valid instance is used). The closest is de�ned as
the source instance that shares the highest bandwidth and costs least hops, considering the
possibility of using peer-to-peer copy between devices.

9.1.4 State diagrams

Tile instances may change state following the operations that read or update them. Diagrams
in Figures 9.1 and 9.2 illustrate the state transitions that each routine causes, while Figure 9.3
illustrates the same state transitions from the perspective of tiles.

33

9.1. COHERENCY CONTROL CHAPTER 9. MOSI COHERENCY PROTOCOL

dst+cpy

srcsrc

srcsrc

dst dst

dst dst

Impossible

other other

other other

other

Error

src

S+O

I

MM+O

S

I+O

srcdst+cpy

tileGetForReading()

• dst: the tile instance being acquired/up-
dated.

• src: the tile instance from which will
read in case a copy is involved.

• other: all other instances of the same tile.

• A src instance cannot be Invalid, and
other instances would not be in Modified
state if coherence is maintained.

other

other

other

dst

dst dst

dstdst

S+O

I

MM+O

S

I+O

dst

Error

other other

tileModified()

• dst: the tile instance being marked
Modified.

• other: all other instances of the same tile.

• An instance, other than dst, that is in a
Modified state will issue an error unless
the permissive �ag is true.

dst dst

srcsrc

dst

dst+cpy

other other

Impossible

other other

other

ErrorS+O

I

MM+O

S

I+O

dst+cpy

src src

src

dst
tileGetForWriting()

• Is a tileGetForReading() followed by a
tileModified().

Figure 9.1: MOSI state transitions with tileGetForReading(), tileGetForWriting(), and tileModified()
routines. Circled are the MOSI states; arrows represent the state transition of the labeled tile instance:
dst, src, and other; X+O denotes a tile instance in state X and has a hold on it. T+cpy denotes a
copy of data is carried to update instance T.

34

9.1. COHERENCY CONTROL CHAPTER 9. MOSI COHERENCY PROTOCOL

S+O

I

MM+O

S

I+O

src

src

dst

dst
src

Impossible

other other

Error

dst

dst

other

other

other

src

dst+cpy src
tileGetAndHold()

• Is a tileGetForReading() followed by
setting a hold on dst.

dst

dst

dst

dst

other other

other

other other

dst

S+O

I

MM+O

S

I+O
other

dst tileUnsetHold()

• Removes the hold on dst instance; other
instances are not a�ected.

S/I+O S/I

deleted

M

tileRelease()

• Deletes a tile instance if not in Modified
state and no hold is set on it.

Figure 9.2: MOSI state transitions with tileGetAndHold(), tileUnsetHold(), and tileRelease() routines.
Circled are the MOSI states; arrows represent the state transition of the labeled tile instance: dst, src,
and other; X+O denotes a tile instance in state X and has a hold on it. T+cpy denotes a copy of
data is carried to update instance T.

35

9.1. COHERENCY CONTROL CHAPTER 9. MOSI COHERENCY PROTOCOL

S+O

I

MM+O

S

I+O

read

readread

write

hold

read

unhold

write

mod

unhold

hold

write
unhold

modunhold

hold
write

hold

mod

read+cpy

unhold
write+cpy

mod

write+cpy

mod

read+
cpy

hold+cpy

mod

Destination tile

• A destination tile in state X is transitioned
to state Y under operation OP.

• OP+cpy denotes a copy of data is carried
to update the tile instance along the OP.

S+O

I

MM+O

S

I+O

read

hold

read

hold

hold

readread
hold

Error

read/write/hold
write write

writewrite

Source tile

• A source tile is involved in operation OP
only when a data transfer/copy is needed.

• A tile cannot be in Invalid state when
identi�ed as the only source tile in a read-
/write/hold operation.

S+O

I

MM+O

S

I+O

read

hold

read

hold

Error

unhold
write

mod

Impossible

Read/
write/
hold

unhold

Read/
write/
hold

unhold
write

mod

modmodunhold

Other Tiles

• Other tile are the tile instances that are
not destination or source.

• Other tiles cannot be Modified in a
tileModified operation.

Figure 9.3: Tile state transitions under MOSI API from a tile perspective. Circled are the tile
instance states; arrows represent the transition caused by the labeled operation: read, write, modified,
hold, and unhold; X+O denotes a tile instance in state X and has a hold on it.

36

9.2. DEVELOPERHINTS CHAPTER 9. MOSI COHERENCY PROTOCOL

9.2 Developer hints

Acquiring tiles An operation that consumes tiles for reading or writing should acquire the
tiles �rst. Tiles to be read-only should be acquired using the tileGetForReading() routine at the
operation start on the intended device, which will ensure that the most up-to-date tile instance is
brought into the device. Tiles to be modi�ed should be acquired using the tileGetForWriting()
routine at the operation start on the intended device, which will ensure that the most up-to-date
tile instance is brought in, then marks it Modi�ed and invalidates other instances. An alternative
way, is to acquire tiles to be modi�ed using the tileGetForReading() routine at the operation
start, then mark them modi�ed a�er updating using the tileModified() routine.

Tile purging Tiles acquired for reading, unless origin, are placed in a workspace tile instance,
and should be purged a�er the operation is over to make room on the devices memory. Purging
is accomplished by calling tile tileRelease() routine, which will delete a tile instance only if it
is a workspace with no hold on it and not modi�ed. tileErase(), on the other hand, erases the
indicated tile instance unconditionally, thus should be used carefully.

Modi�ed tiles A tile instance that is acquired by tileGetForWriting() is marked Modified.
However, a newly inserted tile instance may get updated without using the slate::internal
routines, for example, by issuing lapack calls on them, or by direct editing. In addition, tiles
acquired for reading (or for writing followed by a copy to other devices) may be updated
similarly. In such cases, it is necessary to call tileModified() in order to mark a tile as Modified
and maintain coherency. tileModified() will invalidate other tile instances, thus forcing them
to update subsequently. tileModified() will check if other tile instances are already in Modi�ed
state, as a coherency check, since two instances may not be modi�ed concurrently. However,
in some cases, other modi�ed instances may need to be ignored, which can be relayed to
tileModified() by setting permissive parameter to true.

Holding tiles in amemory space some algorithms need to hold some tile instances with valid
states in a certain memory space, and prevent them from being purged during workspace
releasing. This can be accomplished using the tileGetAndHold(), which will put a hold on the
tile until tileUnsetHold() is called, upon which, a tileRelease() should generally be invoked
(unless the algorithm requires otherwise).

37

CHAPTER 10

Column Major and Row Major Layout

A tile’s data can be stored in either column-major or row-major layout. In column-major layout,
elements of a column have a memory stride of 1, that is, are stored contiguously in memory, and
elements of a row have a memory stride of at least the number of rows in the tile. In row-major
layout, elements of a row have a memory stride of 1, that is, are stored contiguously in memory,
and elements of a column have a memory stride of at least the number of columns in the tile.
Another representation where both the row and column strides are greater than one is possible,
however, this later representation is not yet considered in SLATE.

SLATE supports converting tiles’ layout for performance considerations. Layout conversion is
mainly motivated by the fact that some algorithms perform much faster when access to tile’s
element is contiguous in a row-major layout, or a column-major layout. The following sections
explain the API and mechanisms used to establish layout conversion, especially tiles that cannot
be transposed in-place.

10.1 Layout representation and API

The column-major or row-major layout (referred to as layout here in) is de�ned by the enum:

enum class Layout: char
{

ColMajor = 'C',
RowMajor = 'R'

};

The Tile’s layout is stored at the tile instance (indicating the Col/Row major storage of a tile’s
data) in the Tile::layout_ member variable (Algorithm 10.1). Similarly, the matrix layout

38

10.2. LAYOUT CONVERSION CHAPTER 10. COLUMNMAJOR AND ROWMAJOR LAYOUT

(defaulting to ColMajor) is stored at the BaseMatrix::layout_ member variable (Algorithm 10.2).
A MOSI operation (tileGetForReading(), tileGetForWriting(), etc...) speci�es the layout of
the destination tile instance using the following enum:

enum class LayoutConvert : char
{

ColMajor = 'C',
RowMajor = 'R',
None = 'N'

};

Listings Algorithms 10.1 to 10.3 show the function signatures of the API that manages tile layout
conversions at the Tile, BaseMatrix, and MatrixStorage classes. The mechanisms by which tile
conversion is established are explained in the next section.

10.2 Layout conversion

To foster high performance, algorithms in SLATE should operate in their preferred layout. For
example, in LU factorization, row swapping during pivoting performs much better on devices
when the tiles are in row-major. However, the panel factorization in the LU factorization prefers
the col-major layout. As such, a run-time conversion between row-major and col-major layout is
needed at the start of any computational or internal routine to ensure the tiles are in the needed
layout. Obviously, the computational routine must reset the tiles layout when computations
are done to the matrix original layout.

Layout conversion is implicitly handled at the MOSI calls, by supplying the intended layout to
the tileGet***() routines. As such, each computational routine sets a local variable indicating
its preferred tile layout for computations, and passes this to any sub routine call. In turn,
some internal routines can operate in both row-major or col-major tile layout, and receive a
parameter to tell which layout to use, for example, internal:gemm. However, other internal
routines can operate only in one of the col-major or row-major layouts, and enforce it through
the tileGet***() call. It is a general and preferred practice, in SLATE, to fetch the set of tiles to
operate on at the beginning of each internal routine using the tileGet***() calls, which receive
a parameter instructing it to convert the tiles to one of the layouts (LayoutConvert::ColMajor or
LayoutConvert::RowMajor), or to not convert at all (LayoutConvert::None) because the routine
is layout indi�erent.

The routines BaseMatrix::tileLayoutConvert**() are available to convert the layout of a tile
or set of tiles into the intended layout on a certain device, possibly in batch mode. However, it
is important to note that these routines should be rarely needed and better avoided. All layout
conversions should be achievable through the MOSI tileGet***() routines, which in turn call
the tile conversion routines.

Keep in mind that, as a tile can have instances on any of the memory spaces available at the
hardware computation node, a tile instance layout is independent of the layout of other instances
of the same tile. Additionally, conversion of a tile instance’ layout does not change its MOSI
state, i.e. a tile does not get MOSI::Modi�ed by changing its layout since the data is still the
same, only represented di�erently in memory.

39

10.2. LAYOUT CONVERSION CHAPTER 10. COLUMNMAJOR AND ROWMAJOR LAYOUT

Algorithm 10.1 Tile’s layout member functions and member variables.

class Tile
{

...
// return current layout of front buffer
Layout layout () const;

// set current layout flag of front buffer
void layout(Layout in_layout);

// return current layout of user -provided buffer
Layout userLayout () const { return user_layout_; }

// return Whether the front memory buffer is contiguous
bool isContiguous () const
{

return (layout_ == Layout :: ColMajor && stride_ == mb_)
|| (layout_ == Layout :: RowMajor && stride_ == nb_);

}

// Returns whether this tile can safely store its data in transposed form
// based on its 'TileKind ', buffer size , Layout , and stride.
bool isTransposable ();

// Attaches the new_data buffer to this tile as an extended buffer
void makeTransposable(scalar_t* data);

// Resets the tile's member fields related to being extended.
void layoutReset ();

// return Whether this tile has extended buffer
bool extended () const;

// return Pointer to the extended buffer
scalar_t* extData ();

// return Pointer to the user allocated buffer
scalar_t* userData ();

void layoutSetFrontDataExt(bool front = true);

// return Pointer to the back buffer
scalar_t* layoutBackData ();

// return Stride of the back buffer
int64_t layoutBackStride () const;

// Convert layout of this tile
// CUDA stream must be provided if conversion is to happen on device
void layoutConvert(scalar_t* work_data ,

cudaStream_t stream = nullptr ,
bool async = false);

protected:
int64_t stride_;
int64_t user_stride_; // Temporarily store user -provided -memory 's stride

scalar_t* data_;
scalar_t* user_data_; // Temporarily point to user -provided memory buffer.
scalar_t* ext_data_; // Points to auxiliary buffer.

/// layout_: The physical ordering of elements in the data buffer:
/// - ColMajor: elements of a column are 1-strided
/// - RowMajor: elements of a row are 1-strided
Layout layout_;
Layout user_layout_; // Temporarily stores user -provided -memory 's layout

...
};

40

10.2. LAYOUT CONVERSION CHAPTER 10. COLUMNMAJOR AND ROWMAJOR LAYOUT

Algorithm 10.2 Matrix’s layout member functions and member variables.

class BaseMatrix
{
...
public:

// Returns matrix layout flag
Layout layout () const;

// Returns Layout of tile(i, j, device/host)
Layout tileLayout(int64_t i, int64_t j, int device=host_num_);

// Sets Layout of tile(i, j, device/host)
void tileLayout(int64_t i, int64_t j, int device , Layout layout);

// Returns whether tile(i, j, device/host) can be safely transposed.
bool tileLayoutIsConvertible(int64_t i, int64_t j, int device=host_num_);

// Converts tile(i, j, device) into 'layout '.
void tileLayoutConvert(int64_t i, int64_t j, int device , Layout layout ,

bool reset = false , bool async = false);

// Converts a set of tiles on device into 'layout '.
void tileLayoutConvert(std::set <ij_tuple >& tile_set , int device ,

Layout layout , bool reset = false);

void tileLayoutConvert(int device , Layout layout , bool reset = false);

void tileLayoutConvertOnDevices(Layout layout , bool reset = false);

void tileLayoutReset(int64_t i, int64_t j, int device , Layout layout);

void tileLayoutReset(std::set <ij_tuple >& tile_set , int device , Layout layout);

void tileLayoutReset ();
...

protected:
/// intended layout of the matrix. defaults to ColMajor.
Layout layout_;

};

Algorithm 10.3 Matrix’s layout member functions and member variables.

class MatrixStorage
{
...
public:

void tileMakeTransposable(Tile <scalar_t >* tile);
void tileLayoutReset(Tile <scalar_t >* tile);

...
};

41

10.3. LAYOUT AWARE MOSI CHAPTER 10. COLUMNMAJOR AND ROWMAJOR LAYOUT

10.2.1 Layout conversion of extended tiles

SLATE allocates and manages memory through the Memory class. At the construction of any
matrix (Matrix, TriangularMatrix, etc..), the parent BaseMatrix constructor initiates a static object
of the MatrixStorage, which, in addition to its functionality, acts as an interface to the static
Memory object. Ideally, a large pool of memory is allocated at the matrix construction through
the Memory object. Any shallow copy of the initiated matrix share the same MatrixStorage and
Memory objects.

The tiles inserted at the matrix object may occupy memory provided by the user upon construc-
tion of the matrix, otherwise occupy memory blocks provided by the Memory object. Memory
provided by the user for a tile may be contiguous, or may be strided, while memory provided
by the Memory object is provided in square contiguous blocks.

For converting a tiles layout in-place, the tiles memory need to be contiguous or square. Tiles
whose memory is strided and is rectangular cannot be transposed in-place. To facilitate a
seamless layout conversion of all tiles, a mechanism of extending the tiles memory is developed.
An extended tile has an extra memory bu�er attached to it, which facilitates transposing the
tiles data back and forth between the original memory bu�er and the extended memory bu�er.
Auxiliary member variables of the Tile class help maintain consistent �ags and memory bu�er
pointers of the extended tile, as shown in Algorithm 10.1. At anytime, the front bu�er of
an extended tile (can be the original memory bu�er referred to as Tile::user_data_, or the
extended bu�er referred to as Tile::ext_data_), holds the most up-to-date data and in the
current layout.

10.3 Layout aware MOSI

As discussed in the sections before, a call to fetch a tile through the MOSI API (tileGet***()
routines) handles the layout conversion automatically, based on the layout conversion parame-
ters. However, with the possibility of a tile being extended, many cases arise that can be invalid
(and should be guarded against), simple to handle, or involve a more elaborate set of actions
possibly including extending a tile, or allocating a temporary workspace bu�er. Additionally,
for performance purposes, data transposition is preferably executed on the devices whenever
possible. Table Table 10.1 details the possible cases and summarizes the set of actions taken.
These cases are implemented within the BaseMatrix::tileCopyDataLayout(), which is a private
function callable only from the tileGet() routine.

42

10.3. LAYOUT AWARE MOSI CHAPTER 10. COLUMNMAJOR AND ROWMAJOR LAYOUT

1Rectangular Tile
2User Owned - Strided
3Extended
4Source layout
5Target Layout
6Destination Layout
7Source device
8Destination device
9Any value

10Host memory space
11in-place
12out-of-place
13GPU memory space
14device workspace

43

10.3. LAYOUT AWARE MOSI CHAPTER 10. COLUMNMAJOR AND ROWMAJOR LAYOUT

Table 10.1: Layout aware MOSI:

Source Destination Layout Device
Rect1 User2 Ext3 User Ext SL4 = TL5 TL = DL6 SD7 DD8 Action
–9 – T – T – – – – Invalid
– – – – – – – H10 H Invalid
– – – F T – – – – Invalid
– F T – – – – – – Invalid
– T – T – – – – – Invalid
F – – T T – – – – Invalid
F T T – – – – – – Invalid
F – – – – T – – – Copy
T – – F F T – – – Copy
T F F T F T T – – Copy

F – – – – F – – –
Copy,
IP11-convert

T F F T T T – – –
Set front bu�er,
Copy

T F F T T F – H D
Set front bu�er,
Copy to back bu�er,
OOP12-convert

T – – F F F – H D13 Copy to dev-work14,
OOP-convert

T F F T F F T H D
Copy to dev-work,
OOP-convert

T T T F F F – D H
OOP-convert→ back-bu�er,
Copy to host

T – – F F F – D H
OOP-convert→ dev-work,
Copy to host

T F F T F F T D H
OOP-convert→ dev-work,
Copy to host

T F F T T F – D H
OOP-convert→ dev-work,
Set front bu�er,
Copy to host

T F F T F T F – –
Make convertible,
Set front bu�er,
Copy

T F F T F F F H D

Make convertible,
Set front bu�er,
Copy to back bu�er,
OOP-convert

T F F T F F F D H

Make convertible,
Set front bu�er,
OOP-convert→ dev-work,
Copy to host

44

CHAPTER 11

Compatibility APIs

In order to facilitate easy and quick adoption of SLATE a set of compatibility APIs is provided
for routines that will allow ScaLAPACK and LAPACK functions to execute using the matching
SLATE routines. SLATE can support such compatibility because the �exible tile layout adopted
by SLATE was purposely designed to match LAPACK and ScaLAPACK matrix layouts.

11.1 LAPACKCompatibility API

The SLATE-LAPACK compatibility API is parameter matched to standard LAPACK calls with
the function names prefaced by slate_. The prefacing was necessary because SLATE uses
standard LAPACK routines internally, and the function names would clash if the SLATE-
LAPACK compatibility API used the standard names.

Each supported LAPACK routine (e.g. gemm) added to the compatibility library provides inter-
faces for all data types (single, double, single complex, double complex, mixed) that may be
required. These interfaces (e.g. slate_sgemm, slate_dgemm) call a type-generic routine that set
up other SLATE requirements.

The LAPACK data is then mapped a SLATE matrix type using a support routine fromLAPACK.
SLATE requires a block/tile size (nb) because SLATE algorithms view matrices as composed of
tiles of data. This tiling does not require the LAPACK data to be moved, it is a view on top of
the pre-existing LAPACK data layout.

SLATE will attempt to manage the number of available threads so that SLATE uses the threads
to generate and manage tasks and the internal lower level BLAS calls all run single threaded.
These settings may need to be altered to support di�erent BLAS libraries since each library

45

11.2. SCALAPACK COMPATIBILITY API CHAPTER 11. COMPATIBILITY APIS

may have its own methods for controlling the threads used for BLAS computations.

The SLATE execution target (e.g. HostTask, Devices, ...) is not something available from
the LAPACK function parameters (e.g. dgemm). The execution target information defaults to
HostTask (running on the CPUs) but the user can specify the execution target to the compatibility
routine using environment variables, allowing the LAPACK call (e.g. slate_dgemm) to execute
on Device/GPU targets.

The compatibility library will then call the SLATE version of the routine (slate::gemm) and
execute it on the selected target.

11.2 ScaLAPACKCompatibility API

The SLATE-ScaLAPACK compatibility API is intended to be link time compatible with standard
ScaLAPACK, matching both function names and parameters to the degree possible.

Each supported ScaLAPACK routine (e.g. gemm) has interfaces for all the supported data types
(e.g. pdgemm, psgemm) and all the standard Fortran name manglings (i.e. uppercase, lowercase,
added underscore). So, a call to a ScaLAPACK function will be intercepted using function name
expected by the end user.

All the de�ned Fortran interface routines (e.g. pdgemm, PDGEMM, pdgemm_) call a single type-generic
SLATE function that sets up the translation between the ScaLAPACK and SLATE parameters.
The ScaLAPACK matrix data can be mapped to SLATE matrix types using a support function
fromScaLAPACK provided by SLATE. This mapping does not move the ScaLAPACK data from
its original locations. A SLATE matrix structure is de�ned that references the ScaLAPACK data
using the ScaLAPACK blocking factor to de�ne SLATE tiles. Note: SLATE algorithms tend to
perform better at larger block sizes, especially on GPU devices, so it is preferable if ScaLAPACK
uses a larger blocking factor.

The SLATE execution target (e.g. HostTask, Devices, ...) defaults to HostTask (running on
the CPUs) but the user can specify the execution target to the compatibility routine using
environment variables. This allows an end user to use ScaLAPACK and SLATE within the
same executable. ScaLAPACK functions that have an analogue in SLATE will bene�t from any
algorithmic or GPU speedup, and any functions that are not yet in SLATE will transparently
fall through to the pre-existing ScaLAPACK implementations.

46

Bibliography

[1] Mark Gates, Ali Charara, Jakub Kurzak, and Jack Dongarra. SLATE users’ guide, SWAN no.
10. Technical Report ICL-UT-XX-XX, Innovative Computing Laboratory, University of
Tennessee, March 2020. revision 03-2020.

[2] Mark Gates, Ali Charara, Asim YarKhan, Dalal Sukkari, Mohammed Al Farhan, and Jack
Dongarra. SLATE working note 14 performance tuning slate. Technical Report ICL-UT-XX-
XX, Innovative Computing Laboratory, University of Tennessee, December 2019. revision
12-2019.

[3] H. Carter Edwards, Bryce Adelstein Lelbach, Daniel Sunderland, David Hollman, Christian
Trott, Mauro Bianco, Ben Sander, Athanasios Iliopoulos, John Michopoulos, and Daniel
Sunderland. P0009r7 : mdspan: A Non-Owning Multidimensional Array Reference. ISO, 2018.
URL http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0009r7.html.

[4] Fred Gustavson, André Henriksson, Isak Jonsson, Bo Kågström, and Per Ling. Recursive
blocked data formats and BLAS’s for dense linear algebra algorithms. Applied Parallel
Computing Large Scale Scienti�c and Industrial Problems, 1541:195–206, 1998. doi: https:
//doi.org/10.1007/BFb0095337.

[5] Fred G Gustavson, Jerzy Waśniewski, Jack J Dongarra, and Julien Langou. Rectangular
full packed format for cholesky’s algorithm: factorization, solution, and inversion. ACM
Transactions on Mathematical So�ware (TOMS), 37(2):18, 2010. doi: https://doi.org/10.1145/
1731022.1731028.

[6] Introducing the new Packed APIs for GEMM. Intel Corp., 2016. URL https://software.intel.com/
en-us/articles/introducing-the-new-packed-apis-for-gemm.

[7] Fred Gustavson, Lars Karlsson, and Bo Kågström. Parallel and cache-e�cient in-place
matrix storage format conversion. ACM Transactions on Mathematical So�ware (TOMS), 38
(3):17, 2012. doi: https://doi.org/10.1145/2168773.2168775.

47

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0009r7.html
https://software.intel.com/en-us/articles/introducing-the-new-packed-apis-for-gemm
https://software.intel.com/en-us/articles/introducing-the-new-packed-apis-for-gemm

BIBLIOGRAPHY BIBLIOGRAPHY

[8] Stefan Kurz, Oliver Rain, and Sergej Rjasanow. The adaptive cross-approximation tech-
nique for the 3d boundary-element method. IEEE Transactions on Magnetics, 38(2):421–424,
2002. doi: https://doi.org/10.1109/20.996112.

[9] Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek, Panruo Wu, Ichi-
taro Yamazaki, Asim YarKhan, Maksims Abalenkovs, Negin Bagherpour, Sven Hammarling,
Jakub Šı́šı́stek, David Stevens, Mawussi Zounon, and Samuel d. Relton. Plasma: Parallel
linear algebra so�ware for multicore using openmp. ACM Transactions on Mathematical
So�ware (TOMS), 45:16:1–16:35, 2019. doi: https://doi.org/10.1145/3264491.

[10] Mark Gates, Piotr Luszczek, Ahmad Abdelfattah, Jakub Kurzak, Jack Dongarra, Konstantin
Arturov, Cris Cecka, and Chip Freitag. C++ api for blas and lapack. Technical Report
ICL-UT-17-03, SLATE Working Note 2, Innovative Computing Laboratory, University of
Tennessee, 06-2017 2017. URL https://www.icl.utk.edu/publications/swan-002.

[11] Alfredo Buttari, Jack Dongarra, Julie Langou, Julien Langou, Piotr Luszczek, and Jakub
Kurzak. Mixed precision iterative re�nement techniques for the solution of dense linear
systems. The International Journal of High Performance Computing Applications, 21(4):457–466,
2007. doi: https://doi.org/10.1177%2F1094342007084026.

[12] Erin Carson and Nicholas J Higham. Accelerating the solution of linear systems by iterative
re�nement in three precisions. SIAM Journal on Scienti�c Computing, 40(2):A817–A847, 2018.
doi: https://doi.org/10.1137/17M1140819.

[13] Azzam Haidar, Stanimire Tomov, Jack Dongarra, and Nicholas J Higham. Harnessing
gpu tensor cores for fast fp16 arithmetic to speed up mixed-precision iterative re�nement
solvers. In Proceedings of the International Conference for High Performance Computing, Network-
ing, Storage, and Analysis, page 47. IEEE Press, 2018. doi: https://doi.org/10.1109/SC.2018.
00050.

[14] Yozo Hida, Xiaoye S Li, and David H Bailey. Algorithms for quad-double precision �oating
point arithmetic. In Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15
2001, pages 155–162. IEEE, 2001. doi: https://doi.org/10.1109/ARITH.2001.930115.

[15] Wei Wu, Aurelien Bouteiller, George Bosilca, Mathieu Faverge, and Jack Dongarra. Hierar-
chical dag scheduling for hybrid distributed systems. In 2015 IEEE International Parallel and
Distributed Processing Symposium, pages 156–165. IEEE, 2015. doi: https://doi.org/10.1109/
IPDPS.2015.56.

[16] Jakub Kurzak, Piotr Luszczek, Ichitaro Yamazaki, Yves Robert, and Jack Dongarra. Design
and implementation of the PULSAR programming system for large scale computing.
Supercomputing Frontiers and Innovations, 4(1):4–26, 2017. doi: http://dx.doi.org/10.14529/
js�170101.

48

https://www.icl.utk.edu/publications/swan-002

	Contents
	Introduction
	API Layers
	Drivers
	Computational routines
	Internal routines for major, parallel tasks
	Tile operations for small, sequential tasks
	BLAS++, Batch BLAS++, and LAPACK++

	Matrix Storage
	Tile management

	Matrix Hierarchy
	Handling of Side, Uplo, Trans, etc.
	Handling of Precisions
	Parallelism Model
	Message Passing Communication
	MOSI Coherency Protocol
	Coherency control
	Tile States
	MOSI API
	Data transfer
	State diagrams

	Developer hints

	Column Major and Row Major Layout
	Layout representation and API
	Layout conversion
	Layout conversion of extended tiles

	Layout aware MOSI

	Compatibility APIs
	LAPACK Compatibility API
	ScaLAPACK Compatibility API

	Bibliography

